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ABSTRACT

The permutation largest slope entropy (PLSE) algorithm has been shown to be effective to distinguish between regular and non-regular
dynamics from time series analysis. However, as it is the case for many non-linear time series analysis algorithms, such a characterization is
locally made and does not allow one to capture some micro-phenomena, such as intermittency, that may occur in the system behavior. This
paper presents a PIC micro-controller based implementation of the PLSE for a real-time monitoring of system dynamics. The PLSE algorithm
is optimized to fit the program and data memory of low-end processors using the XC8 compiler and the MPLAB X IDE. The resulting
algorithm is implemented on the PIC16F18446 and deployed on the Explorer 8 development board. The effectiveness of the developed tool
is validated by considering an electrical circuit of the Duffing oscillator that can generate both periodic and chaotic dynamics. By comparing
the PLSE values with the phase portraits and previous results on the Duffing oscillator circuit, the developed tool efficiently allows one to
monitor the behavior of dynamical systems.

© 2023 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license
(http://creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/5.0136234

The permutation largest slope entropy (PLSE) is implemented
on a PIC16F18446 micro-controller for online data analysis. An
example of applications on the Duffing electrical circuit is suc-
cessfully presented, from where the efficiency of ordinal methods
for a real-time monitoring of real-life dynamical systems can be
concluded. These results constitute a new step in the research
for systematic applications of ordinal methods as the user is
freed from complex calculations due to the search for optimal
parameter setting, thereby simplifying the use of the method for
nonspecialists.

I. INTRODUCTION

During the last two decades, quantitative methods, including
ordinal pattern-based methods, are increasingly used to characterize
system behavior from time series. Prior to the seminal paper

of Bandt and Pompe on permutation entropy,1 an attempt for
quantifying the complexity of a system from time series was pro-
posed by the Rosenstein algorithm for computing the maximal
Lyapunov exponent (MLE).2 However, this algorithm is noise sen-
sitive and time costly and requires the phase space reconstruction.
Another popular algorithm developed approximately at the same
time as the Bandt–Pompe algorithm is the 0–1 test by Gottwald and
Melbourne.3,4 This method defines the asymptotic growth rate K to
detect regular dynamics with K = 0 value and non-regular dynam-
ics with K = 1. In practice, the 0–1 test is sensitive to the sampling
frequency and is also time costly. Theoretical approaches, such as
the Lyapunov exponent,5,6 Kolmogorov–Sinai (KS) entropy,7 corre-
lation dimension,8 and many others are difficult to estimate from a
finite data set.

Subsequently, ordinal pattern-based methods have been
introduced in 2002 by Bandt and Pompe.1 They defined the
permutation entropy (PE) demonstrated to be effective for the
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analysis of time series. Likewise, it is robust against noise, easy to
implement, and runs faster than the previous other methods. Ordi-
nal methods are being applied in fields, such as physics, finance,
economics, biology, and meteorology.9 However, the PE does not
necessarily take zero values for regular dynamics, which makes their
detection difficult. By considering such a limitation of the PE, vari-
ous ordinal pattern-based algorithms have been developed. Among
them, one can quote the conditional entropy of ordinal patterns
(CEOP) developed by Unakafov and Keller to estimate the complex-
ity of dynamical systems.10,11 The CEOP is closer to zero for regular
dynamics than the PE, thus improving their detection.

In order to further improve the detection of regular dynamics
with zero entropy, Eyebe et al. developed the permutation largest
slope entropy (PLSE).12,13,25 The main idea in this approach is to
characterize any limit-cycle by its phase space period defined to be
the largest slope.12 Similar to other ordinal pattern-based methods,
the PLSE applies to time series and does not require any prior knowl-
edge on modeling equations of the system. A comparative study,
including the PLSE, the 0–1 test, and the MLE, has demonstrated
the effectiveness of the PLSE for the analysis of real-world data.13

Such a comparison was made with data locally collected on time
and does not allow one to conclude on the long-term dynamics of
the system. Indeed, the analysis of local data is valid only for the
underlying observation and does not describe the whole dynamics
of the system. For instance, a system exhibiting intermittent behav-
ior may be detected as stable while collecting the data during a stable
time slot. An example of such a system is the cardiovascular sys-
tem in the case of arrhythmia. Therefore, a real-time monitoring
of the system is required. Real-time monitoring tools allow one to
understand and control several phenomena of daily life. Some exam-
ples of real-time monitoring concern heartbeats, weather data, eye
jumps, rainfall measurements, industry forecasts, interest rates, and
the brain system.14

Taking into account the ability of the PLSE to analyze real-
world data and its speed performance, this paper aims at developing
a PLSE-based real-time monitoring system. The system is developed
using the PIC16F18446. For the PLSE algorithm to run on the above
low-end processor, an optimized algorithm is developed using the
XC8 compiler and MPLAB X IDE as the development platform.
The performance of the resulting system, deployed on the Explorer
8 board, is assessed using the Duffing oscillator electrical circuit.
Although the idea of developing PIC-based systems is not new,15–17

it is the first attempt to the best of our knowledge for developing a
real-time monitoring tool for the entropy measure based on ordinal
patterns. The idea is to simplify and facilitate the inclusion of ordinal
pattern-based algorithms to nonlinear data analysis.

This paper is organized as follows: Sec. II presents the PIC
micro-controller (PMC)-based implementation of the PLSE, Sec. III
is devoted to the analysis and discussion of the experimental results,
while Sec. IV ends the paper with a conclusion.

II. PIC MICRO-CONTROLLER IMPLEMENTATION OF

THE PLSE

A. Brief presentation of the PLSE algorithm

The PLSE was inspired by the PE. However, instead of
considering permutations as ordinal patterns, the PLSE uses the

largest slope obtained by differentiating the corresponding per-
mutation. Let {xt}t=0,1,...,T−1 be a time series of length T and
xt = (xt, xt+τ , . . . , xt+(n−1)τ ) an embedding vector of length n. n is
known as the embedding dimension, and τ ∈ N≥1 is the delay time
of samples. A permutation πt of order n − 1 is obtained by sorting
neighboring values in xt into an ascending order and considering
the resulting time index sequence. Identical values are sorted by an
ascending order of their time index. The largest slope St = max ({si})

of the above permutation πt is then defined as the maximal value
of the set of consecutive differences of time indices si = πt(i + 1)
− πt(i), 0 ≤ i ≤ n − 1.12 For a given embedding dimension n, there
are n distinct largest slopes, namely, S = {−1, 1, 2, . . . , n − 1}. In
addition to the delay time of samples τ , the delay time of embed-
ding vectors 1 ≤ t0 ≤ n − 1 was also defined as the delay between
consecutive embedding vectors. The PLSE is, therefore, defined as

h(n) = −
∑

p(S) log(S)/ log(n), (1)

where

p(S) =
#{t | 0 ≤ t ≤ T − (n − 1)τ − 1, St = S}

T − (n − 1)τ
(2)

is the probability of obtaining St = S. It was shown in Ref. 12 that
L-periodic dynamics are characterized by a single largest slope
S = L if n > L. In such a case, regular dynamics are charac-
terized by h = 0, whereas h > 0 for non-regular dynamics. The
PLSE has also been shown to be fast and robust against noise.
However, we should emphasize that the detection results strongly
depend on the embedding dimension n. Indeed, the largest period
that can be detected by the PLSE for τ = 1 is L = n − 1. More
details on the definition of the PLSE method can be found
in Ref. 12. The MATLAB code of the PLSE is available at
https://www.mathematik.uni-kassel.de/∼fouda/.

B. The differential dynamical quantization (DDQ)

For the PLSE to be efficiently applied to real-world data, the
DDQ is required. Indeed, real-world data are always noise contam-
inated from various sources of perturbation. For analog data, two
main types of noise are distinguished: the observational (additive)
noise and the dynamical (internal to the system) noise. For dig-
ital data, in addition to the previous two types, the quantization
and sampling noise should be considered. The DDQ is a nonlinear
approach, which consists of affecting a single value (quantization)
to those data, which are approximately the same in the data series.
It then allows one to reduce the amount of noise in the acquired
data by applying a noise threshold that depends on the embedding
vector13,18 and is preferred to common noise reduction techniques as
it is fast and easy to implement.

Thus, given a sequence {xt} and a threshold or noise toler-
ance η (quantization step), values in {xt} are first sorted into an
ascending order to obtain a sequence {uj} in which all equal val-
ues are neighbors. Thereafter, uj and uj+1 are compared and set to
uj ′+1 if |uj − uj+1| < η and j ′ < j; otherwise, these values are left
unchanged. j ′ is such that |uj ′ − uj ′+1| ≥ η. At the end of the quan-
tization process, the values in {uj} are reordered as in {xt} to obtain
the quantized sequence {vt}. η is set as a percentage of the maximal
value of the underlying sequence.
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FIG. 1. Synoptic of the PLSE implementation based on the PMC.

C. Description of the PMC-based PLSE algorithm

The synoptic of the PMC-based system to be realized is shown
in Fig. 1. Implementing the PLSE on low-end processors, such as
PMC, is a challenging task as there is not enough memory space
for both program instructions and data variables. While considering
an embedding length n, the implementation of the PLSE requires
the storage of an n-length histogram H and an n-length embedding
vector x containing the data sequence to be analyzed. The type of
the above variables depends, respectively, on the observation length
and the precision of the data to be analyzed. For an observation
length T < 256, for example, H can be set as an n-length vector of
1-byte encoded values. Another important variable is the n-length
embedding vector π . In order to efficiently manage the small stor-
age space available in PMC, a single embedding vector x is saved and
updated each time a new sample is acquired. Similarly, a single vec-
tor π is saved and updated with x. By this approach, a largest slope
S is computed at each update of x and H(S) is incremented. H(0) is
incremented in the case S = −1. For a given observation length T,
the probability of each largest slope that has occurred is obtained as

p(S) =
H(S)

T
, (3)

and the entropy is easily deduced from Eq. (1). Figure 2 gives the
flow chart of the PMC algorithm of the PLSE. The value of the PLSE
is updated each N acquired samples, and the histogram is reset after
analysis of T samples. For an m-bit precision output of the PMC, the
entropy is obtained as

h(n) =

∑m−1
i=0 2i · bi

2m
. (4)

In case a digital-to-analog converter (DAC) is used, the entropy is
obtained by dividing the DAC output voltage by 5 V, as the PMC
output is ranged between 0 and 5 V.

D. Implementation of the PMC-based PLSE on

PIC16F18446

The PIC16F18446 is an 8-bit micro-controller, including core
independent peripheral (CIP) devices, and a 12-bit resolution

analog-to-digital converter (ADC). It presents up to 28 KB pro-
gram Flash memory and 2 KB data SRAM memory that is useful
for the implementation of the above PLSE algorithm, although large
embedding dimension values cannot be set. The largest embedding
is n = 40 for an H set as a vector of 2-byte encoded numbers. Such
an embedding dimension is enough for the detection of regular
dynamics with weak periods as it is the case for many common
dynamical systems. As shown in Ref. 12, dynamics with large peri-
ods can be detected by considering τ > 1 or by analyzing the series
of local maxima of the underlying time series.

We implemented the algorithm in Fig. 2 by setting N = 128,
T = 32 768, and n ≤ 20 and compiled it with XC8 in the MPLAB
X IDE environment. The data memory usage is 15%, while the
program memory usage is 30%. We set the clock frequency as
Fosc = 32 MHz, and the pre-scaler value for the ADC is set as r = 32,
which fixed its sampling frequency as Fs = 71.4 kHz. The computed
value of the PLSE is sent out to PORTC and then converted using an
external DAC based on an R-2R network.19

III. RESULTS AND DISCUSSION

In this section, we apply the implemented analysis tool to the
logistic map and the Duffing oscillator. The logistic map is internally
realized in the micro-controller, and its output is directly applied to
the PLSE algorithm. The Duffing oscillator is implemented on a sep-
arate board, and its output connected to the micro-controller ADC.
In this case, as the Duffing oscillator outputs alternatively positive
and negative values, an offset is applied to its output for it to range
between 0 and 5 V.

A. Analysis of the logistic map dynamics

The logistic map is described by the following equation:

xk+1 = µxk(1 − xk), (5)

where 0 < µ ≤ 4 is the control parameter. Phase space values are
such that 0 ≤ xk < 1, where x0 is the initial condition of the map.
We used MATLAB to compute the PLSE of the logistic map for
3.5 ≤ µ ≤ 4 and x0 = 0.45. Values of x in the MATLAB environ-
ment are double precision. We set n = 20 and η = 0 for us to detect
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FIG. 2. Flow chart of the PMC-based PLSE algorithm.

all the limit-cycles whose periods are less than 20. The correspond-
ing bifurcation diagram is shown in Fig. 3. According to this figure,
µ = 3.5, µ = 3.53, and µ = 3.565 correspond to period-4, period-
8, and period-16 limit-cycles, respectively, and the system exhibits
chaotic dynamics for µ = 3.65 and µ = 4.

In order to estimate the impact of data conversion on the
underlying dynamics, we converted double precision values into
12-bit encoded integers in the PIC code. We ran the PMC-based tool
for n = 5, 12, 20, µ ∈ {3.5, 3.53, 3.565, 3.65, 4} with η = 0 and com-
pared the results obtained with those of the MATLAB simulation.
The corresponding entropy values are summarized in Table I. The
difference observed comes from the rounding error while converting

FIG. 3. PLSE bifurcation diagram of the logistic map.

the logistic map into 12-bit encoded integers and the entropy val-
ues into 8-bit integers as described in Eq. (4). Therefore, we can
conclude that the data conversion reduces the period of limit-
cycles, while the randomness of the chaotic map is maintained quite
unchanged. Such a reduction of the period of limit-cycles is an
advantage for our PMC-based tool as it allows one to detect limit-
cycles with large periods using small embedding dimensions. Thus,
the results obtained confirm that the embedded PLSE algorithm
matches the MATLAB code and, therefore, can be applied for the
experimental system monitoring.

B. Analysis of the Duffing oscillator dynamics

1. Brief recall of the Duffing oscillator

The Duffing oscillator is one of the prototypes indicated
for the study of nonlinear chaotic dynamics.20–22 Its electrical
circuit proposed in Refs. 23 and 24 is shown in Fig. 4(a). It

TABLE I. Comparison of MATLAB and PIC-based PLSE algorithms.

MATLAB PIC

n n

µ 5 12 20 5 12 20

3.5 0 0 0 0 0 0
3.53 0.6460 0 0 0 0 0
3.565 0.6460 0 0 0.6470 0 0
3.65 0.6566 0.5376 0.5561 0.6549 0.5450 0.5803
4 0.8516 0.8279 0.7956 0.8470 0.8274 0.8000
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FIG. 4. Duffing oscillator: (a) electrical model and (b) electrical circuit.

has been implemented as shown in Fig. 4(b) and analyzed in
Ref. 13. The resistor values are chosen as R1 = 5.1 k�, R2 = 1 k�,
R3 = 1 k�, and R4 = 3.2 k� and capacitor values as C1 = 10 nF and
C2 = 2.2 nF. It is characterized by a cubic nonlinear element of the
form i(x) = ax + bx3 where a and b are constants. Let us denote the
voltage across the capacitors C1 and C2 by vC1 and vC2 , respectively.
The Duffing state equations are given as















dvC1

dt
= −

1

R1C1

vC1 −
1

R2C1

vC2 ,

dvC2

dt
=

R0

R3C2

(

avC1 + bv3
C1

)

+
1

R3C2

ve(t),

(6)

where ve(t) is a sinusoidal forcing voltage of the form
ve(t) = vm sin(2π ft) with frequency f and amplitude vm.

2. Experiment setup and data acquisition

For the developed PMC-based tool to apply to any experimen-
tal system, a data preconditioning is required. Indeed, the PMC is
power supplied with 5 V DC and can process only input data in

the range of 0–5 V. The preconditioning module is placed prior to
the ADC of the PMC and applies an offset voltage Voff = 2.43 V
to the output of the Duffing oscillator, while controlling its ampli-
tude to vary between 0 and 5V. The controlled analog voltage is
then applied to the 12-bit ADC of the PIC16F18446 at sampling rate
Fs = 71.4 kHz. The Duffing circuit is forced with a sine wave with
frequency f = 6.67 kHz and amplitude 0 ≤ vm ≤ 6Vrms. All the forc-
ing amplitudes in the paper are taken as root mean squared (rms)
values. The micro-controller is programmed through the Explorer
8 development board using the PICkit3 programmer. The complete
experiment is shown in Fig. 5.

3. Analysis of experimental data

The PLSE was directly applied to the entire continuous time
series acquired from the Duffing oscillator. For a classical analysis,
an observation time T is set during which a data series is recorded,
and thereafter, embedding vectors of size n taken at step size τ are
constructed. In our approach, a single n-length embedding vector xt

initially set at x0 = 0 is considered and updated for each sampling
time; for example, for n = 3 and τ = t0 = 1, the embedding vector

FIG. 5. Experimental setup.
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FIG. 6. Example of experimental results: time series [(a), (d), and (g)], phase portraits [(b), (e), and (h)], and corresponding PLSE [(c), (f), and (i)].

xt evolves as follows: x0 = {0, 0, 0}, x1 = {0, 0, x1}, x2 = {0, x1, x2},
x3 = {x1, x2, x3}, x4 = {x2, x3, x4} . . . . A single permutation πt is also
set and updated at each sampling step. By this approach, the data
memory is saved, and relatively large embedding dimensions can be
considered. For the data analysis with our tool, we set τ = t0 = 1
and n = {5, 12, 20}. The histogram Ht is updated at each sampling
step and re-initialized at each T = 32 768 sampling steps, while the
PLSE is computed and displayed at each N = 128 sampling steps.
Figure 6 shows some examples of entropy measure for n = 20,
η = 3.66%, and the corresponding dynamics. From the left to the
right are shown the time series, the phase portrait, and the PLSE
plot. The first line shows an example of limit-cycle obtained with
vm = 0.545 Vrms, η = 3.66%, and the corresponding entropy
h(20) = 0. The dynamics on the second line is obtained for
vm = 1.7 Vrms, η = 3.66%; its entropy is h(20) = 0.09 and corre-
sponds to weakly chaotic behavior. In the third line, the chaotic
dynamics is obtained with a forcing voltage of vm = 2.45 Vrms,
η = 3.66%, and the corresponding PLSE value is h(20) = 0.20.
While comparing phase portraits of the above dynamics with the

corresponding entropy values, it appears that our tool success-
fully applies to the characterization of real-world data. The PLSE
increases with the complexity of the dynamics under investigation.

We then applied the PLSE to experimental data obtained by
varying the amplitude vm of the forcing voltage and the noise tol-
erance η and plotted the corresponding experimental bifurcation
diagrams of the Duffing system. The results are summarized in
Fig. 7. Figure 7 shows the dependence of the entropy value on the
embedding dimension and the noise tolerance. We can observe that
the noise tolerance mostly affects limit-cycles as their entropy signif-
icantly decreases as η increases. The increase of both n and η allows
one to reduce the entropy of limit-cycles with a large period. Indeed,
the superposition of the noise effect on regular dynamics with large
periods significantly changes their behavior, thus looking as non-
regular. The PLSE algorithm is sensitive to η as the embedding
dimension increases.

Figure 8 shows that the characterization of the system for non-
regular dynamics does not change with the parameter setting. The
bifurcation diagrams obtained for n = 12, η = 4.88% and n = 20,
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FIG. 7. Experimental bifurcation diagram of the PLSE with respect to the forcing
voltage vm for various embedding dimensions and noise tolerances: (a) n = 5,
(b) n = 12, and (c) n = 20.

η = 3.66% behave quite similar. However, the DDQ is required for
periodic dynamics to be detected. By setting η = 0%, all the dynam-
ics are detected as non-regular due to the presence of noise in the
acquired data. Thus, like in the case of the logistic map, the DDQ
acts as a converter that reduces the precision of the input data
sequence. Table II summarizes some examples of entropy values
for comparison between n = 12, η = 4.88% and n = 20, η = 3.66%
results.

Figure 8 also clearly indicates that the system exhibits peri-
odic dynamics for 0 ≤ vm ≤ 1.6 Vrms as h(5) = 0. Such a periodic
detection is confirmed by the phase portraits in Fig. 9 where limit-
cycles are evidently observed for vm = 0.3 Vrms, vm = 0.8 Vrms, and
vm = 1.6 Vrms. For vm ≥ 1.7 Vrms, the PLSE is greater than 0.
Such a result may indicate chaotic dynamics or limit-cycles with
large periods. Although the phase portraits for vm = 1.6Vrms and
vm = 1.7 Vrms look similar, the PLSE clearly indicates a differ-
ence between the two states of the system. Between vm = 1.7 Vrms

and vm = 2.2Vrms, a uniform increase of h(20) from 0 to 0.202
is observed, but the corresponding phase portraits seem periodic.
The increase of the PLSE may be interpreted as an increase of

FIG. 8. Experimental bifurcation diagram of the PLSE with respect to the forcing
voltage vm.

the period of the corresponding limit-cycles, thus symbolizing the
transition of the system from periodic to chaotic dynamics. From
vm = 2.3 Vrms to vm = 2.6 Vrms, the phase portraits indicate
chaotic behaviors. The corresponding PLSE values increase from
h(20) = 0.07 to 0.17. It should be emphasized that phase portraits
in this forcing region are different when increasing or decreas-
ing the forcing voltage, but the entropy range does not change.
Phase portraits corresponding to the increase of vm look like limit-
cycles, whereas those corresponding to the decrease of vm indicate
chaotic motions (see Fig. 9). From vm = 2.7 Vrms to vm = 3.6 Vrms,
the PLSE fluctuates between 0.31 and 0.34. Such a slight increase
of the PLSE is also confirmed by the phase portraits whose density
slightly increases. From vm = 3.7 Vrms to vm = 4.4 Vrms, the entropy
increases from 0.38 to 0.58. Between vm = 4.4 Vrms and vm = 6 Vrms,
the entropy fluctuates between 0.55 and 0.58. In this region, phase
portraits indicate a mixture of limit-cycles with large periods and
weakly chaotic dynamics.

By comparing the PMC-based PLSE results with our previ-
ous work, we observe a consistency between the results in Refs. 12
and 13 and those presented in this paper for vm ≤ 1.6 Vrms. The use
of the DDQ with different noise tolerances allows one to appreciate
the complexity of the underlying dynamics and to compensate the
smallness of the value of n admissible in the PMC-based algorithm.
Although the PLSE is not a complexity measure, it nevertheless
exhibits some differences between dynamics, as confirmed in this
paper. The robustness against noise introduced by the DDQ makes

TABLE II. Example of forcing voltages vm and corresponding normalized PLSE values h(n) for n = 12, η = 4.88% and n = 20, η = 3.66%, respectively.

vm (Vrms) 0.3 0.8 1.7 1.8 2.2 2.7 2.8 3.1 3.2 3.9 4.2 4.7 5.0 5.3 6

h(12) 0 0 0.12 0.15 0.34 0.32 0.34 0.32 0.30 0.53 0.61 0.47 0.52 0.56 0.61
h(20) 0 0 0.09 0.11 0.20 0.31 0.35 0.22 0.27 0.46 0.54 0.51 0.48 0.56 0.55

Chaos 33, 073118 (2023); doi: 10.1063/5.0136234 33, 073118-7

© Author(s) 2023

https://pubs.aip.org/aip/cha


Chaos ARTICLE pubs.aip.org/aip/cha

FIG. 9. Experimental phase portraits.

the proposed tool for real-life dynamical system monitoring use-
ful, hence for a rapid characterization of system dynamics. The
results, thus, obtained in this paper confirm the effectiveness of the
PLSE, hence ordinal pattern-based algorithm for real-time analysis
of real-world data. Developing an online data analysis tool makes the
inclusion of ordinal pattern methods in future nonlinear time series
analysis applications easier. Given the limited memory space of the
PIC16F18446, the maximal embedding dimension that could be set
is n = 24, which makes difficult the detection of periodic dynamics
with period greater than L = 24.

IV. CONCLUSION

Twenty years after the introduction of ordinal pattern-based
data analysis by Bandt and Pompe, there is still a need for a sys-
tematic application of ordinal methods. This paper has presented a
PMC-based implementation of the PLSE for facilitating the inclu-
sion of ordinal methods in experimental data analysis. Such an

approach is to confirm theoretical statements about the speed per-
formance, robustness against noise, and ease of implementation
of ordinal methods. We used a low-end processor, namely, the
PIC16F18446, with basic programming using the XC8 compiler to
achieve a real-time implementation of the PLSE. The experimen-
tal analysis results obtained with the Duffing oscillator circuit attest
the efficiency of the PMC-based PLSE for the detection of regular
dynamics, as well as the characterization of non-regular dynamics.
The PMC-based implementation thus realized opens new perspec-
tives for the use of ordinal methods for the resolution of real-life
problems in various research fields, especially in physics and biology
where monitoring system dynamics can be crucial.
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