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1. Introduction

Microscopy images and their analysis play a
decisive role in many investigations in
materials engineering. Despite the high
frequency of this task, analysis and
classification of microscopy images are
commonly done manually by experts,
which in most cases leads to correct
results.[1,2] However, a manual analysis is
very time-consuming, causes high costs,
and the effort multiplies with an increasing
number of specimens or images. In addi-
tion, the results of the analysis strongly
depend on the knowledge of the involved
expert, so that the results can vary and will
always be subjective.[1,3,4] A huge knowl-
edge base is necessary to interpret images
correctly, leading to misinterpretations,
huge sticking points for beginners, and
an enormous loss of knowledge in case
of personnel turnovers. Moreover, manual
analysis of microscopy images is often lim-

ited to a qualitative analysis, and quantitative statements cannot
be made.[2,3] Due to these isues, many attempts were made to
develop and use methods of automatic analysis of microscopy
images leading not only to time and cost-reduction but also to
objective,[4] reliable, and reproducible[3] results and quantitative
determination[3] of microstructural features. However, the devel-
opment of automatical analysis methods is difficult since the
image appearance can vary in a wide range due to numerous fac-
tors influencing microscopy images including the considered
material (e.g., history and preparation), the used microscope
and camera, the chosen settings (e.g., magnification, light inten-
sity, exposure time, file format), the surroundings (e.g., lighting
conditions), and the user (e.g., level of expertise). However,
approaches for different tasks were developed successfully
and even some image analysis systems commercially available
in combination with microscopes exist.[5–7] Different studies
show that such commercially available software can be used,
e.g., to determine morphological parameters of irregular graphite
particles in cast iron[3] or of the second phase of dual-phase steels
with a ferritic matrix.[4] However, details in the workflow of com-
mercially available software often remain unclear and commercial
software limits the opportunities to features and functionality pro-
vided by the software, which may not fully meet the needs of the
customer’s application. Moreover, the time needed to learn special
software, licensing costs, and the limited level of customization
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Fracture surface analysis is of utmost importance with respect to structural
integrity of metallic materials. This especially holds true for additively manufac-
tured materials. Despite an increasing trend of automatization of testing methods,
the analysis and classification of fatigue fracture surface images is commonly done
manually by experts. Although this leads to correct results in most cases, it has
several disadvantages, e.g., the need of a huge knowledge base to interpret images
correctly. In present work, an unsupervised tool for analysis of overview images of
fatigue fracture surface images is developed to support nonexperienced users to
identify the origin of the fracture. The tool is developed using fracture surface
images of additively manufactured Ti6Al4V specimens fatigued in the high-cycle-
fatigue regime and is based on the identification of river marks. Several recording
parameters seem to have no significant influence on the results as long as pre-
processing settings are adapted. Moreover, it is possible to analyze images of other
materials with the tool as long as the fracture surfaces contain river marks.
However, special features like multiple origins or origins located in direct vicinity to
the surface, e.g., caused by increased plastic strains, require a further tool
development or alternative approaches.
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and access to the source code create the need to develop, maintain,
and improve own approaches and codes.

Therefore, approaches were developed considering different
materials, microscope types (light optical microscope [LOM] or
scanning electron microscope [SEM]) and tasks. In the study of
Liu et al.,[8] SEM images of AlSi10Mg processed by laser powder
bed fusion (PBF-LB/M) were converted into binary images to ana-
lyze morphology features of the eutectic, cellular Al–Si microstruc-
ture. Morales-Rivas et al.[9] used an automated image processing
procedure based on the Canny method to detect grain boundaries
on polarized LOM images of an α-Ti-based alloy. Another
approach[4,10] used a combination of LOM and SEM images to seg-
ment and analyze the second phase of dual-phase steels.

In the past years, an increasing number of studies deal with
the use of deep learning (DL) methods to analyze microscopy
images. In the study of Masci et al.,[11] a max-pooling convolu-
tional neural network (CNN) was used to classify defects in rolled
steel strip with the aim to use the method in a real production
line as a fast and reliable automated machine vision inspection.
Based on the approachmentioned above,[4,10] Azimi et al.[1] devel-
oped a fully CNN accompanied by a max-voting scheme to clas-
sify the second phase of a low-carbon steel with a ferritic matrix
based on SEM images. Although, DL methods could lead to very
promising results, their disadvantage is the big amount of data
being needed.[12] Although it is possible to create an applicable
database in some cases, e.g., using extracted phases as input
objects,[1] in many cases the database is restricted and leads to
results being characterized by low reliability. Moreover, super-
vised DL (an approach where an algorithm is trained to make
predictions or decisions based on input data that is labeled with
the correct output or target value) suffers from the limitation that
it requires a set of labeled input–output pairs to train the model.
The annotation and labeling of data is a particularly time-
consuming and complex process that must be manually carried
out by experts eventually entailing the risk of inclusion of numer-
ous uncertainties.[12,13]

The aforementioned studies show that different tasks can be
implemented as automatical analysis of microscopy images.
However, all these studies consider images of micrographs
and, with it, represent a part of the analysis of microscopy images
only. The assessment of fracture surface images, also referred to
as fractography, represents another important part in the field of
microscopy image analysis. The fractography as part of fatigue
testing, e.g., creates insights into the failure of specimens or
components by analyzing topographic features of the fracture
surface and links them to the different operating fracture mech-
anisms, external conditions, and causes of failure.[2,14,15] Closely
related to the analysis of micrographs, the fractography has iden-
tical problems, e.g., easily done misinterpretation.[2] However,
the automatization of fractography is much more complex due
to the higher complexity of fractographic images including 3D
of fractures[14] and the wide variation of characteristics belonging
to the same kind of fracture mechanism.[15] This higher complex-
ity hinders an automatical analysis, e.g., the segmentation of
topographic features requires more effort.[14] Nevertheless, an
automatical analysis of fracture surface images would lead to
a faster and more accurate assessment.[15] Therefore, it has been
a topic of research since decades. Yang et al.[16] developed an
approach to quantify the percentage areas of intergranular

and transgranular fractures of ceramics and ceramic matrix com-
posites using the gradient of SEM line scanning profiles.
Furthermore, Komai et al.[17] used a soft clustering method to
classify textural features of six different fracture surface morphol-
ogies on SEM images. Since then, only a few studies dealt with
the assessment of fracture surface images, e.g., an approach was
developed for the segmentation of fracture surface images by
multilevel thresholding.[14] Similar to the trends detailed for anal-
ysis of micrographs, the use of DL methods to automatically ana-
lyze fracture surface images has increased during the past years.
Tsopanidis et al.[2] used a pretrained CNN with a U-net architec-
ture to characterize transgranular and intergranular fractures on
SEM images of a ceramic material system and reached high pre-
diction accuracy. In another study,[15] four different fracture sur-
face types of metallic materials (ductile, brittle, fatigue, and
corrosion fatigue) were classified among others with different
pretrained CNN using real-scale fracture images and SEM
images with different scales as training data. Instead of classify-
ing different types of surface fractures, the study of Wang et al.[12]

tried to detect the fatigue crack initiation sites on fracture surface
images using a deeply supervised object detector. Due to a lim-
ited training dataset, the results were reasonable but not accurate
enough for a practical application.

As pointed out, different approaches to automatically analyze
fracture surface images were developed in the past. However, a
reliable tool considering different aspects of fracture surface
images is still missing. In all aforementioned studies dealing
with fractography, detail images were used. Although this
approach enables the enhancement of the used data by dividing
one image into different smaller images, it is unfavorable
because it presumes that the user has enough experience to cap-
ture images of interesting areas. Therefore, in the present study,
an unsupervised tool to analyze overview images of fracture sur-
faces was developed supporting nonexperienced users to orien-
tate on the fracture surface, find important features, and capture
images of them. Eventually, the tool developed within the present
study will help any nonexpert to prevent misinterpretations and
overcome roadblocks. Moreover, the underlying algorithm could
be used for a fully automated analysis of a large number of frac-
ture surface images reducing time and costs and finally enable
objective and reproducible results. With a further development of
the algorithm in the future, quantitative statements could be
made and expert knowledge could be integrated so that a loss
of knowledge in case of personnel turnovers is avoided.
Eventually, already existing analysis tools using detailed images
could be integrated in the tool in the future. Due to the complex-
ity of the tool in focus, the development was divided into different
steps. As a first step, a tool locating the origin of the fracture, i.e.,
the crack initiation site, on fracture surface images was devel-
oped. Considering the results of Wang et al.,[12] computer vision
techniques instead of DL methods were used. As base for the
development, images of additively manufactured Ti6Al4V speci-
mens fatigued in the high-cycle-fatigue (HCF) regime were used.
Based on these images, features that could be used in an auto-
mated assessment were identified. Based on these features, a tool
was developed to locate the origin of the fracture on the images.
Afterward, the reliability of the developed tool was analyzed by
evaluation of the influence of different recording parameters.
As last step, the tool was tested with images with more complex
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features and images of other materials to investigate the oppor-
tunities and limitations of the developed tool.

2. Experimental Section

2.1. Considered Material

As base for the tool development, specimens of additively man-
ufactured Ti6Al4V were used. All considered specimens were
produced in electron beam-based powder bed fusion (PBF-EB/
M) with an ARCAM A2X PBF-EB/M system from Arcam AB
(Mölndal, Sweden) as rectangular cuboids (40� 40� 10mm3).
From these cuboids, flat dog-bone shaped fatigue specimens
with nominal gauge cross sections of 3mm� 1.6 mm (e.g., used
in ref. [18]) were cut by electrodischarge machining (EDM),
mechanically ground down to 12 μm grit size, and examined
in stress-controlled HCF tests. The loading direction was parallel
to the build direction (BD) during the fatigue tests. Overall, 11
pairs of fracture surfaces, i.e., 22 fracture surfaces, were consid-
ered, respectively. The corresponding fatigue data were not ana-
lyzed in the present study.

The specimens were used to collect overview images of the
fracture surfaces with a SEM CamScan MV2300 operating at
20 kV. A probe current PC of 8 and a scan speed v of 4 was used
to capture the images. During image capturing, most recording
parameters were kept constant, but some recording parameters
had to be adapted to every specimen individually. However, it
was tried to keep those parameters in a similar range. One impor-
tant parameter that had to be varied was the working
distance WD as the fracture surfaces were not cut from the speci-
mens so that every fracture surface had an individual height. The
magnification Mag was chosen so that the area of the fracture
surface was maximized in the captured image, leading to mag-
nifications between 80� and 95�. Moreover, the parameters of
brightness and contrast, i.e., Gain and Black had to be varied for
each specimen to capture the individual features of the fracture
specimens clearly.

To investigate the influence of the different recording param-
eters on the results elaborated by the tool developed, a second set
of images of one selected specimen of Ti6Al4V (HCF) were taken
with varied recording parameters. In addition, this simulates
image capturing by different users. Based on a reference set
of recording parameters, which is shown in Table 1, the working
distance WD, the magnification Mag, the scan speed v, the probe
current PC, and the parameters of brightness and contrast (Gain

and Black) were varied. Due to the high amount of required time,
the task was divided into two parts. In the first part, WD, Mag,
and v were varied based on reference parameter set 1 (R1). In the
second part, PC, Gain, and Black were varied based on reference
parameter set 2 (R2). The reference Gain and Black of the second
part differs from the parameters in the first part, since the SEM
filament had to be changedmeanwhile. However, the parameters
resulted in similar image appearances. An adjustment of Gain
was necessary for the investigation of the influence of the PC.
Without this adjustment, the images became brighter with
decreasing PC so that no details were visible on the image at
PC ¼ 4.

As last step, the tool was applied to images with special
features (multiple failure origins), images of specimens fatigued
in the low-cycle-fatigue (LCF) regime being characterized by
higher plastic strains as compared to the HCF regime as well
as images of another additively manufactured material fatigued
in the HCF regime (AlSi12). These images were captured with
the already-mentioned SEM using different recording parame-
ters, which were adapted to the particular specimen. All consid-
ered AlSi12 specimens were cut by EDM from rectangular cuboids
(20� 8� 50mm3) manufactured by PBF-LB/M using a SLM 280HL

system from SLM Solutions Group AG (Lübeck, Germany). For
more details, the reader is referred to another study.[18]

Figure 1 shows one of the used SEM images. Here, the image
can be always divided into three areas. An area with information
concerning the captured image is located at the bottom of the
image. The captured image is above this area and can be divided
into a background and the fracture surface. The fracture surfaces
of all considered specimens had similar features. These features
generally are well known in literature, e.g., detailed in[19] and
therefore only explained briefly in the following. The three main
features on fracture surfaces of fatigued specimens are the origin
of the fracture, the fatigue fracture zone, and the overload failure
zone.[12,19] The origin of the fracture is the point where the crack
started.[19] In this study, the main focus was on the detection of
the origin of the fracture; for this reason, the developed tool
should be able to reliably detect this feature. All fracture surfaces
considered had a single origin, which was easy identifiable. This
relieved the verification of the tool results. The origin of the frac-
ture is surrounded by the fatigue fracture zone. In this zone, the
crack growth is relatively slowly.[19] The fatigue fracture zone can
show features such as progression marks and river marks,[19]

both containing information about crack growth. While progres-
sion marks (not observed in case of the considered specimens)
indicate how the crack has grown across the surface, river marks
indicate the direction of crack growth.[19] A high number of river
marks was found on the considered fracture surfaces of Ti6Al4V
fatigued in the HCF regime. From a graphical point of view, river
marks are lines pointing at the origin of the fracture and, with it,
contain information concerning the origin position. Therefore,
river marks were thought to be most suitable to detect origins
automatically and, thus, were chosen to be the feature used in
the tool. The fatigue fracture zone is surrounded by the overload
failure zone, which is related to very fast crack growth.[19] This
zone is characterized by a rough surface and, thus, provided no
information that could be useful for detecting the origin of the
fracture. The ratios of the fatigue fracture zone and the overload
failure zone differ depending on the material and the fatigue

Table 1. Reference sets of recording parameters used for the investigation
of the influence of the recording parameters on the results of the tool.

R1 R2

WD in mm 26.1315 26.1315

Mag 90x 90x

PC 8 8

v 4 4

Gain 37.8 37.0

Black 65.5 69.2
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regime, i.e., the degree of plastic deformation. On the considered
fracture surfaces, the overload failure zone always was small,
while the fatigue fracture zone was large. This increased the
chance to achieve a high number of exploitable river marks
and, thus, was expected to be beneficial for the tool. Since over-
view images were used, details such as fatigue striations,
which only are visible under high magnification,[19] were not
considered.

Another important feature for the automatical assessment is
the shape of the cross section. In the present study, the shape of
the considered specimens was limited to rectangular cross sec-
tions simplifying the separation of the fracture surface and the
background in the images in the automated analysis. During
fatigue testing, the cross section was deformed. However, the
characterized Ti6Al4V specimens were only deformed slightly
preserving the rectangular shape (similar to the original cross
section). Thus, preprocessing steps dealing with the separation
of the fracture surface and the background were minimized
further.

2.2. The Developed Tool

In this section, the developed tool for the origin detection is pre-
sented. For this purpose, the fundamental procedure is shown in
Figure 2a, which will be explained in the following. In order to
detect the origins in an automated manner, some preprocessing
steps were necessary. The images were composed of the actual
fracture surface, the background, and information about the
recording (see Section 2.1). For the recognition tool, only the frac-
ture surface was of interest. Therefore, the images were cropped
at first. An accurate method found was to increase the contrast of
the images to distinguish between the area of the fracture surface
and the background. With the use of the Canny edge detection
algorithm, the actual area of the fracture surface could be identi-
fied and cropped from the image.[20] The adjustments of the con-
trast were dynamically adapted and depended on the average
pixel value of the original image.

The developed tool attempts to detect all river marks based on
a cyclic search. Curve-like trajectories are also considered and
approximated as accurately as possible at the end. A detailed over-
view on how the tool determines these trajectories can be seen in
Figure 2b. At the beginning, the preprocessed image was divided
into equally sized square images. Within each of these subi-
mages, the pixel with the highest intensity value within the spe-
cific subimage was considered for further investigation. From
these pixels, one was randomly selected and was used as the start-
ing point for the subsequent search. A threshold value was cal-
culated from the selected starting point. This procedure allowed
to define a minimum pixel value to filter pixels to be considered
for the further process. In this way, river marks that do not have
the maximum pixel value of 255 still could be detected. For each
starting point, a circle with a fixed radius was drawn. Within this
circle all pixels were deleted, which were below the determined

Figure 1. Example of the images used for the tool development with requirements that would be beneficial for an automatical analysis of surface fracture
images. All images contain an area with information (located at the bottom of the image) and the actual image which can be divided into a background
and the fracture surface.

Figure 2. a) Flowchart of the proposed pipeline to determine automated
fracture detection and b) detailed flowchart of the generation of
vector sets.
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threshold. From the resulting set of points, the next point was
selected and used for further search. A direction was predefined
taking into account the starting point and the identified second
point. The vector that could be determined from these points was
now used to draw a circle segment with defined angles on the
second point. The central axis of this segment was oriented with
respect to the previously determined vector. The basic concept
assumed that this vector is a part of a river mark and, thus, only
points in this direction were of further interest. Then again
(within the next circle segment) all points below the threshold
were deleted and from the remaining ones another point was
selected. The already selected point was also excluded by setting
its value to 0 for further search. This also limited that different
starting points did not result in the same vectors. Next the result-
ing vector was determined and in the same way as before the
circle segment was drawn in. Afterwards, the next point was
selected. This process was repeated for each starting point until
there were no more points within the next circle segment or a
previously determined number of iterations was accomplished.
The size of the radius plays an important role as a hyperpara-
meter controlling the detection of river marks. It determines
the size of river marks to be detected. If the radius is selected
too large, the algorithm could miss fine river marks.
Conversely, if the radius is too small, the output will be too noisy.
The presented procedure is depicted in Figure 3a where a
detailed view of a single search is shown, while Figure 3b
presents a preprocessed fracture image and a completed search
for all starting points.

During this process, a list was created for each starting point,
in which the individual vectors were stored. After the search was
completed, all vector sets with a too large angular variance were
sorted out, because they most likely did not describe a river mark.
From the remaining vector sets, a weighed vector was deter-
mined, which was to represent the chain of the vectors optimally.
In order to consider possible curves, the weighed average value of
these vectors was calculated. The vectors were weighed linearly at
their recognition time. Thus, the last recognized directions had a
more pronounced influence on the resulting line than the first
recognized ones. From the vector calculated in this way, a linear
function was determined. This line pointed in the direction of the

averaged vector and ran through the last point of the previous
search. After this process was completed for all vector sets,
the result was a set of linear functions which ideally described
the fracture trajectories (river marks). All intersections of these
functions were calculated from these linear functions. In order to
be able to determine where the origin of the fracture could be
found, a heatmap was plotted. This heatmap was compiled as
a 2D Gaussian distribution at each determined intersection
point. Themean value of the Gaussian distribution corresponded
to the coordinates of the intersection of two straight lines and the
standard deviation was empirically set to the constant value of
0.3. These individual Gaussian curves were summed up, finally
providing a heatmap that points at the area with the most inter-
sections and, thus, the region of the origin of the fracture (ROF)
on the fatigue fracture surface.

3. Results

The tool could correctly detect the ROF in case of most images
analyzed. However, the accuracy of the results varied. During
analysis, the starting points on the river marks are selected ran-
domly and, therefore, change in every analysis. While this is use-
ful for analysis of different images (since river marks vary on
each image), it might cause problems with respect to repeatabil-
ity. Therefore, it was important to investigate if the repeated
assessment of one image leads to similar results. Three images
captured with the scan speed of v ¼ f0, 4, 8g were analyzed
multiple times for this assessment. The results are shown in
Figure 4. Considering a constant v, the repeated analysis of an
image leads to similar results. However, the quality of the results
depends on the applied v. Using v ¼ 0, the image is not cut cor-
rectly, i.e., in such a way that the resulting image contains parts
of the background and the upper edge of the fracture surface. As
a result the ROF cannot be detected. Nevertheless, a small but not
high-rated area was detected in the ROF. Considering
v ¼ 4 and v ¼ 8, the resulting image is cut correctly containing
the fracture surface only. Moreover, the ROF is detected
correctly. In most cases, v ¼ 4 leads to the smallest detected
areas.

Figure 3. Results for vector search: a) single search and b) complete search. The single search (a) is a partial image of the complete search (b).
The starting point of the search is indicated by the green circle. The red line is used to show the direction. Circle segments are used in each iteration
step. The direction of subsequent search is possible only within these circle segments.
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Asmentioned earlier, the influence of the recording parameters
on the results determined by the tool was examined. Therefore,
the working distance WD, the magnification Mag, the scan speed
v, the probe current PC, and the parameters of brightness and
contrast (Gain and Black) were changed systematically. The corre-
sponding results are shown in Figure 5 (with the exception of the
results of v, which were already detailed in Figure 4).

Images captured with different WD were cut correctly and the
ROF was also detected correctly. However, the results of
WD ¼ 20 mm show a second detected area in the upper-left cor-
ner of the resulting image. Considering images with increasing
Mag values, the size of the cut region increases, as well.
Nevertheless, the ROF is detected correctly in all images.
However, the detected area is slightly shifted in case of
Mag ¼ 70�. In case of Mag ¼ 90�, the detected area is larger
than in the other cases. All images with different PC values
are cut correctly. Considering PC ¼ 2, the ROF is detected cor-
rectly, as well. In the resulting image of PC ¼ 6, the ROF is
detected as one of several marked areas, and in the resulting
image of PC= 8 the detected area is slightly shifted with respect
to the ROF. Considering the image with Gain ¼ 39, the fracture
surface is cut correctly and the ROF is detected correctly. With
decreasing Gain, a smaller region is cut. With that, a too small
region only containing parts of the origin is cut from the image
with Gain ¼ 35. Thus, a so that correct detection is not possible.
The region cut of the image with Gain ¼ 37 contains the ROF.
More than one possible area was detected, however, with the cor-
rect one being among them. With different values of Black, again
a region smaller than the fracture surface is cut. Nevertheless,

the ROF is detected correctly for all three considered values.
The precision with respect to the detected areas was improved
with adapted settings in preprocessing (exemplarily shown in
Figure 5 using some images leading to wrong results before).

As the final step, the tool was used to analyze images with spe-
cial features and images of other materials and fatigue regimes,
respectively. A Ti6Al4V specimen fatigued in the HCF regime
with multiple origins was used to assess the results of images
with special features. The image is shown in Figure 6 and the
two origins located in the corners of the specimen are marked
by red circles. The tool determined two areas for the origin:
one in the middle of the specimen and one at the right corner
where one of the ROFs is located.

An image of a Ti6Al4V specimen fatigued in the LCF regime
was used to investigate the transferability of the tool to images
related to other fatigue regimes. Corresponding images show
many river marks and easily identifiable origins. However, the

Figure 4. Results of the developed tool for repeated assessments. The
three considered images were recorded with different v. The origin of
the fracture is marked in the original image using a red circle. The results
of each analysis are shown superimposed to the original image (light gray)
to mark the position of the cut image and simplify the evaluation of the
detected region of the origin of the fracture.

Figure 5. Results of the developed tool for images captured with different
recording parameters (exemplary selection). The considered fracture sur-
face is similar to the fracture surface shown in Figure 4. The results of each
analysis are shown superimposed to the original image (light grey) to mark
the position of the cut image and simplify the evaluation of the detected
region of the origin. Dark regions, e.g., in the row “PC”, are areas excluded
in preprocessing.
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fatigue zones are smaller than in case of the zones of the HCF
specimens. Besides, specimens of Ti6Al4V (LCF) often have rel-
atively large origins located in direct vicinity of the surface, as
shown in Figure 6. For the shown example, the tool determines
different areas within the overload failure zone as possible ROFs.

As last step, the transferability to images of other materials
was tested. Therefore, images of AlSi12 fatigued in the HCF
regime were used. The fracture surfaces of these specimens dif-
fer significantly from the fracture surfaces used to develop the
tool. Although they are characterized by easily identifiable ori-
gins, which vary clearly from the fatigue zone, the number of
river marks is low. Moreover, the fatigue zone is small, so the
number of occurring river marks is reduced and their size com-
paratively small. Nevertheless, the tool determines the ROF cor-
rectly. (Some results shown were already presented at DVM
Workshop “Grundlagen und Beispiele zur Digitalisierung für
die Materialforschung und -prüfung”, online, 2020.)

4. Discussion

In this section, the results presented in the previous section will
be discussed with respect to reliability, reproducibility, as well as
transferability. Comparing the results of the repeated analysis,
the tool developed leads to reasonable and similar results inde-
pendent from the starting points. The tool detects and follows the
river marks from the starting point to obtain the direction point-
ing at the ROF. Thus, the location of the starting point on the
river mark is thought to have a minor influence on the results.
Still, it becomes apparent that the results of the developed tool
vary slightly. Especially images captured with v ¼ 0 lead to inac-
curate and varying results. With increasing v, the results become
more accurate. Therefore, the scan speed v, which defines the
speed of the electron beam scanning the specimen, has a signifi-
cant influence on the result. To capture images with v ¼ 0, a high
scan speed is used so that the electronic noise level of the image
increases and the image is less clear.[21] This hinders robust anal-
ysis with the tool as the number of bright pixels is increased due

to the noise. However, the still detected, but not so high-rated,
areas in the images indicate that the tool might lead to the correct
result, as long as the image is cut correctly. The noise decreases
with increasing v values and at v ¼ 6 and v ¼ 8 the noise is mini-
mized to a level ensuring that the captured images are almost
noise free. The results of v ¼ 8 are outstanding, however, the
use of such a slow scan speed is too time-consuming. Since
the differences of the results in v ¼ 6 and v ¼ 8 are small, cap-
turing images with v ¼ 6 represents a promising compromise
between quality of the results and capturing time.

The assessment of different recording parameters revealed
different influences on the tool’s results. The working distance
WD describes the distance between the pole piece of the objective
lens and the plane of best focus.[21] A small WD, i.e., locating the
specimen close to the lens, leads to high image resolution and
decreases the depth of field at the same time.[21] Therefore,
details are less clear. This allows to rationalize the second
detected area in the image with WD ¼ 20 mm. Since details
are less clear, the tool has problems detecting the river marks
and, as a result, wrong areas are detected. With a larger WD,
the depth of field increases.[21] The beam diameter also increases,
leading to a lower resolution.[21] Moreover, the signal strength
decreases and therefore, the image can appear relatively noisy.[21]

However, this seems to have almost no detrimental influence on
the results. This is in good agreement with the results obtained
with varying v, i.e., relatively good stability against noise.

The magnification Mag is the ratio of the length of the image
to the corresponding length of the specimen.[21] Since overview
images of fracture surfaces should be analyzed by the tool, Mag is
limited to relatively low values in the present study. With increas-
ing magnification, the scanned area on the specimen gets
smaller[21] and more information concerning details is captured
on the image. With this, a decreasing Mag value leads to a more
extensive background area in the images. Nevertheless, the frac-
ture surfaces were cut correctly, even at small Mag values for all
considered magnifications. A decreasing Mag value results in
less pronounced details, as well. This could be a reason for
the slightly shifted detected area in the case of Mag= 70�.
Since less information is available on the image, the detection
gets less accurate. In case of Mag= 90�, the detected area is
larger than in the other cases. It is thought that at this magnifi-
cation too many details are visible, hindering robust analysis by
the tool. The magnification in turn depends on the WD,[21] so the
interaction of both recording parameters should be investigated
in future work.

The probe current PC is the current that impinges on the spec-
imen generating various signals[21] like the secondary electrons
being used for creating the images considered in the present
work. The PC has a significant influence on the resolution of
the images since it directly influences the beam size that hits
the specimen (spot size).[21] Thereby, a high PC leads to a small
spot size increasing the image resolution.[21] With that, details
are pictured very clearly. Although this would be theoretically
beneficial for the tool, the results at high PC values, e.g.,
PC ¼ 8, are not accurate. Maybe the high number of details gen-
erates additional white lines hindering robust analysis by the
tool, similar to the high magnification. Moreover, a small
spot size results in higher scan times so it is more time-
consuming. Using PC ¼ 6, more than one area is detected with

Figure 6. Examplary sets of results of the developed tool for fracture sur-
face images with special features (multiple origins) and fracture surface
images of other materials or fatigue regimes. The origin of the fracture
is marked in the original image using a red circle.
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the correct one among them. Probably, this is an effect of the
Gain, which must be adjusted to obtain a similar image appear-
ance. Gain greatly influences the results determined by the tool
as discussed later in the text. Therefore, the values of preprocess-
ing must be adapted in the analysis. With an adaption of the val-
ues (see Figure 5), better results could be obtained, clarifying the
importance of an adapted preprocessing. A low PC increases the
spot size and can lead to grainy images, which could hide
surface details.[21] Nevertheless, the ROF of the image with
PC ¼ 2 is detected correctly. Similar to the results obtained with
varying v, this confirms the stability of the tool against noise. The
influence of PC is closely related to the influence of v, which was
discussed at the beginning of this section. The interaction of both
parameters will be investigated in future work.

The brightness Gain and the contrast Black are two common
parameters in image processing. With increasing Gain the num-
ber of brighter pixels increases, rendering the whole image
brighter. Considering the results shown in Figure 5, the influ-
ence of Gain is high in the considered value range. Especially
low and high Gain values (meaning very dark or bright images)
lead to wrong results. Since the image gets darker with decreas-
ing Gain, a bigger area is excluded by preprocessing, leading to a
relatively small resulting image. With a decreasing area of the
resulting image, the number of river marks and, with it, infor-
mation that can be used in the tool decrease as well, so that a
correct detection is hindered (see Gain ¼ 37 in Figure 5).
Eventually, the ROF is excluded from the resulting image, so that
a correct detection is not possible (see Gain ¼ 35 in Figure 5).
Black, often referred to as contrast, controls the sharpness of
the image. A high value leads to a sharper image, while a low
value makes the image smoother. The influence of Black in
the considered value range seems to be small. All wrong results
detailed in this section are based on constant preprocessing set-
tings. In case the settings of the preprocessing are adjusted for
these images, none of the recording parameters at the end will
have such a detrimental influence on the results of the tool and,
eventually, good results can be achieved for all considered record-
ing parameters (see Figure 5).

As last step of the tool assessment, images with special fea-
tures and images of other materials and fatigue regimes were
analyzed, respectively. Analysis of images with two origins leads
to two detected areas, where one ROF is determined correctly.
Instead of the second ROF, a region in the middle of the image
was highlighted. The straight lines calculated by the river marks
stemming from both origins intersect at this place. This leads to a
maximum of intersection points and, eventually, to a wrong iden-
tified area. Nevertheless, the tool worked generally correct. The
mistake is caused by the assumption that only one ROF or maxi-
mum of intersection points must be located in the image. To
avoid this error in the future, additional filters could be used
to classify essential properties of the image, enabling a division
of the image and a single analysis of the subimages with the tool
developed in present work. Alternatively, a tool could be devel-
oped that determines the number of origins in the image as
the first step.

The ROF in the image of Ti6Al4V fatigued in the LCF regime
(considering another fatigue regime) was determined wrong,
although the settings in the preprocessing were adapted.
Since the origin of the fracture is located in a large area in

the direct vicinity of the surface, it is not characterized by one
point where a maximum of the intersection points of straight
lines exists. Instead, the straight lines point more or less parallel
to the region of the origin. Here, another approach is necessary to
detect the form of origins. Thus, the developed tool can not be
used in this case.

The images of the other considered material (AlSi12 fatigued
in HCF regime) are characterized by a small number of river
marks. Although the small number of river marks was expected
to cause problems in the ROF detection, the tool detects it
correctly. This clearly indicates that the tool can be used with
images of other materials as long as the fracture surfaces
of these materials contain river marks. However, at this point
it has to be noted that the settings of the preprocessing were
adapted. Other approaches must be developed for materials
not featuring any river marks. Besides, specimens featuring
other cross sections, e.g., circular, or highly deformed cross
sections could require other approaches or further improve-
ments of the tool presented.

5. Summary and Conclusions

In the present study, a computer vision-based tool was
developed and tested to automatically locate the origin of fracture
on fatigue fracture surface images. The developed tool detects
river marks on the fracture surface and calculates the ROF
based on intersection points of directions being related to the
detected river marks. The results of this approach vary slightly,
but the detected ROF is always correct, providing an orientation
for nonexperienced users. Moreover, recording parameters and,
with it, different users seem to have no significant influence
on the results as long as the preprocessing settings are adapted.
To further improve the results, a two-stage approach based
on the developed tool could be implemented, which analyzes
an overview image of the specimen with the developed tool as
a first step. Afterwards, a detailed image of the detected ROF
could be captured and analyzed by the tool to locate the origin
of the fracture exactly. To broaden the possible applications, a
transfer of the developed tool to images of other materials is
very important. First attempts show that such a transfer is pos-
sible in case the images contain river marks. Even good results
with images containing only few river marks could be achieved
with adjusted preprocessing settings. However, special features
like multiple origins or origins located in relatively large areas in
direct vicinity to the surface, being characteristic for other fatigue
regimes, require a further development of the tool or alternative
approaches.
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