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Abstract Rapid urbanization in many countries of 
the Global South has led to intensification of urban 
and peri-urban agriculture (UPA) whose effects on 
the soils’ physical, chemical, and microbial properties 
have been hardly studied. We therefore investigated 
the effects of different intensity levels, exemplified by 
three rates of mineral nitrogen (N) addition and irriga-
tion on  CO2 emissions in typical crops during the wet 
(Kharif) and dry (Rabi) season on a Nitisol in Ben-
galuru, S-India. Respiration data were collected from 
2017 to 2021 in two two-factorial split-plot experiments 
conducted under rainfed and irrigated conditions. Test 
crops were maize (Zea mays L.), finger millet (Eleusine 

coracana Gaertn.), and lablab (Lablab purpureus L. 
Sweet) under rainfed and irrigated conditions, as well 
as the vegetables cabbage (Brassica oleracea var. capi-
tata), eggplant (Solanum melongena L.), and tomato 
(Solanum lycopersicum L.) or chili (Capsicum annuum 
L.). Carbon dioxide  (CO2) emissions were determined 
using a Los Gatos Research (LGR) multi-gas analyzer 
whereby under our study conditions  CH4,  NH3 and 
 N2O were negligible. Measurements were conducted 
from 7:00 am to 11:30 am and repeated from 12:30 pm 
to 6:00 pm. Irrespective of irrigation, season, crops and 
N fertilizer level,  CO2 emission rates during afternoon 
hours were significantly higher (2–128%) than dur-
ing morning hours. In the irrigated field diurnal emis-
sion differences between afternoon and morning hours 
ranged from 0.04 to 1.61 kg  CO2-C  ha−1   h−1 while in 
the rainfed field they averaged 0.20–1.78  kg  CO2-C 
 ha−1   h−1. Irrespective of crops, in the rainfed field 
 CO2 emissions in high N plots were 56.4% larger than 
in low N plots whereas in the irrigated field they were 
only 12.1% larger. The results of a linear mixed model 
analysis indicated that N fertilization enhanced  CO2 
emissions whereby these effects were highest in rain-
fed crops. Soil moisture enhanced emissions in rainfed 
crops but decreased them under irrigation where crop-
specific  CO2 emissions within a season were independ-
ent of N application. Soil temperature at 5  cm depth 
enhanced  CO2 emissions in both fields. Overall, higher 
N and soil temperature enhanced  CO2 fluxes whereas 
effects of soil moisture depended on irrigation.
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Introduction

Worldwide agroecosystems around rapidly growing cit-
ies are greatly affected by rural–urban transformation as 
farmers continuously adapt their crop choices and man-
agement intensities in response to the growing competi-
tion for land, labour, and water as well as the opportu-
nities of large and close-by urban markets (Swain and 
Teufel 2017). This leads to intensified crop cultivation 
which may affect the soils’ physical, chemical, and bio-
logical properties whose response to the regime-shifts 
imposed remains poorly studied (Elmqvist et  al. 2013; 
Steinhübel and von Cramon-Taubadel 2020). This is par-
ticularly the case for poorly buffered tropical soils of the 
Global South. Jain et al. (2019) reported that farmers in 
many peri-urban areas of India have changed their crop-
ping patterns focusing on high-priced horticultural or 
local specialty crops such as grape (Vitis vinifera L.) and 
finger millet (Eleusine coracana Gaertn.). Such crops 
yield higher revenue per unit of water consumed and are 
often cultivated year round under drip irrigation. Short 
duration crops are intensely rotated whereby a major 
knowledge gap exists on the effects of irrigation and fer-
tilization on  CO2 emissions (Buerkert et al. 2021).

Agriculture is a significant contributor to greenhouse 
gas (GHG) emissions (Heimsch et al. 2021; Lynch et al. 
2021). Thereby the majority of studies agree that  CO2 
contributes the largest proportion of GHG emissions from 
soils and its flux rates are more than hundred times larger 
than those of  N2O,  CH4, and other gases which is, how-
ever, partly compensated for by higher GHG effects of the 
latter (Ruser et al. 2006; Chen et al. 2010; Abalos et al. 
2014; Negassa et  al. 2015).  CO2 emissions from soils 
heavily depend on its water content and N status (Darwish 
et al. 2006; Abalos et al. 2014) and it is also known that 
crop rotation in combination with irrigation and fertilizer 
application lead to changes in soil C and N dynamics by 
altering plant primary production, nutrient uptake, and 
recycled plant residues (Snyder et al. 2009; Weiler et al. 
2018; Oldfield et al. 2019; Araya et al. 2021).

From a subtropical Pinus plantation in southeastern 
China Iqbal et  al. (2008) reported that  CO2 emissions 
depended on soil temperature and water-filled pore space 
(WFPS). Tang et  al. (2005) and Gaumont-Guay et  al. 
(2006) determined that 70% of the diurnal variation 

of soil  CO2 fluxes was determined by soil temperature, 
which was similar to results of Manka’abusi et al. (2020) 
for  CO2,  N2O, and  NH3 in Quagadougou (Burkina Faso) 
and Tamale (northern Ghana). In the same study, crop-
ping cycles and seasons also affected  CO2 emissions 
whereby  CO2 emissions under amaranth (Amaranthus 
L.) were significantly higher (20–83%) than those of 
other crops in the cycle (lettuce—Lactuca sativa L., jute 
mallow—Corchorus olitorius L. and carrot—Daucus 
carota subsp. sativus) across all treatments. It was also 
observed that mean  CO2 emissions for lettuce and carrot 
were significantly lower (11–66%) during the cold and 
dry season compared with the rainy period.

In Bengaluru rural–urban transition has led to altered 
cropping patterns (Patil et al. 2019), depletion of ground 
water sources (Kulkarni et  al. 2021), intensification of 
N fertilizer application (Prasad et al. 2019), and a shift 
from rainfed agriculture to irrigated systems (Prasad 
et  al. 2016). Under the monsoonal climate conditions 
of S-India with frequent drought spells irrigation plays 
an important role in enhancing crop yield, but little is 
known about changes in soil respiration as a consequence 
of system intensification exemplified by rising N levels 
and irrigation on the prevailing heavily leached tropical 
soils.

To fill this knowledge gap, we therefore have investi-
gated  CO2 emissions from soils (soil respiration) in com-
plex rotation systems to (i) assess diurnal changes in  CO2 
emissions across different seasons, (ii) record the effects 
of N fertilization on  CO2 emissions, and (iii) determine 
crop specific irrigation effects on  CO2 fluxes. We hypoth-
esized that (1)  CO2 emissions during afternoon hours are 
significantly higher than during morning hours, (2) N 
application enhanced  CO2 fluxes, and (3) under irrigated 
conditions  CO2 emissions were similar for all crops.

Materials and methods

Site overview and experimental design

Two two-factorial cropping experiments were estab-
lished on the premises of University of Agricultural 
Sciences, Gandhi Krishi Vignan Kendra (GKVK) Cam-
pus, Bengaluru (UASB),, Karnataka State, S-India with 
cultivated crop in a 3-part rotation and N fertilizer lev-
els as fixed factors. At a distance of 500 m both experi-
ments were established on deeply leached sandy Kan-
dic Paleustalfs (US Soil Taxonomy) or Dystric Nitisols 
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(World Reference Base) with identical treatments and 
crop rotations, but a different randomization. One field 
completely depended on rainwater and thus carried the 
Rainfed Experiment (RE; 13° 5′19.05"N, 77°34′16.11"E, 
927  m asl). The other field had provision of irriga-
tion water and therefore was an Irrigated Experiment 
(IE; 13° 5′15.32"N, 77°33′59.71"E, 930 m asl; Fig. 1). 
The RE field had a history of arable cropping of finger 
millet (Eleusine coracana Gaertn.) for more than five 
years, while the IE was newly established after clear-
cutting a > 10-year old Eucalyptus plantation. This site 
was cleaned from all plant debris (tree stumps, roots, 
and branches) and ploughed followed by disking and 
several months of fallow prior to cultivation (Buerkert 
et al. 2023). The local climate in Bengaluru with a mean 
annual rainfall of 943 mm (Navya 2021) is divided into 
two distinct periods: the wet season from June to Novem-
ber and the dry season from December to May.

The layout of both experiments comprised 12 main 
plots (three crops replicated four times) in each field. 
Each main plot contains three subplots (12 m × 6 m) with 
randomly allocated a low, medium, and high N fertilizer 
rate (Fig.  2). High N stands for the officially recom-
mended N application dose for the corresponding crop, 
whereas medium N was defined as 50% of high N. The 
low N treatment consisted initially of 1/3rd of the recom-
mended N which was reduced to zero from the 2018 wet 
season onwards (Table  6, Appendix). During the wet 
seasons crops rotated in both experiments were maize 
(Zea mays L., cv. Hema), lablab (Lablab purpureus L. 
Sweet, cv. HA3), and finger millet (cv. ML-365). In the 

dry season only IE was planted with cabbage (Brassica 
oleracea var. capitata, cv. Unnati), eggplant (Solanum 
melongena L., cv. Ankur), tomato (Solanum lycopersi-
cum L., cv. NS-501) from 2017 to 2019, and chili (Capsi-
cum annum L., cv. Demon) from 2020 to 2022 (Table 1).

Urea (46% N) was used as a N source and was 
complemented by a broadcast application of phos-
phorus (P) as single super phosphate (SSP; 3.1% P) 
and potassium (K) as muriate of potash (MOP; 41.5% 
K). Nitrogen was split-applied with 50% during sow-
ing and the remaining amount 30  days after sowing 
(DAS; Table 6, Appendix).

Rainfall and air temperature data at the experimental 
locations were recorded from  10th June 2016 until  10th 
May 2022 at 15 min intervals by an automatic HOBO 
weather station (Onset Comp. Corp., Bourne, MA, 
USA). Annual rainfall in the driest year 2018 was only 
728 mm, whereas 2021 received 1212 mm. Mean mini-
mum and maximum air temperatures in the wet season 
were 18 °C and 28 °C, respectively, whereas in the dry 
season they were 19 °C and 32 °C (Figure 6, Appendix).

Soil sampling and analysis

Soil samples were collected at the beginning, in the 
middle, and after the experimental period (Table  2). 
To this end, in each high and low N plot, ten cores of 
4.2 cm diameter were randomly collected at 0–15 cm 
depth, mixed, air-dried, and sieved to 2 mm. Dry-mat-
ter and organic matter were determined according to 
VDLUFA (1997). Soil pH was determined in a 0.01 M 

Fig. 1  Location of the two experimental fields at the GKVK Campus of the University of Agricultural Sciences Bangalore (UASB), 
S-India. Google Earth, Oct 2017
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 CaCl2 solution with a freshly calibrated pH electrode 
(WTW pH3110, Xylem Analytics Germany Sales 
GmbH & Co. KG, Weilheim, Germany). To measure 

total soil C and N, a VarioMax CHN-Analyzer (Ele-
mentar Analysensysteme GmbH, Langenselbold, Ger-
many) was used.

Fig. 2  Layout of the two cropping system experiments at the GKVK Campus of the University of Agricultural Sciences Bangalore 
(UASB), S-India (Buerkert et al. 2021)

Table 1  Crop rotation in 
the two cropping system 
experiments at the GKVK 
Campus of the University 
of Agricultural Sciences 
Bangalore (UASB), S-India

Years Seasons Rainfed Irrigated

2016 Dry – – – – – –
Wet Maize F. millet Lablab Maize F. millet Lablab

2017 Dry – – – Cabbage Eggplant Tomato
Wet F. millet Lablab Maize F. millet Lablab Maize

2018 Dry – – – Eggplant Tomato Cabbage
Wet Lablab Maize F. millet Lablab Maize F. millet

2019 Dry – – – Tomato Cabbage Eggplant
Wet Maize F. millet Lablab Maize F. millet Lablab

2020 Dry – – – Cabbage Eggplant Chili
Wet F. millet Lablab Maize F. millet Lablab Maize

2021 Dry – – – Eggplant Chili Cabbage
Wet Lablab Maize F. millet Lablab Maize F. millet



337Nutr Cycl Agroecosyst (2023) 127:333–345 

1 3
Vol.: (0123456789)

In situ gas emission measurements

CO2 emission data were collected from the wet sea-
son 2016 to the dry season 2021 for which total above-
ground biomass data are available in Buerkert et  al. 
(2023). Measurements were conducted using a closed-
chamber system connected to a multi-gas analyzer by a 
1.5 m long PVC pipe of diameter 0.005 m. An INNOVA 
1312 Photoacoustic Multi-gas Monitor  (CO2,  N2O,  CH4, 
 NH3 and  H2O; Luma Sense Technologies A/S, Bal-
lerup, Denmark) was used from 2016 until dry season 
2019 and thereafter replaced by a Los Gatos Research 
(LGR) Multi-gas Analyzer  (CO2,  CH4,  NH3 and  H2O; 
ABB Inc., San Jose, CA, USA) for higher accuracy and 
data density. To this end, three rings of 0.075 m height 
and 0.29 m diameter were installed at the beginning of 
the cropping season in plant rows by pushing the rings 
0.05  m deep into the soil, 1  m away from the bunds. 
The area inside the rings/collars was cleaned from plant 
debris and weed plants one day before measurement 
without disturbing the soil. In every season,  CO2 emis-
sions were determined before and after the first and sec-
ond N application. The one-day measurement before 
fertilizer application was used as the baseline emission. 
After N application, emissions were determined for up 
to three days in the morning (7:00–11:30 am) and after-
noon hours (12:30 pm to 6:00 pm) together with air tem-
perature and relative humidity as well as soil tempera-
ture (0–0.05 m and 0.10 m depth) and volumetric water 
content (0.1 m depth) inside the gas emission chambers. 
In each ring, emissions were recorded for 4 min at a fre-
quency of 1 min with Innova and of 10 s with LGR. One 
minute of refreshing time was used for flushing out accu-
mulated gas inside Innova/LGR to avoid any carry over 
effects between measurements.

Under the tropical environmental conditions and 
management practices on the deeply weathered, well 
aerated soils of our study, emissions of  NH3 and  N2O 

were negligible in 65% of all measurements. This cre-
ated an improper distribution of the gas emission data 
for both gases among the crops and treatments.  CH4 
emissions were always small and negative. Therefore, 
we excluded these parameters from further analysis 
and for this study used only  CO2 emission data.

During four years, each crop in the rotation was 
covered at least once in each plot (2017–2019). In the 
RE, gas emissions were determined for only one crop 
per season, starting with millet.  CO2 emission meas-
urements started in the dry season 2017 and ended in 
2021. Wet season measurements were taken between 
2017 and 2020.

Statistical analysis

All raw data were synchronized with the respective 
time stamps in STATA 15 software (StataCorp 2017). 
Subsequently, data were loaded in R 4.2.0 software (R 
Core Team 2022) to calculate gas fluxes using the lin-
ear model of the “gasfluxes” package (Fuss 2020).  CO2 
flux rates were calculated by subtracting initial chamber 
concentrations from final concentrations and dividing 
the difference by the time period for which gas emission 
was measured. Data were tested for normality of residu-
als and non-normal data were discarded for each ring’s 
measurement in a season of a crop at the respective ferti-
lizer application time. The mean difference between two 
independent groups was analyzed by one-way analysis 
of variance (ANOVA) adjusted with the Bonferroni pro-
cedure in STATA 15. A repeated measures mixed linear 
(ML) model analysis was used in STATA 15 to investi-
gate the effects of N application, soil temperature, and 
soil moisture on  CO2 flux rates. Fixed effects were N 
rate, soil temperature, soil moisture, and their interaction, 
while crops were considered as random. The equation 
was determined using backward stepwise regression in 

Table 2  Soil carbon (C), nitrogen (N), and pH of the two experimental sites (Irrigated Experiment, IE and Rainfed Experiment, RE) 
at the GKVK Campus of the University of Agricultural Sciences Bangalore (UASB), S-India

Mean 2016 2019 2021

RE IE RE IE RE IE

Low N High N Low N High N Low N High N Low N High N Low N High N Low N High N

C (%) 0.5 0.5 0.8 0.9 0.4 0.5 0.8 0.8 0.4 0.5 0.8 0.8
N (%) 0.04 0.04 0.07 0.07 0.04 0.05 0.07 0.08 0.04 0.05 0.08 0.08
pH 4.5 4.5 5.0 5.2 4.4 4.2 6.9 6.8 4.2 4.2 6.4 6.4
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which least significant variables were dropped one after 
another until no insignificant variables remained.

Results

Mean  CO2-emissions

Soil temperature varied widely from 13.1  °C to 
41.2  °C, soil moisture from 0.4% to 96%, internal 

chamber temperature from 15.8 °C to 48.4 °C, and rela-
tive humidity inside the chamber from 1 to 94%. Simi-
larly,  CO2-emissions before and after fertilizer appli-
cation in the IE (Fig. 3) and RE (Fig. 4) varied widely 
across time.

Diurnal variation in  CO2 emissions

Across all crops, treatments, and both fields,  CO2 emis-
sions averaged 1.97 ± 1.0 kg C  ha−1  h−1 in the morning 

Fig. 3  Mean  CO2-C emissions of irrigated crops before and after different levels of N application under the soil moisture and tem-
perature conditions at GKVK Campus of the University of Agricultural Sciences Bangalore (UASB), S-India

Table 3  Diurnal variation of  CO2 emission within low and high N plots in different crops of a rainfed and irrigated experiment (RE 
and IE) at the GKVK Campus of the University of Agricultural Sciences Bangalore (UASB), S-India

***,**,* Significance at p < 0.01, 0.05 and 0.10, respectively

Field type Crop Difference of  CO2-C emissions (%) (Afternoon–Morning)

Low N plots High N plots

Rainfed Finger millet 32.4*** 11.0
Rainfed Lablab 15.7 31.3**
Rainfed Maize 128.4*** 101.5***
Irrigated Cabbage 41.5*** 36.8***
Irrigated Chili 12.2* 9.8
Irrigated Egg plant 52.7*** 36.9***
Irrigated Tomato 27.5*** 21.5***
Irrigated Finger millet 33.7*** 48.1***
Irrigated Lablab 33.9* 72.0***
Irrigated Maize 1.8 26.8***
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(7:00 to 11:30 am) and 2.73 ± 1.5 kg C  ha−1  h−1 in the 
afternoon (12:30 to 06:00 pm). Regardless of crops and 
treatments,  CO2 emissions during afternoon hours were 
46.1% and 8.7% higher than during morning hours in 
the RE and IE (p < 0.001), respectively. Diurnal varia-
tions of  CO2 emission in low and high N plots of the 
RE and IE were high (Table  3) but the differences 
between afternoon and morning hours were always pos-
itive. Differences of diurnal  CO2 emissions across crops 
were not consistent with N application.

Fertilization effects on  CO2-C emissions for wet and 
dry season crops

Nitrogen application significantly (p < 0.05) affected 
 CO2 emissions in all wet season crops of the RE and 
IE, as well as dry season crops in the IE. Mean  CO2 
fluxes ranged from 1.5 to 3.0 kg C  ha−1  h−1 (Table 4). 
High N plots had significantly higher  CO2 emissions 
than low N plots across all crops and seasons in both 
experiments. The difference between high and low N 
plots’  CO2 emissions (across crops) during the wet sea-
son in the IE was 56.4% (0.93 kg C  ha−1  h−1) whereas 
it was 12.1% (0.28 kg C  ha−1  h−1) in the IE. Similarly, 
during the dry season the difference was 8.0% (0.17 kg 
 CO2-C  ha−1  h−1). Analyzed crop-wise, the differences 
in  CO2 emissions between low and high N plots in the 
irrigated field were between 0.3 to 0.4 kg C  ha−1  h−1, 
except for eggplant which had 1.0 kg C  ha−1   h−1. On 
the other hand, rainfed finger millet and lablab had 

 CO2 flux differences of 0.5 and 0.6  kg C  ha−1   h−1, 
respectively, whereas maize had 1.0 kg C  ha−1  h−1. The 
amount of urea fertilizer applied in the dry season of 
2019–2021 was 15.0% higher than during the wet sea-
son. Also, MOP application was 14.8% and SSP 31.8% 
higher than during the wet season while total dry mat-
ter yield in the dry season averaged only 43.0% of the 
wet season dry matter. Soil moisture content affected 
 CO2 emissions positively under rainfed condition but 
negatively under irrigation.

Crop specific  CO2 emissions under irrigation

To analyze the effects of growing crops on  CO2 emis-
sions, we focused on the IE because its plots were 
intensively cultivated throughout the year. Plots of the 
dry season crops cabbage, chili, eggplant, and tomato 
had  CO2 emission rates between 1.8 and 2.5  kg C 
 ha−1  h−1 (Table 4). On the other hand, plots with the 
wet season crops finger millet, lablab, and maize had 
emission rates between 2.3 and 3.0 kg C  ha−1  h−1 with 
a confidence interval of 0.95. Mean  CO2 emissions 
within a season did not significantly vary between 
crops. However, across seasons lablab plots had signif-
icantly higher  CO2 emissions than those of cabbage, 
chili, eggplant, and tomato while emission rates in 
maize and finger millet plots were significantly higher 
than those of cabbage, chili, and eggplant (Fig. 5).

Mixed effects of treatment-application, soil 
temperature, soil moisture, and crops on  CO2 
emissions

We also analyzed treatment level, soil moisture, and 
soil temperature as fixed effect parameters while 
crops were considered as a random effect parameter 
(Table  5). Random parameter did not significantly 
affect the fixed parameters as the variance inflation 
factor (VIF) for each independent variable in the 
regression model was close to 1. This indicates that 
crops had no significant effect on  CO2 emissions. 
Effects of N application on  CO2 emissions were low-
est in dry season crops and highest in rainfed wet 
season crops. Soil moisture had different effects in 
irrigated and rainfed plots: in IE it was negatively cor-
related with  CO2 emissions while in RE it enhanced 
 CO2 emissions. Effects of soil temperature on  CO2 
emissions were highest in rainfed wet season crops 
and lowest in irrigated dry season crops.

Fig. 4  Mean  CO2-C emissions of rainfed crops under differ-
ent N application, soil moisture, and temperature conditions 
at GKVK Campus of the University of Agricultural Sciences 
Bangalore (UASB), S-India
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Discussion

Soil temperature and moisture increases  CO2 
emissions

Agriculture along the rural–urban gradients in the 
S-Indian megacity of Bengaluru with its 12 Mio inhab-
itants is characterized by the intensive use of agricul-
tural inputs, continuous cropping, and increasingly 
year-round irrigation despite notorious water scar-
city. Our experiments aimed at mimicking cultiva-
tion patterns in this transformative environment. It is 
well known that soil temperature and moisture greatly 

influence a soil’s C and N mineralization rates (Sierra 
1997; Rey et  al. 2005). Under non-limiting moisture 
conditions higher temperature enhances microbial 
metabolism which leads to higher C and N decomposi-
tion by increasing microbial respiration (Lloyd and Tay-
lor 1994; Rey et al. 2005; Allison et al. 2010). Davidson 
and Janssens (2006) stated that a significant propor-
tion of labile soil organic carbon is subject to temper-
ature sensitive decomposition, while other fractions 
remain stable under environmental constraints. This 
often masks temperature effects on soil organic mat-
ter (SOM) decomposition. In our study differences in 
mean soil temperature to 5 cm depth between afternoon 
and morning hours in rainfed and irrigated fields were 
4.1 °C and 5.9 °C, respectively. The temperature differ-
ence was higher in the IE than the RE, most likely due 
to the cooling effect of irrigation water applied during 
morning hours. In the RE, overall  CO2 emission rates 
during afternoon hours were 46% higher than during 
morning hours while in the IE  CO2 emissions during 
afternoon hours were 40% higher than during morning 
hours in the wet season. The lower diurnal variation of 
emissions in the irrigated field may be due to the limit-
ing effects of higher soil moisture on  CO2 emission and 
to reduced respiration during the wet season. Peng et al. 
(2011) reported in their study that soil moisture became 
a limiting factor for  CO2 emission during the growing 
season (July–September) within a similar moisture con-
tent (2–22%) and temperature (20–40 °C) range.

N fertilization increases  CO2 emissions

At low soil C such as in our study higher N is known 
to stimulate soil microbial activity which in turn 

Table 4  Comparison of 
mean  CO2–C emissions 
from different crops in the 
irrigated and rainfed field 
experiment (RE and IE) at 
the GKVK Campus of the 
University of Agricultural 
Sciences Bangalore 
(UASB), S-India

Field type Crop Mean  CO2 flux (kg C  ha−1  h−1) Significance (P)

Low N plots High N plots

Rainfed Finger millet 2.0 (74) 2.5 (68) 0.003
Rainfed Lablab 1.4 (34) 2.0 (40) 0.001
Rainfed Maize 1.5 (83) 2.9 (89) 0.001
Irrigated Cabbage 2.1 (230) 2.5 (251) 0.003
Irrigated Chili 2.0 (130) 2.3 (145) 0.008
Irrigated Egg plant 2.3 (292) 3.3 (314) 0.001
Irrigated Tomato 2.1 (144) 2.5 (158) 0.001
Irrigated Finger millet 2.5 (243) 2.8 (243) 0.039
Irrigated Lablab 2.7 (250) 3.0 (252) 0.045
Irrigated Maize 2.0 (250) 2.4 (266) 0.002

Fig. 5  Crop specific mean  CO2–C emissions in an irrigated 
crop rotation experiment at the GKVK Campus of the Uni-
versity of Agricultural Sciences Bangalore (UASB), S-India. 
Mean  CO2 emissions of both low and high N plots for each 
crop across years yielded different numbers of replications 
for each crop: cabbage (5), eggplant (5), tomato (3), chili (2), 
finger millet (4), lablab (4), and maize (4). Vertical bars indi-
cate ± one standard error of the mean
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increases SOC mineralization thereby emitting more 
 CO2 (Häring et  al. 2017). Another mechanism by 
which higher N fertilization increases  CO2 emissions 
is the sequestration of higher carbon (C) inputs from 
increased crop growth (Adviento-Borbe et al. 2007). 
In our study irrespective of irrigation,  CO2 emissions 
in all crops significantly increased with N applica-
tion. However, the relative increase in  CO2 emissions 
of wet season crops from low N plots was greater in 
rainfed plots than in irrigated plots. The mean  CO2 
emission in rainfed high N plots was 56.4% higher 
than in low N plots. In the IE the same set of wet 
season crops grown on high N plots had only 12.1% 
higher  CO2 emissions than those in low N controls.

Development of root and shoot growth in plants 
also induces increased  CO2 emissions (Magill et  al. 
1997). On our experimental plots, high N plots had 
significantly higher aboveground plant biomass than 
low N plots (Moran-Rodas et al. 2022; Buerkert et al. 
2023). Higher  CO2 emissions from the high N plots 
align with the results of previous studies. Correla-
tions between dry matter yield and  CO2 emissions 
were r = 0.37 (P = 0.018). Under irrigation crop spe-
cific  CO2 emissions are unrelated to N fertilization.

Over the entire experimental period, crop types 
within a season didn’t affect  CO2 emissions under 
different soil C, N, temperature, and moisture condi-
tions. Differences in  CO2 emissions among different 
crop species may also be due to differences in root 
respiration of these crops. In this context, it has been 
shown that plant root respiration may contribute 
10–90% of the total soil  CO2 emissions (Rochette 
et al. 1999; Hanson et al. 2000). In our study the wet 
season crop lablab had higher mean  CO2 emissions 

than maize and finger millet. Being a legume, lab-
lab has comparatively higher energy demands than 
cereals and vegetable crops which is positively cor-
related with root respiration (Rao and Ito 1998).

CO2 emissions of all crops in wet season averaged 
2.6 kg C  ha−1  h−1, whereas in dry season it was 2.2 kg 
C  ha−1   h−1 (Fig. 3). This difference in seasonal  CO2 
emissions may be attributed to a lower soil moisture 
content (17%) and higher biomass production during 
the wet season and residual effects of higher N rates 
applied in the dry season (22%). Among all grown 
crops in our experiment, maize was the most sensi-
tive in terms of biomass production to limited N and 
produced higher biomass than other crops. The com-
bined effect of lower biomass production and higher 
soil moisture content in dry season may have led to 
residual N at the onset of the following wet season.

Combined effects of N fertilization, soil moisture, 
and soil temperature on  CO2 emissions

The magnitude of N fertilization effect was high-
est in rainfed crops whereby high N plots had 2–5 
times higher biomass production than plots without N 
(Buerkert et al. 2023). In the IE the high N treatment 
led to an only 20–30% higher biomass compared with 
zero N plots. N fertilization induces microbial activ-
ity and root respiration in the plants and the findings 
of this study agree with the results of previous studies 
(Sainju et  al. 2008; Peng et  al. 2011). Soil moisture 
affected  CO2 emission differently depending on irri-
gation. In the RE field, soil moisture positively cor-
related with  CO2 emissions but negatively in the IE 
field. Usually, irrigation or rain in dry soil increases 

Table 5  Mixed model coefficients of fixed effect parameters 
and estimates of random parameters on  CO2 emissions (kg C 
 ha−1  h−1) in a rainfed and irrigated crop rotation experiment at 

the GKVK Campus of the University of Agricultural Sciences 
Bangalore (UASB), S-India

*** Significance at p < 0.01

Dry season Wet season

Irrigated Rainfed Irrigated

Fixed effect Coefficients Coefficients Coefficients
Treatment level (0- low, 1- high) 0.280*** 0.974*** 0.419***
Soil moisture (%) − 0.012*** 0.062*** − 0.023***
Soil temperature at 5 cm (°C) 0.044*** 0.069*** 0.068***
Random effect Estimate Estimate Estimate
Crops (crop Id) 0.002 2.81e−18 2.61e−14
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C mineralization and root respiration, resulting in 
higher  CO2 flux rates (Curtin et al. 2000; Abalos et al. 
2014). Soil moisture has been reported to have a para-
bolic relationship with soil surface  CO2 emissions 
thereby controlling the diffusivity of the  CO2 along 
air filled pores (Hashimoto and Komatsu 2006). Also 
it is well known that water-filled pores restrict soil 
aeration thereby hampering microbial activity which 
determines soil respiration (Linn and Doran 1984). 
However, in our experiment these processes were 
not measured. Temperature plays an important role 
in decomposing soil organic matter (SOM). In our 
study, soil temperature (up to 5  cm depth) affected 
the  CO2 emission equally in IE and RE fields during 
the wet season but had slightly lower effect during the 
dry season (Table 5). In the latter season diurnal soil 
temperature differences were greater than in the wet 
season but on the other hand soil moisture content 
was comparatively higher due to continuous irriga-
tion. Thus, the higher soil moisture content may have 
masked the temperature effects during the dry season.

Conclusions

This study confirmed that on the deeply weathered 
Nitisols of S-India N application leads to higher 
 CO2 emissions whereby the magnitude of C losses 
depends on soil moisture. The effects of N application 
on C losses were considerably higher under rainfed 
than under irrigated conditions. Soil moisture content 
affected  CO2 emissions positively under rainfed but 
negatively under irrigated conditions. There was no 
indication of crop effects on  CO2 emissions but wet 
season crops had significantly higher  CO2 emission 
under irrigation. This calls for further research on the 
interactions between soil moisture and  CO2 emissions 
under more controlled conditions.
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