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The aim of this paper is to extend the method of approximate approximations to boundary value
problems. This method was introduced by V. Maz’ya in 1991 and has been used until now for the
approximation of smooth functions defined on the whole space and for the approximation of volume
potentials.

In the present paper we develop an approximation procedure for the solution of the interior
Dirichlet problem for the Laplace equation in two dimensions using approximate approximations.
The procedure is based on potential theoretical considerations in connection with a boundary integral
equations method and consists of three approximation steps as follows.

In a first step the unknown source density in the potential representation of the solution is replaced
by approximate approximations. In a second step the decay behavior of the generating functions is
used to gain a suitable approximation for the potential kernel, and in a third step Nyström’s method
leads to a linear algebraic system for the approximate source density. For every step a convergence
analysis is established and corresponding error estimates are given.
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1 Introduction

In 1991 V. Maz’ya proposed a new approximation method called the method
of approximate approximations [8], which is based on generating functions
representing an approximate partition of unity, only. As a consequence, this
approximation method does not converge if the mesh size tends to zero.

For practical computations this lack of convergence does not play an impor-
tant role since the resulting error can be chosen less than machine precision.
On the other hand, this method has great advantages due to nice properties
of the generating functions, i.e. simplicity, smoothness and exponential decay
behavior [12].

The method of approximate approximations can be used efficiently for the
evaluation of various problems in mathematical physics, e.g. Cauchy problems
of the kind Lu = f , where L denotes a suitable linear differential operator
in R

n. Approximating the right hand side f by approximate approximations,
in many cases explicit formulas for the approximating volume potentials are
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obtained containing a one-dimensional integration, only.
For boundary value problems the method of approximate approximations

has not been used until now, except for some heuristic considerations concern-
ing the so-called boundary point method [9].

In the present paper we develop an approximation method for the solution
of the interior Dirichlet problem of the Laplacian in two dimensions using
approximate approximations. The procedure is based on potential theoretical
considerations in connection with a boundary integral equations method and
consists of three approximation steps as follows.

In a first step the unknown source density in the potential representation of
the solution is replaced by approximate approximations. In a second step the
decay behavior of the generating functions is used to gain a suitable approx-
imation for the potential kernel, and in a third step Nyström’s method leads
to a linear algebraic system for the approximate source density. For every step
a convergence analysis is established and corresponding error estimates are
given.

The method, which is explicitly carried out here for the interior Dirich-
let problem of the Laplacian in two dimensions, can also be used for many
other boundary value problems in mathematical physics, whenever a suitable
potential theory is available, as it is e.g. in the case of harmonic, elastic, or hy-
drodynamic boundary value problems in general space dimensions. In all these
cases there exists also a representation of the solution in form of a boundary
layer potential, where the unknown source density has to be determined as a
solution of Fredholm boundary integral equations and can be approximated
by the method developed here, too.

2 The Dirichlet problem

Let G ⊂ R
2 be a bounded simply connected domain with boundary Γ of class

C2. Let furthermore b ∈ C(Γ) be a given boundary value. We consider the
following Dirichlet problem: Find a function v ∈ C2(G) ∩ C(G) solving

∆v = 0 in G, v = b on Γ. (1)

Here ∆ denotes the Laplacian in R
2. From potential theory it is well known

[2,4] that the Dirichlet problem has a unique solution v, and this solution can
be represented in G by the so called double layer potential

(Dϕ)(x) := − 1

2π

∫

Γ

x− y

|x− y|2 · n(y)ϕ(y) ds(y) , x ∈ G.
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The function ϕ : Γ → R is an unknown density and n(y) denotes the exterior
unit normal vector in y ∈ Γ. It is known [2, 4] that under the regularity
assumption Γ ∈ C2 the kernel of the double layer potential can be continuously
extended on Γ × Γ. So for every x ∈ Γ there exists the so-called direct value
of the double layer potential

(Dϕ)(x) := − 1

2π

∫

Γ

x− y

|x− y|2 · n(y)ϕ(y) ds(y) , x ∈ Γ,

and defines a continuous function on Γ. Using the jump relations for the double
layer potential [2,4,5] it follows that the unknown density ϕ exists as the unique
solution to the Fredholm boundary integral equation of second kind

1

2
ψ(x) + (Dψ)(x) = b(x), x ∈ Γ, (2)

where (Dψ)(x) denotes the direct value of the double layer potential.
Let γ : [−1, 1] → Γ be a parametrisation of the boundary Γ. Then we obtain

both in x ∈ G for the double layer potential and in x ∈ Γ for its direct value
the representation

(Dϕ)(x) = − 1

2π

∫ 1

−1

x− γ(t)

|x− γ(t)|2 · n(γ(t)) |γ′(t)|ϕ(γ(t)) dt

= − 1

2π

∫ 1

−1
k(x, t) (ϕ ◦ γ)(t) dt

with

k(x, t) :=
x− γ(t)

|x− γ(t)|2 · n(γ(t)) |γ′(t)|.

Now we consider the operator

T : C([−1, 1]) → C([−1, 1])

defined by

(Tη)(s) :=
1

π

∫ 1

−1
k(γ(s), t) η(t) dt
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and set

B := 2b ◦ γ.

Since ϕ is the unique solution to the boundary integral equation (2), the
function

u := ϕ ◦ γ

is the unique solution to the integral equation

η − Tη = B. (3)

3 The approximation procedure

As mentioned above, the unique solution v of the Dirichlet problem (1) in G
can be represented by the double layer potential

v(x) = − 1

2π

∫ 1

−1
k(x, t)u(t) dt , x ∈ G. (4)

In the following we will approximate v in G by an explicit analytic expression
containing no integrals. This will be done in three steps. To do so let N ∈ N,
d > 0, h := 1/N .

3.1 The first approximation step

In a first step we replace the unknown function u in the integral representation
(4) of v by the approximate approximation

ud,h : [−1, 1] → R , ud,h(t) =
1√
πd

N∑

m=−N

u(mh) e−
(t−mh)2

dh2 ,

and define for x ∈ G

Ψd,h(x) := − 1

2π

∫ 1

−1
k(x, t)ud,h(t) dt

= − 1

2π
√
πd

N∑

m=−N

u(mh)

∫ 1

−1
k(x, t) e−

(t−mh)2

dh2 dt



An approximation method using approximate approximations 5

as an approximation of v(x).

3.2 The second approximation step

Since the function

t 7→ e−
(t−mh)2

dh2

decreases rapidly outside ofmh, if the term dh2 is sufficiently small, in a second
step we replace the kernel k(x, t) by k(x,mh) and define for x ∈ G

Φd,h(x) := − 1

2π
√
πd

N∑

m=−N

u(mh)

∫ 1

−1
k(x,mh) e−

(t−mh)2

dh2 dt

= − 1

2π
√
πd

N∑

m=−N

u(mh) k(x,mh)

∫ 1

−1
e−

(t−mh)2

dh2 dt

as an approximation of Ψd,h(x). Using

∫ 1

−1
e−

(t−mh)2

dh2 dt =

√
d

N

∫ m+N
√

d

m−N
√

d

e−t2 dt =

√
πd

2N
erf

(
m−N√

d
,
m+N√

d

)

we get

Φd,h(x) = − 1

4πN

N∑

m=−N

u(mh) k(x,mh) erf

(
m−N√

d
,
m+N√

d

)

,

where for a, b ∈ R with a ≤ b the error function is defined by

erf(a, b) :=
2√
π

∫ b

a
e−t2 dt.

3.3 The third approximation step

Since the density ϕ is still unknown we do not know the values u(mh) =
ϕ(γ(mh)). Therefore in a third step we determine approximate values um of
u(mh) by using Nyström’s method [7]. Since u = ϕ ◦ γ is the unique solution
of the integral equation (3) we have

u(s) − (Tu)(s) = B(s) , s ∈ [−1, 1].
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Hence, in particular,

u(jh) − (Tu)(jh) = B(jh) , j = −N, . . . , N ,

which means

u(jh) − 1

π

∫ 1

−1
k(γ(jh), t)u(t) dt = B(jh) , j = −N, . . . , N.

Approximating the integral by the trapezoidal rule (Nyström’s method) we
get the linear system

N∑

m=−N

(
δ|m|N − 2

2πN
k(γ(jh),mh) + δjm

)

um = B(jh) , j = −N, . . . , N (5)

to determine approximate values um of u(mh). Here δjm denotes the Kronecker
symbol. Setting

ajm :=
δ|m|N − 2

2πN
k(γ(jh),mh) + δjm

and

A := (ajm),

the linear system can now be written as follows:

A






u−N
...
uN




 =






B(−1)
...

B(1)




 .

With help of its solution, for x ∈ G we define

vd,h(x) := − 1

4πN

N∑

m=−N

um k(x,mh) erf

(
m−N√

d
,
m+N√

d

)

as an approximation of Φd,h(x) and hence as an approximation of v(x).
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4 Convergence analysis

To investigate the accuracy of the approximation, we define for x ∈ G the
error

F (d, h, x) := |v(x) − vd,h(x)|

and consider the decomposition

F (d, h, x) = |v(x) − Ψd,h(x) + Ψd,h(x) − Φd,h(x) + Φd,h(x) − vd,h(x)|
≤ |v(x) − Ψd,h(x)|
︸ ︷︷ ︸

=:F1(d,h,x)

+ |Ψd,h(x) − Φd,h(x)|
︸ ︷︷ ︸

=:F2(d,h,x)

+ |Φd,h(x) − vd,h(x)|
︸ ︷︷ ︸

=:F3(d,h,x)

,

where Fi(d, h, x) denotes the error in the i-th approximation step.
In the following we assume b ∈ C2(Γ). Then we find ϕ ∈ C2(Γ) due to the

regularizing properties of the double layer potential [4]. Since also Γ is of class
C2 we obtain γ ∈ C2([−1, 1],R2) and hence u ∈ C2([−1, 1]).

For the convergence analysis below we need an estimate for the kernel. Using
the Cauchy-Schwarz inequality we get

|k(x, t)| =

∣
∣
∣
∣

x− γ(t)

|x− γ(t)|2 · n(γ(t)) |γ′(t)|
∣
∣
∣
∣
≤ |γ′(t)|

|x− γ(t)| ≤
‖γ′‖∞

dist(x,Γ)
, (6)

where ‖ · ‖∞ denotes the supremum norm and

dist(x,Γ) := inf
y∈Γ

|x− y|

the distance from x ∈ G to the boundary Γ.
To prove convergence we begin from the back.

4.1 Convergence in the third step

It is known that Nyström’s method converges in this setting of at least second
order [5, 7]. Hence for sufficently large N the linear system (5) has a unique
solution and there is a constant C > 0 with

max
m∈{−N,...,N}

|u(mh) − um| ≤ C h2. (7)

This lead to an estimate for the corresponding error in the third step.
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Lemma 4.1 For F3(d, h, x) we have

F3(d, h, x) ≤
3C

2π

‖γ′‖∞
dist(x,Γ)

h2

with the constant C from (7).

Proof Using the estimates (6), (7) and

∣
∣
∣
∣
erf

(
m−N√

d
,
m+N√

d

)∣
∣
∣
∣
≤ 2 (8)

we obtain

F3(d, h, x) ≤
1

4πN

N∑

m=−N

|u(mh) − um| |k(x,mh)| erf
(
m−N√

d
,
m+N√

d

)

≤ 1

4πN

N∑

m=−N

C h2 ‖γ′‖∞
dist(x,Γ)

2

=
C

2π

‖γ′‖∞
dist(x,Γ)

h3 (2N + 1).

With 2N + 1 ≤ 3N the assertion is proved. �

4.2 Convergence in the second step

For x ∈ G the function t 7→ k(x, t) is continuously differentiable in [−1, 1]. So
there exists

L(x) := max
t∈[−1,1]

|∂tk(x, t)| , (9)

wich is needed for the next estimate.

Lemma 4.2 For F2(d, h, x) we have

F2(d, h, x) ≤
3 ‖u‖∞ L(x)

2π3/2

√
d h.

Proof Using a mean value theorem, for t,mh ∈ [−1, 1] we find

|k(x, t) − k(x,mh)| ≤ L(x) |t−mh|.
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Due to

∫ 1

−1
|t−mh| e−

(t−mh)2

dh2 dt =
d

N2

(

1 − 1

2
e−

1

d
(m−N)2 − 1

2
e−

1

d
(m+N)2

)

≤ d

N2

this implies

∫ 1

−1
|k(x, t) − k(x,mh)| e−

(t−mh)2

dh2 dt ≤ L(x)

∫ 1

−1
|t−mh| e−

(t−mh)2

dh2 dt

≤ dL(x)

N2
,

and hence

F2(d, h, x) ≤
‖u‖∞

2π
√
πd

N∑

m=−N

∫ 1

−1
|k(x, t) − k(x,mh)| e−

(t−mh)2

dh2 dt

≤ ‖u‖∞
2π

√
πd

N∑

m=−N

dL(x)

N2

=
‖u‖∞

2π
√
πd

dL(x) (2N + 1)

N2
,

which completes the proof. �

4.3 Convergence in the first step

For m ∈ {−N, . . . , N} we consider the linear spline

sm : R → R , sm(t) :=

{
1 −N |t−mh| , t ∈ [mh− h,mh+ h] ,

0 , elsewhere,

and define the spline interpolant

usp
h : [−1, 1] → R , usp

h (t) :=

N∑

m=−N

u(mh) sm(t).
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Since u ∈ C2([−1, 1]), it holds the estimate [7]

‖u− usp
h ‖∞ ≤ 1

8
‖u′′‖∞ h2. (10)

Using the linear spline interpolant instead of approximate approximations in
the first and second approximation step, we obtain

Ψsp
h (x) := − 1

2π

∫ 1

−1
k(x, t)usp

h (t) dt

= − 1

2π

N∑

m=−N

u(mh)

∫ 1

−1
k(x, t) sm(t) dt

and

Φsp
h (x) := − 1

2π

N∑

m=−N

u(mh) k(x,mh)

∫ 1

−1
sm(t) dt

= − 1

4πN

N∑

m=−N

u(mh) k(x,mh) (2− δ|m|N ),

respectively.
The next lemma shows a remarkable convergence result if the parameter d

tends to zero.

Lemma 4.3 For all x ∈ G we have

lim
d→0

Φd,h(x) = Φsp
h (x).

Proof Using

lim
d→0

erf

(
m−N√

d
,
m+N√

d

)

= lim
d→0

2√
π

∫ m+N
√

d

m−N
√

d

e−t2 dt

and

2√
π

∫ ∞

0
e−t2 dt = 1
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we get

lim
d→0

erf

(
m−N√

d
,
m+N√

d

)

=







1 , m = −N,
2 , |m| 6= N,
1 , m = N,

hence

lim
d→0

erf

(
m−N√

d
,
m+N√

d

)

= 2 − δ|m|N .

This implies

lim
d→0

Φd,h(x) = lim
d→0

(

− 1

4πN

N∑

m=−N

u(mh) k(x,mh) erf

(
m−N√

d
,
m+N√

d

))

= − 1

4πN

N∑

m=−N

u(mh) k(x,mh) lim
d→0

erf

(
m−N√

d
,
m+N√

d

)

= − 1

4πN

N∑

m=−N

u(mh) k(x,mh) (2− δ|m|N )

= Φsp
h (x) ,

as asserted. �

With help of the above convergence result, the remaining error in the first
approximation step can be controlled, too.

Lemma 4.4 Let x ∈ G. For every ε > 0 there exists some d0 > 0 such that
for all d ≤ d0 we have

F1(d, h, x) ≤ ε+
‖u‖∞ L(x)

2π
h+

3 ‖u‖∞ L(x)

2π3/2

√
d h+

‖γ′‖∞ ‖u′′‖∞
8π dist(x,Γ)

h2.

Proof Choose ε > 0. Due to Lemma 4.3 there exists some d0 > 0 such that
for all d ≤ d0 the estimate

|Φsp
h (x) − Φd,h(x)| ≤ ε
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holds. Using the inequatities (6) and (10) we get

|v(x) − Ψsp
h (x)| =

1

2π

∣
∣
∣
∣

∫ 1

−1
k(x, t)(u(t)− usp

h (t)) dt

∣
∣
∣
∣

≤ 1

2π

∫ 1

−1
|k(x, t)| |u(t)− usp

h (t)| dt.

≤ ‖γ′‖∞ ‖u′′‖∞
8π dist(x,Γ)

h2.

Futhermore we find

|Ψsp
h (x) − Φsp

h (x)| ≤ 1

2π

N∑

m=−N

|u(mh)|
∫ 1

−1
|k(x, t) − k(x,mh)| sm(t) dt

≤ ‖u‖∞ L(x)

2π

N∑

m=−N

∫ 1

−1
|t−mh| sm(t) dt

≤ ‖u‖∞ L(x)

2π

N∑

m=−N

h2

3
.

≤ ‖u‖∞ L(x)

2π
h,

where L(x) ist the constant defined in (9). Using the decomposition

F1(d, h, x) ≤ |v(x) − Ψsp
h (x)| + |Ψsp

h (x) − Φsp
h (x)|

+ |Φsp
h (x) − Φd,h(x)| + |Φd,h(x) − Ψd,h(x)|

and Lemma 4.2, we obtain the assertion. �

Now collecting Lemmata 4.1, 4.2, and 4.4, the following main estimate is
proved:

Theorem 4.5 Let x ∈ G. For every ε > 0 there exists some d0 > 0 such that
for all d ≤ d0 we have

F (x, d, h) ≤ ε+
‖u‖∞ L(x)

2π
h+

3 ‖u‖∞ L(x)

π3/2

√
d h

+
3C ‖γ′‖∞

2π dist(x,Γ)

(

1 +
‖u′′‖∞

4

)

h2 ,
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where C is the constant from (7), and L(x) is defined in (9).

Remark 1 Since ε can be chosen less than machine precision, we call this
approximation procedure pseudo convergent of first order as h→ 0.

Remark 2 Numerical examples with analytic boundaries and boundary values
show that for N = 100 the error in the third step is already less than machine
precision.

Remark 3 Approximate approximations for whole space problems lead to
a better accuracy if the parameter d increases. Our method, developed for
boundary values problems, is more accurate if the parameter d is small.
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