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Abstract: Anomaly detection methods applied to time series are mostly viewed as black boxes that
solely provide a deterministic answer for the detected target. Without a convincing explanation,
domain experts can hardly trust the detection results and must conduct further time-series diagnoses
in real-world applications. To overcome this challenge, we mathematically analyzed the sources of
anomalies and novelties in multivariate time series as well as their relationships from the perspective
of Gaussian-distributed non-stationary noise. Furthermore, we proposed mathematical methods to
generate artificial time series and synthetic anomalies, with the goal of solving the problem of it being
difficult to train and evaluate models for real-world applications due to the lack of sufficient data. In
addition, we designed Probabilistic Outlier Detection (PrOuD), which is a general solution to provide
interpretable detection results to assist domain experts with time-series analysis. PrOuD can convert
the predictive uncertainty of a time-series value from a trained model into the estimated uncertainty
of the detected outlier through Monte Carlo estimation. The experimental results obtained on both
artificial time series and real-world photovoltaic inverter data demonstrated that the proposed
solution can detect emerging anomalies accurately and quickly. The implemented PrOuD demo
case shows its potential to make the detection results of existing detection methods more convincing
so that domain experts can more efficiently complete their tasks, such as time-series diagnosis and
anomalous pattern clustering.

Keywords: anomaly; novelty; outlier detection; photovoltaic; probabilistic forecasting; explainability;
time series

1. Introduction

Generally, we refer to available, normal data as regular data. Outlier detection [1], also
interchangeably referred to as novelty detection [2] or anomaly detection [3] in the literature,
researches detecting abnormal data points or clusters far from the regular data. Due to
the various taxonomies, it is necessary to consider research works focusing on the same
topic but under different names. We distinguish these terms in Section 3. These outliers
may result from unexpected incidents during the operation of a physical system, such as
transitory data loss due to a system reset triggered by power failure, enhanced signal noise
due to a change in the working environment, or an abrupt change in consumption behavior
(e.g., mall closures) due to a special event (e.g., holidays).

Detection mechanisms are applicable in many real-world application scenarios. For
example, in the field of energy planning and management, we can usually establish a
digital model as a virtual representation of a sophisticated physical energy system, with the
aim being simulation, analysis, prediction, dynamic optimization, etc. Through detection
mechanisms in digital models, it is possible to monitor high-dimensional data streams
more efficiently in real time. Furthermore, detection models can provide early warnings
of potential anomalies to assist experts in analyzing complex data streams. Anomaly
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detection mechanisms can reduce the risk of physical systems operating under abnormal
states for a long time, thus protecting physical systems and extending their life cycle.
Moreover, detection mechanisms also play a significant role in renewable energy generation
and operation. According to the detection results, operators can flexibly manage power
generators to prevent damage caused by extreme weather conditions or an abrupt change
in the balance between demand and supply.

While there has been plenty of excellent research on detection methods in the literature,
their real-world application encounters challenges. When these outstanding detection algo-
rithms are deployed on real-world datasets, these challenges may affect their performance,
which may not be commensurate with their performance on public datasets. We have
broadly categorized the challenges we encountered into the following four points:

• Imbalanced anomaly data: Anomalies are rare events. Therefore, in most cases,
only limited amounts of labeled anomalous data and patterns are available in real-
world datasets. The imbalance problem leads to difficulties in optimizing models and
evaluating their performance comprehensively.

• Unknown generative process of anomalies: Without prior knowledge of physical
systems, information about the generative process of anomalous patterns, such as
generative functions and hyperparameters, is mostly inaccessible. Detection models
are thus optimized based solely on existing anomalies, leading to overfitting and
difficulty in handling unseen anomaly types.

• Suspicious detection results: Traditional detection methods, such as hypothesis tests
based on comparing calculated errors with threshold values, offer deterministic results,
i.e., it is either abnormal or not. However, these methods often fall short in convincing
experts or aiding in root-cause analysis.

• Expensive annotation: Annotating anomalies in real-world data is consistently a
temporally and financially expensive task, particularly when dealing with high-
dimensional time-series data from complex physical systems. Expert analysis is
essential for extracting critical information about anomalous sources, including their
duration, influenced channels, and root causes. The absence of accurate annotations
can lead to misclassifying abnormal data as regular, resulting in erroneous assessments.

The contributions of this paper can be summarized as follows:

1. We gave precise definitions of outlier, anomaly, novelty, and noise and mathematically
analyzed their sources in multivariate time series from the perspective of Gaussian-
distributed noise.

2. We proposed generative methods for multivariate artificial time series and four anoma-
lous patterns to address challenges to training and evaluating models when facing an
insufficient number of samples.

3. We proposed the PrOuD solution that describes a general workflow without being
restricted to the specific application scenario or the neural network’s architecture.
PrOuD is adaptive and can collaborate with various types of Bayesian neural net-
works. Compared with conventional probabilistic forecasting models and standalone
detection models, PrOuD can provide domain experts with enhanced explanations
and greater confidence in the detected results through an estimated outlier probability
and the use of an explainable artificial intelligence technique. The experimental results
on both artificial time series and real-world photovoltaic inverter data demonstrated
high precision, fast detection, and interpretability of PrOuD.

4. We published the code via (https://github.com/ies-research/probabilistic-outlier-
detection-for-time-series (accessed on 5 November 2023)) for interested readers to
generate artificial data and reimplement the experiments.

This paper offers specific recommendations and methodologies to readers pursuing
various research topics. Contribution 1 can guide researchers working on continual learning
algorithms for regression problems [4,5] to define old and new tasks in non-stationary
time series. Contribution 2 can help reduce reliance on real-world data collection for

https://github.com/ies-research/probabilistic-outlier-detection-for-time-series
https://github.com/ies-research/probabilistic-outlier-detection-for-time-series
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training data-driven models, since the synthetic and real-world anomalies show similarities.
Additionally, Contributions 3 and 4 propose a human-based interactive machine prototype
for monitoring, analyzing, and labeling high-dimensional time series, which will interest
readers with an industrial background.

2. Related Work

Compared to supervised learning, unsupervised-learning-based outlier detection
methods have less dependence on exact labels about anomalies for training detection
models, thus leading to more flexibility in applications. The state-of-the-art unsupervised
methods can be briefly divided into two main types [3]: reconstruction-error-based and
prediction-error-based. The former utilizes an encoder–decoder architecture to reconstruct
inputs at the output layer and then calculate the reconstruction errors, which measure the
differences between the reconstructions and the original inputs. The latter assumes the
target time series is a (non-)linear combination of multiple input features and attempts
to train a model to predict the target. The difference between the predictions and the
targets is called the prediction error. Since both types of detection models are trained on
regular datasets, when an anomalous perturbation appears in the inputs or the targets,
a surprisingly high error can be obtained. The most-recent research works have intro-
duced applying different neural network models to implement detection algorithms. For
example, recurrent neural networks (RNNs) were adopted to build encoder-decoder ar-
chitecture models with the aim of extracting temporal features in latent space for anomaly
detection [6–8]. The authors of [9,10] proposed unsupervised anomaly detection methods
using a convolutional approach coupled to an autoencoder framework. In addition, hybrid
methods combining a convolutional neural network (CNN) and long short-term memory
(LSTM) have been increasingly proposed, such as [10–13]. A graph neural network (GNN)
considers correlations among sensors and hidden relationships within multivariate time
series, and it has also found application in the domain of anomaly detection [14–16]. Be-
sides these reconstruction-error-based methods, various neural network models have also
been applied to build prediction-error-based detection methods, such as RNNs [17–20],
CNNs [21], and GNNs [22,23]. Most existing anomaly detection methods are typically
end-to-end models that predominantly output deterministic anomaly labels: classifying
instances as either anomalies or not. However, these deterministic models have limitations
in representing the uncertainty associated with their predictions. They lack the capability
to indicate the confidence level or the probabilistic nature of their assessments, which
is crucial in scenarios for which the distinction between normal and anomalous is not
clear-cut. Moreover, the majority of existing research [8,9,13,18] focuses on enhancing the
accuracy of detection while often neglecting the importance of providing explanations for
the detected results. The authors of [24] introduced a novel design process that integrates
human experts into the learning loop by presenting model outcomes in an understandable
form. This includes techniques such as model visualization, anomaly visualization, and
other interpretable methods, thus facilitating explanations for human experts. However, the
work [24] still remains at the conceptual level and has not been implemented. Despite the
methods mentioned above achieving remarkable performance in theoretical experiments,
the challenges outlined in Section 1 remain unresolved in these works.

3. Artificial Time Series with Synthetic Anomalies
3.1. Terms and Definitions

Assume that a generative function f (·) describes the underlying generative process of
a univariate time series, where the independent variable t indicates the time point. The
function f (t) is a mathematical expression of a complex physical system and is hardly
accessible in most cases. What we can observe or measure are the data, referred to as
observations. The existence of noise, which is inherent and irreducible, leads to a difference
between the outputs of the generative function and the actual observations. According to
the available training dataset or prior knowledge of the underlying generative process, we
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can determine the confidence interval. Outliers are the suspicious observations that are
located outside the confidence interval. An uncleaned training dataset containing regular
observations and outliers is generally required for training a model.

Outliers can belong to either the underlying generative process or an external event
(e.g., changes in the physical system and/or the operation environment, or an unexpected
power failure). The former originates from the low-density area of the existing stationary
noise distribution; the latter can result from non-stationary noise. Noise is classified by the
statistical properties of its distribution. Stationary noise follows a Gaussian distribution
with a zero mean and constant variance: ϵ0(t) ∼ N

(
0, σ2

0
)
.

By contrast, the mean and/or the variance of non-stationary noise may vary over time.
As detailed in Table 1, the variances of Equations (1) and (3) are constant and are referred
to as non-stationary homoscedastic noise, and the variances of Equations (5) and (7) vary over
time and are referred to as non-stationary heteroscedastic noise. Furthermore, the means of
Equations (1) and (5) are static, whereas the means of the other two are time-dependent.
Note that the mean and variance of Equation (1) are static but differ from the ones of ϵ0(t).

Table 1. Categorization of non-stationary noise.

Non-Stationary Noise ϵ̃(t) Sum of Noise ϵ0(t) + ϵ̃(t)

N
(

µ̃, σ̃2
)

(1) N
(

µ̃, σ2
0 + σ̃2

)
(2)

N
(

µ̃(t), σ̃2
)

(3) N
(

µ̃(t), σ2
0 + σ̃2

)
(4)

N
(

µ̃, σ̃2(t)
)

(5) N
(

µ̃, σ2
0 + σ̃2(t)

)
(6)

N
(

µ̃(t), σ̃2(t)
)

(7) N
(

µ̃(t), σ2
0 + σ̃2(t)

)
(8)

An anomaly consists of a sequence of temporally consecutive outliers from the same
pattern and can behave as a gradual or abrupt change. An anomaly is generally caused
by an abnormal condition or a fault in the physical system. Anomalies cannot provide
any adequate information for maintaining the model’s predictive performance; thus, they
should be identified immediately and then removed.

A novelty is also composed of a series of outliers, similar to an anomaly. The main
distinction between them is that a detected novelty should be incorporated into the current
model through retraining or updating the model since it can provide significant infor-
mation for improving the performance of the existing model. Distinguishing novelties
from anomalies typically requires manual analysis by domain experts with the help of
sufficient explanations, which involves consideration of the practical application settings.
We think the appearance of novelties is attributed to concept drift. A concept refers to a
hypothesis from the space of potential hypotheses that has been found to best fit the given
training samples. When the learned concept does not match the newly collected samples,
the current model’s performance decreases dramatically. Concept drift is classified as either
virtual concept drift or real concept drift [25]. The former results from insufficient knowl-
edge of the input feature space, which causes the learned concept to drift as additional
samples are gathered in the application phase. Providing sufficient training samples can
help reduce virtual concept drift. The latter refers to the change in the mapping function
between the inputs and outputs, which indicates that the physical system learned by the
model has been altered, regardless of whether virtual concept drift has occurred or not. For
instance, changes in the environment of a wind farm can alter the climatic characteristics
surrounding power generators, thus impacting the facility’s electricity generation perfor-
mance. To maintain prediction performance, the trained model should be retrained using a
combination of old and newly collected data. Alternatively, the model can be designed to
learn novelties continually in order to accumulate knowledge for handling new tasks [5,24].
A specific case in this context is that a novelty can be composed of a group of anomalies
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belonging to the same pattern, for which the anomalies appear regularly and repetitively.
If the purpose of the application is to detect unexpected observations that do not match
the regular data rather than to update the existing model based on newly detected novel
data, further distinction between anomalies and novelties does not make much sense. We
believe this could explain why detection methods to address similar problems are given
different names in most of the academic literature. Figure 1 illustrates the relationships
among these terms.

External Unknown Factors Non-stationary Noise
Anomaly

Novelty

Repetitive,
regular
pattern

Aggregation

Aggregation
& Concept drift

Time Series OutlierError

Figure 1. The relationships among non-stationary noise, outliers, anomalies, and novelties.

3.2. Artificial Time Series with Synthetic Anomalies

Mathematically, a periodic function repeats its values at specific intervals. It can be
defined as fT(T + t) = fT(t) for all values in the definition domain, where the period T
is a constant greater than zero. Considering the periodicity of the time series, the time-
dependent generative function of a univariate input is designed as a combination of N
periodic functions, i.e., f (t) = ∑N

n=1 An fTn(t), where the amplitude An, the type of periodic
function fTn(·) with period Tn, and the number of functions N can be customized according
to the requirements. In addition, considering the stochasticity, Gaussian noise ϵ0(t) with a
constant variance σ0

2, i.e., ϵ0(t) ∼ N
(
0, σ0

2), is introduced to the generation. A univariate
time series is then generated by combining the generative function and the noise. For
example, the j-th dimensional time series of the input space in our experiments is specified
as follows:

xj(t) = fx,j(t) + ϵx,j(t) (9)

= Ad,j sin
(

2πt
Td

+ ϕd,j

)
+ Ay,j sin

(
2πt
Ty

+ ϕy,j

)
+ ϵx,j(t), (10)

where Td = 1440 min (i.e., 24 hours) and Ty = 525,600 min (i.e., 365 days) refer to the daily
period and the yearly period, respectively. In this way, we can generate an input dataset
XI×J containing I samples with J dimensions by customizing the hyperparameters. Next,
we define a non-linear generative function fy(·) that maps the multivariate input to the
univariate output. Selection of the function fy(·) can be based on prior knowledge about
the physical system. For example, we adopt the third-power of the mean of the input
features in our experiments; that is:

y(t) = fy[fx(t)] + ϵy(t) (11)

=

[
1
J

J

∑
j=1

Ad,j sin
(

2πt
Td

+ ϕd,j

)
+ Ay,j sin

(
2πt
Ty

+ ϕy,j

)]3

+ ϵy(t). (12)

Based on the definitions given in Section 3.1, we define an anomalous sequence existing
in a univariate time series x(t) as

sTa = {x̃(t) = fx(t) + ϵx(t) + ϵ̃(t)|t0 < t ≤ t0 + Ta, t ∈ N}, (13)
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with a starting time point t0 and a duration Ta. According to the categorization of non-
stationary noise, we design the following anomalous patterns to generate various synthetic
anomalies in our experiments:

Pattern I: ϵ̃(t) ∼ N
(

α · f (t0), β2
)

, (14)

Pattern II: ϵ̃(t) ∼ N
(

α · f (t) + b, β2
)

, (15)

Pattern III: ϵ̃(t) ∼ N
(

α · f (t0), β2 · (t− t0)
)

, (16)

Pattern IV: ϵ̃(t) ∼ N
(

α ·
(

f (t0) +
√

t− t0
)
+ b, β2 · (t− t0)

)
. (17)

The means of Equations (14) and (16) depend on the value of the time series f (t0) at
the starting time point t0 of the anomalous sequence. Additionally, the variances of
Equations (16) and (17), as well as the mean of Equation (17), are contingent upon the
duration of the anomalous sequence.

Various anomalous sequences can be generated by adjusting the hyperparameters α, β,
and b, as well as the randomly selected starting point t0. The examples of four anomalous
patterns shown in Figure 2 correspond to anomalous phenomena commonly observed
in the real world: namely, enhanced noise, downtime, gradually increasing noise, and
constant drifting.

Time
0.1

0.2

0.3

0.4

0.5

Va
lu

e

original
anomaly

(a)

Time

0.0

0.2

0.4
Va

lu
e

original
anomaly

(b)

Time
0.0

0.2

0.4

0.6

0.8

Va
lu

e

original
anomaly

(c)

Time

0.5

1.0

1.5

Va
lu

e

original
anomaly

(d)

Figure 2. Examples of synthetic anomalies generated by the specific anomalous patterns to mimic real-
world phenomena. (a) Enhanced noise (Equation (14)). (b) Downtime (Equation (15)). (c) Gradually
increasing noise (Equation (16)). (d) Constantly drifting values (Equation (17)).

Correspondingly, an anomaly in the input space can lead to an anomaly at the output
channel within the same period, i.e.,

ỹ(t) =

(
1
J

[
J

∑
j=1

fx,j(t) +
M

∑
m=1

ϵ̃m(t)

])3

+ ϵy(t), (18)

where M denotes the number of affected input channels. Non-stationary noise can also
be added solely to the output channels to generate a synthetic anomaly, as expressed in
Equation (13).
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In this paper, we limited our analysis to univariate time series influenced by a unique
anomalous pattern. However, we acknowledge that an anomaly may consist of multiple
anomalous sequences from different sources of non-stationary noise and may be temporally
correlated in a multivariate time series.

4. PrOuD: Probabilistic Outlier Detection Solution

PrOuD comprises three main phases: probabilistic prediction, detection, and explain-
able interactive learning, as depicted in Figure 3. PrOuD is designed as a general-purpose
workflow with the primary goal of enhancing the limited explainability found in existing
methods rather than solely concentrating on improving prediction and classification accu-
racy. This section, therefore, emphasizes providing a clear description of the input/output
and the purpose of each phase. Additionally, it introduces a basic implementation (not
state-of-the-art). The inherent customizability of PrOuD suggests that users should adjust
the adopted methods and modules according to their specific requirements for practical
applications.
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Figure 3. Illustration of the three main phases of PrOuD solution: (1) probabilistic prediction,
(2) detection, and (3) explainable interactive learning.

4.1. Probabilistic Prediction Phase

The probabilistic prediction phase, referred to as Phase 1 in Figure 3, aims to estimate
a predictive distribution with respect to the given multivariate input time-series features.
The predictive distribution’s variance indicates the total uncertainty of the model and
can be further categorized into aleatoric or epistemic uncertainty [26]. The former stems
from inherent randomness and is irreducible. By contrast, the latter is reducible through
adequate training samples as it arises due to insufficient knowledge of the optimal model.

Instead of deterministic neural networks optimized by the mean square error (MSE),
which neglects the variance and fails to estimate the model’s confidence, we adopt a
heteroscedastic deep neural network (HDNN). As shown in Figure 3, its output layer’s
dimension is twice the size compared to the dimension of the target. The additional
dimension estimates aleatoric uncertainty [27]. HDNN is optimized by the loss function of
the negative logarithm likelihood (NLL):

NLL(y) =
1

2σ̂2
i
∥yi − µ̂i∥2 + log σ̂i. (19)

The output µ̂i predicts the mean of the predictive distribution p(yi| xi, X, Y) and the output
σ̂i predicts the corresponding standard deviation.
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We can estimate the epistemic uncertainty by treating different neural networks as
Monte Carlo samples from the space of all available models, such as deep ensembles [28]
or Monte Carlo dropout (MC dropout) [29]. The former employs N neural networks
with the same architecture by initializing their weight parameters randomly and training
them on shuffled samples of the same training dataset. Dropout is a technique to avoid
overfitting by randomly deactivating neurons of the neural network with a fixed probability
during training. Subnetworks of the original neural network are created by different neural
networks with neurons dropped out. In contrast to regular dropout, MC dropout is also
activated at test time. By forwarding the same input through the network while applying
dropout N times, N predictions can be obtained. Compared with deep ensembles, MC
dropout requires less storage and computation overhead. By combining HDNN with MC
dropout or deep ensemble, each network will output a mean µ̂i,n and a corresponding
standard deviation σ̂i,n for a given input feature xi. Therefore, the mean and the standard
deviation of the overall predictive distribution are

µ̂i =
1
N

N

∑
n=1

µ̂i,n, (20)

σ̂i =

√√√√ 1
N

N

∑
n=1

[
(µ̂i,n − µ̂i)

2 + σ̂2
i,n

]
, (21)

where N denotes the number of neural networks.
Besides reflecting the model’s confidence in the prediction, the estimated predictive

distribution can also be applied to determine the threshold for outlier detection using the
three-σ rule. Moreover, the predictions repetitively sampled from the overall predictive
distributionN

(
µ̂i, σ̂2

i
)

will be used in the detection phase to estimate the outlier probability
of a given observation, which is elaborated on in Section 4.2.

4.2. Detection Phase

The detection phase, denoted as Phase 2 in Figure 3, is designed to estimate the
probability of the current actual observation belonging to outliers. This estimation is based
on the input of this phase, which includes the overall predictive distribution N

(
µ̂i, σ̂2

i
)

from Phase 1 and the given actual observation yi. The estimation can be briefly described
as follows. Firstly, for each time point i, we obtain N predictions, ŷi,1, . . . , ŷi,N , by sampling
from the obtained predictive distribution about the input time-series features xi. Secondly,
we calculate a deviation score to measure the difference between the prediction ŷi,n and the
observation yi; this deviation score is used for detection according to a given hypothesis
test. Thirdly, we compare each deviation score to a predefined threshold and count the
number of deviation scores that are beyond the threshold.

In this paper, we employed the Isolation Forest (iForest) algorithm [30] to compute the
deviation scores. The iForest algorithm, an ensemble-based method, operates by isolating
outliers in the data rather than profiling normal data points. This is achieved by randomly
selecting a feature and then randomly selecting a split value between the maximum and
minimum values of the selected feature to partition the data. The process is repeated
recursively, and the path length from the root node to the terminating node is used as a
measure of normality, where shorter paths indicate potential outliers. The deviation score
s at time point i for the n-th sample pair (ŷi,n, yi) in an iForest F built by Algorithm 1 is
calculated as:

si,n = 2−
h((ŷi,n ,yi),F)

c , (22)

where h((ŷi,n, yi), F) is the average path length of an instance in F, and c is the normalizing
factor. This approach is particularly suited for large-scale datasets due to its linear time com-
plexity and low memory requirement, making it an ideal choice for real-world applications.
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Algorithm 1 Isolation Forest Algorithm

1: Input: Dataset D, Number of trees T, Sub-sampling size S
2: Output: Deviation scores for each data point
3: procedure IFOREST(D, T, S)
4: Initialize an empty forest F
5: for i = 1 to T do
6: Sample S points randomly from D to form a sample Di
7: tree← BUILDITREE(Di)
8: Add tree to F
9: end for

10: return F
11: end procedure
12: procedure BUILDITREE(D)
13: if |D| ≤ 1 or depth limit reached then
14: return leaf node with data points from D
15: else
16: Select a random feature and a random split value
17: Split D into Dle f t and Dright based on the split
18: le f tTree← BUILDITREE(Dle f t)
19: rightTree← BUILDITREE(Dright)
20: return node with split feature, split value, le f tTree, rightTree
21: end if
22: end procedure

A standard hypothesis test compares the calculation results to a predefined threshold.
In this case, threshold selection significantly influences detection accuracy. Considering the
existence of extreme outliers, we firstly remove these outliers and then utilize the quantile
method for threshold selection. Specifically, we apply the three-σ rule, which corresponds
to the 99.7% quantile of the deviation score distribution, to set the threshold λ. The outlier
label of the n-th sample pair can be defined by Equation (23), where ’1’ denotes the outcome
as an outlier:

li,n =

{
1 if si,n > λ,
0 if si,n ≤ λ.

(23)

According to the law of large numbers, the outlier probability can be estimated by the
ratio of the outlier count to the total prediction count obtained from a large number of
samples. The outlier probability pi at each time step can be calculated according to the
following equation:

pi =
1
N

N

∑
n=1

li,n (24)

By estimating the outlier probability, the model’s uncertainty about the time-series predic-
tion is translated into the uncertainty of the detected outlier, rendering the detection results
both explainable and convincing.

Time-series data, characterized by their contextual correlation and continuity [31],
often present clusters of anomalies that are temporally adjacent and are likely caused
by the same underlying anomaly source. To address this, we utilize the Density-Based
Spatial Clustering of Applications with Noise (DBSCAN) algorithm [32]. Unlike methods
such as sliding windows or K-means, DBSCAN does not require a preset number of
clusters and can discover clusters of arbitrary shapes in data with noise. As described in
Algorithm 2, DBSCAN works by identifying core points that have a minimum number
of neighbors within a given radius and then recursively grouping these core points with
their neighbors to form clusters while marking points in low-density areas as outliers. This
method is particularly effective for grouping temporally adjacent anomalies and provides
more-accurate representation of the underlying anomalous events.
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Algorithm 2 DBSCAN Algorithm

1: Input: Dataset D, Epsilon ϵ, Minimum points Mp
2: Output: Clusters of data points
3: procedure DBSCAN(D, ϵ, Mp)
4: Initialize all points in D as unvisited
5: Initialize list of clusters C
6: for each point p in D do
7: if p is unvisited then
8: Mark P as visited
9: NeighborPts← all points within ϵ distance of p

10: if size of NeighborPts < Mp then
11: Mark p as Noise
12: else
13: Create NewCluster
14: Add NewCluster to C
15: end if
16: end if
17: end for
18: return C
19: end procedure

We have to emphasize that this study does not aim to compare our approach with the
latest or most advanced anomaly detection methods. Instead, our focus is on demonstrating
the feasibility and effectiveness of applying anomaly detection techniques to the outputs
of probabilistic forecasts. The chosen methods, iForest and DBSCAN, are not exclusive
methods capable of achieving this, but they are selected for their suitability for processing
and interpreting probabilistic forecast outputs within the context of our specific dataset
and anomaly detection challenges.

4.3. Explainable Interactive Learning Phase

In the explainable interactive learning phase, referred to as Phase 3 in Figure 3, we try
to utilize different techniques to explain the available results (e.g., time-series predictions
and detected outliers/anomalies) comprehensively and explicitly. The components inside
are customizable and are selected by users according to the concerns and requirements of
applications. Here, we introduce two implemented functions as examples, as shown in
Figure 3.

One is to find out potential novel patterns by clustering the detected anomalies from
Phase 2. As we introduced in Section 3, regularly and recurrently appearing anomalies
may be from the same pattern and compose a novelty. Analyzing potential patterns can
determine novel tasks that the current model cannot handle and has to learn continually.

The other is to analyze the root sources of detected outliers/anomalies visually using
SHapely Additive exPlanations (SHAP) [33], which connects optimal credit allocation with
local explanations using the classic Shapely values from game theory. In Phase 2, we
obtained multiple anomaly segments. Each contains the J-dimensional input time series
and the corresponding target data over the period Ta, denoted as STa ∈ RTa×(J+1). Vector
j = {1, 2, . . . , J + 1} is defined as the set of indices of all channels in STa . Additionally,
we have obtained the corresponding vector of outlier probabilities from Phase 2, denoted
as pTa = {p1, p2, . . . , pTa}. We employ STa and pTa as inputs to the SHAP algorithm to
calculate SHAP values for interpreting and visualizing the detection results. SHAP values
provide insights into how each univariate time series in the input contributes to the outlier
probability pi for each time step i. This approach aligns with the need for interpretability in
complex models, particularly when dealing with time-sensitive and potentially critical data.
We use STa as the input and pTa as the target value to fit a tree-based SHAP explainable
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model denoted as g(·). The variable g(·) is applied to calculate the outlier probability of
different channel subsets. The SHAP value ϕi,j for the j-th channel at time step i is given by:

ϕi,j = ∑
sm(i)⊆sj\j(i)

|m|!((J + 1)− |m| − 1)!
(J + 1)!

(
g(sm∪j(i))− g(sm(i))

)
, (25)

where sj(i) denotes the anomaly segment sTa at time step i, and sm(i) denotes a nonempty
subset of sj(i) excluding the j-th channel, where m ⊆ j \ j. The symbol |m|! represents the
factorial of |m|, and 1 < |m| < J + 1. The probability of the original source for the detected
outlier/anomaly is ranked by the quantified contributions of the channels.

Additionally, there are some other promising options to extend the functionalities of
Phase 3. For example, we can design a module to evaluate the quality of the predictive
uncertainty estimated by the trained probabilistic forecasting neural network under differ-
ent metrics like Continuous Ranked Probability Score and Calibration Score. The ultimate
purpose of Phase 3 is to assist experts with understanding the obtained model and results
in a human-understandable way. With this, experts can easily conduct further analysis
and make follow-up decisions, such as labeling failure cases, dynamically adjusting the
detection strategy, or updating the current prediction model.

In summary, Table 2 gives an overview of the inputs, operations, and outputs of each
phase in PrOuD.

Table 2. Overview of inputs, operations, and outputs of each phase in PrOuD at the implementa-
tion level.

Phase Inputs Operations Outputs

1 Multivariate time
series xi

Equations (20) and (21) Predictive distribution
N
(
µ̂i, σ̂2

i
)

2 N
(
µ̂i, σ̂2

i
)

Equations (22)–(24) Outlier probability pi and
anomaly segments

3 pi and anomaly
segments

Equation (25) or other
explanation methods

Anomaly clusters and
visualization results

5. Experiments

This section describes two groups of experiments conducted on artificial time series
and real-world solar inverter datasets, respectively. In the experiments, we conducted
24-h-ahead prediction based on the features observed from the previous day with one-hour
resolution. The experimental setups are expected to show the adaptability and flexibility
of PrOuD by adopting and comparing different networks’ architectures. Additionally,
the experimental results from real-world data indicate the existence of the challenges
mentioned in Section 1 and display the necessity and significance of explanations for
anomaly detection in time series.

5.1. Description of Datasets

The artificial time series is generated with five input features and one output target
according to Equations (10)–(12). It consists of 105,120 samples over two years with a
resolution of ten minutes. Noise on the input and output channels follows the distribution
of ϵx(t) ∼ N (0, 1) and ϵy(t) ∼ N (0, 5), respectively. The constant amplitudes and phases
were randomly selected according to the Gaussian distributions Ad,j ∼ N (5, 1), Ay,j ∼
N (20, 100), ϕd,j, ϕy,j ∼ N (0, 1). The synthetic anomalies were generated according to
Equations (14)–(17). We added non-stationary noise solely in the input space, with at least
two input channels affected, as defined in Equation (13). A mapped anomaly also appears
within the same period, as described by Equation (18). The selection of hyperparameters
for generating the anomalies is detailed in Table 3.



Energies 2024, 17, 64 12 of 21

Table 3. Hyperparameters for generating anomalies in the artificial time series. The duration of each
anomaly is randomly selected within the given range.

Pattern Duration Hyperparameters

I 12–48 h α = 0.2, β = 0.05, b = 0
II 12–48 h α = 0.2, β = 0.005, b = 0.005
III 12–48 h α = 0.1, β = 0.01, b = 0
IV 10–15 days α = 0.05, β = 0.001, b = 0

Figure 4 illustrates examples of the synthetic anomalies. Note that an anomaly with
gradually decreasing variance is generated if the temporal factor t− t0 in Equation (16) is
replaced with Ta − t, where Ta refers to the duration of the anomalous sequence.
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Figure 4. Visualization of synthetic anomalies added to the artificial time series. (a) Pattern I (see
Equation (14)). (b) Pattern II (see Equation (15)). (c) Pattern III (see Equation (16)). (d) Pattern IV (see
Equation (17)).

The real-world photovoltaic inverter data were collected from ten photovoltaic in-
verters, each with six dependent sensors. The measurement of the insulated-gate bipolar
transistor temperature after 24 h was predicted based on historical measurements of five
relevant sensors within the previous 24 h. The data for each inverter range from 115 to
210 days, with each inverter having a unique timestamp indicating the start of a labeled
failure. The time-series data surrounding the labeled failure were manually divided into
a limited number of discrete anomalous sequences, which ranged from one to nineteen
for each inverter data series. The percentage of anomalous data over the corresponding
inverter data ranges from 1.2% to 10.43%.

Both datasets were normalized to the range of 0 to 1 using Min–Max scaling.
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5.2. Experimental Setups

Three probabilistic prediction models were implemented to evaluate PrOuD under
different setups. These models are (1) MC dropout heteroscedastic deep neural network
(MCDHDNN), (2) voting ensemble of heteroscedastic deep neural network (VEHDNN),
and (3) voting ensemble of heteroscedastic long short-term memory (VEHLSTM). The
first two models compared MC dropout and voting ensembles for the same architectures
of heteroscedastic deep neural networks, while the latter compared different network
architectures with the same hyperparameters for deep ensembles.

Under Setup I, five experiments were designed based on the artificial time series, with
the first-year data as the training data and the second-year data randomly modified by the
generated anomalous sequences for anomaly detection assessment. Each of Experiments
I-1, -2, -3, -4 contains the anomalies generated by a single pattern from I to IV. In Experiment
I-5, anomalies from the four patterns are mixed, and anomalies from the same pattern
are intentionally introduced regularly to the second-year time series for novel pattern
clustering, as illustrated in Figure 5. The anomalous samples account for 10% of the whole
test data in each experiment.
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Figure 5. A fragment of the artificial time series with four-pattern anomalies from Experiment I-5.

Under Setup II, each photovoltaic inverter’s data was split into training data (around
43.3% of the data) and test data containing labeled anomalous sequences. The labeled
anomalies for the ten inverters’ data comprised, on average, 5.4% of the total data.

5.3. Evaluation Metrics

The detection performance of PrOuD incorporating various types of neural networks
was assessed using metrics to include Mean Square Error (MSE), precision, recall, F1 score,
Area Under receiver operating characteristic Curve (AUC) [34,35], and Mean Time To
Detect (MTTD).

MSE is used to evaluate predictive accuracy of the Bayesian neural network in Phase
1 by measuring the average squared difference between the prediction and the actual
observation. A lower MSE indicates more-accurate prediction.

MSE =
1
n

n

∑
i=1

(yi − ŷi)
2 (26)

Precision is the ratio of correctly predicted positive observations to the total predicted
positives. High precision means the model accurately identifies anomalies with minimal
false alarms, leading to efficient resource utilization. Recall is the ratio of correctly predicted
positive observations to all observations in the actual class. High recall indicates that the
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model effectively identifies most anomalies and reduces the risk of undetected fraud. F1
score is the weighted average of precision and recall and is denoted as:

F1 Score = 2× Precision× Recall
Precision + Recall

(27)

AUC is a comprehensive measure used to evaluate the performance of a binary
anomaly detection model. It represents the probability that a randomly chosen positive
instance is correctly ranked higher than a randomly chosen negative instance. High AUC
indicates that the model has a strong capability to distinguish anomalies from normal
observations, which is crucial in scenarios where false positives and false negatives have
significant impact.

MTTD measures the interval between the emergence and awareness of an anomaly.
The smaller the value, the earlier the detector can identify anomalies. For details, see
Appendix A.1.

5.4. Results

Table 4 compares the experimental results of the three implementations for Setup I.

Table 4. Experimental results of F1 score, precision, recall, AUC, MTTD (in minutes), and MSE
evaluation on the artificial time series in Setup I. MSEs of the three models on the training data are
7.0× 10−5, 5.0× 10−5, and 1.0× 10−4, respectively. Bold numbers indicate the optimal experimental
results under the corresponding evaluation metric.

ID MCDHDNN VEHDNN VEHLSTM
F1 Score Precision Recall F1 Score Precision Recall F1 Score Precision Recall

I-1 0.933 0.914 0.953 0.932 0.910 0.954 0.936 0.930 0.943
I-2 0.943 0.942 0.944 0.927 0.910 0.946 0.925 0.939 0.912
I-3 0.968 0.978 0.958 0.969 0.977 0.961 0.953 0.966 0.941
I-4 0.967 0.973 0.962 0.974 0.967 0.982 0.891 0.950 0.840
I-5 0.960 0.959 0.962 0.958 0.953 0.964 0.905 0.991 0.832

AUC MTTD MSEtest AUC MTTD MSEtest AUC MTTD MSEtest
I-1 0.989 13.5 1.4× 10−2 0.990 10.6 1.4× 10−2 0.971 14.2 1.3× 10−2

I-2 0.989 6.1 1.8× 10−2 0.985 5.0 2.1× 10−2 0.976 7.1 1.5× 10−2

I-3 0.998 27.3 8.3× 10−4 0.994 24.2 8.3× 10−4 0.980 41.9 8.1× 10−4

I-4 0.988 109.0 1.9× 10−3 0.996 90.0 1.8× 10−3 0.932 290.0 4.3× 10−4

I-5 0.990 26.3 1.1× 10−3 0.995 24.4 1.1× 10−3 0.972 51.8 9.2× 10−4

By comparing MCDHDNN and VEHDNN, we find that MC dropout helps to gain an
advantage in precision, while the voting ensemble outperforms in recall within the same
network architecture. The authors of [28] demonstrated that MC dropout can easily give
overconfident predictions in comparison to deep ensembles for unseen test samples. Some
randomly selected hyperparameters (i.e., α, β, t0) for anomalous pattern configuration may
cause only small perturbations in the in-/output channels. We guess that MCDHDNN
overlooked these anomalies due to overconfidence, thus leading to relatively lower recall
in most experiments. Therefore, as we suggest in Section 4.3, a module in Phase 3 to
evaluate the estimated uncertainty may be required in some cases to make experts aware of
overconfident predictions. Additionally, we observed higher MTTD values for all models
in Experiments I-3, -4, -5. We think this is due to the time-dependent variances of the
corresponding patterns, which keep increasing over the duration of the anomaly. As
illustrated in Figure 4c,d, the outliers neighboring the start/end of the anomaly are just
slightly perturbed. They are easily misclassified as regular observations, thus leading to
a delayed detection time. The confusion matrices in Figure 6 show that more outliers of
patterns III and IV were misclassified as regular observations.
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Figure 6. Confusion matrices of anomalous segment clustering results for Experiment I-5 using
(a) MCDHDNN. (b) VEHDNN. (c) VEHLSTM. Darker colors indicate higher performance of the
model in the category.

Surprisingly, VEHLSTM performed poorly in the term of recall in all experiments
in Setup I. This outcome can be explained by the better generalization ability of LSTM
because the temporal correlation of time series is considered in the architecture of RNN.
According to the MSE, VEHLSTM obtained the lowest test error, indicating LSTM can
predict unknown data more accurately than the other two models, even though the data
are anomalous. However, more-accurate predictions also indicate a smaller prediction error
obtained by LSTM, especially when tiny perturbations are added to the input channel. By
contrast, we trained MCDHDNN and VEHDNN to slightly overfit on purpose so that they
can be more sensitive to abnormal perturbations.

Table 5 shows the results of Experiment II, which was carried out on the photovoltaic
inverter data. MCDHDNN and VEHDNN exhibit similar levels of performance in terms of
AUC, recall, and MTTD to those of the experiments in Setup I. Furthermore, we attribute
unacceptable precision values to the presence of abnormal samples that are misclassified as
normal due to the lack of accurate labels in the dataset, as discussed in Section 1.

Table 5. Experimental results of F1 score, precision, recall, AUC, MTTD (in minutes), and MSE
evaluation on the real-world photovoltaic inverter data in Setup II, presented as mean and variance.
Bold numbers indicate the optimal experimental results under the corresponding evaluation metric.

Model F1 Score Precision Recall AUC MTTD MSEtrain MSEtest

MCDHDNN 0.700 (0.168) 0.610 (0.197) 0.902 (0.042) 0.974 (0.024) 75.1 (98.0) 0.002 (0.0008) 35.1 (82.2)
VEHDNN 0.705 (0.160) 0.601 (0.189) 0.903 (0.051) 0.972 (0.020) 65.6 (79.4) 0.001 (0.0005) 41.1 (80.7)
VEHLSTM 0.547 (0.223) 0.545 (0.239) 0.632 (0.255) 0.867 (0.137) 183.2 (281.5) 0.004 (0.0018) 0.033 (0.016)

Figure 7a shows a fragment of unlabeled photovoltaic inverter data, where the unla-
beled anomalies detected by PrOuD are marked with light gray blocks. We can observe that
the curve of the outlier probability changes rapidly, indicating its sensitivity to the abnormal
data. In addition, our clustering algorithm grouped them into the same anomalous pattern
and marked them in the same color. The recurrent anomalies may imply the occurrence of
a novelty. In fact, the valley of the observation curve in these blocks is lower than what
we observed in the training data. According to our definition given in Section 3.1, the
aggregation of these anomalies from the same pattern can form a novelty. The novelty
should be incorporated into the current model to extend its knowledge. Unfortunately,
even domain experts may not be aware of the existence of a novelty when they label the
data. Figure 7b displays the SHAP values of the second anomaly (on the evening of 3 June)
in Figure 7a and of an outlier within the same anomaly. The length of each bar corresponds
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to the quantified score indicating the contribution of the respective channel to the overall
outlier probability (0.53 in this case). The red bars indicate channels that increase the outlier
probability, while the blue bars indicate channels that decrease this probability. The channel
with the longest bar, i.e., the target channel in this case, is the root cause of the outlier
according to SHAP. This fits our analysis that a lower valley of the observation curve leads
to the anomaly.
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Figure 7. (a) A segment of the photovoltaic inverter data displaying unlabeled anomalies detected by
PrOuD and demarcated by light gray blocks, suggesting they may originate from the same pattern.
(b) SHAP values of the second anomaly (on the evening of 3 June) in Figure 7a and of one outlier in
the anomaly. SHAP suggests the outlier is caused by a change appearing in the target channel.

6. Conclusions

The application of anomaly detection mechanisms plays a crucial role in supervising
energy production and managing energy consumption. In Section 1, we presented potential
challenges when applying anomaly detection to real-world time series. The existence of
these challenges can significantly affect the performance of excellent detection algorithms.
Specifically, the occurrence of rare anomalous data and unknown production processes
poses objective difficulties to training and comprehensively evaluating predictive models
based on datasets collected from the real world. These challenges can be overcome by
collecting more data and annotating as much anomaly data as possible. However, this
requires additional investments in time, finances, and human resources for collecting and
analyzing anomalies. Moreover, traditional detection methods only provide deterministic
results, leading to outcomes that lack sufficient interpretability and credibility. Particularly
in the case of handling complex high-dimensional time series, humans are unable to
alleviate the workload of time-series analysis through these detection methods.

In order to address the first two challenges, we analyzed multivariate time series and
the sources of anomalous data and proposed a straightforward method for generating
artificial multivariate datasets with synthetic anomalies in Section 3. Building upon existing
techniques, we refined conventional anomaly detection processes and proposed the PrOuD
solution. By integrating Bayesian neural networks and Monte Carlo estimation, PrOuD can
convert the uncertainty of Bayesian networks regarding time-series prediction into outlier
probability estimation, thereby enhancing the credibility of the detection results. In Phase 3
of PrOuD, we illustrated, through two use-cases, how PrOuD utilizes explainable learning
and clustering methods to assist experts with time-series analysis and annotation.

In this section, we further present our findings from the experiments, analyze current
limitations, and propose ideas for future research expansion.



Energies 2024, 17, 64 17 of 21

6.1. Interpretation of Findings

In addition to the real-world photovoltaic inverter dataset, we generated an artificial
dataset with the same dimensions. In Setup I, anomalies of single and multiple patterns
were incrementally introduced. The goal is to diversify the types of anomalies, increase
the quantities, and make reliable anomaly annotation information available in the dataset.
Thus, the performance of PrOuD when combining different types of Bayesian networks for
various patterns of anomalies can be more comprehensively evaluated.

Upon analyzing the results of Setup I, our findings can be summarized into two
points. First, the performance of PrOuD for anomaly detection is correlated with the
Bayesian network it incorporates. For example, as mentioned in Section 5.4, due to the
overconfidence of MC dropout, the MCDHDNN model achieved higher precision but
misses more actual anomalies compared to VEHDNN. Further, VEHLSTM attained lower
prediction error on datasets containing anomalies because the temporal correlation of
the input time series is taken into account by the architecture of RNN. However, in the
unsupervised anomaly detection setting, lower prediction error does not necessarily help
us identify anomalies more accurately. This finding actually coincides with our repeated
emphasis that PrOuD focuses on increasing the explainability and credibility of detection
results rather than on improving the predictive accuracy of the incorporated model.

The second finding is that the diversity of anomalies can impact the model’s per-
formance from different perspectives of evaluation metrics. This finding can be drawn
from the results presented in Table 4. In real-world datasets with a limited number of
samples, we can hardly observe various types of anomalies simultaneously and determine
their sources. Therefore, the analysis of anomaly sources in Section 3 and the proposed
customizable generation method can effectively assist with optimizing and evaluating
models more comprehensively during the model training phase.

In Setup II, our objective was to illustrate the adverse effects of insufficient annota-
tion information in the dataset on model evaluation rather than evaluate the predictive
performance of PrOuD. Our findings was proved by the low precision and relatively high
recall presented in Table 5. The absence of annotation information decreases the precision
by detecting unlabeled potential anomalies. To further explain our findings, we visualize
these detected anomalous time-series fragments in Figure 7. Upon manual analysis, it was
observed that the target sensor channel exhibited a different pattern within the temporal
range of these anomalies: that is, there were higher valley values. The reason for this
change is unknown to us. However, we can see from Figure 7a that the estimated outlier
probability curve shows a clear upward trend within each detected anomalous segment,
which can greatly enhance the credibility of the detection results. In addition, Figure 7
illustrates how Phase 3 of PrOuD presents the clustering of the detected anomalies (refer
to Figure 7a) and provides an explanation for the likely source of the anomalies: namely,
the target sensor channel with the largest SHAP value (refer to Figure 7b). This result
demonstrates the capability of PrOuD to ease the workload for experts when analyzing
high-dimensional time series.

6.2. Limitations and Future Work

This paper addresses the four challenges presented in Section 1 through a systematic
analysis and the proposed PrOuD. Considering the diverse topics involved, we have chosen
to emphasize a detailed description of each phase in the implementation of PrOuD. By
our providing open-source code, PrOuD can be better understood and adapted to fit the
needs of specific real-world applications. Hence, in the selection of the prediction model
and anomaly detection, our priority was given to features such as less training overhead,
consistent output stability, straightforward implementation, and low memory usage. The
primary objective was to showcase the PrOuD model’s improvements in credibility and
interpretability of anomaly detection results. PrOuD is a flexible framework that can
seamlessly incorporate various methods. In future research, the expansion of component
selection will involve incorporation with state-of-the-art probabilistic forecasting and
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anomaly detection methods. Conducting comparative analyses among these models is
essential to provide guidance for the practical application of PrOuD in real-world scenarios.

Furthermore, when generating artificial datasets for testing, we make the assumption
that each univariate time series is independent of the other inputs and that only one
anomalous pattern will occur in a given time period. However, there are complex temporal
and/or spatial dependencies between inputs in the real world. Or multiple anomalous
patterns may overlap within a given time period. This paper marks the initiation of this
research direction and guides our future efforts to analyze and test methods capable of
generating diverse anomalous patterns. The aim is to develop a benchmark for testing
anomaly detection algorithms in time series.

In Phase 3 of PrOuD, our intention was to illustrate how it aids experts with time-
series analysis through the presentation of visual graphs and numerical scores, including
outlier probability estimation and SHAP values. Similar to other solutions involving
human interaction, a comprehensive assessment of the practical assistance and limitations
of PrOuD must be conducted and must rely on actual feedback from experts. Regrettably,
we are now facing resource limitations that prevent the execution of such experiments. In
future work, we can also research quantifying the results of the assessment and enhancing
the interpretability of PrOuD. This aims to ensure its adaptability and effectiveness across
various real-world settings.
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Appendix A

Appendix A.1. MTTD Calculation

Because the time stamps of the anomalies are known, we can calculate MTTD, which
refers to the time it takes from when a problem first emerges to the moment when it is
detected by the right people or system. We illustrate the five potential situations regarding
the MTTD calculation in Figure A1.
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d1 d2
(2)

Time

Time
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Time period of a
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Time period of a
detected anomaly

Figure A1. Five potential situations for MTTD calculation: (1) The anomaly is detected later than
its emergence; (2) The anomaly is detected earlier than its emergence; (3) The detected anomaly is
split into many sessions due to the sparsity of the detected outliers; (4) The emerging anomaly is
not detected; (5) The detection model alerts to a nonexistent anomaly. The variables t1 and t2 refer
to the start and end timestamps of the existing anomaly, while d1 and d2 refer to the start and end
timestamps of the detection.

Situation (1) refers to the anomaly being detected later than its emergence, i.e., the
timestamp t1 occurs earlier than d1. The variables t1 and d1 denote the start timestamps of
the existing labeled anomaly and the detection, respectively. In this case, MTTD = d1 − t1.
Situation (2) refers to the anomaly being detected prior to its emergence. In this case, the
detection model alerts of the emergence of the potential anomaly without any delay and
therefore MTTD equals zero. Due to the sparsity of the detected outliers, the clustering
method could mistakenly cluster the outliers detected within the emerging anomaly into
two segments of anomalies, as shown in (3). In this case, MTTD = d1 − t1 if d1 occurs
subsequently to t1; otherwise, MTTD = 0. If an existing anomaly is not detected, as
shown in (4), MTTD = t2 − t1, with the purpose of punishment for the model overlooking
the anomaly. Conversely, MTTD = 0 if the model detects a nonexistent anomaly, as (5)
describes, because the situation will decrease the precision as a punishment but will not
lead to any damage to physical systems. The MTTD calculation result is not changed by
the temporal order of t2 and d2; thus, we do not discuss it here.
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