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Abstract: Due to their process-induced porous surfaces, additively manufactured structures are not
optimized for applications in which friction is a key factor. To improve the frictional properties of
additively manufactured titanium inserts of various thicknesses, two tribologically optimized POM
materials, which differ in terms of filler composition and contents, were used to overmould the
inserts. The titanium inserts were manufactured in two different building directions, resulting in
a variation in surface roughness. The main challenge with respect to overmoulding is to maintain
an even, thin plastic layer on the titanium insert. In order to evaluate the adhesion between plastic
and metal, the interface is examined by optical microscopy and assessment of the peeling resistance.
The peeling test shows that the overmoulded titanium inserts with a higher surface roughness are
characterized by a higher peeling resistance. It is further revealed that the POM material with a
special filler concept shows superior peeling resistance.

Keywords: hybrid material; mechanical testing; microstructure; injection moulding; 3D-printing

1. Introduction

In recent years, additive manufacturing (AM) has become a mature production tech-
nology. The production of near-net shape parts characterized by a high freedom of design
are appealing for research and industrial applications [1]. Although all AM processes
are based on a layer-wise build-up directly from a CAD model, powder bed fusion (PBF)
processes, such as selective laser melting (SLM) and electron beam melting (EBM), are
mainly investigated for their ability to produce filigree structures at moderate building
rates [2,3]. The latter aspect highlights the main drawback of AM technologies: a tradeoff
between granularity and production speed prevails, eventually resulting in relatively high
production costs for most AM processes and parts. Therefore, so far only in small-series
productions, i.e., in aerospace and medical engineering, these technologies are widely
applied. Motivated by those industrial sectors, the nickel-based alloy In718, the stainless
steel 316L, and the titanium alloy Ti6Al4V have been in the focus of investigation. In all
cases, it has to be considered that, in AM parts, the resulting mechanical properties are often
different to conventional manufactured parts [4], so that structural integrity under given
loading conditions has to be addressed. On the one hand, process inherent high cooling
rates, amongst others, related to small melt pool sizes, are responsible for the change in
microstructure. On the other hand, process imperfections, such as pores and a high surface
roughness due to several reasons in PBF processing, e.g., lack of fusion, keyholing and melt
pool dynamics, result in early failure under cyclic loading [5]. Although these challenges
in AM appear in all alloy systems, the effects on the mechanical properties are dependent
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on the strength and ductility of the alloy in question [6]. Whereas, for instance, 316L shows
a relatively high defect tolerance [7,8] in spite of pores, Ti6Al4V is affected to a great extent
by roughness and porosities [9].

Ti6Al4V shows superior performance in many cases, making it the material of choice
for many industrial sectors. The high strength at low density, as well as a high corrosion
resistance, are appealing for aerospace engineering and automotive industries. Due to
its biocompatibility, it is also used as an implant material in medical engineering [10]. In
all of these sectors, abrasive behaviour is non-desirable and can result in damage with
serious consequences. Therefore, many studies [11–13] have focused on improving the
surface quality of additive manufactured parts, since additive manufactured structures
without any subsequent treatment are not to be considered ideal friction partners, due
to their porous surface. In most studies, the high surface roughness is decreased by sub-
tractive methods as turning and polishing [14–16] in order to enhance the mechanical and
tribological behaviour. For conventional manufactured parts, not only subtractive methods
but also further approaches such as thin-film coatings, often based on fluoropolymers, e.g.,
polytetrafluoroethylene (PTFE) [17] and their further modifications [18], are numerously
applied and mostly used to improve the frictional properties of metals. These significantly
enhance the frictional properties of metallic systems and are firmly established in the field
of dry lubrication and as coating layers for bearings and seals. At present, however, there
is not sufficient scientific understanding and practical experience, respectively, on the
application of polymer coatings to additively manufacture components and their perfor-
mance. Many coating systems in previous studies aim to improve corrosion resistance
and biocompatibility, e.g., hydroxyapatite [19,20] and silver-impregnated coatings [21].
Enrique et al. [22] showed an improved surface quality by electrospark deposition on
the surface. Nevertheless, the study revealed a tradeoff between high densities at the
surface and a good surface roughness. By coating with metallic materials, the improved
surface was mainly accompanied by chemical diffusion and a change in mechanical proper-
ties [22,23]. The main challenges in case of polymer-based layers are an even application of
the thin layers on the friction surfaces and the establishment of a sufficiently high adhesion,
i.e., bond quality, of the layer [24,25]. Obviously, these characteristics are dependent on
the additively manufactured structure being characterized by a distinct roughness and the
general appearance of the applied material.

In addition to coating, the overmoulding of additively manufactured components
is another means of applying a friction-optimized thermoplastic to a metallic surface.
Here, the difficulty lies in the adhesion of the two materials. There are several ways of
dealing with this issue: the use of an intermediate layer can be considered, using, e.g.,
thermoplastic elastomers (TPE) [26], as well as the use of a bonding agent between metal
and plastic layer [27]. Alternatively, mechanical interlocking can be promoted [28]. In any
case, advantageous properties can arise from the overmoulding, i.e., the application of an
even and thin plastic layer to the metallic surface.

In this paper, additively manufactured Ti6Al4V inserts of various thicknesses are
overmoulded with differently filled polyoxymethylene (POM) materials. POM is used
as a classic injection moulding material in gear-wheel applications, as well as in sliding
components [29]. As an alternative to PTFE, two different POM materials are used in the
present work, which were specifically modified to improve tribological properties. The
considered titanium inserts differ in their surface roughness, due to their different building
directions. It is shown that the roughness can be used to specifically improve adhesion.
Even if the values do not reach the degree of mechanical interlocking that is achieved upon
laser texturing [30,31] or by inserting defined micro-structures [32], the building direction
and the resulting roughness have a major influence on the bond strength [33]. In order
to evaluate the adhesion between plastic and metal, the interface is assessed by optical
microscopy and the peeling resistance is studied using peeling tests. In addition to the
building direction of the titanium inserts, being related to the resulting roughness, the
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influence of the layer thickness of the polymer directly set by the overmoulding process
was considered and the final properties were found to be effective.

2. Experimental Methods
2.1. Materials
2.1.1. Additively Manufactured Titanium Inserts

For manufacturing of the titanium inserts, commercial Ti6Al4V powder was used.
The powder, which is distributed by Arcam AB (Mölndal, Sweden), is gas atomized with
an particle size range of 45 to 100 µm [34,35]. Its nominal chemical composition is provided
in Table 1.

Table 1. Nominal chemical specification of powders distributed by Arcam AB [34].

Al V C Fe O N H Ti

6.0% 4.0% 0.03% 0.1% 0.10% 0.01% <0.003% Bal.

The samples were built on supports using an EBM system Arcam A2X (Arcam AB,
Mölndal, Sweden). The basic machine settings were set to an accelerating voltage of 60 kV
and a current of 15 mA. The beam had a focus offset of 3 mA. The scanning speed was
4530 mm/s with a hatch of 0.1 mm. The powder was deposited with a thickness of 50 µm.
Meandering scanning was rotated for every layer by 90◦. The EBM process took place
under high vacuum at an elevated temperature of about 700 ◦C.

The additively manufactured titanium inserts were built with two different angles,
relative to the building direction (BD), see Figure 1.
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Figure 1. Sample geometry of the titanium inserts with W = width, L = length, T = thickness:
(a) samples built parallel to the building direction; (b) samples built with a tilt angle of 70◦ with
respect to the platform.

The width (W) of the inserts was 60 mm, while samples were 72 mm in length (L).
The thicknesses (T) of the samples were set to 6.8 mm and 7.3 mm, respectively. Half of
all samples were manufactured perpendicular to the base plate, while the other samples
were manufactured at an angle of 70◦. The two different tilt angles directly promoted a
different roughness on the titanium insert side surfaces [36–39]. Due to the tilt angle of
70◦, build-up occurred in a staircase-like manner. Every subsequent discrete layer is built
with an offset to the previous one. Therefore, an up-skin and a down-skin evolves. The
up-skin shows defined steps, whereas the down-skin is characterized by the melt-induced
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infiltration of the sintered powder of the underlying powder bed, eventually forming a
non-specific surface roughness.

The surface texture and roughness were determined for each side of the additively
manufactured Ti6Al4V inserts based on the profile method, using tactile Surftest SJ-210
(Mitutoyo Corp., Kawasaki, Japan), according to DIN EN ISO 4288:1997. For each of the two
different thicknesses of the titanium inserts, three samples were probed. Five individual
gauge sections with a length of 0.8 mm each were evaluated.

2.1.2. Thermoplastics Used for Overmoulding

Two different POM types, distributed by Albis Plastic GmbH (Hamburg, Germany),
were used for overmoulding the titanium inserts: a POM copolymer with 10 wt.% aramid
and 10 wt.% PTFE particles (ALCOM POM 770/1 AR10 PTFE10) and a POM copolymer
with less than 5 wt.% special filler for improved sliding friction and wear optimization
(ALCOM POM 770/1 SLBV).

To characterize the flow behaviour, the melt flow rate (MFR) was determined according
to DIN EN ISO 1133-1:2011 at 220 ◦C and 230 ◦C as well as 2.16 kg test load. The melt flow
rate indicates the amount of material that flows through a capillary with defined dimensions
in 10 min at a specific pressure and temperature. Due to the simplistic measuring principle,
reduced shear rates in comparison to normal processing conditions can be assumed. The
results are shown in Table 2.

Table 2. MFR at different test temperatures.

Thermoplastic Material

Test Temperature/Test Load

220 ◦C/2.16 kg 230 ◦C/2.16 kg

MFR
(g/10 min)

Standard Deviation
(g/10 min)

MFR
(g/10 min)

Standard Deviation
(g/10 min)

POM AR10 PTFE10 7.68 0.0804 10.56 0.1609

POM SLBV 11.93 0.0420 15.24 0.0565

According to the results, type POM AR10 PTFE10 was processed at a higher injection
moulding temperature of 230 ◦C due to the different filling concept, whereas type POM
SLBV was processed at 220 ◦C.

The mechanical properties of both thermoplastic materials were determined by ten-
sile tests, according to DIN EN ISO 527-1:2019 (type 1A) and three-point bending tests,
according to DIN EN ISO 178:2017, using a universal testing machine, Zwick Z010 (Zwick
Roell, Ulm, Germany). The tests were performed at different test speeds (5 mm/min and
10 mm/min) under displacement control.

2.2. Injection Moulding Process

The titanium inserts were overmoulded with the thermoplastic material on the injec-
tion moulding machine Allrounder 320C Golden Edition (Arburg, Lossburg, Germany).
The material was dried using the dry air dryer TORO-systems TR-Dry-Jet Easy 15 (GfK
Thomas Jakob und Robert Krämer GbR, Igensdorf, Germany) at 110 ◦C for 2 h before pro-
cessing. The injection mould is designed for plates with a dimension of 72 × 72 × 10 mm3

and a film gate with dimensions of 80 × 10.5 × 5.5 mm3. An aluminium mould with a wall
thickness of 0.5 mm was placed into the cavity to prevent damage to the injection mould
induced by the titanium inserts, see Figure 2.

It also simplified the handling and positioning of the titanium inserts. The titanium
inserts were preheated in an oven at 100 ◦C to increase the bond strength between the
titanium insert and the plastic component, since preheating lowers the surface tension and,
thus, improves wetting [40]. Furthermore, by preheating the titanium inserts, the difference
between the linear thermal expansion coefficients and the difference between the shrinkage
of the plastic and the contraction of the metal is reduced as well. Eventually, this has a
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positive effect on the stress state at the interface [40]. After preheating, the titanium insert
was placed into the aluminium mould, see Figure 2. The temperatures and parameters
chosen for the overmoulding process are listed in Table 3. For the titanium inserts built at
an angle of 70◦, the surface with the lower roughness (up-skin) was overmoulded.
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Figure 2. Titanium insert placed within the aluminium mould; the insert was built at an angle of 90◦.

Table 3. Parameters used for overmoulding process.

Thermoplastic
Material

Mould
Temperature

Feeding
Section Zone 1 Zone 2 Zone 3 Zone 4 Zone 5

POM AR10 PTFE10 100 ◦C 50 ◦C 210 ◦C 215 ◦C 220 ◦C 225 ◦C 230 ◦C

POM SLBV 100 ◦C 50 ◦C 200 ◦C 205 ◦C 210 ◦C 215 ◦C 220 ◦C

Injection

Phase 1

Rate Pressure

(cm3/s) (bar)

40 900

Holding

Phase 1 Phase 2

Rate Pressure Time Rate Pressure Time

(cm3/s) (bar) (s) (cm3/s) (bar) (s)

50 700 0.5 50 700 15

Due to the fact that two different titanium inserts with thicknesses of 7.3 mm and
6.8 mm were overmoulded in a mould with a depth of 10 mm, the overmoulded plastic
layers had different thicknesses, i.e., 2.2 mm and 2.7 mm, respectively. When the results
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are finally evaluated, the thickness of the overmoulded plastic layer has to be taken into
account. The different layer thicknesses are highlighted by the sample notation 2.2 and 2.7.

2.3. Microscopy of the Interface

For microscopy, the interface regions of the overmoulded samples were separated in
the middle of the length side, shown in Figure 3, using a universal wet abrasive cut-off
machine, Brillant 255 (ATM Qness GmbH, Mammelzen, Germany). The cutting surface
was then ground and polished down to 1 µm. For the incident light microscopy, a VHX600
digital microscope from Keyence Deutschland GmbH (Neu-Isenburg, Germany) with a
Z100 objective was used. To compare the interfaces, images were always taken at the
same magnification.
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2.4. Peeling Test

A test setup based on the VDI guideline 2019:2016 [41] was designed to investigate
the peeling resistance of the plastic material on the titanium insert. The VDI guideline
2019:2016 [41] was originally designed for TPE materials to describe the bond strength of
TPE and a substrate material. The peeling test was chosen to be able to describe the bond
adhesion between two materials by means of investigation of the peel resistance. Other
conventional mode I fracture tests, such as ASTM D 5528, instead aim to investigate the
resistance of a single material to crack initiation.

In this case, the overmoulded samples were machined using the universal wet abrasive
cut-off machine (see Section 2.3) in such a way that the resulting samples had a width of
30 mm and a length of 60 mm. The overmoulded titanium inserts were mounted in the
universal testing machine, Z010 (Zwick GmbH & Co. KG, Ulm, Germany), as shown in
Figure 4.

The preload was 5 N and the test speed was 5 mm/min. The sample size per batch
was n = 3. The protruding tab of the sprue with a width of 7 mm was gripped with a
peel-off tool and the plastic layer was removed from the titanium insert. For composites
with a rigid and a flexible composite partner, a 90◦ arrangement is usually selected [42].
For this reason, care was taken during the machining and clamping of the overmoulded
samples to ensure that the plastic layer was peeled upwards at an angle of 90◦.

For evaluation, the force was determined during the whole test. In addition, the
peeling resistance WP (N/mm) was calculated from the ratio of the maximum force FM (N)
to the sample width b (mm):

Wp = FM/b (1)
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3. Results and Discussion
3.1. Characterisation of Relevant Properties of the Base Materials
3.1.1. Roughness of Ti6Al4V

The measurements of surface roughness were conducted in dependence of the building
direction. As was already mentioned, surfaces need to be distinguished between side
surfaces (parallel to the building direction) and surfaces facing upwards or downwards
(henceforth referred to as up-skin and down-skin, respectively). The samples built at
an angle of 90◦, featuring only side surfaces, revealed an average roughness values of
Ra ≈ 30 µm and Rq ≈ 36.9 µm on both sides of the samples. The samples with an
inclination angle of 70◦ are characterized by an up-skin as well as a down-skin surface with
different roughnesses. The roughness was measured as Ra ≈ 34.7 µm (Rq ≈ 41.9 µm) in
the case of the down-skin surface and Ra ≈ 20.1 µm (Rq ≈ 25.3 µm) for the up-skin surface.
Independent of the orientation, the roughness is high in comparison to conventionally
manufactured materials. This pronounced roughness is a characteristic and intrinsic
process-induced property of AM components. Its actual value is mainly related to the
initial powder size, process parameters and building direction. Focusing on the impact
of the powder characteristics, the following can be stated: in the case of EBM processing,
powder particles with a relatively large size of up to 150 µm are commonly used. Those
particles are only partially molten and adhered at the surface, leading to the rough surface.
Other powder bed fusion processes, e.g., selective laser melting, employ finer particle sizes,
eventually promoting a smoother surface finish [43]. Furthermore, the process of EBM
operates at elevated temperatures to sinter the powder before melting. Due to sintering
additional powder can adhere to the surface.

Safdar et al. [39] studied the surface roughness of EBM-manufactured parts as a
function of parameter and thickness. Upon increase of energy density, either by a change
in beam current or scan speed, the roughness of the surface was found to be higher. This
correlation was found in several studies, not only for EBM [44], but also for SLM [45].
However, in some studies focusing on SLM built parts, the roughness was reduced by
an increase in energy density due to an increase in laser power or a decrease in scan
speed [46,47]. Thus, an optimized parameter combination seems to prevail with respect to
improved surface quality. Further parameters, such as the hatching distance or focus offset,
are quite often not taken into consideration, although a high focus offset was shown to be
quite effective to reduce roughness [39,48]. It was further shown that the related process
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and part characteristics, e.g., the scan path length imposed by different geometries, can
affect the surface quality. In some studies, larger part dimensions resulted in a rougher
surface, although manufacturing was conducted using the same parameter settings [39].
In this regard, other studies indicate a contrary correlation [49]. In the present work, no
influence on roughness, induced by a change in part dimensions, was found, since the
difference in sample thickness was only marginal.

Especially in the case of different building directions, the adherence of the powder
particles significantly contributes to final roughness. Since inclined areas need to be built
by individual layers with a given layer thickness, the intended shape is approached by
a staircase-like structure. The size of the staircase is influenced by the layer thickness
and the build angle [50]. At the down-skin of the inclined surface the most pronounced
roughness develops [46,51]. In this case, the beam creates a melt pool on the surrounding
pre-sintered powder, the latter being characterized by spacing between individual particles.
In consequence, the liquid melt flows in those spaces, eventually binding individual
particles, finally leading to a high roughness. Due to the low stability of unmolten powder
in SLM processing, inclined surfaces are difficult to build with an angle below 45◦. The
up-skin is characterized by significantly lower roughness in AM processes. The melt pool
is created on material that already is solidified, with minimum contact to the surrounding
powder. Thus, roughness is mainly caused by individual characteristics of the melt beads.
Due to the different parameters used in literature, the roughness differs in most studies.
Nevertheless, the average roughness of the EBM-Ti6Al4V material, seen in present work, is
in good agreement with other studies reporting on the side surfaces, as well as up-skin and
down-skin [49,52]. The average roughness, in the literature, varies between 10 and 40 µm
in the case of the side surfaces. Since the present study focuses on the general adhesive
properties between titanium and the plastic layer, no further post-process improvement of
the surface was considered here. However, several studies show that a change in roughness
is possible, most probably allowing for additional adjustments of properties [53].

3.1.2. Mechanical Properties of POM AR10 PTFE10 and POM SLBV

In order to characterize the mechanical properties of the thermoplastic material used,
both tensile and bending samples were produced and examined in a tensile test according
to DIN EN ISO 527-1:2019 (type 1A), and in a three-point bending test according to DIN
EN ISO 178:2017.

The results of the tensile test are given in Table 4, the results of the bending test can
be taken from Table 5. The stress–strain diagrams are shown in Figures 5 and 6. Only one
exemplary and representative curve per batch is shown in the diagrams.

Table 4. Mechanical properties of the POM copolymers determined in a tensile test, according to DIN EN ISO 527-1 type 1A.

Thermo-Plastic
Material

Number of
Samples Test Speed

Mean Value
Tensile

Modulus
Maximum

Stress
Maximum

Strain
Stress at

Break
Strain at

BreakStandard
Deviation

(–) (mm/min) (MPa) (MPa) (%) (MPa) (%)

POM AR10
PTFE10

n = 5 5
x 2571.0 38.9 8.8 38.7 11.4

s 26.54 0.22 0.34 0.25 1.32

n = 5 10
x 2571.7 39.9 9.0 39.7 12.1

s 16.28 0.19 0.47 0.20 1.17

POM SLBV
n = 5 5

x 2617.4 55.7 9.8 51.5 32.6

s 16.78 0.18 0.32 1.01 7.65

n = 5 10
x 2623.7 56.5 10.4 52.4 34.9

s 11.06 0.21 0.29 1.22 7.86
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Table 5. Mechanical properties of the POM copolymers determined in a three-point bending test according to DIN EN ISO 178.

Thermo-Plastic
Material

Number of
Samples Test Speed

Mean Value
Flexural
Modulus

Maximum
Stress

Maximum
Strain

Stress at
Break

Strain at
BreakStandard

Deviation

(–) (mm/min) (MPa) (MPa) (%) (MPa) (%)

POM AR10
PTFE10

n = 5 5
x 2180.7 65.0 6.7 56.9 11.0

s 56.27 0.85 0.08 2.05 0.49

n = 5 10
x 2144.7 65.8 6.8 55.3 11.9

s 41.48 0.62 0.04 1.81 0.49

POM SLBV
n = 5 5

x 2188.1 79.9 7.4 70.9 11.4

s 34.52 0.51 0.07 0.94 0.18

n = 5 10
x 2220.8 81.6 7.5 73.5 11.1

s 11.62 1.07 0.03 0.96 0.02

The tensile test shows a tensile modulus of 2571 MPa for POM AR10 PTFE10 and
2617 MPa for POM SLBV. The maximum stress is 38.9 MPa for POM AR10 PTFE10 and
55.7 MPa for POM SLBV, while the maximum strain is 8.8% for POM AR10 PTFE10 and
9.8% for POM SLBV. The results at a test speed of 10 mm/min are slightly higher than at
5 mm/min. This can also be deduced from the stress–strain diagram in Figure 5.

As can be seen, the tensile test results show higher tensile modulus, tensile strength,
maximum stress, stress and strain at the break for the POM SLBV type, as compared to
POM AR10 PTFE10. The results, therefore, contradict the information given in the material
data sheet (status from 4 May 2017), where a tensile modulus of 2800 MPa for POM AR10
PTFE10 and 2400 MPa for POM SLBV is stated. The differences seen in the present work to
the results from the material data sheet may be due to the processing parameters used, or
due to the fact that the composite material becomes more brittle from a filling content of
10% [54].

The three-point bending test revealed a flexural modulus of 2180.7 MPa for POM
AR10 PTFE10 and 2188.1 MPa for POM SLBV. The maximum stress is 65 MPa for POM
AR10 PTFE10 and 79.9 MPa for POM SLBV, while the maximum strain shows 6.7% for
POM AR10 PTFE10 and 7.4% for POM SLBV. The results are, again, slightly higher for a
test speed of 10 mm/min; see Figure 6.
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3.2. Microscopy of the Interface

In Figures 7 and 8, micrographs of the interfaces of the titanium inserts with POM
AR10 PTFE10 and POM SLBV, respectively, are displayed. In both cases, the surfaces of the
titanium inserts differ due to the different building directions. Nevertheless, in the case of
both building directions (90◦ and 70◦), the penetration of the melt into the rough surface
structure is clearly seen.
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Due to the high weight fraction and the size of the particles in material type POM AR10
PTFE10, the distribution of the particles can be directly determined from the micrographs.
The large and bright dots depict the aramid particles, while the small and dark dots are
traces of the PTFE particles, compare Figure 7a,b. Obviously, no preferred orientation
of the particles can be seen in the images. Thus, no obvious distribution of the particles,
directly induced by the melt flow as it is known for glass fibre reinforced composites [54],
can be deduced.
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Clearly, no particles are apparent in Figure 8. This can be related to the lower filling
content and a smaller particle size in material type POM SLBV. An orientation of the
particles directly induced by the melt flow direction can, thus, not be revealed in Figure 8.

As can be deduced from the images shown in Figures 7 and 8, the melt does not
immediately spread over the entire rough surface of the titanium insert. It is assumed that
there are air inclusions between the plastic layer and the titanium insert, which may be
due to the fact that the titanium insert has not been sufficiently preheated, so that the local
plastic viscosity is lower. Therefore, in many spots, it is more difficult for the thermoplastic
material to penetrate the rough surface of the titanium insert [55].

3.3. Peeling Test

The peeling test is intended to provide for a quantitative statement on the adhesive
properties between the plastic layer and the titanium insert. For this purpose, Figure 9 sum-
marizes the experimentally determined results, depicting the force-displacement curves of
the Ti6Al4V inserts with the overmoulded POM AR10 PTFE10 and with the overmoulded
POM SLBV. For the sake of clarity, only one exemplary and representative curve per batch
is shown in the diagram.
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The diagram shows characteristic curves with regard to force-displacement relation-
ships. After a rapid increase in the pull-off force up to a displacement of around 2.7 mm,
the pull-off force progressively drops until the plastic layer is either peeled off to a certain
point or the plastic layer is fractured with a displacement of around 17 mm to 22.5 mm. As
can be seen in Figure 9, the samples in which the Ti6Al4V insert was built at an angle of
70◦ are characterized by a steeper force increase, regardless of the plastic material used.
This can be related to the roughness caused by the tilt angle and the undercuts promoted
by this distinct characteristic. The sample made of the material POM SLBV with an angle
of 70◦, and a plastic layer thickness of 2.2 mm, shows a curve that clearly deviates from the
other samples. The strong drop in force at a displacement of about 2.7 mm highlights the
tearing off of the plastic layer from the titanium insert. The higher stiffness of the POM
SLBV type, in combination with the 70◦ texturing of the titanium insert, and plastic layer
thickness of 2.2 mm, leads to a partial peeling off of the plastic layer. All samples produced
from this batch (with a sample size of n = 3) show this kind of peeling behaviour.

Figure 10 directly compares the peeling resistances of the different batches in order to
provide for an overview of the influence of the layer thickness (derived from the thickness
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of the inserts), the processing angle (respectively roughness) and the plastic type (different
filling concepts).
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As can be seen in Figure 10, the peeling resistance for material POM AR10 PTFE10
increases for both plastic layer thicknesses, i.e., the rougher the surface of the titanium insert
is (from 11.61 (+/−1.44) N/mm to 13.34 (+/−1.20) N/mm for a plastic layer thickness
of 2.2 mm and from 8.90 (+/−3.47) N/mm to 18.65 (+/−8.83) N/mm for a plastic layer
thickness of 2.7 mm). Similarly, for material POM SLBV, the peeling resistances for both
plastic layer thicknesses are higher when the surface of the titanium insert is rougher (from
16.94 (+/−11.84) N/mm to 28.12 (+/−4.29) N/mm for a plastic layer thickness of 2.2 mm
and from 10.62 (+/−2.05) N/mm to 11.75 (+/−5.09) N/mm for a plastic layer thickness of
2.7 mm). The POM SLBV samples built at an angle of 90◦, with a sample size per batch
of n = 3, have an outlier that was considered when calculating the standard deviation in
Figure 10. If this was excluded from the calculation, this material combination would show
an even lower peeling resistance than for samples built at an angle of 70◦. For this reason,
the outlier was considered in the calculation of the standard deviation, as the results are
consistent with the findings in the literature.

Basically, the following three observations can be made: it can be stated that material
type POM SLBV with a lower particle content and smaller particle sizes as well as a
different filling concept, especially with a plastic layer thickness of 2.2 mm, has a higher
peeling resistance than material type POM AR10 PTFE10, contrary to expectations. It
was assumed that a higher filling content leads to a stronger interfacial bond strength,
since additional force is required to break the polymer and particles [33]. In the samples
presented here, 10 wt.% PTFE particles are added in addition to 10 wt.% aramid fibres,
which is why the anti-adhesion properties are particularly distinctive, eventually leading
to a lower interfacial bond strength.

Furthermore, the samples built at an angle of 70◦ have a higher peeling resistance and
adhesive strength to those built at an angle of 90◦. This can be attributed to the building
direction of the samples, as shown in Figure 1. An increased roughness is obviously
beneficial for the adhesive behaviour.

In addition, the samples produced with a thickness of 6.8 mm are characterized by
an inferior peeling resistance, as compared to the 7.3 mm thick samples. This could be
attributed to the resulting layer thickness of the 2.7 mm plastic instead of the 2.2 mm plastic
for the titanium inserts manufactured with a thickness of 7.3 mm.

In most cases, the plastic layer did not peel off completely. Residues of Ti6Al4V powder
were found on the plastic layer. No distinction could be made between the different batches
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in terms of the proportion of remaining Ti6Al4V powder residues. Adhesive failure can
therefore be assumed in all cases.

4. Conclusions

Process-related challenges of the present test series were the even application of
thin, polymer-based layers on the friction surfaces of additively manufactured titanium
substrates and the promotion of a superior adhesion of the layer. Key factors are obviously
the most relevant characteristics of the additively manufactured structure, which show a
certain roughness, and the applied POM material, the latter being studied with different
filling concepts. The following conclusions can be drawn from the results obtained so far:

Different layer thicknesses of the plastic material can be realized. Care must be taken
to ensure that the titanium insert fits exactly into the aluminium insert, otherwise the
complete titanium insert will be overmoulded instead of solely the friction surface. To
intently set a higher roughness of the titanium inserts, these can be built at lower inclination
angles, e.g., in present work at an angle of 70◦.

The peeling tests revealed that both the surface roughness of the titanium inserts and
the different filling concepts of the POM material affect the final peeling resistance. The
samples built at an angle of 70◦ have a higher peeling resistance and adhesive strength than
those built at an angle of 90◦. Furthermore, the POM material with a lower particle content
and a different filling concept showed a higher peeling resistance in the peeling test.
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