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Abstract

In the field of Formal Concept Analysis, data is mainly presented in so-called formal
contexts, which assign to a set of objects their respective attributes. From those
concept lattices can be generated, where the objects are grouped with respect to
their common attributes to represent the relationships in the data in a way that
enhances the understandability for humans. However, since a concept lattice can be of
exponential size compared to its associated formal context, the presented relationships
often become hard to grasp, even for data sets of moderate size. Therefore, the
question arises of finding ways to reduce the size of a dataset to make it more
understandable to the user while retaining the original information and structures as
best as possible.

Since Boolean substructures are significantly responsible for the exponential size of
concept lattices, whereas the objects in these structures just slightly differ concerning
their attribute set, we consider them first in the present work. We give the possibility
to infer from a Boolean subcontext in the formal context directly to a corresponding
Boolean suborder in the associated concept lattice and vice versa. Next, we deal with
reducing the size of the concept lattice. To this end, we consider two different types
of feature selection in the formal context. Finally, we consider changes directly in
the lattice. First, we give a way to collapse intervals (and thus Boolean suborders)
by factorization while preserving (as many as possible of) the remaining elements.
Second, we investigate under which conditions an interval can be entirely removed
without changing anything in the rest of the structure.
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CHAPTER 1

Motivation and Structure of the Work

In 1982 Rudolf Wille introduced Formal Concept Analysis (FCA) in his article “Re-
structuring Lattice Theory” [61] as an answer to the search for the real-world meaning
of mathematical order theory and thereby presenting datasets in an understandable
way for the human operator. Therefore, the connections in the data are illustrated
by a hierarchical presentation (a concept lattice) of so-called formal concepts. Such a
formal concept consists of a object set together with the common attributes. Those
object sets are maximal with regard of the common attributes.

One frequently – in real-world data as well as in randomly generated datasets [24]
– occurring substructure in a formal context, the main data structure in FCA be-
ing roughly a data table where every row represents an object associated with
attributes described through columns, are contranominal scales, i. e., contexts of type
({1, . . . , k},{1, . . . , k},≠). This means, in particular, the existence of k objects that
differ only slightly on k attributes. However, despite of the only slight difference,
these subcontexts are responsible for an exponential growth of the corresponding
concept lattice, by generating a k-dimensional Boolean lattice, that consists of 2k

concepts. More precisely, a concept lattice contains a Boolean lattice of dimension k
as a substructure if and only if its corresponding formal context contains a contra-
nominal scale of the same dimension [2]. Since humans tend to observe connections in
smaller parts of data, the understandability is decreased by this exponential nature,
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as theconcept lattices become large and hard to grasp. Consequently, reducing large
and complex data to meaningful substructures enhances the application of FCA.
This motivates us to examine Boolean structures in more detail. To this end, we
state the following research questions:

(RQ1) How are Boolean substructures in formal contexts and in concept
lattices connected, and in particular, how can such a substructure in the
formal context be identified with a corresponding substructure in the
associated concept lattice and vice versa?

(RQ2) How can the size of a concept lattice be decreased by alterations
of the data while preserving the underlying structure to enable a human
observer to grasp the presented information of the data? In particular,
what changes can be made in the corresponding formal context (RQ2a)
or directly in the lattice (RQ2b)?

After revisiting the required foundations in Part I, we start in Part II by expanding
the notion of contranominal scales to cover (RQ1). We introduce Boolean subcontexts
of dimension k to cover all substructures of a formal context that generate a concept
lattice isomorphic to the one corresponding to a contranominal scale of the same
dimension. On the side of the concept lattice Boolean sublattices, as well as Boolean
suborders, are examined. An approach for the connection of substructures in the
formal context and the corresponding concept lattice is introduced by Wille [58].
He proposed the one-to-one correspondence between closed subrelations of a formal
context and complete sublattices of the associated concept lattice. In the realm
of our investigation, we adapt Willes approach to the set of all sublattices and,
in particular, Boolean sublattices in Chapter 5. Moreover, we define mappings
between the Boolean subcontexts in a formal context and the Boolean sublattices
and suborders in its corresponding concept lattice based on the maps introduced
by Ganter and Wille [29, Prop. 32], and introduce associated subcontexts to map
Boolean suborders to Boolean subcontexts. All those maps are investigated with
regard to their structural properties as well as the interplay between them.

We address (RQ2) in Part III and IV, in that we aim to generate a smaller concept
lattice while preserving as much of the underlying structure as possible. We start
in Part III focusing on (RQ2a) with a restriction of the data (more precisely, the
attribute set) in formal contexts by attribute selection. By this, we generate sub-∧-
semilattices of the original concept lattice and preserve underlying knowledge by not
generating false implications.
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In Chapter 6, we investigate the method of attribute selection, as done in machine
learning. To this end, we adapt the notion of attribute relevance formalized by Blum
and Langley in [10] to the field of Formal Concept Analysis by introducing relevant
attributes in formal contexts. We utilize this idea to select attributes based on their
impact on the lattice size and the distribution of the objects on the concepts and use
different entropy functions to approximate the relevance to overcome computational
limitations. The suitability of these approximations is shown in several experiments.

Since the size of a concept lattice is heavily influenced by the number of contranominal
scales of large dimension in the corresponding formal context, the elimination of
those scales is a reasonable approach to decrease the lattice size. Therefore, we focus
on the removal of attributes based on their contranominal influence, measuring the
appearance in contranominal scales, in Chapter 7. Based on this measure, we generate
a δ-adjusted subcontext that includes the attributes with the lowest contranominal
influence. We evaluate the reduction of the lattice size by δ-adjustment in comparison
to the selection of relevant attributes and measure the encapsulated information
based on a decision tree experiment that illustrates the suitability of both approaches
to generate substructures to enhance the understandablility for the observer.

We deal with (RQ2b) in Part IV by eliminating selected parts directly in the concept
lattice. Since we aim to reduce the size of a lattice, we turn to the question of
imploding a selected interval – for example, a Boolean sublattice – by factorization
while imploding as less not selected elements as possible and thus preserving the
remaining order structure in Chapter 8. We study the factorization of a selected
interval by congruence relations and tolerance relations which always generates an
order-preserving factor lattice and preserves the original meet- and join-operations.
However, this approach often results in the implosion of more elements than se-
lected. Inspired by the connection of tolerance relations and block relations [59],
we add the missing incidences of contranominal scales and Boolean subcontexts
to the corresponding formal context. However, this approach can generate new
contranominal-scales and possibly result in a concept lattice even larger than the
original one. Therefore we turn away from this approach and introduce interval
relations, a new kind of equivalence relations on lattices. They provide a factorization
that implodes a given interval while preserving all other lattice elements. While this
implosion is order-preserving, neither the meet- nor the join-operation is generally
preserved in the factor set. To generate a factor set with a lattice structure, we
introduce lattice-generating interval relations as a requirement. We conclude this
chapter with a context construction for the factorization by interval relations, the



4 CHAPTER 1. MOTIVATION AND STRUCTURE OF THE WORK

enrichments of formal contexts by intervals. In the case of imploding pure intervals,
those enrichments are in one-to-one correspondence to the interval relations.

Instead of imploding a selected interval and thus generating a new representative,
the elimination of selected elements is also possible. Based on the dismantling of
irreducible elements [19] – where a sublattice is generated through an elimination
of doubly irreducible concepts – we introduce the idea of dismantling (and quasi-
dismantling) for intervals in Chapter 9. After stating the requirements for an interval
to be dismantling (quasi-dismantling) in a lattice, we prove the existence of a unique
DI-kernel. We connect dismantling intervals with closed subrelations and quasi-
dismantling intervals with closed-subcontexts and propose an algorithm to compute
all dismantling intervals of a lattice directly in the associated formal context.

Note that our work is triggered by complexity issues in data analysis where only finite
sets are considered. Therefore all statements in this work are about finite
sets and structures only unless explicitly stated otherwise.

We conclude our work in Chapter 10 and give an outlook on possible further work.



Part I

Foundations and State of the Art





CHAPTER 2

Order Theory

Order theory is an area of mathematics introduced during the 1930s by Garrett
Birkhoff and others [9]. It formalizes the intuitive notion of order, such as comparisons
like “greater than” or “lesser than” between different objects while also providing
the possibility of incomparable elements so that the natural idea of ordered numbers
is extended to general orders, e.g., alphabetical orders or subset relations.

Since Formal Concept Analysis can be interpreted as an application of order theory,
this chapter builds the foundation for understanding the essentials of Formal Concept
Analysis by introducing the field and providing basic notions. For a more detailed
introduction to order theory (and lattice theory), we refer the reader to the works of
Ganter [27] or Davey and Priestley [16]. The basic definitions this chapter relies on
can also be revisited in [29].
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2.1 Ordered Sets

The basic structure investigated in order theory is the ordered set as presented
in Definition 2.2. To conceptualize statements of comparison like “lesser than” the
notion of an order relation on a set is introduced:

Definition 2.1 (Order Relation)
A binary relation R on a set P is called order relation if the following statements
hold for all elements x, y, z ∈ P :

i) (x,x) ∈ R

ii) (x, y) ∈ R, x ≠ y⇒ (y, x) /∈ R

iii) (x, y), (y, z) ∈ R⇒ (x, z) ∈ R

(reflexivity)

(antisymmetry)

(transitivity)

In the following, we also use the phrase order, meaning an order relation. Also, we
often write xRy instead of (x, y) ∈ R.

We primarily use the notion ≤ for an order relation R. In this case we write x < y to
denote x ≤ y with x ≠ y.

Definition 2.2 (Ordered Set)
Let P be a set and ≤ an order relation on P . We call P ∶= (P,≤) an ordered set.

Example 2.1
The set P = {1,2,3,5,6,10,15} together with the order relation x ≤ y ∶⇔ x ∣ y is an
ordered set.

Definition 2.3 (Lower and Upper Neighbor)
Let P = (P,≤) be an ordered set and x, y ∈ P . We call x lower neighbor of y if
x < y and it exists no z ∈ P with x < z < y. In this case, analogous y is called upper
neighbor of x. We denote this by x ≺ y.

Every finite ordered set P = (P,≤) can be represented graphically by a line diagram.
Here every element on P is represented by a circle. For two elements x, y ∈ P with
x < y, the circle representing y is positioned above the one representing x. Two
circles representing the elements x and y are connected by a line if and only if x ≺ y
holds. Thus, the order relation can be read in the line diagram as follows: For two
elements, x, y ∈ P holds x ≤ y if and only if the circle representing y can be reached
from the one representing x by an ascending path. In Figure 2.1, a line diagram for
the ordered set in Example 2.1 is given.
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2 3 5

1

6 10 15

Figure 2.1 Example of a line diagram for the ordered set (P,≤) in Example 2.1. The
elements of P are written next to the circles that representing them.

Note that for an order ≤, the inverse relation ≥ is an order as well. We call it the
dual order of ≤. The line diagram for the dual ordered set (P,≤)d ∶= (P,≥) can be
generated by horizontal reflection of the line diagram for the ordered set (P,≤). For
a given order-theoretical statement of (P,≤), the dual statement arises by replacing
≤ by ≥. This principle of duality is used in several proofs.

To investigate different properties of an ordered set, often specific parts of the order
are considered.
Definition 2.4 (Suborder)
Let P = (P,≤) be an ordered set and S ⊆ P . We call S ∶= (S,S2∩ ≤) suborder of P
and denote this by S ≤ P . We define the suborder P ∖S ∶= (P ∖S, (P ∖S)2∩ ≤). The
set of all suborders of P is denoted by SO(P ).

Note that a suborder of an ordered set is an ordered set itself since all order conditions
are passed from the original order.

A special kind of suborder are the crowns of order k ≥ 3 as introduced by Baker,
Fishburn, and, Roberts [53] to investigate partial orders of dimension 2. The crown
of order 5 is presented in Figure 2.2.

Definition 2.5 (Crown)
A crown of order k is a set {x1, y1, . . . , xk, yk} together with the following order:
xi ≤ yi for i ∈ {1, . . . , k}, xi ≤ yi+1 for i ∈ {1, . . . , k − 1}, and x1 ≤ yk.

Some other specific suborders can be generated by single elements of an ordered set
as follows:
Definition 2.6 (Ideal, Filter, Interval)
Let P = (P,≤) be an ordered set and x, y ∈ P with x ≤ y. The ideal of x is defined
as (x] ∶= {p ∈ P ∣ p ≤ x}, the filter of x is defined as [x) ∶= {p ∈ P ∣ x ≤ p} and the
interval of x and y is given by [x, y] ∶= {p ∈ P ∣ x ≤ p ≤ y}.

Note that an interval [x, y] can always be interpreted as the intersection of the ideal
[x) and the filter (y]. This is illustrated in the following example:
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x1 x2 x3 x4 x5

y1 y2 y3 y4 y5

Figure 2.2 The crown of order 5.

2 3 5

1

6 10 15

2 3 5

1

6 10 15

2 3 5

1

6 10 15

Figure 2.3 Visualization of the ideal (6] (left), the filter [2) (middle) and ideal [2, 6] (right)
in the ordered set P as mentioned in Example 2.2. The suborders are each highlighted red.

Example 2.2
Let P be the ordered presented in Example 2.1. The ideal (6] is the set {1,2,3,6}
together with the original order relation x ≤ y ∶⇔ x ∣ y restricted to this set, i.e.,
(6] = ({1,2,3,6},{(1,2), (1,3), (1,6), (2,6), (3,6)}). An example for a filter in P

is (2] = ({2,6,10},{(2,6), (2,10)}). The intersection of both this suborders is the
interval [2,6] = ({2,6},{(2,6)}). Those three suborders are visualized in Figure 2.3.

2.2 Lattices

A special kind of an ordered set is a lattice. Besides the order properties, a lattice
has additional structural characteristics as presented in Definition 2.8.

Definition 2.7 (Infimum, Supremum)
Let P be an ordered set and S ⊆ P . An element x ∈ P is called lower bound of S if
x ≤ s holds for all s ∈ S. If there is no y ∈ P so that x < y and y is a lower bound of
S, x is a greatest lower bound of S. We call x the infimum or meet of S, if x is the
only greatest lower bound of S. Analogously x is called upper bound of S if s ≤ x
holds for all s ∈ S. If there is no y ∈ P so that y < x and y is a upper bound of S, x
is a smallest upper bound of S. If x is the only smallest upper bound of S, we call x
the supremum or join of S. The infimum of S is denoted by ⋀S, and the supremum
of S is denoted by ⋁S. If S = {a, b} we also write a ∨ b or a ∧ b, respectively.

Definition 2.8 ((Complete) Lattice, Coatoms, Atoms)
An ordered set L = (L,≤) is called lattice, if the supremum x ∨ y and infimum x ∧ y
exists for every two elements x, y ∈ L. L is a complete lattice if ⋁S and ⋀S exists for
every subset S ⊆ L. The smallest element ⋀L of a complete lattice L is called zero
element and denoted by 0L or �. The upper neighbors of 0L are called atoms of L.
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2 3 5

1

6 10 15

30

Figure 2.4 Example of a line diagram for the lattice L in Example 2.3. The elements of
L are written next to the circles representing them.

The largest element ⋁L of a complete lattice L is called unit element and denoted
by 1L or ⊺. The lower neighbors of 1L are called coatoms of L. We denote by At(L)
and CoAt(L), respectively, the set of all atoms and coatoms of L.

Note that every finite lattice is complete, since the requirements are always fulfilled.

For a lattice L = (L,≤) the dual lattice is given by Ld = (L,≥). Here the duality
principle for ordered sets expands to lattices as follows: To obtain a dual order-
theoretic statement, in addition to the exchange of ≤ and ≥, the symbols ∨ and ∧ as
well as 0L and 1L, etc. have to be replaced by each other.

Example 2.3
The ordered set P presented in Example 2.1 is not a lattice since the elements 6 and
10 have no supremum in P . By expanding P by an additional element the complete
lattice L = ({1,2,3,5,6,10,15,30},≤) with x ≤ y ∶⇔ x ∣ y arises. A line diagram for
this lattice can be seen in Figure 2.4.

The elements of a lattice can be characterized with regard to their interaction
with other elements. Those structural information can be used to identify special
substructures like dismantling intervals (see Chapter 9).

Definition 2.9 (Irreducible Elements)
An element x of a lattice L is called supremum-irreducible if x has exactly one lower
neighbor, meaning ⋁{y ∈ L ∣ y < x} =∶ x⋆ < x. An element x ∈ L is called infimum-
irreducible if x has exactly one upper neighbor, meaning x < x⋆ ∶= ⋀{y ∈ L ∣ x < y}. We
call x doubly-irreducible if it is both, supremum-irreducible and infimum-irreducible.
The set of all supremum-irreducible elements of L is denoted by J(L). The set of all
infimum-irreducible elements of L is denoted by M(L).

Definition 2.10 (Supremum-prime, Infimum-prime)
Let L be a lattice. An element x ∈ L is called supremum-prime if for all a, b ∈ L holds:
x ≤ a ∨ b⇒ x ≤ a or x ≤ b. Analogously, an element x ∈ L is called infimum-prime if
for all a, b ∈ L holds: a ∧ b ≤ x⇒ a ≤ x or b ≤ x.
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As in to general ordered sets, in lattices also specific parts are of structural interest.
While every part of a lattice can be selected as a suborder, special substructures are
generated considering the meet- or join-operators:

Definition 2.11 (Sub(semi)lattice)
Let L be a lattice and S ⊂ L. If (a, b ∈ S ⇒ (a ∨ b) ∈ S) holds we call S sub-∨-
semilattice of L. If (a, b ∈ S ⇒ (a ∧ b) ∈ S) holds we call S sub-∧-semilattice of L. If
a S is both, a sub-∨-semilattice and a sub-∧-semilattice, it is called sublattice of L.
The set of all sublattices of L is denoted by SL(L). If (T ⊆ S ⇒ (⋁T ), (⋀T ) ∈ S)
holds for all T ⊆ S we call S complete sublattice of L.

In the case of a finite lattice L, the requirement for completeness can be translated
into 1L and 0L being included in the sublattice S.

Note that every ideal, filter, or interval of a lattice is a sublattice of the original one.



CHAPTER 3

Formal Concept Analysis

This chapter provides the basic ideas of Formal Concept Analysis (FCA) and the
notations required in the further work. If not stated differently, the definitions and
statements are from [29], to that we refer the reader for a deeper introduction.

Formal Concept Analysis deals with the investigation of (binary) data. Therefore,
the main ways to represent data are the formal context and the concept lattice. Their
definitions and connections, as well as some structural properties, are represented
in this section. Note that the word “formal” should underline that we deal with a
mathematical definition and separate it from the use of the word “context” in the
standard language. However, for reasons of readability, we will often leave out the
additional adjective and go with context, meaning the defined formal context. The
same holds for the usage of the words formal concept and concept.
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3.1 Formal Contexts and Concept Lattices

One of the primary data structures in Formal Concept Analysis is the formal context
as defined in Definition 3.1. It can be understood as a binary data structure.

Definition 3.1 (Formal Context)
A formal context is a triple consisting of an object set G, an attribute set M , and a
binary incidence relation on those sets I ⊆ (G ×M). It is denoted by K = (G,M, I).

If (g,m) ∈ I holds for an object g ∈ G and an attribute m ∈M , we also write gIm and
say object g has attribute m. In this work, G and M (and therefore I) are assumed
to be finite. The roles of objects and attributes are exchangeable. By this the dual
context Kd = (G,M, I−1) of a formal context K arises.

A formal context can be visualized by a cross-table, in which each object is represented
by a row and each attribute is represented by a column, respectively. Crosses in the
table stand for the elements of the incidence relation, meaning a cross in row g and
column m represents that the object g has the attribute m.

Example 3.1
An example of a formal context is KAladdin = (G,M, I). It contains some characters
of the movie Aladdin 1 as object set and some of their properties as attribute set.
The incidence relation represents that a character in G has a property in M . KAladdin

is visualized by the cross-table in Figure 3.1.

To determine for a given set of objects which attributes they have in common, and
the other way around, the following two derivations are defined on the powersets of
object set and attribute set:

Definition 3.2 (Derivation)
Let K = (G,M, I) be a formal context. The object derivation on K is the map

⋅′∶P(G)→ P(M), A↦ A′ ∶= {m ∈M ∣ ∀g ∈ A∶ (g,m) ∈ I}.

The attribute derivation on K is the map

⋅′∶P(M)→ P(G), B ↦ B′ ∶= {g ∈ G ∣ ∀m ∈ B∶ (g,m) ∈ I}.

We call A′ the set of attributes common to objects in A and B′ the set of objects
that share all attributes in B.

1https://de.wikipedia.org/wiki/Aladdin_(2019)

https://de.wikipedia.org/wiki/Aladdin_(2019)
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KAladdin human animal has magic can speak can fly villain
Aladdin × ×
Jasmin × ×
Genie × × ×
Jafar × × × ×
Abu ×
Jago × × ×
Magic Carpet × ×

Figure 3.1 Visualization of the formal context KAladdin from Example 3.1.

Since it is clear whether the derivation of a set of objects or a set of attributes is
addressed, we use the symbol ⋅′ for both operators. If it is unclear which incidence
relation is used when investigating different contexts or parts of a context, we also
write AI instead of A′ to clarify the use of incidence I. Further, we write g′ instead
of {g}′ for a single object and A′′ instead of (A′)′ for readability reasons.. The same
holds for attribute subsets.
Example 3.2
Considering the object set A = {Aladdin} from the formal context in Example 3.1,
we have A′ = {human, can speak} as the common attributes and A′′ = {Aladdin,
Jasmin, Jafar} as the objects that share all those attributes.

The following properties hold as proposed in [29, Prop. 10], where the proof can
also be found. Based on them formal concepts, a fundamental structure in Formal
Concept Analysis, are defined in Definition 3.3.

Proposition 3.1 ([29, Prop. 10])
Let K = (G,M, I) be a formal context with A, Ã ⊆ G and B, B̃ ⊆M . The following
properties hold:

i) Ã ⊆ A⇒ A′ ⊆ Ã′

ii) A ⊆ A′′

iii) A = A′′′

v) A ⊆ B′⇐⇒ B ⊆ A′⇐⇒ A ×B ∈ I

i’) B̃ ⊆ A⇒ A′ ⊆ B̃′

ii’) B ⊆ B′′

iii’) B = B′′′

Definition 3.3 (Formal Concept, Extent, Intent)
Let K = (G,M, I) be a formal context, A ⊆ G, and B ⊆ M . A pair c = (A,B) is
called a formal concept of K if and only if A′ = B and B′ = A. A is called the extent
of c and is denoted by ext(c). B is called the intent of c and is denoted by int(c).
The set of all formal concepts of a formal context K is denoted by B(K).
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It can be seen, that for every object set A ⊆ G the derivation A′ is the intent of some
concept, to be specific of (A′′,A′). Further, A′′ is the smallest extent containing
A. Therefore we also call (A′′,A′) the context generated by A. Since it is possible
that two object sets A, Ã have the same set of common attributes, a concept can
be generated by more than just one object set. The same holds for attribute sets.
However, the minimal generators of an object set (an attribute set) can be specified.

Definition 3.4 (Minimal Generator)
An object set O ⊆ G is called minimal object generator of a concept (A,B) if O′′ = A
and P ′′ ≠ A for every subset P ⊊ O. Analogous, the minimal attribute generator of
a concept (A,B) is defined. The set of all minimal object generators (all minimal
attribute generators) of (A,B) is denoted by minGobj(A,B) (minGatt(A,B)).

It is possible that a single object or attribute can generate a concept. In particular,
this is a requirement for a concept to be infimum-irreducible or supremum-irreducible
in the concept lattice.

Definition 3.5 (Object Concept, Attribute Concept)
Let K = (G,M, I) be a formal context with g ∈ G and m ∈ M . The concept
γg ∶= (g′′, g′) is called object concept of g. Analogous, the concept µm ∶= (m′,m′′) is
called attribute concept of m.
Example 3.3
As for the context KAladdin from Example 3.1 the formal concepts are the following:

• (∅,{human, animal, has magic, can speak, can fly, villain})

• ({Aladdin, Jasmin, Jafar},{human, can speak})

• ({Genie},{has magic, can speak, can fly})

• ({Jafar},{human, has magic, can speak,villain})

• ({Abu, Jago},{animal})

• ({Jago},{animal, can speak, can fly})

• ({Genie, Magic Carpet},{has magic, can fly})

• ({Genie, Jafar},{has magic, can speak})

• ({Genie, Jafar, Magic Carpet},{has magic})

• ({Aladdin, Jasmin, Genie, Jafar, Jago},{can speak})

• ({Genie, Jago, Magic Carpet},{can fly})
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• ({Genie, Jago},{can speak, can fly})

• ({Aladdin, Jasmin, Genie, Jafar, Abu, Jago, Magic Carpet},∅)

The concept c =({Aladdin, Jasmin, Jafar},{human, can speak}) has the minimal
object generators {Aladdin} and {Jasmin}. Thus, c is the object concept of both of
those sets.

The concepts of a formal context K can be compared with regard to their extents
(or intents). Based on this, an order arises as follows:

Definition 3.6 (Subconcept, Superconcept, Hierarchical Order)
LetK = (G,M, I) be a formal context and (A,B), (Ã, B̃) ∈B(K) two formal concepts.
We call (A,B) a subconcept of (Ã, B̃) if A ⊆ Ã (or equivalent B̃ ⊆ B). In this case
(Ã, B̃) is called superconcept of (A,B). We also write (A,B) ≤ (Ã, B̃) and call this
relation the hierarchical order of the concepts.

Definition 3.7 (Concept Lattice)
Let K = (G,M, I) be a formal context. The set of all formal concepts of K together
with the hierarchical order forms the concept lattice B(K) ∶= (B(K),≤).

Indeed, the concept lattice of a formal context K is a complete lattice. This is shown
in the first part of the Basic Theorem of Formal Concept Analysis:

Theorem 3.1 (Basic Theorem, [29, Thm. 3])
Let K = (G,M, I) be a formal context. The concept lattice B(K) is a complete lattice
with the following infima and suprema:

⋀
t∈T

(At,Bt) =
⎛
⎝⋂t∈T

At,
⎛
⎝⋃t∈T

Bt

⎞
⎠

′′

⎞
⎠

⋁
t∈T

(At,Bt) =
⎛
⎝
⎛
⎝⋃t∈T

At
⎞
⎠

′′

,⋂
t∈T

Bt,
⎞
⎠

The second part of this theorem is omitted in this work since we do not make use of
it. However, we want to emphasize that every complete lattice L is isomorphic to
the concept lattice of the formal context (L,L,≤). Therefore, the statements in this
work on concept lattices can be translated to lattices in general and the other way
around. Also, the duality principle does extend to concept lattices.

A concept lattice can be visualized by a line diagram, like every lattice. Instead
of labeling each circle with the concept it represents, a simplification can be made
in the following way: Every object and attribute is written down only once. The
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Jafar Ginie

Aladdin, Jasmin

Abu

Jago

Magic
Carpet

animal

human

has
magic

can
speak

can
fly

villain

Figure 3.2 Concept lattice of the context KAladdin. The line diagram has reduced labeling.

object g is written next to the circle, which represents the object concept γg. Analog
the attribute is written next to the circle, which represents the attribute concept
µm. To clarify whether an object or an attribute generates the concept the objects
are placed slightly below the circles while the attributes are placed slightly above
them. To read the extent of a concept from the line diagram, one has to look at the
corresponding circle and unite the objects from this circle and all circles that can be
reached by descending line paths. Dually, the intent of this concept is the union of
the attributes on this circle and those on all circles that can be reached by ascending
line paths. The line diagram of B(KAladdin) is visualized in Figure 3.2.

There are two basic structural approaches for simplifying a formal context, namely
clarifying and reduction. They generate the following contexts:

Definition 3.8 (Clarified Context)
Let K = (G,M, I) be a formal context. K is called object clarified if for every two
objects g, h ∈ G with g′ = h′ follows that h = g. Analogous, K is called attribute
clarified if for every two attributes m,n, ∈M from m′ = n′ follows that h = g. If K is
both, object clarified and attribute clarified, we call it clarified.

Definition 3.9 (Reduced Context)
Let K = (G,M, I) be a formal context. An object g ∈ G is called reducible, if there is
an object set X ⊆ G with g /∈X and g′ =X ′. Otherwise g is called irreducible in K.
The same holds for the attributes. If all objects and attributes in K are irreducible,
we call the context reduced.

Note that objects and attributes corresponding to full or columns, respectively, are
always reducible, i.e. the objects g with g′ =M and the attributes m with m′ = G.
In this case, the empty set has the same derivation as these objects or attributes.
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Since every element of a finite lattice is the join of supremum-irreducible elements
and meet of infimum-irreducible elements, all reducible objects and attributes can
be eliminated at once in a finite formal context:

Proposition 3.2
Let K = (G,M, I) be a finite clarified formal context, Girr ⊆ G the irreducible objects,
and Mirr ⊆M the irreducible attributes of K. Let Kirr = (Girr,Mirr, I ∩(Girr×Mirr)).
Then:

B(K) ≅B(Kirr)

This means numerous formal contexts correspond to (concept) lattices with identical
structures. However, only one of them is reduced (up to isomorphism).

The denotations of irreducible elements in a (concept) lattice L (Definition 2.9) and
in a formal context K are chosen in this way because they are strongly connected.
An element x ∈ L is supremum-irreducible if and only if x = γg for an irreducible
object g in the corresponding formal context. Dual, the infimum-irreducible elements
of a (concept) lattice are the ones generated by an irreducible attribute.

Proposition 3.3 ([29, Prop. 12])
Let L be a finite lattice. There is (up to isomorphism) one reduced context K with
B(K) ≅ L. This context is K = (J(L),M(L),≤).

Definition 3.10 (Standard Context, Generic Context)
Let L be a finite lattice. The context K = (J(L),M(L),≤) is called the standard
context of L. The context K = (L,L,≤) is called the generic context of L.

Example 3.4
As for the formal context KAladdin in Example 3.1, the objects “Aladdin” and “Jasmin”
have identical derivations, i.e. Aladdin′ = Jasmin′. Hence, KAladdin is not clarified. To
clarify the context both objects have to be merged. To obtain the standard context,
also the attribute “villain” has to be removed since villain′ = {human, has magic}′
holds. The generic context of the lattice L ≅B(KAladdin) is presented in Figure 3.3.
The Numbers denote the elements of the lattice for reasons of readability.

Another method to characterize the irreducible elements of a formal context can be
obtained using arrow relations.
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1 2 3 4 5 6 7 8 9 10 11 12 13
1 × × × × × × × × × × × × ×
2 × × × × × ×
3 × × × × × × × ×
4 × × × × × ×
5 × × × ×
6 × × × ×
7 × × × ×
8 × × ×
9 × ×
10 × ×
11 × ×
12 × ×
13 ×

1

2 3 4

5 6 78

910 11 12

13

Figure 3.3 A generic formal context K = (L,L ≤) (left) and its corresponding concept
lattice L (right). L is isomorphic to B(KAladdin).

Definition 3.11 (Arrow Relations)
For an object g ∈ G and an attribute m ∈M of a formal context (G,M, I) we write

g ↙m ∶⇐⇒
⎧⎪⎪⎪⎨⎪⎪⎪⎩

(g,m) /∈ I and

if there exists an h ∈ G with g′ ⊆ h′ and g′ ≠ h′, then hIm,

g ↗m ∶⇐⇒
⎧⎪⎪⎪⎨⎪⎪⎪⎩

(g,m) /∈ I and

if there exists an n ∈M with m′ ⊆ n′ and m′ ≠ n′, then gIn,

g ↙↗m ∶⇐⇒ g ↙m and g ↗m.

We also write ↙I ,↗I , and ↙↗I to clarify the use of incidence relation I.

We now adapt the definitions of (⋅)⋆, (⋅)⋆ to object and attribute concepts,

(γg)⋆ ∶=⋁{c ∈B(K) ∣ c ≤ γg}, and
(µm)⋆ ∶=⋀{c ∈B(K) ∣ µm ≤ c},

in order to characterize the arrow relations in a formal context as follows:
Proposition 3.4
Let K = (G,M, I) be a formal context with g ∈ G and m ∈M . We have

g ↙m ⇐⇒ γg ∧ µm = (γg)∗ ≠ γg
g ↗m ⇐⇒ γg ∨ µm = (µm)∗ ≠ µm.
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KAladdin human animal has magic can speak can fly villain
Aladdin × ↗ ↗↙ × ↗ ↙
Jasmin × ↗ ↗↙ × ↗ ↙
Genie ↗↙ ↗↙ × × × ↙
Jafar × ↗ × × ↗ ×
Abu × ↗ ↗↙ ↗↙
Jago ↗↙ × ↗↙ × × ↙
Magic Carpet ↗ × ↗↙ ×

Figure 3.4 KAladdin with its arrow relations.

If (γg)⋆ ≠ γg, the object g is irreducible in the formal context, and γg is supremum-
irreducible in the corresponding concept lattice. If dually (µm)⋆ ≠ µm, the attribute
m is irreducible in the formal context and µm is infimum-irreducible in the concept
lattice. Therefore, the arrow relations can be utilized to identify the irreducible
concepts of a lattice as follows:

Proposition 3.5 ([29, Prop. 13])
Let K = (G,M, I) be a finite formal context with g ∈ G and m ∈M . It holds:

i) γg is supremum-irreducible ⇐⇒ There is an n ∈M with g ↙↗ n.

ii) µm is infimum-irreducible ⇐⇒ There is an h ∈ G with h↙↗m.

Example 3.5
In Figure 3.4 KAladdin is visualized with its arrow relations. There is no object g ∈ G
with g ↗ villain. Thus, the attribute “villain” is reducible.

3.2 Subcontexts and Subrelations

Besides reducing and clarifying a context, arbitrary objects and attributes can be
chosen to reduce the size of a formal context. This selection of such a subcontext
helps to study particular parts of a formal context.

Definition 3.12 (Subcontext)
Let K = (G,M, I) be a formal context with the subsets H ⊆ G and N ⊆ M . We
define S = [H,N] ∶= (H,N, I ∪ (H ×N)) as a subcontext of K and denote this with
S ≤ K. The set of all subcontexts of a formal context K is denoted by S(K).

Note that every subcontext is a formal context itself. One kind of subcontext that
is often found in formal contexts is the family of contranominal scales, denoted by
Nc(k) ∶= ({1,2, . . . , k},{1,2, . . . , k},≠). The objects (and dually attributes) in this
structure just slightly differ.



22 CHAPTER 3. FORMAL CONCEPT ANALYSIS

has magic can speak can fly
Jafar × ×
Jago × ×
Magic Carpet × × Jafar Jago Magic

Carpet

has
magic

can
speak

can
fly

Figure 3.5 A subcontext of KAladdin that is a contranominal scale of dimension 3 (left)
and the corresponding concept lattice (right).

Definition 3.13 (Contranominal Scale)
The formal context Nc(k) ∶= ({1, . . . , k},{1, . . . , k},≠) is called contranominal scale
of dimension k. The concept lattice of Nc(k) is called Boolean lattice of dimension k
and is denoted by B(k) ∶=B(Nc(k)).

In this work, we call every subcontext S ≤ K of a formal context K with S ≅ Nc(k)
contranominal scale as well.

Albano and Chornomaz [2, Prop. 1] proposed that every formal context K contains
a contranominal scale of dimension k if B(K) contains a suborder isomorphic to a
Boolean lattice of dimension k. We will investigate this connection and the related
structures in more detailed in Chapter 5.

Example 3.6
KAladdin contains the 3-dimensional contranominal scale S =[{Jafar, Jago, Magic
Carpet}, {has magic, can speak, can fly}] as a subcontext. S is visualized in Figure 3.5
together with its corresponding concept lattice, a Boolean lattice of dimension 3.

Two other frequently occurring scales in formal contexts are the nominal scale,
N(k) ∶= ({1, . . . ,1},{1, . . . , k},=), in which every object can be assigned to one
attribute and vice versa, and the ordinal scale, O(k) ∶= ({1, . . . ,1},{1, . . . , k},≤). A
small example of both scales can be found in KAladdin. The respective subcontexts
are presented together with their corresponding concept lattices in Figure 3.6.

A connection of the concept lattices of a formal context K = (G,M, I) and its
subcontext S = [H,N] is given by Ganter and Wille by the following maps:

Proposition 3.6 ([29, Prop. 31 and Prop. 32])
Let (G,M, I) be a formal context with H ⊆ G and N ⊆M .
The map

B([G,N])→B((G,M, I)), (A,B)↦ (A,A′)

is a meet-preserving order embedding.
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human animal has magic
Aladdin ×
Genie ×
Jago ×

Aladdin GenieJago
human animal has magic

has magic can speak can fly
Aladdin ×
Genie × × ×
Jago × ×

Aladdin

Genie

Jago

can speak

can fly

has magic

Figure 3.6 A subcontext of KAladdin that is a nominal scale of dimension 3 and the
corresponding concept lattice (top). A subcontext of KAladdin that is an ordinal scale of
dimension 3 and the corresponding concept lattice (bottom).

The map
B([H,M])→B((G,M, I)), (A,B)↦ (B′,B)

is a join-preserving order embedding.
The two maps

ϕ1 ∶B([H,N])→B((G,M, I)), (A,B)↦ (A′′,A′), and
ϕ2 ∶B([H,N])→B((G,M, I)), (A,B)↦ (B′,B′′)

are order embeddings.

This means for all (A1,B1), (A2,B2) ∈ B([H,N]) that (A1,B1) ≤ (A2,B2) in
B([H,N]) if and only if ϕi(A1,B1) ≤ ϕi(A2,B2) in B((G,M, I)) for both i ∈ {1, 2}.
Therefore, the concept lattice corresponding to a subcontext S ≤ K can always be
found as a suborder of the original concept lattice B(K). Thus, the concept lattice
B(KAladdin) contains a 3-dimensional Boolean lattice as suborder since KAladdin

contains the 3-dimensional contranominal scale from Example 3.6.

Subcontexts can not only be characterized based on their internal structure but also
based on their properties in interaction with the original context like compatible
subcontexts that were introduced by Rudolf Wille [62] as follows:

Definition 3.14 (Compatible Subcontext)
Let K = (G,M, I) be a formal context. A subcontext S = [H,N] ≤ K is called
compatible if (A ∩H,B ∩N) is a concept of S for every concept (A,B) ∈B(K).
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KAladdin human animal has magic can speak can fly villain
Aladdin × ×
Jasmin × ×
Genie × × ×
Jafar × × × ×
Abu ×
Jago × × ×
Magic Carpet × ×

Jafar Ginie

Aladdin, Jasmin

Abu

Jago

Magic Carpet

animal

human

has
magic

can
speak

can
fly

villain

Figure 3.7 A closed subrelation ofKAladdin (top) and the corresponding complete sublattice
in B(KAladdin) (bottom). Both substructures are highlighted.

Instead of selecting objects and attributes of a context (G,M, I) also the selection
of specific incidences is possible. This generates a subrelation of I. A special kind of
subrelation, the closed subrelation, was introduced by Rudolf Wille [58] to characterize
the complete sublattices of its concept lattice as presented in Theorem 3.2.

Definition 3.15 (Closed Subrelation)
Let K = (G,M, I) be formal context. A relation J ⊆ I is called closed subrelation of
K if every concept of the context (G,M,J) is a concept of K as well.

Theorem 3.2 ([29, Thm. 13])
Let K be a formal context. The bijection

C(S) ∶=⋃{A ×B∣(A,B) ∈ S}

maps the complete sublattices of B(K) to the closed relations of K.

This means that the set of all closed subrelations of K and all complete sublattices
of B(K) have a one-to-one correspondence. An example of a closed subrelation of
KAladdin and the corresponding complete sublattice are presented in Figure 3.7.
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A closed subrelation may differ just slightly from the original incidence relation. In
the extreme case, only one incidence vanishes. This case corresponds to the approach
of dismantling of doubly-irreducible elements by Duffus and Rival [19] where doubly-
irreducible elements are eliminated from an ordered set (see Proposition 3.7). They
state that the dismantling of an element x from a lattice L results in a complete
sublattice L ∖ {x} if and only if the element was doubly-irreducible. We expand this
statement in Chapter 9 from single elements to suitable intervals.

Proposition 3.7 ([29, Prop. 53])
Let K = (G,M, I) be a clarified formal context and c = γg = µm (g ∈ G,m ∈ M) a
doubly-irreducible concept of B(K), then

B((G,M, I)) ∖ {c} =B((G,M, I ∖ {(g,m)})).

Note that the dismantling of a doubly-irreducible element can result in another
element becoming doubly-irreducible. Thus, a successive elimination of all doubly-
irreducible elements is possible. The remaining structure, the DI-kernel, is unique
and therefore does not depend on the order of dismantling elements [19].

Example 3.7
In the case of the lattice B(KAladdin) the only doubly-irreducible concepts are
({Abu, Jago},{animal}) and ({Aladdin, Jasimin, Jafar},{can speak, human}). After
dismantling both of them the concepts ({Jago},{animal, can fly, can speak}) and
({Jafar},{human, has magic, can speak}) become doubly-irreducible. The dismantling
of them results in the DI-kernel.

Instead of selecting a subset of incidences, generating a new incidence relation via
additional incidences is possible. If this new relation generates no new concepts in a
formal context, it is called block relation.

Definition 3.16 (Block Relation)
Let K = (G,M, I) be a formal context. A relation J ⊆ G ×M is called block relation
of K if it satisfies the following conditions:

i) I ⊆ J

ii) For all g ∈ G holds that gJ is an intent of K.

iii) For all m ∈M holds that mJ is an extent of K.

Since the intersection of intents is always an intent and the dual holds for extents,
the block relations of a formal context (G,M, I) form a closure system.
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3.3 Congruence and Tolerance Relations

An equivalence relation on an algebraic structure is called congruence relation (or
short congruence) if the algebraic operations of the structure are compatible with
this equivalence relation [33]. The equivalence classes of the quotient structure are
called congruence classes. In the realm of lattice theory, the commonly investigated
congruence is the lattice congruence as defined in [8], where the requirement is
compatibility with suprema and infima for finite sets. In contrast to this the complete
congruence relation as seen in Definition 3.17 requires this characteristic for infinite
sets as well. Consequently, every complete lattice is isomorphic to the lattice of the
complete congruence lattice of a suitable lattice as seen in [30]. For an overview of
congruences on concept lattices, we refer to Reuter and Wille [51], who show the
one-to-one correspondence presented in Theorem 3.3.

Definition 3.17 (Complete Congruence Relation)
A complete congruence relation of a complete lattice L is a equivalence relation θ on
L that satisfies the following condition:

xtθyt for all t ∈ T ⇒ (⋁
t∈T

xt)θ(⋁
t∈T

yt) and (⋀
t∈T

xt)θ(⋀
t∈T

yt)

Thus, congruence relations preserve the meet- and join-operators of L in L/θ.

In this work, we always refer to complete congruence relations when mentioning a
congruence relation (or short congruence).

Theorem 3.3
Let K = (G,M, I) be a formal context and S = [H,N] ≤ K a compatible subcontext.
Then exists a unique congruence relation θH,N with

B([H,N]) ≅B(K)/θH,N

so that

(A1,B1)θH,N(A2,B2)⇐⇒ A1 ∩H = A2 ∩H ⇐⇒ B1 ∩N = B2 ∩N.

If K is finite and reduced, for every congruence relation θ exists a unique compatible
subcontext [H,N] ≤ K with θ = θH,N .

Since we only consider finite lattices in this work, the only requirement for a context
for applying this theorem is to be reduced.
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A generalization of congruence relations are (not necessarily transitive) tolerance
relations. Czedli [14] and Bandelt [6] showed that they also generate a factor lattice.

Definition 3.18 (Tolerance Relation)
A complete tolerance relation of a complete lattice L is a reflexive and symmetric
relation θ ⊆ L ×L on L that satisfies the following condition:

xtθyt for t ∈ T ⇒ (⋁
t∈T

xt)θ(⋁
t∈T

yt) and (⋀
t∈T

xt)θ(⋀
t∈T

yt)

We also shortly say tolerance when referring to a (complete) tolerance relation.

It is also possible to describe the tolerance relations of a lattice in the associated
formal context. They correspond to the block relations, as investigated by Wille
in [59] in the following way:

Theorem 3.4 ([29, Thm. 15])
Let K = (G,M, I) be a formal context. The lattice of all block relations of K is
isomorphic to the lattice of all tolerance relations of B(K). For every tolerance
relation θ the isomorphism β maps to the block relation defined by

gβ(θ)m ∶⇐⇒ γgθ(γg ∧ µm)⇐⇒ (γg ∨ µm)θµm.

Conversely,
(A,B)β−1(J)(C,D)⇐⇒ A ×D ∪C ×B ⊆ J

yields the tolerance relation corresponding to the block relation J .

Proposition 3.8 ([29, Prop. 40])
If a complete congruence θ is induced by a compatible subcontext [H,N] ≤ K then:

H = {g ∈ G ∣ γg is the smallest element of a θ-class} and

N = {m ∈M ∣ µm is the greatest element of a θ-class}.

Example 3.8
Considering B(KAladdin), we find no congruence relation but the trivial ones – namely,
the one with just one equivalence relation and the one with a different equivalence
relation for each element of the lattice. In contrast, a non-trivial tolerance relation
can be found as pictured in Figure 3.8. This relation consists of two relation classes:
one is highlighted in red, and one is highlighted with dotted boxes. The corresponding
block relation of KAladdin is presented in Figure 3.8 as well.
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KAladdin human animal has magic can speak can fly villain
Aladdin × ● ● × ● ●
Jasmin × ● ● × ● ●
Genie ● ● × × × ●
Jafar × ● × × ● ×
Abu × ● ● ●
Jago ● × ● × × ●
Magic Carpet ● × ● ×

Jafar Ginie

Aladdin, Jasmin

Abu

Jago

Magic Carpet

animal

human

has
magic

can
speak

can
fly

villain

Figure 3.8 A not transitive tolerance relation θ on B(KAladdin) (bottom). The two
different relation-classes of θ are highlighted, one by color and one by dotted boxes. Adding
the ●-marked incidences to KAladdin results in the block relation corresponding to θ (top).

3.4 Implications

The relationships between the attributes of a context are represented as implications.
By this, a valid implication represents a characteristic underlying the data.

Definition 3.19 (Implication, Premise, Conclusion)
Let K = (G,M, I) be a formal context. An implication (in M) is a pair of attribute
subsets X,Y ⊆M , denoted by X → Y , with premise X and conclusion Y . It is called
valid in K if and only if X ′ ⊆ Y ′. In this case, we call X → Y an implication of K.
The set of all implications of a formal context K is denoted by Imp(K).

Instead of stating all implications of a formal context, the declaration of a implication
base from that all implications follow is sufficient.

Definition 3.20 (Canonical Base)
Let K = (G,M, I)be a formal context. A minimal set L ⊆ Imp(K) defines an
implication base if every implication of K follows from L by composition. An
implication base of minimal size is called canonical base of K and is denoted by C(K)
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Example 3.9
One valid implication of the context KAladdin is {human}→{can speak}. The reverse
implication {can speak}→{human} is not valid in the context since the object Genie
is a counterexample.
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CHAPTER 4

Related Work

In the field of Formal Concept Analysis, several approaches aim to analyze (small)
parts of a formal context or a concept lattice, as well as to investigate the connection
between the two data structures. E.g., Albano [1] explores local changes to a formal
context and their effects on the corresponding concept lattice, namely the number of
concepts. In [3], in particular, the impact of contranominal scales in a formal context
on the size of the corresponding concept lattice is studied by giving an upper bound
for B(k)-free lattices. We extend the notion of contranominal scales to Boolean
subcontexts in Chapter 5. Based on this, we present direct connections between
Boolean subcontexts of a formal context and Boolean suborders of the corresponding
concept lattice. Focussing on Boolean sublattices, we build up on Willes work [58]
where he presents a one-to-one correspondence between closed subrelations of a
formal context and complete sublattices of the associated concept lattice, which is
also the basis for the work of Kauer and Krupke [36]. They investigate the problem
of constructing the closed subrelation referring to a complete sublattice generated by
a given subset of elements while not computing the whole concept lattice.

Since one of the central aspects of Formal Concept Analysis is the representation
and analysis of (binary) data in a way suitable for the human mind, an approach to
improve the readability of concept lattices is made by optimizing their presentation.
Here nested line diagrams [60] and drawing algorithms [20] can be used. However,
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neither of them compresses the size of the datasets, and thus grasping relationships
in large concept lattices remains hard. Therefore, many approaches aim to compress
the size of a data set by selecting special substructures or altering the data.

One way is the selection of a suitable attribute set like done in [4] by a procedure
based on random projection. In the case of many-valued contexts, Ganter and
Kuznetzov [28] select features based on their scaling. We introduce the contra-
nominal influence as a measure for selection attributes based on their appearance
in contranominal scales to enable the elimination of structures that support the
exponential growth of the concept lattice directly in the corresponding formal context.

Also, in the field of supervised machine learning there are numerous approaches for
feature set selection. The authors from [34] introduce a beneficial categorization for
those in two categories: wrapper models – A a representative of this model type is
the class of selective Bayesian classifiers in Langley and Sage [46] – and filters – like
RELIEF [38]. The wrapper models evaluate feature subsets using the underlying
learning algorithm which allows responding to redundant or correlated features while
the filter models work independently from the underlying learning algorithm. Instead
these methods make use of general characteristics like the attribute distribution
with respect to the labels in order to weigh an attribute’s importance [63]. An
entropy-based approach of a filter model is introduced by Koller et al. [41] where the
authors select features based on the Kullback-Leibler-distance. All these methods
incorporate an underlying notion of attribute relevance as captured and formalized
in the seminal work by Blum and Langley in [10], on which we base the notion of
relevant attributes in formal contexts, we present in Chapter 6.

Besides meaningful reduction, altering the dataset is a standard method in FCA,
which is motivated by an attempt to reduce the complexity of the dataset or deal
with noise. In this realm, Dias and Vieira investigate the replacement of similar
objects by a single representative [18]. They evaluate this strategy by measuring
the appearance of false implications on the new object set. In the attribute case, a
similar approach is explored by Kuitche et al. [44]. Approximate frequent item sets
are investigated to handle noisy data in [47], where the authors state an additional
threshold for both rows and columns of the dataset. More related works originate
from granular computing with FCA, e.g. [50]. A basic idea here is to find information
granules based on entropy. To this end, the authors of [48] introduce an (object)
entropy function for formal contexts, which we utilize in Chapter 6 as well. Their
approach used the principles of granulation as in [64], which is based on merging
attributes to reduce the data set.
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Another approach is the direct selection of entire concepts. This can be done
by random sampling [11] or concept selection [39]. For such a selection various
measures are applicated. A natural idea is the consideration of extent and intent
size of the concepts. Based on this, Kuznetsov [45] proposes a stability measure for
formal concepts, measuring the ratio of extent subsets generating the same intent.
Another measure, the support measure of association rule mining, is borrowed by
Stumme et al. [56] to generate iceberg concept lattices, special subsemilattices of
the original concept lattice. However, a concept selection does not always result in a
sub(semi)lattice of the original one. To this end, a structural approach is given in [19]
through dismantling where a sublattice is generated by the iterative elimination
of all doubly irreducible concepts. The dismantling of elements in ordered sets,
in particular, that of irreducible elements, is examined in several works like [52,
37, 5, 57]. We build up on this approach in Chapter 9 by expanding the notion
of dismantling single elements to dismantling intervals for a lattice and show the
uniqueness of the core in this case inspired by the proof given by Farley for irreducible
elements in [23].

Instead of selecting concepts, a factorization of them to generate some representatives
is also possible. For ⋀-sublattices, ⋁-sublattices and lattices – and in general for
algebras (i.e., a set with operations defined on its elements) – homomorphism,
congruence relation, and factor algebra are defined explicitly. In the field of lattice
theory, lattice congruences, as defined in [8], where the requirement is compatibility
with suprema and infima for finite sets, are examined. In the realm of ordered sets,
no such operations can be utilized. Thus, there are different approaches to expand
these theoretical aspects on ordered sets. Moorth and Karpagavalli introduce a
congruence relation on partially ordered sets that is not a lattice congruence [26]. In
particular, the congruence classes of this relation do not have to be intervals so that
an intense change of the original structure is valid. Other approaches, as given by
Snasel and Jukl [55] or Kolibiar [40], aim to define congruence relations on ordered
sets, that are precisely the lattice congruence if applied to lattices. Those approaches
are related to our approach in Chapter 8 as we introduce an equivalence relation on
lattices that is no lattice congruence in general.



34 CHAPTER 4. RELATED WORK



Part II

Boolean Substructures





CHAPTER 5

Boolean Substructures in Formal Concept Analysis

One type of substructure (more precisely: suborder or sub(semi)lattice) that is
frequently occurring in a concept lattice is that of Boolean algebras. In a formal
context, they correspond to subcontexts isomorphic to a contranominal scale. This
chapter examines the connection and interplay between Boolean substructures in a
formal context and its corresponding concept lattice.

A (concept) lattice contains an k-dimensional Boolean suborder if and only if the
context contains an k-dimensional contranominal scale as subcontext. In the following,
we investigate more closely the interplay between the Boolean subcontexts of a given
finite context and the Boolean suborders of its concept lattice. To this end, we define
mappings from the set of subcontexts of a context to the set of suborders of its
concept lattice and vice versa and study their structural properties. In addition, we
introduce closed-subcontexts as an extension of closed subrelations to investigate the
set of all (Boolean) sublattices of a given lattice.
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{S ∈ SC(K)∣
S ≅ Nc(k),
k ∈ N}

SC(K)SB(K)

S(K)

{S ∈ SC(K) ∣
H = G,
N = M}

SLB(L)

SL(L)SOB(L)

SO(L)

{S ∈ SL(L) ∣
1L,0L ∈ S}

S̃OB(L)

⊆

⊆
⊆

⊆

⊆ ⊆

⊆⊆

⊆

1 ∶ 1 [Theorem 5.1]

1 ∶ 1 [Proposition 5.9]

ϕ1

ϕ2

[Theorem 3.2]

1 ∶ 1

[Definition 5.5]

[Definition 5.4]

Figure 5.1 Connections between the subcontexts of a formal context K and the suborders
of the corresponding concept lattice L ∶= B(K). The set of all subsemilattices of L is
denoted by S̃OB(L).

5.1 Introduction

The substructures in a formal context K correspond to the substructures in the
associated concept lattice. To this end, Wille [58] presents closed subrelations to
characterize complete sublattices of a concept lattice. Building on this, we introduce
closed-subcontexts and present a one-to-one correspondence to all sublattices. Through
this, we merge the obvious two-step approach of limiting the lattice to an interval and
determining its complete sublattices in one structure. Since this construction is an –
almost arbitrary and difficult to handle – mixture of subcontext and subrelation and
in addition is not directly specific to the field of Boolean substructures, we investigate
the connection between Boolean subcontexts and Boolean sublattices and suborders,
respectively, in Section 5.4 in a direct way without having to manipulate the incidence
relation. Therefore, we lift the embeddings ϕ1 and ϕ2 (see Proposition 3.6) to the
level of subcontexts and suborders to find the Boolean suborders corresponding to
a Boolean subcontext. In addition, we introduce a construction to generate the
Boolean subcontext associated to a given Boolean suborder. We combine these
methods to investigate to which degree the join- and meet-operators of a lattice are
respected by those maps.



5.2. BOOLEAN SUBCONTEXTS AND SUBLATTICES 39

5.2 Boolean Subcontexts and Sublattices

In this chapter, we investigate Boolean substructures in formal contexts as well as
in the corresponding concept lattices. Therefore, as illustrated in Figure 5.1, we
link the different substructures of a formal context with the substructures of the
corresponding concept lattice. To begin with, we introduce the concrete definitions
that serve as a foundation to analyze those connections.

Definition 5.1 (Boolean Subcontext)
Let K be a formal context and S ≤ K a subcontext. S is called Boolean subcontext
of dimension k of K, if B(S) ≅B(k). S is called reduced if S is a reduced context.
We call S maximum Boolean subcontext of dimension k if there is no subcontext
T ≤ K that is a Boolean subcontext of dimension k with S ≤ T and S ≠ T. The set
of all Boolean subcontexts of dimension k of K and the set of all reduced Boolean
subcontexts of dimension k of K are denoted by SBk(K) and SRBk(K), respectively.

Note that every reduced Boolean subcontext of dimension k is isomorphic to the
contranominal scale Nc(k).

Definition 5.2 (Boolean Suborder, Boolean Sublattice)
Let L be a lattice and S ≤ L a suborder. S is called Boolean suborder of dimension
k if S ≅B(k). If S is a sublattice of L, S is called Boolean sublattice of dimension
k. The set of all Boolean suborders , or all Boolean sublattices, of dimension k of a
lattice L is denoted by SOBk(L) and SLBk( L)), respectively.

If all dimensions are considered, the number k is left out in the following.

Note that SLBk(L) is a subset of SOBk(L) and the standard context of a Boolean
lattice L of dimension k consists of a formal context K ≅ Nc(k) due to Proposition 3.3.
Conversely, a formal context K consisting of a reduced Boolean subcontext of
dimension k and an arbitrary number of additional reducible attributes and objects
has a corresponding concept lattice B(K) ≅B(k).

For a better understanding of these structures, we introduce the formal context and
its corresponding concept lattice given in Figure 5.2. We will refer back to this
illustration throughout this chapter.

Example 5.1
S = ({4, 5, 6},{b, c, d, e}, J) with J = I∩({4, 5, 6}×{b, c, d, e}) is a Boolean subcontext
of dimension 3 of the contextK in Figure 5.2 (left). S is not reduced since dJ = eJ holds.
However, S includes two reduced Boolean subcontexts: S1 = [{4,5,6},{b, c, d}] and
S2 = [{4,5,6},{b, c, e}]. The third reduced Boolean subcontext of dimension 3 in K



40 CHAPTER 5. BOOLEAN SUBSTRUCTURES IN FCA

a b c d e
1 × ×
2 × ×
3 × × × ×
4 × × ×
5 × × ×
6 × × ×
7 ×
8 ×

4 3

2 51 6

7
8a

c b
d

e

Figure 5.2 A formal context K = (G,M, I) containing three reduced Boolean subcontexts
(left) and its corresponding concept lattice B(K) (right).

is S3 = [{1, 2, 3},{a, b, c}]. In total, K contains 118 Boolean subcontexts of dimension
3, of which 10 are maximum. The reduced and the maximum Boolean subcontexts
are listed in Table 5.1. The concept lattice of K (see Figure 5.2 right) contains 12
Boolean suborders of dimension 3, two of which are also Boolean sublattices. All of
them are visualized in Figure 5.3.

Example 5.1 illustrates that a context can include numerous Boolean subcontexts of
dimension k compared to its context size and to the number of Boolean suborders
(or sublattices) of the same dimension in its corresponding concept lattice. The
problem of finding all reduced Boolean subcontexts of dimension k is investigated
in detail in [21], where an algorithm to compute the set of all contranominal scales

Table 5.1 List of all reduced (top) and maximum (bottom) Boolean subcontexts of
dimension 3 of the context K from Figure 5.2 together with the suborders of B(K) they
are mapped to by ϕ1 and ϕ2, respectively.

Subcontext S ϕ1(S) ϕ2(S)
[{1,2,3},{a, b, c}] No. 3 No. 2
[{4,5,6},{b, c, d}] No. 12 No. 5
[{4,5,6},{b, c, e}] No. 12 No. 7
[{1,2,3},M] No. 3 No. 3
[G,{a, b, c}] No. 2 No. 2
[{1,2,3,7},{a, b, c, e}] No. 3 No. 3
[{1,2,3,8},{a, b, c, d}] No. 3 No. 3
[{4,5,6},M] No. 12 No. 12
[G,{b, c, d}] No. 5 No. 5
[{4,5,6,7,8},{a, b, c, d}] No. 10 No. 10
[{1,2,3,4,5,6},{b, c, d, e}] No. 9 No. 9
[G,{b, c, e}] No. 7 No. 7
[{4,5,6,7,8},{a, b, c, e}] No. 11 No. 11
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Figure 5.3 The context from Figure 5.2 with all Boolean suborders of dimension 3
highlighted red. The suborders are numbered above the respective lattice.
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Algorithm 1: Generation of SBk(K) from RSBk(K)
Input: K = (G,M, I), k, RSBk(K)
Output: SBk(K)

1 Y ∶=M ∪G
2 n ∶= ∣Y ∣
3 X0 ∶=RSBk(K)
4 X1 =X2 = ⋅ ⋅ ⋅ =Xn−2k = ∅
5 for i ∈ {0,1, .., (n − 2k − 1)} do
6 for S = (H,N,J) ∈Xi do
7 for y ∈ Y ∖ (H ∪N) do
8 if y ∈M then
9 if ∃R ⊆ N ∶ yJ = RJ then

10 Xi+1 ∶=Xi+1 ∪ (H, (N ∪ y), I ∩ (H × (N ∪ y)))

11 if y ∈ G then
12 if ∃R ⊆H ∶ yJ = RJ then
13 Xi+1 ∶=Xi+1 ∪ ((H ∪ y),N, I ∩ ((H ∪ y) ×N))

14 return ⋃n−2k
i=0 Xi

of a given formal context is presented. Building on that, we reduce the problem
of finding all Boolean subcontexts of dimension k to the problem of finding all
reduced Boolean subcontexts of the same dimension as follows: In a formal context
K every Boolean subcontext of dimension k contains a reduced Boolean subcontext
of the same dimension. Therefore, we start with a reduced Boolean subcontext
S ≅ Nc(k) and successively add a reducible attribute or object. This procedure
constructs a new Boolean subcontext of dimension k in every step. To obtain all
possible attribute and object combinations that belong to a Boolean subcontext
every additional attribute and object combination has to be investigated for each
subcontext S ∈ SRBk(K) as starting point. In the case of M ∩G ≠ ∅ the attributes
and objects have to be renamed before computing the set RSBk(K) and starting
the algorithm in the following way: Let K∗ = (G∗,M∗, I∗) with M∗ = {(1, x)∣x ∈M},
G∗ = {(2, x)∣x ∈ G} and I∗ = {(x, y)∣x = (1, g), y = (2,m) for (g,m) ∈ I}. Then we
generate SBk(K∗) through the following strategy and subsequently extract SBk(K)
by renaming the attributes and objects in the reverse way. Since we consider K to be
finite, only a finite number of reduced Boolean subcontexts, attributes, and objects
exist. Therefore the procedure presented in Algorithm 1 ends after a finite number
of steps. Note that we turn away from optimizing the algorithm since this naive
strategy already answers the structural question of finding all Boolean subcontexts.



5.2. BOOLEAN SUBCONTEXTS AND SUBLATTICES 43

Since the reduction of a finite clarified formal context is not affected by the order in
which attributes and objects are reduced the following statement yields:

Corollary 5.1
Let K = (G,M, I) be a formal context with R = [HR,NR] ≤ S = [HS,NS] ≤ K so that
S ∈ SBk(K) and R ∈RSBk(K). If S is clarified, the reduction of S results in R.

If S is not clarified, S may contain more than just one reduced Boolean subcontext
of dimension k. Depending on which clarifiable objects and attributes are removed,
a reduction can lead to different outcomes, namely the reduced Boolean subcontexts
of dimension k contained in S. Those are all isomorphic.

Reversing the former observation, we can conclude that Algorithm 1 generates all
Boolean subcontexts of dimension k given the set SRBk(K).

Proposition 5.1
Given RSBk(K), every Boolean subcontext of dimension k of a formal context K is
computed by the execution of Algorithm 1.

Proof Let S = [HS,NS] ≤ K be a Boolean subcontext of dimension k. Hence, there
is a subcontext R = [HR,NR] ∈RSBk(K) with R ≤ S. Let {g1, g2, . . . , gu} =HS ∖HR

and {m1,m2, . . . ,mv} = NS ∖HR be the sets of all objects and attributes included
in S but not in R. Since the order of removing those reducible elements does not
matter, inverse the order of the addition of reducible elements does not matter by the
generation of a Boolean subcontext from the reduced Boolean subcontext. Following
the set Xu+v with u = ∣HS ∖HR∣ and v = ∣NS ∖NR∣ includes S. ◻

For a formal context K the subcontext-relation is a natural order on SBk(K). With
this order, the subcontexts can be represented by a line diagram. In general, this line
diagram is no lattice since multiple minima (the elements of RSBk(K)) and maxima
(the maximum Boolean subcontexts of dimension k) can exist. Additionally, it is
not necessarily connected. The line diagram represents a part of the lattice on the
powerset of attributes and objects of K. Since Algorithm 1 successively adds elements
to the reduced subcontexts, it is possible to generate the order and, therefore, the line
diagram while computing the set of all Boolean subcontexts of a given dimension.

As for the formal context K in Figure 5.2 there are 3 reduced Boolean subcontexts of
dimension 3 as mentioned in Example 5.1. Those are the minimal elements referring
to the order on SB3(K). By successive adding of an additional attribute or object,
all subcontexts S ∈ SB3(K) are built. We illustrate this procedure by a cutout of the
extension of S1 = [{4,5,6},{b, c, d}] in Figure 5.4.
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[{4,5,6},
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[{4,5,6}, M][{4,5,6,7},
{a, b, c, d}]

[{4,5,6,8},
{a, b, c, d}]

[{1,2,4,5,6},
{b, c, d}]

[{1, 2, 3, 4, 5, 6},
{b, c, d}]

. . .

[{1, 2, 3, 4, 5, 6},
{b, c, d, e}]

⋮

[{4,5,6,7,8},
{a, b, c, d}]

[G, {b, c, d}]

⋮

. . .

Figure 5.4 A cutout of SB3(K) with the subcontext-order. The maxima and minima of
this part are marked with an intense border.

5.3 Closed-Subcontexts

At first, we leave the field of (Boolean) suborders and narrow our focus on (Boolean)
sublattices. On the context side, we introduce so-called closed-subcontexts and show
their one-to-one relationship to the sublattices of the concept lattice.

In [58], Wille introduced closed relations of a context that can be utilized to char-
acterize the complete sublattices of its concept lattice. In finite lattices, complete
sublattices differ from (non-complete) sublattices in that they always include the
unit element and the zero element of the lattice. We adopt Wille’s construction to
match with (non-necessarily complete) sublattices.

Definition 5.3 (Closed-Subcontext)
Let K = (G,M, I) and S = (H,N,J) be two formal contexts. We call S closed-
subcontext of K if H ⊆ G, N ⊆M , J ⊆ I ∩(H ×N) and every concept of S is a concept
of K as well. The set of all closed-subcontexts of K is denoted by SC(K).

The sublattices ofB(K) are in a one-to-one correspondence with the closed-subcontexts
of K as follows:
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Theorem 5.1
Let K be a formal context and S be a sublattice of B(K). Then

KS ∶= ( ⋃
(A,B)∈S

A, ⋃
(A,B)∈S

B, ⋃
(A,B)∈S

A ×B)

is a closed-subcontext of K. Conversely, for every closed-subcontext S of K, B(S) is
a sublattice of B(K).
Furthermore, the map f(S) ∶= KS maps the set of sublattices of B(K) bijectively
onto the set of closed-subcontexts of K.

Proof For a formal concept (A,B) ∈ S the concept (A,B) ∈B(KS) is a concept in
K due to construction. On the other side, let S = (H,N,J) be a closed-subcontext
of K. We have B(S) ⊆ B(K) and therefore B(S) is a suborder of B(K). Let
(A1,B1), (A2,B2) ∈B(S). Let (AS,BS) be the infimum of both concepts in S and
(AK ,BK) the infimum of both concepts in K. So AS = A1 ∩A2 = AK , which implies
(AS,BS) = (AK ,BK) since (AS,BS) is by definition a concept in K. The dual
argument shows that S is closed under suprema. So B(S) is a sublattice of B(K). ◻

An example of a small formal context with all closed-subcontexts and their corre-
sponding sublattices is presented in Figure 5.5.

Note that the closed-subsets of a formal context do not form a closure system since
the intersection of two closed-subcontexts, in general, is not a closed-subcontext,
even though the sublattices of the concept lattice do so.

In the construction of KS, ⋃(A,B)∈S A is the concept extent of the unit element of the
sublattice and ⋃(A,B)∈S B is the concept intent of its zero element. Since the extents
and intents of a closed-subcontext have to be extents and intents in the original
context, the following statement arises:

Proposition 5.2
Let K = (G,M, I) be a formal context and S = (H,N,J) a closed-subcontext of K.
Then H = G or an attribute m ∈ N with m′ = H exists. And N = M or an object
g ∈H with g′ = N exists.

Proof Due to Definition 5.3, every concept of S is a concept of K as well. In
particular, this has to hold for the concepts (∅′′,∅′) and (H ′′,H ′) of S. ◻

We provide next some basic statements about closed-subcontexts. Since the following
propositions are based on the work of Wille [58] and lifted to our approach, the
proofs are similar to the ones from in [29, Sec. 3.3] and we omit them.
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Figure 5.5 A formal context K = (G,M, I) together with its corresponding concept lattice
(top left). All closed-subcontexts of K are given. Their corresponding sublattices of B(K)
are each presented beneath the particular context. The contexts in the first row include G
and M . Therefore, their corresponding sublattices are complete sublattices.

Proposition 5.3
For every set T ⊆ B(G,M, I) there is a smallest closed-subcontext S of K, so that
all incidences (A ×B) for (A,B) ∈ T are contained in S. B(S) is the sublattice of
B(K) generated by T .

Proof The proof follows the structure of the proof of Proposition 45 in [29]. ◻

Proposition 5.4
S = (H,N,J) is a closed-subcontext of the formal context K = (G,M, I) if and only
if XJJ ⊇XJI holds for each X ⊆H and for each X ⊆ N .

Proof The proof follows the structure of the proof of Proposition 46 in [29]. ◻
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Proposition 5.5
The closed-subcontexts (H,N,J) of (G,M, I) are exactly the subcontexts that satisfy
the following condition:
If (g,m) ∈ (H ×N) and (g,m) ∈ I ∖ J then (h,m) /∈ I for h ∈ H with gJ ⊆ hJ and
(g, n) /∈ I for n ∈ N with mJ ⊆ nJ .

Proof The proof follows the structure of the proof of Proposition 47 in [29]. ◻

Proposition 5.6
Let K = (G,M, I) be a formal context, H ⊆ G, N ⊆M , and S = (H,N,J) a clarified
formal context. Then S = (H,N,J) is a closed-subcontext of K if and only if
J ⊆ I ∩ (H ×N) ⊆H ×N ∖ (↗J ∪↙J).

Proof The proof follows the structure of the proof of Proposition 49 in [29]. ◻

Proposition 5.7
Let K = (G,M, I) be a formal context and (A,B), (C,D) concepts of K. Then
(A,B,A×B), (A,M, I∩(A×M)), and (G,B, I∩(G×B)) are closed-subcontexts. The
associated lattices are B(A,B,A ×B) = {(A,B)}, B(A,M, I ∩ (A ×M)) = ((A,B)],
and B(G,B, I ∩ (G ×B)) = [(A,B)).
If (A,B) ≤ (C,D) also (C,B, (A ×B ∪C ×D)) and (C,B, I ∩ (C ×B)) are closed-
subcontexts with the concept lattices B(C,B, (A ×B ∪ C ×D)) = {(A,B), (C,D)},
and B(C,B, I ∩ (C ×B)) = [(A,B), (C,D)].

Proof The proof follows the structure of the proof of Proposition 50 in [29]. ◻

Also, the set of the arrow relations of a closed-subcontext S is a subset of the set of
the arrow relations of the original context K.

Proposition 5.8
Let K = (G,M, I) be a formal context and S = (H,N,J) a closed-subcontext. Then
↗J⊆↗I and ↙J⊆↙I hold.

Proof Let g ∈ H,m ∈ N and g ↙J m. Assumed that g /↙I
m, then there exists

h ∈ G with gI ⊆ hI and (h,m) /∈ I. It follows gJ ⊆ gI∩(G×H) ⊆ hI∩(G×H) and therefore
h ∈ hI∩(G×H) ⊆ gJI = gJJ ⊆H ⇒ gJ ⊆ hJ . This is a conflict to g ↙J m. ◻

Now we transfer our approach to the field of Boolean substructures. To find all
Boolean sublattices (of dimension k) in a lattice B(K), the closed-subcontexts of
K that are also Boolean subcontexts have to be found. Hence, Theorem 5.1 can be
restricted in the following way:
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Proposition 5.9
Let K be a formal context with S ⊆ B(K). Then S ∈ SLBk(B(K)) if and only if
B(KS) ≅B(k) for the context KS = (⋃(A,B)∈SA,⋃(A,B)∈SB,⋃(A,B)∈SA ×B).

The properties of closed-subcontexts can be utilized to identify the Boolean closed-
subcontexts in a formal context K in a direct way. Since every concept in K is either
retained or erased but not altered in a closed-subcontext S, its Boolean structure
has to be preserved from K. Every subcontext T = (H,N,J) ∈ SRB(K) provides
the Boolean structure. By Lifting each concept (AT,BT) ∈ B(T) to a concept
(AK,BK) ∈B(K) with AT ⊆ AK and BT ⊆ BK, an extension of the sets H,N and J
that provides a Boolean closed-subcontext S = (H̃, Ñ , J̃) of K is generated as follows:
H̃ ∶=H ∪⋃(AT,BT)∈B(T)AK, Ñ ∶=H ∪⋃(AT,BT)∈B(T)BK and J̃ ∶= ⋃(AT,BT)∈B(T)(AK×BK).
This approach is represented through the dotted lines in Figure 5.1.

5.4 Connecting Suborders and Subcontexts

In this section, we investigate the relationship between Boolean subcontexts and
Boolean suborders. For this purpose, we use the embeddings ϕ1 and ϕ2 and expand
them to the set of Boolean subcontexts. Further, we present a construction to get
from a Boolean suborder to a corresponding Boolean subcontext. Both approaches are
analyzed with focus on the structural information they transfer and their interplay.

5.4.1 Embeddings of Boolean Substructures

To investigate the connection between Boolean subcontexts S of a formal context K
and Boolean suborders of B(K) we consider embeddings of B(S) in B(K). Therefore
we lift the embeddings ϕ1 and ϕ2 (see Proposition 3.6) to the level of subcontexts
and suborders:

ϕ1 ∶ S(K)→ SO(B(K)), S↦ ({ϕ1(c) ∣ c ∈B(S)},≤) and
ϕ2 ∶ S(K)→ SO(B(K)), S↦ ({ϕ2(c) ∣ c ∈B(S)},≤).

From the input (concept or context), it is clear whether the original or the lifted
versions of the embeddings ϕ1 and ϕ2 are used in the following.

Example 5.2
All reduced and all maximum Boolean subcontexts of dimension 3 of the context
K from Figure 5.2 are listed in Table 5.1. For each of them the suborders of B(K)
they are mapped to by ϕ1 and ϕ2 are given.
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We will, in particular, study these mappings for Boolean subcontexts. In this case,
an additional structural benefit arises: The images of reduced Boolean subcontexts
are sub-∨-semilattice and sub-∧-semilattices of the original concept lattice:

Proposition 5.10
Let K be a formal context and S = [H,N] ∈ SRBk(K). Then ϕ1(B(S)) is a sub-∨-
semilattice of B(K) and ϕ2(B(S)) is a sub-∧-semilattice of B(K).

Proof Consider ϕ1: Let J ∶= I ∩ (H ×N) and (A,B), (C,D) be two concepts of
B(S). Then ϕ1(A,B) ∨ ϕ1(C,D) = (A′′,A′) ∨ (C ′′,C ′) = ((A′′ ∪ C ′′)′′, (A′ ∩ C ′)) =
((A′ ∩C ′)′, (A ∪C)′) = ((A ∪C)′′, (A ∪C)′) and in addition ((A ∪C)′′, (A ∪C)′) =
ϕ1((A∪C), (B ∩D)) = ϕ1((A,B)∨ (C,D)). Since S is a reduced Boolean context, it
includes all possible object combinations as extents so that E = EJJ holds for every
E ⊆H. Thus, (A,B) ∨ (c;D) = ((A ∪C)JJ ,B ∩D) = (A ∪C,B ∩D) holds in B(S).
The procedure for ϕ2 is analogous. ◻

Note that this conclusion does not hold for Boolean reducible subcontexts, e.g., the
formal context given in Figure 5.2 and its subcontext S = [{1,2,3,7},{a, b, c, e}]
where ϕ1(S) = ϕ2(S). The corresponding suborder is suborder No. 1 (see Figure 5.3).
Therefore it is a sub-∨-semilattice but no sub-∧-semilattice.

The images of the two maps of a reduced Boolean context are in general just a
sub-∨-semilattice and a sub-∧-semilattice, respectively. Hence, the images of ϕ1 and
ϕ2 have to be identical for S ∈ SRBk(K) to certainly generate a lattice. This means
ϕ1(A,B) = (A′′,A) = (B′,B′′) = ϕ2(A,B) has to hold for all (A,B) ∈B(S).

For every concept (A,B) of a subcontext S = (H,N,J) ≤ K we can differ between
the four cases:

1) A′ = AJ = B, B′ = BJ = A,

2) A′ = AJ = B, A = BJ ⊂ B′,

3) B = AJ ⊂ A′, B′ = BJ = A, and

4) B = AJ ⊂ A′, A = BJ ⊂ B′.

The condition under which ϕ1(A,B) = ϕ2(A,B) holds is the following:

Proposition 5.11
Let K = (G,M, I) be a formal context and S ≤ K. Then ϕ1(S) = ϕ2(S) holds if and
only if (A′ ∖B) × (B′ ∖A) ⊆ I holds for all (A,B) ∈ B(S). If case 1, 2 or 3 holds
for all (A,B) ∈B(S), then ϕ1(S) = ϕ2(S) holds directly.
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Figure 5.6 A formal context K with a highlighted subcontext S that is a maximum
Boolean subcontext of dimension 3 with ϕ1(S) ≠ ϕ2(S).

Proof For a concept (A,B) ∈ B(S) the identity of both embeddings leads to
ϕ1(A,B) = ϕ2(A,B)⇔ (A′′,A′) = (B′,B′′) = (B′,A′)⇔ (B′ ×A′) ⊆ I. This set can
be written as B′ ×A′ = A×B ∪ (B′ ∖A)×B ∪ A× (A′ ∖B) ∪ (B′ ∖A)× (A′ ∖B).
We know A ×B ⊆ I since (A,B) ∈B(S) and A ×A′ ⊆ I and B′ ×B ⊆ I by definition
of the ⋅′ operator. The remaining part equals (A′ ∖B) × (B′ ∖A). In cases 1 to 3
(A′′,A′) = (B′,B′′) holds by construction. ◻

If a subcontext S ≤ K contains the whole object set G (or the whole attribute set
M), for every concept in S either case 1 or 2 (or either case 1 or 3, respectively) hold.
Therefore, ϕ1 = ϕ2 holds in all those subcontexts. Note that this is not the case
for maximum Boolean subcontexts in general, e.g., considering the formal context
in Figure 5.6. Its highlighted subcontext is a maximum Boolean subcontext of
dimension 3. However, its concept c = ({2,3},{c}) is mapped to the two different
concepts ϕ1(c) = ({2,3},{c, e}) and ϕ2(c) = ({2,3,5},{c}). Therefore ϕ1 = ϕ2 does
not hold in the subcontext.

Proposition 5.12
Let K = (G,M, I) be a formal context and S = [H,N] ∈ SBk(K). If H = G or N =M ,
then ϕ1(S) = ϕ2(S) holds.

However, the relationship between the images of both mappings ϕ1 and ϕ2 of a
specific concept is always (not only in the Boolean case) the same, namely:

Proposition 5.13
Let K be a formal context and S ≤ K. Then ϕ1(A,B) ≤ ϕ2(A,B) for all concepts
(A,B) ∈B(S).

In particular, an interval containing exactly the concepts (C,D) ∈B(K) with A ⊆ C
and B ⊆D exists between ϕ1(A,B) and ϕ2(A,B) with ϕ1(A,B) as its zero element
and ϕ2(A,B) as its unit element. In the extreme case, this interval can comprise all
of B(K), as the following example shows:
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Figure 5.7 A formal context K (left) containing the subcontext S = [{1, 2},{a, b}] = [A,B]
with [ϕ1(A,B), ϕ2(A,B)] =B(K) (right).

Example 5.3
Let K be the formal context in Figure 5.7 and S = [{1,2},{a, b}] ≤ K. Then
for the concept (A,B) = ({1,2},{a, b}) of S, ϕ1(A,B) = ({1,2},{a, b, c, d}) and
ϕ2(A,B) = ({1,2,3,4},{a, b}) hold. These are the zero and the unit element of the
whole concept lattice of K.

This raises the question of whether there is a concept lattice where a Boolean
suborder exists that can not be obtained by embedding. This is indeed the case, e.g.,
in Figure 5.3 the Boolean order No. 1.

An approach to make any Boolean suborder of a (concept) lattice reachable is to
expand K by additional objects and attributes so that every concept c ∈B(K) can
be generated by one object and by one attribute. For a (concept) lattice L, this is
the case with the generic context K = (L,L,≤). Here S ∈ SOBk(L) is the image of
both ϕ1(S) and ϕ2(S) for the Boolean subcontext S = (S,S,≤).

Since we are interested in the connections between the existence of Boolean sub-
contexts on the one hand and the existence of Boolean suborders on the other, we
observe a first relationship between these sets.

Proposition 5.14
Let K be a formal context and SBk(K) ≠ ∅. Then SOBk(B(K)) ≠ ∅.

Proof Let S ∈ SBk(K). By definition B(S) ≅B(k). Since ϕ1 ∶B(S)→B(K) is an
order embedding ϕ1(B(S)) is a Boolean suborder of dimension k in B(K). ◻

In general the images of ϕ1(S) and ϕ2(S) are neither lattices nor semilattices.
However, we know from Proposition 5.10 that if S is a reduced Boolean subcontext
and ϕ1(B(S)) = ϕ2(B(S)) holds, there exists a Boolean sublattice S of the same
dimension in B(K). We can generalize the previous statement as follows:

Proposition 5.15
Let K be a clarified context and S1 = [H1,N1],S2 = [H2,N2] ∈ SRBk(K) with S1 ≠ S2.
If H1 ≠H2, then ϕ1(S1) ≠ ϕ1(S2) holds. If N1 ≠ N2, then ϕ2(S1) ≠ ϕ2(S2) holds.
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Figure 5.8 A formal context K with ∣SRB3(K)∣ = ∣SOB3(B(K))∣ = 4.

Proof Since S1,S2 ∈ SRBk(K), ∣H1∣ = ∣H2∣ holds. If H1 ≠ H2 holds, g1 ∈ H1 with
g1 /∈ H2 and g2 ∈ H2 with g2 /∈ H1 exist. Since S1 and S2 are reduced and Boolean
there is a concept c1 = (g1, g′′1 ) ∈ B(S1) and a concept c2 = (g2, g′′2 ) ∈ B(S2). Hence
K is clarified, ϕ1(c1) = (g′′1 , g′1) ≠ (g′′2 , g′2) = ϕ1(c2). If N1 ≠ N2 holds, the analogous
procedure can be executed using ϕ2. ◻

Based on this, we can assume that the number of reduced Boolean subcontexts of a
context K is a lower bound for the number of Boolean suborders of B(K):

Conjecture
Let K be a clarified context with ∣SRBk(K)∣ = n. Then ∣SOBk(B(K))∣ ≥ n holds.

This conjecture can not be proved as straight forward as Proposition 5.15 since
ϕ1 and ϕ2 can be identical for some S ∈ SRBk(K). In addition not every Boolean
suborder is the image of ϕ1(S) or ϕ2(S) for a S ∈ SRBk(K). Both phenomena occur
in the example given in Figure 5.8, where the marked Boolean suborder is not the
image of the embedding by ϕ1 or ϕ2 of any Boolean subcontext contained in the
given formal context, although in this case the number of Boolean subcontexts of
dimension 3 and Boolean suborders of dimension 3 is identical.

5.4.2 Subconcepts associated to Suborders

After investigating mappings of Boolean subcontexts to Boolean suborders, we
now analyze the connection between those substructures the other way around.
As presented by Albano and Chornomaz [2, Prop. 1] every formal context K
contains a Boolean subcontext S ∈ SBk(K) if B(K) contains a Boolean suborder
S ∈ SOBk(B(K)). Based on this statement, we introduce a construction to generate
a (not necessarily reduced) Boolean subcontext of a formal context based on a
Boolean suborder of the corresponding concept lattice.
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Definition 5.4 (Associated Subcontext)
Let K be a formal context and S ∈ SOBk(B(K)). We define ψ(S) ∶= [H,N] with
H ∶= ⋃c∈At(S)minGobj(c) and N ∶= ⋃c∈CoAt(S)minGatt(c) as the subcontext of K
associated to S.

Indeed the structure arising from the construction given in Definition 5.4 is a Boolean
subcontext of the same dimension as S:

Proposition 5.16
Let K be a formal context, S ∈ SOBk(B(K)), and S = [H,N] ∶= ψ(S) the subcontext
of K associated to S. Then S ∈ SBk(K).

Proof Let At(S) = {a1, a2, . . . , ak} and CoAt(S) = {c1, c2, . . . , ck} be the sets of
atoms and coatoms of S. Due to the Boolean structure of S the atoms can be
ordered holding the following condition: ai is a lower bound for the set CoAt(S)∖ ci
for all 1 ≤ i ≤ k, and analogous ci is an upper bound for the set At(S) ∖ ai for all
1 ≤ i ≤ k. It follows gIm for all g ∈minGobj(ai), m ∈ N ∖minGatt(ci) and (g,m) /∈ I
else. Therefore S ≅ Nc(k) holds. ◻

Example 5.4
All Boolean suborders of dimension 3 from Figure 5.3 are listed in Table 5.2 together
with their associated subcontexts in the formal context K from Figure 5.2.

In the following, we study the interplay of the mapping ψ from suborders to subcon-
texts with the mappings ϕ1 and ϕ2 from subcontexts to suborders.

Table 5.2 List of all Boolean suborders S presented in Figure 5.3 together with their
associated subcontexts ψ(S) in the formal context K from Figure 5.2.

Suborder S ψ(S)
No. 1 [{1,2,3,4},{a, b, c}]
No. 2 [{1,2,3,4},{a, b, c}]
No. 3 [{1,2,3},{a, b, c}]
No. 4 [{3,4,5,6},{b, c, d}]
No. 5 [{3,4,5,6},{b, c, d}]
No. 6 [{3,4,5,6},{b, c, e}]
No. 7 [{3,4,5,6},{b, c, e}]
No. 8 [{3,4,5,6},{b, c, d, e}]
No. 9 [{3,4,5,6},{b, c, d, e}]
No. 10 [{4,5,6},{b, c, d}]
No. 11 [{4,5,6},{b, c, e}]
No. 12 [{4,5,6},{b, c, d, e}]
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Proposition 5.17
Let K be a formal context and S = [H,N] ∈ SRBk(K). Then S = ψ(ϕ1(S)) if and
only if (n′, n′′) ∈ CoAt(ϕ1(S)) holds for all n ∈ N . Dually, S = ψ(ϕ2(S)) if and only
if (h′′, h′) ∈ At(ϕ2(S)) holds for all h ∈H.

Proof Consider ϕ1: Let H = {h1, h2, . . . , hk}, N = {n1, n2, . . . , nk}, and ψ(ϕ1(S)) =
[H̃, Ñ]. Due to the construction of ϕ1, we have At(ϕ1(S)) = {a1, a2, . . . , ak} with
ai = (h′′i , h′i). Since every hi is a minimal object generator of an atom of ϕ1(S),
H̃ =H holds. Let CoAt(ϕ1(S)) = {c1, c2, . . . , ck}. Ñ consists of the minimal attribute
generators of the coatoms of ϕ1(S). Following, Ñ = N if and only if a renumbering
of the coatoms exists so that ci = (n′i, n′′i ) for all i ∈ {1,2, . . . , k}. The procedure for
ϕ2 is analogous. ◻

In Example 5.5 all possibilities for the interplay of the maps ϕ1, ϕ2 and ψ are
presented. In particular, a Boolean subcontext S can be the associated subcontext
to one of the embeddings ϕ1(S) or ϕ2(S), to both embeddings or to none of the
embeddings.

Example 5.5
The reduced Boolean subcontexts of dimension 3 of the formal context in Figure 5.8
are S1 = [{1,2,3},{a, b, c}], S2 = [{2,3,4},{a, b, c}], S3 = [{1,2,3},{b, c, d}] and
S4 = [{2,3,4},{b, c, d}]). We have S1 = ψ(ϕ1(S1)) = ψ(ϕ2(S1)), S2 = ψ(ϕ2(S2)) and
S3 = ψ(ϕ1(S3)). For S4 we have S4 ≠ ψ(ϕ1(S4)) and S4 ≠ ψ(ϕ2(S4)).

Proposition 5.18
Let K be a formal context, S ∈ SOBk(B(K)), and S ∶= ψ(S). Let c ∈ S∖{0S, 1S} with
either c not being the supremum (in B(K)) of a subset of At(S) or c not being the
infimum (in B(K)) of a subset of CoAt(S). Then (A,B) with A = ⋃{minGobj(X) ∣
X ∈ At(S),X ≤ c} and B = ⋃{minGatt(X) ∣ X ∈ CoAt(S),X ≥ c} is a concept of S
with ϕ1(A,B) ≠ ϕ2(A,B).

Proof According to the construction of S, there is a concept (A,B) ∈B(S) as stated.
If c is not the supremum of a subset of At(S), A does not generate c. Therefore
ϕ1(A,B) = (A′′,A′) < c, due to the construction of A. Also ϕ2(A,B) = (B′,B′′) ≥ c
and consequently ϕ1(A,B) < ϕ2(A,B). Similarly, if c is not the infimum of a
subset of CoAt(S), we have ϕ1(A,B) = (A′′,A′) ≤ c, ϕ2(A,B) = (B′,B′′) > c and
ϕ1(A,B) < ϕ2(A,B). ◻

Utilizing this interplay of the mappings ϕ1, ϕ2 and ψ, we are able to generate a
related subsemilattice for every Boolean suborder in a concept lattice as presented
in Proposition 5.19. This approach is formalized in Definition 5.5.
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Proposition 5.19
Let K be a formal context, S ∈ SOB(B(K)). Then ϕ1(ψ(S)) is a sub-∨-semilattice
and ϕ2(ψ(S)) is a sub-∧-semilattice of B(K).

Proof Let S = [H,N] ∶= ψ(S). H is the set of all minimal generators of the atoms of
S. Due to the Boolean structure, all concepts in K that are generated by a subset of
H are exactly the supremum of a subset of At(S). Since this generation corresponds
to mapping the concepts c ∈B(S) with ϕ1, ϕ1(S) is a sub-∨-semilattice. The second
part of the statement is proved similarly. ◻

Definition 5.5 (Associated Subsemilattice)
Let K be a formal context, S ∈ SOBk(B(K)). We call ϕ1(ψ(S)) the sub-∨-sublattice
of B(K) associated to S and ϕ2(ψ(S)) the sub-∧-sublattice of B(K) associated to S.

The statement in Proposition 5.19 holds especcially for a S being a Boolean subsemi-
lattice or a Boolean sublattice of B(K). In this case, it provides ϕ1(ψ(S)) = S and
ϕ2(ψ(S)) = S, respectively, as follows:

Proposition 5.20
Let K be a formal context and S ∈ SOBk(B(K)). If S is a sub-∨-semilattice,
ϕ1(ψ(S)) = S holds. If S is a sub-∧-semilattice, ϕ2(ψ(S)) = S holds.

Proof Let S be a sub-∨-semilattice and S = [H,N] ∶= ψ(S). H is the set of minimal
generators of the atoms of S. Due to the Boolean structure all concepts in B(K)
that are generated by a subset of H are exactly the supremums of a subset of the
atoms of S. Since this generation corresponds to mapping the concepts c ∈ B(S)
with ϕ1, every image of ϕ1(c) is contained in S. The second part follows dually. ◻

Proposition 5.21
Let K be a formal context and S ∈ SLBk(B(K)). Then ϕ1(ψ(S)) = ϕ2(ψ(S)) = S.

Our research can be concluded in the following theorems. They give an insight into
the interplay of ϕ1, ϕ2 and ψ and the structural properties they transfer.

Theorem 5.2
Let K be a formal context and S ∈ SB(K). Then:

i) ψ(ϕ1(S)) = S iff a sub-∨-semilattice S ∈ SOB(B(K)) exists with ψ(S) = S.

ii) ψ(ϕ2(S)) = S iff a sub-∧-semilattice S ∈ SOB(B(K)) exists with ψ(S) = S.

iii) ψ(ϕ1(S)) = ψ(ϕ2(S)) = S iff a S ∈ SLB(B(K)) exists with ψ(S) = S.

Furthermore, if S is reduced, ϕ1(S) = ϕ1(ψ(ϕ1(S))) and ϕ2(S) = ϕ2(ψ(ϕ2(S))) hold.
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a b c d e f
1 × ×
2 × ×
3 × × ×
4 × × ×
5 × × ×
6 × × × × × 6

1 2

3 4 5

a c

d e f

b

Figure 5.9 A formal context (left) and its corresponding concept lattice (right) that show
that neither ϕ1 and ψ nor ϕ2 and ψ are (dually) adjoint mappings.

Proof Consider i): "⇒∶" follows directly from Proposition 5.19 since S is the sub-
context corresponding to the suborder ϕ1(S).
"⇐∶" is presented in Proposition 5.20.
ii) is proved similarly and iii) follows from the combination of i) and ii). The last
statement follows from the combination of Proposition 5.10 and Proposition 5.18. ◻

Theorem 5.3
Let K be a formal context and S ∈ SOB(B(K)). Then:

i) ϕ1(ψ(S)) = S iff S is a sub-∨-semilattice.

ii) ϕ2(ψ(S)) = S iff S is a sub-∧-semilattice.

iii) ϕ1(ψ(S)) = ϕ2(ψ(S)) = S iff S is a sublattice.

Proof Consider i): "⇒∶" follows directly from Proposition 5.19.
"⇐" is presented in Proposition 5.20.
ii) is proved similarly, iii) follows from combining i) and ii). ◻

Although ϕ1 and ψ (or ϕ2 and ψ) seem to be (dually) adjoint mappings, they
are not. E.g., in Figure 5.9 consider the subcontexts S1 = [{1,2,3,4},{a, b, c}],
S = [{1,2,3,4,5},{a, b, c}], and S2 = [{1,2,3,4,5,6},{a, b, c}]. Then it holds that
ϕ1(S1) = ϕ1(S2) = ϕ1(S) = ϕ2(S2) = ϕ2(S1) – the image is highlighted in the line
diagram, and its associated context is S. This shows that ψ ○ϕ1 is neither monotonic
nor anti-monotonic, and the same holds for ψ ○ ϕ2.
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5.5 Interplay of both Approaches

In the previous sections, two approaches to relate Boolean substructures of a formal
context K with those of the corresponding concept lattice B(K) were introduced. In
this section, we set both of them in relation.

In Section 5.3 a one-to-one correspondence between the closed-subcontexts of a
formal context K and the sublattices of B(K) is presented. However, subsemilattices
and suborders are not addressed. In addition, the closed-subcontexts restrict not only
the object set and the attribute set of a formal context but also its incidence relation,
whereby they could be understood as a more substantial altering of K compared to
the approach presented in Section 5.4. It provides different maps to associate specific
Boolean suborders on the one side with Boolean subcontexts on the other side while
transferring some structural information.

The intersection of both approaches is localized in the Boolean subcontexts that are
closed-subcontexts as well, and in general, the subcontexts S ≤ K with c ∈B(K) for
all c ∈B(S).

Proposition 5.22
Let K be a formal context and S ≤ K. S is a closed-subcontext of K if and only if
ϕ1(c) = ϕ2(c) = c for all c ∈B(S).

This statement can be restricted to Boolean subcontexts. E.g., the Boolean subcontext
S = [G,{a, b, c}] in Figure 5.2 fulfills the requirement. In general, the set of the
Boolean subcontexts of K that are closed-subcontexts is smaller than the set of
all Boolean sublattices of B(K). So not every Boolean sublattice of B(K) can be
reached by an embedding of a subcontext of such a structure. Refering to those
structures we expand the statement of Proposition 5.14 as follows:

Proposition 5.23
Let K be a formal context and S ∈ SBk(K) with S a closed-subcontext of K. Then
S ∶= ϕ1(S) = ϕ2(S) ∈ SLBk(B(K)).

However, in general the subcontext S̃ associated to S is not equal to S. E.g. in
Figure 5.2 the subcontext S = [G,{a, b, c}] is embedded to a Boolean sublattice S
but the sublattice, that is associated to S is S̃ = [{1,2,3,4},{a, b, c}].
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5.6 Conclusion

This chapter relates Boolean substructures in a formal context K with those in
its concept lattice B(K). The notion of closed-subcontexts of K was presented to
generalize closed relations and provide a one-to-one correspondence to the set of all
sublattices of B(K) using a direct construction. In particular, this relationship can
be restricted to the set of all Boolean closed-subcontexts of K, that can be generated
based on the set of all reduced Boolean subcontexts of K, and all Boolean sublattices
of B(K). Moreover, we investigated two embeddings of Boolean subcontexts of K
into B(K). The images of those embeddings are, in general, not sub(semi)lattices
but only Boolean suborders and do not cover SOB(K) completely. Through the
introduction of the subcontext S associated to a Boolean suborder S of B(K), the
connection between Boolean subcontexts and Boolean suborders is investigated
the other way around. The combination of both approaches give an insight of
their interplay and the structural information they transfer. Through this every
subsemilattice S can be associated with a concrete subcontext, that can be mapped
to S by one of the two embeddings.

We conclude this chapter with two open questions. First, we are curious to which
amount the presented findings can be transferred to general substructures of (not
necessarily finite) formal contexts and their corresponding concept lattices. Secondly,
we are interested in consideration of other special substructures, e.g., the subcontexts
of a concept lattice isomorphic to a nominal scale, as those scales also contain nearly
identical objects that differ only in one attribute.



Part III

Selecting Attributes





CHAPTER 6

Relevant Attributes in Formal Contexts

In the age of massive data sets, understanding the data is a challenging task that is
addressed by various approaches, e.g., random sampling, parallelization, or attribute
extraction. A so far not investigated method in the realm of Formal Concept Analysis
is attribute selection, as done in machine learning. Building up on this, in this chapter,
we turn away from Boolean subcontexts and suborders and introduce a method
for attribute selection in formal contexts whereby we generate a sub-∧-semilattice
and avoid the generation of false implications (see Section 7.3). To this end, we
propose the notion of relevant attributes, which enables us to define a relative
relevance function, reflecting both the order structure of the concept lattice as well
as the distribution of objects on it. Finally, we overcome computational challenges
for computing the relative relevance through an approximation approach based on
information entropy.
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6.1 Introduction

Contemporary formal contexts consist of thousands of objects and attributes, which
results in even larger concept lattices. To overcome the lack of clarity for the human
observer one is required to select a subcontext resembling the original data set most
accurately. This can be done by selecting attributes or objects. In this chapter,
we will focus on the identification of relevant attributes. This is due to the duality
of formal contexts, similar to the problem of selecting relevant objects. There are
several comparable works related to FCA, e.g., to concept sampling [11] and concept
selection [39], that, however, either need to compute the whole concept lattice or
sample from it, which is at best possible with polynomial delay [35].

In this chapter, we overcome this limitation and present a feasible approach for
selecting relevant attributes from a formal context using information entropy. To
this end, we introduce the notion of attribute relevance to the realm of FCA, based
on a seminal work by Blum and Langley [10]. In that work, the authors address a
comprehensible theory for selecting the most relevant features in supervised machine
learning settings. Building up on this, we formalize a relative relevance measure
in formal contexts in order to identify the most relevant attributes. However, this
measure is still prone to the limitation of computing the concept lattice. Finally, we
tackle this disadvantage by approximating the relative relevance measure through
an information entropy approach. Choosing attributes based on this approximation
leads to significantly more relevant selections than random sampling does, which we
demonstrate in an empirical experiment.

6.2 Relevant Attributes

A severe computational problem in FCA is to compute the set of all formal concepts,
which resembles the CLIQUE problem [35]. Furthermore, the number of formal
concepts in a proper sized real-world data set tends to be very large, e.g., 238710
in the (small) mushroom data set, see Section 6.3.1. Hence, concept lattices for
contemporary-sized data sets are hard to grasp and hard to cope with through
consecutive measures and metrics. Thus, a need for selecting subcontexts from data
sets or sublattices is self-evident. This selection can be conducted in the formal
context as well as in the concept lattice. However, the computational feasible choice
is to do this in the formal context. Considering a subcontext of a formal context
(G,M, I) can be done in general in three different ways: One may consider only a
subset H ⊆ G, a subset N ⊆ M , or a combination of those. Our goal for the rest
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of this work is to identify relevant attributes in a formal context. The notion of
(attribute) relevance shall cover two aspects: the lattice structure and the distribution
of objects on it. The task at hand is to choose the most relevant attributes which
do both reflect a large part of the lattice structure as well as the distribution of
the objects on the concepts. For this, in the next section, we introduce a notion of
relevant attributes in a formal context. Due to the duality in FCA, this can easily be
translated to object relevance.

6.2.1 Choosing Attributes

There is a plenitude of conceptions for describing the relevance of an attribute in a
data set. Apparently, the relevance should depend on the particular machine learning
or knowledge discovery procedure. One very influential work in this direction was
done by Blum and Langley in [10], where the authors defined the (weak/strong)
relevance of an attribute in the realm of labeled data. In particular, for some data set
of examples D, described using features from some feature set F , where every d ∈D
has the label (distribution) `(d), the authors stated: A feature x ∈ F is relevant to a
target concept-label if there exists a pair of examples a, b ∈D such that a and b only
differ in their assignment of x and `(a) ≠ `(b). They further expanded their notion
by calling some attribute x weakly relevant if and only if it is possible to remove a
subset of the features (from a and b) such that x becomes relevant.

Since data is commonly unlabeled in the realm of Formal Concept Analysis, we may
not directly adapt the above notion to formal contexts. However, we may motivate
the following approach with it. We cope with the lack of a label function in the
following way. First, we identify the data set D with a formal context (G,M, I),
where the elements of G are the examples and M are the features describing the
examples. Secondly, a concept lattice exhibits essentially two almost independent
properties, the order structure and the distribution of objects (attributes) on it,
cf. Example 6.1. Thus, a conceptual label function then shall reflect both the order
structure as well as the distribution of objects in this structure. To achieve this, we
propose the following:

Definition 6.1 (Extent Label Function)
Let K = (G,M, I) be a formal context with its concept lattice B(K). The map

`K ∶ G→ N, g ↦ ∣{c ∈B(K) ∣ g ∈ ext(c)}∣

is called extent label function.
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a b c d e f g h i
Leach × × ×
Bream × × × ×
Frog × × × × ×
Dog × × × × ×
Spike-weed × × × ×
Bean × × × ×

a b c d
Bream × ×
Frog × × ×
Dog × ×
Spike-weed × × ×

a
c

d
b

D
S F

B

Figure 6.1 Two subcontexts of "Living Beings and Water" [29]. The attributes are: a:
needs water to live, b: lives in water, c: lives on land, d: needs chlorophyll to produce
food, e: two seed leaves, f: one seed leaf, g: can move around, h: has limbs, i: suckles its
offspring. The concept lattice corresponds to the formal context at the bottom.

One may define an intent label function analogously. Utilizing the just introduced
function, we may now define the notion of relevant attributes in formal contexts.

Definition 6.2 (Relevance)
Let K = (G,M, I) be a formal context. We call an attribute m ∈ M relevant to
g ∈ G if and only if `K

{m}
(g) < `K(g), where K{m} ∶= [G,M ∖ {m}]. Furthermore, m

is relevant to a subset A ⊆ G if and only if there is a g ∈ A such that m is relevant to
g. And, we say m is relevant to the context K if and only if m is relevant to G.

For a better understanding of the relevance of an attribute, we introduce the formal
context K illustrated in Figure 6.1 (bottom) that will be revisited during this chapter.

Example 6.1
Figure 6.1 (bottom) shows a formal context K and its corresponding concept lattice.
The objects from there are abbreviated by their first letter in the following. The
extent label function of the objects can easily be read from the lattice and is given
by `K(B) = 2, `K(F ) = 4, `K(D) = 2, `K(S) = 3. Additionally, one can deduct the
relevant attributes. E.g., for attribute b the equality `K

{b}
(D) = `K(D) holds. In

contrast `K
{b}

(S) < `K(S), cf. Figure 6.2. Hence, attribute b is not relevant to “Dog”
but relevant to “Spike-weed”. Thus, b is relevant to K.

The two structural approaches in FCA to identify admissible attributes are attribute
clarifying and reducibility. Since they are based purely on the lattice structure, the
notion of relevant attributes is directly related to reducibility as follows:
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Proposition 6.1 (Irreducible)
Let K = (G,M, I) be a formal context. For an attribute m ∈M holds

m is relevant to K⇐⇒m is irreducible.

Proof "⇒": We use a contraposition. We have to show that the following inequality
holds: ∣{c ∈B(K) ∣ g ∈ ext(c)}∣ ≤ ∣{c ∈B(K{m}) ∣ g ∈ ext(c)}∣ (assumed the attribute
m to be reducible). Since g ∈ ext(c) holds and for any c ∈ B(K) exists a unique
concept c̃ ∈B(K{m}) with int(c̃) ∪ {m} = int(c), cf. Proposition 3.7, it follows that
g ∈ (int(c̃) ∪ {m})′ ⊆ int(c̃)′. We omitted the trivial case when int(c̃) = int(c).

"⇐": There is a join-preserving order embedding [G,M ∖ m] → (G,M, I) with
(A,B)↦ (A,A′) (Proposition 3.6). Hence, every extent in B(K{m}) is also an extent
inB(K) which implies for all g ∈ G that `K

{m}
(g) ≤ `K(g) holds. Sincem is irreducible,

there exist less concepts in B(K{m}) than in B(K) so that `K
{m}

(g) < `K(g). ◻

The last proposition implies that no clarifiable attributes would be considered relevant,
even if the removal of all attributes that have identical closure would have a massive
impact on the structure of the concept lattice. Therefore a meaningful identification
of relevant attributes is equivalent to the identification of meaningful equivalence
classes [x]K ∶= {y ∈ M ∣ x′ = y′} for all y ∈ M . Accordingly, we consider in the
following only clarified contexts. Transferring the relevance of an attribute m ∈M to
its equivalence class is an easy task which can be executed if necessary.

So far, we are only able to decide the relevance of an attribute but not discriminate
attributes with respect to their relevance to the concept lattice. To overcome this
limitation, we introduce in the following a measure that is able to compare the
relevancy of two given attributes in a clarified formal context. We consider the
change in the object label distribution {(g, `K(g)) ∣ g ∈ G} going from K to K{m} as
characteristic to the relevance of a relevant attributem. To examine this characteristic
in more detail and to make it graspable via a numeric value, we propose the following
inequality:

∑
g∈G

`K
{m}

(g) < ∑
g∈G

`K(g).

This approach does not only offer the possibility to verify the existence of a change
in the object label distribution but also to measure the extent of this change. We
may quantify this via

∑g∈G `K{m}(g)
∑g∈G `K(g)

=∶ t(m)

whence t(m) < 1 for all attributes m ∈M .
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Figure 6.2 Sublattices created through the removal of an attribute from the lattice
in Figure 6.1. From left to right: removing a,b,c, or d.

This results in the following relevance measure for attributes:

Definition 6.3 (Relative Relevance)
Let K = (G,M, I) be a clarified formal context. The attribute m ∈ M is relative
relevant to K with

r(m) ∶= 1 − ∑g∈G ∣{c ∈B(K{m}) ∣ g ∈ ext(c)}∣
∑g∈G ∣{c ∈B(K) ∣ g ∈ ext(c)}∣ = 1 − t(m).

The values of r(m) for an attribute m ∈ M are in [0,1). We say m ∈ M is more
relevant to the context K than n ∈M if and only if r(n) < r(m). Double counting
leads to the following proposition.

Proposition 6.2
Let K = (G,M, I) be a formal context. For all m ∈M holds

r(m) = 1 −
∑c∈B(K

{m})
∣ext(c)∣

∑c∈B ∣ext(c)∣

with B(K{m}) = {c ∈B∣(int(c) ∖ {m})′ = ext(c)}.

This statement reveals an interesting property of the just defined relative relevance.
In fact, an attribute m ∈ M is more relevant to a formal context K if the sub-∧-
semilattice, which one does obtain by removing m from K, does exhibit a smaller
sum of all extent sizes. This will enable us to find proper approximations to the
relative relevance in Section 6.2.2.

Example 6.2
Excluding one attribute from the running example in Figure 6.1 (bottom) results in
the sublattices in Figure 6.2. The relative relevance of the attributes to the original
context is given by r(a) = 0, r(b) = 4/11, r(c) = 3/11, and r(d) = 1/11.
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By means of r(⋅) it is also possible to measure the relative relevance of a set N ⊆M .
We simply lift Proposition 6.2 by

r(N) = 1 − ∑c∈B(KN )
∣ext(c)∣

∑c∈B(K) ∣ ext(c)∣

with B(KN) = {c ∈B(K) ∣ (int(c) ∖N)′ = ext(c)}.

For the relevance of two attribute subsets the following statements hold:

Proposition 6.3
Let K = (G,M, I) be a formal context and N,O ⊆M attribute sets. Then

i) N ⊆ O⇒ r(N) ≤ r(O), and

ii) r(N ∪O) ≤ r(O) + r(N).

Proof We prove i) by showing ∑c∈B(KN )
∣ext(c)∣ > ∑c∈B(KO)

∣ext(c)∣. Since for all
c ∈B(K) we have (int(c) ∖O)′ ⊇ (int(c) ∖N)′ ⊇ ext(c) we obtain B(KN) ⊇B(KO),
as required.

For ii) we will use the identity (⋆): B(KN) ∩B(KO) = B(KN∪O), which follows
from (int(c)∖N)′ = ext(c)∧ (int(c)∖O)′ = ext(c)⇔ (int(c)∖ (N ∪O))′ = ext(c) for
all c ∈B(K). This equivalence is true since ("⇒"):

(int(c) ∖ (N ∪O))′ = ((int(c) ∖N) ∩ (int(c) ∖O))′

= (int(c) ∖N)′ ∪ (int(c) ∖O)′ = ext(c) ∪ ext(c) = ext(c)

("⇐"): From (int(c)∖(N∪O))′ ⊇ (int(c)∖N)′ and (int(c)∖(N∪O))′ ⊇ (int(c)∖O)′ we
obtain with i) that (int(c)∖N)′ = (int(c)∖O)′ = ext(c). We now show ii) by proving
the inequality ∑B(KN )

∣ext(c)∣ + ∑B(KO)
∣ext(c)∣ ≤ ∑B(K) ∣ext(c)∣ + ∑B(KN∪O)

∣ext(c)∣.
In the following, we use the equations B(KN)∖B(KN∪O)∪B(KN∪O) =B(KN) and
B(KN) ∖B(KN∪O) ∩B(KN∪O) = ∅ to find an equivalent equation employing (⋆):

∑
BN∖BN∪O

∣ext(c)∣ +∑
BO∖BN∪O

∣ext(c)∣ + 2 ⋅∑
BN∪O

∣ext(c)∣ ≤ ∑
BN∖BN∪O

∣ext(c)∣ +∑
BO∖BN∪O

∣ext(c)∣+

∑
B∖(BN∪BO)

∣ext(c)∣ + 2 ⋅∑
BN∪O

∣ext(c)∣

0 ≤ ∑
B∖(BN∪BO)

∣ext(c)∣

where BX is short for B(KX). ◻
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Equipped with the notion of relative relevance and some basic observations, we
are ready to state the associated computational problem. We imagine that in
real-world applications attribute selection is a task to identify a set N ⊆ M of
the most relevant attributes for a given cardinality n ∈ N. , i.e., an element from
{N ⊆M ∣ ∣N ∣ = n ∧ r(N) maximal}. We call such a set N a maximal relevant set.

Problem 6.1 (Relative Relevance Problem (RRP))
Let K = (G,M, I) be a formal context and n ∈ N with n < ∣M ∣. Find a subset N ⊆M
with ∣N ∣ = n such that r(N) ≥ r(X) for all X ⊆M where ∣X ∣ = n.

Aiming to solve Problem 6.1 in a straightforward manner evolves two difficulties. First,
as n increases, so does the number of possible subset combinations. The determination
of a maximal relevant set requires the computation and comparison of (∣M ∣

∣N ∣
) different

relative relevances, which presents itself as infeasible. Secondly, the computation
of the relative relevance does presume that the set of formal concepts is computed.
This also states an intractable problem for large formal contexts, which are the focus
of applications of the proposed relevance selection method. To overcome the first
limitation, we suggest an iterative approach. Instead of testings every subset of size n,
we construct N ⊆M by first considering all singleton sets {m} ⊆M . Consecutively,
in every step i where X is the so far constructed set we find x ∈ M such that
r(X ∪ {x}) ≥ r(X ∪ {m}) for all m ∈M . This approach requires the computation
of only ∑∣M ∣i=∣M ∣−∣n∣+1 i different relative relevances and their comparisons, which is
simplified n⋅∣M ∣−(n−1)⋅n/2. We call a set obtained through this approach an iterative
maximal relevant set IMRS. In fact, the IMRS does not always correspond to the
maximal relevant set. E.g., consider a formal context (G,M, I) with G = {1,2,3,4},
M = {a, b, c, d} and I = {(1, a), (1, c), (1, d), (2, a), (2, b), (3, b), (3, c), (4, d)}. Then b
is the most relevant attribute, i.e., r(b) > r(x) for all x ∈M ∖ {b}. However, we find
r({a, c}) > r({b, x}) for all x ∈M ∖ {b}. Hence, the relative relevance of an IMRS
indicates a lower bound for the relative relevance of the maximal relevant set.

6.2.2 Approximating RRP

Motivated by the computational infeasibility of Problem 6.1 we investigate in this
section the possibility of approximating RRP, more specifically the IMRS. Approaches
for this approximation have to incorporate both aspects of the relative relevance: the
structure of the concept lattice and the distribution of the objects. Considering the
former is not complicated since for any context (G,M, I) the latticeB([G,N]) is join-
preserving order embeddable into B((G,M, I)) for any N ⊆M . Thus, this aspect
can be represented through a quotient ∣B(KM∖N))∣/∣B(K)∣, which is a special case of
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the maximal common subgraph distance, see [13]. Hence, whenever searching for the
largest B([G,N]) the obvious choice is to optimize for large contranominal scales in
subcontexts of (G,M, I). For example, when selecting three attributes in Figure 6.1
(top), the largest meet-preserving order embeddable lattice would be generated by
the set {b, c, d}. However, the relative relevance of {b, c, g} is significantly larger,
in particular, r({b, c, d}) = 17/33 and r({b, c, g}) = 19/33, since we have a second
requirement. Considering the distribution of the objects on the concept lattice,
the sizes of the concept extents have to be incorporated. Since they are unknown,
unless we compute the concept lattice, we need a proxy for estimating the influence
of those. Accordingly, we want to reflect this with the quotient E(KM∖N)/E(K),
which estimates the change of the object distribution on the concept lattices when
selecting a set N ⊆M . This quotient does employ a mapping E ∶ K → R,K↦ E(K),
which is to be found. A natural candidate for this mapping would be information
entropy, as introduced by Shannon in [54]. He defined the entropy of a discrete set
of probabilities p1, . . . , pn as H = −∑i∈I pi log pi. We adapt this formula to the realm
of formal contexts as follows.

Definition 6.4 (Shannon Object Information Entropy)
Let K = (G,M, I) be a formal context. Then the Shannon object information entropy
of K is given as follows:

ESE(K) = ∑
g∈G

− ∣g′′∣
∣G∣ log2 (

∣g′′∣
∣G∣ )

For this entropy function we employ the quotient ∣g′′∣/∣G∣, which does reflect the
extent sizes of the object concepts of K. Obviously, this choice does not consider all
concept extents. However, since every extent in a concept lattice is either the extent
of an object concept or the intersection of finitely many extents of object concepts,
we see that the Shannon object information entropy does relate to all extents to
some degree. We found another candidate for E in the literature [48]. The authors
introduced an entropy function which is, roughly speaking, the mean distance of the
extents of object concepts to the complete set of objects.

Definition 6.5 (Object Information Entropy)
Let K = (G,M, I) be a formal context. Then the object information entropy of K is
given as follows:

EOE(K) = 1
∣G∣ ∑g∈G

(1 − ∣g′′∣
∣G∣ )



70 CHAPTER 6. RELEVANT ATTRIBUTES IN FORMAL CONTEXTS

We observe that this entropy decreases as the number of objects having similar
attribute sets increases. Furthermore, we recognize an essential difference for EOE
compared to ESE. The Shannon object information entropy reflects on the number
of necessary bits to encode the formal context. In contrary the object information
entropy reflects on the average number of bits to encode an object from the formal
context. To enhance the first grasp of the just introduced functions as well as the
relative relevance defined in Definition 6.3 we want to investigate them on well-
known contextual scales. In particular, the ordinal scale O(k) ∶= ([k], [k],≤), the
nominal scale N(k) ∶= ([k], [k],=), and the contranominal scale Nc(k) ∶= ([k], [k],≠),
where [k] ∶= {1, . . . , k}. Since there is a bijection between the set {1, . . . , k} to the
extent sizes ∣g′′∣ in an ordinal scale we obtain that ESE(O(k)) = −∑k

i=1
i
k log2 ( ik)

and EOE(O(k)) = 1
k ∑

k
i=1 (1 − i

k
) = 1

k
k(k+1)

2k = k+1
2n . The former diverges to ∞ whereas

the latter converges to 1/2. Based on the linear structure of B(O(k)) we conclude
that the set B(K) ∖B(K){m} = {(m′,m′′)} for all m ∈M . So the relative relevance
amounts to r(m) = 1− (∑k

i=1 i− ∣m′′∣) / ∑k
i=1 i = 2∣m′′∣/(k ⋅ (k + 1)). Both the nominal

scale as well as the contranominal scale satisfy g′′ = g for all g ∈ G for different
reasons. We conclude that ESE and EOE evaluate respectively equally for both
scales. In detail, we have ESE(N(k)) = ESE(Nc(k)) = −∑g∈G

1
k log2 ( 1

k
) = log2(k)

and EOE(N(k)) = EOE(Nc(k)) = 1
k ∑g∈G (1 − 1

k
) = k−1

k . For the relative relevance
we observe that r(m) = r(n) for all m,n ∈ M in the case of the nominal and
contranominal scale. This is due to the fact that every attribute is part of the same
number of concepts. For the nominal scale holds r(m) = 1 − 2k−1

2k for all m ∈ M .
Hence, as the number of attributes increases, does the relevance of a single attribute
converge to zero. The relative relevance in the case of the contranominal scale is
r(m) = 1 − ∑

k
i=0 (

k
i
)(k−i)−∑k−1

i=0 (
k−1

i
)(k−1−i)

∑
k
i=0 (

k
i
)(k−i)

for all m ∈M .

Example 6.3
Revisiting our running example in Figure 6.1 (bottom), this context has four objects
with {B}′′ = {B,F,S}, {F}′′ = {F}, {D}′′ = {F,D} and {S}′′ = {S}. Its entropies
are given by EOE(K) = 1

4 ∑g∈G (1 − ∣g
′′∣

4 ) ≈ 0.56 and ESE(K) ≈ 0.45.

Considering both aspects discussed in this section, we now want to introduce a
function that shall be capable of approximating RRP.

Definition 6.6 (Entropic Relevance Approximation (ERA))
Let K = (G,M, I) be a formal context with N ⊆M . The entropic relevance approxi-
mation (ERA) of N is defined as

ERA(N) ∶= ∣B([G,N])∣
∣B(K)∣ ⋅ E([G,N])

E(K) .
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First, the ERA compares the number of concepts in a given formal context to the
number of concepts in a subcontext on the attribute set N ⊆ M . This reflects
the structural impact when restricting the attribute set. Secondly, a quotient is
evaluated where the entropy of [G,N] is compared to the entropy of K. When
using Definition 6.6 for finding a subset N ⊆M with maximal (entropic) relevance it
suffices to compute N such that B([G,N]) ⋅E([G,N]) is minimal since B(K) ⋅E(K)
does not change for different attribute selections. This task is essentially less
complicated since we only have to compute B([G,N]) and E([G,N]) for some
comparable small formal context [G,N].

6.3 Evaluation and Discussion

To assess the ability for approximating relative relevance through Definition 6.6,
we carried out several experiments in the following fashion. For all data sets we
computed the iterative maximal relevant subsets of M of sizes one to seven (or
ten) in the obvious manner. We decided for those fixed numbers for two reasons.
First, using a relative number, e.g., 10% of all attributes, would still lead to an
infeasible computation when the initial formal context is very large. Secondly, formal
contexts with up to ten attributes permit a plenitude of research methods that are
impracticable for larger contexts, in particular, human evaluation.

Then we computed subsets of M using ERA, for which we used both introduced
entropy functions and their relative relevance. Finally, we sampled subsets of M
randomly at least ∣M ∣ ⋅ 10 many times and computed their average relative relevance
as well as the standard deviation in relative relevance.

Additional evaluations regarding the size of the generated lattice and the size of the
canonical base of its implications can be found in Section 7.3.

6.3.1 Data Set Description

A total of 2678 formal contexts were considered in this experimental study. From
those 2674 contexts were excerpts from the BibSonomy platform1 as described in [7].
All those contexts are equipped with an attribute set of twelve elements and a
varying number of objects. The particular extraction method is described in detail
in [12]. For the rest we revisited three data sets well known in the realm of Formal
Concept Analysis, i.e., mushroom, zoo, water [17, 29], and additionally a data set

1https://www.kde.cs.uni-kassel.de/wp-content/uploads/bibsonomy/

https://www.kde.cs.uni-kassel.de/wp-content/uploads/bibsonomy/
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Figure 6.3 Relevance of attribute selections through entropy (SE,OE), IMRS (IR), and
random selection (RA) for the “Living beings in water” (left) and the zoo context (right).
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Figure 6.4 Relevance of attribute selections through entropy (SE, OE), IMRS (IR), and
random selection (RA) for the mushroom (left) and the wiki44k context (right).

wiki44k introduced in [32], which is based on a 2014 Wikidata2 database dump.
The well-known mushroom data set is a collection of 8124 mushrooms described
by 119 (scaled) attributes and exhibits 238710 formal concepts. The zoo data set
possesses 101 animal descriptions using 43 (scaled) attributes and exhibits 4579
formal concepts. The water data set, more formally “Living beings and water”,
has eight objects and nine attributes and exhibits 19 formal concepts. Finally, the
wiki44k has 45021 objects and 101 attributes exhibiting 21923 formal concepts.

6.3.2 Results

In Figures 6.3 to 6.5, we depicted the results of our computations. We observe in all
experiments that the relative relevances of the subsets found through the iterative
approach are an upper bound for the relative relevance of all subsets computed
through entropic relevance approximation or random selection, with respect to the
same size of subset. In particular, we find IMRS of cardinality seven and above have

2https://www.wikidata.org

https://www.wikidata.org
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Figure 6.5 Average distance and standard deviation to IMRS for entropy and random
based selections of ∣N ∣ attributes for 2674 formal contexts from BibSonomy.

a relative relevance of at least 0.8. Moreover, the relative relevance of the attribute
subsets selected by both ERA versions (SE or OE) exceed the relative relevance of
the randomly selected subsets except for the Shannon object information entropy
for |N|=1 and |N|=2 in the zoo context. Principally we find for contexts containing
a small number of attributes (Figure 6.3) a large increase of the distance between
the relative relevance of the randomly selected attributes and the attribute sets
selected through the entropy approach. This characteristic manifests in the relative
relevance of both ERA selections excelling not only the mean relative relevance of
randomly chosen attribute sets but also the standard deviation for subset sizes of
∣N ∣ = 4 and above. In the case of contexts containing a huge number of attributes,
this observation can be made for selections with ∣N ∣ = 1 already. Furthermore, the
interval between the relative relevance of the attribute subsets selected by both ERA
versions and the relative relevance of the randomly selected subsets is significantly
larger than in the case of contexts with small attribute set sizes. In general, we may
point out that neither of the entropies seems preferable over the other in terms of
performance. In Figure 6.5, we show the results for the experiment with the 2674
formal contexts from BibSonomy. We plotted for all three methods, ERA-OE/SE
and random, the mean distance in relative relevance to the IMRS of the same size
together with the standard deviation. We detect a significant difference between
randomly chosen and ERA chosen sets with respect to their relative relevance. The
deviation for both ERA is bound by 0 and 0.12. In contrast, the relative relevance
for randomly selected sets is bound by 0.09 and 0.6.
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6.3.3 Discussion

We found in our investigation that attribute sets obtained through the iterative
approach for relative relevance do have a high relevance value. Even though their
relative relevance is only a lower bound compared to the maximal relevant set they
exhibit a relative relevance of 0.8 for attribute set sizes seven and above. We conclude
from this that the iterative approach is a sufficient solution to the relative relevance
problem. Based on this we may deduct that entropic relative approximation is also a
good approximation for a solution to the RRP. In particular, in large formal contexts
investigated in this work the approximation was even better than in the smaller ones.

6.4 Conclusion

By defining the relative relevance of attribute sets in formal contexts, we introduced
a novel notion of attribute selection. This notion respects both the structure of the
concept lattice and the distribution of the objects on it. To overcome computational
limitations, which arose from the notion of relative relevance, we introduced an
approximation based on two different entropy functions adapted to formal contexts.
For this, we used a combination of two factors: the change in the number of concepts
and the change in entropy that arise from the selection of an attribute subset. The
experimental evaluation for relative relevance as well as the entropic approximation
seems to comply with the theoretical modeling.

We conclude this chapter with two open questions. First, even though IMRS seems a
good choice for relevant attributes, we suspect that computing the maximal relevant
set, with respect to RRP, can be achieved more feasible. Secondly, so far our
justification for RRP is based on theoretical assumptions and a basic experimental
study. We imagine, and are curious, if maximal relevant attribute sets are also
employable in supervised machine learning setups. For example, one may perceive
the task of adding a new object to a given formal context as instance of such a setup.
The question is, how capable is the context to add this object to an already existing
concept.



CHAPTER 7

Selecting Attributes using Contranominal Scales

Since the size of a lattice depends on the number of contranominal scales of high
dimension in the corresponding formal context, we follow up on the previous idea
of attribute selection by introducing δ-adjusting, a novel approach to decrease the
number of contranominal scales in a formal context by selecting an appropriate
attribute subset. Considering that one of the main goals of Formal Concept Analysis
is to enable humans to comprehend the information that is encapsulated in the
data, the large size of concept lattices is a limiting factor for the feasibility of
understanding the underlying structural properties. Therefore, we demonstrate that
δ-adjusting a context – as well as selecting relative relevant attributes as done in
the Chapter 6 – reduces the size of the hereby emerging subsemilattice and that the
original implication set is restricted to meaningful implications. This is evaluated
with respect to its associated knowledge by means of a classification task. Hence,
our proposed techniques strongly improve the understandability while preserving
important conceptual structures.



76 CHAPTER 7. SELECTING ATTRIBUTES USING CONTRANOMINALS

7.1 Introduction

Since the size of the concept lattice is heavily influenced by the number of its Boolean
suborders their elimination, and thus the elimination of contranominal scales in
the corresponding formal context, is a reasonable approach to reduce the lattice
size. Therefore, we focus on the removal of attributes based on their appearance in
contranominal scales in this chapter.

We present our novel approach δ-adjusting, which focuses on the selection of an
appropriate attribute subset of a formal context. To this end, we measure the
influence of each attribute with respect to the number of contranominal scales. By
restricting the attribute set, a subsemilattice is computed that preserves the meet-
operation. This provides the advantage of not only maintaining all implications
between the selected attributes but also does not produce false implications and
thus retains underlying structure. We conduct experiments to demonstrate that the
subcontexts that arise by δ-adjusting decrease the size of the concept lattice and
the implication set while preserving underlying knowledge and show that this is
also the case for the approach of selecting relative relevant attributes. We evaluate
the remaining knowledge by training a classification task. This results in a more
understandable depiction of the encapsulated data for the human mind.

7.2 Attribute Selection

In this section, we propose δ-adjusting, a method to select attributes based on
measuring their influence for contranominal scales. For this, we first introduce a
method to rate the attributes as follows:

Definition 7.1 (Contranominal-Influence)
Let K = (G,M, I) be a formal context and k ∈ N. We call the attribute set N ⊆M
k-cubic if there is a set H ⊆ G with [H,N] being a contranominal scale of dimension
k and ∄Ñ ⊆M with Ñ ⊇ N such that Ñ is (k+1)-cubic. We define the contranominal-
influence of m ∈M in K as

ζ(m) ∶=
∞

∑
k=1

(∣{N ⊆M ∣m ∈ N,N is k-cubic}∣ ⋅ 2k
k
) .

Subcontexts that are k-cubic are directly influencing the concept lattice, as those
dominate the structure, as the following shows.
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Proposition 7.1
Let K = (G,M, I) be a formal context. An attribute set N ⊆M is k-cubic if and only
if B([G,N]) ≅B(k) and it has no Boolean superlattice in B(K).

The contranominal influence thus measures the impact of an attribute on the lattice
structure. In this, only the maximal contranominal scales are considered since the
smaller non-maximal-ones have no additional structural impact. As each contranomi-
nal scale of dimension k corresponds to 2k concepts, we scale the number of attribute
combinations with this factor. To distribute the impact of a contranominal scale
evenly over all involved attributes, the measure is scaled by 1

k . With this measure,
we now define the notions of δ-adjusting a formal context and its concept lattice.

Definition 7.2 (δ-adjusted Subcontext, δ-adjusted Sublattice)
Let K = (G,M, I) be a formal context and δ ∈ [0,1]. Let N ⊆M be minimal such
that ∣N ∣

∣M ∣ ≥ δ and ζ(n) < ζ(m) for all n ∈ N,m ∈M ∖N . We call Aδ(K) ∶= [G,N] the
δ-adjusted subcontext of K and B(Aδ(K)) the δ-adjusted sublattice of B(K).

Note that δ-adjusting always results in unique contexts since all attributes with
identical contranominal-influence are simultaneously added to N . Moreover, every
δ-adjusted sublattice is a sub-∧-semilattice of the original one and A1 = K and
A0 = [G,∅] for every context K = (G,M, I). A context from a medical diagnosis
dataset with measured contranominal influence and its 1

2-adjusted subcontext is
presented in Figure 7.1. The associated concept lattices are visualized in Figure 7.2.

For a context K and its reduced context Kirr a different attribute set can remain if
they are δ-adjusted (e.g., see Figure 7.3). Thus, the resulting concept lattices for
K and Kirr can differ. To preserve structural integrity between δ-adjusted formal
contexts and their concept lattices, we thus recommend only to consider clarified
and reduced contexts and perform these steps prior to δ-adjusting in the rest of
this chapter. Note that since no attributes are generated and the incidence relation
is not altered, no new contranominal scales can arise by δ-adjusting. Furthermore,
removing attributes can not turn another attribute from irreducible to reducible.
On the other hand, however, objects can become reducible as can be seen again in
Figure 7.3. While 6 is irreducible in the original context, it is reducible in A 3

5
(K).

7.2.1 Properties of Implications

In this section, we investigate δ-adjusting with respect to the influence on implica-
tions. However, the statements generally hold for contexts generated via attribute
selection and, therefore, especially for the ones that utilized relative relevance.
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a b c d e f g h i j k l m n o
111 × × × × × × ×
119 × × × × × × × ×
31 × × × × × × × ×
32 × × × × × × ×
17 × × × × × × × ×
27 × × × × × × × ×
105 × × × × × × ×
58 × × × × × × × ×
65 × × × × × × × ×
103 × × × × × ×
56 × × × × × × × ×
98 × × × × × × ×
43 × × × × × × × ×
50 × × × × × × ×

Attribute Name 2 3 4 ζ

a: Lumbar pain y 1 22 6 84.7
b: Bladder inflammation y 1 29 0 79.3
c: Burning n 1 31 9 120.7
d: Lumbar pain n 2 19 0 54.7
e: Nausea n 0 16 3 54.7
f: Burning y 1 31 0 84.7
g: Temp. ∈ [40.0, 42.0] 2 24 5 88.0
h: Micturition pains n 1 18 5 70.0
i: Temp. ∈ [35.0, 37.5] 3 16 0 48.7
j: Pelvis nephritis n 1 19 1 56.7
k: Micturition pains y 1 33 0 90.0
l: Pelvis nephritis y 3 17 0 51.3
m: Urine pushing y 0 21 7 84.0
n: Temp. ∈ [37.5, 40.0] 2 23 3 77.3
o: Bladder inflammation n 1 26 1 75.3

Figure 7.1 Top: Reduced and clarified medical diagnosis dataset [15]. The 1
2-adjusted

subcontext is highlighted. The objects are patient numbers.
Bottom: The attributes are described in the figure together with the count of k-cubic
subcontexts and their contranominal influence ζ.
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Figure 7.2 Lattice of the original (left) and the 1
2-adjusted (right) dataset shown

in Figure 7.1.

Let K = (G,M, I) be a formal context, m ∈M , and X → Y an implication in K. If
m is part of the implication, i.e., m ∈ X or m ∈ Y , this implication vanishes when
removing m from the context. Therefore the removal of m in an implication X → Y

of some implication base C(K) is of interest. If m is neither part of a premise nor
a conclusion of an implication X → Y ∈ C(K), its removal has no impact on this
implication base. In the case of m ∈ Y , its elimination changes all implications
X → Y to X → Y ∖{m}. Note that, even though all implications can still be deduced
from C′ = {X → Y ∶ X → Y ∪ {m} ∈ C(K)} ∪ {X → Y ∈ C(K) ∶m /∈ Y } this set is not
necessarily minimal and in this case is not a base. Especially if {m} = Y , the resulting
implication X → ∅ is never part of an implication base. In the case of m ∈X, every
Z →X in the base is changed to Z →X∖{m}∪Y while X → Y is removed. Similarly
to the conclusion case, the resulting set of implications can be used to deduce all
implications but is not necessarily an implication base. Moreover, as the following
shows, no new implications can emerge from the removal of attributes.

Proposition 7.2
Let K = (G,M, I) be a formal context, N ⊆ M and X,Y ⊆ N with X → Y being a
non-valid implication in K. Then X → Y is also non-valid in [G,N].

Proof Since X → Y is not valid in K, there exists an object g ∈ G with X ⊆ g′ and
Y /⊆ g′. As the objects in K and [G,N] are identical on N (especially if X,Y ⊆ N),
g is a counterexample for X → Y in [G,N]. ◻
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a b c d e
1 × ×
2 × ×
3 × ×
4 × × ×
5 ×
6 × ×

a b c d
1 × ×
2 × ×
3 × ×
4 × ×
5 ×
6 × ×

Figure 7.3 A concept lattice (left) together with two of its contexts K (middle) and Kirr

(right) whereby Kirr is attribute reduced while K contains the reducible element e. In both
contexts the 3

5-adjusted subcontext is highlighted. Their lattices (right to each context)
differ.

Thus, the relationship between the implications of a subcontext with all objects and
the original context is as follows:

Corollary 7.1
Let K = (G,M, I) be a formal context and S = [G,N] ≤ K a subcontext. Then
Imp(S) ⊆ Imp(K) holds.

In particular, the minimal implication base cannot grow by selecting subcontexts
based on attributes. This influences the size of the implication base of a subcontext
generated by attribute selection as follows:

Proposition 7.3
Let K = (G,M, I) a formal context and S = [G,N] ≤ K. Then ∣C(S)∣ ≤ ∣C(K)∣ holds.

Proof Assume not; i.e., ∣C(S)∣ > ∣C(K)∣. Let J be the set of implications containing
m ∈M ∖N in C(K). A set of implications that can generate the whole implication
set with size ∣C(K)∣ or less is given by altering the implications X → Y X,Y ∈ M
in ∣C(K)∣ as follows. If m ∈ Y , X → Y is replaced by X → Y ∖m. If m ∈ X and
Z →X ∈ C(K), X → Y is replaced by Z → Y . This yields a contradiction. ◻

Example 7.1
Revisiting the context in Figure 7.1 together with its 1

2-adjusted subcontext the
selection of nearly 50% of the attributes (8 out of 15) results in a sub-∧-semilattice
containing only 33% of the concepts (29 out of 88). Moreover, the implication base
of the original context includes 40 implications. After the alteration, its size is
decreased to 11 implications.
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7.3 Evaluation and Discussion

In this section, we evaluate the process of δ-adjusting using real-world datasets.
Hereby, the selection of relative relevant attributes as presented in Chapter 6 is used
as a baseline. To compute all contranominal scales of the data sets, we utilize the
algorithm Contrafinder as proposed by Dürrschnabel et al. [21].

7.3.1 Datasets

The datasets used in this chapter are published in [22]. Table 7.1 provides descriptive
properties of the different datasets. The zoo and mushroom datasets and the Wiki44k
dataset have already been used in Chapter 6. The Wikipedia dataset depicts the
edit relation between authors and articles. Finally, the students dataset depicts the
grades of students together with properties such as parental level of education. All
experiments are conducted on the reduced and clarified versions of the contexts.

7.3.2 Structural Effects of δ-Adjusting

We measure the number of formal concepts generated by the formal context as
well as the size of the canonical base. To demonstrate the effects of δ-adjusting
we focus on δ = 1

2 . Our two baselines are selecting the same number of attributes
using random sampling and choosing the attributes of highest the relative relevance.
It can be observed that in all three cases the number of concepts heavily decrease
(see Table 7.2). However, this effect is considerably stronger for 1

2-adjusting and
the relative relevance approach compared to random sampling. Hereby, 1

2-adjusting
yields smaller concept lattices on four datasets. A similar effect can be observed for
the sizes of the canonical bases where this method yields three times in the smallest
cardinality. The selection based on the relative relevance results in the smallest
concept lattice in one case and the smallest canonical base in two cases.

Table 7.1 Datasets used for the evaluation of δ-adjusting.

Zoo Students Wikipedia Wiki44k Mushroom
Objects: 101 1000 11273 45021 8124
Attributes: 43 32 102 101 119
Density: 0.40 0.28 0.015 0.045 0.19
Number of concepts: 4579 17603 14171 21923 238710
Mean objects per concept: 18.48 16.73 20.06 109.47 91.89
Mean attributes per concept: 7.32 5.97 5.88 7.013 16.69
Size of canonical base: 401 2826 4575 7040 2323
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7.3.3 Knowledge in the δ-Adjusted Context

To measure the degree of encapsulated knowledge in δ-adjusted formal contexts, we
conduct the following experiment using random sampling and the relative relevant
attributes as baselines again. In order to measure if the remaining subcontexts still
encapsulate knowledge, we train a decision tree classifier on them, predicting an
attribute that is removed beforehand. This attribute is sampled randomly in each
step. To prevent a random outlier from distorting the result, we repeat this same
experiment 1000 times for each context and method and report the mean value and
the standard-deviation in Table 7.2. The experiment is conducted using a 0.5-split
on the train and test data. For all five datasets, the results of the decision tree on the
1
2-adjusted context are consistently high, however 1

2-adjusting and the relative
relevance approach outperform the sampling approach. Both these methods achieve
the highest score on four contexts; in two cases, the highest result is shared. The
single highest score of the sampling approach is just slightly above the score of the
other two approaches.

7.3.4 Discussion

To evaluate the impact on the understandability of the δ-adjusted formal contexts,
we conduct experiments measuring the sizes of the concept lattices and the canonical
bases. All three evaluated methods heavily decrease the size of the concept lattice

Table 7.2 Evaluation of k-adjusted contexts. The standard deviation is given in parenthesis.
"Acc of DT" is the abbreviation for "Accuracy of the Decision Tree".

Zoo Students Wikipedia Wiki44k Mushroom
∣B(K)∣: 1

2 -adjusted: 90 312 65 323 426
Sampling: 496 1036 833 1397 8563

(205) (327) (517) (627) (4532)
rel. relevance: 95 341 67 254 561

∣C(K)∣: 1
2 -adjusted: 98 105 626 1003 339
Sampling: 95 156 758 1360 574

(17) (35) (101) (135) (93)
rel. relevance: 100 105 553 1091 490

Acc of DT: 1
2 -adjusted: 0.88 0.88 0.99 0.98 0.98

(0.08) (0.06) (0.01) (0.03) (0.02)
Sampling: 0.89 0.81 0.9 0.95 0.92

(0.15) (0.15) (0.14) (0.06) (0.13)
rel. relevance: 0.88 0.89 0.99 0.98 0.97

(0.09) (0.06) (0.01) (0.16) (0.03)
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as well as the canonical base. Compared to the random sampling 1
2 -adjusting

and selecting the relative relevant attributes influence the size of these structural
components much stronger. Among those two, 1

2 -adjusting seems to outperform the
method of relative relevant attribute selection slightly.

To evaluate to what extent knowledge is encapsulated in the selected subcontexts, we
conduct the decision tree experiment. It demonstrates that the selected subcontexts
can be used in order to deduce relationships of the remaining attributes in the context.
While meaningful implications are preserved, and the implication set is downsized,
1
2 -adjusted lattices seem suitable to preserve large amounts of data from the original
dataset. Similar good results can be achieved by selecting relative relevant attributes.
The approach of 1

2 -adjusting combines this with producing smaller concept lattices
and canonical bases and is thus more suitable for preparing data for a human analyst
by only reducing sizes of structural constructs.

We conclude from these experiments that δ-adjusting is a solution to the problem
of making information more feasible for manual analysis while retaining essential
parts of the data. In particular, if large formal contexts are investigated, this method
provides a way to extract relevant subcontexts.

7.4 Conclusion

In this chapter, we defined the contranominal-influence of an attribute. This measure
allows us to select a subset of attributes in order to reduce a formal context to its
δ-adjusted subcontext. The size of its lattice is significantly reduced compared to the
original lattice and thus enables researchers to analyze and understand much larger
datasets using Formal Concept Analysis. Furthermore, the size of the canonical
base, which can be used to derive relationships of the remaining attributes, shrinks
significantly. Still, the remaining data can be used to deduce relationships between
attributes, as our classification experiment shows. This approach, therefore, identifies
subcontexts whose sub-∧-semilattice is a restriction of the original lattice of a formal
context to a small meaningful part.
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Part IV

Eliminating Intervals





CHAPTER 8

Interval Factorization

This chapter investigates the factorization of finite lattices to implode selected
intervals while preserving the remaining order structure. We examine how complete
congruence relations and complete tolerance relations can be utilized for this purpose
and answer the question of finding the finest of those relations to implode a given
interval in the generated factor lattice. To overcome the limitations of the factorization
based on those relations, we introduce a new lattice factorization that enables the
imploding of selected disjoint intervals of a finite lattice. To this end, we propose
an interval relation that generates this factorization. To obtain lattices rather
than arbitrary ordered sets, we restrict this approach to so-called pure intervals.
Further, we also provide a new FCA construction by introducing the enrichment
of an incidence relation by a set of intervals in a formal context to investigate the
approach for lattice-generating interval relations on the context side.
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8.1 Introduction

A complete lattice L consists of several intervals. Such an interval is often considered
as a unity. Therefore, a transformation of the lattice that implodes such an interval
(or a set of intervals) is a suitable way to obtain a more compact representation of
the original structure. In this chapter, we investigate different ways to factorize a
lattice to “implode” selected intervals, meaning to condense an interval into a single
element in the following manner:

Definition 8.1 (Implosion)
An implosion of a set of disjoint intervals S1, . . . , Sk in an ordered set (P,≤P ) is an
surjective, order-preserving mapping f ∶ (P,≤P ) → (Q ≤Q) on an ordered set Q so
that ∣f(Si)∣ = 1 for all i ∈ {1, . . . , k}.

We pursue two – partially conflict – goals for such an implosion. The first goal is that
the function f is as compatible as possible with the lattice structure – in the best
case, f is a lattice homomorphism. The second goal is that the remaining part of the
lattice remains intact as much as possible – in the best case, f is injective in L ∖ S.
As we will discuss in the sequel, there are different ways to realize an implosion of
one or more intervals with different trade-offs regarding to our goals.

We examine how lattice factorizations based on complete congruence relations and
complete tolerance relations can be utilized for imploding intervals in a lattice.
In particular, we answer the question of finding the finest of those relations that
implodes a given interval in the generated factor lattice while preserving as many of
the other elements of the lattice as possible. While both of these approaches result
in an infimum- and supremum-preserving factor lattice, the imploded intervals are
often larger than just the selected interval. It is even possible for the factor lattice
to implode the whole lattice and thus only contain one element.

To directly address intervals generated by Boolean suborders, we add the incidences
missing in contranominal scales and in the subcontexts associated to the chosen
suborders. However, this approach is not suitable for imploding a Boolean suborder if
other parts of the context support the concepts of the associated Boolean subcontext.
In general, other incidences have to be added beyond those in the associated Boolean
subcontext.

To preserve all elements of the lattice except those in selected intervals, we investigate
then a new kind of factorization based on interval relations and study the different
types of implosion. We introduce enrichments of the incidence relation by intervals



8.2. IMPLODING WITH CONGRUENCES AND TOLERANCES 89

and show their one-to-one correspondence to interval relations. They can be utilized
to implode selected intervals in the lattice while preserving the original order relation.
By restricting the approach to pure intervals, we also ensure the lattice properties in
the generated structure. Since every finite lattice is isomorphic to a concept lattice,
all statements can be translated to finite lattices in general.

8.2 Imploding with Congruences and Tolerances

This section presents two methods for lattice factorization to implode selected
intervals while preserving certain structural properties of the original lattice. Since
we utilize approaches of FCA, we phrase the statements mostly for concept lattices.
However, all statements can be translated to finite lattices in general.

8.2.1 Complete Congruence Relations

Due to its definition, a congruence relation θ preserves the meet- and join-operators
of a lattice L in L/θ. Further, for every lattice L and every interval S ≤ L at least
one congruence relation θ on L exists that implodes S, meaning that f ∶L → L/θ
with f(x) = [x]θ (the equivalence class of θ including x) is an implosion of S in
L. This is always the case for the trivial congruence relation θ that has a single
θ-class [x]θ = L, so that ∣f(L)∣ = 1. To utilize this method to our aim of imploding
specific intervals while preserving as much of the remaining structure as possible, the
following question arises: Given a lattice L and an interval S ≤ L, which congruence
relation θ on L is the finest (meaning that ∣L/θ∣ is as large as possible) so that
f ∶L→ L/θ is an implosion of S in L and how can we determine this θ?

The congruence relations on a given lattice L are a closure system. So a unique
finest congruence with the required property exists. Also, in the finite case, the
congruence relations and the compatible subcontexts of the reduced formal context
K with B(K) ≅ L have a one-to-one correspondence. We adapt this statement to
our question setting as follows:
Proposition 8.1
Let K = (G,M, I) be a reduced formal context and S = [(A,B), (C,D)] ≤B(K) an
interval. Let H = {A ∪ {g ∈ G ∣ g /∈ C}} and N = {D ∪ {m ∈M ∣m /∈ B}}. The set of
all compatible subcontexts [O,P ] ≤ K with O ⊆ N and P ⊆H corresponds to the set
of all congruence relations θ on B(K) with f ∶L → L/θ is an implosion of S in L.
The largest compatible subcontext [O,P ] ≤ K with O ⊆ N and P ⊆H corresponds to
the finest of those congruence relations.
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Proof The compatible subcontexts of K correspond to the complete congruences
of B(K) so that they induce the complete congruences, and the ordered set of the
compatible subcontexts is dually isomorphic to the congruence lattice. Due to the
order of the congruence lattice, for a given interval S, the set of all congruence
relations θ on L with f ∶L → L/θ is an implosion of S in L are an order filter,
meaning ∃[x]θ with S ⊆ [x]θ. This filter is generated by the unique finest complete
congruence with this property. Analogously, there is a corresponding compatible
subcontext that is the unique greatest one generating an order ideal of all compatible
subcontexts corresponding to the formerly mentioned congruences. For every object
g of a compatible subcontext, the concept (g′′, g′) is the smallest element of a θ-
class of the corresponding congruence θ. Analogously for every attribute m of a
compatible subcontext, the concept (m′,m′′) is the greatest element of a θ-class
of the corresponding congruence θ (see Proposition 3.8). Thus, the compatible
subcontexts that correspond to the congruences with a θ-class containing S must not
contain the object set {{g ∈ G ∣ (g′′, g′) ∈ S} ∖A} and the attribute set {{m ∈M ∣
(m′,m′′) ∈ S}∖D}. So the greatest compatible subcontext fulfilling this requirement
corresponds to the finest congruence with a θ-class containing S. However, the
possible selection of objects and attributes can be reduced as follows: Let g /∈ H.
Then (g′′, g′) ≤ (C,D) and (g′′, g′) /≤ (A,B) and therefore (g′′, g′) ∧ (C,D) = (g′′, g′)
and (g′′, g′) ∧ (A,B) < (g′′, g′) hold. So (g′′, g′) is not the smallest element of a
θ-class, and therefore g is not contained in the compatible subcontext. ◻

Note that the statement of Proposition 8.1 holds especially for intervals that are
Boolean sublattices or generated by Boolean suborders, meaning the smallest intervals
containing all elements of a given Boolean suborder.

Example 8.1
Considering the red highlighted interval S1 in B(K) in Figure 8.1 (left), the applica-
tion of Proposition 8.1 results in the sets H = {4} and N = {d, e}. The compatible
subcontexts of the corresponding reduced formal context K (right) are [∅,∅], [3, a],
and [G,M]. Thus, the compatible subcontext corresponding to the finest (and the
only) congruence relation θ, that implodes S1 is [∅,∅]. So, the congruence relation
we looked for is the trivial one that contains every concept in the same equivalence
class. For S2 the sets H = {1,2,3,4,7} and N = {a, e} arise. Thus, the compatible
subcontext [3, a] corresponds to the finest congruence relation θ that implodes S2. θ
partitions the concepts in two intervals, the one highlighted with dotted boxes and
the remaining one.
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4 3

2 51 6

7
8a

c b
d

e a b c d e
1 × × ● ● ●
2 × ● × ● ●
3 × × × ×
4 × × × ● ●
5 × ● × ×
6 ● × × ×
7 ● ● × ●
8 ● ● ● ×

Figure 8.1 A (concept) lattice B(K)(left) and its corresponding reduced formal context
K = (G,M, I) (right). The intervals S1(red) and S2(blue) are highlighted in B(K). The
finest congruence relation that implodes S2 partitions the concepts in two intervals, the
one highlighted with dotted boxes and the remaining one. Adding the ●-marked incidences
to I results in the block relation that corresponds to the finest tolerance relation that
implodes S2.

8.2.2 Complete Tolerance Relations

Another tool for lattice factorization are tolerance relations. They also generate
a factor lattice L/θ, in which, similar to the congruence relations, the meet- and
join-operators of L are preserved. However, since a tolerance relation does not have
to be transitive, we can not expect to find a lattice homomorphism between L and
L/θ. Instead, we have to arrange with a sublattice homomorphism. The two possible
maps are given by Ganter and Wille in [29, Prop. 56]. This entails to consider those
maps as implosions in this section, meaning there is a θ-class [x]θ with S ⊆ [x]θ.

Since every congruence relation is a tolerance relation, the trivial tolerance relation
to implode a given interval exists on every lattice. Thus, the question of finding the
finest tolerance relation with this property also arises. The tolerance relations of a
lattice are in a one-to-one correspondence with the block relations of its corresponding
formal context. Hence, we propose the following statement to search for the finest
block relation that implodes a chosen interval.

Proposition 8.2
Let K be a reduced formal context and S = [(A,B), (C,D)] ≤B(K) an interval. Let
J̃ = I ∪ (C ×B). The block relations J ⊇ I with J ⊇ J̃ corresponds to the tolerance
relations θ on B(K) with with B(K)→B(K)/θ being an implosion of S. The finest
block relation J with J ⊇ J̃ corresponds to the finest of those congruence relations.

Proof Since the set of all block relations is a closure system, there is a unique finest
block relation J , which includes J̃ . The tolerance relation θ corresponding to J has
a θ-class containing S due to the initial inclusion of (C ×B) in J . ◻
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Algorithm 2: Generation of J , the finest block relation to implode S
Input: K = (G,M, I), S = [(A,B), (C,D)]
Output: J

1 J ∶= I ∪ (C ×B)
2 ext ∶= {H ∣(H,N) ∈B(K)}
3 int ∶= {N ∣(H,N) ∈B(K)}
4 check ∶= C ∪B
5 while ∣check∣ > 0 do
6 x ∶= first(check)
7 if x ∈ G then
8 if xJ /∈ int then
9 candidates ∶= {y∣y ∈ int, x ⊂ y}

10 for y ∈ candidates do
11 my ∶= y ∖ xJ

12 add ∶=min∣my ∣{my}
13 J ∶= J ∪ {(x,m)∣m ∈ add}
14 check ∶= check ∪ add

15 if x ∈M then
16 if xJ /∈ ext then
17 candidates ∶= {y∣y ∈ ext, x ⊂ y}
18 for y ∈ candidates do
19 gy ∶= i ∖ xJ

20 add ∶=min∣gi∣
{gi}

21 J ∶= J ∪ {(g, x)∣g ∈ add}
22 check ∶= check ∪ add

23 check ∶= check ∖ x
24 return J

In Algorithm 2, we give a strategy to find those relations: Given a complete lattice
L and an interval S = [(A,B), (C,D)] ≤ L, in the first step (C ×D) is added to the
incidence relation to ensure, that (A,B) and (C,D) are in the same equivalence-
class and therefore are mapped to the same element by the factorization. Then for
every object g ∈ C and every attribute m ∈ B, it is checked whether it satisfies the
conditions for block relations with the new incidence relation J = I ∪ (C ×B). If this
is not the case for an object g, for the smallest intent N ⊆M in B(K) with gJ ⊂ N
all incidences (g, n) with n ∈ N ∖ gJ are added to J . The method for attributes is
analogous. This process is repeated iteratively until the conditions for block relations
hold for every object and attribute. Note that since the intersection of two intents is
an intent itself, the smallest intent selected in every step is unique. The same holds
for extents.
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Proposition 8.3
Algorithm 2 results in J , the finest block relation that implodes S .

Proof J is a block relation, since for every g ∈ G and every m ∈M with (g,m) ∈ J
and (g,m) /∈ I holds that gJ is an intent in (G,M, I) andmJ is an extent in (G,M, I).
Further, the tolerance relation θ corresponding to J has a θ-class containing S due
to the initial inclusion of (C ×B) in J .

Since the set of all block relations is a closure system, there is a unique finest block
relation θ with the requested properties. Assume J̃ with J̃ ⊂ J to be this finest block
relation so that I ⊂ J̃ ⊂ J . Let (g,m) ∈ J with (g,m) /∈ J̃ be the first incidence that
is added to J while J̃ does not contain it. In each iteration of the algorithm, the
unique minimal intent containing the current derivation of g is selected as the new
derivation of g. Following J ⊆ J̃ and therefore J̃ = J holds. ◻

Note that in some cases, the addition of the incidences (C ×B) already results in
the wanted outcome. In general, this is not the case, e.g., see Example 8.2.

Example 8.2
As for the lattice B(K) given in Figure 8.1 (left) and the red highlighted interval S1

the corresponding formal context K = (G,M, I) (right) is examined to find the finest
tolerance relation θ imploding S1. Since S1 = [({a},{a, b, c}), (G,∅)] the incidence
relation J̃ = I ∪G × {a, b, c} is generated. After this step, the conditions for block
relations have to be checked iteratively. As for the attribute set, the condition holds
for every attribute since aJ̃ = bJ̃ = cJ̃ = ∅I , dJ = dI and eJ̃ = eI . For the objects
1,2, . . . ,6 also the condition holds. This is not the case for the objects 7 and 8 and
the incidences (7, e) and (8, d) have to be added to J̃ . After this step, the attributes
e and d have to be considered again. Thus the finest block relation J with J̃ ⊆ J is
J = G ×M . This block relation corresponds to the trivial tolerance relation.
For the blue highlighted interval S1 = [({3},{b, c, d, e}), ({3,5,6,8},{e})] we have
J̃ = I ∪ ({3, 5, 6, 8}× {b, c, d, e}). The finest block relation J with J̃ ⊆ J is depicted in
Figure 8.1 (right) by the additional ●-incidences.

Note that in the case of imploding Boolean sublattices (or intervals generated by a
Boolean suborder) the approach of filling the incidences in (C ×B) results in filling
at least the associated Boolean subcontext (and, therefore, a contranominal scale).
We investigate the approach of directly filling contranominal scales and associated
subcontexts of Boolean suborders in the following subsection.
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a b c d e f
1 × × ●
2 × ● ×
3 ● × ×
4 ×
5 ×
6 ×

1 2
3

a
b c

4 5 6
d e f

1,2,3
a,b,c

4 5 6
d e f

Figure 8.2 A formal context K (left) and its corresponding concept lattice B(K) (middle).
The concept lattice on the right corresponds to the context that arises by adding the
●-marked incidences to K and filling a 3-dimensional Boolean subcontext of K. In this case
a 3-dimensional Boolean suborder in B(K) collapses.

8.2.3 Adding Incidences to Boolean Subcontexts

In the previous section, we investigate lattice factorization using congruence relations
and tolerance relations to implode given intervals (and, therefore, possibly Boolean
suborders). By this, we maintain the meet- and join-operators of the original lattice.
However, often the factor lattice implodes not only the chosen interval but also
significant parts of the former lattice and, worst case, the whole lattice as seen
in Example 8.2. Now we want to turn to another approach to preserve more elements
of the original lattice while collapsing a Boolean suborder. To this end, we utilize
the strong connection between Boolean substructures in a (concept) lattice and the
corresponding formal context. Therefore as a first step, we consider changes in the
contranominal scales as those are directly related to the Boolean substructures of
the corresponding lattice. Since the objects in a contranominal scale [H,N] ≤ K are
nearly identically on the attributes in this scale, the adding of the missing incidences
(meaning uniting the original incidence relation of the context K with H ×N) could
be used to collapse a Boolean suborder in the corresponding lattice. If the concepts
of the contranominal scale are independent of other concepts, this approach does
work like pictured in Figure 8.2. However, a Boolean suborder generally corresponds
not only to a single contranominal scale. On the one hand, a clarifyable object g ∈ G
may be contained in the contranominal scale. In this case, all objects with identical
derivation as g must be considered. This case can be avoided by considering only
clarified formal contexts. Therefore it is useful only to consider standard contexts for
this approach. On the other hand, a different case independent of the clarification
and reduction of the context can occur as follows. An object not contained in the
considered contranominal scale [H,N] may have the same derivation as an object
g ∈H restricted to the attribute set N . This is the case if an atom of the Boolean
suborder in the concept lattice is not irreducible, meaning a single irreducible object
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Figure 8.3 A formal context K (left) and its corresponding concept lattice B(K) (middle).
The concept lattice on the right corresponds to the context that arises by adding the
●-marked incidences to K and filling a 2-dimensional Boolean subcontext of K. In this
case, the size of the concept lattice expands by filling a contranominal scale.

can not generate it. Both cases do also hold for attributes dually. To avoid this
problem, it is necessary not only to consider a single contranominal scale but a
complete Boolean subcontext S = [H,N] ≤ K that is associated to the previously
selected Boolean suborder S in the corresponding concept lattice. Then the incidence
relation of the original formal context K can be united with H ×N .

However, by only considering a random contranominal scale or a single associated
Boolean subcontext, additional structures in the concept lattice can arise, as seen
in Figure 8.3. In this case, the filling of a 2-dimensional contranominal scale (that
is also the associated Boolean subcontext of a two-dimensional Boolean suborder)
constructs a new 4-dimensional contranominal scale, and therefore the size of the
concept lattices increases.

To collapse a Boolean substructure in a lattice by adding incidences, those must be
chosen beyond the associated Boolean subcontext. Therefore, in the following, we
again focus on the lattice side and investigate an appropriate relation to transfer this
approach afterwords to the context side.

8.3 Interval Factorization of Lattices

Our goal in this section is to generate, from a set of intervals S1, . . . , Sk ≤ L, a
factorization L/θ that can be obtained by an implosion f of the intervals such that f
is injective on L∖⋃ki=1 Si (i.e., ∣f(L∖⋃ki=1 Si)∣ = ∣L∖⋃ki=1 Si∣ holds) and f(Si) ≠ f(Sj)
for i, j ∈ {1, . . . , k} with i ≠ j. To this end, we present the interval relation θ on L,
which enables us to generate factor sets that implode exactly the chosen intervals. By
restricting the interval relations to pure intervals (see Section 8.3.3) the generation
of lattices is guaranteed.
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8.3.1 Interval Relations

To overcome the problem of imploding more than the selected interval, we now
introduce a new equivalence relation.

Definition 8.2 (Interval Relation)
Let L be anordered set and {S1, S2, . . . , Sk} a set of pairwise disjoint intervals of L.
We call the equivalence relation

θS1,S2,...,Sk
∶=

k

⋃
i=1
Si × Si ∪ {(x,x) ∣ x ∈ L}

an interval relation on L. If k = 1 holds, we call θ = θS1
1-generated. For an interval

relation θ ∶= θS1,S2,...,Sk
we denote the factor set with L/θ ∶= {[x]θ ∣ x ∈ L} and the

equivalence classes of the interval relation by [x]θ ∶= {y ∈ L ∣ xθy}.

Note that θ truly is an equivalence relation since the reflexivity is provided by
{(x,x) ∣ x ∈ L}, the symmetry is given by using only the × operator, and the
transitivity is based on S1, S2, . . . , Sk being disjoint intervals.

Since each equivalence class is an interval, it includes its supremum and its infimum.
We denote them by xθ ∶= ⋁[x]θ and xθ ∶= ⋀[x]θ, respectively. We also use the
notations [S]θ and [S]θ for the infimum and supremum of the equivalence class
{x ∈ L ∣ x ∈ S} that is generated by S.

Note that every congruence relation on a complete lattice L is an interval relation as
well. More precisely, it is a special case of the lattice-generating interval relations
that are defined in Definition 8.8.

In the case of L being a lattice, the incidence relations can be characterized in an
additional way:

Proposition 8.4
Let θ be an equivalence relation on lattice L. The following statements are equivalent:

a) θ is an interval relation.

b) The two following conditions hold for all x1, x2, y1, y2 ∈ L:

i) x1θx2 ⇒ (x1 ∨ x2)θx1 and (x1 ∧ x2)θx1

ii) x1θx2, y1θy2, (x1, y1) /∈ θ, and x1 > y1 ⇒ x2 /< y2

Proof a) ⇒ b) ∶ Let θ = θS1,S2,...,Sk
be an interval relation on L. If x1θx2 then

x1, x2 ∈ Si for some i and therefore (x1 ∨ x2), (x1 ∧ x2) ∈ Si hold. Therefore i) holds.
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x

y

[x]θS1,S2

[y]θS1,S2

Figure 8.4 Example of a lattice L (left) with a red highlighted interval S ≤ L and two
elements x, y that are not comparable. In the factor set L/θS (right) the equivalence class
corresponding to S is highlighted in red. Now the elements [x]θS and [y]θS are comparable.

Let x1, x2 ∈ Si and y1, y2 ∈ Sj with Si ≠ Sj and x1 > y1. Assumed x2 < y2. If x1 ≤ x2

then y1 < x1 ≤ x2 < y2 and therefore Si = Sj holds. E

In the case of x1 > x2 and y1 ≥ y2 we have x2 < y2 ≤ y1 < x1 also Si = Sj. E

If x1 > x2 and y1 < y2 then y2 and x1 are both upper bounds of y1 and x2. Since
L is a lattice we have y1 ∨ x2 ≤ y2 and y1 ∨ x2 ≤ x1 and therefore y1 ∨ x2 ∈ Si and
y1 ∨ x2 ∈ Sj. E

In all cases, this is a contradiction to the assumptions. Hence ii) holds.
b)⇒ a): Let θ be an equivalence relation on L as in b). For an arbitrary equivalence
class [x]θ the supremum xθ and the infimum xθ exist in [x]θ because of i). Now let
y ∈ [xθ, xθ] with y /∈ [x]θ. Then y ∈ [xθ, xθ]⇒ y ≤ xθ, y ≥ xθ. This is a contradiction
to ii). So the equivalence classes of θ are intervals. ◻

Defining ≤θ for 1-generated interval relations

Since implosions are defined as order-preserving maps, on the factor set L/θ the
question remains which order the factorization should impose. To answer this we now
define the relation ≤θ on the factor set L/θ. We start with the case of a 1-generated
interval relation θ = θS as presented in Definition 8.4. Our construction is motivated
by the aim to preserve all comparabilities of L in L/θ. So, for an element x ∈ L that
is smaller than at least one element of S, it should also [x]θ ≤θ [S]θ hold. Dually,
for an element y ∈ L that is larger than any element of S should also [S]θ ≤θ [y]θ
hold. Therefore also the elements [x]θ and [y]θ should become comparable in L/θ.
This is illustrated in Figure 8.4.

To define the order ≤θ with the required properties, we first have to define some
areas of an ordered set generated by an interval.
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Figure 8.5 For the interval S (red), the sets S! (blue), S# (green) and S∥ (yellow) are
highlighted. In this example, all four sets are intervals. They are not pure but build up a
lattice-generating interval relation.

Definition 8.3 (S!, S#, S∥)
Let L be an ordered set and S an interval of L. We define the sets

S! ∶= {x ∈ L ∖ S ∣ ∃y ∈ S ∶ y < x},
S# ∶= {x ∈ L ∖ S ∣ ∃y ∈ S ∶ x < y} and
S∥ ∶= {x ∈ L ∖ S ∣ ∄y ∈ S ∶ y < x or x < y}.

Proposition 8.5
Let L be an ordered set and let S be an interval of L. Then S, S!, S# and S∥ are
pairwise disjoint and together cover L. In other words, {S,S!, S#, S∥} is a partition
of the elements in L, with possibly empty classes.

Proof Let S = [u, v]. Then S! = [u) ∖ S and S# = (v] ∖ S. Since [u, v] is an interval
S! ∩ S# = ∅. Also S∥ = L ∖ (S ∪ S! ∪ S#) holds. ◻

An example for this division of the lattice elements can be seen in Figure 8.5.

Definition 8.4 (≤θ for 1-generated interval relations)
Let L be an ordered set and S ≤ L an interval. On L/θ we define the relation
[x]θ ≤θ [y]θ ∶⇔ (xθ ≤ yθ or x ∈ S#, y ∈ S!).
Example 8.3
Utilizing congruence or tolerance relations to implode the red highlighted interval
in Figure 8.1, the trivial factor lattice, consisting of a single element, arose. With
the new construction, we preserve everything outside of the interval: In Figure 8.6
the original lattice B(K) and the factor set B(K)/θS for the interval relation θS are
depicted. In B(K)/θS the interval S implodes, but the rest of the lattice is preserved.
On the other hand, not all joins and meets are preserved.

Following, we take a look into the order properties of the factor set with the previously
defined relation. For a lattice L, in general, L/θ is neither a lattice (see Figure 8.7)
nor even an ordered set (see Figure 8.8). However, considering only one interval with
size larger one, L/θ is always an ordered set:
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a

c

b

d

[a]θ=[d]θ

[c]θ

[b]θ

Figure 8.6 A (concept) lattice B(K) with a pure interval S (highlighted red) on the left.
The lattice B(K)/θS is pictured on the right. Some elements of the lattices are labeled.

Figure 8.7 A lattice L with a red high-
lighted interval S ≤ L (left). The factor
set L/θS (right) is no lattice but still an
ordered set. The equivalence class [S]θ is
highlighted in red.

Figure 8.8 “Penrose crown”: a lattice
L with three pairwise comparable inter-
vals S1(red), S2(green), S3(blue)≤ L (left).
The factor set L/θS1,S2,S3

(right) is not
even an ordered set. It holds [S1]θ ≤
[S2]θ ≤ [S3]θ ≤ [S1]θ. Thus ≤θ is not anti-
symmetric and, therefore no order relation.

Proposition 8.6
Let θ = θS be an interval relation on the ordered set L. Then ≤θ is an order on L/θ.

Proof Reflexivity: ≤ is an order on L, meaning x ≤ x for all x ∈ L and especially
xθ ≤ x ≤ xθ. Therefore [x]θ ≤θ [x]θ holds in L/θ.

Transitivity: Let [x]θ ≤θ [y]θ and [y]θ ≤θ [z]θ in L/θ. In the case that xθ ≤ yθ and
yθ ≤ zθ in L either yθ = yθ and therefore xθ ≤ zθ. Otherwise, in the case of yθ ≠ yθ we
have y ∈ S, x ∈ S# ∪ S and z ∈ S! ∪ S and then [x]θ ≤θ [z]θ. In the case x ∈ S#, y ∈ S!
and yθ ≤ zθ holds z ∈ S! and therefore [x]θ ≤θ [z]θ. The case y ∈ S#, z ∈ S! and
xθ ≤ yθ is analogous.

Anti-symmetry: Let [x]θ ≤θ [y]θ and [y]θ ≤θ [x]θ. If xθ ≤ yθ and yθ ≤ xθ, follows
[x]θ = [y]θ directly since either xθ = xθ or xθ = xθ or xθ = yθ and xθ = yθ. The cases
x ∈ S#, y ∈ S!, yθ ≤ xθ and y ∈ S#, x ∈ S!, xθ ≤ yθ can not occur as well as the case of
x ∈ S#, y ∈ S!, y ∈ S#, x ∈ S!. ◻
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Proposition 8.7
Let L be an ordered set and θ = θS an interval relation on L. Then ≤θ is the smallest
order on L/θ so that the map ϕ∶L→ L/θ, x↦ [x]θ is surjective and order-preserving.

Proof The surjectivity follows directly from the fact that for every [x]θ ∈ L/θ we
have x ∈ L as representative. The order is preserved due to the definition of ≤θ: If
x ≤ y in L holds, we have xθ ≤ yθ and therefore [x]θ ≤θ [y]θ in L/θ.

We show that ≤θ is the smallest of those relations by contraposition: Let R be an
order on L/θ so that ϕ is surjective and order-preserving. Assumed there are x, y ∈ L
with [x]θ ≤θ [y]θ and [x]θ /R [y]θ. Since ϕ is order-preserving we know that x /≤ y
in L and moreover no element of the θ-class [x]θ is less or equal an element of the
θ-class [y]θ. In particular, xθ /≤ yθ holds in L. Thus, x ∈ S# and y ∈ S! due to the
definition of ≤θ. Therefore, we have xθ ≤ [S]θ and [S]θ ≤ yθ and due to ϕ being
order-preserving also [x]θR[S]θ and [S]θR[y]θ. Consequently, [x]θR[y]θ follows
from the transitivity of the order R. E ◻

Defining ≤θ in general

Considering more than one interval with size larger one, we define the relation ≤θ on
L/θ, by generalizing Definition 8.4 as follows:

Definition 8.5 (≤θ for general interval relations)
Let L be an ordered set and θ ∶= θS1,...,Sk

an interval relation on L. We define the
relation [x]θ ≤θ [y]θ ∶⇔ (xθ ≤ yθ or ∃i1, . . . , il ∈ {1, . . . , k} with xθ ∈ S#i1 , [Si1]θ ∈ S

#

i2
,

. . . , [Sil−1
]θ ∈ S#il , yθ ∈ S

!

il
).

The relation is illustrated in Figure 8.9.

Note that ≤θ for one interval in Definition 8.4 is a special case of ≤θ in Definition 8.5.
Therefore we use the notion ≤θ in the following both for imploding one as well as
multiple intervals.

We can show that considering several intervals, ≤θ is always a preorder on L/θ, i.e.,
it is always reflexive and symmetric but ot necessarily anti-symmetric:

Proposition 8.8
Let L be an ordered set and θ = θS1,...,Sk

an interval relation on L. Then ≤θ is a
preorder on L/θ.

Proof Reflexivity: ≤ is an order on L, meaning x ≤ x for all x ∈ L and especially
xθ ≤ x ≤ xθ. Therefore [x]θ ≤θ [x]θ holds in L/θ.
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x

y

z

[x]θS1,S2

[y]θS1,S2

[z]θS1,S2

Figure 8.9 In the lattice L (left) – with intervals S1, S2 ≤ L highlighted in red and green,
respectively – the three elements x, y, z that are not comparable. In the factor set L/θS1,S2
(right) the equivalence classes corresponding to S1 and S2 are highlighted red and green,
respectively. Now the elements [x]θS1,S2

, [y]θS1,S2
and [z]θS1,S2

are comparable.

Transitivity: Let [x]θ ≤θ [y]θ and [y]θ ≤θ [z]θ in L/θ. If [x]θ = [y]θ or [y]θ = [z]θ
the statement is similar to the proof of Proposition 8.6. Assume [x]θ ≠ [y]θ ≠ [z]θ.
If xθ ≤ yθ and yθ ≤ zθ in L then either yθ = yθ and therefore xθ ≤ zθ or there is an
interval Si with y ∈ Si. In this case xθ ∈ S#i and zθ ∈ S!i hold. In both cases follows
[x]θ ≤θ [z]θ. If xθ ≤ yθ and ∃Si1 , . . . , Sil as described with yθ ∈ S#i1 and zθ ∈ S!il then
xθ ∈ S# and [S]θ ∈ S#i1 for the interval S = ([y]θ,≤). Then [x]θ ≤θ [z]θ. The case of
yθ ≤ zθ and ∃Si1 , . . . , Sil as described with xθ ∈ S#i1 and yθ ∈ S!il) follows analogously.
If ∃Si1 , . . . , Sil and Sj1 , . . . , Sjl as described with xθ ∈ S#i1 , yθ ∈ S

!

il
), yθ ∈ S#j1 and

zθ ∈ S!jl) there is an interval S = ([y]θ,≤) so that [Sil]θ ∈ S
# and [S]θ ∈ S#j1 . Then

[x]θ ≤θ [z]θ. ◻

Note that ≤θ as given in Definition 8.5 is the same relation as [x]θ ≤θ [y]θ ∶⇔ (xθ ≤ yθ
or ∃i1, . . . , il ∈ {1, . . . , k} with xθ ∈ S#i1 , [Si2]θ ∈ S

!

i1
, . . . , [Sil]θ ∈ S

!

il−1, yθ ∈ S!il).

We observe that ≤θ is the transitive closure of a simpler relation as follows:

Proposition 8.9
Let L be an ordered set and θ an interval relation on L. Let [x]θ ≤∗ [y]θ ∶⇔ xθ ≤ yθ
be a relation on L/θ. Then ≤θ is the transitive closure of ≤∗.

Proof Let x, y ∈ L and Si an interval of θ. Then xθ ∈ S#i is equivalent to xθ ≤ [Si]θ.
Further, yθ ∈ S!i is equivalent to yθ ≤ [Si]θ. Since [Si]θ ≤ [Si]θ, the statement follows
directly. ◻
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[S1]θ [S2]θ [S3]θ [S4]θ [S5]θ [S6]θ

[S1]θ [S2]θ [S3]θ [S4]θ [S5]θ [S6]θ

Figure 8.10 Penrose crown of order 6.

8.3.2 Order-preserving Interval Relations

Up to now, we have only shown (in Proposition 8.8) that ≤θ is a preorder and Figure 8.8
showed that it will not always be anti-symmetric. We now investigate the order
properties of ≤θ in more detail:

Definition 8.6 (Order-preserving interval Relation)
Let L be an ordered set and θ an interval relation on L. We call θ order-preserving
on L if (L/θ,≤θ) is an ordered set.

Considering a 1-generated interval relation, from Proposition 8.8 follows directly:

Corollary 8.1
Let L be an ordered set and θ an interval relation on L. If θ is 1-generated, θ is
order-preserving.

For more than one interval, we can provide a necessary and sufficient condition for
an interval relation θ to be order-preserving in Theorem 8.1.

Definition 8.7 (Penrose crown)
Let L be an ordered set and 2 ≤ k. A set {S1, . . . , Sk} of intervals in L are called
Penrose crown of order k in L if they are pairwise disjoint and if [S1]θ ∈ S#2, [S2]θ ∈ S#3,
. . . , [Sk−1]θ ∈ S#k, [Sk]θ ∈ S

#
1.

We call such a constellation of intervals a Penrose crown, named after the “impossible
staircase” created by L. Penrose and R. Penrose in 1958 (and previously by O.
Reutersvärd in 1937) [49]. The construction became popular by M.C. Escher’s
lithograph “Ascending ans Descending”. The intervals in the lattice in Figure 8.8
form a Penrose crown of order 3. Another example is illustrated in Figure 8.10.

Theorem 8.1
Let L be a finite lattice and θ = θS1,...,Sk

an interval relation on L. θ is order-
preserving if and only if there exists no Penrose crown {Si1 , . . . , Sil} in L with
i1, . . . , il ∈ {1, . . . , k}.

Proof "⇒": Assumed some intervals S1, . . . , Sl ≤ L exist as described. Then [S1]θ ≤θ
[Sl]θ and [Sl]θ ≤θ [S1]θ by definition of ≤θ. Since [S1] ≠ [Sl] the preorder ≤θ is not
anti-symmetric and therefore not an order.
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"⇐": Assume the relation ≤θ is not an order. Then there are two equivalence classes
[Si]θ and [Sj]θ with [Si]θ ≤θ [Sj]θ, [Sj]θ ≤θ [Si]θ and [Si]θ ≠ [Sj]θ in L/θ. For two
intervals S,T with [S]θ ≠ [T ]θ it holds that [S]θ ≤ [T ]θ ⇒ [S]θ ∈ T #. Due to the
definition of ≤θ, one of the following cases has to occur. In the case of [Si]θ ≤ [Sj]θ
and [Sj]θ ≤ [Si]θ {Si, Sj} is a Penrose crown of order 2. In the case of [Si]θ ≤ [Sj]θ
and [Sj]θ /≤ [Si]θ we have [Sj]θ ∈ S#1, [S1]θ ∈ S#2, . . . , [Sl]θ ∈ [Si]θ# because of
[Sj]θ ≤θ [Si]θ. The case of [Sj]θ ≤ [Si]θ and [Si]θ /≤ [Sj]θ follow analogously. In the
case of [Sj]θ /≤ [Si]θ and [Si]θ /≤ [Sj]θ we have [Sj]θ ∈ S#1, [S1]θ ∈ S#2, . . . , [Sl]θ ∈ [Si]θ#
and [Si]θ ∈ S#m, [Sm]θ ∈ S#m+1, . . . , [Ss]θ ∈ [Sj]θ#. ◻

Since a Penrose crown consists of at least two intervals, an interval relation is always
order-preserving if at most one of its intervals consists of more than one element:

Proposition 8.10
Let L be an ordered set and θ = θS1,...,Sk

an interval relation on L. If ∣[Si]θ∣ ≥ 2 for
at most one i ∈ {1, . . . , k}, θ is an order-preserving interval relation.

Proof If θ includes no interval of size 2 or larger, L/θ = L. If θ = θS1
with ∣S1∣ ≥ 2

the statement follows from Proposition 8.6. ◻

In the case of L being a lattice, such a constellation can not occur if at most two
intervals of the interval relation θ include more than a single element of L:

Proposition 8.11
Let L be a finite lattice and θ = θS1,...,Sk

an interval relation on L. If ∣[Si]θ∣ ≥ 2 for
at most two i ∈ {1, . . . , k}, θ is an order-preserving interval relation.

Proof If θ includes no or one interval of size 2 or larger, the proof is the same as
in Proposition 8.10. Let θ = θS1,S2

with ∣S1∣, ∣S2∣ ≥ 2. Assume that [S1]θ ∈ S#2 and
[S2]θ ∈ S#1. Then [S1]θ ∨ [S2]θ ∈ S1 and [S1]θ ∨ [S2]θ ∈ S2. Hence, the intervals S1

S2 are not disjoint. This is a contradiction to θ being an interval relation. ◻

Moreover, the case mentioned in Theorem 8.1 can only occur if L contains a Penrose
crown of order l ≥ 2. If L is a lattice, it has to contain a Penrose crown of order l ≥ 3
and therefore a crown of the same order as suborder.
Corollary 8.2
Let L be an ordered set and θ an interval relation on L. If L does not contain a
Penrose crown of order l ≥ 2, then θ is order-preserving.

Corollary 8.3
Let L be a lattice and θ an interval relation on L. If L does not contain a crown of
order l ≥ 3 as a suborder, then θ is order-preserving.
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Since a dismantlable lattice L – meaning the iterative elimination of all doubly
irreducible elements results in the elimination of the whole lattice – never contains a
crown [37], every interval relation on such a lattice is order-preserving.

Corollary 8.4
Let L be an ordered set and θ an interval relation on L. If L is planar than θ is
order-preserving.

As shown, for an order-preserving interval relation θS1,...,Sk
, we have an implosion

of the intervals S1, . . . , Sk as defined in Definition 8.1. In the following section we
investigate the preservation of the lattice properties.

8.3.3 Lattice-generating Interval Relations

So far, we have been interested in interval relations with factor sets that are ordered
sets. Now we focus on interval relations where the resulting factor set is even a
lattice. Therefore we restrict us to the case where L is a (finite) lattice.

Definition 8.8 (Lattice-generating Interval Relation)
Let L be a lattice and θ an interval relation on L. We call θ a lattice-generating
interval relation on L if (L/θ,≤θ) is a lattice.

Note that every congruence relation is a lattice-generating interval relation since
the equivalence classes form pairwise disjoint intervals and the order (denoted by ≤c
in the following lemma) which is defined on the factor lattice L/θ for a congruence
relations θ is equal to ≤θ:

Proposition 8.12
Let L be a complete lattice and θ a complete congruence relation on L. Then the
orders ≤θ and [x]θ ≤c [y]θ ∶⇔ xθ(x ∧ y) are identical on L/θ.

Proof "⇐": Let [x]θ ≤c [y]θ and therefore (x ∧ y) ∈ [x]θ. Since x ∧ y ≤ y holds, we
have xθ ≤ (x ∧ y) ≤ y ≤ yθ and consequently [x]θ ≤θ [y]θ.

"⇒": Let [x]θ ≤θ [y]θ. In the case of xθ ≤ yθ we have xθxθ and yθyθ and therefore
(due to the definition of congruence relations) (x∧y)θ(xθ∧yθ) = xθ. Then [x]θ ≤c [y]θ
holds.

If xθ /≤ yθ then there are intervals S1, . . . , Sk in θ with xθ ≤ [S1]θ, [S1]θ ≤ [S2]θ, . . . ,
[Sk]θ ≤ yθ. Then we have [x]θ ≤c [S1]θ ≤c ⋅ ⋅ ⋅ ≤c [y]θ. ◻

We will now provide a characterization of lattice-generating interval relations.
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Figure 8.11 On the left, a nested interval S of the lattice L is highlighted in red. S is part
of a Penrose crows of order 3 with the Intervals [x, a] and [v, y]. As presented in Figure 8.7
L/θS is no lattice. On the right, a pure interval is highlighted in red.

Definition 8.9 (Nested Interval, Pure Interval)
Let L be a lattice and S ≤ L an interval. We call S a nested interval of L if there
are two intervals T ,U ≤ L so that S,T ,U are a Penrose crown of order 3 in L. We
call S a pure interval of L if it is not nested.

Corollary 8.5
Let L be a lattice and S ≤ L an interval. S is nested if and only if there are
x, y ∈ S∥, a ∈ S! and v ∈ S# with y = x ∨ v, x = y ∧ a, y /≤ a and v /≤ x.

An example of a lattice with a nested and a pure interval is given in Figure 8.11.
Also, both highlighted intervals in the lattice in Figure 8.1 (and therefore the one
in Figure 8.6) are pure. In the 1-generated case, the pure intervals are exactly the
lattice-generating intervals:

Proposition 8.13
Let θ = θS be a 1-generated interval relation on lattice L. Then θ is lattice-generating
if and only if S is pure.

Proof "⇒": We show the contraposition: Let S be a nested interval, meaning
∃x, y ∈ S∥, a ∈ S! and v ∈ S# with y = x∨ v, x = y ∧ a, y /≤ a and v /≤ x. For all elements
d ∈ S#, e ∈ S! holds [d]θ <θ [e]θ in L/θS. It follows that [v]θ <θ [a]θ in L/θS and
∃[c]θ ∈ S! with [v]θ <θ [c]θ ≤θ [a]θ and [x]θ <θ [c]θ. So [y]θ and [c]θ are two
different minimal upper bounds of [v]θ and [x]θ. Thus L/θS is not a lattice.

"⇐": We show the contraposition: L/θ is an ordered set by Proposition 8.6. Suppose
Lθ is not a lattice. Then exist [x]θ, [v]θ in L/θ with two smallest upper bounds or
two greatest lower bounds. Due to the duality of lattices, we only examine the case
of two incomparable smallest upper bounds [a]θ, [y]θ. We have [x]θ ≠ [v]θ in L/θ
and thus x ≠ v in L. Since L is a lattice and the factorization does not affect the
order of the elements in S#, S! and S∥ we have that v, x are not both in the same of
those sets. Otherwise [x]θ ∨ [v]θ = [x ∨ v]θ holds.
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Figure 8.12 A lattice L with two pure intervals that are red and blue highlighted (left).
If the red interval is factorized, the blue interval becomes nested (middle). If the blue
interval is factorized, the red interval becomes nested (right).

In addition, we show that x /∈ S: If x ∈ S and v ∈ S!, we have [x]θ ∨ [v]θ = [v]θ.
If x ∈ S and v ∈ S#, we have [x]θ ∨ [v]θ = [x]θ. If x ∈ S and v ∈ S, we have
[x]θ ∨ [v]θ = [v]θ = [x]θ. If x ∈ S and v ∈ S∥, we have [x]θ ∨ [v]θ = [xθ ∨ v]θ or
otherwise L would not be a lattice. Analogous, one can show that v /∈ S.

In case of x or v in S! we have: W.l.o.g. let v ∈ S!. If x ∈ S# we have [x]θ∨[v]θ = [v]θ.
If x ∈ S∥ we have [x]θ ∨ [v]θ = [x ∨ v]θ Therefore the only possibility for [x]θ and
[v]θ having two minimal upper bounds is x ∈ S∥ and v ∈ S# with v /≤ x (or the other
way around).

W.l.o.g. let y = v ∨ x in L. Since x ∈ S∥ and v ∈ S# we have y ∈ S! ∪ S∥. If y ∈ S! we
have [x]θ ∨ [v]θ = [xθ ∨ v]θ ≤θ [y]θ as the supremum of [x]θ and [v]θ. So let y ∈ S∥.
Then [y]θ is a smallest upper bound of [x]θ and [v]θ. Let [a]θ ≠ [y]θ be another
smallest upper bound of [x]θ and [v]θ. Then either x /≤ a or v /≤ a in L. Due to the
definition of the order in L/θ we have v /≤ a, x ≤ a and a ∈ S! in L. Then S is a
nested interval. ◻

The example shown in Figure 8.7 illustrates the implosion of a nested interval S in a
lattice L. In this case, L/θS is an ordered set but no lattice.

Let L be a finite lattice and S1, S2 two disjoint pure intervals of L. Note, that
in general S2 is not a pure interval in L/θS1

. Consequently, an interval relation
θ = θS1,...,Sk

it not necessarily lattice-generating just because all considered intervals
are pure - Figure 8.12 shows a counterexample. Also, not every lattice-generating
interval relation consists of only pure intervals as can be seen in Figure 8.5.

This means that, having an interval relation θS with a nested interval S, it is possible
to alter θ in a way that purifies it by adding additional intervals. In this case, it is
necessary to make the elements a and y or the elements x and v comparable in the
lattice. Some possibilities to purify a nested interval are illustrated in Figure 8.13.
Note that the purification of an interval can also necessarily require several new
intervals since there is possibly more than just one set of elements a, v, x, y that
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Figure 8.13 For the lattice L with a nested interval S (red), the diagrams show all
different possibilities to purify the interval relation θS by adding an additional interval
Snew(blue) with ∣S∣ = 2.

makes S nested. Also, each additional interval may interact with the other added
intervals as well as with S so that new problematic elements can arise.

Since our goal was to find a factorization to generate a lattice that can be obtained
by a surjective, order-preserving mapping, the lattice-generating interval relation
fulfills this purpose. However, the meet- and join-operations of the lattice are not
generally preserved by ϕ, i.e., ϕ is, in general, not a lattice homomorphism. For
example consider the two concepts a and b in Figure 8.6 (left). Their infimum in the
original lattice is c, but in the factor lattice [a]θ ∧ [b]θ = [b]θ ≠ [c]θ holds.

However, it is possible to determine where the lattice operations are not preserved
after a factorization using an interval relation:
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Proposition 8.14
Let L be a lattice and θ = θS a lattice-generating interval relation on L. Let
u, v,w, x, y, z ∈ L with u ∧ v = w and x ∨ y = z. Then:

i) u ∈ S ∪ S!, v,w ∈ S#, v ≠ w⇒ [u]θ ∧ [v]θ ≠ [w]θ

ii) x ∈ S ∪ S#, y, z ∈ S!, y ≠ z ⇒ [x]θ ∨ [y]θ ≠ [z]θ

iii) [u]θ ∧ [v]θ ≠ [w]θ⇒ u ∈ S ∪ S!, v ∈ S# ∪ S∥, v ≠ w

iv) [x]θ ∨ [y]θ ≠ [z]θ⇒ x ∈ S ∪ S#, y ∈ S! ∪ S∥, y ≠ z

Proof We show i): Because u ∈ S ∪ S! and v ∈ S# we have [v]θ ≤θ [u]θ. Since w < v
we have [w]θ <θ [v]θ. This means [u]θ ∧ [v]θ = [v]θ ≠ [w]θ.
ii) can be shown analogously.

We show iii): We show the contraposition: Assumed v = w, we have v ≤ u and
therefore [u]θ ∧ [v]θ = [v]θ = [w]θ. Thus, let v ≠ w. In case of u, v ∈ S ∪ S! we have
w ∈ S or w ∈ S!. If w ∈ S, we have [u]θ ∧ [v]θ = [S]θ = [w]θ, if w ∈ S! the order
between the three elements is not affected by the factorization and [u]θ∧ [v]θ = [w]θ
as well. In case of u, v ∈ S∥ ∪ S# we have w ∈ S# or w ∈ S∥. The order between the
three elements is not affected by the factorization and [u]θ ∧ [v]θ = [w]θ.
iv) can be shown analogously. ◻

As seen in the previous section, crowns play an essential role in determining whether
an interval relation is ordered. Those substructures can also be used to determine
the pureness of an interval (relation) as follows:

Proposition 8.15
Let L be a lattice and S = [S�, S⊺] an interval on L. Then the following equivalence
holds:

S is nested in L⇔ S� and S⊺ are elements of a crown of order 3 in L

Proof "⇐": Let A3 ≤ L be a crown consisting of x1 = S�, x2, x3, y1 = S⊺, y2 and y3.
By definition of a crown we have y2 ∈ S!, x3 ∈ S# and x2, y3 ∈ S∥. Let x2 = y2 ∧ y3,

y3 = x2 ∨ x3, y3 /≤ y2 and x3 /≤ x2. Thus, S is nested in L.
"⇒": Let S be nested with the elements a, v, x, y. Then we have the relations x ≤ a,
S� ≤ a, v ≤ y, v ≤ S⊺, x ≤ y and S� ≤ S⊺ as the only relations between those elements.
Thus the set s, v, x, y, S�, S⊺ is a crown of order 3 in L. ◻

Using this, we can now generalize Corollary 8.3 to lattice-generating interval relations:



8.3. INTERVAL FACTORIZATION OF LATTICES 109

Proposition 8.16
Let L be a lattice and θ an interval relation on L. If L does not contain a crown of
order 3 as a suborder, then θ is lattice-generating.

Corollary 8.6
Let L be a lattice and θ an interval relation on L. If L is planar θ is an order-
preserving interval relation on L.

Using a lattice-generating interval relation, a lattice arises by factorization so that
exactly the chosen intervals of the original lattice implode. In the following, we
investigate this approach on the context side.

8.3.4 Context Construction for Interval Factorization

We aim to investigate the structure of finite lattices. Since every finite lattice is
isomorphic to a concept lattice B(K) of a formal context K and formal contexts tend
to be smaller than their corresponding concept lattices, we discuss the corresponding
context constructions of our approach in the following section.

Definition 8.10 (Enrichment of an Incidence Relation)
Let K = (G,M, I) be a formal context and {S1, S2, . . . , Sk} a set of pairwise disjoint
intervals of B(K) with Si = [(Ai,Bi), (Ci,Di)]. The incidence relation

IS1,...,Sk
∶= I ∪

k

⋃
i=1

(Ci ×Bi)

is the enrichment of relation I by the intervals S1, . . . , Sk. We call the context
KS ∶= (G,M, IS) the enrichment of context K by the interval S.

Note that the simultaneously and the iterative enrichment of a relation by a set of
intervals generally does not end in the same context, e.g., Figure 8.14.

Therefore, we present the following statements just for single intervals. We present
a one-to-one correspondence between the set of the enrichments of the incidence
relation by an interval for a generic formal context K and the interval relations θS
on B(K) in the following lemma. Note that the statement does not hold for reduced
formal concepts in general. This fact is discussed in Lemma 8.3 in more detail.
Lemma 8.1
Let L be a lattice and K = (G,M, I) its generic formal context. If θS is an interval
relation on L, then IS = I ∪ (C × B) is an enrichment of I by the interval S =
[(A,B), (C,D)]. Conversely, for every enrichment IS of I by an interval S the
relation θS is an interval relation on B(K).
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1 2 3 4 5 6 7 8 9 10 11 12
1 × ×
2 × ● ● ×
3 × ● ● ×
4 × ×
5 × ×
6 × × ● × ● ×
7 × × ● × ● ×
8 × × × ×
9 × × × ×
10 × × × ×
11 ×
12 × × × × × × × × × × × ×

1 2 3 4 5 6 7 8 9 10 11 12
1 × ×
2 × ● ● ● ● ×
3 × ● ● ×
4 × ×
5 × ×
6 × × ● ● × ● ● ×
7 × × ● × ● ×
8 × × × ×
9 × × × ×
10 × × × ×
11 ×
12 × × × × × × × × × × × ×

Figure 8.14 A lattice L with two pure intervals S1, S2(red and blue highlighted) (top left)
and the lattice L/θS1,S2

(top right). For K = (G,M, I), the generic formal context of L, the
enrichments (G,M, IS1,S2

) (bottom left) and (G,M, (IS1
)S2

) = (G,M, (IS2
)S1

) (bottom
right) are given. The incidences that are added by the enrichment are depicted by ●.

Proof Since S is a single interval, the statement follows directly from the definitions
of enrichments and interval relations. ◻

In a generic formal context we can also determine weather an interval is pure or
nested in the corresponding concept lattice.

Lemma 8.2
Let L be a finite lattice and K = (G,M, I) its generic formal context. Let θS be
an interval relation on L. S is nested interval in L if and only if there exists
S = [H,N] ≤ K with S being a Boolean subcontext of dimension 3, [S]θ ∈ N , [S]θ ∈H
and [S]θI[S]θ.

Proof Follows directly from Proposition 8.15: A lattice contains a Boolean suborder
of dimension 3 if and only if it contains a crown of order 3 as a suborder. Due to the
definition of a generic formal context, there is a Boolean subcontext [{a, b, c},{x, y, z}]
of dimension 3 in K precisely if there is a Boolean suborder of dimension 3 and thus
a crown of order 3 as suborder in the corresponding lattice so that a, b, c are the
lower elements of the crown and x, y, z are the upper elements of the crown. ◻
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In Lemma 8.1 we considered K to be generic. Otherwise, additional reducible
concepts may vanish even if they are not in the chosen interval, as presented in the
following example.

Example 8.4
In Figure 8.15 two contexts that generate (up to isomorphism) the same concept
lattice are represented. Both have enrichments by the interval S = [(4′′, 4′), (G,G′)].
Consider context K̃ = (G̃, M̃ , Ĩ) presented in Figure 8.15 (bottom left) and its
corresponding formal context B(K̃) = B(K) (top right). The enrichment of Ĩ by
the red highlighted interval S = [(4′′, 4′), (13′′, 13′)] is given by adding the ●-marked
incidences to Ĩ. B(KS) is presented in the figure (bottom right). It consists of the
new generated interval (red) and the remaining concepts in the original order, i.e.
B(K̃S) ≅B(K̃)/θS. If K (top middle), the standard context of B(K), is considered,
the enrichment of the incidence relation by the same interval results in the smaller
lattice (top right). Since in B(K), e.g., the concepts (5′′,5′) and (6′′,6′) only differ
in an attribute set that is totally included in S, their difference vanishes by the
enrichment if no attribute o or l persists to differ them.

This illustrates that the lattice, based on the enrichment of an incidence by an
interval of a corresponding context, depends on the selection of the context. It is
clear that using the generic formal context leads to an upper bound for the size of
the arising lattice, since all concepts are generated by a single object and a single
attribute. In the following, we determine the objects and attributes necessary for
generating a lattice isomorphic to the one obtained using the generic formal context.

Definition 8.11
Let θS be an interval relation on the lattice L with S ≤ L an interval. We call x ∈ L θ-⋁-
irreducible if either x ∈ J(L) or for x /∈ S if ∣{y ∈ L∖S ∣ y is an lower neighbour of x}∣ ≤
1 holds. Analogous we call an element x ∈ L θ-⋀-irreducible if either x ∈M(L) or for
x /∈ S if ∣{y ∈ L ∖ S ∣ y is an upper neighbour of x}∣ ≤ 1 holds.

Definition 8.12
Let θS be an interval relation on the lattice L with S ≤ L an interval. Let U = {x ∈ L ∣
x is θ −⋀−irreducible} and V = {x ∈ L ∣ x is θ −⋁−irreducible}. We call a context
K = (H,N,≤) with V ⊆H ⊆ L and U ⊆ N ⊆ L a θ-irreducible context of L.

Lemma 8.3
Let L be a lattice, θS an interval relation on L, K = (G,M, I) the generic context
of L, and (H,N,≤) a θ-irreducible context of L. Then B(H,N,≤) ≅ B(G,M, IS)
holds.
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Figure 8.15 A (concept) lattice B(K) = B(K̃) with a pure interval S highlighted red
(top left). The objects and attributes with blue highlighted labels are reducible. The
corresponding reduced formal context K = (G,M, I) (top middle) and an corresponding
generic formal context K̃ = (G̃, M̃ , Ĩ) (bottom left) have additional incidences marked by ●,
that represent the enrichments of the contexts by S. B(KS) is displayed on the top right,
and B(K̃S) on the bottom right.
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Proof We show that every object g ∈ G with g /∈ H is reducible in (G,M, IS). If
g /∈H, we have c = (g′′, g′) is not θ-⋁-irreducible in L ≅B(K). Let c1, . . . , cl /∈ S with
l ≥ 2 be the lower neighbors of c inB(K). Since the original order relation is preserved
by the factorization, [c1]θ, . . . , [cl]θ are lower neighbors of [c]θ in B(K)/θ. Therefore
g is reducible in (G,M, IS). Analogous θ-⋀-reducible elements are unnecessary for
the attribute set. ◻

It follows that not the whole generic context has to be considered in the following
but only the context containing all θ-⋁-irreducible elements as the object set and all
θ-⋀-irreducible elements as the attribute set. E.g. the concept (15′′,15′) = (m′,m′′)
in Figure 8.15 is neither θ-⋁-irreducible nor θ-⋀-irreducible. Therefore, object 15
and attribute m have no impact on the factor set.

Lemma 8.4
Let L be a lattice, K = (G,M, I) a θ-irreducible context of L, and S ≤ L an interval.
Then:

i) S is pure ⇔ B(KS) ≅ L/θS

ii) S is nested⇔B(KS) /≅ L/θS and B(KS) is the Dedekind–MacNeille completion
of L/θS.

Proof i): "⇒:" We assume K = (L,L,≤) to be the generic context of L and thus
KS = (L,L,≤S). The factor lattice L/θS is isomorphic to the concept lattice of its
generic context (L/θS, S/θS,≤θ). Via definition of the order ≤θ, for two elements
[g]θ, [m]θ ∈ L/θ we have [x]θ ≤θ [y]θ if and only if x ≤ y or x ≤ [S]θ and y ≥ [S]θ in
L. Considering KS, for two elements x, y ∈ Ł we have x ≤S y if and only if x ≤ y or
x ∈ {c ∈ L ∣ c ≤ [S]θ} and y ∈ {c ∈ L ∣ c ≥ [S]θ}. By identifying each element x ∈ L
with the equivalence class [x]θ ∈ L/θ, the isomorphism between B(KS) and L/θ
follows.

"⇐:" If B(KS) ≅ L/θS holds, L/θS is a lattice and therefore S is pure.

ii): "⇒:" If S is nested, L/θS is an ordered set but no lattice and thus B(KS) /≅ L/θS
holds. With [29, Theorem 4] follows, that the formal context (L/θS, L/θS,≤θ)
corresponds to the Dedekind–MacNeille completion of L/θS. Further, as seen before,
the concept lattices corresponding to KS and (L/θS, L/θS,≤θ) are isomorphic.

"⇐:" If B(KS) is the Dedekind–MacNeille completion of L/θS, B(KS) is isomorphic
to the concept lattice B((L/θS, L/θS,≤)). Since B(KS) /≅ L/θS holds, L/θS is not a
lattice and therefore S is nested in L. ◻
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Therefore we can transfer the statement of ϕ ∶ L → L/θ, x ↦ [x]θ being surjective
and order-preserving to formal contexts:
Lemma 8.5
Let L be a lattice, S = [(AS,BS), (CS,DS)] ≤ L a pure interval, and K = (G,M, I) a
θ-irreducible context of L. Then the map

ϕ ∶B(K)→B((G,M, IS))

(A,B)↦

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(CS,BS) , (A,B) ∈ S
(A,B ∪BS) , (A,B) ∈ S#

(A ∪CS,B) , (A,B) ∈ S!

(A,B) , (A,B) ∈ S∥

is surjective and order preserving.

Proof follows directly from Lemma 8.4. ◻

Note that the approach in Section 8.3.4 does relate to the one presented in Sec-
tion 8.2.3. For a selected Boolean sublattice L ≤ S in the corresponding induced
concept lattice besides ψ(S) = [N,H] additional incidences are added. This is
done to ensure that an element L smaller than a specific part of S is also smaller
than the newly generated element. Therefore, for every object g ∈ G with x ⊆ g′
the incidences in the subcontext [g,N] are added where x = int(⋁CoAt(S)). The
analogous approach is made with attributes and the extent of the infimum of all
atoms of S.

8.4 Conclusion

In this chapter, we presented methods to factorize a lattice so that selected intervals
implode. We started with the investigation of factor lattices generated by complete
congruence relations in Section 8.2.1 and presented an approach to find the finest
congruence relation, i.e., the one with as many different congruence classes as possible,
to implode a selected interval. Since every congruence relation is an equivalence
relation, the elements of the original lattice can be mapped to the elements of the
factor lattice in a unique way. This property does not hold when using complete
tolerance relations, a generalization of the complete congruence relations, instead. In
both cases, the generated factor lattice preserves the original meet- and join-operators.
However, both approaches can result in an overaggressive reduction of the lattice
size, imploding not only the selected interval since their construction results in bigger
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classes. To overcome this problem, we introduced a kind of factorization based on
newly introduced interval relations in Section 8.3. The equivalence classes of which
include precisely the selected intervals so that it is possibility to implode selected
disjunct intervals while preserving all other elements of the original lattice and
their order. As a trade-off, the original ⋀- and ⋁-relations are no longer preserved
in this case. To ensure that a lattice arises as the factor set, we restricted the
approach to single pure intervals. In this case, by taking advantage of the one-to-one
correspondence between interval relations and enrichments of incidence relations by
intervals in the corresponding context, we get the corresponding context of the factor
set directly.
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CHAPTER 9

Dismantling for Intervals

The research question of this chapter is a natural follow-up to the one of Chapter 8,
expanding the idea of factorizing an interval to a single representative to eliminating
it completely from a lattice. Dismantling allows for the removal of elements of a set,
or in our case lattice, without disturbing the remaining structure. In this chapter,
we extend the notion of dismantling by single elements to dismantling by intervals
in a lattice. We show that lattices dismantled by intervals correspond to closed
subrelations in the respective formal context and that there exists a unique kernel
with respect to dismantling by intervals. Furthermore, we show that dismantling
intervals can be identified directly in the formal context utilizing a characterization
via arrow relations and provide an algorithm to compute all dismantling intervals.
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9.1 Introduction

In Formal Concept Analysis, the removal of a doubly irreducible element in a concept
lattice corresponds to the removal of a single incidence from its (clarified) formal
context. This approach results in a complete sublattice of the original concept lattice.
In particular, this sublattice contains all but one of the original concepts.

In this chapter, we extend the notion of dismantling from single elements to intervals
in order to remove multiple (not necessarily irreducible) concepts at once while
preserving the remaining concept lattice. To this end, we make use of the one-
to-one correspondence between closed subrelations of a formal context and the
complete sublattices of its concept lattice [58], and, more generally, of the one-to-one
correspondence between closed-subcontexts of a context and the sublattices of its
concept lattice as presented in Section 5.3.

Extending dismantling to intervals, we call an interval [u, v] =∶ S dismantling for a
lattice L if v is infimum-prime in the filter of u, u is supremum prime in the ideal
of v and u, v /∈ {�,⊺}. Because infimum-prime (supremum-prime) implies infimum-
irreducible (supremum-irreducible), dismantling intervals that consist of a single
element are precisely the doubly irreducible elements. We show that an interval S is
dismantling for L if and only if the incidences of all concepts not in S form a closed
subrelation. Furthermore, we show that the core obtained by the iterative removal
of dismantling intervals for a lattice is unique. Where possible, we use the more
general notion of an interval S being quasi-dismantling for a lattice, which allows for
u, v ∈ {�,⊺} and show that an interval S is quasi-dismantling for L if and only if the
objects, attributes and incidences of all concepts not in S form a closed-subcontext.

Finally, we give a characterization of dismantling intervals via arrow relations on
the context side and provide an algorithm to determine whether an interval is
dismantling using this characterization. Furthermore, the arrow relations provide a
way to compute all dismantling intervals for a given context K without having to
compute the concept lattice B(K) itself.

9.2 Dismantling Intervals for a Lattice

To identify the intervals that can be removed from a lattice without disturbing the
remaining structure, we introduce the notions of dismantling and quasi-dismantling
intervals for a lattice, by extending the notion of dismantling single elements, in Def-
inition 9.1. These notions build up the basis for our further investigation.
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K a b c d e
1 ×
2 × ×
3 × × ×
4 × × ×
5 × ×
6 × × 3
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Figure 9.1 Example for a contextK (left) and its concept lattice L (right) where the colored
elements in the lattice are an example for an interval S dismantling for L, and the highlighted
incidences in K correspond to the S-removed incidences. The interval S = [γ4, µe] is interval
dismantling for the lattice L since the object concept γ4 is supremum-prime in (µe], and
the attribute concept µe is infimum-prime in [γ4).

Definition 9.1 ((Quasi-)Dismantling Intervals)
Let L be a lattice and [u, v] = S ≤ L an interval of L. We call S quasi-dismantling for
L if u is supremum-prime in (v] and v is infimum-prime in [u). If u /= � and v /= ⊺
hold, we call S dismantling for L.

On the context side, the removal of a set of concepts S corresponds to the removal
of all incidences that only belong to concepts in the respective interval. We call the
remaining context (objects, attributes, incidences) the S-removed context (objects,
attributes, incidences).

Definition 9.2 (S-removed Context)
Let K = (G,M, I) be a formal context and S ⊆B(K). We call

• IS ∶= I ∖ (⋃(A,B)∈S A ×B ∖⋃(A,B)∈B(K)∖S A ×B) S-removed incidences,

• GS ∶= G ∖ (⋃(A,B)∈S A ∖⋃(A,B)∈B(K)∖S A) S-removed objects,

• MS ∶=M ∖ (⋃(A,B)∈S B ∖⋃(A,B)∈B(K)∖S B) S-removed attributes.

In the following we let KS ∶= (GS,MS, IS) be the S-removed context for K.

Next, in Proposition 9.1, we show that instead of removing incidences (objects,
attributes) to obtain the S-removed sets, they can be generated as the union of all
incidences (objects, attributes) that are not part of a concept in S. This leads to a
simpler representation of the S-removed sets.

Proposition 9.1
Let K = (G,M, I) be a formal context and S ⊆B(K) a set of formal concepts, then
IS = ⋃(A,B)∈B(K)∖S A ×B, GS = ⋃(A,B)∈B(K)∖S A and MS = ⋃(A,B)∈B(K)∖S B.
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Proof We show the proof for the S-removed incidences. The proofs for the other
two sets are analogous.

I ∖ (⋃(A,B)∈S A ×B ∖⋃(A,B)∈B(K)∖S A ×B)
= ⋃(A,B)∈B(K)A ×B ∖ (⋃(A,B)∈S A ×B ∖⋃(A,B)∈B(K)∖S A ×B)
= (⋃(A,B)∈B(K)A ×B ∩ (⋃(A,B)∈S A ×B)c )
∪ (⋃(A,B)∈B(K)A ×B ∩⋃(A,B)∈B(K)∖S A ×B)

= ⋃(A,B)∈B(K)∖S A ×B ◻

As an example consider the formal context K in Figure 9.1 and the set of concepts
S = {({4},{b, c, e}), ({4,6},{b, e}), ({2,4,6},{e})} colored in the lattice. Then the
highlighted S-removed incidences in K can be obtained both, by the removal of
incidences (Definition 9.2), or as the union of incidences of concepts not in S

(Proposition 9.1).

Further, if we consider an interval S, we see that S being quasi-dismantling corre-
sponds to obtaining a closed-subcontext on S-removal. More precisely, the S-removed
context KS for a formal context K is a closed-subcontext if and only if the interval
S ≤B(K) is quasi-dismantling for B(K).
Proposition 9.2
Let K = (G,M, I) be a formal context and B(K) its corresponding concept lattice.
Let S = [u, v] ≤B(K) be an interval. Then, S is quasi-dismantling for B(K) if and
only if KS = (GS,MS, IS) is a closed-subcontext of K.

Proof "⇒": We show the contraposition: Assume that (GS,MS, IS) is no closed-
subcontext. By definition holds GS ⊆ G, MS ⊆M and IS ⊆ I. Then there exists some
c ∈B(KS) such that c /∈B(K). Since B(KS) is a lattice generated from B(K) ∖ S
there exist x, y ∈B(K)∖S such that x∨y = c or x∧y = c in B(KS). In case x∨y = c:
Since B(K) is a lattice it follows that there exists some z ∈B(K) with z /∈B(KS)
and z = x ∨ y. Thus, z ∈ S = [u, v] and therefore z ≥ u in B(K). Because x, y /∈ S we
have x, y /≥ u. Hence, u is not supremum-prime in (v] and S is not quasi-dismantling.
The case x ∧ y = c is analogous.

"⇐": We show the contraposition: Assume S is not quasi-dismantling. Then u is
not supremum-prime in (v] or v is not infimum-prime in [u). In case that u is not
supremum-prime in (v]: There exist x, y ∈ (v] such that z ∶= x ∨ y ≥ u, x /≥ u and
y /≥ u. Thus, x, y /∈ S and z ∈ S. Therefore, z /∈ B(KS). There is some supremum
c = x ∨ y in B(KS). Because the intent of c is the intent of z by [29, Thm. 3] we
have c /∈B(K). Thus, (GS,MS, IS) is no closed-subcontext. The case that v is not
infimum-prime in [u) is analogous. ◻
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In particular, for a dismantling interval S we have GS = G andMS =M (because ⊺,� ∈
B(K) ∖ S) and therefore, the correspondence, in this case, is to closed subrelations.

The removal of a quasi-dismantling interval leaves the remaining lattice intact with
respect to supremum and infimum:

Proposition 9.3
Let L be a lattice and S ≤ L an interval. If S is quasi-dismantling for L, then L ∖ S
is a lattice. In particular, L ∖ S is a sublattice of L.

Proof Let x, y, z ∈ L with z = x ∨ y. Because S is quasi-dismantling if x, y /∈ S then
z /∈ S. Analogously for z = x ∧ y. ◻

Note that L ∖ S has a unique unit and zero element even if the original ones were
part of the quasi-dismantlable interval S. If S does not include ⊺ or � of L, i.e. S is
a dismantling for L, both of those elements are preserved in L ∖ S.

Corollary 9.1
If S is dismantling for L then L ∖ S is a complete sublattice of L.

Combining the previous propositions, it follows for an interval S which is quasi-
dismantling in a lattice B(K) that the removal of S from B(K) is isomorphic to the
concept lattice of the S-removed context KS.

Theorem 9.1
Let K = (G,M, I) be a formal context and S ≤ B(K) an interval. If S is quasi-
dismantling for L, then

B(K) ∖ S =B(KS).

Proof We know from Proposition 9.3 that B(K)∖S is a sublattice of B(K). Further,
from Proposition 9.2 follows that B(KS) is a sublattice of B(K). Both contain
exactly the concepts of B(K) that are not included in S. ◻

A lattice that has no doubly irreducible elements but contains a dismantling interval
S is given in Figure 9.2 (left lattice). The concept lattice of KS, in this case a
closed subcontext of K, is the concept lattice of K without the interval S. Note
that Theorem 9.1 does not hold for intervals that are not dismantling for the lattice.
See Figure 9.3 for a counterexample.

Theorem 9.1 is a generalization of the statement in Proposition 3.7 concerning the
dismantling of doubly irreducible lattice elements. In the following Propositions 9.4
and 9.5 clarify how Proposition 3.7 and Theorem 9.1 are connected. The intervals
S ≤ B(K) consisting of a single element and being dismantling for a lattice are
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1 2 3

a b c a b c
1 × ×
2 × ×
3 × × 2 3

1
b c

a

Figure 9.2 A lattice L (left) and the corresponding context K = (G,M, I) (middle). The
highlighted interval S is dismantling for L. Therefore, the highlighted S-removed incidences
of K are a closed subrelation of I. The lattice on the right corresponds to the context KS .

4 5 6

1 2 3

d e f
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a b c d e f

1 ×
2 ×
3 ×
4 × × × ×
5 × × × ×
6 × × × × 4 6

5
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2

d f

b

a c

e

Figure 9.3 A lattice (left) and the corresponding formal context K (middle). The
highlighted interval S is not dismantling for the lattice. Therefore, the highlighted S-
removed incidences of K are no closed subrelation of I. The lattice on the right corresponds
to the context KS . The highlighted concepts ({4, 6},{a, b, c}) and ({4, 5, 6},{a, c}) do not
exist in the original lattice.

exactly the doubly irreducible concepts of B(K). If S is quasi-dismantling, the cases
of ⊺ ∈ S and � ∈ S have to be considered additionally.

Proposition 9.4
Let K = (G,M, I) be a formal context and S ≤B(K) an interval with ∣S∣ = 1. S is
dismantling for B(K) if and only if S is doubly irreducible.

Proposition 9.5
Let K = (G,M, I) be a formal context and S ≤B(K) an interval with ∣S∣ = 1. S is
quasi-dismantling if and only if

i) S is doubly irreducible or

ii) S = ⊺ and S is supremum-irreducible or

iii) S = � and S is infimum-irreducible or

iv) S = ⊺ = �.

If we consider multiple intervals at once, the previous statements do not hold in
general. However, one direction of Proposition 9.2 still holds:
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Figure 9.4 A formal context with a highlighted closed subrelation (middle) and its
corresponding concept lattice (left). The highlighted concepts are the ones, that vanish by
the closed subrelation. The arising lattice is pictured on the right. This closed subrelation
can not be obtained via dismantling intervals.

Proposition 9.6
Let K = (G,M, I) be a formal context and S1, . . . , Sk be intervals in B(K). If
S1, . . . , Sk are quasi-dismantling, then (GS1∪...∪Sk

,MS1∪...∪Sk
, IS1∪...∪Sk

) is a closed-
subcontext of K.

Proof We show the contraposition. Assume (GS1∪...∪Sk
,MS1∪...∪Sk

, IS1∪...∪Sk
) is no

closed-subcontext. By definition, we have GS1∪...∪Sk
⊆ G, MS1∪...∪Sk

⊆ M and
IS1∪...∪Sk

⊆ I. Then there exists c ∈ B(KS1∪...∪Sk
) with c /∈ B(K). Hence, there

exist x, y ∈ B(K) such that c = x ∨ y or c = x ∧ y in B(KS1∪...∪Sk
). In case c = x ∨ y

in B(KS1∪...∪Sk
) there exists z ∈B(K) such that z = x ∨ y. Since z ∈ S1 ∪ . . . ∪ Sk we

have z ∈ Si for some i. The rest follows analogous to the proof of Proposition 9.2. ◻

However, not all closed-subcontexts (and therefore sublattices of the correspond-
ing concept lattice) can be obtained via a quasi-dismantling interval or a set of
quasi-dismantling intervals for the corresponding lattice, see e.g. Figure 9.4. The
interval [({3},{a, b}), ({2,3,4},{b})] is not dismantling, and neither ({3},{a, b})
nor ({2,3,4},{b}) are doubly irreducible.

Further note that not every lattice contains a quasi-dismantling interval besides the
trivial one (the complete lattice) or any dismantling interval at all. Figure 9.5 shows
the smallest (non-trivial) lattice that has no dismantling interval.

However, there is always a unique smallest lattice that can be obtained by iteratively
removing all dismantling intervals, as shown in Theorem 9.2. To this end, we make
use of the following proposition concerning the dismantlability of intervals upon
removing one of them.

Proposition 9.7
Let L be a lattice and S1, S2 dismantling intervals for L such that S2 /⊆ S1. Then,
S2 ∖ S1 is a dismantling interval for L ∖ S1.



124 CHAPTER 9. DISMANTLING FOR INTERVALS

Figure 9.5 A lattice that has no dismantling interval. This lattice and its dual are the
smallest (non-trivial) lattices for which this is the case.

Proof We first show that S2 ∖ S1 is an interval: Assume S2 ∖ S1 is no interval
in L ∖ S1. Then, without loss of generality, there exist x, y ∈ S2 ∖ S1 such that
z ∶= x ∨ y /∈ S2 ∖ S1 in L ∖ S1. Either z = x ∨ y in L, thus z ∈ S2 and therefore
z ∈ S2 ∖ S1(E); or z /= x ∨ y in L, hence w = x ∨ y in L with w ∈ S1 and since S1 is
dismantling, x ∈ S1 or y ∈ S1(E). Thus, S2 ∖ S1 is an interval in L ∖ S1.

It remains to show that S2 ∖ S1 is dismantling for L ∖ S1. Let [u, v] = S2 ∖ S1 and
assume S2 ∖S1 is not dismantling. Then, u is not supremum-prime in (v] or v is not
infimum-prime in [u). Without loss of generality, assume u is not supremum-prime
in (v]. Then, there exist x, y ∈ L∖S1 such that x, y /∈ [u, v] and x∨ y ∈ [u, v]. Hence,
x ∨ y ∈ S2 in L. Because S2 is dismantling for L it follows that x ∈ S2 or y ∈ S2 and
therefore u is supremum-prime(E). Thus, S2 ∖ S1 is dismantling in L ∖ S1. ◻

Let DInt(L) be the family of all subsets of L that can be obtained by iterated
dismantling by intervals from L, i. e., by iteratively removing dismantling intervals
starting from L. A smallest element of DInt(L) is called a DInt-core of L.

Theorem 9.2
Let L be a lattice. There exists a unique DInt-core.

Proof Let U,V ∈DInt(L) be two minimal elements in DInt(L). Then, there is a
minimal upper bound T ∈ DInt(L) of U and V , i. e., both U and V are obtained
by removing dismantling intervals from T . Hence, there are two sequences of
intervals S1, . . . , Sk,R1, . . . ,Rl such that U = T ∖(S1∪⋅ ⋅ ⋅∪Sk) = (T ∖S1) . . .∖Sk and
V = T ∖ (R1 ∪ ⋅ ⋅ ⋅ ∪Rl) = (T ∖R1) . . . ∖Rl. By iterative application of Proposition 9.7
we have that T ∖ (S1 ∪ ⋅ ⋅ ⋅ ∪ Sk ∪R1 ∪ ⋅ ⋅ ⋅ ∪Rl) ∈DInt(L). ◻

In particular, we call a lattice interval-dismantlable if the DInt-Core of the lattice
is trivial, i. e., a lattice of two elements. For example, the lattices in Figures 9.1
to 9.4 are interval-dismantlable whereas the lattice in Figure 9.5 is not. Note that
the DInt-Core of a lattice does not contain any doubly irreducible elements.
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9.3 Dismantling in the Formal Context

In this section, we show that dismantling intervals can be identified directly in the
formal context. Based on this, we propose an algorithm to find all dismantling
intervals for a given formal context. Thus, we can omit the (expensive) computation
of the concept lattice. To this end, we make use of the arrow relations to identify
the irreducible concepts of a lattice as seen in Proposition 3.5. Thus, the statement
of Proposition 3.4 can be adapted to sublattices and their corresponding subcontexts,
in particular to filters and ideals.

Proposition 9.8
Let K = (G,M, I) with g ∈ G and m ∈M . Then

i) γg is supremum-irreducible in (µm] if and only if an attribute n ∈ M with
g ↙↗ n in [m′,M] ≤ K (clarified) exists.

ii) µm is supremum-irreducible in [γg) if and only if an object h ∈ G with h↙↗m

in [G,g′] ≤ K (clarified) exists.

Proof The proof follows directly from Proposition 3.5 with B([m′,M]) = (µm] and
B([G,g′]) = [γg). ◻

Based on this equivalence, we propose a characterization for supremum-prime and
infimum-prime concepts in the formal context as follows:

Proposition 9.9
Let K = (G,M, I) be a formal context with g ∈ G and m ∈M . Then

1. γg is supremum-prime in (µm] if and only if

i) ∃n ∈M ∶ g ↙↗ n in [m′,M] (attribute-clarified) and

ii) ∄n /= k ∈M ∶ g ↗ k in [m′,M] (attribute-clarified).

2. µm is infimum-prime in [γg) if and only if

i) ∃h ∈ G ∶ h↙↗m in [G,g′] (object-clarified) and

ii) ∄h /= o ∈M ∶ o↗m in [G,g′] (object-clarified).

Proof We show the first part of the statement:
“⇐”: We show this by contraposition. Assume γg is not supremum-prime in (µm]
but is supremum-irreducible (otherwise, use Proposition 9.8). Hence, ∃c1, c2 ∈ (µm]
with c1 /= c2, γg /≤ c1, c2, γg ≤ c1 ∨ c2. Let ci = µki with ki ∈M such that there is no
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l ∈M with µl > µki and γg /≤ µl, i. e., choose maximal attribute concepts not larger
than γg.

We show that g ↗ ki using the characterization γg ∨ µki = (µki)⋆ /= µki. The second
part, (µki)⋆ /= µki, is fulfilled by choice of µki. If we assume γg ∨ µki /= (µki)⋆, then
(µki)⋆ < γg ∨ µki and thus there exists some l ∈M with l ∈ int((µki)⋆), l /∈ int(γg)
and ťl ∈ int(µki)(E). Hence, g ↗ ki in K∣m′,M .

“⇒”: We show this by contraposition. Assume k,n ∈M , k /= n, g ↗ n, g ↗ k in K∣m′,M

(clarified). From g ↗ n we have γg∨µn = (µn)⋆ /= µn and thus µn /≥ γg. Analogously,
g ↗ k implies γg ∨ µk = (µk)⋆ /= µk and thus µk /≥ γg. Since γg ∨ µk = (µk)⋆ and
γg ∨ µn = (µn)⋆, we have µk /≥ µn and µn /≥ µk. Thus, we have µk ∨ µn ≥ γg.

The second part of the statement can be shown analogously. ◻

Now, two questions arise. First, given that we have a formal context K and an
interval [γg,µm] between an object concept and an attribute concept, is this in-
terval dismantling in B(K)? And second, given a formal context K, which are the
dismantling intervals in the corresponding concept lattice B(K)?

To answer the first question Proposition 9.9 tells us that it suffices to check the arrow
relations of g in the subcontext [m′,M] and of m in [G,g′]: If g only has a single ↙↗
in [m′,M] and no additional ↗, then γg is supremum-prime in (µm]. Analogously,
if m only has a single ↙↗ in [G,g′] and no additional ↙, then µm is infimum-prime
in [γg). If both conditions hold, then the interval [γg,µm] is dismantling in B(K).
Note that, if γg /≤ µm then g /∈ [m′,M] and m /∈ [G,g′].

For example, consider the context and concept lattice from Figure 9.1. If we want to
check in K if [γ4, µe] is a dismantling interval for B(K) it suffices to check the arrow
relations of the object “4” in [e′,M] and of the attribute “e” in [G, 4′], cf. Figure 9.6.
In [e′,M] we see that 4↙↗ a and that there is no n ∈M,n /= a with 4↗ n, hence γ4
is supremum-prime in (µe]. Similarly, in [G,4′] we see that 3 ↙↗ e and that there
is no h ∈ G, h /= 3 with h ↙ e, hence µe is infimum-prime in [γ4). Therefore, the
interval [γ4, µe] is dismantling for B(K).

In order to compute all dismantling intervals for a given formal context, the naive
approach is to check all intervals [γg,µm] between object concepts and attribute
concepts. However, this (essentially iterative) approach results in the repeated
computation of the same subcontexts. To prevent this, we instead compute each
subcontext only once and for each object concept γg we check which attribute
concepts are infimum-prime in [γg), i. e., we check the arrow relations in [G,g′], and
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[e′,M] a b c d e
2 × ↗↙ ↙ ↙ ×
4 ↗↙ × × ↙ ×
6 ↗ × ↗↙ ×

[G,4′] b c e
1 ↗ ↗
2 ↗↙ ×
3 × × ↗↙
4 × × ×
5 × ↗ ↗
6 × ↗↙ ×

Figure 9.6 Subcontexts of the context K from Figure 9.1 where the arrow relations are
checked to decide whether the interval [γ4, µe] is dismantling for B(K).

Algorithm 3: Computation of all dismantling intervals for K
Input: K = (G,M, I)
Result: The set of all dismantling intervals for K.

1 U = ∅
2 O = ∅
3 for g ∈ G do
4 compute [G,g′] and clarify objects
5 compute ↗ ([G,g′]) = {(h,m) ∣ h↗m in [G,g′]}
6 for m ∈ g′ do
7 Hm = (G × {m})∩↗ ([G,g′])
8 if Hm = {(h,m)} and h↙m in [G,g′] then
9 U = U ∪ {(g,m)}

10 for m ∈M do
11 compute [m′,M] and clarify attributes
12 compute ↙ ([m′,M]) = {(g, n) ∣ g ↙ n in [m′,M]}
13 for g ∈m′ do
14 Ng = ({g} ×M)∩↙ ([m′,M])
15 if Ng = {(g, n)} and g ↗ n in [m′,M] then
16 O = O ∪ {(g,m)}
17 return {[γg,µm] ∣ (g,m) ∈ O ∩U}

vice versa. More precisely, for each object g we take the attributes m where µm is
infimum-prime in [γg) and collect them in the set

U = {(g,m) ∣ g ∈ G,µm infimum-prime in [γg)}.

Similarly, for each attribute m we take the objects g where γg is supremum-prime in
(µm] and collect them in the set

O = {(g,m) ∣ m ∈M,γg supremum-prime in (µm]}.

If a pair (g,m) is in both U and O, then the respective interval [γg,µm] is dismantling
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for the lattice B(K). Note that it suffices to consider the reduced formal context
since it includes all objects with irreducible object concepts and all attributes with
irreducible attribute concepts. In Algorithm 3 we present an implementation in
pseudo-code.

If we are interested in the dismantling intervals of a lattice L, we can simply compute
them for its standard context, i. e., for the context (J(L),M(L),≤).

9.4 Conclusion

In this chapter, we introduced the notion of dismantling intervals for a lattice in
order to transfer the notion of dismantling doubly irreducible elements to a set of
elements. In particular, we showed the connection between closed subrelations on
the context side and dismantling intervals on the lattice side, and more generally,
the connection between closed-subcontexts and quasi-dismantling intervals. While
a lattice can always be shrunk to the trivial empty lattice by removing a quasi-
dismantling interval, iteratively removing only dismantling intervals for a lattice
results in a unique (not necessarily trivial) smallest sublattice. The dismantling
intervals can be found directly in the formal context K with the help of the arrow
relations. We showed how to decide in K if a given interval is dismantling for B(K).
Additionally, given K, we propose an algorithm to compute all dismantling intervals
of B(K) without first computing the concept lattice itself.
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Summary and Outlook





CHAPTER 10

Summary and Outlook

Our goals in this thesis were to investigate substructures that are responsible for
concept lattices tending to become large and hard to grasp for the human observer
and to condense the visual representation of data without creating information
artifacts. Therefor, we at first analyzed the connection of Boolean substructures
in formal contexts and in the corresponding concept lattices, motivated by the
exponential growth of lattices based on those substructures.

After introducing the required definitions and notations for our work in Part I, we
connected Boolean substructures in formal contexts and in the associated concept
lattices in Part II. First, we introduced Boolean subcontexts of a formal context as
an enlargement of contranominal scales to investigate their interplay with Boolean
suborders in the corresponding concept lattice. We further expanded the notion
of closed subrelations of a formal context to the notion of closed-subcontexts and
showed that those are in a one-to-one correspondence to the set of all sublattices of
the referring concept lattice. This connection can be restricted to Boolean sublattices
(and Boolean closed-subcontexts). To not be limited to Boolean sublattices but in
addition investigate Boolean subsemilattices and Boolean suborders in general, we
lifted the embeddings ϕ1 und ϕ2 of Ganter and Wille to the level of subcontexts and
suborders. In addition, we introduced the mapping ψ from Boolean suborders on
the lattice side to the newly defined associated Boolean subcontexts on the context
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side. We examined the structural properties and the interplay of all those maps and
detected that ϕ1 is the reversion of ψ if and only if the addressed Boolean suborder is
join-preserving. Dually, ϕ2 is the reversion of ψ if and only if the addressed Boolean
suborder is meet-preserving. This means that every subsemilattice of a given lattice
can be associated with a concrete subcontext of the corresponding concept lattice.

The second goal of introducing and investigating different approaches to decrease
the size of a lattice to improve the readability and understandability for the human
observer was focused in Part III and Part IV where the preservation of the underlying
structure was measured in different ways. In Part III, we chose subcontexts of the
original formal context by attribute selection based on two different approaches.

In Chapter 6, we selected attributes based on their relative relevance to the concept
lattice. This measure is based on the impact of an attribute on the distribution
of the objects in the concepts and on the preservation of the lattice structure. To
overcome computational limitations, we presented an approximation for attribute
relevance based on entropy functions adapted to formal contexts. Based on this, we
measured the change in the lattice size and entropy by eliminating an attribute set.
We concluded from our experiments, that the approximation is a good choice to
compute relative relevant attributes.

The second approach, presented in Chapter 7, was based on the connection between
contranominal scales in a formal context and Boolean suborders in the corresponding
concept lattice, as well as the exponential size of those suborders. To this end,
we defined the contranominal-influence of attributes based on the occurrence of an
attribute in large contranominal scales and generated the δ-adjusted subcontext by
eliminating attributes with high contranominal-influence.

Both presented approaches result in a sub-∧-semilattice of the original lattice of
significantly reduced size. In addition, the size of the canonical base of the underlying
implications decreases. However, most of the underlying knowledge is still incorpo-
rated in the generated substructures, as shown by an experiment with decision trees.
Thus, our approaches enable a human observer to understand large datasets.

In Part IV, another approach for reducing the lattice size was investigated. Here,
we focused on eliminating selected intervals of a lattice directly since they represent
structural units. In particular, when operating those approaches, it is possible to
select intervals that include Boolean sublattices or Boolean suborders.

In Chapter 8, we examined the possibility of imploding intervals in a lattice, meaning
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mapping each interval to a single representative by a surjective, order-preserving
map. Here our goal is to preserve as much of the other elements of the lattice and
the lattice structure as possible. We examined factorizations based on congruence
relations and tolerance relations and found out that there is always a relation that
implodes the given interval and constructed an order-preserving and also join- and
meet-preserving factor lattice. To this end, we introduced approaches to find the finest
of those relations utilizing the one-to-one correspondence of congruence relations
to compatible subcontexts and the one-to-one correspondence of tolerance relations
to block relations in the generic formal context of the considered lattice. However,
the imploded interval is often significantly larger than the one originally selected.
Since our motivation is based on the exponential size of the Boolean suborders and,
therefore, on eliminating intervals including Boolean suborders, we tried to implode
those structures directly. Inspired by block relations adding new incidences in the
formal context, this was done by adding the missing incidences of a contranominal
scale, creating a new concept that includes all attributes and objects of the considered
subcontext and eliminates the other concepts referring to the contranominal scale.
However, that approach can generate new contranominal scales and therefore result
in a lattice of larger size than the original one. This can also be the case when
considering not only contranominal scales but also associated Boolean subcontexts
for Boolean suborders or even for Boolean sublattices. Therefore, we turned away
from this approach and focused on the factorization of lattices. To overcome the
phenomenon of imploding more than the selected interval, we introduced interval
relations. They enable us to implode exactly a given interval. However, as a trade-off,
the generated factor set of this approach is, in general, neither join- nor meet-
preserving. In addition, the selected interval has to meet the introduced criteria of
being pure for the factor set to be a lattice. Otherwise, just an ordered set arises. In
the case of imploding more than one interval at a time, the generated factor set is,
in general, not even an ordered set. This can be determined by the occurrence of the
intervals in Penrose crowns included in the lattice. We concluded this chapter with
a context construction for factorizations based on interval relations by introducing
enrichments of formal contexts by intervals. In the case of imploding pure intervals,
we utilized the one-to-one correspondence between those enrichments and the interval
relations to provide the corresponding formal context of the factor set directly.

In Chapter 9, we followed the idea of eliminating an interval of a lattice. However,
we do not want to have a (new generated) representative in the generated lattice but
eliminate the interval entirely and, at the same time, preserve all of the other elements
of the lattice as well as their order and lattice properties. To this end, we introduced
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dismantling (and quasi-dismantling) intervals of a lattice as a generalization of
dismantling an element of a lattice. We connected closed subrelations on the context
side and dismantling intervals on the lattice side. This connection can be generalized
to closed-subcontexts and quasi-dismantling intervals. Further, we proved the
existence of a unique DI-kernel. Utilizing arrow relations of a formal context K the
dismantling intervals of the corresponding concept lattice B(K) can be determined
directly. To this end, we proposed an algorithm to compute all dismantling intervals
of B(K) in K.

We conclude this work with an outlook to possible further work. In the realm of the
investigations in Chapter 5, we are interested in the proof of the proposed conjecture.
It leads to a follow-up question of how many Boolean suborders of a lattice can be
reached from the Boolean subcontexts of the generic formal context by utilizing ϕ1,
ϕ2 or a combination of both, meaning a map, that decides for each concept of a
Boolean subcontext whether it uses ϕ1 or ϕ2. Further, the intervals between the
images of ϕ1 or ϕ2 for concepts are disjoint. Therefore, a factorization based on this
characteristic could be examined. In addition, investigating non-transitive interval
relations as a generalization of tolerance relations is a possible research question.

In the realm of attribute selection a combination of both presented approaches
is of interest. Further, the dual application on the object is a possible extension
of the approaches. However, in this case, no sub-∧-semilattice arises, and wrong
implications could be generated.
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