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                            Abstract

We consider continuous time recurrent networks as dynamical models for simulation 
of human body motions. These networks consist of a few of centers and many 
satellites. The centers evolve in time as periodical oscillators with di�erent frequencies. 
The center states de�ne the satellite neuron state by a radial basis function (RBF) 
network. To simulate di�erent motions we adjust the parameter of the RBF networks.

Our network includes a switching module that allows to turn from a motion to 
another one. Simulations show that this model allows us to simulate complicated 
motions consisting of many di�erent dynamical primitives.

Throughout all thesis our main model is to consider continuous time Hop�eld-like 
recurrent networks as dynamical models for neural networks. We are interested in 
networks that contain n high-degree nodes preferably connected to a large number 
of Ns weakly connected satellites, a property that we call n/Ns-centrality. If the 
hub dynamics is slow, we obtain that the large time network dynamics is completely 
de�ned by the hub dynamics.

Moreover, such networks are maximally �exible and switchable, in the sense 
that they can switch from a globally attractive rest state to any structurally stable 
dynamics when the response time of a special controller hub is changed. In particular, 
we show that a decrease of the controller hub response time can lead to a sharp 
variation in the network attractor structure: we can obtain a set of new local 
attractors, whose number can increase exponentially with N , the total number of 
nodes of the nework.

These new attractors can be periodic or even chaotic. We provide an algorithm, 
which allows us to design networks with the desired switching properties, or to learn 
them from time series, by adjusting the interactions between hubs and satellites. 
Such switchable networks could be used as models for context dependent adaptation 
in functional genetics or as models for cognitive functions in neuroscience.

A fundamental di�culty that we encounter for other approaches when we try to 
identify the model by time-series is that we do not know true model. DMD is free of 
this di�culty and it is connected with Fourier analysis in a natural way, that allows 
us, in this thesis, use it to �nd main frequencies of human motion.

The DMD algorithm based on a singular value decomposition (SVD), has been 
established as a robust and powerful analysis tool, since SVD is realized in Matlab. 
The scope of its application was enlarged from �uid dynamics to many �elds, such 
as epidemiology, �nancial trading, and computer graphics.
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Chapter 1

Introduction

Networks of dynamically coupled elements have imposed themselves as models of
complex systems in physics, chemistry, biology and engineering (66). The most
studied propriety of networks is their topological structure. Structural features of
networks are usually de�ned by the distribution of the number of direct connections a
node has, or by various statistical properties of paths and circuits in the network (7).
An important structure related property of networks is their scale-freeness (47; 46;
7; 14) often invoked as a paradigm of self-organization and spontaneous emergence
of complex collective behaviour. In scale-free networks the fraction P (k) of nodes
in the network having k connections to other nodes (i.e. having degree k) can be
estimated for large values of k as P (k) ∼ k−γ, where γ is a parameter whose value
is typically in the range 2 < γ < 3 (7). In such networks, the degree is extremely
heterogeneous. In particular, there are strongly connected nodes that can be named
hubs, or centers. The hubs communicate to each other directly, or via a number
of weakly connected nodes. The weakly connected nodes that interact mainly with
hubs can be called satellites. Scale-free networks have also nodes of intermediate
connectivity. Networks that have only two types of nodes, strongly connected hubs
and weakly connected satellites are known as bimodal degree networks (90). Because
of the presence of a large number of hubs, scale-free or bimodal degree networks can
be called centralized. Centralized connectivity has been found by functional imaging
of brain activity in neuroscience (19), and also by large scale studies of the protein-
protein interactions or of the metabolic networks in functional genetics (47; 46).

The centralized architecture was shown to be important for many emergent
properties of networks. For instance, there has been a lot of interest in the resilience
of networks with respect to attacks that remove some of their components (8). It was
shown that networks with bimodal degree connectivity are resilient to simultaneous
targeted and random attacks (90), whereas scale-free networks are robust with
respect to random attacks, but sensitive to targeted attacks that are directed against
hubs (21; 12). For this reason, the term "robust-yet-fragile" was coined in relation
to scale-free networks (17). From a more dynamical perspective, a centralized
architecture facilitates communications between hubs, stabilizes hubs by making
them insensitive to noise (96; 95) and allows for hub synchronization even in the

1



2 CHAPTER 1. INTRODUCTION

absence of satellite synchronization (75; 74; 87).

Using these ideas that were successfully applied to genetics and ecology, we
consider continuous time recurrent networks of an analogous topological structure as
dynamical models for simulation of human body motions. These networks consist
of a few of centers and many satellites. The centers evolve in time as oscillators
with di�erent frequencies. The center states de�ne the satellite neuron state by a
radial basis function (RBF) network. To simulate di�erent motions we adjust the
parameter of the RBF networks. The network also includes a switching module that
allows to turn from one particular motion to another one. Due to this structure
our model can simulate a large class of di�erent motions with good accuracies,
which depend on the oscillator frequencies. For each motion, we adjust these
frequencies in order to obtain the best accuracy. Computations show that this
model allows to simulate complicated motions consisting of many di�erent dynamical
primitives. Note the dynamical primitive method also permits simulate relatively
simple motions, however, to describe complicated motions consisting of many di�erent
segments (which are themselves some elementary motions), DMP approximate each
segment and after we must glue together these approximations.

Our model allows us to simulate su�ciently long motions by only two oscillators.
However, in some hard cases (for example, if a motion consists of walking, running,
kicking, punching, and knee kicking) we also decompose the whole motion into 2-4
segments and then for each segment we adjust the corresponding oscillator frequency.
Then the application of our approximation algorithm allows to obtain automatically
an uniform and smooth approximation of the whole motion. In the most of cases,
it is su�cient to use 2− 3 oscillators and 100− 200 satellites.

Due to the network switching module we can use nonlinear oscillators and obtain
a global network that can simulate a large class of di�erent motions. So, one can
assume that the motion of many animals can be controlled by networks of the
same universal structure, and those ones consist of a few of oscillating centers and
a hundred satellites. Note that the interaction between satellites and centers is
organized according to the old Rome principle: "divide and rule", i.e., centers act
on satellites and vice versa, but the satellites do not interact. We measure the state
of a system (which should be identify) using a set of scalar observables, which are
functions de�ned on state space. The values of these functions evolve in time. If the
set of observations is large enough, one can try to �nd a model for the dynamics of
the set of observations, and use this model system instead the original one.

Let us compare the approach based on centralized networks, proposed in this
present thesis, and the classical method of Dynamic Motion Primitives (DMP), see,
for example, (49) and (86).

To this end let us describe �rst the DMP method. Using dynamical systems
theory (80), we use, in this thesis, systems of coupled nonlinear di�erential equations.
Such approach is motivated by the fact that those systems are capable to form
complex coordinated patterns. Among the many di�erent forms of nonlinear systems
(e.g., high-dimensional, weakly coupled, strongly coupled, chaotic, Hamiltonian,
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dissipative), we use low-dimensional nonlinear systems, following the models phenomena
of motor coordination (Kelso, 1995; Thelen and Smith, 1994). In this domain,
there exists di�erent approaches. The most known is Dynamical Primitive Model
(DMP). The seminal work of Ijspeert et al. (5), (41) introduced the idea of Dynamic
Movement Primitives (DMPs), which are primitives of motions. This model was
applied for di�erent motions such as bipedal locomotion or reach-and-grasp in arm
movement. Moreover, motion primitives were applied to encode complex movements
for robots and especially for humanoid robots. For example, rhythmic (e.g. walking)
motions can be represented with DMPs as well as . multi-dimensional coordinated
behaviors. Moreover, DMPs are used as compact motion representations for many
other applications (5), (41), (26), (30), (71). Also rhythmic DMPs are studied (41),
(45), (2) and an attention has also been given on Central Pattern Generators (CPGs)
in locomotion control. This concept comes from animal locomotion, where CPGs
are neural networks (32), (3), (55). From that point of view, rhythmic DMPs can
be considered as a variant of a CPG.

Note that for any motions there is a connection between the transient part and
the periodic movement and that there can be multiple transients, we would like to
have a system of dynamcial equations that is able to simulate dii�erent periodic
patterns and transitions between them. To this end, we use linear ad nonlinear
oscillators.

Nonlinear oscillators can be appleid in di�erent �elds of engineering (31), natural
phenomena and control (31; 37; 51; 4). An interesting problem is how to design
oscillators with desired limit cycle shapes (4).

In this thesis, we use the following basic property of simple nonlinear oscillators:
depending on a control parameter, they can generate oscillations with di�erent
frequencies. This property allows to show that, to model motions of humanodi
robots, it is su�cient to have a few of nonlinear oscillators plus a network of radial
basic functions.

The both approaches use the same general representation, which, following (49),
we write down as follows (see eqs (1), (2) in (49)):

ds/dt = Canonical(t, s), (1.0.1)

dy/dt = Transform(t, y) + Perturbation(s). (1.0.2)

The �rst equation is a time dependent dynamical system, the second one describes
a transformation of trajectories of that dynamical system to desired trajectories
y(t). Note that the term P (s) = Perturbation(s) should be adapted to induce a
desired behaviour in the system, i.e., reproduce a give trajectory (49). So, A DMP
consists of two parts: the canonical system and the transformation system. While
the canonical system is the DMP in time, the transformation system is the link
between this DMP state and the robot. The transformation system can be easily
adapted to a desired trajectory, i.e. by solving a standard regression problem. The
canonical system determines the type of attractor which can be either discrete or
periodic (49).
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The DMP method uses P (s) to attain the twofold goal: to represent trajectories
tending to rest points and periodic trajectories. In fact, roughly speaking dynamics
of any dissipative systems reduces to some transient trajectories and motions on
local attractors. However, it is not so simple to represent simultaneuously transient
dynamics as it was mentioned in (49). To attain this goal, we must use su�ciently
sophisticated formulas for P (s), which are based mainly on RBF (radial basis
functions) and the fact, that RBF's are universal approximators.

In our centralized network approach, we use the same transformation system
(1.0.2). However, we add a new idea in representation of canonical part (1.0.1). It is
well known that many motions generated by dissipative systems consist of slow and
fast components. Fast components can describe, for example, transient trajectories
while slow components correspond to motions on local attractors. To represent such
complex dynamics we can nonetheless use systems of oscillators (83).

In particular, in our approach we use usually two oscillators, one of higher
frequency and another of low frequency, although one can take 3 and more oscillators
for complicated target motions. This idea works e�ectively: we sharply simplify
complicated formulas suggested in (86) and all transformation system takes the
feedback form:

y = Perturbation(s). (1.0.3)

Another important question concerning networks is how to push their dynamics
from one region of the phase space to another or from one type of behaviour to
another, brie�y how to control the network dynamics (59; 88; 65; 23; 82; 73; 48; 72;
29; 102). Several authors used Kalman's results for linear systems to understand
how network structure in�uences network dynamics controllability, and in particular
how to choose the control nodes (59; 65; 23). As pointed out by (63; 56) several
di�culties occur when one tries to apply these general results to real networks.
Even for linear networks, the control of trajectories is nonlocal (88) and shortcuts
are rarely allowed. As a result, even small changes of the network state may ask
for control signals of large amplitude and energy (100). The control of nonlinear
networks is even more di�cult and in this case we have no general results. Nonlinear
networks can have several co-existing attractors and it is interesting to �nd out how
to push the state of the network from one attractor basin to another. The ability of
networks to change attractor under the e�ect of targeted perturbations can be called
switchability. In relation to this, the paper (76) has introduced the terminology
"stable yet switchable" (76) meaning that the network remains stable given a context
and is able to reach another stable state when a stimulus indicates a change of
the context. It was shown, by numerical simulations, that centralized networks
with bimodal degree distribution are more prone to (76) behavior than scale-free
networks (76). Switchability is important for practical reasons, for instance in drug
design. In such applications, one uses pharmaceutical action on nodes to push
a network that functions in a pathological attractor (such pathological attractors
were discussed in relation to cancer (36) or neurological disorders (85; 27)) to a
healthy functioning mode, characterized by a di�erent attractor. Numerical methods
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to study switchability of linear (99) and nonlinear (22) networks were discussed
in relation with drug design in cancer research. In theoretical biology, network
switchability can be important for mathematical theories of genetic adaptation (67).
If one looks at organisms as complex systems and model them by networks, then
adaptation to changes in the environment can be described as switching the network
from one attractor to another one with a higher �tness (67). An important question
that is often asked with respect to tuning network dynamics is how many driver
nodes are needed to control that dynamics. For linear networks, it was shown that
this number is large if we aim to obtain a total control, which allows us to switch the
network between any pair of states. This number can be as high as 80% for molecular
regulatory networks (60). This fact, as emphasized in (99), contradicts empirical
results about cellular reprogramming and about adaptive evolution. Much less nodes
are needed if instead of full controlability one wants switching between speci�c pairs
of unexpected and desired states (99). This concept, named �transittability� in (99),
is very similar to our switchability, but was studied only for linear systems.

In this thesis, we study dynamical properties of large nonlinear networks with
centralized architecture. We consider continuous time versions of the Hop�eld model
of recurrent neural networks (34) with a large number N of neurons. The Hop�eld
model is based on the two-states McCullogh and Pitts formal neuron and uses
symmetrical weight matrices to specify interactions between neurons. Like to the
Hop�eld version, we use a thresholding function to describe switching between the
two neuron states, active and inactive. However, contrary to the original Hop�eld
version, we do not impose symmetrical interactions between neurons, in other words
our weight matrix is not necessarily symmetric. This model has been successfully
used to describe associative memories (34), neural computation (35; 62), disordered
systems in statistical physics (89), neural activity (58; 27) and also to investigate
space-time dynamics of gene networks in molecular biology (98). The choice of
such type of dynamics is motivated by the existence of universal approximation
results for multilayered perceptrons (see, for example, (13)). In particular, we have
shown elsewhere that networks with Hop�eld-type dynamics can approximate any
structurally stable dynamics, including reaction-di�usion biochemical networks also
largely used in biology (95).

Our aim is to study analytically the ability of a network with centralized architecture
to be switchable. We employ a special notion of centrality. Many biological networks
exhibit so-called dissortative mixing, i.e., high-degree nodes are preferably connected
to low-degree nodes (50). We will consider networks with n strongly connected hubs.
We also assume that each hub is under the action of at least Ns weakly connected
satellites, that on turn receive actions from all the hubs. For large networks, Ns

increases at least as fast as a power of N , Ns > c0N
θ where c0 > 0, 0 < θ < 1 are

constants and N is the total number of nodes. We call this property n/Ns-centrality.
This network architecture ensures a large number of feed-back loops that produce
complex dynamics. Furthermore, the dissortative connectivity implies functional
heterogeneity of the hubs and satellites. The hubs play the role of controllers and
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the satellites sustain the feedback loops needed for attractor multiplicity. The large
number of satellites guarantees a su�cient �exibility of the network dynamics and
also bu�er the perturbations transmitted to the hubs. This principle applies well
to gene networks. The hubs in such networks can be the transcription factors,
which are stabilized by numerous interactions with non-coding RNAs that represent
the satellites (57). In addition to structural conditions, we will consider a special
correlation between time scales and connectivity of the nodes: the hubs have slow
response, whereas the satellites respond rapidly. This condition is natural for many
real networks. The hubs have to cope with multiple tasks, therefore they must have
more complex interaction than the satellites. Consequently, the hubs need more
resources to be produced, decomposed, and react with other nodes, therefore their
dynamics is slow. This property is obvious for gene networks, where transcription
factors are complex proteins, much larger and more stable than the non-coding
RNAs.

Our �rst result is valid without conditions on the structure and depends only on
the condition on the timescales. We assume that there exist n << N slow nodes,
whereas all the remaining ones are fast. Then, the dynamics of the network can be
reduced to n variables. We prove the existence of an inertial manifold of dimension n,
which completely captures all network dynamics for large times. We recall that the
fundamental concept of inertial manifold was introduced for in�nite dimensional and
multidimensional systems. The inertial manifolds are globally attracting invariant
ones (92). The large time dynamics of a system possessing an inertial manifold, is
de�ned by a smooth vector �eld F of relatively small dimension, so-called inertial
form. All attractors lie on inertial manifold (92).

The second result holds under the structural assumption that the network is
n/Ns-central. Under this condition, we show that the inertial forms F obtained
from such networks are dense in the set of all smooth vector �elds of dimension n.
This implies that given a certain combination of attractors de�ned by vector �elds
Qi we can construct a centralized network that exhibits a combination of attractors
that is topologically equivalent to the one given dynamics. Furthermore, we show
that n/Ns-central networks can exhibit "maximal switchability". By changing a
control parameter ξ, which determines the response time of a single network hub
(�controller" hub), we can sharply change the network attractor. For instance we
can switch from a situation when the network has a single rest point for ξ > ξ0 to a
situation when the network has a complicated global attractor for ξ < ξ0, including
a number of local attractors, which may be periodic or chaotic. The network state
tends to the corresponding local attractor depending on the initial state of the control
hub. This result shows in an analytical and rigorous way how nonlinear networks
can be switched by only one control node. The possibility of switching nonlinear
networks by a small number of nodes is crucial in theories of genetic adaptation.
Indeed, phenomenological theories predict and empirical data con�rm that the main
part of the adaptive evolution process consists in only a few mutations producing
large �tness changes (67).
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Our third result proves, in an analytical way, that the number of rest point local
attractors (and therefore the network capacity) of n/Ns-central networks may be
exponentially large in the number of nodes.

We also describe a constructive algorithm, which allows us to obtain a centralized
network that performs a prescribed inertial dynamics and the desired switching
properties of the network.
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Chapter 2

Networks with complex behaviour

and their applications

2.1 Centralized networks for elementary human motions

Let us assume that the networks consist of n centers with the states qi, and a number
of satellites with states Xj, Yj, Zj, where j = 1, ..., N >> n. In the simplest case,
when we approximate a single relatively simple motion, the time evolutions of the
center states are governed by harmonic oscillator equation:

d2qi
dt2

+ ω2
i qi = 0, i = 1, . . . , n, (2.1.1)

where qi is the coordinate of i-th oscillator, ωi is the frequency of that oscillator,
and n is the number of oscillators. Often even two oscillators n = 2 provide a
good accuracy but for more complicated motions one can take n ∈ {3, 4, 5}. Let
q(t) = (q1, . . . , qn) be the vector of the oscillator states, depending on time t, and
xk(t) are output coordinates (here x1(t) = X(t), x2(T ) = Y (t), x3(t) = Z(t)).

The centers are connected with N output coordinates xk by a network:

xk =
Nm∑
j=1

WkjΦj(q, b) (2.1.2)

where xk is the k-th coordinate on the body, k = 1, . . . , N , the functions Φj form
a basis in the space L2([−X0, X0], where X0 is characteristic maximal amplitude of
motion for j-th point, and b is a parameter and Nm the number of basic functions.
The matrix entry Wkj describes the action of the node j on xk. Note that (2.6.1)
de�nes a straight forward network that maps the center states qi into the output
coordinate xk by a Nm hidden neurons (satellites), and therefore, there are no
interactions between satellites.

There are possible di�erent choices of Φj. For example, we can consider the
following cases.

9
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A Harmonic basis. Here we assume that

Φj(q, b) = cos(ωjq), (2.1.3)

where ω = b is a frequency.

B System of radial basic functions.

For the case where a motion consists of many segnemts and we observe sharp
transitions between those segments, we can use radial basis functions

Φj = φ(b|q − q̄(j)|), j = 1, . . . , Nm, (2.1.4)

where φ is a �xed function, b is a sharpness parameter, the q̄(j) is the vector
of centers of radial basis functions with components q̄(j) = (q̄

(j)
1 , . . . , q̄

(j)
n ) and

|z| denotes the Euclidian norm of the vector z: |z| =
√∑n

i=1 z
2
i . We assume

that the radial basic function φ(|z|) is well localized at z = 0 and smooth. For
example, we can take a gaussian

φ(|z|) = exp(−|z|2/2).

C Polynomial basis.

Here we take
Φ(j, q, b) = qj−1, j = 1, . . . , Nm. (2.1.5)

The basis B has an important advantage: the radial basic functions provide
local approximations that is important to approximate complicated motions
with sharp transitions.

To make switching in the network, we will also use the sigmoidal functions
σ.They are increasing and smooth (at least twice di�erentiable) functions such
that

σ(−∞) = 0, σ(+∞) = 1, σ
′
(z) > 0. (2.1.6)

Typical examples can be given by

σ(h) =
1

1 + exp(−h)
, σ(h) =

1

2

(
h√

1 + h2
+ 1

)
. (2.1.7)

The structure of interactions between centers and coordinates xi can be described
by Fig 2.10.

2.1.1 Centralized networks generating a large class of human body motions

To approximate di�erent motions by a single network, we should have a possibility
to change the frequencies and coe�cients Wkj.

The main idea is as follows. Each motion can approximated by a network
described in the previous subsection, with adjusted frequencies ωi and appropriated
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w1

w2

w3

q1

w4

w5

w6

q2

x1

Figure 2.1: This image shows control of one of x-coordinates of human body motions by a networks
consisting of two oscillators (v1, v2) and a RBF networks with N = 6 nodes. The graph consists of 8
nodes denoted by v1, v2, w1, w2, w3, w4, w5, w6. Each node wi corresponds to a contribution of a radial
basis function Φ(q − q̄(j)). The nodes v1, v2 is the set of centers C and they a�ect wi. In turn, the nodes
wi determine the output coordinate x1.

coe�cients Wkj. We can use nonlinear oscillators to obtain all possible frequencies.
For example, one can use a model described below. Consider networks consisting of
n centers, which evolve as nonlinear oscillators:

d2qi
dt2

+ zcf(qi) = 0, i = 1, . . . , n, (2.1.8)

where qi is the coordinate of i-th oscillator, and f(q) is a nonlinear function, zc is
a control paremeter. (One can take, for instance, f = sin(q) or f = aq − bq3). We
assume that

qi(0) = 0, pi(0) = p0, p(t) =
dq

dt
,

where p0 is a �xed number. Solutions of (2.1.8) are periodic functions of time, with
the period T (zc) and the frequency ω(zc) = 2π/T . It can be found by the motion
integral of eq. (2.1.8)

Ei =
1

2
(dqit)

2 + zcF (qi),

where F is the antiderivative of f : f(q) = dFq.
Consider a set of human motions characterized by a set of coordinates x(j)

1 , . . . , x
(j)
N ,

where the upper index j corresponds to a particular motion. Each motion can be
described by the model (2.1.1) and (2.6.1) with corresponding frequencies ω(j)

i and
coe�cients W (j)

kl .
A switching between the di�erent motions can be performed by a choice of control

parameters zc = z
(j)
c . We can take z(j)

c = z0 + (j − 1)∆z, where j = 1, . . . ,M .
By the switching module (which is described in the next subsection) we �nd a

network subsystem, which has z(j)
c as local attractors. Then we can construct maps
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zc → ω1(z), . . . , ωn(z) and zc → Wkl(zc) such that

ω
(j)
l = ω(z(j)

c ) (2.1.9)

W
(j)
li = Wki(z

(j)
c ), (2.1.10)

So, our global model for human locomotion consists of

1. a system of n nonlinear oscillators (2.1.8) with the control parameter zc;

2. a RBF network de�ned by (2.6.1);

3. maps (2.1.9) and (2.1.10);

4. a switching module that is a network with M + 1 nodes, where M the number
of di�erent motions.

In the next section we describe the switching module.

2.2 Switching module

Ideas behind construction. Before stating a formal statement, we present a brief
outline, which describes main ideas of the proof and the architecture of the switchable
network. The network consists of two modules. The �rst module is a generating
one and it is a centralized neural network with n centers q1, . . . , qn and satellites
x1, . . . , xN . The second module consists of a center vn+1 = z and m satellites
w̃1, . . . , w̃m. The satellites from this module interact only with the module center
z, i.e., in this module the interactions can be described by a distar graph. Only
the center of the second module interacts with the neurons of the �rst (generating)
module. We refer to the second module as a switching one. This architecture is
shown on Fig. 2.11.

For the switching module the corresponding di�erential equations have the following
form. Let us consider a distar interaction motif, where a node z is connected in
both directions with m nodes w̃1, . . . , w̃m. By such notation the equations for the
switching module can be written down in the form

dw̃i
dt

= σ
(
b̃iz − h̃i

)
− κ−1w̃i, (2.2.1)

dz

dt
= σ

κ−1

m∑
j=1

ãjw̃j − h

− ξλ̄z, (2.2.2)

where i = 1, . . . ,m and b̃i, ãj, λ̄ > 0.
To describe a mathematical idea how the switching module works, let us consider

the system of the di�erential equations

dv

dt
= Q(v, z), v = (v1, . . . , v2n) (2.2.3)
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where z is a real control parameter. Let z1, . . . , zm+1 be some values of this parameter.
We �nd a vector �eld Q such that for z = zl, where l = 1, . . . ,m, the dynamics
de�ned by (2.12.12) has the prescribed dynamics. For example, we can set n = 2
and

v1 = q, v2 = p =
dq

dt
,

and

Q = v2,
dv2

dt
= zcf(v1)

that gives (2.1.8).
For the switching module we adjust the center-satellite interactions and the center

response time parameter ξ in such a way that for a set of values ξ the switching
module has the dynamics of system (2.12.8),(2.12.9) with m di�erent rest points
z = z1, z2, . . . , zm+1 and for su�ciently large ξ system (2.12.8) and (2.12.9) has a
single equilibrium close to z1 = 0. Existence of such a choice will be shown in coming
lemma 2.12.2.

Lemma 2.2.1 Let m be a positive integer and β ∈ (0, 1). For su�ciently small

κ > 0 there exist āj, bi, h̃i, h such that
i for an open interval of values ξ system (2.12.8),(2.12.9) has m stable hyperbolic

rest points zj ∈ (j − 1 + β, j + β), where j = 1, . . . ,m;
ii for ξ > ξ0 > 0 system (2.12.8),(2.12.9) has a single stable hyperbolic rest point.

Proof. Let h = 0. To �nd equilibria z, we set dw̃i/dt = 0, and express w̃i via z.
Then we obtain the following equation for the rest points z:

ξz = σ

 m∑
j=1

ãjσ
(
b̃jz − h̃j

) . (2.2.4)

For especially adjusted parameters eq. (2.12.13) has at least m solutions, which give
stable equilibria of system (2.12.8),(2.12.9). To show it, we assume that 0 < κ� 1,
b̃j = b̃ = κ−1/2 and h̃j = b̃µj, where µj = j − 1 + β. We obtain then

V (ξz) =
m∑
j=1

σ(b̃(z − µj)) +O(κ) = Fm(z, β, κ), (2.2.5)

where V (z) is a function inverse to σ(z) de�ned on (0, 1). Since b̃� 1 for small κ,
the plot of the function Fm is close to a stairway (see Fig. 3). Let

ξ = 1, ã1 = V (µ1) + κ, ãj = V (µj)− V (µj−1), j = 2, . . . ,m.

The intersections of the curve V (z) with the almost horizontal pieces of the plot of
Fm give us m stable equilibria of system (2.12.8),(2.12.9). These equilibria zj lie in
the corresponding intervals (j−1+β, j+β). For su�ciently large ξ we have a single
rest stable point z at 0. The lemma is proved.
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Figure 2.2: The intersections of the curve Fm(z, β, κ) and the curve
V (z) give equilibria of system (2.12.8),(2.12.9) for ξ = 1. Stable
equilibria correspond to the intersections of V with almost horizontal
pieces of the graph of Fm.

2.3 Outline of RBF modules

Networks of radial basis functions (RBF). In mathematical modeling the RBF network
is the arti�cial neural network using radial basis functions as activation functions.
An output of network represents a combination of radial basis functions of inputs
and neuron parameters. Application of such arti�cial neural network lies in the �eld
of forecasting of time series and other similar tasks. For the �rst time, they were
described in Brumkhed and Lowe's works in 1988.

The RBF networks, as a rule, has three layers: an input layer, the hidden layer
with nonlinear function of activation RBF and a linear output layer. The input can
be simulated by a vector of real numbers x ∈ Rn. An output of network is a scalar
function of an output vector ϕ : Rn → R, and it is de�ned by the following relation:
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ϕ(x) =
N∑
i=1

aiρ(||x− ci||),

where N is the number of neurons in the hidden layer, ci is a the central vector
for a neuron i, ai is neuron weight in i a linear output neuron. The vector ci de�nes
the location of the correspoding basis function. Functions, which depend only on
the distance between the central vector and an entry vector x are called radial basic
functions. In a RBF networks all inputs are connected to the hidden neuron.

Let us consider a concept of radial function more attentively. For de�nition of
radial basic functions (RBF) we can use di�erent relations, however, typically such
a function must be well localized at a certain point (center). Throughout this thesis
Gaussian functions will be used as RBF.

Remind that a normal distribution

ρ(x) = N(x, µ, σ) (2.3.1)

with a diagonal matrix of covariance and the mean µ = (µ1, µ2, ..., µn) can be written
down as follows:

ρ(x) = N exp(−d(x, µ)/2),

where N = (2π)−n/2(σ1...σn)−1 � a normalizing multiplier and dj(x, x′) � the
weigthed Euclidean metrics in an n-dimensional Euclidian space of X:

d(x, x′) =
n∑
d=1

σ−2
d |xd − x

′
d|2,

x = (x1, ..., xn), x′ = (x′1, ..., x
′
n).

As a distance d(x, µ) decreases, the value of density in a point x increases. Therefore
the density ρ(x) can be considered as a localized radial basis function.

RBF network were also applied to creation of the �lter of Kallman [62]. The
essence of work consists in use of the �lter with some additions for increase in speed
of preparation of information for processing of RBF by networks.

Also RBF networks are applied to recovery of images, which were defocused. The
partial solution of this problem is available in work [61]. Kallman's �lter, similar
to work [62], however, with di�erences as receiving and data processing was here
too used. In work [62] there was a training of the RBF neural network to use of
the �lter and assessment of parameter of a defocusing. Then, depending on value
of this parameter, Kallman's �lter with an illustration of his work and carrying out
comparison with other methods was used. Networks of the radial basis functions
(RBF) are applied not only to �ltering or approximation of di�erent functions of
several variables, but also for forecasting problems. Training of RBF networks
happens on algorithms, similar sigmoidal networks like a multilayer perseptron,
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however the di�erence consists in data processing methods in the �eld of local 
displays. em eta poslednay fraza voobshe not clear

Thus, an acceleration of neural networks training and simpli�cation of all structure 
of network in general is reached.

The important parameter of RBF networks is in�uence size. This parameter 
de�nes the steepness of function of activation of RBF of networks. The small size of 
in�uence will lead to a type of function with a small error of approximation and sharp 
changes of values that will cause problems in generalization and approximation of 
observation of a control set. Training of RBF networks has to happen in two stages, 
such as settings of the BF centers and training of neurons in the hidden layers that 
increases training speed.

Besides that RBF networks apply to approximation of the functions arising in 
various practical areas. For example, for forecasting of sales of air tickets the method 
of application of RBF networks shows satisfactory results [64].

In problems of �ltration of signals and images the existing approaches use neural 
networks, in particular, networks of radial basis functions (RBF networks) for removal 
of noise. Practical applications of these methods �nd the application in problems of 
improvement of quality of processing of the speech [69], and other areas.

2.4 Algorithm of construction of RBF network to generate
human body motions

2.4.1 Non-segmented motions

Simple motions can be handled as a whole, i.e., without any segmentation. Let us
�x the index j, i.e., consider a particular motion. Let t1, . . . tK be time moments
where we have data on human body coordinates Xj(t), Yj(t), Zj(t), where j is the
index of an optical marker on the body and the number of the markers is N , j =
1, ...N . All X, Y and Z are thus vectors with N components. Let ε(k, ω) be the L2-
approximation accuracy for x-component and k-th marker de�ned by

ε2
X(k, ω) =

K∑
m=1

(Xk(tm)− xk(q(tm), ω))2, (2.4.1)

where xk(q) are de�ned by (2.6.1). Similarly,

ε2
Y (k, ω) =

K∑
m=1

(Yk(tm)− yk(q(tm), ω))2, (2.4.2)

ε2
Z(k, ω) =

K∑
m=1

(Zk(tm)− zk(q(tm), ω))2, (2.4.3)
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The relative accuracies for X, Y, Z components are given by

ε2
r,X,ω(k) = ε2

X(k, ω)/
K∑
m=1

Xk(tm)2, (2.4.4)

ε2
r,Y,ω(k) = ε2

Y (k, ω)/
K∑
m=1

Yk(tm)2, (2.4.5)

ε2
r,Z,ω(k) = ε2

Z(k, ω)/
K∑
m=1

Zk(tm)2, (2.4.6)

respectively. Let us �x a k ∈ {1, 2, ..., N}, i.e. a marker on the human body. For a
set of frequency vector ω we compute the integral relative accuracy

εr,k(ω) =
√

(ε2
r,X,ω(k) + ε2

r,Y,ω(k) + ε2
r,Z,ω(k))/3.

Then we �nd a ω∗ such that ε(ω∗) be minimal:

ω∗ = argmin εr,k(ω).

The corresponding coe�cients Wkl can be found by the standard Matlab programs,
which approximate a target function by RBF networks. Here we use standard radial
basis functions of Gaussian type, where the sharpness parameter b can be adjusted
by trials and errors to minimize ε.

Numerical results show that the frequencies found for a particular motion by a
value of k (a speci�c marker choice) and giving a small εr,k can be applied to �nd
good approximations for all rest values of k, i.e., for all other markers.

2.4.2 Segmented motions

For complex motions it is hard to approximate uniformly a whole motion by a few
of neurons, sometimes such approximation is well anywhere except for a certain
interval. In fact, it is di�cult to expect that all parts of complicated motions
consisting of quite di�erent elementary submotions can be handled with the same
frequencies. However, we can use the segmentation. We then decompose the motion
in segments [Ti, Ti+1], where i = 1, ..., Nseg. For each segment we can determine
optimal frequencies as described above and compute the accuracies. The frequencies
optimization can be done by two ways. If the number of oscillators is small (say,
n = 1, 2), we can perform an exhaustive search over a uniform grid. For larger n
one can use a random search.

2.4.3 Using RBF networks together with DMD

In this section we consider application of Dynamical Mode Decomposition (DMD)
method of human body motion. We use the DMD method to compute frequensy
oscillators.
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Let us outline the DMD method brie�y. The application of DMD to a model 
system depends on our choice of variables (observables). The best situation arises 
if te model system to be governed by a linear evolution law. Then the dynamics 
would be completely determined by the spectrum of the evolution operator. In this 
case one can use simple and e�ective algorithms designed for linear systems, for 
example controller design (1; 11) or stability analysis (84; 78). Mathematically, the 
evolution of observables of the system state is governed by the Koopman operator 
(64; 40), which is a linear but unfortunately in�nite dimensional operator de�ned 
for an autonomous dynamical system. To overcome the di�culty conected with 
a large dimension of the Koopman operator, we make a dimension truancation. 
We introduce the slow subspace of the Koopman operator, which is the span of 
the eigenfunctions associated with eigenvalues near the unit circle in discrete time 
(or near the imaginary axis in continuous time) (44). The truncated slow dynamics 
captures the long term dynamics of observables and could serve as a low dimensional 
approximation of the otherwise in�nite dimensional Koopman operator. It is possible 
if there exists a spectral gap, which separates the fast and slow modes. In addition to 
the eigenvalues and eigenfunctions, the important element of DMD analysis is the set 
of Koopman modes for the full state observable (15; 40). It allows us to reconstruct 
the state of the system as a linear combination of the Koopman eigenfunctions.

DMD gives us : (a) transform state space so that it the dynamics appear to 
be linear, (b) allows to determine the temporal dynamics of the linear system, and 
(c) allows to reconstruct the state of the original system from our model linear 
representation.

Note that beside DMD, there are several algorithms in the literature that can 
compute a), b) and c). For example, there are Generalized Laplace analysis (GLA)
(GLA) (15; 54; 24), and the Ulam Galerkin Method (43; 79). These algotirhms do 
not require explicit governing equations, and thus they can be applied directly to 
data.

In this thesis, we prefer DMD because it is a powerful technique to isolate spatially 
coherent modes that oscillate at �xed frequencies (16; 68), thus it is relevant to 
describe data obtained by di�erent markers on human body within human motions. 
The DMD is a data-driven and equation-free method. When the data is generated 
by a nonlinear dynamical system, then the DMD modes are closely related to 
eigenvectors of the in�nite-dimensional Koopman operator (10; 16; 38). DMD has 
connections to the eigensystem realization algorithm (ERA) (9; 42; 103). Note that 
DMD was applied to describe �uid �ows (69; 70), shock turbulent boundary layers 
(61), and foreground/ background separation in videos (39).

Our Implementation of DMD

We use the algoritihm described in the book (44). The corresponding Matlab 
code is as follows:

This algorithm gives us the approximative eigenvalues λ of the Koopman operator.
The imaginary parts of those eigenvalues can be used as frequencies ωi in our
method. The simulations show that for simple motions it is su�cient to use 1, 2,
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Algorithm 1 Our Implementation of DMD

1: De�ne function[Φ, ω, λ, b,Xdmd,U, S, V, Ã] = DMDMine(X1, X2, r, dt);

2: De�ne [U, S, V ] = svd(X1,′ econ′);

3: De�ne r = min(r, size(U, 2));

4: De�ne Ur = U(:, 1 : r);

5: De�ne Sr = S(1 : r, 1 : r);

6: De�ne Vr = V (:, 1 : r);

7: Ã = U ′
r ∗X2 ∗ Vr/Sr;

8: [Wr, D] = eig(Ã);

9: Φ = X2 ∗ Vr/Sr ∗Wr;

10: λ = diag(D);

11: ω = log(λ)/dt;

12: Compute DMD mode amplitudes

13: x1 = X1(:, 1);

14: b = Φ x1;

15: CalculateDMD reconstruction

16: mm1 = size(X1, 2);

17: timedynamics = zeros(r,mm1);

18: t = (0 : mm1− 1) ∗ dt;

19: for 1 ≤ nm ≤ iter do

20: timedynamics(:, iter) = (b. ∗ exp(ω ∗ t(iter)));

21: Xdmd = Φ ∗ timedynamics;

22: Ã = ctranspose(U) ∗X2 ∗ V ∗ inv(S);
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or 3 frequencies. To obtain these frequencies by DMD, we should take a su�ciently 
large r, the number, which de�nes the size of matrix Ã and the number of main 
modes in DMD approach.

To use this algorithm we must form the array X. To form that array, we choose 
markers numerated by i1, i2, ..., ik, where the integer k ≥ r, the integer number 
M1, which de�nes the number of snapshots in time, T0.The integer T0 determines 
location of �rst snapshot. The code is as follows:
Algorithm 2

1: for 1 ≤ m ≤ 45− 5 do

2: load([[′X ′, num2str(m)],′ .mat′]);

3: load([[′Y ′, num2str(m)],′ .mat′]);

4: load([[′Z ′, num2str(m)],′ .mat′]);

5: Definefunction[X,Y,Xshift] = V akMorozDMD(Nmark, T0,M1, X1, X2, X3);

6: for 1 ≤ m ≤ 3 do

7: q = load([[′X ′, num2str(m)],′ .mat′]);

8: Y = eval([′X ′num2str(m)]);

9: for 1 ≤ 1 ≤M1 do

10: X(j, 1) = X1(j + T0);

11: X(j, 2) = X2(j + T0);

12: X(j, 3) = X3(j + T0);

13: Xshift(j, 1) = X1(j + 1 + T0);

14: Xshift(j, 2) = X2(j + 1 + T0);

15: Xshift(j, 3) = X3(j + 1 + T0);

16: X = transpose(X);

17: Xshift = transpose(Xshift);

In the previous part of the work, we used a combination of a linear model
of autoregression and a network of radial basis functions (RBF). The obtained
values after approximation are satisfactory in accuracy. In the calculations, an
automatic and manual method of selecting the frequency for the oscillators was
used. To test the theory of approximation by the DMD model, we performed
several numerical experiments and the obtained values allow us to conclude that
the proposed technique is e�ective.

To use centralized networks and RBF networks, we use �rst DMD to compute
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Table 2.1: Usind DMD model and two oscillators

epsX epsY epsZ om1 (1) om1(2)

X1. . . X8 0.0710 0.0692 0.0161 0.0026 0.0053

X8. . . X16 0.0630 0.0343 0.0174 0.0037 0.0011

X16. . . X24 0.0550 0.0171 0.0129 0.0046 0.0012

X24. . . X32 0.0237 0.0082 0.0179 0.0083 0.0016

X32. . . X40 0.0332 0.0205 0.0190 0.0050 0.0012

Y1. . . Y8 0.1384 0.2343 0.0268 0.0069 0.0036

Y8. . . Y16 0.0631 0.0392 0.0116 0.0060 0.0021

Y16. . . Y24 0.0261 0.1751 0.0090 0.0059 0.0022

Y24. . . Y32 0.2441 0.3479 0.0447 0.0100 0.0033

Y32. . . Y40 0.0292 0.1725 0.0087 0.0062 0.0024

Z1. . . Z8 0.1931 0.0949 0.0485 0.0044 0.0053

Z8. . . Z16 0.1093 0.1449 0.0304 0.0053 1.2312e-04

Z16. . . Z24 0.0806 0.1567 0.0126 0.0030 0.0053

Z24. . . Z32 0.1076 0.3083 0.0671 0.0154 0.0027

Z32. . . Z40 0.0445 0.1291 0.0309 0.0092 0.0028

frequencies. We used a set of programs that allows us to process values after using
DMD, the RBF networks.

The �rst set of simulations we used the frequencies of the oscillators obtained
on the basis of automatic selection, the parameter kdeg determines the number of
oscillators, for the �rst case, kdeg = 2.

The table shows the values after using the DMD model, where:

om (n) the frequencies of oscillators, n = 1,...,kdeg;

eps - error;

kdeg - number of oscillators.

Each group of points according to the coordinates X, Y, Z was divided into parts
consisting of 8 points. The value of the parameter "eps" after calculations show that
the error is within normal limits.

The second set of simulations also used the frequencies the oscillators obtained on
the basis of automatic selection. But in the second case, the number of oscillators
was increased to three. This allowed us to analyze the e�ect of the number of
oscillators on the value of "eps" - error.

In the table illustrating results of the second numerical experiment, the values of
the "eps" parameter also are within the normal range; however, for some values of
X, Y, Z, the error value is very small.
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Table 2.2: Usind DMD model and three oscillators

epsX epsY epsZ om1 (1) om1(2) om(3)

X1. . . X8 0.0060 0.0044 0.0047 0.0150 0.0058 0.0020

X8. . . X16 0.0537 0.0103 0.0092 0.0066 0.0035 0.0013

X16. . . X24 0.0043 0.0046 0.0055 0.0162 0.0041 0.0014

X24. . . X32 0.0201 0.0318 0.0069 0.0135 0.0103 8.5591e-04

X32. . . X40 0.0282 0.0251 0.0061 0.0180 0.0026 0.0060

Y1. . . Y8 0.0630 0.0073 0.0089 0.0086 0.0052 3.7883e-04

Y8. . . Y16 0.0117 0.0041 0.0065 0.0135 0.0043 0.0018

Y16. . . Y24 0.0258 0.0088 0.0084 0.0078 0.0037 0.0025

Y24. . . Y32 0.0091 0.0079 0.0074 0.0194 0.0058 0.0013

Y32. . . Y40 0.0088 0.0125 0.0065 0.0121 0.0077 0.0029

Z1. . . Z8 0.0117 0.0041 0.0065 0.0135 0.0103 8.5591e-04

Z8. . . Z16 0.0258 0.0088 0.0084 0.0180 0.0026 0.0060

Z16. . . Z24 0.0080 0.0069 0.0057 0.0140 0.0048 3.9582e-04

Z24. . . Z32 0.1896 0.4844 0.0496 0.0210 0.0135 1.9248e-04

Z32. . . Z40 0.1213 0.1905 0.0116 0.0255 0.0091 8.1062e-04

2.5 Numerical Results

For empiric tests we use the CMU Motion Capture Database (20). We use the
motions from family number 86, as these consist of sequences of several di�erent
motions performed by one actor subsequently, and hence have also been used as a
test suite for di�erent motion segmentation algorithms (see e.g.g (53) and references
therein).

We use markers on left and right heels and left and right wrists, as in general
from the position of these 4 markers even the full body motion can be reconstructed
quite well (91).

We have considered 3 motions. The �rst motion consists of jumps, kicks and
punches, the second one is walk, squats, run, stretch, jumps, punches, and drinking,
and the third one is composed by walking, running, kicking, punching, knee kicking,
and stretching.

The �rst motion is split in 4 segments [1, 1300], [1300, 2000], [2000, 3000], [3000,
4500], which were chosen visually by hand. Similarly, 2 and 3-th motions were
decomposed into segments [1, 1800], [1800, 2500], [2500, 4500]. The second motion is
particularly complicated and we used 3 oscillators and 100 neuron-satellites for each
segments, for 1 and 3 -th is su�cient to use 2 oscillator and 100 neurons.

All networks could be computed in less than 500 sec of CPU time (on a Laptop
Computer with 6 GB RAM and I5 Processor).
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Figure 2.3: An approximation of vertical coordinates z by 100
neurons and two oscillators of motion CMU 86 trial consisting
of jumps, kicks, and punches. The motion was segmented in 4
segments [1, 1300, 2000, 3000, 4500]. The relative integral accuracy
over all x, y, z components is 0.0510, 0.0080, 0.0104, 0.0247 for the
corresponding segments. a Left, top. x-coordinate for the right heel.
b Right, top. The left heel. c Left, bottom. x-coordinate for the right
wrist, distal. d Right, bottom. The left wrist, distal. (the red curve
shows the experimentally observed coordinates and the green curve
gives their neural approximations).

2.6 Networks with complex large time behaviour

2.6.1 Problem statement and main assumptions

We consider the Hop�eld-like networks de�ned by the following ordinary di�erential
equations

dui
dt

= σ(
N∑
j=1

Wijuj − hi)− λiui, (2.6.1)

where ui, hi and λi > 0, i = 1, ..., N are node activities, activation thresholds and
degradation coe�cients, respectively. The matrix entry Wij describes the action
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Figure 2.4: An approximation of vertical coordinates z by 100 neurons
and two oscillators of motion CMU 86 trial consisting of jumps, kicks,
and punches. a Left, top. x-coordinate for the right heel. b Right,
top. The left heel. c Left, bottom. x-coordinate for the right wrist,
distal. d Right, bottom. The left wrist, distal. (the red curve shows
the experimentally observed coordinates and the green curve gives their
neural approximations).

of the node j on the node i, which is an activation if Wij > 0 or a repression if
Wij < 0. Contrary to the original Hop�eld model, the interaction matrix W is not
necessarily symmetric. The function σ is an increasing and smooth (at least twice
di�erentiable) "sigmoidal" function such that

σ(−∞) = 0, σ(+∞) = 1, σ
′
(z) > 0. (2.6.2)

Typical examples can be given by

σ(h) =
1

1 + exp(−h)
, σ(h) =

1

2

(
h√

1 + h2
+ 1

)
. (2.6.3)

The structure of interactions in the model is de�ned by a weighted digraph
(V,E,W ) with the set V of nodes, the edge set E and weights Wij. The nodes
vj, j = 1..., N can be neurons or genes, depending on applications.
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Figure 2.5: An approximation of y-horizontal coordinates for a simple
non-segmented motion by 200 neurons and two oscillators. The
oscillator frequencies are 0.0025 and 0.0006. a Left, top. y-coordinate
for the right heel. b Right, top. The left heel. c Left, bottom. y-
coordinate for the right wrist, distal. d Right, bottom. The left wrist,
distal. (the red curves show the experimentally observed coordinates
and the blue ones are their neural approximations).

Assumption 1.
Assume that if Wji 6= 0, then (i, j) is an edge of the graph, (i, j) ∈ E. This means

that the i-th node can act on the j-th node only if it is prescribed by an edge of the
digraph (V,E,W ). We also suppose that (i, i) /∈ E, i.e., the nodes do not act on
themselves.

Assume that the digraph (V,E,W ) satis�es a condition, which is a variant of
the centrality property. This condition is a purely topological one and thus it is
independent on the weights Wij. To formulate this condition, we introduce a special
notation.

Let us consider a node vj. Let us denote by S∗(j) the set of all nodes, which act
on the neuron j:

S∗(j) = {vi ∈ V : edge (i, j) ∈ E}. (2.6.4)

For each set of nodes C ⊂ V we introduce the set S(C) of the nodes, which are under
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Figure 2.6: An approximation of z (vertical) coordinates by 200 neurons
and two oscillators for a simple non-segmented motion. The oscillator
frequencies are 0.0025 and 0.0006. a Left, top. z-coordinate for the
right heel. b Right, top. The left heel. c Left, bottom. z-coordinate
for the right wrist, distal. d Right, bottom. The left wrist, distal. (the
red curves show the experimentally observed coordinates and the blue
curves give their neural approximations).

action of all nodes from C and which are not belonging to C:

S(C) = {vi ∈ V : for each j ∈ C edge (j, i) ∈ E and vi /∈ C}. (2.6.5)

n/Ns-Centrality assumption. The graph (V,E,W ) is connected and there
exists a set of nodes C such that

i C consists of n nodes;
ii for each j ∈ C the intersection S∗(j) ∩ S(C) contains at least Ns nodes, where

Ns > c0N
θ with constants c0 > 0, θ ∈ (0, 1), which are independent of j and N .

The nodes from C can be interpreted as hubs (centers) and the nodes from S(C)
are the satellites. The condition ii implies that each center is under action of
su�ciently many satellites. In turn, if we consider the union of these satellites,
all the centers act on them (see Fig.2.10). Such an intensive interaction leads, as we
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Figure 2.7: An approximation of y-horizontal coordinates of a
complicated motion CMU 86 trial consisting of walk, squats, run,
stretch, jumps, punches, and drinking. Before the approximation
by a RBF-network with 3 centers and 100 satellites the motion was
segmented into 3 intervals [1, 1800], [1800, 2500], and [2500, 4000]. The
oscillator frequencies are: for 1-th interval ω = (0.0106, 0.0050, 0.0060),
for the second one ω = (0.0188, 0.0287, 0.0058) and for 3-th one ω =
(0.01160.00710.0046). The approximation accuracies for the segments
are 0.0052, 0.0024, 0.0042, respectively (for x, y and z coordinates
together). The accuracy is so high that the blue curve (the target
motion) and the red curve (the approximation) are almost non-
distinguishable. a Left, top. x-coordinate for the right heel. b Right,
top. The left heel. c Left, bottom. x-coordinate for the right wrist,
distal. d Right, bottom. The left wrist, distal. (the red curve shows
the experimentally observed coordinates and the green curve gives their
neural approximations).

will see below, to a very complicated large time behaviour.

2.7 Outline of main results

Our results can be outlined as follows. The result on the inertial dynamics existence
describes a situation, when the interaction topology is quite arbitrary. We assume
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Figure 2.8: An approximation of vertical z coordinates of a complicated 
motion CMU 86 trial consisting of walk, squats, run, stretch, jumps, 
punches, and drinking. Before the approximation by a RBF-network 
with 3 centers and 100 satellites the motion was segmented into 
3 intervals [1, 1800], [1800, 2500], and [2500, 4000]. The oscillator 
frequencies are: for 1-th interval ω = (0.0106, 0.0050, 0.0060), for 
the second one ω = (0.0188, 0.0287, 0.0058) and for 3-th one ω = 
(0.01160.00710.0046). The approximation accuracies for the segments 
are 0.0052, 0.0024, 0.0042, respectively (for x, y and z coordinates 
together). The accuracy is so high that the blue curve (the target 
motion) and the red curve (the approximation) are almost non-
distinguishable. a Left, top. x-coordinate for the right heel. b Right, 
top. The left heel. c Left, bottom. x-coordinate for the right wrist, 
distal. d Right, bottom. The left wrist, distal. (the red curve shows 
the experimentally observed coordinates and the green curve gives their 
neural approximations).

that there exist n slow nodes, say, u1, u2, ..., un with λi = O(1) whereas all the rest
ones un+1, ...uN are fast, i.e., the corresponding λi have order O(κ−1), where κ is a
small parameter. Then we show that there exists an inertial manifold of dimension
n. We obtain, under general conditions, that for times t >> κ log κ the dynamics
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Figure 2.9: An approximation of y-horizontal coordinates by 200 
neurons and two oscillators for non-segmented motion. The oscillator 
frequencies are 0.0025 and 0.0006. a Left, top. y-coordinate for the 
right ankle. b Right, top. The left ankle. c Left, bottom. x-coordinate 
for the right heel. d Right, bottom. The left wrist, distal. (the 
red curves show the experimentally observed coordinates and the blue 
curves represent their neural approximations).

of (2.6.1) is de�ned by the reduced equations

duj
dt

= Fj(u1, ..., un,W, h, λ), (2.7.1)

uk = Uk(u1, ..., un,W, h, λ), k = n+ 1, ..., N, (2.7.2)

where Fj and Uk are some smooth functions of u1, ..., un, and h, λ denote the vector
parameters (h1, ..., hN) and (λ1, ..., λN), respectively. So, F gives us the inertial form
on an inertial manifold. The inertial form completely de�nes the dynamics for large
times (92).

More interestingly, we can show that the vector �eld F is, in a sense, maximally
�exible. Roughly speaking, by the number of nodes N , the matrix W and h we can
obtain all possible �elds F (up to a small accuracy ε, which can be done arbitrarily
small as N goes to ∞), see section 2.9 for a formal statement of this �exibility
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Figure 2.10: This image shows an n/Ns-central network with n = 2 and Ns = 3. The graph consists
of 8 nodes denoted by v1, v2, w1, w2, w3, w4, w5, w6. The set {v1, v2} is the set of centers C. The sets
S(C),S∗(v1) and S∗(v2) are as follows: S(C) = {w1, w2, w3, w4, w5, w6}, S∗(v1) = {w1, w2, w3} and
S∗(v2) = {w4, w5, w6}. The sets S∗(v1) ∩ S(C) = {w1, w2, w3} and S∗(v2) ∩ S(C) = {w4, w5, w6} contain
three nodes each.

property. For the networks this �exibility property holds under n/Ns-Centrality
assumption.

Let us introduce a special control parameter ξ, which modulates the degradation
coe�cient λi for a hub: λi = ξλ̄i for some i ∈ C. This hub is a �controller". When
we vary the coe�cient ξ, the interaction topology and the entries of the interaction
matrix do not change, but the response time of the controller hub changes.

One can choose the network parameters N,W, λ in such a way that for ξ > ξ0

the global attractor is trivial, it is a rest point, but for an open set of other values
ξ the global attractor of (2.6.1) contains a number of local attractors.

This result can be interpreted as �maximal switchability�. A similar e�ect was
found in (25) by numerical simulations for some models of neural networks. This
e�ect describes a transition from neural resting states (NRS) to complicated global
attractors, which occur as a reaction on learning tasks. Note that in (25) attractors
consist of a number of steady states. In our case the global attractors can include
many local attractors of all possible kinds including chaotic and periodic ones.

We end this section with a remark. Our method approximates vector �elds
by neural networks, but what can be said about the relationship between the
trajectories of the simulated system and the ones corresponding to the neural network?

For chaotic and even for periodic attractors, direct comparison of trajectories is
not a suitable test for the accuracy of the approximation. General mathematical
arguments allow us say only that these trajectories will be close for bounded times.
For large times we can say nothing especially for general chaotic attractors. Consider
the case when the attractor A of the simulated system is transitive. This means the
dynamics is ergodic and for smooth function φ the time averages

SF,φ = lim
T→+∞

T−1

∫ T

0

φ(v(t))dt (2.7.3)
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coincide with the averages
∫
A φ(v)dµ(v) over the attractor, where µ is an invariant

measure on A.
Then, a suitable criterion of approximation is that the averages SF,φ and the

corresponding ones generated by the approximating centralized neural network, are
close for smooth φ:

|SF,φ − SGanN , φ| = Errapprox < δ(ε, φ) (2.7.4)

where GanN is the neural network approximation of F and δ → 0 as ε → 0. This
�stochastic stability� property holds for hyperbolic (structurally stable) attractors
(52; 101; 97).

2.8 Conditions on network parameters and attractor existence

Our �rst results do not use any assumptions on the network topology. However, we
suppose that there are two types of network components that are distinguished by
their time scales into slow nodes and fast nodes. To take into account the two types
of the nodes, we use distinct variables vj for slow variables, j = 1, . . . , n and wi for
the fast ones, i = 1, . . . , N −n = N1. The real matrix entry Aji de�nes the intensity
of the action of the fast node i on the slow node j. Similarly, the n × N1 matrix
B, N1 × N1 matrix C and n × n matrix D de�ne the action of the slow nodes on
the fast ones, the interactions between the fast nodes and the interactions between
the slow nodes, respectively. We denote by hi and λi the threshold and degradation
parameters of the fast nodes and by h̃i and λ̃i the same parameters for the slow
nodes, respectively. To simplify formulas, we use the notation

n∑
j=1

Dijvj = Div,
N∑
k=1

Cjkwk = Cjw.

Then, equations (2.6.1) can be rewritten as follows:

dwi
dt

= σ
(
Biv + Ciw − h̃i

)
− κ−1λ̃iwi, (2.8.1)

dvj
dt

= σ
(
Ajw + Djv − hj

)
− λjvj, (2.8.2)

where i = 1, ..., N1, j = 1, ..., n. Here unknown functions wi(t), vj(t) are de�ned for
times t ≥ 0. We assume that κ is a positive parameter, therefore, the variables wi
are fast.

We set the initial conditions

wi(0) = φ̃i ≥ 0, vj(0) = φj ≥ 0. (2.8.3)

It is natural to assume that all concentrations are non-negative at the initial moment.
It is clear that they stay non-negative for all times.
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2.8.1 Global attractor exists

Let us prove that the network dynamics is correctly de�ned for all t and solutions 
are non-negative and bounded. For positive vectors r = (r1, ..., rn) and R = 
(R1, ...., RN1 ), let us introduce the sets B de�ned by

B(r, R) = {(w, v) : 0 ≤ vj ≤ rj , 0 ≤ wi ≤ Rj , j = 1, ..., n, i = 1, ..., N1}.

Note that dwi
dt

< 1− κ−1λ̃iwi.

Thus, wi(t) < X(t) for positive times t, where

dX

dt
= 1− κ−1λ̃iX, X(0) = wi(0).

Therefore, resolving the last equation, and repeating the same estimates for vi(t),
one �nds

0 ≤ wi(x, t) ≤ φ̃i exp(−κ̃−1λit) + κλ̃−1
i (1− exp(−κ−1λ̃it)),

0 ≤ vj(x, t) ≤ φj exp(−λjt) + λ−1
j (1− exp(−λjt)),

(2.8.4)

Let us take arbitrary a > 1 and let rj(a) = aλ−1
j and Ri(a) = aκλ̃−1

i . Estimates
(2.8.4) show that solutions of (2.8.1), (2.8.2) exist for all times t and they enter the
set B(r(a), R(a)) at a time moment t0. The solutions stay in this set for all t > t0,
thus, this set is absorbing. This shows that system (2.8.1),(2.8.2) de�nes a global
dissipative semi�ow StH . Moreover, this semi�ow has a global attractor contained in
each B(r(a), R(a)), where a > 1.

2.8.2 Assumptions for slow/fast networks.

A simpler asymptotic description of system dynamics is possible under assumptions
on network components timescales. We suppose here that the u-variables are fast
and the v-ones are slow. We show then that the fast w variables are slaved, for large
times, by the slow v modes. More precisely, one has w = κU(v) + w̃, where κU(v)
is a correction and κ > 0 is a small parameter. This means that, for large times,
the fast nodes dynamics is completely controlled by the slow nodes.

To realize this approach, let us assume that the system parameters

P = {A,B,C,D, h, h̃, λ̃, λ}

satisfy the following conditions:

A = κ−1Ā, (2.8.5)

|Ā|, |B|, |C|, |D| < c0, (2.8.6)

0 < c1 < λ̄i < c2, 0 < λ̃i < c3. (2.8.7)



2.9. REALIZATION OF PRESCRIBED DYNAMICS ANDMAXIMALLY FLEXIBLE SYSTEMS33

Here all positive constants ck are independent of κ for small κ.
The scaling assumption on A is needed because, as we will prove later, w = O(κ)

for small κ. For the same reasons, Ciw can be neglected with respect to Biv for
small κ, meaning that the action of centers on satellites is dominant with respect
to satellites mutual interactions. In other words, these conditions describe a divide
and rule control principle .

2.9 Realization of prescribed dynamics and maximally �exible

systems

Our goal is to show that the network dynamics can realize, in a sense, arbitrary
structurally stable dynamics of the centers. To precise this assertion, let us describe
the method of realization of the vector �elds for dissipative systems (proposed in
(77)). More precisely, we are interested in systems enjoying the following properties:

A These systems generate global semi�ows StP in an ambient Hilbert or Banach
phase space H. These semi�ows depend on some parameters P (which could
be elements of another Banach space B). They have global attractors and �nite
dimensional local attracting invariant C1 - manifoldsM, at least for some P .

B Dynamics of StP reduced on these invariant manifolds can be, in a sense, almost
completely tuned by variations of the parameter P .

It can be described as follows. Assume the di�erential equations

dq

dt
= Q(q), Q ∈ C1(Bn) (2.9.1)

de�ne a global semi�ow in a unit ball Bn ⊂ Rn.
For any prescribed dynamics (2.9.1) and any ε > 0, we can choose suitable

parameters P = P(n, F, ε) such that
B1 The semi�ow StP has a C1- smooth locally attracting invariant manifoldMP

di�eomorphic to Bn;
B2 The reduced dynamics StP |MP is de�ned by equations

dq

dt
= Q̃(q,P), Q̃ ∈ C1(Bn) (2.9.2)

where the estimate
|Q− Q̃|C1(Bn) < ε (2.9.3)

holds. In other words, one can say that, by P , the reduced dynamics on the invariant
manifold can be speci�ed to within an arbitrarily small error.

Therefore, roughly speaking all robust dynamics (stable under small perturbations)
can be generated by the systems, which satisfy above formulated properties. Such
systems can be named maximally �exible. In order to show that maximal �exibility
covers also the case of chaotic dynamics, let us recall some facts about chaos and
hyperbolic sets.
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Let us consider dynamical systems (global semi�ows) S1
t , ..., Skt , t > 0, de�ned on 

the n-dimensional closed ball Bn ⊂ Rn de�ned by �nite dimensional vector �elds 
F (k) ∈ C1(Bn) and having structurally stable attractors Al, l = 1, ..., k. These 
attractors can have a complex form, since it is well known that structurally stable 
dynamics may be �chaotic". There is a rather wide variation in di�erent de�nitions 
of "chaos". In principle, one can use here any concept of chaos, provided that this 
is stable under small C1 -perturbations. To �x ideas, we shall use here, following 
(81), such a de�nition. We say that a �nite dimensional dynamics is chaotic if it 
generates a compact invariant hyperbolic set Γ , which is not a periodic cycle or a 
rest point (for a de�nition of hyperbolic sets see, for example, (81)). The hyperbolic 
sets give remarkable analytically tractable examples, where chaotic dynamics can 
be studied. For example, the Smale horseshoe is a hyperbolic set. If this set Γ 
is attracting we say that Γ is a chaotic (strange) attractor. In this thesis, we use 
only the following basic property of hyperbolic sets, so-called Persistence (81). This 
means that the hyperbolic sets are, in a sense, stable(robust). This property can 
be described as follows. Let a system of di�erential equations be de�ned by a
C1-smooth vector �eld Q on an open domain in Rn with a smooth boundary or 
on a smooth compact �nite dimensional manifold. Assume this system de�nes a 
dynamics having a compact invariant hyperbolic set Γ . Let us consider ε-perturbed 
the vector �eld Q + εQ̃ , where Q̃ is bounded in C1-norm. Then, if ε > 0 is 
su�ciently small, the perturbed �eld also generates dynamics with another compact 
invariant hyperbolic set Γ̃ . The corresponding dynamics restricted to Γ and Γ̃  
respectively, are topologically orbitally equivalent ( topological equivalency of two 
semi�ows means that there exists a homeomorphism, which maps the trajectories 
of the �rst semi�ows on the trajectories of the second one, see (81) for details).

We recall that chaotic structurally stable ( persistent) attractors and invariant 
sets exist: this fact is well known from the theory of hyperbolic dynamics (81).

Thus, any kind of the chaotic hyperbolic sets can occur in the dynamics of the 
systems, for example, the Smale horseshoes, Anosov �ows, and the Ruelle-Takens-
Newhouse chaos, see (81). Examples of systems satisfying these properties can be 
presented by some reaction-di�usion equations and systems (77; 93; 94), and neural 
network models (94).

2.10 Main results

For vectors a = (a1, ..., an) and b = (b1, ..., bn) such that ai < bi for each i let us 
denote by

Π(a, b) = {v ∈ Rn : ai ≤ vi ≤ bi} (2.10.1)

a n-dimensional box in v-space. Moreover, let us de�ne Πλ by Πλ = Π(0, λ−1),
where the vector λ−1 has components (λ−1

1 , ..., λ−1
n ).

Theorem 2.10.1 Under assumptions (2.6.2), (2.8.5), (2.8.6) and (2.8.7) for su�ciently
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small κ there exists a n-dimensional inertial manifoldMn de�ned by

wi = κλ̃−1
i Ui(v, κ,P), v ∈ Πλ (2.10.2)

where Ui ∈ C1+r(Πλ), and r ∈ (0, 1). The functions Ui admit the estimate

|Ui(v, κ,P)− σ
(
Biv − h̃i

)
|C1(Πλ) < c4κ, v ∈ Πλ. (2.10.3)

The v dynamics for large times takes the form

dvj
dt

= Fj(v,P) + F̃j(v, κ,P), (2.10.4)

where F̃j satisfy

|F̃j|C1(Πλ) < c6κ (2.10.5)

with

Fj(v,P) = σ

N−n∑
i=1

Ājiλ̃
−1
i σ

(
Biv − h̃i

)
+ Djv − hj

− λjvj. (2.10.6)

Note that the matrix C is not involved in relation (2.10.6), which de�nes the
family of the vector �elds F ( inertial forms). This property holds due to the
property that inter-satellite interactions are dominated by the satellite-center ones.
The next assertion means that this principle allows us to create a network dynamics
with prescribed dynamics (if the network satis�es n/Ns-centrality assumption and
N is large enough). It is valid under the additional condition that the interaction
graph (V,E) veri�es the centrality condition.

Theorem 2.10.2 Assume n/Ns-centrality assumption is satis�ed. Then the family
of the vector �elds F de�ned by (2.10.6) is dense in the set of all C1 vector �elds
Q de�ned on the unit ball Bn ⊂ Rn. In the other words, centralized Hop�eld neural
networks are maximally �exible.

Let us choose some iC such that iC belongs to C. The corresponding node will
be called a controller hub. We introduce the control parameter ξ by

λiC = ξλ̄iC , (2.10.7)

where we �x a positive λ̄iC .
Theorem 2.10.2 can be used to show the following

Theorem 2.10.3 (Maximal switchability theorem)
Let us consider dynamical systems (global semi�ows) St1, ..., S

t
k, t > 0, de�ned

on the n-dimensional closed ball Bn ⊂ Rn de�ned by �nite dimensional vector
�elds F (k) ∈ C1(Bn) and having structurally stable attractors Al, l = 1, ..., k. For
su�ciently large N and any graph (V,E) satisfying the n/Ns- centrality condition
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there exists a choice of interactions Wij and thresholds hi such that Assumption 1 
holds and

(i) there exist a ξ0 such that for all ξ > ξ0 the dynamics of network (2.6.1) has a 
rest point, which is a global attractor;

(ii) for an open interval of values ξ the global semi�ow StH de�ned by (2.6.1) have 
local attractors Bl such that the restrictions of the semi�ow StH to Bl are orbitally 
topological equivalent to the semi�ows Slt restricted to Al.

Finally, let us give an estimate on the maximal number of equilibria Neq of 
centralized networks. This number is a characteristics of the network capacity, 
�exibility and adaptivity. To proceed to these estimates, let us de�ne a procedure, 
which can be named decomposition into �distar� motifs. In the network interaction 
graph (E, V ) we choose some nodes v1, ..., vn, which we conditionally consider as 
hubs. By �distar� motif we understand a part of interaction graph consisting of the 
hub vj and the subset Sj of the set S∗ (de�ned by (2.6.5)) consisting of the nodes
connected in both directions to vj: Sj = {vi ∈ V : (i, j) and (j, i) ∈ E}. This
distar motif becomes an usual star if directions of the edges are ignored. Consider
the union Un of all Sj. Some nodes w ∈ Un may belong to two di�erent sets Sj
and Sk, where k 6= j. We remove from the vertex set V all such nodes. After such
removing we obtain a part of graph Gn = (V ′, E ′) of the initial graph (E, V ), which
is a union of n disjoint distars S1, ..., Sn, where each Sk contains a single center {vk}
and µ(Sk) satellites connected with the center in both directions. Recall that the
graph (V ′, E ′) is a part of graph (V,E) if V ′ ⊂ V and E ′ ⊂ E. These numbers
µ(Sk) depend on the choice of hub nodes {v1, ..., vn}.

We will prove the following theorem:

Theorem 2.10.4 The maximal possible number Neq(E,N) of equilibria of a network
with a given interaction graph (E, V ), where V consists of N nodes, satis�es

Neq ≥ supµ(S1)µ(S2)...µ(Sn), (2.10.8)

where the supremum is taken over all integers n > 0 and all graphs Gn,which are
parts of interaction graph (V,E) and consist of n disjoint distars. Here µ(Sl) is the
number of the nodes in the distar Sl.

Consider now graphs, which are unions of identical distars. The degree of the
center of each distar is b(N − n)/nc. Then, the maximal possible number Neq of
equilibria in such a centralized network (2.6.1) with N nodes and n centers satis�es
Neq ≥ b(N − n)/ncn, where bxc denotes the �oor of a real number x. Note that for
a �xed N the maximum of (N/n)n over n = 1, 2, ... is attained at n = bN/5c, when
the distars contain 5 satellites each. Therefore we obtain the estimate Neq ≥ 4bN/5c.

2.11 Proof of Theorem 2.10.1

Let us start by proving a lemma
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Lemma 2.11.1 Under assumptions (2.8.5), (2.8.6) and (2.8.7) for su�ciently small
positive κ < κ0 solutions (u, v) of (2.8.1), (2.8.2) and (2.8.3) satisfy

wi(t) = κUi(v(t),B, h̃) + w̃i(t), (2.11.1)

where U = (U1, ..., Un) is de�ned by

Ui(v,B, h̃) = λ̃−1
i σ

(
Biv(t)− h̃i

)
. (2.11.2)

Then, for some T0 function w̃ satis�es the estimates

|w̃(t)| < c1κ
2, t > T0 (2.11.3)

where c1 does not depend on t and κ. The time moment T0 depends on initial data
and the network parameters.

Proof. Let us introduce a new variables w̃i by (2.11.1). They satisfy the
equations

dw̃i
dt

= Hi(v, w̃)− κ−1λ̃iw̃i, (2.11.4)

where

Hi(v, w̃) = κZi(v) +Wi(v, w̃),

Zi(v) =
n∑
j=1

∂Ui(v)

∂vj
(σ
(
ĀjU + Djv − hj

)
− ξλ̄jvj),

and

Wi(v, w̃) = σ
(
Biv + Ciw − h̃i

)
− σ

(
Biv − h̃i

)
.

Let us estimate Hi(v, w̃) for su�ciently large t. According to (2.8.4), for such times
we can use that (w, v) ∈ B(r(a), R(a)), where a > 1. In this domain B(r(a), R(a))
one has sup |Zi| < c2 and sup |Wi| < c3κ, where c2, c3 are independent of κ.
Therefore,

Hi(v(t), w̃(t)) < c0κ, t > T0(κ,P).

Now, as above in subsection 2.8.1, equation (2.11.4) entails estimate (2.11.3). The
assertion is proved.

Proof of Theorem 6.1. The rest part of the proof of Theorem 2.10.1 uses the
well known technique of invariant manifold theory, see, for example, (81; 92; 33).
Let us consider the domain Dκ = {w : |w| < c1κ

2}. Theorem 6.1.7 (33) shows
that for d ∈ (0, 1) there is a locally attractive C1+d- smooth invariant manifoldMn.
Relation (2.10.3) follows from (2.11.3). The global attractivity of this manifold also
follows from (2.11.3). The theorem is proved.
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2.12 Demonstrations of Theorems

2.12.1 Proof of Theorem 2.10.2

The main idea of the subsequent statement is to study the dependence of the �elds 
Fj de�ned by Eq.(2.10.6) on the parameters P. To this end, we apply a special 
method stated in the next subsection.

Let us formulate a lemma, that gives us a key tool and which implies Theorem 
2.10.2.

Lemma 2.12.1 Assume

ai > δ/λi, bi < (1− δ)/λi i = 1, ..., n. (2.12.1)

Let Q = (Q1(v), ..., Qn(v)) be a C1 smooth vector �eld on Π(a, b) and δ > 0 verify

− δ < Qi(v) < δ, v ∈ Π(a, b), i = 1, ..., n. (2.12.2)

Then there are parameters P of the neural network such that the �eld F de�ned
by (2.10.6) satis�es the estimates

sup
v∈Π(a,b)

|F (v,P)−Q(v)| < ε, (2.12.3)

sup
v∈Π(a,b)

|∇F (v,P)−∇Q(v)| < ε. (2.12.4)

In other words, the �elds F are dense in the vector space of all C1 smooth vector
�elds satisfying to (2.12.2).

Proof. The proof uses the standard results of the multilayered network theory.
Step 1. The �rst preliminary step is as follows. Let us solve the system of

equations
σ(Rj) = Qj(v) + λjvj, v ∈ Π(a, b) (2.12.5)

with unknown Rj. Here Rj are the regulatory inputs of the sigmoidal functions.
These equations have a unique solution due to conditions (2.6.2), (2.12.1) and
(2.12.2): the right hand sides Vj + λjvj range in (0, 1). The solutions Ri(v) are
C1-smooth vector �elds.

Step 2. Consider relation (2.10.6). We choose entries Aji and Bil in a special
way. First, let us set Aji = 0 if i /∈ S∗(j), where the set S∗(j) is de�ned in the
n/Ns-centrality assumption, see condition ii. Recall that S∗(j) is the set of the
satellites acting on the center j. Note that then sum (2.10.6) can be rewritten as

Fj(v,P) = σ

 ∑
i∈S∗(j)

Ājiλ̃
−1
i σ

(
Biv − h̃i

)
+ Djv − hj

− λjvj. (2.12.6)
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Using the result of step 1 and this relation, we see that our problem is reduced
to the following: to approximate Rj(v) in C1 norm with a small accuracy O(ε) by

Hj(v,P) =
∑

i∈S∗(j)

Ājiλ̃
−1
i σ

(
Biv − h̃i

)
+ Djv − hj. (2.12.7)

Note that, according to the centrality assumption, the set S∗(j) contains Ns > CN θ

elements. Moreover, due to this assumption, the sum Bi =
∑

k Bikvk involves all
k, k = 1, ..., n. Therefore, since n is �xed and N can be taken arbitrarily large,
the theorem on the universal approximation by multilayered perceptrons (see, for
example, (13)) implies that the �elds H = (H1, ..., Hn) are dense in the Banach
space of all the vector �elds on Π(a, b) (with C1- norm). Therefore, Hj approximate
Rj with O(ε)-accuracy in C1- norm. This �nishes the proof.

w1

w2

w3

v1

w4

w5

w6

v2

w̃1

w̃2

w̃3

z

Figure 2.11: Modular architecture. The switching module consists of the center z and the satellites
w̃1, w̃2, w̃3. The generating module consists of the centers v1, v2 and the satellites w1, ..., w6.

2.12.2 Proof of Theorem 2.10.3

Ideas behind proof. Before stating a formal proof, we present a brief outline, which
describes main ideas of the proof and the architecture of the switchable network.
The network consists of two modules. The �rst module is a generating one and
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it is a centralized neural network with n centers v1, ..., vn and satellites w1, ..., wN . 
The second module consists of a center vn+1 = z and m satellites w̃1, ..., w̃m. The 
satellites from this module interact only with the module center z, i.e., in this module 
the interactions can be described by a distar graph. Only the center of the second 
module interacts with the neurons of the �rst (generating) module. We refer to the 
second module as a switching one. This architecture is shown on Fig. 2.11.

For the switching module the correspoding equations have the following form. 
Let us consider a distar interaction motif, where a node z is connected in both 
directions with m nodes w̃1, ..., w̃m. We set n = 1 and N1 = m, λ̃i = 1, D = 0, 
C = 0, λ1 = 1, and A1j = κ−1āj in eqs. (2.8.1) and (2.8.2). By such notation the 
equations for the switching module can be rewritten in the form

dw̃i
dt

= σ
(
b̃iz − h̃i

)
− κ−1w̃i, (2.12.8)

dz

dt
= σ

κ−1

m∑
j=1

ãjw̃j − h

− ξλ̄z, (2.12.9)

where i = 1, ...,m and b̃i, ãj, λ̄ > 0.
Under above assumptions on the network interactions, equations for generating

module can be represented as follows:

dwi
dt

= σ
(
Biv + Ciw − diz − h̄i

)
− κ−1λ̃iwi, (2.12.10)

dvj
dt

= σ
(
Ajw + Djv − d̃jz − hj

)
− λjvj, (2.12.11)

where i = 1, ..., N, j = 1, ...,m and di, d̃j are coe�cients.
These equations involve z as a parameter. This fact can be used in such a way.

Consider the system of the di�erential equations

dv/dt = Q(v, z), v = (v1, . . . , vn) (2.12.12)

where z is a real control parameter. Let z1, ..., zm+1 be some values of this parameter.
We �nd a vector �eld Q such that for z = zl, where l = 1, ...,m, the dynamics de�ned
by (2.12.12) has the prescribed structurally stable invariant sets Γl.

Furthermore, according to theorem 2.10.2, for each positive ε we can choose
the parametersN,Bi,Ci, b̃i, ãi, h̄i,Aj,Dj, di, d̃j, hj, λj, λ̃i of the system (2.12.10) and
(2.12.11) such that the dynamics of this system will have structurally stable invariant
sets Γ̃l topologically equivalent to Γl.

For the switching module we adjust the center-satellite interactions and the
center response time parameter ξ in such a way that for a set of values ξ the
switching module has the dynamics of system (2.12.8),(2.12.9) with m di�erent
stable hyperbolic equilibria z = z1, z2, ..., zm+1 and for su�ciently large ξ system
(2.12.8) and (2.12.9) has a single equilibrium close to z1 = 0. Existence of such
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a choice will be shown in coming lemma 2.12.2. Then the both modules form a
network having need dynamical properties formulated in the assertion of Theorem
2.10.3.

Proof. Let us formulate some auxiliary assertions. First we consider the switching
module.

Lemma 2.12.2 Let m be a positive integer and β ∈ (0, 1). For su�ciently small

κ > 0 there exist āj, bi, h̃i, h such that
i for an open interval of values ξ system (2.12.8),(2.12.9) has m stable hyperbolic

rest points zj ∈ (j − 1 + β, j + β), where j = 1, ...,m;
ii for ξ > ξ0 > 0 system (2.12.8),(2.12.9) has a single stable hyperbolic rest point.

Proof. Let h = 0. To �nd equilibria z, we set dw̃i/dt = 0, and express w̃i via z.
Then we obtain the following equation for the rest points z:

ξz = σ

 m∑
j=1

ãjσ
(
b̃jz − h̃j

) . (2.12.13)

For especially adjusted parameters eq. (2.12.13) has at least m solutions, which give
stable equilibria of system (2.12.8),(2.12.9). To show it, we assume that 0 < κ << 1,
b̃j = b̃ = κ−1/2 and h̃j = b̃µj, where µj = j − 1 + β. We obtain then

V (ξz) =
m∑
j=1

σ(b̃(z − µj)) +O(κ) = Fm(z, β, κ), (2.12.14)

where V (z) is a function inverse to σ(z) de�ned on (0, 1). Since b̃ >> 1 for small κ,
the plot of the function Fm is close to a stairway (see Fig. 3). Let

ξ = 1, ã1 = V (µ1) + κ, ãj = V (µj)− V (µj−1), j = 2, ...,m.

The intersections of the curve V (z) with the almost horizontal pieces of the plot of
Fm give us m stable equilibria of system (2.12.8),(2.12.9). These equilibria zj lie in
the corresponding intervals (j−1+β, j+β). For su�ciently large ξ we have a single
rest stable point z at 0. The lemma is proved.

Consider compact invariant hyperbolic sets Γ1, ..., Γm of semi�ows de�ned by
arbitrarily chosen C1 smooth vector �elds Q(l) on the unit ball Bn ⊂ Rn, where
l = 1, ...,m.

Lemma 2.12.3 Let Π(a, b) be a box in Rn and m > 1 be a positive integer. There
is a C1-smooth vector �eld Q on Π(a, b) × [0,m + 1] such that equation (2.9.1)
de�nes a semi�ow having hyperbolic sets Γ1, ..., Γm and the restriction of this �eld
on Π(a, b)× [0, 1] has an attractor consisting of a single hyperbolic rest point.
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Figure 2.12: The intersections of the curve Fm(z, β, κ) and the curve
V (z) give equilibria of system (2.12.8),(2.12.9) for ξ = 1. Stable
equilibria correspond to the intersections of V with almost horizontal
pieces of the graph of Fm.

Proof. The proof uses the following idea. For k ∈ {2, ...,m + 1} let Q(k)(v)
be a vector �eld on Π(a, b) having Γk−1 as an invariant compact hyperbolic set.
Moreover, suppose that Q(1) has a single globally attracting rest point in Π(a, b),
zj ∈ (j − 1 + β, j + β), where j = 1, ...,m and β ∈ (0, 1). Let χk(z) be smooth
functions of z ∈ R such that

χk(zl) = δlk, l ∈ {1, ...,m}, k = 1, ...,m

where δlk stands for the Kronecker delta. Let Q(v, z) be the vector �eld on Π(a, b)×
[0,m+ β] de�ned by

Qi(v, z) =
m∑
k=1

Q
(k)
i χk(z), i ∈ {1, ..., n}, (2.12.15)

for �rst n components and n+1-th component of this �eld (denoted by z) is de�ned
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by
Qn+1(v, z) = Fm(z, β, κ), (2.12.16)

where Fm is de�ned by (2.12.14). For β ∈ (0, 1) the function Fm has stable roots at
the points z = 1, 2, ...,m. We observe that the equation for z-component dz/dt =
Fm(z, β, κ) does not involve v. By applying Lemma 2.12.2 we note that solutions
z(t, z(0)) of the Cauchy problem for this di�erential equation verify |z(t) − zj| <
exp(−c1t), if z(0) lies in an open neighbourhood of zj. To conclude the proof, we
consider the system

dvi/dt = Qi(v, z), i = 1, ..., n,

dz/dt = Fm(z, β, κ)− ξλ̄z = Qn+1(z).

The right hand sides of this system de�ne the �eld Q of dimension n + 1 from the
assertion of Lemma 2.12.3. To check this fact, we apply Lemmas 2.12.1 and 2.12.2
that completes the proof.

Next, to �nish the proof of Theorem 2.10.3, let us take a box Π(a, b), where 0 <
ai < bi. The semi�ows de�ned by di�erential equations dv/dt = δQ(v) are orbitally
topologically equivalent for all δ > 0. We approximate the �rst n components of
the �eld Q by our neural network using Lemma 2.12.3 . We multiply here Q on an
appropriate positive δ to have a �eld with components bounded by su�ciently small
number in order to apply Lemma 2.12.1. Namely, we take δ such that ai > δ/(ξ0λ̄i)
and bi < (1 − δ)/(ξ1λ̄i) and apply Lemma 2.12.1. Note that this appoximation
does not involve the control parameter ξ. Indeed, this parameter is involved only in
the approximation of Qn+1, which can be done independently, see the distar graph
lemma 2.12.2. This concludes the proof of Theorem 2.10.3.

Remark. In Theorem 2.10.3, we assume that the vector �eld Q(v) is given.
However, by centralized networks we can solve the problem of identi�cation of
dynamical systems supposing that the trajectories v(t) are given on a su�ciently
large time interval whereas Q is unknown or we know this �eld only up to unknown
parameters. An example, where we consider an identi�cation construction for a
modi�ed noisy Lorenz system, can be found in section 2.13.

2.12.3 Proof of Theorem 2.10.4

Let us refer to the distar centers as hubs and to periphery nodes as satellites. We
suppose that satellites do not interact each with others and a satellite interacts only
with the corresponding hub. Therefore the interaction graph resulting from the "hub
disconnecting" construction consists of n disconnected distar motifs.

Step 1. Let n = 1. We apply lemma 2.12.2 to the distar graphs, see the proof of
the previous theorem. Then we have m1 stable equilibria, where m1 is the number
of satellites in the distar motif.

Step 2. In the case n > 1 we consider the disconnected interaction graph
consisting of n distar motifs, where the j-th distar motif contains mj nodes. One
has m1 +m2 + ...+mn = N −n and totally the graph consists of N nodes. For each
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distar we adjust the parameters as above (see step 1). We obtain thus m1m2...mn 
of equilibria and the theorem is proven.

2.13 Synthesis of switchable network with prescribed dynamics

The proof of Theorem 2.10.3 can be used to construct practically feasible algorithms, 
which solve the problem of construction of a switchable network with prescribed 
dynamical properties. As a matter of fact, we can address two di�erent, but related 
problems. The �rst problem is the synthesis of a neural network with prescribed 
attractors and switchability properties. The second problem is the identi�cation of 
a neural network from time series. First we state the solution of the �rst problem 
and after we describe how to resolve the second one by analogous methods.

The prescribed network properties for the synthesis problem are stated in Theorem 
2.10.3. We describe here a step by step algorithm, allowing to construct a network 
with these properties.

Consider structurally stable dynamical systems de�ned by the equations

dv/dt = Q(l)(v) v = (v1, ..., vn) ∈ Π(a, b) ⊂ Rn, (2.13.1)

where l = 1, ...,m and Π(a, b) is a de�ned by (2.10.1). We suppose that the �elds
Q(l)(v) are su�ciently smooth, for example, Q(l) ∈ C∞(Π(a, b)). Without any loss
of generality we can assume that

1 < ai < bi, (2.13.2)

(otherwise we can shift variables vi setting vi = ṽi − ci).
Step 1. Find a su�ciently small ε such that perturbations of vector �elds Q(v)(l),

which are ε small in C1 norm, do not change topologies of semi�ows de�ned by
2.13.1. Actually, it is hard to compute such a value of ε, so, in practice we simply
choose a small ε by the trial and error method.

Step 2. We �nd a vector �eld Q(v, z) with n+ 1 components, where z = vn+1 ∈
[an+1, bn+1] ⊂ R such that the �rst n components of Q(v, z) are de�ned by relations
(2.12.15) and the n + 1 component is de�ned by (2.12.16). Let D = Π(a, b) ×
[an+1, bn+1].

To describe the next steps, �rst let us introduce the functions

Gj(v̄,P) =
N∑
i=1

Ājiσ(Biv̄ − hi), (2.13.3)

where the parameter P = {N, Āji, Bik, hj, j = 1, ..., n + 1, i, k = 1, ..., N} and v̄ =
(v1, ..., vn, z).

Let us observe that dynamical systems dq/dt = Q(q) and dq/dt = γQ(q) with
γ > 0 have the same trajectories, invariant sets and attractors, therefore, instead of
Q we can use γQ. We choose a γ > 0 and a small positive δ < 1 such that

− δ < γQi(v̄) < δ, v̄ ∈ D, i = 1, ..., n+ 1 (2.13.4)
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and
ai > δ/λi, bi < (1− δ)/λi i = 1, ..., n+ 1 (2.13.5)

for λi > 1.
Then (2.13.4) and (2.13.5) imply that

0 < γQj(v̄) + λj v̄j < 1, v̄ ∈ D, j = 1, ..., n+ 1. (2.13.6)

Let σ−1 be the function inverse to σ. Due to (2.13.6) the functions

Rj(v̄) = σ−1(γQj(v̄) + λj v̄j) (2.13.7)

are correctly de�ned and smooth on D.
Now we solve the following approximation problem.
To �nd the number N , the matrices Ā,B and vector h such that

|Rj(v̄)−Gj(v̄,P)|+ |Dv̄(Rj(v̄)−Gj(v̄,P))| ≤ ε/2, j = 1, ..., n+ 1. (2.13.8)

This problem can be resolved by standard algorithms, which perform approximations
of functions by multilayered perceptrons (13). Note that these standard methods
are based on iteration procedures, which can use a large running time.

We describe here a new variant of the algorithm for this approximation problem,
which uses a wavelet-like approach. This approach does not exploit any iteration
procedures or linear system solving. All the procedure reduces to a computation of
the Fourier and wavelet coe�cients. However, this algorithm is numerically e�ective
only for su�ciently smooth Rj with fast decreasing Fourier coe�cients and for not
too large dimensions n.

The solution of the approximation problem (2.13.8) proceeds in the two steps.
Step 3. We reduce the n + 1-dimensional problem (2.13.8) to a set of one-

dimensional ones as follows. Let us approximate the functions Rj by the Fourier
expansion:

sup
v̄∈D

(|Rj(v̄)− R̂j(v̄)|+ |∇v̄(Rj(v̄)− R̂j(v̄))|) < ε/4, (2.13.9)

where
R̂j(v̄) =

∑
k∈KD

R̂j(k) exp(i(k, v̄)), (2.13.10)

(k, v̄) = k1v̄1 + k2v2 + ...+ kn+1v̄n+1 and the set KD of vectors k is a �nite subset of
the (n+ 1)- dimensional lattice LD

KD ⊂ LD = {k = (k1, ..., kn+1) : ki = (ai − bi)−1πmi for some mi ∈ Z}. (2.13.11)

The Fourier coe�cients R̂j(k) can be computed by

R̂j(k) = (volume(D))−1

∫
D

Rj(v̄) exp(−i(k, v̄))dv̄.
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In order to satisfy (2.13.9), we take a sequence of extending sets KD. For some 
KD relation (2.13.9) will be satis�ed because the Fourier coe�cients R̂j (k) fastly 
decrease in |k|.

Step 4. We exploit the fact that the problem (2.13.8) is linear with respect to the 
coe�cients Āij . For each k ∈ KD we resolve the following one-dimensional problem. Let

g(q,M, a, β, h̄) =
M∑
i=1

aiσ(βi(q − h̄i)). (2.13.12)

We are seeking for integerM > 0 and the vectors a = (a1, ..., aM), β = (β1, ..., βM)
and h̄ = (h̄1, ..., h̄M) such that

sup
q∈Ik
|Wj,k(q)− g(q,M, a, β, h̄)| < ε(10|KD|)−1, (2.13.13)

sup
q∈Ik
|dWj,k(q)/dq − g′(q,M, a, β, h̄)| < ε1 ≤ ε(10|KD|)−1, (2.13.14)

where |KD| is the number of the elements k in the set KD,

Wj,k(q) = R̂j(k) exp(iq),

g′(q,M, a, β, h̄) =
M∑
i=1

aiσ
′
(βi(q − h̄i)), (2.13.15)

and q = (k, v̄) ∈ Ik, where Ik is the interval [q−(k), q+(k)] with

q−(k) = min
v̄∈D

(k, v̄), q+(k) = min
v̄∈D

(k, v̄).

These approximation problems are indexed by (j, k), where j = 1, ..., n + 1 and
k ∈ KD (we temporarily omit dependence on (j, k) in a, β, h̄,M to simplify notation).

To resolve these one-dimensional approximation problems, we apply a method
based on the wavelet theory. Notice that this method is numerically e�ective. First
we observe that if (2.13.14) is ful�lled with a su�ciently small ε1, then, to satisfy
(2.13.13), it is su�cient to add a constant term of the form aM+1σ(bM+1q) with
bM+1 = 0 to the sum in the right hand side of (2.13.12).

Let us de�ne the function ψ by

ψ(q) = σ
′
(q)− σ′(q − 1). (2.13.16)

We observe that ∫ ∞
−∞

ψ(q)dq = 0 (2.13.17)

and ψ(q)→ 0 as |q| → ∞, therefore, ψ is a wavelet-like function.
Let us introduce the following family of functions indexed by the real parameters

r, h:
ψr,ξ(q) = |r|−1/2ψ(r−1(q − ξ)). (2.13.18)
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For any f ∈ L2(R) we de�ne the wavelet coe�cients Tf (r, ξ) of the function f by

Tf (r, ξ) = 〈f, ψr,ξ〉 =

∫ ∞
−∞

dqf(q)ψr,ξ(q). (2.13.19)

For any smooth function f with a �nite support IR = (−R,R) one has the following
fundamental relation:

f = cψ

∫ ∞
0

∫ ∞
−∞

r−2drdξTf (r, ξ)ψr,ξ = fwav. (2.13.20)

for some constant cψ. This equality holds in a weak sense: the left hand side and the
right hand side de�ne the same linear functionals on L2(R), i.e., for each smooth,
well localized g one has

〈f, g〉 = 〈fwav, g〉.

Let δ(ε) << ε be a small positive number. According to (2.13.20) we can �nd
positive integers p1, p2, points r1, ..., rp1 , ξ1, ..., ξp2 and a constant c̄ψ such that the
integral in the right hand side of (2.13.20) can be approximated by a �nite sum:

sup |f(q)− f̄wav(q)| < δ, (2.13.21)

where

f̄wav = c̄ψ

p1∑
l1=1

p2∑
l2=1

r−2
l1
Tf (rl1 , ξl2)ψrl1 ,ξl2 .

In our case for each (j, k) we set f = Wj,k(q) for q ∈ Ik and f = 0 for q /∈ Ik. We
can take rl1 = r+l1/p1, where r+ is large enough, and ξl2 = qmin + (qmax− qmin)l2/p2,
where qmin < q−(k), qmax > q+(k) are su�ciently large and l1 = 1, ..., p1, l2 = 1, ..., p2.
We can renumerate the points (rl1 , ξl2) by a single index l = 1, ..., p, where p = p1p2,
that gives us rl, ξl and the wavelet coe�cients Tl = c̄ψTf (rl, ξl).

Having p, rl, ξl and the wavelet coe�cients Tl, we obtain the following solution
of the approximation problem (2.13.12):

M(j, k) = p, h̄2l−1(j, k) = r−1
l ξl, h̄2l(j, k) = r−1

l (ξl + 1),

β2l−1(j, k) = β2l(j, k) = r−1
l , a2l−1(j, k) = −a2l(j, k) = Tl,

where we have introduced the index (j, k) in notation for the solution (M,a, β, h̄)
to emphasize that problem (2.13.12) depends on this index.

Finally, in the end of this step we obtain the coe�cients

M(j, k), a1(j, k), ..., aM(j,k)(j, k), β1(j, k), ..., βM(j,k)(j, k), h̄1(j, k), ..., h̄M(j,k)(j, k).
(2.13.22)

Step 5. We construct a network with n + 1 centers v̄1, ..., v̄n+1 and N satellites
as follows. Let C = 0 and D = 0, i.e., we assume that the satellites don't interact
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among themselves and there are no direct interactions between the centers. The 
number of satellites is de�ned by

N =
n+1∑
j=1

∑
k∈KD

M(j, k).

Each satellite can be equipped with a triple index (i, j, k), where j = 1, ...n + 1,
k ∈ KD and i ∈ {1, ...M(j, k)}. We set that all hj = 0, λ̃i = 1, and λj are chosen as
above. The threshold hi,j,k for the satellite with the index (i, j, k) is de�ned by

hi,j,k = h̄i(j, k)

where h̄i(j, k) are obtained at the Step 4 (see (2.13.22)).
Furthermore, we de�ne the matrices Ā and B as follows. One has

B(i,j,k),l = βi(j, k)kl,

(this relation describes an action of the l-th center on the satellite with index (i, j, k))
and

Āl,(i,j,k) = al(j, k)

(this relation describes an action of the l-th center on the satellite with index (i, j, k)).
Here i ∈ {1, ...M(j, k)}, j, l = 1, ..., n+ 1 and k ∈ KD.

Remark. This algorithm can be simpli�ed if instead networks (2.8.1), (2.8.2) we
use analogous networks where satellites act on centers in a linear way:

dwi
dt

= σ
(
Biv + Ciw − h̃i

)
− κ−1λ̃iwi, (2.13.23)

dvj
dt

=
(
Ajw − hj

)
− λjvj, (2.13.24)

where i = 1, ..., N1, j = 1, ..., n, and the �elds Q(l) are de�ned by polynomials
(note that Jackson's theorems (6) guarantee that any Q can be approximated by a
polynomial �eld on Π(a, b) in C1-norm). Then we can simplify Step 3 and Step 4
of the algorithm as follows. We observe that we can set γ = 1 and in this case the
functions Rj have the form

Rj(v̄) = Qj(v̄) + λj v̄j. (2.13.25)

On Step 3 for polynomial functions Rj(v) we can also use simple algebraic
transformations, instead of the Fourier decomposition, to reduce the multidimensional
approximation problem to one dimensional ones. On step 4 the function ψ de�ned
by (2.13.16) is well localized and therefore alternatively step 4 can be realized by
standard programs using radial basic functions and the method of least squares (see
an example on the Lorenz system below).

Let us turn now to the problem of identi�cation of a neural network from time
series produced by a dynamical system dv/dt = Q(v,P), v ∈ Rn with unknown
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parameters P. Assume that we observe a time series v(t1), v(t2), ..., v(tK) and the
time interval between observations is small: ti+1 − ti = ∆t << 1. We want to
construct a network with n centers, which produces, in a sense, analogous time
series. According to (2.7.4), a suitable criterion of trajectory similarity is as follows.
We can approximate the averages SQ,φ from (2.7.3) by the time series

SQ,P,φ ≈ K−1∆T
K∑
k=1

φ(v(tk)) = S
(K)
Q,P,φ. (2.13.26)

Then, if the network identi�cation is correct, the averages de�ned by time series and
the corresponding ones generated by the approximating centralized neural network,
should be close for smooth weight functions φ:

|S(K)
Q,P,φ − S

(K)
GanN ,φ

| = Errapprox < δ(φ) << 1, (2.13.27)

where GanN is the approximation of Q by the neural network.
As a �rst step, we can approximate the unknown �eld Q(v) by �nite di�erences,

for example, using the relation

Q(ṽi,P) = (v(ti+1)− v(ti))∆t
−1, ṽi = (v(ti+1) + v(ti))/2. (2.13.28)

For other values v the �eld Q can be reconstructed, for example, by a linear
interpolation. The neural network approximation of Q can be obtained by applying
the steps 2-5 of the synthesis algorithm described above.

We end this section with an illustration of the simpli�ed variant of the identi�cation
and synthesis algorithm, see the preceding Remark.

As an example, we describe a solution of the following identi�cation problem.
Consider time series generated by the Lorenz system perturbed by noise. The Lorenz
system involves a controller parameter. Adjusting the values of this parameter,
we can obtain chaotic dynamics, time periodic one or dynamics with convergent
trajectories. We are going to �nd a centralized network, which also has a controller
parameter and can generate all this rich variety of trajectories. For chaotic and
periodic trajectories this neural approximation should exhibit dynamics with analogous
ergodic properties (in the sense of (2.13.27).

Recall that the Lorenz system has the form

dx/dt = α(y − x), dy/dt = x(ρ− z)− y, dz/dt = xy − βz. (2.13.29)

This system shows a chaotic behaviour for α = 10, β = 8/3 and ρ = 28. For
α = 10, β = 8/3 and ρ ∈ (0, 1) this system has a globally attracting rest point.

We introduce new variables v1 = x, v2 = y, v3 = z and v4 = ρ and consider a
more complicated modi�ed Lorenz system with a controller parameter: (compare
with the proof of Theorem 2.10.3):

dv1/dt = α(v2 − v1) = f1, dv2/dt = r1v1(v4 − v3)− r2v2 = f2, (2.13.30)

dv3/dt = r3v1v2 − βz = f3, dv4/dt = σH(v4, b0, h0)− ξv4 = f4, (2.13.31)
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where σH is a regularized step function de�ned by H1(w) = (1 + exp(−b0(w −h0))−1 

with b0 >> 1 and h0 = 1. We set ξ = 0.5, r1 = 14, r2 = 1, r3 = 1. The initial 
data for the fourth component v0 = v4(0) is a controller parameter. For large b0 the
di�erential equation for v4 has two stable equilibria: v

−
4 ≈ 0 and v+

4 ≈ 2. Therefore,
for v0 ∈ (0, 1) system (2.13.30), (2.13.31) has a globally attracting rest point and for
v0 > 1 the attractor of this system is chaotic Lorenz one. The parameters of this
system are P = (α, β, r1, r2, r3).

Suppose we observe trajectories v(t), t ∈ [0, T ] of system (2.13.30) at some
time moments t0 = 0, t1 = dt, ..., tp = p∆t. In order to simulate experimental
errors we have perturbed the system with additive noise. We are going to �nd
a centralized network, which has an attractor with, in a sense, similar statistical
characteristics. More precisely, we aim to minimize Errapprox from relation (2.13.27).
For identi�cation procedure we use a centralized network with 4 centers v1, v2, v3 and
v4. In this case steps 3, 4 can be simpli�ed if we use this speci�c form of the modi�ed
Lorenz system. The last center v4 serves as a controller.

We state the algorithm for the modi�ed Lorenz system, however, the method is
general and feasible for identi�cation by trajectories generated by all low-dimensional
dynamical systems de�ned by polynomial vector �elds.

First we set
C = D = 0. (2.13.32)

This means that only satellites act on centers and vice versa. To �nd the matrices
A, B and the thresholds hi, we solve the following approximation problems:

R(A,B, h)→ min, R =
4∑
i=1

p∑
j=1

(Qi(tj)− Si(v(tj,A,B, h))2 (2.13.33)

where

Qi(tj) = (vi(tj +∆t)− vi(tj))/∆t, Si(v,A,B, h) =

Ni∑
k=1

Aikσ(
∑
j=1

Bkjvj − hik).

(2.13.34)
This approximation problem is nonlinear with respect to B and h. We can

simplify this problem by the following heuristic method. Each function fi(v) de�ned
on a open bounded domain can be represented as a linear combination of functions
gl(v · kli), where vectors kli belong to a �nite set of vectors Ki. For example, for
system (2.13.30), (2.13.31) the components fj for j = 1, 2, 3 can be represented as
linear combinations of monomials:

fj(v) = gj(v)− λjvj, gj(v) =
11∑
l=1

C(j, l)Tl(v) (2.13.35)

where
Tl = vl, l = 1, 2, 3, 4
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T2l+1 = (v1 + vl)
2, T2l+2 = (v1 − vl)2, l = 2, 3, 4, T11 = 1.

and λ1 = α, λ2 = 1, λ3 = β. Therefore, K1 = {k11 = (1, 0, 0, 0)}, K2 = {k12 =
(1, 0, 1, 0),k22 = (1, 0,−1, 0),k32 = (1, 0, 0, 1),k42 = (1, 0, 0,−1)}, K3 = {k13 =
(1, 1, 0, 0),k23 = (1,−1, 0, 0)}, K4 = {k14 = (1, 0, 0, 0). Let ni be the number of the
vectors contained in the set Ki, n1 = 1, n2 = 4, n3 = 2 and n4 = 1. In this case
of the modi�ed Lorenz system, the set KD from (2.13.11) is the union of sets Ki,
i = 1, ..., 4.

We take a su�ciently large NL, a large b0 and de�ne the auxiliary thresholds
h̄kli,j, where j = 1, ..., NL, by

h̄kli,j = min
s=1,...,p,l∈Ki

v(ts) · kli + j( max
s=1,...,p,l∈Ki

v(ts) · kli − min
s=1,...,p,l∈Ki

v(ts) · kli)/NL.

We seek coe�cients Āil,kli and Ci, which minimize Ri(Ā, Ci) for i = 1, 2, 3, 4:

Ri(Ā, Ci)→ min, Ri =

p∑
j=1

(Qi(tJ)− S̃i(v(tj), Ā, Ci))
2 (2.13.36)

where

S̃i(v, Ā, C) = Ci +

ni∑
l=1

NL∑
j=1

Āij,kliσ(b0(kli · v − h̄kli,j)). (2.13.37)

Note that since S̃i are linear functions of Āil,kli and Ci, problems (2.13.36) can be
solved by the least square method. The important advantage of this approach is
that approximations can be done independently for di�erent components i.

This approximation produces a centralized network involving 4 centers and N =
8NL + 8 satellites. Indeed, each vector kli associated with a quadratic term Tl,
gives us NL sattellites to approximate this term. Moreover, we use 4 satellites for
approximations of the linear terms and 4 satellites are necessary for constants Ci in
the right hand sides of (2.13.37).

The numerical simulations give the following results. The trajectories to identify
are produced by the Euler method applied to the system (2.13.30), (2.13.31) perturbed
by noise, where the time step 0.005 on the interval [0, 50], the noise is simulated by
εNω(ti), where ω(t) is the standard white noise and εN = 0.05. As a result of
minimization procedure, we have obtained the errors Ri of the order 0.01 − 0.1.
The trajectories of the system (2.13.30), (2.13.31) perturbed by noise and the
corresponding neural networks are not close but they have a similar form and
statistical characteristics that is con�rmed by the value Errapprox (de�ned by (2.13.27)),
which is 0.008, where the test function φ is φ(v) = v2

1 + v2
2/2 − 2v3. These results

are illustrated by Fig. 4.



52 CHAPTER 2. NETWORKS WITH COMPLEX BEHAVIOUR AND THEIR APPLICATIONS

Figure 2.13: This plot shows trajectories of v1-component of the
Lorenz system perturbed by noise (the solid curve) and its neural
approximation with N = 20 satellites (the dotted curve). The curves
are not close but they exhibit almost identical statistical properties
(Errapprox = 0.008 (the white noise level is 0.05, solutions have been
obtained by the Euler method with the time step 0.001 on the interval
[0, 40]).



Chapter 3

Filtration method by autoregression

with auxiliary RBF network

3.1 Networks of radial basis functions and autoregression

model

Autoregression model. Let us remind some elementary facts about autoregression
models. They can be applied to describe stationary random processes. The di�erence
from other models is that probabilistic properties of those model do not change in
time � function of distribution of stationary dynamic series does not change as a
result of time shift. If the calculated values of the model equations at the moment
t are de�ned as a linear function of the previous values at t − 1, t − 2, ..., then we
dealing with an autoregression model. We can classify autoregression models by the
number p of the previous values involved in current computation, then we say that
the model has the order p.

Models of the �rst and second order can be represented in the following form:

yt = a1yt−1 + εt, (3.1.1)

(a model of 1 order)
yt = a1yt−1 + a2yt−2 + εt, (3.1.2)

(the model of second order) etc. Here εt is a noise.
To resolve the problem of model identi�cation, we should, in particular, de�ne

its order. The model can be constructed when the values of the stationary process
can be described by a number of changes in some trends. Consecutive capture of
di�erences can serve as an example.

Note that the majority of the main autoregression processes can be described by
fading autocorrelated functions. In that case, to �nd the order of model the log of
the values of the autocorrelated function can be used.

In practice, identi�cation of processes is a di�cult task. Sometimes, it is not
su�cient to use such simple models as autoregression ones.

53
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3.1.1 A method of noise �ltering by a combined model of autoregression
and RBF network

In this subsection, the problem of noise �ltering is considered for the time series
analysis with use of networks of radial basis functions. Results can be applied for
machine vision. Note that a much attention is paid to a problem of signal �ltering
by means of neural networks, however, in the majority of works either algorithms
of linear approximation by means of autoregression, or neural approximations are
used. Here we combine both approaches, for the �rst time a combined approach
with simultaneous application of linear model of autoregression and RBF networks
is considered.

Noise �ltering by arti�cial neural networks is an important problem studied
within the last decades [57,63,65,58,59,60,66]. We are going to apply the combined
neural network consisting of linear autoregression and a RBF network for processing
the movements of a biological object.

It is known that RBF network are characterized by a single hidden layer, nonlinear
activation function for such layer and equality of the input and hidden layer on
synoptic scales. The existing models of autoregression are characterized by linear
relations connecting values of a time series in this moment from the previous values
of the same row. We use both these approaches that allows us to use advantages of
models of linear autoregression and nonlinearity of networks of radial and basic
functions. For receiving basic data a few of experiments were done. In these
experiments, time series giving coordinates of reference points of a biological object
were obtained for di�erent object movements. Natural places of a bend of a human
hand were chosen as reference points (joints). Data were obtained by means of a
video camera. For recognition of reference points it was decided to use di�erent
color markers which allowed to select them from a background. In language C++
two programming modules were written. The �rst module is used for de�nition of
color responses of markers in the HCV color space on any static frame on which
all markers are visible. The second module is used to selection of coordinates of an
object on video.

In practical problems of processing of signals linear models and networks of
nonlinear basis functions for removal noise signal components are used. However
the estimates received in these works show that the linear model of data processing
gives smaller value of an approximation accuracy, that makes �ltration better.

The new method described in this thesis consists that at �rst �ltration of a signal
by means of linear model of autoregression is made, and then a residual signal (a
di�erence initial and �ltered) we approximate by means of networks of radial basis
functions. It allows to reduce an error of �ltration of linear autoregression several
times that is con�rmed experimentally.

3.1.2 Description of method

.
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In case of two-dimensional movements the mathematical model has the form:

qil(t+∆t) =
m∑
k=1

a
(1)
k q1(t− (k−1)∆t)+

m∑
k=1

a
(2)
k q2(t− (k−1)∆t)+bi+R

(N)
i (t)+εi(t),

Where:
qis(t) � i- coordinate �rst reference point at the time of t. Here i=1 corresponds

to a horizontal axis and i=2 � a vertical axis;
N � number of reference points;
m > 1 � the natural number, which de�nes the memory of autoregression model;
R(N)
i (t) � network of radial basic functions with N neurons for coordinate i,

autput signal of a network;
εi(t) � an error in representation of y -coordinate;

bi, a
(1)
k ,a(2)

k - coe�cients of linear autoregression model.
The main goal consists in selection of such parameters of network for radial basic

functions and such coe�cients a(1)
ks , a

(2)
ks , that the average mean square value of the

approximation error takes the minimal value.
The mathematical algorithm of approximate solution of this problem can be

described as follows.
(1) At �rst, in the standard way we seek the solution of the optimization problem

for linear model with R(N)
i = 0 (where the number N of neurons in RBF network

equals 0). Suppose this model approximates observed output within an error εi(t).
(2) Then errors εi(t), t = 1, ..., T is modelled by RBF network with N neurons

and parameter of localization �spread�, which can be found by trial and error search.
The program implementation of these steps (I) and (II) in the environment of

Matlab is described below.
For store input data, the program is capable to receive coordinates of reference

points de�ned by an motion of a human hand. The two-dimensional coordinate
system is used. Implementation of three-dimensional option is possible by of the
second video camera and adjustment of the calculations stated above (a mathematical
model of two-dimensional movements). The shoulder joint, an elbow and a brush
acted as reference points. For this purpose on a hand special color markers (pink,
green, white), considerably di�erent from a background were placed (brown), and
the record of the videos lasting from 10 to 20 seconds with di�erent models of the
movement � trajectories, speed, disappearance of one of markers from a viewing
�eld, etc. is made. The increase of of reference point numbers, even for all body, by
introduction of di�erent �owers as markers or by cutting of a frame on areas which
can be crossed in small number of cases, for example, feet and knees of the legs of
the same name, the head and a coxofemoral joint, etc. is possible. The video Record
is made with a frequency of 24 frames per second that during the work with each
frame separately allowed to receive enough data for outputs on operability of the
o�ered model. The write enable made 320x240 pixels that was su�cient and did
not cause redundancy in volume of video �les.
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Further, the video is processed by means of algorithms of Open CV library. At
the beginning, the image (a single frame of a video) is transformed to the HSV color
space, by means of the cvCvtColor method (image, hsv) that allows us to process
each marker on a hand, by certain coordinates of brightness in which the image can
be displayed unambiguously. The example of a window for determination of color
coordinates of a marker is presented in �gures 11 a, b, c.

Figure 11. A window of determination of color coordinates of a marker for any
frame.

a) selection of a marker in the range of H (hue);
b) selection of a marker in the range of V (color value);
c) the summing-up �ow;
d) original frame;
The program representing the main module is written in programming language

C++ . It can be described as follows. On a program input the video �le which is
divided into the sequence of frames by the cycle while proceeding before existence
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of the following frame moves and using the cvQueryFrame method. Further, for
each frame there is conversion to a color model of HSV, and to similarly auxiliary
module, there is selection of area of the image in the borders which once are picked
up in the auxiliary module written at a preparatory stage. Thus, for each frame
three of its copies only with markers consistently turn out. For the received area
of the image on each copy everything is excluded, except the pixels containing one
of markers. Then, the frame with a tag will be transformed to the black-and-white
image, and there is a calculation of the center of masses for the turned-out �gure.
The marker looks white on a black background. The algorithm of calculation of
the center of masses is necessary for average value of all set of coordinates of a
marker and de�nition of its central point and registers in a vector. The vector as
data type, is selected as the program is capable to work with video �les of bigger
duration, than speci�ed, and it means that the array size for record of coordinates
is initially unknown. The values written in a vector were written in output �les. For
each marker two �les with coordinates of X (t) and Y(t), t=1, . . . , T were received.
These �les were processed further among Matlab.

Program implementation of steps (I) and (II) of mathematical algorithm can be
described as follows. It is possible to apply the standard NEWLIND program to
implement step (I). Here (P, Z) where the target vector of Z is a value qil(t+∆t), t =
1, ..., T − 1 and the explaining P vector � all values of coordinates j, s and t.

When linear neural network is constructed, the procedure of simulation qil =
sim(net, P ) was used to �nd an approximation error of the linear model zil(t). This
vector is presented in the form of network of the radial basic function R(N)

i (t, spread).
There is possible to �nd spread parameter of localization of basic functions by simple
trial and error search for the purpose of minimization of an error of the combined
model.

Results.

The e�ciency of �ltration is visible from the plots given below. These plots are
obtained as follows. We start the program which builds plots of linear dependences
of coordinates of X and Y from time.

We determine time interval equal to 0.3 sec. which was calculated from quantity
of frames and duration of the video �le. Schedules of dependences are presented in
�gure 2.
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Figure 12. Dependence of coordinates of a point of X and Y on time
At creation of the schedule program designs which carry out reading the coordinates

from the �le received with video of a fragment were used. Further, using the
standard Matlab newlind function which serves for work with linear neural network,
calculation of an error of work of such network is made. Then, using the standard
Matlab newrb program, the network of radially basic functions is modelled. The
maximum number of neurons of MN = 350, the accuracy of calculations 10−5.

For comparison, in �gure 13, we will provide the schedule constructed at a
combination of linear model and network of radially basic functions. For programming
of RBF network and evident comparison of value of a mistake with linear model,
both algorithms were written in one �le.

Figure 13. Data processing by linear neural network and network of radial basic
functions.
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For con�rmation of robustness of model series of experiments assuming various
input data, increase in number of neurons in RBF networks and increase in an error
of calculations were conducted. Results are presented in table.

Table 3.1: Demonstration increase in number of neurons in RBF networks and increase in an error of
calculations

n neurons error of data processing by linear model Size of an error of processing by RBF network and linear model

351 0.06 0.02

150 0.06 0.03

75 0.06 0.04

Table 1. Comparison of size of an error of data processing by linear model of
neural network and processing by RBF network and linear model of neural network.

From table 1 it is possible to is robust that increase in neurons for RBF network in
total with linear model of neural network, leads to increase in accuracy of calculations
and the model is robastny for di�erent input values. For rather small number of
neurons (351) the quality of �ltering was signi�cantly increased. It is the main result
of this section.

To conclude, let us note that recognition of movements of real biological objects is
an important applied task. The combined application of model of linear autoregression
with networks of radial basic functions allows us to essentially increase �ltering
accuracy.

3.2 Search of an object by video camera allowing to reduce

number of sensors

In modern society interest in a problem of computer vision increases. The extensive
review of applied tasks, which can be solved by means of computer sight lies in the
�eld of medicine, di�erent applied tasks, military solutions and many other areas,
see [67].

However, the special attention is required by applied tasks, which arise at human
activity. Among many, an important problem is car parking. To resolve this problem
di�erent sensors, in particular, a laser ranging sensor can be used. In principle,
systems the parctronic and the systems of the automatic car parking can work
without participation of the driver work. Nonetheless these technical means are
not capable to make beforehand a decision on a possibility of the parking in the
conditions of a distance from desirable space, for example, it is required to stop
by in the yard and the driver should understand �rst there is a place, or not. It is
especially important in the conditions of the complicated entrance to the destination,
lack of an opportunity to be unrolled. The narrow yard or features of an automobile
parking in shopping centers can be an example of such place. In the long term
developments of this problem the method can be applied to movements of heavy-
load cars � de�ning a possibility of journey with bulky goods.
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The solution can be found by the use of cameras which will be able to recognize
existence of a free space by means of special algorithms and to notify the driver on
expediency of entrance. For recognition it is proposed to use independently written
software on the basis of OpenCV library. This library by means of Haar's cascade
allows us to look for objects by the principle of the sliding window. To advantages of
this method costs carry the low probability of false operation, and to shortcomings
� a progressive tense of training of a cascade. The training selection can be on the
basis of photos of the surrounding area. Training of a cascade will happen to the
help of the utilities delivered complete with OpenCV.

After a preparatory stage connection of a cascade to the software and the USB
camera can be made. This module is written in the Ñ# programming language. By
means of EmguCV, operation accuracy about 70 % is reached. The space found for
the parking is designated by the black rectangle drawn over a frame that reports to
the driver about a possibility of the parking of the car.

Descript of method.
In the tasks similar to stated above, one of the main di�culties is that using

di�erent technical solutions, such as lasers, cameras, di�erent sensors of volume,
we receive the ambiguous, sometimes mutually not interpreted data. It means that
when we use one of types of sensors, the wrong result is possible.

The most perspective approach is to use computer vision by a digital video
camera. Using mathematical algorithms, in particular, neural networks, we can
bring closer "a computer eye" to the present human. One of successful methods
in this area Viola-Jones's method [68]. By means of Viola's - Jones method the
problem of object recognition is successfully solved by a criteria in which the input
cascade of a method is trained. It allows us to create the software for a speci�c
applied objective. Using the description of opportunities of the software by Viola-
Jones's method for a task of the analysis of a possibility of the parking of the car in
the pre-determined location.

We use so-called Haar's cascade [70]. in Viola's - Jones method, to train the
Haar cascade it is necessary to produce the training by the selection of negative and
positive examples (superviser training). In case of a solution of other problems, for
example, of calculation of number of cars, either facial recognition, or search speci�c
di�erent from an object background, we can apply the same method, but use other
training examples. In this task, it is necessary to select a background component,
ignoring other objects on the image moving on an input. Further, it is necessary to
separate the carriageway from the real parking lot. These, and many other problems
arising on the task solution course are considered in our approach. The Open CV
library of the last available version at the time of development (OpenCv 3.0 beta) is
applied to resolve the task. The program produces up to 70% of positive (faultless)
results .

Haar's sign and Viola's � Jones method in Open CV library. The basic principles,
to implement our method, are as follows:

- the image is represented in the integrated form. This principle allows us to
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select required areas and objects quickly enough;
- we use the signs of Haar selection of a object on the image;
- The busting [73] is applied � by means of this principle the most important

signs for the de�ned object are selected;
- the cascade of all signs arrives on an input of the quali�er which unambiguously

selects result of true or false.
The essential defect of the Viola-Jones method is a long training of the quali�er �

at rather large volume of the training selection training can reach up to 3 days when
using the PC with an average con�guration. However, after training, sweep rate of
an object is very high therefore Viola's � Jones method can well works, it was one
of reasons to select that method to resolve our task. This method is one of the best
ones if we will estimate it on the ratio of sweep rate of an object and speed of work.
A low probability of wrong detection and false operation are additional advantages.
Furthermore we state a general description of the Viola-Jones algorithm.

The principle of the scanning window is the cornerstone of this method functioning.
We use the scanning window as follows.

The image is represented by a matrix consisting of pixels of w*h (width and
height), each pixel can take values from 0 to 255 in case of black-and-white the
image and from 0 to 2553 in case of the color image.

The problem of detection of a required object as a part of the digital image comes
down to the fact that in the course of work the algorithm notes distinctive signs of
an object in working area of the image rectangular signs which describe the found
object. rectangle = {x,y,w,h,a}, where x, y are the coordinates describing the i-th
center of a rectangle, w is width, h is height, an is a tilt angle between a rectangle
and a vertical axis of the image, rectangle is a structure, which contains set of four
integers de�ning arrangement and the size of a rectangle.

The method of the scanning window is applied to images: each input part of
image of the scanning window requires application of the quali�er. By means of
in advance prepared mini-programs as a part of OpenCV libraries the system of
training is completely automated and does not require an additional control in the
course of the work.

Let us consider now how to represent the image in an integrated form. For
carrying out transformations with data in Viola-Jones's method we use integrated
representation of the input image. This type of transformation is also used in
wavelet-transformations, and other algorithms [71]. The method put in a basis
allows to count total brightness for each of rectangles. The feature consists that
time of calculation remains invariable for each such rectangle.

The matrix with sizes coinciding with the sizes of the initial image is the integrated
representation of the image. Each entry of a matrix contains the total value of
intensity of all pixels. Each entry of a matrix can be calculated as follows:

L(x, y) =

i≤x,j≤y∑
i=0,j=0

∗I(i, j)
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where I(i, j) � the brightness of pixel of the initial image.
Thus, for a matrix of L[x, y] each element contains total value of pixels in a 

required rectangle from (0, 0) to (x, y), at the same time value of pixel (x, y) consists
of the sum of all next pixels except standing on the right and to the left of given
(x, y). Time, is necessary for calculation of a matrix linearly and in proportion to
the number of pixels in the image, proceeding from it the image submitted integrally 
becomes possible to be counted for one cycle of pass. The matrix can be calculated
by the following:

L(x, y) = I(x, y) − −I(x − 1, y − 1)I(x, y − 1)I(x − 1, y)

By means of this integrated matrix is possible to calculate the required values of the
sums of pixels of the rectangle of any area.

Haar cascade
Let us describe Haar's cascade.
Haar's cascade is object X display f: X− > Df , where X �is a set of objects, D

is � the set of admissible values of sign. If signs are f1, ..., fn then a vector of signs
of f = (f1(x), ..., fn(x)) is the description of object X . Those sign descriptions can
be considered, from a formal mathemactical point of view, as objects. During the
work of the Viola-Jones method in a classical form rectangular signs are applied.
The general view of these primitives of Haar is presented in �gure 14:

Figure 14. Haar's primitives.
At the heart of OpenCv library besides the main an expanded set of primitives

for the modi�ed Viola-Jones's method is used. The general view of primitives is
presented in �gure 15.

Figure 15. An expanded set of primitives for Viola-Jones's method.
For such sign the calculated value will be F = X-Y where X � total value

of brightness of points a zakryvayemykhsvetly part of sign, and Y � total value
of brightness of points a part of sign. At calculation of these values integrated
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submission of the image is applied. Haar's signs give dot a of brightness on axis X
and Y respectively.

Preparation of selected objects for training.
For training of a cascade it is necessary to prepare positive and negative examples.

Photos in various weather conditions and various conditions of lighting are required.
For the solution of an objective it is required to �nish shooting not less than 30
photos which in a consequence will be cut on 230 positive examples and 300 negative
ones. Accuracy of work of an algorithm depends on the number of images in the
training selection. Experimentally it is found out that for the solution of problem of
search of the parking space for the car these values are minimal posssible. Negative
examples of selection have to be created in the same environment where recognition
will be made and on them there has to be no subject to recognition.

In �gure 16 the example of the site of the image used for positive selection is
given. The rectangle has allocated places which by the size of the training sample
satisfy to the sizes of the average car.

�gure 16. Seating of the car in the set space
Options of seating of the car in the speci�ed areas exists much more, than it is

presented in the drawing. For the training selection it is necessary to prepare shot
for the sliding window with step to 10 pixels. It will allow to train Haar's cascade
more e�ectively. When seating the car to it the side interval for opening of doors
from 10% up to 20% of car width was conditionally added.

Training of cascade of Haar. In algorithm the model of machine learning is used.
Training of the car is special process of receiving by the module of new knowledge.
In Viola's method of Jones training solves problem of classi�cation.

To start training it is necessary to create two folders with examples. For each
such folder it is required to create the special text �le in which the prepared images
will be described. For the �le with negative examples just it is necessary to number
images from 0 to 300 with the indication of expansion.

For positive examples for training it is required to specify not only expansion
and serial number of example, but also area which contains object. For example,
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for the �le with the name "1.bmp" in the �le of the description line "1.bmp 0 0 60
100" registers. Numerical values are coordinates of limits of the image as positive
examples are prepared only with the maintenance of required object. It is possible
to specify in the �le of the description several objects at once if the image supports
them. In that case it is necessary to specify line "1.bmp 0 0 60 100 60 0 120 200"
where the second four of numbers is coordinates of the second object. The most
convenient option is use of one image as example.

Training happens in two stages. At the �rst stage all positive images are provided
to the general format. In the folder, the corresponding digit capacity of the processor
in the OpenCV folder there is an opencv_createsamples.exe utility. Work with this
utility happens in a console mode and for creation of a vector of images it is necessary
to enter the following command:

-info C:\haar\Good.dat -vecsamples.vec -w 40 -h 60, where
- info C:\haar\Good.dat � a way to the �le with the description of the list of

positive images of selection with the description of coordinates of an object;
- vecsamples.vec � the �le name in which the vector containing a set of positive

images for selection will be saved. The �le will be created in the directory where
there is opencv_createsamples.exe;

- w 40 - h 60 � the approximate size of a template for the sliding window which
will be able to contain an object. The template should correspond to proportions
of the selected object. The size of a template should not be big. The template size
directly in�uences training speed.

As a result of a program runtime the samples.vec �le in which there are all positive
images is created. For creation of a cascade "opencv_traincascade.exe", Operating
time on the computer of the following con�guration is used, takes about 6 hours:
CPU AMD Phenom II X6 2.6 GHz/6core DDR3 8Gb HDD 1Tb.

For a program runtime it is necessary to enter the following command in a console
mode:

-data haarcascade -vecsamples.vec -bg E C:\haar\Bad.dat -numStages 16 -minhitrate
0.999 -maxFalseAlarmRate 0.4 -numPos 200 -numNeg 500 -w 40 -h 60 -mode ALL
-precalcValBufSize 2048 -precalcIdxBufSize 2048

where:
- datahaarcascade � the folder address for creation of the trained cascade;
- vecsamples.vec � the �le address with positive examples;
- bg C:\haar\Bad.dat � the address of the �le description of negative examples;
- numStages 16 � the number of levels of a cascade trained by the program; -

minhitrate 0.999 � coe�cient of quality of training;
- maxFalseAlarmRate 0.5 � the level of false operations; - numPos 200 �

quantity of positive examples. 80% of the available positive �les are speci�ed;
- numNeg 300 � quantity of negative examples;
- w 40 - h 60 � the primitive size;
- mode ALL � allows to include use of all set Haar signs;
- precalcValBufSize 2048
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- precalcIdxBufSize 2048 � the memory selected under process;
In this task it it is necessary to include full range of signs of Haar as cars can

stand at an angle and to complicate search of the parking space.
Files with the description of stages of training and the output trained �le of a

cascade are by results created.
Work with the trained cascade. For work with a cascade by means of the

video camera it was required to write the program which will be able to provide
connection of the USB webcam, to create a form for work and to connect algorithms
of processing of a cascade. For implementation the C# language is selected.

The new empty C# project is created, then in the Uses module Emgu libraries are
connected. Emgu is interpretation of Open CV for work with the C# programming
language.

It is required to connect in the project also �les of libraries of normal library
OpenCv.

After that, in the main function of the program there is a de�nition of variables.
Then, on the timer there is a capture of a frame with input a �ow from the

camera which then will be transformed to the black-and-white image. It is caused
by the fact that for economy of memory it is necessary to squeeze an input �ow
(each frame). The frame is compared to a cascade and in case of a�rmative answer
starts function of posing of a black rectangle over an entrance �ow. If visualization
of result is not required, this function will allow to make a decision of the noti�cation
of the driver on a possibility of the parking.

Testing of the program. The �nal program allows to de�ne the parking space,
with an accuracy about 70% is free or taken. It means that from an entrance �ow
of the stationary camera at change of external conditions and at rede�nition of a
signal from the camera with a frequency about 1 second there is a lack of signs of
the selected area in 30 of 100 frames. It does not involve dangerous e�ects as not the
positive, but negative result is given. Considering constantly changing conditions �
open street space, we believe that this result satis�es to an objective.

One of perspective applications of the program consists in realization of additional
modules with use of SMS of informing on demand, with providing information on
existence of the empty parking space. This approach will be repaid in case of di�cult
arrival and impossibility of sharp turn in the conditions of narrow drives.

Use of cascade of Haar allows to de�ne objects with su�cient accuracy. The
program created in work satis�es to objectives of search of the parking space for the
car.

For increase in accuracy of work of algorithm it is possible to use parallel calculations
for increase in speed of training of cascade, and improvement of technology of busting
other algorithms. Increase in accuracy of recognition can be increased combination
of various methods.

Prospects for improvement of the program can consist that it is possible to
create the module which will allow to notify remotely the driver on possibility
of the parking, without carrying out arrival to the yards or parkings, di�cult for
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maneuvering.

Practical application of method also lies in the sphere of collecting statistical
data on �lling of the parking by cars. Unlike simple recalculation of quantity of
the empty fenced seats, becomes possible to make assessment of real number of cars
which can be located in the set space.
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3.3 Conclusion and discussion

In this thesis, we have proposed a complete analytic theory of maximally �exible and
switchable Hop�eld networks. We shown that dynamics of a network with n slow
components v1, ..., vn can be reduced to a system of n di�erential equations de�ned
by a smooth n dimensional vector �eld F (v). If these slow components are hubs,
i.e., they are connected with a number of other weakly connected nodes (satellites)
and center-satellite interactions dominate inter-satellite forces, then the network
becomes maximally �exible. Namely, by adjusting only center-satellite interactions
we can obtain smooth F of arbitrary forms.

These networks are also maximally switchable. We describe networks of a special
architecture, which contains a controller hub. By changing the state of this hub and
the hub response time parameter ξ one can completely change the network dynamics
from an unique global attractive steady state to any combination of periodic or
chaotic attractors.

Our results provide a rigorous framework for the idea that centralized networks
are �exible. We also propose mechanisms for switching between attractors of these
networks with controller hubs. In functional genomics there are numerous examples
when transitions between attractors of gene regulatory networks can be triggered by
controller proteins having multiple states sometimes resulting from interactions with
micro-RNA satellites (18). Similarly, neurons having multiple internal states can
trigger phase transitions of brain networks suggesting that single neuron activation
could be used for neural network control (28).

The proofs of our results are constructive and are based on an algorithm allowing
the network reconstruction. This algorithm has several potential applications in
biology. Identi�ed networks can be used to study emergent network properties such
as robustness, controllability and switchability. Gene networks with the desired
switchability properties could be build by synthetic biology tools for various applications
in biotechnology. Furthermore, maximal switchable network models can be used in
neuroscience to relate structure and function in the brain activity, or in genetics to
explain how a minimal number of mutations can induce large phenotypic changes
from one type of adaptive behavior to another one.
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Appendix A

Appendix

VakMorozDMD1

function [X,Y, Xshift] = VakMorozDMD1(Nmark, T0, M1, Z1, Z2, Z3, Z4, Z5, Z6, Z7, Z8, Z9, Z10, Z11, Z12, Z13, Z14, Z15, Z16, Z17, Z18, Z19, Z20, Z21, Z22, Z23, Z24, Z25, Z26, Z27, Z28, Z29, Z30, Z31, Z32, Z33, Z34, Z35, Z36, Z37, Z38, Z39, Z40 );
for m=1:8
q=load([['Z',num2str(m)],'.mat']);
Y=eval (['Z' num2str(m)]);

for j=1: M1
time(j)=j;

X(j, m)=Y(j+T0);

Xshift(j,m)=Y(j+1+T0);
end;

end;
X=transpose(X);

Xshift=transpose(Xshift);
end

DMDMine

function [Phi,omega,lambda,b,Xdmd, U, S, V, Atilde] = DMDMine(X1,X2,r,dt)
% Computes the Dynamic Mode Decomposition of X1, X2
% INPUTS:
% X1 = X, data matrix
% X2 = X', shifted data matrix
% Columns of X1 and X2 are state snapshots
% r = target rank of SVD
% dt = time step advancing X1 to X2 (X to X')
% OUTPUTS:
% Phi, the DMD modes

69
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% omega, the continuous-time DMD eigenvalues
% lambda, the discrete-time DMD eigenvalues
% b, a vector of magnitudes of modes Phi
% Xdmd, the data matrix reconstrcted by Phi, omega, b
%% DMD
[U, S, V] = svd(X1, 'econ');
r = min(r, size(U,2));
U_r = U(:, 1:r);
S_r = S(1:r, 1:r);
V_r = V(:, 1:r);
Atilde = U_r' * X2 * V_r / S_r; % low-rank dynamics
[W_r, D] = eig(Atilde);
Phi = X2 * V_r / S_r * W_r; % DMD modes
lambda = diag(D); % discrete-time eigenvalues
omega = log(lambda)/dt; % continuous-time eigenvalues
%% Compute DMD mode amplitudes b
x1 = X1(:, 1);
b = Phi\x1;
%% DMD reconstruction
mm1 = size(X1, 2); % mm1 = m - 1
time_dynamics = zeros(r, mm1);
t = (0:mm1-1)*dt; % time vector
for iter = 1:mm1,

time_dynamics(:,iter) = (b.*exp(omega*t(iter)));
end;
Xdmd = Phi * time_dynamics;
tildeA=ctranspose(U)*X2*V*inv(S);

MHM1DMD

function [P,TargetX,TargetY,TargetZ, TappX, TappY, TappZ, Time,epsX,epsY,epsZ]= MHM1DMD(X1, Y1, Z1, om1,goal, spd, MN, DF, Npoint, Nbeg, kdeg);
tic;
X=X1;
Y=Y1;
Z=Z1;
N=length(X);
nomer=1;
MN1=MN(1);
MN2=MN(2);
MN3=MN(3);
DF1=DF(1);
DF2=DF(2);
DF3=DF(3);
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for j=1:Npoint
Time(j)=j;
TargetX(j)=X(j+Nbeg, nomer);
TargetY(j)=Y(j+Nbeg, nomer);
TargetZ(j)=Z(j+Nbeg, nomer);
for k=1:kdeg
P(k,j)=cos(om1(k)*j);
end;

end;
trained_net=newrb(P, TargetX, goal, spd, MN1, DF1);
hold off;
TappX=sim(trained_net, P);
z=TargetX -TappX;
epsX=norm(z)/norm(TargetX);
trained_net=newrb(P, TargetY, goal, spd, MN2, DF2);
TappY=sim(trained_net, P);
z=TargetY -TappY;
epsY=norm(z)/norm(TargetY);
trained_net=newrb(P, TargetZ, goal, spd, MN3, DF3);
TappZ=sim(trained_net, P);
z=TargetZ -TappZ;
epsZ=norm(z)/norm(TargetZ);
%A_IW = trained_net.IW
%celldisp(A_IW)
%A_LW = trained_net.LW;
%celldisp(A_LW);
%celldisp(b)
toc;
end

frequencygeneration

function [ Om1] = frequencygeneration( kdeg, Ns, om1max );
for j=1:Ns

'Test', j
for l=1:kdeg

Om1(l, j)=om1max(l)*rand;
end;

end

apprToSegOptVar2

tic;
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Nf=5;
kdeg=2;
spd=0.3;
Nbeg=1;
Npoint=2000;
% Npoint is the maximal number of points in the segment;
om1max=[0.03, 0.02];
%om1max(1) is the maximal possible frequency for 1-th oscillator;
%om1max(1) is the maximal possible frequency for 2-th oscillator;
goal=0.000001;
Natt=10;
% Natt is the number of attempts for the random search of frequencies;
om1opt=om1max;
Eopt=100;
for kk=1:Natt
om1(1)=rand*om1max(1);
om1(2)=rand*om1max(2);
Om(kk,1)=om1(1);
Om(kk, 2)=om1(2);
for i=1 : length(cuts)+1

X(i,1)=cell(mots(i,1));
for k=1 : length(X{i}.jointTrajectories)

J(k,i) = X{i}.jointTrajectories(k,1);
L=J{k,i};
A = zeros(length(L),1);
B = zeros(length(L),1);
C = zeros(length(L),1);
for j=1:length(L)

A(j,1)=L(1,j);
B(j,1)=L(2,j);
C(j,1)=L(3,j);

end
%[P,TargetX,TargetY,TargetZ, TappX, TappY, TappZ, Time,epsX,epsY,epsZ]= MotionHandle1A(A, B, C, om1,goal, spd, MN, DF, Npoint, Nbeg, kdeg);
[TargetX,TargetY,TargetZ, TappX, TappY, TappZ, Time,epsX,epsY,epsZ]= MotionHandleAM( A, B, C,Npoint, Nbeg, om1, Nf, spd, kdeg);
Ex(i, k)=epsX;
Ey(i,k)=epsY;
Ez(i,k)=epsZ;

end
end
n1=length(cuts)+1;
n2=length(X{i}.jointTrajectories);
aa=sqrt(n1*n2);
errorX=norm(Ex)/aa;
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errorY=norm(Ey)/aa;
errorZ=norm(Ez)/aa;
error(kk)=sqrt((errorX^2 + errorY^2 + errorZ^2)/3);
if(error(kk) < Eopt) Eopt=error(kk); om1opt=om1; else end;
kk
error(kk)
end;
toc;

MotionHandleAM

function [TargetX,TargetY,TargetZ, TappX, TappY, TappZ, Time,epsX,epsY,epsZ]= MotionHandleAM( A, B, C,Npoint, Nbeg, om1, Nf, spd, kdeg);
tic;
Nfunc=Nf^2;
nomer=1;
X=A;
Y=B;
Z=C;
N=length(X);
Npoint=min(Npoint, N-Nbeg);
[ P ] = BasicFunc(Npoint, kdeg, om1, Nf, spd);
size(P);
for j=1:Npoint

Time(j)=j;
TargetX(j)=X(j+Nbeg, nomer);
TargetY(j)=Y(j+Nbeg, nomer);
TargetZ(j)=Z(j+Nbeg, nomer);

end;
trained_net=newlind(P, TargetX);
TappX=sim(trained_net, P);
z=TargetX -TappX;
epsX=norm(z)/norm(TargetX);
trained_net=newlind(P, TargetY);
TappY=sim(trained_net, P);
z=TargetY -TappY;
epsY=norm(z)/norm(TargetY);
trained_net=newlind(P, TargetZ);
TappZ=sim(trained_net, P);
z=TargetZ -TappZ;
epsZ=norm(z)/norm(TargetZ);
end

OptfreqNRBrandM
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function [ epsmin, opt ] = OptfreqNRBrandM( X1, Y1, Z1, Om1, om1max, Ns, Npoint, Nbeg, om1, goal, MN, DF, spd, kdeg);
epsmin=100;
for j=1:Ns

'Test', j
for l=1:kdeg

om1(l)=Om1(l,j);
end;

[P,TargetX,TargetY,TargetZ, TappX, TappY, TappZ, Time,epsX,epsY,epsZ]= MHM1(X1, Y1, Z1, om1,goal, spd, MN, DF, Npoint, Nbeg, kdeg);
eps=sqrt(epsX^2 + epsY^2 +epsZ^2)/sqrt(3);
if(eps < epsmin) epsmin=eps;

for kk=1:kdeg
opt(kk)=om1(kk); end;

else end;
end;

end

Segdecomposition

function [ Nseg] = Segdecomposition( Nbeg, Npoint, NumberofSeg )
SegLength=(Npoint - Nbeg)/NumberofSeg;
for i=1:(NumberofSeg+1)

Nseg(i)=round( Nbeg+ (i-1)*SegLength)+1;
end;
end
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