Restarting Automata with Restricted Utilization
of Auxiliary Symbols*

Tomasz Jurdzinski' and Friedrich Otto?

! Institute of Computer Science, University of Wroctaw
51-151 Wroctaw, Poland
tju@ii.uni.wroc.pl
2 Tachbereich Mathematik/Informatik, Universitit Kassel
34109 Kassel, Germany
otto@theory.informatik.uni-kassel.de

Abstract. The restarting automaton is a restricted model of computa-
tion that was introduced by Jancar et al. to model the so-called analysis
by reduction, which is a technique used in linguistics to analyze sentences
of natural languages. The most general models of restarting automata
make use of auxiliary symbols in their rewrite operations, although this
ability does not directly correspond to any aspect of the analysis by
reduction. Here we put restrictions on the way in which restarting au-
tomata use auxiliary symbols, and we investigate the influence of these
restrictions on their expressive power. In fact, we consider two types of
restrictions. First, we consider the number of auziliary symbols in the
tape alphabet of a restarting automaton as a measure of its descrip-
tional complexity. Secondly, we consider the number of occurrences of
auxiliary symbols on the tape as a dynamic complexity measure. We es-
tablish some lower and upper bounds with respect to these complexity
measures concerning the ability of restarting automata to recognize the
(deterministic) context-free languages and some of their subclasses.

1 Introduction

The restarting automaton was introduced by Jancar et al. as a formal tool to
model the analysis by reduction, which is a technique used in linguistics to an-
alyze sentences of natural languages [3]. It consists of a stepwise simplification
of a given sentence so that the (in)correctness of the sentence is not affected. It
is applied primarily in languages that have a free word-order. Already several
programs used in Czech and German (corpus) linguistics are based on the idea
of restarting automata [13,17].

A (two-way) restarting automaton, RLWW-automaton for short, is a device
M that consists of a finite-state control, a flexible tape containing a word delim-
ited by sentinels, and a read-write window of a fixed size. This window is moved

* This work was supported by a grant from the Deutsche Forschungsgemeinschaft. It
was performed while Tomasz Jurdzinski was visiting the University of Kassel.

2 T. Jurdzinski, F. Otto

along the tape by move-right and move-left operations until the control decides
(nondeterministically) that the content of the window should be rewritten by
some shorter string. In fact, the new string may contain auxiliary symbols that
do not belong to the input alphabet. After the rewrite operation, M can con-
tinue to move its window until it either halts and accepts, or halts and rejects,
or restarts, that is, it places its window over the left end of the tape, reenters
the initial state, and continues with the computation. Thus, each computation
of M can be described through a sequence of cycles.

Also various restricted versions of the restarting automaton have been consid-
ered. A one-way restarting automaton, RRWW-automaton for short, does not use
any move-left operations. If, in addition, it is required to perform a restart step
immediately after executing a rewrite operation, then it is an RWW-automaton.
An RLWW-automaton which does not use any auxiliary symbols is called an
RLW-automaton. If, in addition, each rewrite operation simply deletes some let-
ters from the read-write window, then we have an RL-automaton. Similarly,
RRW-, RR-, RW-, and R-automata are obtained, as well as the deterministic
variants of all these models.

Many well-known classes of formal languages have been characterized in
terms of restricted variants of the restarting automaton. For example, the de-
terministic R(R)WW-automaton characterizes the class of Church-Rosser lan-
guages [11, 12] of McNaughton et al. [10], the weakly monotone R(R)WW-auto-
maton characterizes the class GCSL of growing context-sensitive languages [6]
considered by Dahlhaus and Warmuth [1], the monotone R(R)WW-automaton
characterizes the class CFL of context-free languages [4], and various types of
deterministic monotone R(R)WW-automata characterize the class DCFL of de-
terministic context-free languages [4]. A restarting automaton is called monotone
if the distance between the rewrite position and the right sentinel does not in-
crease from one cycle to the next.

Here we place some restrictions on the way in which restarting automata
make use of auxiliary symbols. This direction of research is motivated by the fact
that originally the analysis by reduction does not involve the use of auxiliary
symbols. On the other hand, the expressive power of restarting automata without
auxiliary symbols is relatively weak, as not even all context-free languages can
be recognized by them [4]. Thus, we introduce an intermediate level, at which
auxiliary symbols can be used only in a restricted way. Actually, we consider
two types of restriction. First we consider the number of auxiliary symbols in
the tape alphabet as a measure of the descriptional complexity of the restarting
automaton, and secondly we interpret the number of occurrences of auxiliary
symbols on the tape as a dynamic complexity measure. As seen above many
‘classical’ classes of formal languages can be characterized by restricted variants
of the rstarting automaton. Here we concentrate on the context-free languages
and some of their subclasses establishing upper and lower bounds for them with
respect to our new complexity measures concerning the utilization of auxiliary
symbols.

Restricted Utilization of Auxiliary Symbols 3

In Section 2 we give the necessary definitions in short. In Section 3 we investi-
gate the expressive power of deterministic restarting automata that use auxiliary
symbols in a restricted way only. We establish in particular a lower bound for the
number of occurrences of auxiliary symbols on the tape that are needed by de-
terministic RLWW-automata to accept certain context-free languages. The proof
of this lower bound result, which is based on Kolmogorov complexity, is techni-
cally quite involved. Therefore, it is postponed to a separate section (Section 6).
In Section 4, we study how many auxiliary symbols (in the alphabet or on the
tape) are needed by nondeterministic RWW-automata to accept any context-
free language, and we show that all k-linear languages (k > 2) are accepted by
RLWW-automata with only two occurrences of a single auxiliary symbol. In the
concluding section a number of open problems related to our work are presented.

2 Definitions

Throughout the paper € will denote the empty word, and 2° will denote the
power set of a set S.

We now describe in short the type of restarting automaton we will be dealing
with. More details can be found in [14].

A two-way restarting automaton, RLWW-automaton for short, is a one-tape
machine that is described by an 8-tuple M = (Q, X, I, ¢, $, qo, k, §), where Q is
a finite set of states, X' is a finite input alphabet, I is a finite tape alphabet
containing X, ¢,$ ¢ I" are symbols that serve as markers for the left and right
border of the work space, respectively, go € @ is the initial state, k£ > 1 is the
size of the read-write window, and

5:Q x e 2((Q><({MVR,MVL}U’PCS("’U))U{RESTART,ACCEPT})

is the transition relation. Here PC*) is the set of possible contents of the read-
write window of M, where

PCY = (¢- I HUrru@<=1.$)U(ec-I'S2.8) (i>0),

and

k—1
pe=t = |] pc®.
i=0

The transition relation describes five different types of transition steps:

1. A move-right step is of the form (¢, MVR) € 6(q,u), where ¢,¢' € @ and
uwe PCH # $. If M is in state ¢ and sees the string v in its read-write
window, then this move-right step causes M to shift the read-write window
one position to the right and to enter state ¢’. However, if the content u
of the read-write window is only the symbol $, then no shift to the right is
possible.

4 T. Jurdzinski, F. Otto

2. A move-left step is of the form (¢’,MVL) € 6(q,u), where ¢,¢" € Q and
u € PC*) does not start with the symbol ¢. It causes M to shift the read-
write window one position to the left and to enter state ¢’.

3. A rewrite step is of the form (¢/,v) € &(q,u), where ¢,¢' € Q, u € PCH®,
u#$, and v € PCS*~Y such that |v| < |u|. It causes M to replace the
content u of the read-write window by the string v, thereby shortening the
tape, and to enter state ¢’. Further, the read-write window is placed imme-
diately to the right of the string v. However, some additional restrictions
apply in that the border markers ¢ and $ must not disappear from the tape
nor that new occurrences of these markers are created. Further, the read-
write window must not move across the right border marker $, that is, if
the string u ends in $, then so does the string v, and after performing the
rewrite operation, the read-write window is placed on the $-symbol.

4. A restart step is of the form RESTART € (g, u), where ¢ € @Q and u € Pc®.
It causes M to place its read-write window over the left end of the tape, so
that the first symbol it sees is the left border marker ¢, and to reenter the
initial state qq.

5. An accept step is of the form ACCEPT € (g, u), where ¢ € Q and u € Pc®.
It causes M to halt and accept.

If 6(q,u) = 0 for some pair (g,u), then M necessarily halts, and we say
that M rejects in this situation. Further, the transition relation must satisfy
the additional requirement that rewrite steps and restart steps alternate in each
computation of M, with a rewrite step coming first.

A configuration of M is a string agB where ¢ € @, and either a = ¢ and
B e et -I' {8} or « € {¢} - and B € I'* - {$}; here ¢ represents the
current state, a3 is the current content of the tape, and it is understood that the
window contains the first & symbols of § or all of 8 when |3] < k. A restarting
configuration is of the form goew$, where w € I'*; if w € X*, then goew$
is an initial configuration. Thus, initial configurations are a particular form of
restarting configurations.

In general, the automaton M is nondeterministic, that is, there can be two
or more instructions with the same left-hand side (q,u). If this is not the case,
the automaton is deterministic.

Each computation of a two-way restarting automaton M consists of certain
phases. A phase, called a cycle, starts in a restarting configuration, the win-
dow moves along the tape performing MVR and MVL operations and a single
rewrite operation until a restart operation is performed and thus a new restart-
ing configuration is reached. If no further restart operation is performed, any
finite computation necessarily finishes in a halting configuration — such a phase
is called a tail. During a tail at most one rewrite operation may be executed.

We use the notation u -§; v to denote a cycle of M that begins with the
restarting configuration goeu$ and ends with the restarting configuration go¢v$;
the relation F§, is the reflexive and transitive closure of $,. The relation 5,
can be seen as the single-step rewrite relation induced by M, and Ff\} is the
corresponding rewrite relation.

Restricted Utilization of Auxiliary Symbols 5

An input w € X* is accepted by M, if there is a computation which, starting
with the initial configuration gocw$, finishes by executing an accept instruction.
By L(M) we denote the language consisting of all words accepted by M; we say
that M recognizes (accepts) the language L(M).

Various subclasses of RLWW-automta have been studied. They are obtained
by combining two types of restrictions:

(a) Restrictions on the movement of the read-write window (expressed by the
first part of the class name): RL- denotes no restriction, RR- denotes no MVL
operations, R- denotes no MVL operations and each rewrite step is followed
immediately by a restart step.

(b) Restrictions on the Rewrite instructions (expressed by the second part of the
class name): -WW denotes no restriction, -W denotes no auxiliary symbols
are available (that is, I' = X), - denotes no auxiliary symbols are available
and each rewrite step is simply a deletion (that is, if (¢/,v) € d(q,u) is
a rewrite instruction of M, then v is obtained from w by deleting some
symbols).

For example, RRW-automata do not use MVL instructions and they do not
have auxiliary symbols.

By det-RLWW we denote the class of deterministic RLWW-automata, and
analogously for the other types of restarting automata. Further, for each type
X of automata, we denote the class of languages that are accepted by automata
from that class by L£(X).

Next we turn to the notion of monotonicity for restarting automata. As
pointed out before, each computation of a restarting automaton proceeds in cy-
cles, where each cycle contains exactly one application of a rewrite operation.
Thus, each cycle C contains a unique configuration ag(in which a rewrite in-
struction is applied. The number |3] is called the right distance of C, denoted
by D,.(C). We say that a sequence of cycles S = (C1,Ca,---,Cy) is monotone if
D,.(Cy) > D.(Co) > ... > D,(C,). Now a computation of a restarting automa-
ton M is called monotone if the corresponding sequence of cycles is monotone,
and the restarting automaton M is monotone if all its computations that start
with an initial configuration are monotone.

Throughout the paper we will describe the behaviour of various restarting
automata in detail. Instead of giving the corresponding transition relations, we
will make use of the fact that the behaviour of an RLWW-automaton M can
be described transparently by a finite set of so-called meta-instructions of the
form (E1,u — v, Es) and (F,Accept), where Eq, Fs, and E are regular lan-
guages, which are called the reqular constraints of the meta-instruction, and u
and v are strings such that « — v stands for a Rewrite step of M. In a restart-
ing configuration go¢w$, M nondeterministically chooses a meta-instruction. If
(E1,u — v, E9) is chosen, then M halts and rejects, if w does not admit a fac-
torization of the form w = wiuwsy such that ¢w; € E; and we$ € F5. Otherwise,
one such factorization is chosen nondeterministically, and go¢w$ is transformed

6 T. Jurdzinski, F. Otto

into the restarting configuration goewivws$. If (F, Accept) is chosen, then M
halts and accepts, if ¢cw$ € E, otherwise, M halts and rejects.

Similarly, the behaviour of an RWW-automaton M can be described through
a finite sequence of meta-instructions of the form (E,u — v) and (E, Accept),
where E is a regular language, and v and v are strings such that v — v stands
for a Rewrite step of M. On trying to execute the meta-instruction (E,u — v),
M will get stuck (and so reject) starting from the restarting configuration gocw$,
if w does not admit a factorization of the form w = wjuwsy such that ¢w; € E.
On the other hand, if w does admit a factorization of this form, then one such
factorization is chosen nondeterministically, and gg¢w$ is transformed into the
restarting configuration go¢wivws$. On trying to execute the meta-instruction
(E, Accept), M accepts if the tape content belongs to the language E and rejects
otherwise.

Finally, we define new complexity measures for restarting automata with aux-
iliary symbols. For each type X of restarting automata with auxiliary symbols,
and integers i, j € N, aux(j, 1)-X, a-aux(j,4)-X, and g-aux(j,)-X denote the class
of restarting automata M of type X for which the number of auxiliary symbols
in the tape alphabet does not exceed the number 7 and,

— for aux: the number of occurrences of auxiliary symbols in any configuration
during any computation of M starting from an initial configuration is not
larger than j;

— for a-aux: the number of occurrences of auxiliary symbols in any configuration
during any accepting computation of M starting from an initial configuration
is not larger than j;

— for g-aux: for each € L(M), there exists an accepting computation of M
such that the number of occurrences of auxiliary symbols in any configuration
during that computation is not larger than j.

In some cases we may replace the constant j by a non-constant function, which
is used to measure the number of occurrences of auxiliary symbols on the tape
as a function of the length of the input.

As our main interest concerns those classes with only a single auxiliary sym-
bol in the tape alphabet, we introduce the notation aux(j)-X as a shorthand for
aux(g, 1)-X.

Observe that, for each type X € {RL,RR, R, det-RL, det-RR, det-R}, XW and
aux(0)-XWW denote essentially the same class of automata.

Proposition 1.
The following relationships hold for each i € N and each function j : N — N :

1. L(a-aux(j,7)-det-XWW) = L(g-aux(j, i)-det-XWW) for all X € {R,RR,RL}.
2. L(Y-aux(j,i)-RLWW) = L(Y-aux(j,7)-RRWW) for each Y € {a-, g-}.
3. L(aux(j,i)-RIWW) C L(aux(2j,i)-RRWW).

Proof. (a) This statement immediately follows from the fact that a deterministic
restarting automaton has only a single computation for each input word.

Restricted Utilization of Auxiliary Symbols 7

(b) For each RLWW-automaton M, there exists an RRWW-automaton M’ such
that M and M’ use the same tape alphabet, they recognize the same language,
and in each accepting computation M’ executes exactly the same rewrite steps
as M does in the corresponding computation [16]. More precisely, in each cycle
of a computation M’ guesses crossing tables for M and simultaneously verifies
that its guesses are correct. In the affirmative M’ has successfully simulated
the corresponding cycle of M; otherwise M’ has made a mistake, and therefore
it terminates the simulation and halts without accepting. Thus, as long as M’
simulates the computation of M correctly, both automata will always have the
same number of occurrences of auxiliary symbols on their tapes.

(c) When M’ makes an incorrect guess, then this can result in the introduction
of at most 7 additional occurrences of auxiliary symbols, as M’ only applies
rewrite operations of M. Hence, in this case M’ may have up to 2j occurrences
of auxiliary symbols on its tape. a

We close this section with some additional notation.

Notation For a word x, we denote by z[i] (0 < ¢ < |z|) the i-th symbol of z,
and xz[i, j| denotes the factor z[i]...z[j] for 0 < i < j < |z|. Further, for all
non-negative integers ¢ < j, [i,j] := {l € N|i < 1 < j}. Throughout the
paper we use LIN, DCFL, CFL, CRL, GCSL to denote the class of linear, deter-
ministic context-free, context-free, Church-Rosser, and growing context-sensitive
languages, respectively.

3 Deterministic Restarting Automata

In [18] a non-context-free language Ly, is presented such that L;. € £(det-RW).
On the other hand, there exist context-free languages which are not even recog-
nized by RRW-automata [4]. Thus, we have the following results.

Corollary 1.

(a) DCFL € L(aux(0)-det-RWW).
(b) The classes CFL and L(aux(0)-det-RWW) are incomparable under inclusion.

It is known that auxiliary symbols increase the expressive power of deter-
ministic RWW-automata [4]. Here, we show that already a single occurrence of
a single auxiliary symbol has that effect.

Proposition 2.
The language Lpow := {a®" | n € N} belongs to the class L(aux(1)-det-RWW).

Proof. Let M = (Q,{a},{a, A}, ¢, $,q0,5,0) be the RWW-automaton that is
described by the following set of meta-instructions:

(1) (¢ - {a,a? a*} - $, Accept),

(2) (¢-a™,a*$ — Aaa$),
(3) (¢-at,a*A — Ad?),
(4) (

8 T. Jurdzinski, F. Otto

It follows easily that M is deterministic, that L(M) = Ly, and that no config-
uration of M that is reachable from an initial configuration ever contains more
than a single occurrence of the auxiliary symbol A. 0O

Using the pumping lemma for restarting automata [16], it can be shown easily
that Ly, is not accepted by any RLW-automaton. Thus, we obtain the following
proper inclusions.

Corollary 2. For each type X € {det-R(R)WW, det-RLWW, R(R)WW, RLWW},
L(aux(0)-X) € L(aux(1)-X).

As shown in [14] (Section 5), det-RL-automata even accept some languages
that are not growing context-sensitive. Hence, we see that the language class
L(aux(0)-det-RLWW) is not included in the class GCSL of growing context-
sensitive languages. As GCSL includes the class of Church-Rosser languages,
which coincides with the class £(det-RRWW), we obtain the following conse-
quences.

Corollary 3. For each i € Ny and each function j : N — N,
L(aux(0)-det-RLWW) ¢ L(aux(j,?)-det-RRWW) C L(aux(j, 7)-det-RLWW).

Currently we do not know whether all context-free languages can be accepted
by det-RLWW-automata. However, we can at least show that this is impossible
when the number of occurrences of auxiliary symbols is restricted too much.

Proposition 3. The language Lpqz = { wwfvof | w,v € {0,1}*} is not ac-
cepted by any deterministic RRLWW-automaton that uses only o(n/ log® n) occur-
rences of auziliary symbols.

The proof of this proposition, which is based on Kolmogorov complexity, is
quite involved. Therefore it is postponed to Section 6. This result yields the
following lower bound result.

Corollary 4. If CFL is contained in the language class L(aux(j,1)-det-RLWW)
for some function j and some integer i, then j(n) & o(n/log® n).

It is currently not known whether the deterministic RLWW-automaton is at
all less expressive than the nondeterministic RLWW-automaton. However, as the
language Lpqi2 is 2-linear, and as the class of 2-linear languages is included in
aux(1)-RLWW (see Theorem 4), we have at least the following separation result.

Corollary 5. For each function j(n) € o(n/log®n) and each integer i > 0,

L(aux(j,7)-det-RLWW) C L(aux(j, i)-RLWW).

Restricted Utilization of Auxiliary Symbols 9
4 Nondeterministic Restarting Automata

Here we investigate the complexity of context-free languages with respect to the
number of auxiliary symbols used. As R-automata can accept some languages
that are not even growing context-sensitive [8], while some context-free languages
cannot be accepted by RRW-automata [4], we have the following basic fact.

Corollary 6. The language classes L(aux(0)-X) and CFL are incomparable un-
der set inclusion for each type X € {RLWW, RRWW, RWW}.

However, each context-free language can be accepted by an RWW-automaton
that has only a single auxiliary letter.

Theorem 1. CFL is included in L(aux(n,1)-RWW).

Proof. Let G be a context-free grammar in Chomsky normal form with the set
N of nonterminals, let m := |N|, and let L be the set of all sentential forms that
can be derived in G.

For each a € ﬁ, we consider a derivation tree for a. If « is sufficiently long,
then there exists a subtree with at least 4m (and at most 8m) leaves. The
RWW-automaton guesses a subword of a which corresponds to such a subtree
and replaces it by the encoding of the nonterminal appearing at the root of that
subtree.

In order to use this technique when there is only one auxiliary symbol in the
alphabet, we encode the i-th nonterminal of G' by Aa’A, where A is the only
auxiliary symbol of the RWW-automaton considered and a is a fixed terminal
symbol. As each rewrite step shortens the sentential form by at least 4m — 1
symbols, the rewrite steps remain length-reducing even when the above encoding
for nonterminals of G is being used. O

If only the accepting computations with the smallest number of occurrences
of auxiliary symbols are taken into account, then a technique of Hemaspaandra
et al. for space efficient computations [2] can be used to derive the following
result.

Theorem 2. CFL is included in L(g-aux(logn,1)-RWW).

Proof. First we describe an RWW-automaton which has several auxiliary sym-
bols in its tape alphabet. Thereafter we will show how to reduce the number of
auxiliary symbols to one.

Let L be a context-free language. From a context-free grammar in Chomsky
normal form for L we easily obtain a grammar G = (N, X, P, S) for L satisfying
the following technical conditions:

1. the start symbol S does not occur on the righthand side of any rule of G,
2. for each rule (X — «a) € P, we have |a| <2, and if |a] <1, then X = S.

10 T. Jurdzinski, F. Otto

By L we denote the set of sentential forms that are derivable in G.
An RWW-automaton M = (Q, X, NU X, ¢, $, qo,2,0) for L is given through
the following set of meta-instructions:

(1) (¢- = - $, Accept) for all z € L, |z] < 2;
(2) (¢-(NUX)* ,a— X) forall (X —-a)€P, |af=2.

Given an input w € X*, M performs a bottom-up parse of w. Hence, this
automaton recognizes the language L.

We claim that, for each w € L, there exists an accepting computation of M
such that in each configuration during this computation, at most log |w| copies
of auxiliary symbols occur on the tape. In other words, we claim that there exists
a G-derivation S =* w such that each sentential form in this derivation contains
at most log |w| nonterminals.

Let T be a G-derivation tree for w. For each vertex v of this tree, we define
the weight w(v) of v as the number of leaves in the subtree of T" that is rooted at
v, that is, w(v) is the length of the factor of w that is derived in the G-derivation
corresponding to T' from the nonterminal associated to the vertex v. For proving
the claim above, we consider that parse of T" that satisfies the following condition:
For each internal node v of T" with two children vy, vy, the children are parsed
one after the other; if w(vy) > w(v2), then vy is parsed first; otherwise vy is
parsed first.

This condition ensures that each sentential form encounted during the pars-
ing of w contains at most log |w| many nonterminals. Indeed, let o be such a
sentential form, let X; be a nonterminal occurring in « such that the vertex vy
of T' that is labelled with this particular occurrence of X; has maximal weight,
and let m := w(v1). Thus, the subtree of T" that is rooted at v; has already been
parsed, but the subtree that is rooted at the father of vy, say v, has not yet been
parsed. This implies that no parsing steps have been performed for any part of
the input that does not belong to the subtree that is rooted at v. In particular,
all other nonterminals occurring in the sentential form « belong to the subtree
of T that is rooted at the sibling vs of v1. Further, the above parsing strategy
implies that w(ve) < m. Now we have two cases:

— if the nonterminal X5 labelling the vertex v, already occurs in the sentential
form «, then X; and X5 are the only two nonterminals occurring in «;

— if X5 does not yet occur in «, then we can continue our analysis for the
subword of w that is generated by the subtree rooted at vo. Thus, after at
most log |w| many iterations we get to a subword of length 1, which means
that in «, at most log |w| nonterminals occur.

Finally we can transform the RWW-automaton M above into an RWW-
automaton M’ that has only a single auxiliary symbol A. Let Xi,...,X; be
a linear ordering of the nonterminals of G. The nonterminal X; is encoded as
A - bin(7), where bin(i) is a t’ := [logt]-bit encoding of i. For this encoding we
use two fixed terminal symbols. Now the automaton M’ is obtained from M by
replacing each nonterminal X of G by the corresponding encoding in each of its

Restricted Utilization of Auxiliary Symbols 11

meta-instructions. In order to guarantee that each rewrite instruction of M’ is
length-reducing, M’ simulates ¢’ + 2 derivation steps of G per cycle. a

For the rest of the paper we restrict our attention to a particular class of
context-free languages. A language L is called k-linear [19] if there is a context-
free grammar G = (N, X, P, S) for L that contains a starting rule of the form
S — S7...8Sk such that S does not occur in any other rule of G, and S; is
the starting symbol of a linear subgrammar G; = (N;, X, P;, S;) for each i €
{1,...,k}. Further, N; N N; = () for each ¢ # j, and S; does not occur on the
righthand side of any rule of G; (1 < 4 < k). Thus, L is the concatenation
Ly Ly ... Ly of the linear languages L; := L(G;) (1 < i < k). By k-LIN we
denote the class of k-linear languages.

Theorem 3. |J, oy k-LIN € L(aux(2)-RLWW).

Proof. Let L be a k-linear language, and let G be a k-linear grammar that
generates L. First, we describe the idea of accepting L using only two occurrences
of auxiliary symbols on the tape, but without restricting the number of auxiliary
symbols in the alphabet.

For an input word = we first guess a G-derivation S; =* x; for a prefix x;
of x such that © = z1...2x, x; € L(G;) for ¢ € [1,k], in a bottom-up fashion.
We start by choosing a production X — « for X € N; and a € X*. That is,
we perform a rewrite step a — X. Then we simulate consecutive steps of the
derivation in reverse order by applying meta-instructions

(¢X*,aXp —Y, "8

for X,Y € N1, o, 8 € X*, corresponding to productions ¥ — aXf of G;.
When a tape content of the form Sy is reached, where y € X*, we begin
to simulate a Ga-derivation for Ly = L(G2) by first executing the last step in
a derivation of xo € Ly. Thereafter, the tape contains two auxiliary symbols:
S1 € N1 and X € N,. This means that we have already found a prefix 1 € L,
and started to simulate a (GGa-derivation for xo € Ls. So we can remove S.
Further, we process consecutive factors analogously. In general, we can describe
this behaviour by the following meta-instructions, where u,y,v € X*, i € [1, k]:

(¢X*u— X, X*§) for (X —u)e P,

(eX*,uXy — Y, 2*$) for X,Y € N;, (Y - uXy) € P,
((BSiE*,U, — X, E*$) for X € Ni+1a (X — ’LL) S Pi+1,
(¢,8; — &, 5*X3*$) for X € Nip1,

(¢Sk3, Accept).

However, this schema does not guarantee that the automaton is length-reducing,
for example, a production X — y where |y| < 1 can be applied. Further, our
aim is to use only one auxiliary symbol in the alphabet.

Without loss of generality we can assume that the grammar does neither
contain any productions of the form X — Y for [Y]| <1 and X ¢ {S1,..., Sk}

12 T. Jurdzinski, F. Otto

nor of the form S; — X for ¢ € [1,k] and X € N. Further, we can assume that
X contains at least two symbols, say 0 and 1 (as context-free languages over a
one-letter alphabet are regular). In order to apply the above strategy using only
one auxiliary symbol, an occurrence of this auxiliary symbol will be followed by
a binary encoding (of a fixed length) of the actual nonterminal of G. In order to
make the resulting rewrite operations length-reducing, ‘short’ factors x; will not
be processed separately and for the remaining ‘long’ factors, we simulate several
derivation steps by a single rewrite operation. In this way we will have sufficient
space for the encodings.

Let p := 2-max([log |N|], [logk]), and let X1,..., X|n| be the nonterminals
of G. For each occurrence of the only auxiliary symbol A of M on the tape, the p
symbols following A will be interpreted as follows: the first p/2 symbols encode
the number ¢ of the nonterminal X;, and the next p/2 symbols encode j, the
index of the last factor z; processed previously. For X; € N, we use bin(X;) to
denote the (p/2)-bit encoding of 4, and for i € [1, k], bin(i) denotes the (p/2)-bit
encoding of 4.

Finally, let 7 := max{|a| | (X — «) € P} + p. The automaton M will
proceed according to the following strategy:

1. If the tape does not contain any occurrences of the auxiliary symbol, and
if the length of the tape content is not longer than k - r, then M decides
whether the input belongs to L in a tail computation.

2. If the tape does not contain any occurrences of the auxiliary symbol, but the
length of the tape content exceeds the number k-7, then M guesses a minimal
index j such that |z;| > r. Next M guesses a derivation X =, u such that
p+1l<]ul<r,ueX* and X € N, M finds an occurrence of the factor u
within the tape content, and executes the rewrite step u — Abin(X)bin(0).

3. To simulate a derivation step in a single factor, M has a meta-instruction of
the form

(¢X*, uAbin(Y)bin(j)v — Abin(X)bin(j), X*$)
for each production X — uYwv, where X, Y € N; and i > j > 0.
4. To finish the derivation of a factor x;, M has a meta-instruction of the form

(¢, yuAbin(Y)bin(j — 1)v — Abin(S;)bin(i), 2*$)

for each y = xjxj41...2;-1 such that z; € L; and |z < r for I € [j,i — 1],
and for each production S; — uYwv.

5. To start the processing of a new factor, M guesses the next value j > ¢ such
that |z;| > r, where ¢ is the index of the previously processed factor. Next
M chooses a derivation X =¢ u such that p+1 < |u| < r, X € Nj;, finds
the factor v on the tape, and executes the meta-instruction

(¢Abin(S;)bin(i) X, u — Abin(X)bin(i), X*$).

6. In order to remove an occurrence of the auxiliary symbol which is not needed
anymore from the tape (together with the encoding of the nonterminal which
follows this symbol), M uses the meta-instructions

(¢, Abin(S;)bin(i) — &, X* Abin(X)bin(i) £*$)

Restricted Utilization of Auxiliary Symbols 13

for X € N;, j > i.
7. Finally, for each y = z;241...2—1 and ¥ = 2,41 ... xx such that z; € L,
and |z;| <r for I € [j, k] — {i}, ¢ € [1, k], M has the meta-instruction

(¢yAbin(S;)bin(j — 1)y’$, Accept).

The above meta-instructions define a length-reducing RLWW-automaton which
recognizes L(G) and which uses at most two occurrences of the single auxiliary
symbol A.

As already £(aux(0)-RLWW) contains non-context-free languages, the above
inclusion is a proper one. a

From the proof above we obtain the following consequence.
Corollary 7. LIN C L(aux(1)-RLWW).

Actually, this result can be extended as follows, improving on Theorem 3 at
least for the case k = 2.

Theorem 4. 2-LIN C L(aux(1)-RLWW).

Proof. First recall from Corollary 6 that already aux(0)-RWW-automata accept
some non-context-free languages. Hence, if 2-LIN is included in £(aux(1)-RLWW),
then this is a proper inclusion. Below we show that, for each language L €
2-LIN, there exists an RLWW-automaton M’ with only a single auxiliary symbol
such that M’ recognizes the language L, and it uses at most one occurrence
of its auxiliary symbol in each configuration that is reachable from an initial
configuration.

Let G = (N, X, P, S) be a 2-linear grammar with the starting rule S — 51.55
and linear subgrammars G; = (N;, X, P;, S;), ¢ = 1,2. We can assume without
loss of generality that G does not contain any productions of the form X — Y
for [Y| <1 and X ¢ {51, S2} or of the form S; — X for ¢ € {1,2} and X € N.

First, we present a restarting automaton M which recognizes L = L(G) and
which uses only a single occurrence of an auxiliary symbol in any configuration
that is reachable from an initial configuration, but which has many auxiliary
symbols in its tape alphabet. In addition, M will not satisfy the condition that
each rewrite step is length-reducing. Therefore, we describe in a second stage
the changes that are necessary to get rid of all but one auxiliary symbol from
the tape alphabet, and that make each rewrite step length-reducing.

Let N,N ,N ,N' be four disjoint copies of the set of nonterminals of the
grammar G, and let ¢ € Ny be a constant that will be specified later.

Input words of length at most 2¢ + 1 are accepted or rejected by M in tail
computations. For an input word z satisfying |z| > 2¢ 4+ 2, M must determine
whether x admits a factorization = x1x9 such that 1 € L(G1) and x5 € L(G2).
As a first step, M chooses nondeterministically one of the cases (i) |z1], |z2| > ¢,
(ii) |z1] < ¢ (and so |z2| > ¢), or (iil) |z2| < ¢ (and so |z1]| > ¢).

14 T. Jurdzinski, F. Otto

In cases (ii) and (iii) M guesses a G;-derivation of x; from S; in reverse order
for the factor x; satisfying |z;| > ¢ using only a single occurrence of an auxiliary
symbol from the set N, verifying that the remaining factor z;, j # i, belongs
to L(G;) in the final step.

Finally, in case (i) M works as follows. First, it guesses a G1-derivation for x4
in reverse order, using auxiliary symbols from the set N;. After having completed
this derivation, M simulates a G-derivation

SQ = SoXﬂ“O = 8081X27“17‘0
=% 5081 ... Sm-1XmTm—1---T170
= S0S1.--Sm—-1SmTm—1-...-T1T0

of o = 8081 ...8m_18mTm—1...7170 from Sy, where X;_1 — s;_1X;7r;_1 is the
i-th derivation step for 1 < i < m, Xg := S, and X,;, — s, is the last step.
For remembering the position of the nonterminal X; within the current content
of the tape, M uses a finite number of symbols at the suffix of the tape content
to encode this position. Unfortunately, M cannot apply any rewrite steps to the
suffix as long as ¢ < j, where j is the minimal index for which r; # e. Therefore,
the initial part of length j of the above G3-derivation is treated in a different
way. For taking care of this initial part, M uses the following meta-instructions
that employ auxiliary symbols from the set N:

(10) ((EWSll - §27A2*$)5
(20) (¢, Xisi — Xig1, 2*8).

Let p := max{3, [log|N|], [log(ac)]}, where o := max{|3| | (X —) € P}.
Below we use the notation bin(X) to denote a p-bit encoding of X € N (according
to some fixed linear ordering) or of X € N. By bin(x) we denote an arbitrary
string of length p over the input alphabet.

The simulation of the derivation step X; — s; X175, s;,7; 7# €, will require
more than one rewrite step in our simulation. This follows from the fact that
the distance between the factors s; and r; which are to be removed can be ar-
bitrarily large. In order to solve this problem, a fixed number of input symbols
immediately to the right of the auxiliary symbol and a fixed number of input
symbols immediately to the left of the sentinel $ will be used to encode infor-
mation about the derivation step to be simulated and to coordinate the rewrite
steps. More precisely,

— the input symbol following the auxiliary symbol and the rightmost input
symbol on the tape will encode information about the progress of the simu-
lation of the current derivation step;

— the next p input symbols following the auxiliary symbol will encode the
length of the factor r; which has to be removed (when the automaton is in
the appropriate stage of the simulation).

This technique requires some extra space for storing encodings. To make up for
this, M will simulate at least ¢ derivation steps at once.

Restricted Utilization of Auxiliary Symbols 15

Let j be the minimal index for which |r;| > 0 in the above Gz-derivation. For
this part of the simulation, M uses the subalphabet NJ. We distinguish between
two cases.

1. If |r;] = 1, then M does not change the suffix, but it puts an indicator into
the prefix that is ‘related’ to r;:

(30) (¢, Xjs; — X, ineg(r;)bin(1), £*7;8),

where, for a € X, neg(a) denotes an arbitrary symbol b € X satisfying b # a.
2. If |r;] > 1, let @ := r;[|r;|] (that is, a is the last symbol of r;):

(40) (¢, X;s; — X qabin(|r;]), X7r;$),
(50) (¢X 4 qabin(|r;) X", r; — neg(a), $).

Thereafter M simulates subderivations of the form X =¢ s'Y7r’, where
|s'| > 0, using at most two cycles for each such subderivation and employing
the symbols from NJ. Let X =¢ s'Yr’ be the actual subderivation to be simu-
lated, where |s’| > 0. Again we distinguish two cases.

1. If || > 0, then the following meta-instructions are used:

(60) (¢, X'abin(j)s" — Y'neg(a)bin(|r']), *r'neg(a)$) for any j,
(70) (¢, Y’ abin(|r'|)X*,r"a — neg(a), $).

2. If |#'| = 0, then the following meta-instructions are used:
(80) (¢X'abin(j)s’ — Y'abin(0), X*neg(a)$).

The symbol a following the auxiliary symbol and the symbol b preceding the
right sentinel $ are used here as follows. If these two symbols are equal, then a
rewrite step is to be applied to the suffix deleting a factor r’ the length of which
is encoded by the factor bin(]r’|) following the symbol a. If the two symbols
differ, then the simulation of the next derivation step shall be started (that is, a
rewrite step will be applied to the prefix).

However, if ' = ¢ in the subderivation X =¢ s'Yr/, then the rewrite opera-
tions in meta-instructions (30), (40), and (60) are not length-reducing; in fact,
they are in general not even weight-reducing. Hence, in this situation we move
the encoded information necessary for simulating the above subderivation to the
suffix of the tape inscription. To distinguish this case from the previous one we
make use of a new auxiliary symbol E that will be placed into the prefix. Still,
the rewrite step introducing E will not be length-reducing, either, but we will
solve this issue in the final part of the proof.

For this case we add the following meta-instructions, where b := '[|’'|]:

(90) (¢, X'abin(j) — Ebneg(a)bin(X), X*r'neg(a)$)
(100) (¢Ebneg(a)bin(X)X*, r'neg(a) — bin(Y)bin(0)ba, $).

16 T. Jurdzinski, F. Otto

Observe that |s’| = 0 implies that |r'| > c¢. Notice further that here we do not
have an occurrence of an auxiliary symbol in the suffix. Instead the nonterminal
Y is encoded using input symbols. Similarly the nonterminal X is encoded in
the prefix, in difference to the situation in meta-instructions (10)—(80), where
different nonterminals correspond to different auxiliary symbols.

As long as there is an occurrence of F on the tape, M continues to simu-
late subderivations X =¢ 'Y’ satisfying |r'| > 0 using the suffix of the tape
inscription to encode the necessary information. It will switch back to using the
encoding by symbols from NJ in the prefix as soon as a subderivation of the
form X =¢ s'Yr' satisfying |r/| = 0 is to be simulated.

Before listing the appropriate meta-instructions, we need to explain the way
in which the two input symbols ba that follow immediately to the right of the
symbol E and the two input symbols ¥’a’ immediately preceding the $-symbol are
used during this phase of the simulation. By comparing ba to b’a’ we determine
the current status of the simulation. There are four cases:

(@) ba =b'a : M is just moving from the Nj-mode to the E-mode
of encoding, but the suffix has not yet been adjusted
(see (90));

(8) ba = neg(t')a’ : the prefix is to be adjusted next;

(v) ba = b'neg(a’) : the next derivation step is to be started (see (100);

0) ba = neg(b')neg(a’) : M is to switch back to the Nj-mode of encoding.
2

Let X =¢ s’Yr’ be the next subderivation to be simulated, and assume that
the tape content is of the following form for some string w € X*:

(110) ¢Ebabin(x)s’wr’'bin(X)bin(x)bneg(a)$.
From this tape content we extract the following information:

(a) F indicates that the nonterminal is encoded in the suffix,

(b) ba immediately to the right of £ and bneg(a) immediately preceding $ indi-
cate that the simulation of the next subderivation of length ¢ is to start,

(¢) bin(X) encodes the nonterminal X,

(d) the factors bin(x) to the right of Eba and bin(*) to the right of bin(X) are
strings of length p over the input alphabet, which do currently not contain
any important information. However, they are used to ‘reserve’ space for the
next step of the simulation. In particular, the place currently occupied by
the second factor bin(x) will be used to encode the length of the factor s’
which will be removed in the next subderivation.

For |r'| > 0, we use the following meta-instructions for M, where we distin-
guish between two cases depending on |s'|.

1. For |s'| > 0, the following meta-instructions are used:

(120) (eEbabin(x)s’'X™*, 7'bin(X)bin(x)bneg(a) — bin(Y)bin(|s'|)neg(b)a, $),
(130) (¢E, babin(x)s’ — neg(b)neg(a)bin(x), X*bin(Y)bin(|s'|)neg(b)a$),

Restricted Utilization of Auxiliary Symbols 17

2. while for |s’| = 0, the following meta-instruction is used:
(140) (¢Ebabin(x)X*, r'bin(X)bin(x)bneg(a) — bin(Y)bin(x)bneg(a), $).

In (140) the factors bin(x) that occur on the lefthand side and on the right-
hand side of the rewrite operation are identical, that is, this factor is not altered
by the current rewrite operation.

Finally, we consider the case that || = 0. Notice that in this case |s’| > ¢. In
this situation the simulation is to switch back to the NJ-mode of encoding, that
is, an auxiliary symbol from N} is used in the prefix, while in the suffix only
the last symbol preceding the $-symbol is used to coordinate the simulation
(see meta-instructions (30)—(80)). Accordingly, we introduce the following meta-
instruction:

(150) (¢, Ebabin(x)s" — Y'neg(a)bin(|bin(X)bin(x)| + 1),
X*bin(X)bin(x)bneg(a)$).

After executing this meta-instruction, the factor bin(X)bin(%)b in the suffix is no
longer appropriate, as in the Nj-mode of encoding only a single symbol in the
suffix contains any non-input information. However, as the symbol following Y’
equals the rightmost symbol preceding the $-symbol, meta-instruction (70) will
remove this factor, as its length 2p 4+ 1 has been encoded as

bin(|bin(X)bin(*)| + 1) = bin(2p + 1)
at the corresponding place in the prefix.

As decribed above M will correctly accept the language L = L(G). However,
M is not length-reducing (see meta-instructions (10), (30), (40), (90), (100)), and
it has many auxiliary symbols in its tape alphabet. Therefore, we now transform
M into a length-reducing automaton with only a single auxiliary symbol.

First we fix unique binary encodings enc for the auxiliary symbols of M.
These encodings will not be of fixed length, but they will be prefix-free. Then we
transform M into a length-reducing automaton M’ with only a single auxiliary
symbol F' in its tape alphabet by replacing each occurrence of each auxiliary
symbol X (in the above meta-instructions) by F' - enc(X). Below we list all the
conditions that these encodings and the constants p and ¢ must satisfy in order to
make M’ length-reducing. Afterwards we will show how to choose the encodings
and the constants satisfying all these conditions.

1. The encoding of the auxiliary symbols is to be prefix-free, that is, whenever
X and Y are two different auxiliary symbols of M, then enc(X) is not a
prefix of enc(Y'). Further, |enc(X)| < ¢/2 for all auxiliary symbols of M, as
within ¢ derivation steps, we need to make room for two such encodings.

2. lenc(X)| < lenc(Y)| for all X € N and Y € N (see (10)).

3. For each type of auxiliary symbol R € {N, N, N, N'} of M, we require that
lenc(X)| = |enc(Y)] holds for all X,Y € R.

4. lenc(X)| > |enc(Y)| +1+p for all X € N and Y € N’ (see (30) and (40)).

18 T. Jurdzinski, F. Otto

5. lenc(X)| > |enc(E)| + 1+ p for all X € N’ (see (90)).

6. ¢ > 2p+1 (see (100)).

7. lenc(E)| + 2+ ¢ > |enc(X)| + 1 for all X € N’ (see (150)).
8. [log(2p + 1)] < p (see (150)).

Finally we show how to satisfy these conditions. Let n,n,n’ denote the
lengths of the encodings of the auxiliary symbols from the sets N, N ,N’, re-
spectively, and let e denote the length of the encoding of E. Then we obtain the
following inequalities from the conditions above:

—¢/2>n>n>n"+1+p,
—e+l+e>n">e+1+0p,
—c>2p+1.

Also p = max{3, [log |N|], [log(ac)]}, where & = max{|8| | (X — 3) € P}.

We first fix a linear ordering of the nonterminals N of G. Then, for each
X € N, bin(X) denotes the p-bit encoding of the index of X in the linear
ordering of N. We now choose the encodings as follows:

1. for X € N, we choose enc(X) := 00001 - 0P*2 - bin(X);
2. for X € N, we take enc(X) := 0001 - 0P+2 - bin(X);

3. for X' € N’, we take enc(X"’) := 0010 - bin(X);

4. enc(FE) :=01.

It remains to determine the constant c. From the requirements above we see that
the constants ¢ and p must satisfy the conditions:

¢/2>n=5+2+p+pandp> [loglac)].
If we take ¢ := 4(7 + 2p), then it remains to ensure that

p = [log(ac)] = [log(4a(7 + 2p))].

Obviously there exists a constant pg such that this inequality is satisfied for each
p > po. Thus, with these values for p and ¢, the resulting restarting automaton
M’ is length-reducing, and it accepts the language L = L(G) using only a single
occurrence of its only auxiliary symbol F' in each configuration that is reachable
from an initial configuration. This completes the proof of Theorem 4. a

5 Conclusions and Open Problems

We have seen that two occurrences of a single auxiliary symbol suffice to accept
every k-linear language, and that for k = 2, already a single occurrence suffices.
On the other hand, we have seen that a bounded number of occurrences of auxil-
iary symbols does not suffice to accept all context-free languages by deterministic
RLWW-automata. However, many problems concerning the new measures remain
open. For example, is there an infinite hierarchy with respect to the number of

Restricted Utilization of Auxiliary Symbols 19

auxiliary symbols in the tape alphabet? Or is it possible to show that a single
auxiliary symbol is always sufficient by using appropriate encodings? What can
be said in general on the number of occurrences of auxiliary symbols on the
tape? Is there an infinite hierarchy with respect to the number of occurrences
of auxiliary symbols? Other interesting questions concern the context-free lan-
guages. For example, is there a constant d such that each context-free language
is accepted by a nondeterministic RLWW-automaton that uses at most d occur-
rences of auxiliary symbols? Recall that each deterministic context-free language
is accepted by a monotone det-R-automaton [4], that is, for these languages no
auxiliary symbols are required at all.

6 The Proof of Proposition 3

To prove Proposition 3 we will make use of the notion of Kolmogorov complexity
and its properties [9]. Here we consider the Kolmogorov complexity K(z) of
words x over a finite alphabet X satisfying s := |X| > 1. In the following all
logarithms used will be taken with respect to base s. A word = € X% is called
random if K(z) > |z| — 4log|z|, and it is called incompressible if K(x) > |z|.

Proposition 3 claims that the language L4 is not accepted by any determin-
istic RLWW-automaton that uses only o(n/ log® n) occurrences of auxiliary sym-
bols. So, for the sake of contradiction, we assume that there exists a det-RLWW-
automaton M = (Q, X, I,¢,$,qo,k,0) for Lpuo that uses only o(n/ log® n) oc-
currences of auxiliary symbols.

For deriving a contradiction, we will analyze the (accepting) computation
of M on an input of the form w;wfwiws, where |w;i| = |wz|, and w = wiwy
satisfies the conditions that n := |w]| is sufficiently large and that w is incom-
pressible (that is, K(w) > |w|). We will show that as long as a long infix
of wiwfwlwy remains unchanged during this computation, which means that
no rewrite operation is performed inside the factor x, each rewrite operation is
executed inside the prefix or inside the suffix in which rewrite steps were already
executes before, or within a distance of at most log* n from that prefix or that
suffix.

As each rewrite step shortens the tape, the above property implies that the
prefix wy or the suffix wy is shortened significantly within a certain number of
cycles, while no rewrite operation is applied to the infix wffwf. On the other
hand, the rewrite steps add some extra information to the prefix and to the
suffix, as they introduce occurrences of auxiliary symbols. Each occurrence of
an auxiliary symbol is uniquely determined by its position on the tape and its
number in a linear ordering of I". Hence, it can be encoded by a word from X'* of
length logn + log|I’|. As the number of occurrences of auxiliary symbols on the
tape is limited, however, they cannot make up for the loss of information that
follows from the reduction in length. Thus, we will finally shorten the suffix ws to
a word that can be encoded by less than n/2—w(logn) symbols without applying
any rewrite step to the infix wf, or we will shorten the prefix w; to a word that
can be encoded by less than n/2 —w(logn) symbols without applying any rewrite

20 T. Jurdzinski, F. Otto

step to the infix wit. As M accepts the language Lyq2, both cases yield a unique
‘short’ representation of w, which contradicts the incompressibility of w. Below
we present this proof in more detail.

Proposition 4. Let M = (Q, X, T, ¢,$,qo, k,) be a det-RLWW-automaton, and
let uy,ug, v € X* and uy,uhy € I'* such that |ui| = |uz| =n > ng and K(u;) >
n —4logn for i = 1,2, where ng is a fived constant. Then the rewrite position
of M in the cycle which begins with the restarting configuration got¢uuivusuy$
is located inside the prefir of length |u)| + log*n or inside the suffiz of length
|ub| + log* n of ufuyvugul.

The proof of Proposition 4 is rather long and complicated. Therefore, we
postpone it to Subsection 6.1. In order to apply Proposition 4 repeatedly (see
below), we need the following technical result.

Proposition 5. ([9] p. 110) Let w be an incompressible word of length n, where
n is sufficiently large. Then each subword x of w of length equal to or greater
than log® n satisfies the condition K (z) > |x|—3logn. In particular, if |z| > n/4,
then x is random.

Let w = wiwe € X™ be incompressible, where |wi| = |wz]|, and n is suf-
ficiently large. We analyze the configuration that M reaches from the initial
configuration gocwwiwlw,$ within t := T%i_n cycles. From Proposition 4
and Proposition 5 it follows that all ¢ rewrite operations that are performed
during these cycles are applied to the prefix of length tlog4 n and to the suffix of
length t10g4 n. As tlog4 n < n/4, we see that all these rewrite steps are applied
to the prefix ¢w; and to the suffix wy$, while no rewrite step is applied to the
infix wffwf. Hence, the prefix ¢w; has been transformed into ¢w}, and the suffix
wo$ has been transformed into w$ for some words wi, w) € I'* satisfying the
inequality

]+ ol < m—t =
In addition, the number of occurrences of auxiliary symbols in w] and wj is in
o(n/log® n) by our assumption on M. That is, we can assume that the number of
occurrences of auxiliary symbols is smaller than n/(321log® n), if n is sufficiently
large.

We now construct a short representation for wjw). Let w5 be the projection
from I'* onto X* defined by 7x(a) := a for all a € X' and 75 (A) := ¢ for all
A € I'\ Y. We describe wjwj through the word 7s (wjw}) and the number |w}],
and in addition, for each occurrence of an auxiliary symbol A in w}w) we describe
its position in wjw} and its value. For 7x(wjw}) we need space

7o (wyws)| = [wiwy| — [wiws|ro s <n— ——,
4log™ n
and for each occurrence of an auxiliary symbol we need at most space 2logn.
Hence, for all auxiliary symbols together we need at most space

n

——— - 2logn =
321og’ n 8

16log*n

Restricted Utilization of Auxiliary Symbols 21

Thus, in this way we obtain a representation for wjw} of length

+ n + 41 <TL i
- ogn < — — :
4log*n 16log'n sM=17 8log* n

n n
1

Here the additional space 4logn is needed to store the lengths of w| and w} and
to make sure that the encodings of the various pieces are clearly separated from
each other.

Using this representation of wjw) we will now construct a compact represen-
tation for w, which will then contradict our assumption that w is incompressible.
This description of w will consist of:

— The above representation of w)w} of size not larger than n — n/(8log* n).

— The description of the det-RLWW automaton M.

— Two ‘transition tables’ T7, T5. The first of these transition tables determines,
for each state ¢ of M, the state ¢’ of M and the direction (left or right) in
which M leaves the infix wffwf when it enters it from the left being in
state ¢; the second table describes the corresponding information for the
case that M enters the infix wiwf from the right. More precisely, these
tables only list the indicated information as it was encountered during the
first ¢ cycles of the above computation.

— The index of the word w = wjws in the lexicographic order of the set of
words that are equivalent with respect to M, w/, wh, Ty, and To. This set

consists of all words uv € X™ (|u| = |v|) that satisfy the following conditions:
e the transition tables 77 and Tb agree with the behavior of M on the
word ufvf;

e M accepts uufvfv (that is, vuv®v € Lpes2), and the computation of
M on uufvfv contains a subcomputation of the form

wulofo -3, wiufolw)
in which M only crosses the infix u®v®™ as described in the transition
tables 77 and T5.

The first element of the above description is of size at most n —n/(8log* n), the
second and the third have constant size. The fourth element is of size logarithmic
with respect to the size of the set of words equivalent with respect to M, wf,
wh, Ty, and Ts. Hence, in order to derive a contradiction to the incompressibility
of w, it is sufficient to show that the size of the set of words equivalent with
respect to M, wi, wh, Ty, and Ty is 0(|E|"/(81°g4 ™). This will be shown below.

Proposition 6. 1. Ifuv € X", |u| = |v|, is equivalent with respect to M, w},
wh, Th, and Ty, then M accepts wiuFolws, that is, wiufolws € Lpai2.

2. There exists a constant c satisfying the following condition. Let n be suf-

ficiently large, let x = x1x9, where |z1| = |x2| = n/2, be an incompress-
ible word, and let z = x1yxs € Lpg2 for some y € X". Then each fac-
torization z = z1z2, where z1,29 are palindromes, satisfies the condition

—c<|xn|—-n<e.

22 T. Jurdzinski, F. Otto

Proof. (1) As ufv® and wfwf have the same transition tables T4, Ty, starting
from the initial configuration q0¢w1uRva2$, M reaches the restarting con-

figuration goewjufvPwh$, from which it will finally accept, as uufvfv %,

wiuftvfw) and uufofv € Lpai2. Hence, wiufofw, € Lpaa.

(2) Let z = 2129 be a factorization of z = x1yxs such that |z1| # |22|, |21] = 2m,
and z1, z9 are palindromes. Without loss of generality we can assume that |z1| <
|22]. Then z; = vof for some word v satisfying |[v| = m < n/2 = |x1]. If |21] =
2m > n/2 = |x1|, then this implies that z1 = vov1v® for some factorization
v = wov1, where |v1| = n/2 —m and vg = 2m — n/2. Now we can encode
x = x1x2 by giving the following information:

— vy, the length of v1, and the additional information describing that vf" is a
subword of which ends at position n/2, where n is the length of z;
— voxa together with the information that this is the remaining part of x.

Note that in this representation we save |vi| positions, but we have to add a
description of how to combine v; and the remaining part of this encoding and
of the length of v;. However, this description takes size d plus at most 2log |v1 |
many positions . Thus, if |vi| > 2log|vi| + d, we get a contradiction to the
incompressibility of x. However, this inequality is satisfied each time ||z1|—n| > ¢
for some constant c.

Finally, if |z1] = 2m < n/2 = |z1], then z; = vv' is a prefix of z1, that is,
r1 = voltzz for some word w3 of length |z3| = n/2 — 2m. If |21] > n/4, then
we can use this factorization in the same way as above to save |[v| = m > n/8
many positions in the representation of x. On the other hand, if |z1| < n/4,
then z3yxs = 2z being a palindrome implies that the suffix 3 of x; of length
n/2 — |z1| > n/4 is the reversal of the suffix of x5 of the corresponding length.
Again this can be used to obtain a compression of x. O

R

Finally, we obtain the required result.

Proposition 7. The size of the set of words equivalent with respect to M, wf,
wh, T1, and Ts is bound by a constant.

Proof. By the above proposition, the following condition is satisfied for each word
wv (with |u| = [v| = n/2) equivalent with respect to M, wi, wh, Ty, and Tb:

w1 uRvag € Lpaia2-

Moreover, if z = wrulvfwsy € Lpai2, then there exists a factorization z = 2129
such that z1, 2o are palindromes and [|z1] — |22]| < ¢, where ¢ is a constant
independent of n.

We now show that, for each ¢’ € N such that ¢’ < ¢, the number of words uv
as above for which there exists a factorization of wiufvfwsy into z12z9 as above
such that ||z1] — |22|| = ¢’ is bound by a constant independent of n. This gives
the intended result. Indeed, as ¢ is a constant independent of n, we can assume

that ¢ is much smaller than n/2. Thus, wy is a prefix of z;, and wy is a suffix

Restricted Utilization of Auxiliary Symbols 23

of zo. Assume that |z1| = |z2| + ¢/, that is, |z1] = n + /2 and |22] = n — /2.
As z; is a palindrome, we see that the suffix of length n/2 of z; is determined
by its prefix w; of length n/2. Hence, only the part in the middle of z; of length
¢’ /2 is not determined by wi. On the other hand, 2z is completely determined
by its suffix wsy of length n/2. Thus, the number of possible values for uf*vf is
bound from above by the number | 3|, O

6.1 Proof of Proposition 4

Let M = (Q,X,T,¢,$,qo0,k,06) be a deterministic RLWW-automaton. From the
results in [7,15] it follows that there exists a deterministic RLWW-automaton
M’ that satisfies all of the following conditions:

1. L(M'") = L(M),

2. for all x,y € I'*, I, vy if and only if x F§, y, that is, M and M’ execute
exactly the same cycles, and

3. in each cycle, M’ works in two stages. In the first stage it behaves like a
deterministic one-way finite-state acceptor moving its window from the left
sentinel ¢ to the right sentinel $. In the second stage, it works in so-called
phases, the first of which starts at the rightmost position. In a phase that
starts at position ¢ of the tape, M’ executes first a number of MVL steps,
then it performs the same number of MVR steps taking its window back to
position 4, and finally it makes another MVL step (to position i — 1), which
ends this phase. Hence, M’ does not move its window to the right of position
1 during the phase which starts at that position. These phases continue until
M’ finds a rewrite position at the end of some phase 7, applies the required
rewrite operation, and restarts immediately thereafter.

We will analyze the computations of the automaton M’. Let A; be a de-
terministic one-way finite-state acceptor that corresponds to the behaviour of
M’ during the first stage of each cycle, and let As be a two-way finite-state
acceptor that corresponds to the left-right-movement of M’ during the phases
of the second stage of each cycle, that is, starting at position i, A, performs a
number of MVL steps, then the same number of MVR steps, taking its head back
to position 3.

To complete the proof of Proposition 4 we need a few technical results. The
first of these deals with the behaviour of deterministic two-way finite-state ac-
ceptors.

Proposition 8. [5] Let A be a deterministic two-way finite-state acceptor with
p states and tape alphabet I' D X # (). Then there is a word b = bpbgr € X* of
length at most 2p® such that the following conditions are satisfied:

— if the head of A enters b from the left, then it either
e leaves b to the left without reaching bgr, or
e it loops inside by, or

24 T. Jurdzinski, F. Otto

o it leaves b to the right, and for no x € X* does the head of A leave b
to the left while working inside bx (but it may leave b to the left if it
encounters a symbol which does not belong to X);

— if the head of A enters b from the right, then the corresponding properties
hold.

The next result states that each word v occurs as a subword in each random
word of sufficient length.

Proposition 9. Let v € X° for some constant ¢ € N. Then there exists an
integer ng € N such that, for each n > ng, for each random word w € X™, and
for each subword x of w of length log2 n, v is a subword of x.

Proof. Let x be any subword of w of length log2 n, where w is a random word of
length n. Assume that v does not appear in x at all. This means that x belongs
to the following set

S:={ye Ylog®n | v does not appear at position 1 +4-cin y
for all i = 0,1,...,((log*n)/c) —1}.

Let s be the cardinality of X. Then the set S contains at most (s¢— 1)(10gz n)/e
elements, while the set of all words of length log® n over X contains o8’ gle-
ments. Thus, we can encode = by giving its number in the lexicographic ordering
of the set S and by providing the word v (which determines the set S). This
encoding takes space

_ log(s°—1)
B c

log((s® — 1)(10g2 m/ey 4 ¢ log®n +c.

This encoding saves linear space with respect to the length of =, which is
linear with respect to log? n.

Finally, assume that w = y;xy2. Then we can describe w by

(a) giving explicitely y1, y2, and their lengths,
(b) and by the above representation of .

Item (a) needs some extra space, but only of logarithmic size, while item (b)
allows to save space ¢’ - log2 n for some constant ¢’, which yields a contradiction
to the assumption that w is random. a

The next result is concerned with the behaviour of a deterministic one-way
finite-state acceptor on a random word of sufficient length.

Proposition 10. Let A be a deterministic one-way finite-state acceptor with
tape alphabet I' O X # (). Then there exists a constant ng € N such that, for
each integer n > ng, and each random word w € X", the following condition is
satisfied for each word v € X+

Assume that A is in state q when it enters wv from the left, and that it
reaches state q' when its head is located inside v. Then A already encounters
state ¢’ while its head is still inside the prefiz of w of length log® n.

Restricted Utilization of Auxiliary Symbols 25

Proof. Assume that there exists a deterministic one-way finite-state acceptor
A =(Q, I, q,F,d) and a nonempty subalphabet X C I' for which the above
statement does not hold, and take p := |Q| and s := |X|. Then, for each integer
no > 0, there exists a random word w € X7 of length |w| > ng such that,
for some word v € X'+ and some states q,¢’ € @, when A is in state ¢ when it
enters the word wv from the left, then it reaches state ¢’ when its head is located
inside v, but this state is not encountered as long as the head is still inside the
prefix of w of length log® n.

Now let w be a sufficiently long random word satisfying the above condition,
let q,¢' € Q be the corresponding states, and let v € X T be the corresponding
right factor. Further, let = := z1 ... %442)/, be the prefix of w of length log®n,
where |z;| = p for each i € [1, (log”n)/p]. Note that state ¢’ is accessible from
each state ¢’ which A enters while its head is inside x. Hence, for each state ¢”
encountered in this way, there exists a word ug» € 2P such that A reaches state
¢’ with its head inside w4, when it starts its computation in state ¢ with its
head on the first letter of ug..

For each index i = 1,..., (log>n)/p, let ¢; be the state of A when its head
enters the factor x;. From ¢ = ¢; and the above properties we can conclude
that 21 # uq. Hence, the knowledge of ¢; allows us to describe x; through its
number (according to the lexicographical ordering) in the set Sy := X7 \ {ug}.
Unfortunately, due to the size of S; this description would not save any space
at all. However, from this description we can determine the state go and the set
So 1= XP ~ {ug, } of possible values for the factor z5. Further, the index of x5 in
the set Sy allows to determine xo and the state gs3. Continuing in this way, the
state g; determines the set S;, and the index of the word x; in S; determines the
word z; and the state g;41.

Hence, we can encode the prefix x through the state ¢ = ¢ and the sequence
of indices i1, ..., (1042 n)/p Such that ¢; is the index of the factor z; in the set 5.
In order to make this representation space efficient, we concatenate all these
indices into a single code word I :=i1i2...%(10g2) /p- As @5 € [1, 8P — 1], the set
of possible values for I is of size (sP — 1)(10g2 m)/P. Finally, we encode I by its
index in the set of all possible values of I, which requires

log(sP — 1)
p
symbols. Recall that ¢ = ¢1 and I together describe x uniquely.

log(s? — 1)(10g2 n/p = log?n

Based on the above description of z, we now construct an encoding of w by
combining the following items:

— a description of A, the state ¢ = ¢1, and the description of the above method
of encoding of x (which is of constant size);
— the above encoding of the index I of size log(s"=1) . log® n;

— the suffix u of w of length n — log® n.

In order to combine these parts into a single word, we have to add information
about the lengths of the first two parts (see [9] for self-delimiting descriptions),

26 T. Jurdzinski, F. Otto

which needs at most 8 loglogn more positions. Thus, the length of our encoding
of w is
log(s? — 1)

’)-loan:c—i—810glogn—i—n—c’-loan7

¢+ 8loglogn +n — (1 —
where ¢ and ¢’ are constants. Note that ¢ := (1 — M) is a constant that
is smaller than one. Thus, if we take ng to be the smallest integer for which

¢ -log®ng

¢+ 8loglogng < 5

holds, then, for each random word of length n > ng, we obtain a compression

by C,'IOQgQ ™ positions. This, however, is more than 4logn for sufficiently large n,
thus contradicting the assumption that w is random. O

Finally, we need the following result on deterministic two-way finite-state
acceptors, which is easily proved by considering crossing sequences.

Proposition 11. Let A be a deterministic two-way finite-state acceptor with
tape alphabet I', let Q4 be the set of states of A, and let q,q' € Q4. Assume
that there exists a word u = ujus such that, starting from the configuration qu,
A reaches state q' while its head is inside us, without moving its head outside of
u during this computation. Then there exists a word uy of length 4 - |Qa|! such
that, starting from the configuration quiub, A reaches state ' while its head is
inside uf, without moving its head outside of uyub during this computation.

The analogous property holds for the symmetric case that A enters u from
the right and reaches state q' while its head is inside uy.

Now we return to the proof of Proposition 4. Let by, be a word that satisfies
the conditions of Proposition 8 for the automaton As, and let n;/ be the constant
from Proposition 9 corresponding to the word bp;s. Thus, if w is any random
word of length |w| > np, then by occurs in each subword of w of length log2 n.

Let uy,uz,v € X* and uj,uh € ' such that |ui| = |uz| = n > nyp and
K(u1), K(u2) > n — 4logn, that is, u; and uy are random words. Further, we
assume that the integer n is sufficiently large as to satisfy the conditions of
Proposition 10.

We will analyze the cycle of M’ that begins with the tape content u}u;vugub.
Let ug = yoxs, where x5 is the suffix of ug of length log4 n, and let w1 = z1y1,
where z; is the prefix of u; of length log;4 n. If M’ performs a rewrite step inside
the prefix v}z or inside the suffix xou), then there is nothing to prove. So assume
that M’ performs the rewrite step of the current cycle neither inside ujx; nor
inside xouf. Based on this assumption we will now derive a short description
for us, which will contradict the fact that us is a random word.

Assume that M’ has just finished the phase of the second stage for the
leftmost position of uh. Let 22 = T2mTam—1 ... %21, where m = (log2 n)/2 and
|zo.s| = 2log®n for each i € [1,m]. From Proposition 9 we conclude that, for
each i € [1,m], by occurs as a subword in the prefix of length log?n of T2, as

Restricted Utilization of Auxiliary Symbols 27

well as in the suffix of length log® n of x2,;. From the fact that M’ finds a rewrite
position of M we see that there exists a particular state of M’ that M’ does not
enter before during the current cycle.

To complete the proof we need the following additional propositions.

Proposition 12. The read-write window of M’ does not reach the part of the
tape containing u} during any phase of the second stage, which corresponds to a
position of xo.

Proof. According to our assumption the rewrite position of the current cycle is
inside the factor y;vys. Hence, the current cycle of M’ ends with a phase that
corresponds to some position inside y;vys. Assume that the head of Ay reaches u
during a phase that corresponds to a position inside z2. Then in the second part
of this phase, in which As performs MVR steps, it is working as a deterministic
one-way finite-state acceptor, moving across the complete factor ;. During this
part of the computation As does not enter the state which indicates the end of
the phase. However, as u; is a random word of sufficient length, this contradicts
Proposition 10. a

Proposition 13. For each factorization of xo of the form xo = ybpyy', the
window of M’ does not reach the factor y during the second stage of the current
cycle before the phase that starts at the rightmost position of by .

Proof. Each time the window of M’ reaches the factor by, during the second
stage before the phase that starts at the rightmost position of by, M’ is running
the automaton As. According to the choice of by, if As leaves by to the
left after entering it from the right, there is no possibility for A5 to cross this
particular factor by, again from left to right as long as it works on a word over
the alphabet X' (see Proposition 8). However, we see from Proposition 12 that
during this stage M’ will not reach the factor v, which is the only prefix of the
current tape content containing non-input symbols. a

Now we describe the compression of the word wus:

1. The factor ys is stored.

2. For j € [2,m], let zo; = x'z;bpp 2, where |z;] = 4-|Q]!, and 2" does not
contain by as a factor. Recall that x2 ; contains at least two occurrences
of this factor. Of x2 ;, we only store z’bya”, that is, we do not store the
factor z;.

3. The above factors z; (j € [2,m]) are encoded as follows. According to Propo-
sition 13, M’ does not move its window to z; until it executes the phase that
corresponds to the rightmost position of the occurrence of by, following the
factor z;. Further, we know that starting with this phase M’ will finally
reach the state ¢’ that expresses the fact that the rewrite position of the cur-
rent cycle has been found. Let g; be the state of M’ at the beginning of the
phase that corresponds to the rightmost position of this particular occurrence
of by . By Proposition 11 there exists a word Z; of length 4 - |Q|! = |z;| such
that, starting in state g; at the last position of the word Z;bp, M’ reaches

state ¢ without leaving the part of the tape containing the word Z;bp. It
follows in particular that z; # Z;, as M’ reaches state ¢’ only outside of the
part of the tape containing the word x5 ;.

Let z := z129... 2. If we knew the states ¢1,q2,- .., gm, then we would be
able to determine the words Z; (j € [1,m]). Let s := |X] and r := |z;| =
4 -]Q|!. Then the word z above belongs to the set Z of size (s" — 1)™ of
words of length 7 - m. Now we encode z by its number in the lexicographical
ordering of this set. This encoding has length log,(s” —1)™, which is smaller
than the length of z by d-log® n, where d := 1 (r —log,(s" — 1)) is a constant
that is independent of n, as m = (log”n)/2.

Such a representation of ug, which saves d-log® n symbols, would contradict
the assumption that us is random. However, we need to know the states
41,92, - - -, qm- Now we show how to obtain this encoding without the knowl-
edge of these states. Let gg be the state of M’ at the beginning of the phase
corresponding to the rightmost position of zs. Starting from this state at
the rightmost position of x5, M’ will not leave the part of the tape con-
taining the suffix of zo including the rightmost occurrence of by until it
starts the phase that corresponds to the rightmost position of this particular
factor bys. Thus, we are able to determine ¢, which allows us to encode the
factor z; and to continue with the computation. Similarly, knowing g; we are
able to encode z; and to determine the state g;+1 for all ¢ € [2,m)].

In summary, we have obtained a representation of us of size |ug| —d- log® n+

O(logn). The additional O(logn) factor follows from the fact that we have to
include information about the lengths of the consecutive parts of the above
encoding. However, if n is sufficiently large, the obtained compression of us
contradicts our assumption that us is random, which completes the proof of
Proposition 4.

Acknowledgement. The authors thank FrantiSsek Mraz from Charles Univer-
sity, Prague, for many very interesting and fruitful discussions on restarting
automata in general and the topic of this paper in particular.

References

. E. Dahlhaus and M. Warmuth. Membership for growing context-sensitive gram-
mars is polynomial. Journal of Computer and System Sciences 33 (1986) 456—472.
. L.A. Hemaspaandra, P. Mukherji and T. Tantau. Overhead-Free Computation,
DCFLs, and CFLs. CoRR (The Computing Research Repository) cs.CC/0410035:
(2004). A preliminary version appeared in: Z. Esik and Z. Fiilsp (eds.), DLT 03,
Proc., LNCS 2710, pages 325—336. Springer, Berlin, 2003.

. P. Jancar, F. Mréaz, M. Platek, and J. Vogel. Restarting automata. In: H. Reichel
(ed.), FCT*95, Proc., LNCS 965, pages 283-292. Springer, Berlin, 1995.

. P. Jancar, F. Mréaz, M. Platek and J. Vogel. On monotonic automata with a restart
operation. Journal of Automata, Languages and Combinatorics 4 (1999) 283-292.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19

Restricted Utilization of Auxiliary Symbols 29

. T. Jurdzinski, M. Kutylowski and K. Lorys. Multi-party finite computations. In:
T. Asano, H. Imai, D.T. Lee, Sh. Nakano and T. Tokuyama (eds.), COCOON’99,
Proc., LNCS 1627, pages 318-329. Springer, Berlin, 1999.

T. Jurdzinski, K. Lory$, G. Niemann and F. Otto. Some results on RWW- and
RRWW-automata and their relationship to the class of growing context-sensitive
languages. Mathematische Schriften Kassel 14/01, Universitat Kassel, 2001. Also:
Journal of Automata, Languages and Combinatorics, to appear.

T. Jurdziniski, F. Mraz, M. Platek and F. Otto. Deterministic two-way restart-
ing automata don’t need auxiliary symbols if they are (right-, left, or right-left-)
monotone. Mathematische Schriften Kassel 7/04, Universitat Kassel, 2004.

T. Jurdzinski, F. Otto, F. Mraz and M. Platek. On the complexity of 2-monotone
restarting automata. Mathematische Schriften Kassel 4/04, Universitit Kassel,
2004. An extended abstract appeared in: C. Calude, E. Calude and M. Dinneen
(eds.), DLT’04, Proc., LNCS 3340, pages 237-248. Springer, Berlin, 2004.

M. Li and P. Vitanyi, An Introduction to Kolmogorov Complexity and Its Appli-
cations. Springer, 1997.

R. McNaughton, P. Narendran and F. Otto. Church-Rosser Thue systems and
formal languages. Journal of the Association for Computing Machinery 35 (1988)
324-344.

G. Niemann and F. Otto. Restarting automata, Church-Rosser languages, and rep-
resentations of r.e. languages. In: G. Rozenberg and W. Thomas (eds.), Develop-
ments in Language Theory - Foundations, Applications, and Perspectives, DLT’99,
Proc., pages 103-114. World Scientific, Singapore, 2000.

G. Niemann and F. Otto. Further results on restarting automata. In: M. Ito and
T. Imaoka (eds.), Words, Languages and Combinatorics III, Proc., pages 352-369.
World Scientific, Singapore, 2003.

K. Oliva, P. Kvéton and R. Ondruska. The computational complexity of rule-based
part-of-speech tagging. In: V. Matousek and P. Mautner (eds.), T'SD 2003, Proc.,
LNCS 2807, pages 82-89. Springer, Berlin, 2003.

F. Otto. Restarting Automata - Notes for a Course at the 3rd International PhD
School in Formal Languages and Applications. Mathematische Schriften Kassel
6/04, Universitat Kassel, 2004.

F. Otto and T. Jurdzinski. On left-monotone restarting automata. Mathematische
Schriften Kassel 17/03, Universitat Kassel, 2003. An extended abstract appeared
in: C. Calude, E. Calude and M. Dinneen (eds.), DLT’04, Proc., LNCS 3340, pages
249-260. Springer, Berlin, 2004.

M. Platek. Two-way restarting automata and j-monotonicity. In: L. Pacholski and
P. Ruzicka (eds.), SOFSEM‘2001, Proc., LNCS 223/, pages 316-325. Springer,
Berlin, 2001.

M. Pléatek, M. Lopatkova and K. Oliva. Restarting automata: motivations and ap-
plications. In: M. Holzer (ed.), Workshop ‘Petrinetze’ and 13. Theorietag ‘Formale
Sprachen und Automaten’, Proc., pages 90-96. Institut fiir Informatik, Technische
Universitat Miinchen, 2003.

M. Platek, F. Otto, F. Mraz and T. Jurdzinski. Restarting automata and variants
of j-monotonicity. Mathematische Schriften Kassel 9/03, Universitit Kassel, 2003.
. A. Salomaa. Formal Languages. Academic Press, 1973.

