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Abstract

This work presents Bayes invariant quadratic unbiased estimator, for short
BAIQUE. Bayesian approach is used here to estimate the covariance functions of
the regionalized variables which appear in the spatial covariance structure in mixed
linear model. Firstly a brief review of spatial process, variance covariance compo-
nents structure and Bayesian inference is given, since this project deals with these
concepts. Then the linear equations model corresponding to BAIQUE in the general
case is formulated. That Bayes estimator of variance components with too many
unknown parameters is complicated to be solved analytically. Hence, in order to
facilitate the handling with this system, BAIQUE of spatial covariance model with
two parameters is considered.

Bayesian estimation arises as a solution of a linear equations system which re-
quires the linearity of the covariance functions in the parameters. Here the availabil-
ity of prior information on the parameters is assumed. This information includes a
priori distribution functions which enable to find the first and the second moments
matrix. The Bayesian estimation suggested here depends only on the second mo-
ment of the prior distribution. The estimation appears as a quadratic form y′Ay ,
where y is the vector of filtered data observations. This quadratic estimator is used
to estimate the linear function of unknown variance components. The matrix A of
BAIQUE plays an important role. If such a symmetrical matrix exists, then Bayes
risk becomes minimal and the unbiasedness conditions are fulfilled. Therefore, the
symmetry of this matrix is elaborated in this work. Through dealing with the infi-
nite series of matrices, a representation of the matrix A is obtained which shows the
symmetry of A. In this context, the largest singular value of the decomposed matrix
of the infinite series is considered to deal with the convergence condition and also it
is connected with Gerschgorin Discs and Poincare theorem.

Then the BAIQUE model for some experimental designs is computed and com-
pared. The comparison deals with different aspects, such as the influence of the
position of the design points in a fixed interval. The designs that are considered
are those with their points distributed in the interval [0, 1]. These experimental
structures are compared with respect to the Bayes risk and norms of the matrices
corresponding to distances, covariance structures and matrices which have to sat-
isfy the convergence condition. Also different types of the regression functions and
distance measurements are handled. The influence of scaling on the design points
is studied, moreover, the influence of the covariance structure on the best design is
investigated and different covariance structures are considered. Finally, BAIQUE is
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applied for real data. The corresponding outcomes are compared with the results of
other methods for the same data. Thereby, the special BAIQUE, which estimates
the general variance of the data, achieves a very close result to the classical empirical
variance.
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Zusammenfassung

Diese Arbeit präsentiert den Bayesschen, invarianten, quadratischen und unver-
fälschten Schätzer, kurz BAIQUE. Die Bayessche Annäherung wird hier verwen-
det, um die Kovarianzfunktion regionalisierter Variablen zu schätzen, die in der
räumlichen Kovarianzstruktur in gemischten linearen Modellen auftreten. Zunächst
wird ein kurzer Überblick über räumliche Prozesse, die Varianz- und Kovarianzkom-
ponentenstruktur und den Bayesschen Rückschluss gegeben, da dieses Projekt diese
Konzepte behandelt. Dann wird das lineare Schätzungsmodell, dem BAIQUE im
allgemeinen Fall entspricht, formuliert. Es ist kompliziert Bayes-Schätzer für Vari-
anzkomponenten mit zu vielen unbekannten Parametern zu lösen. Um den Umgang
mit diesem System zu vereinfachen, wird daher BAIQUE für räumliche Kovarianz-
Modelle mit zwei Parametern betrachtet.

Die Bayessche Schätzung ergibt sich als Lösung eines linearen Gleichungssystems,
das die Linearität der Kovarianzfunktionen in den Parametern erfordert. Dabei
wird die Verfügbarkeit von a priori Informationen über die Parameter vorausge-
setzt. Diese Informationen beinhalten die a priori Verteilungsfunktionen, die es
ermöglichen, die Matrix der ersten und zweiten Momente zu finden. Die Bayessche
Schätzung, auf die hier eingegangen wird, beruht nur auf den zweiten Momenten
der a priori Verteilung. Die Schätzung besitzt die quadratische Form y′Ay, wobei
y der Vektor der gefilterten Beobachtungsdaten ist. Dieser quadratische Schätzer
wird verwendet, um die lineare Funktion der unbekannten Varianzkomponenten zu
schätzen. Hierbei spielt die Matrix A von BAIQUE eine wichtige Rolle, denn wenn
eine solche symmetrische Matrix existiert, wird das Bayes-Risiko minimal und die
Anforderungen der Erwartungstreue sind erfüllt. Deshalb wird die Symmetrie dieser
Matrix in dieser Arbeit sorgfältig ausgearbeitet. Durch das Arbeiten mit den un-
endlichen Reihen von Matrizen wird eine Darstellung der Matrix A erhalten, von der
die Symmetrie abgelesen werden kann. In diesem Zusammenhang wird der größte
Eigenwert der zerlegten Matrix der unendlichen Reihen berücksichtigt, um die Kon-
vergenzbedingung zu behandeln, und dieser Wert wird mit den Gerschgorinschen
Kreisscheiben und dem Poincare Theorem in Verbindung gesetzt.

Anschließend wird das BAIQUE-Modell für einige Versuchspläne berechnet und
verglichen. Der Vergleich behandelt verschiedene Aspekte, wie beispielsweise den
Einfluss der Position der Punkte des Versuchsplans in einem festen Intervall. Hier-
bei sind die betrachteten Pläne solche, deren Punkte im Intervall [0, 1] liegen. Diese
Versuchsstrukturen werden in Hinsicht auf das Bayes-Risiko und die Normen der Ma-
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trizen für Distanz und Kovarianzstruktur und Matrizen, die die Konvergenzbedin-
gung erfüllen, verglichen. Ebenso werden verschiedene Typen von Regressionsfunk-
tionen und Distanzmessungen bearbeitet. Ferner wird der Einfluss der Skalierung
der Versuchspunkte studiert, der Einfluss der Kovarianzstruktur des besten Ver-
suchsplans untersucht und verschiedene Kovarianzstrukturen betrachtet. Schließlich
wird BAIQUE auf reale Daten angewandt und die entsprechenden Ergebnisse wer-
den mit den Resultaten anderer Methoden für die selben Daten verglichen. Dabei
erzielt der spezielle BAIQUE, der die allgemeine Varianz schätzt, ein sehr ähnliches
Ergebnis wie die klassische empirische Varianz.
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2 Introduction

1 Introduction

This work deals with Bayesian estimation of spatial covariance functions which ap-
pear in the spatial covariance structure in mixed linear models. Bayesian philosophy
is one of the most important mathematical methodologies. Bayesian approaches are
considered to be powerful methods which propose logical procedures to accomplish
the reasonable statistical inference and decisions. The selection of priors including
noninformative priors is one of the main subjects in Bayesian analysis. The princi-
ple of the Bayes rule is to minimize the posterior expected loss under a chosen loss
function. The resulting estimator is called the Bayes estimator.

Spatial statistics deals with the regionalized variables. In general, regionalized
variables are spatially distributed and spatially structured data. Traditional geosta-
tistics is based on the spatial correlations. Different measures of spatial correlations
are widely used covariance functions or variograms to describe similarity or dissim-
ilarity between two separated points in space. Geostatistics and the probabilistic
approach in general is particularly suited to the study of natural phenomena. The
geostatistical school has made important contributions to the linear estimation of
spatial variables, including the popularizing of the variogram and the generalized
covariance function. This approach is well accepted among practitioners because it
is a realistic approach to solve problems encountered in practices using statistical
concepts.

Variance covariance components play an important role in many fields of sciences.
There are several procedures to estimate variance components. A first solution to
the problem was provided by Helmert (1924), who proposed a method for unbiased
variance estimates. Rao (1971) has introduced the minimum norm quadratic esti-
mation (MINQUE) method. In this approach a quadratic estimator is sought that
satisfies the minimum norm criterion. MINQUE has been implemented and proven
useful in various applications. In this context, Marshall and Mardia (1985) have
presented this procedure through dealing with a nested spatial covariance function.
Stein (1987) has investigated this method with the variogram model and Witkovsky
(1996) has considered MINQUE approach with first order autoregressive distur-
bances. Quadratic estimation of variance components and its properties has been
considered by many researchers such as Seely (1971), LaMotte (1973), Gnot and
Kleffe (1983), Kubacek (1985) and Sjöberg (1995).

Using the least squares method there is an unified procedure for the derivation
of estimators for variance components in the linear model. These least squares
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estimators are unbiased. The invariant and unbiased least squares estimators for
variance components are given by the MINQUE estimators as Verdooren (1988) has
shown. Pelletier et al. (2004) have studied fitting the linear model of coregionaliza-
tion by generalized least squares. In this context, Volaufova and Witkovsky (1991)
have dealt with the quadratic invariant estimators of the linear functions of variance
components in mixed linear models and different types of least squares estimators.

Another common approach for variance components estimation arises through
analysis of variance (ANOVA). This includes traditional ANOVA, various correla-
tion and regression methodologies. Additionally methodologies with modification
to the ANOVA and sum of squares of unbalanced data such as the four methods of
Henderson, Henderson(1984). This approach has a nice feature that the estimators
are unbiased regardless of whether the data are normally distributed and it is es-
pecially useful in the analysis of controlled experiments when the structure of the
data has regular form. There are many contributions in this field. For example,
Townsend and Searle (1971) has considered best quadratic unbiased estimation of
variance components from unbalanced data. Hartely et al. (1978) have investigated
this approach with a new algorithm.

Maximum likelihood (ML) is one of the famous methods to estimate variance
components. One of the basic requirements of maximum likelihood estimation is to
assume an underlying probability distribution for the data. ML was first introduced
by Hartley and Rao (1967) for estimating variance components. Conceptually, ML
attempts to identify the values of the parameters of the distribution that maximize
the likelihood of the observed data. As in the case for almost all maximum likelihood
methods, this distribution is assumed to be multivariate normal. The maximum like-
lihood approach for spatial data was apparently first proposed by Kitanidis (1983)
for linear covariance functions. Mardia and Marshall (1984) and Kitanidis and Lane
(1985) have extended ML to general covariance functions. Zimmerman and Harville
(1990), Mardia and Watkins (1989) and Pardo-Iguzquiza (1998) have presented a
nice general discussion of maximum likelihood.

On the other hand, the method of restricted (residual) maximum likelihood
(REML) involves finding maximum likelihood estimates of variance components
from the distribution of the residuals. This allows for estimation of the variance
components without the complication of the fixed effects. The first who developed
REML for the mixed model generally was Patterson and Thompson (1974). This
approach has used by many researchers such as, Pardo-Iguzquiza and Dowd (1998)
have considered REML with second order stationary universal kriging model. This
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approach has handled the spatial linear models by Christensen et al. (1993) and
Berke (1999). Stein et al. (2004) have dealt with approximating likelihood for large
spatial data set. This procedure was used with systematically sampled data on oil
by Lark and Cullis (2004).

Recently, some methodologies have been developed based on Bayesian approach.
This approach also requires that the distribution of the vector of observation is spec-
ified as with the maximum likelihood methods but the difference with this approach
is that it requires some prior knowledge about the vector of variance covariance
components in form of a prior probability density function. Koch (1987) has used
Bayesian inference to derive the posterior density function of variance covariance
components. As prior density, he has assumed the noninformative prior based on
invariance property established by Jeffreys (1961). Approximative Bayes estimation
in general linear model has considered by Ou (1991). Bayesian kriging approach has
handled by several works such as Le and Zidek (1992), Handcock and Stein (1993),
Hjort and Omre (1994) and De Waal and Groenewald (1995). Other contributions
have investigated Bayesian approach in fields of agricultural experiments such as
Besag and Higdon (1999) or in the assessment of environmental models such as
Fuentes et al. (2003).

This work presents Bayes invariant quadratic unbiased estimator, for abbrevia-
tion one writes BAIQUE. Bayesian technique is used here to estimate the covariance
functions of the regionalized variables which appear in the spatial covariance struc-
ture in mixed linear model. The BAIQUE requires the linearity of the covariance
functions in the parameters. We assume the availability of the prior information
on the parameters. This information includes a priori distribution function which
enables to find the first and the second moments matrix. The Bayesian estimation
suggested here depend on the second moment of the prior distribution of the pa-
rameters. The solution obtained in the sense minimizing the quadratic criterion is
still optimal even if the data are not gaussian, Kitanidis (1985).

The problem at hand is to estimate a linear function of the unknown vector
variance components θ = (θ1, θ2, . . . , θr), say b′θ =

∑r
i=1 biθi by a quadratic form

Y ′AY , where the coefficients bi are known, Y is the vector of the filtered data and
A is a matrix obtained by solving the partitioned equations system of BAIQUE. So
we deal with the general case of BAIQUE under unbiased condition and minimum
variance with respect to all unbiased quadratic estimators. Since Bayes estimator
of variance components is complicated to be solved analytically when there are too
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many unknown parameters, numerical integration must be performed and in such
case problems with computational difficulty arise. Therefore, in order to facilitate
the handling with the model, the spatial covariance model with two parameters is
considered here. The general form of the least square solution corresponding to this
case is found and the form of the solution which represents matrix A is obtained.
This matrix plays an important role since BAIQUE depends on it. Moreover, if a
symmetric matrix exists, then the Bayes risk becomes minimal and the unbiasedness
conditions are fulfilled. Therefore, the symmetricity of this matrix is presented in
more detail. In this manner, the infinite series matrices are used to get the general
form of the solution. An outline of the essential structure of this thesis is discussed
below.

The second section gives a brief summary of three topics which are related with
this work. Its first subsection treats the spatial process and gives some properties of
regionalized variables. The second subsection deals with spatial covariance structure
and variance covariance components models. The third subsection is concerned with
Bayesian inference, a brief review about Bayesian statistics and the point estimators
resulting from quadratic loss are introduced.

Section three contains the model of BAIQUE, the meaning of BAIQUE and
the formulation of the general case which appears by means of partitioned matri-
ces. This estimator is restricted with respect to translation invariance, unbiasedness
and minimizes Bayes risk function. Then the general case is reduced to the case
when the number of the variance components is equal to two. Here some examples
are introduced in order to understand more the model. Through that the prob-
lem of the singularity of this system arises. Thus, the matrix A in BAIQUE form
satisfies the symmetry condition only when the pseudoinverse is used to solve the
BAIQUE equations system. In the last subsection, the partitioned least squares
solution corresponding to this model is presented by means of Kronecker product
and vec operation. This form is useful to investigate the symmetry of the matrix in
Bayes solution. Therefore, the symmetry of this matrix is proved. For this purpose
some lemmas and conditions are given. In particular, it is shown that a sufficient
condition for symmetry is the exchangeability of sums of infinite series of matrices.

Section four is assigned to the comparison of the designs. The comparisons deal
with some aspects, such as the influence of the position of the design points in a
fixed interval. The designs that were considered are those with their points dis-
tributed in the interval [0, 1]. These experimental structures are compared with
respect to the Bayes risk and norms of the matrices corresponding to distances, co-
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variance structures and matrices which have to satisfy the convergence condition of
the finite series sum. Also different types of the regression functions and distance
measurements are handled. In another subsection the influence of scaling on the
design points is studied. The interesting here is to find out the effect of scaling
on the norm of the covariance function. In a separate subsection, the influence of
the covariance structure on the best design is investigated and different covariance
structures are considered. Finally, in order to make the results of this work more
useful and have practical aspects, BAIQUE is applied for real data. The correspond-
ing outcomes have been compared with other methods outcomes for the same data.
The BAIQUE achieves very close results to the actual data outcomes. We mention
here that BAIQUE has been programmed in Maltlab language and all the results in
this work have been computed by using Matlab program.

The last section is devoted to appendices, some lemmas, theorems, properties
which are connected to the concepts of the suggested project. In separate appen-
dices, some aspects and qualities of Kronecker product and vec operation, general-
ized inverse matrices, infinite series representation of the matrix inverse and Neu-
mann theorem, distribution of quadratic forms and finally non-negative matrices are
presented .
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2 Preliminaries

2.1 Spatial process

The outcome z(x) of a random variable Z(x) is considered as the observed value
at a data point x. The mean µ(x) of Z(x) is called the drift. The values z(x) at
points where no measurements have been made are well defined even though they
are unknown. They can also be thought of as being the outcomes (or realizations)
of the corresponding random variable Z(x). Spatial data can be considered as a
realization of a stochastic process (random field), Z(x); x ∈ D ⊂ Rd. Here x is a
location in D. Most often d, the dimension of the space, is 1, 2 or 3. We also assume
that the variance of Z(x) exists for all x ∈ D.

In mathematical term, the family of all these random variables is called a random
function ( stochastic process, random field). The distribution of a random function
is characterized by its finite dimensional distributions, i.e. by the joint distribu-
tions of any set of variables Z(x1), Z(x2), . . . , Z(xk), for all k, and for all points
x1, x2, . . . , xk. It would be difficult to work with such model unless we are prepared
to make some assumptions about the characteristics of these distributions.

The process Z is said to be Gaussian if, for any k ≥ 1 and locations x1, x2, . . . , xk,
the vector (Z(x1), Z(x2), . . . , Z(xk)) has a multivariate normal distribution with
E(Z(x)) = µ(x), V ar(Z(x)) = σ2(x) and covariance function Cov(h, x) = C(Z(x),
Z(x+h)), where ‖ h ‖ is the Euclidean distance between x and x+h. The process Z
is said to be strictly stationary if the joint distribution of (Z(x1), Z(x2), . . . , Z(xk))
is the same as that of (Z(x1 + h), Z(x2 + h), . . . , Z(xk + h)) for any k spatial points
x1, x2, . . . , xk and any h ∈ Rd, provided only that all of x1, x2, . . . , xk, x1 + h, x2 +
h, . . . , xk + h lie within the domain D, see Armstrong (1998). A stationary random
process has some properties such as isotropic and positive definite covariance struc-
ture, as in the following.

Some properties of regionalized variables

It is often in statistical design to assume that the variable is stationary, i.e. its distri-
bution is invariant under translation. In the same manner a stationary random func-
tion is homogeneous and self-repeating in space. For any increment h, the distribu-
tion of Z(x1), Z(x2), . . . , Z(xk) is the same as that of Z(x1+h), Z(x2+h), . . . , Z(xk+
h). This makes statistical inference possible on a single realization. In its strictest
sense stationary requires all the moments to be invariant under translation, but
since this cannot be verified from the limited experimental data, we usually require
only the first two moments. This is called ”weak” or ”second order stationary”. In
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other words, the expected value (or mean) of Z(x) must be constant for all points
x. That is,

E(Z(x)) = µ(x) = µ.

On the other hand, the covariance function between any two points x and x + h
depends on the vector h but not on the point x. That is,

E[Z(x)Z(x + h)]− µ2 = C(h).

For a zero distance, i.e. C(0) there is no need to make an assumption about the
variance because it turns out to be equal to the covariance.

In practice, it often happens that the assumptions of second order stationary
are not satisfied. Clearly when there is a marked trend the mean value cannot be
assumed to be constant. Another branch of geostatistics has been developed to
handle ”nonstationary” regionalized variables, by further assuming that the mean
is constant but by weakening the assumption of constant covariance. This is why
Matheron (1963) developed the ”intrinsic hypothesis” . It assumes that the incre-
ments Z(x + h)− Z(x) exist and are independent of the points

E[Z(x + h)− Z(x)] = 0 ; V ar[Z(x + h)− Z(x)] = 2γ(h).

The function γ(h) is called the semi − variogram (variogram for short). It is the
basic tool for the structural interpretation of spatial phenomena as well as for es-
timation. For any second-order stationary process there is an interested relation
between the variogram γ(h) and covariance function C(h) which is expressed by

γ(h) = C(0)− C(h),

where C(0) is the variance function. In general, but not always, when the distance
h increases, then the mean quadratic deviation between the two variables Z(x) and
Z(x + h) tends to increase and so γ(h) increases from its initial zero value. Then it
becomes stable beyond some distance a = |h| called the ”range”. At this distance a
typical variogram reaches a limit called its ”sill”. In opposite the covariance func-
tion tends to decrease, see Journal and Huijbregts (1978.)
γ(h) does not tend to zero as h tends to 0. This means that the variable is highly
irregular at short distances, the variogram of most geological variables have this
discontinuity at the origin which indicates erratic short scale behaviour called a
nugget effect.
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For stationary and intrinsic variables, the mean of Z(x + h)− Z(x) is zero and
so the variogram γ(h) is just the mean square difference. Consequently,

γ(h) =
1

2
E[Z(x + h)− Z(x)]2.

Moreover, to estimate the vaiogram from given data we can use

γ̂(h) =
1

2n(h)

n(h)∑
i=1

[z(xi)− z(xi + h)]2.

If the data points are considered in pairs it is the variance per point, n(h) is the
number of pairs of data points separated by the particular lag vector h.
Often the second order properties of a process can be assumed to depend only
on the distance between two points and not on the direction between them. Let
u, v ∈ D ⊂ R, a second order stationary process is isotropic if

C(u− v) = C(|u− v|).

An intrinsically stationary process is isotropic if

γ(u− v) = γ(|u− v|),

a process that is not isotropic is said to be anisotropic, see Christensen (1991).
Since the common estimators are linear combinations of the data, we need to be able
to calculate their variance. Consider C(h), the covariance of the stationary variable
Z(x). Suppose the linear combination Z∗ be Z∗ =

∑
i λiZ(xi), where λi are the

weights and xi are the sample locations. If µ is the mean of Z(x), E(Z∗) = µ
∑

i λi.
Then the variance can be defended as

V ar(Z∗) = V ar(
∑

i

λiZ(xi))

= E(
∑

i

λi(Z(xi)− µ))2

=
∑

i

∑
j

λiλj C(xi − xj) ≥ 0, (2.1.1)

This must be non-negative for any choice of points and weights. A function C(h)
which satisfies this condition is said to be positive definite, see Armstrong(1998).
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2.2 Spatial covariance structure and the variance covariance
components models

The general linear model corresponds to the common assumption that the regional-
ized variable is a realization of a random function

z(x) =

p∑
i=1

fi(x)βi + e(x), (2.2.1)

where x is the vector of the spatial coordinates of the point, z is sampled, βi,
i = 1, . . . , p are generally unknown parameters, fi(x), i = 1, . . . , p are known func-
tions of the spatial coordinates, such as polynomial, and e(x) is a zero mean spatial
random function. The term

∑p
i=1 fi(x)βi on the right hand side in Eq. (2.2.1) rep-

resents a drift (trend) and the second term represents a zero mean random field
(stochastic part). The covariance function C(u, v; θ) of the stochastic part is defined
by

E[e(u)e(v)] = C(u, v; θ), (2.2.2)

where θ is an m× 1 vector of parameters. From Eq.(2.2.1) and Eq.(2.2.2) one may
obtain as special cases the commonly used models. For example, Eq.(2.2.1) repre-
sents a stationary isotropic field with mean equal to β1 when p = 1, fi(x) = 1 and
C(u, v) = C(|u− v|). In other cases, polynomials or periodic functions may be used
to represent the drift.

Suppose that Z is a vector of n measurements. In such situations Eq. (2.2.1)
yields the following general relation

Z = Xβ + e, (2.2.3)

where X is a known n × p matrix of the known functions f(x) of the spatial co-
ordinates, β is the p × 1 vector of drift coefficients, and e is a random vector with
zero mean and covariance matrix V which is a known function of the parameter
vector θ. The essence of spatial statistics is spatial correlation, and consequently it
is important to model this aspect of the problem adequately. To guarantee that the
covariance matrix is positive definite, the spatial covariance matrix V is assumed to
be of some parameteric form and expressed as V (θ). Spatial statistics focuses on
the choice of the covariance function and estimation of its parameters. See Cressie
(1993).

The covariance function describes the spatial association between the random
effect at any two locations in space, say u and v
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Cov(e(u), e(v)) = C(u, v; θ). (2.2.4)

We may write C(u, v) = σ2
eρe(u, v; θ) where ρe is the correlation function, being

scaled by the variance component σ2
e . The covariance function allows one to fill-in

the elements of V (θ). Thus, given covariance function C, spatial parameters θ, and
any two locations in space such as u and v, the covariance between e(u) and e(v)
may be determined. Typically, assumptions are imposed on the process to facilitate
the estimation of the parameters. The two usual assumptions are second order sta-
tionary and isotropy, the former being translation invariance of the second-moment
structure of e. Normally, the stationary assumption would imply a similar con-
straint on the first moment structure, but we have assumed e to have mean zero,
accommodating any mean nonstationarity in Xβ. Thus under these assumptions,
the covariance between any two points is only a function of the distance separating
them

Cov(e(u), e(v)) = σ2
eρe(‖ u− v ‖; θ), (2.2.5)

where ‖ u − v ‖ is the distance between points u and v, say Euclidean, geographic
distance, or other. This simplified correlation structure conveniently dictates the
covariance between observed and unobserved values of z for which predictions are
desired. See Wackernagel (2003).

The polynomial generalized covariance function including the nugget effect term
can be represented as

g(|h|) =
r∑

i=1

θigi(|h|). (2.2.6)

Where r is the number of unknown parameters, θi are the parameters to be inferred
subject to sufficient constraints to ensure that the right-hand side of (2.1.1) will
have the properties of a variance. Moreover, gi(|h|) are known functions, the term
θrgr(|h|) = θrδ represents small-scale variability referred to as the nugget effect,
where δ denotes Kronecker’s delta, i.e.

δ =

{
0 if |h| > 0

1 if |h| = 0,
(2.2.7)

If the random field Z(x) is an stationary with ordinary stationary covariance
function C(h), then C(h) is clearly also a generalized covariance. An important prac-
tical advantage of the polynomial generalized covariance function given by (2.2.6)
is that it is linear in the parameters. In such cases the statistical inference from
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available data is somewhat facilitated. In particular, if the criterion is least square,
the parameters estimation problem can be solved in computationally very efficient
ways which are similar to linear regression. See Kitanidis (1987) and Starks and
Fang(1982).

Consider the general mixed linear model in Eq. (2.2.3). The n× 1 vector e can
be expressed as

e = U1ζ1 + . . . + U2ζ2 + Ulζl, (2.2.8)

where Ui denotes a n× ri known matrix and ζi a ri × 1 unknown and unobservable
random vector with E(ζi) = 0 and cov(ζi, ζj) = σijRij with σij = σji and R′

ij = Rji

for i, j ∈ {1, . . . , l}. Then the covariance matrix V of the observations Z follows
with Theorem (5.24), see Appendix (5.4), by

V = σ2
1U1R11U

′
1+σ12(U1R12U

′
2+U2R21U

′
1)+σ13(U1R13U

′
3+U3R31U

′
1)+. . .+σ2

l UlRllU
′
l .

By putting UlR11U
′
l = V1, U1R12U

′
2 + U2R21U

′
1 = V2, . . . , UlRllU

′
l = Vk, where

k = l(l + 1)/2 and the matrices Vm with m ∈ {1, . . . , k} are symmetric, one ob-
tains

V = E(ee′) = σ2
1V1 + σ12V2 + . . . + σ2

l Vk. (2.2.9)

Note that when l = 1 and V1 = In, where In stands for the n × n identity matrix,
the model (2.2.3) reduces to the linear regression model. Also such models as 1-way
classification model and 2-way classification model could be regarded as special cases
of the model (2.2.3).

Let matrix V in Eq. (2.2.9) be positive definite. This model is called the Gauss-
Markoff model with k unknown variance and covariance components σ2

i and σij with
i ∈ {1, . . . , l}, i < j ≤ l and l ≤ k ≤ l(l + 1)/2, and the variance components have
to be estimated. See Koch (1999) and Rao and Kleffe (1988).

Example 2.1. Let the vector Z1 of observations with the weight matrix P1 con-
tain the measurements of distances and the vector Z2 with the weight matrix P2

contain the measurements of angles. So the covariance matrix of Z1 and Z2 with
the unknown variance component σ2

1 for the distance and the unknown variance
component σ2

2 for the angles follows as

Cov

(
Z1

Z2

)
= σ2

1

(
P−1

1 0
0 0

)
+ σ2

2

(
0 0
0 P−1

2

)
.



2.3 Bayesian inference 13

If the sets of different observations are dependent and the covariances known except
for common factors, then the factors have to be estimated as covariance components.
One finds for this example when R12 is the covariance matrix of the distances and
angles with the unknown covariance component σ12 and R21 = R′

12 the covariance
matrix

Cov

(
Z1

Z2

)
= σ2

1

(
P−1

1 0
0 0

)
+ σ12

(
0 R12

R21 0

)
+ σ2

2

(
0 0
0 P−1

2

)
,

see Koch (1999). ¤

Example 2.2. Consider the mixed model in the form

Z = Xβ + U1ζ1 + U2ζ2 + ε

With E(ζi) = 0, E(ζiζ
′
i) = σ2

i Ii, E(ζiζ
′
j) = 0 and Cov(ζi, ε) = 0 for i 6= j, let

n = 8, p = 4 and the matrix U1 of type 8× 2 and matrix U2 of the type 8× 4, then
the vectors ζ1, ζ2 and ε are random of dimension 2, 4 and 8 respectively with zero
mean and covariance matrices σ2

1I2×2, σ2
2I4×4 and σ2

3I8×8 respectively. Then

Cov(Z) = σ2
1U1U

′
1 + σ2

2U2U
′
2 + σ2

3I8×8.

¤

2.3 Bayesian inference

The Bayesian approach to statistics provides a theoretical and practical framework
to view many statistical problems. Bayesian methods have become increasingly pop-
ular because they provide solutions to many intractable problems. In the context
of parameters estimation, the available information about the parameters can be
used. In Bayesian inference, one treats all unknown quantities and the parameters
as random variables and constructs a joint probability distribution for all of them.
The information about the parameters is specified by their prior distribution pΘ(θ).
The information provided by the data on θ is contained in the likelihood pX|Θ=θ(x),
where x is the n× 1 vector of n experimental data. The Bayes’ theorem is used to
combine both pieces of information. After observing the data, one constructs the
conditional distribution of Θ given X = x containing all the information about the
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parameters which is called the posterior distribution

pΘ|X=x(θ) =
pΘ(θ)pX|Θ=θ(x)

pX(x)
=

pΘ(θ)pX|Θ=θ(x)∫
pΘ(θ)pX|Θ=θ(x)dθ

,

where pX(x) is the marginal distribution of x. The entire distribution of the
parameters θ is obtained through the Bayesian approach.

The Bayes risk r(θ̂) of the decision function θ̂ can be defined as the expectation
of risk function R(Θ, θ̂) over all possible values of θ, thus,

r(θ̂) = ER(Θ, θ̂) =

∫
R(Θ, θ̂)pΘ(θ)dθ . (2.3.1)

It seems sensible to minimize one’s losses and accordingly a Bayes decision function
θ̂ is defined as one which minimizes the Bayes risk r(θ̂)

r(θ̂) =

∫
R(Θ, θ̂)pΘ(θ)dθ

=

∫ ∫
L(Θ, θ̂(x))pX|Θ=θ(x)pΘ(θ)dxdθ

=

∫ ∫
L(Θ, θ̂(x))p(X,Θ)(x, θ)dxdθ

=

∫
[

∫
L(Θ, θ̂(x))pΘ|X=x(θ)dθ]p(x)dx. (2.3.2)

See Lee (1997) and Box and Tiao (1973). Therefore, Bayes estimator can be de-
fined as follows.

Definition 2.3. Suppose that θ̂(x) is an estimator of θ. Let L(Θ, θ̂(x)) be the loss
function of θ̂(x) and pΘ|X=x(θ) be the posterior distribution of θ. Then the posterior

mean loss function of θ̂(x) is defined as

B(θ̂(x), x) = EΘ|X=x[L(Θ; θ̂(x))] =

∫

Θ

L(Θ, θ̂(x))pΘ|X=x(θ)dθ. (2.3.3)

The above mean loss function is also known as the posterior risk function. The deci-
sion rule θ̂(x) such that Eq. (2.3.3) attains its minimum is called the Bayes estimator,
see Wang and Chow(1994).
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Point estimators resulting from quadratic loss
In the case of point estimation a Bayes decision rule is referred to as a Bayes es-
timator. In such situations it is convenient to work with quadratic loss, i.e. with
a squared-error loss function L(θ, θ̂(x)) = (θ − θ̂(x))2. There are a number of rea-
sons why it is often considered in evaluating decision rules. It is originally used in
estimation problems when unbiased estimators of θ are considered, since the risk
function R(θ, θ̂(x)) = EθL(θ, θ̂(X)) = Eθ[θ − θ̂(X)]2 would then be the variance
of the estimator. A second reason for its popularity is due to its relationship to
classical least squares theory. The similarity between them makes squared-error loss
seems familiar to statisticians. Finally, the use of the quadratic loss for most deci-
sion analyses makes the calculations relatively easy. In this case B(θ̂(x), x) in Eq.
(2.3.3) is the mean square error, thus,

B(θ̂(x), x) =

∫
[θ − θ̂(x)]2pΘ|X=x(θ)dθ

=

∫
[θ − E(Θ|X = x) + (E(Θ|X = x)− θ̂(x))]2pΘ|X=x(θ)dθ

=

∫
(θ − E(Θ|X = x))2pΘ|X=x(θ)dθ + 2(E(Θ|X = x)

− θ̂(x))

∫
(θ − E(Θ|X = x))pΘ|X=x(θ)dθ + (E(Θ|X = x)− θ̂(x))2.

The second term vanishes, therefore

B(θ̂(x), x) = var(Θ|X = x) + (E(Θ|X = x)− θ̂(x))2

which attains its minimum when θ̂(x) = E(Θ|X = x), so that a Bayes estimator
θ̂(x) is the posterior mean of θ and in this case B(θ̂(x), x) is the posterior variance
of θ. See Lee(1997) and Berger(1985).
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3 Bayes invariant quadratic unbiased estimator

3.1 Formulation of BAIQUE

The observations z(x) in the spatial statistics are interpreted as realizations of a
stochastic process. The parameters of this process are not known beforehand and
have to be estimated from the observed values. Then it is possible to predict unob-
served values using these process parameters. The main idea of Bayesian kriging is
to assume the unknown model parameters such as (trend, covariance) to be random.
Then these parameters are distributed according to some prior distribution. The
prior knowledge has to be expressed in a probabilistic form specifying this prior
distribution.

This work deals with Bayesian estimation of spatial covariance functions. Bayes
invariant quadratic unbiased estimator(BAIQUE) firstly has to be formulated. The
procedure here regards the estimation of linear functions of the variance components
from a Bayesian point of view. The restriction on Bayes quadratic unbiased estima-
tor has some advantages. Firstly, for general linear model this procedure is rather
practicable without additional assumptions. Also the BAIQUE approach depends
only on the first and second moments of the prior distribution. Finally, the method
gives a simple style to use with the conception of invariance and to deal with the
problem of the existence of uniformly best quadratic unbiased estimator. See Kleffe
and Pincus(1974).

Consider the linear model such as

{
Z ∼ N(Xβ, V ), X ∈ Rn×p, β ∈ Rp

V ar(Z) = θ1U1 + θ2U2 + . . . + θrUr = V ar(e) =
∑r

i=1 θiUi = V (θ),
(3.1.1)

where V the covariance matrix of the observations and θ = (θ1, . . . , θr)
′ ∈ Rr is

unknown parameters vector. In the basic form of the Gaussian geostatistical model,
the stochastic spatial process is a stationary Gaussian process with mean µ, vari-
ance σ2 and covariance function C(h) = Cov(e(u), e(v)) , where h =‖ u − v ‖, the
Euclidean distance measure between u and v as it was shown in Eq. (2.2.4) and
(2.2.5), e ∼ N(0, τ 2) as well. Then the distribution of Z is multivariate Gaussian
Z ∼ N(µ1, σ2V + τ 2I), where 1 denotes an n-element vector of ones, I is the
n× n identity matrix and V is the n× n matrix with (i, j)th element C(hij) where
hij =‖ ui − vj ‖.

Example 3.1. In many applications one may assume the covariance matrix of the
observations as Σ = κV (θ), where κ is an unknown scale parameter and V (θ) is a
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vector of standardized covariances determined by the unknown parameter vector θ.
For example, consider the exponential variogram structure equivalent to a covari-
ance function

Cov(Z(x), Z(x + h)) =

{
c1 exp(−|h|/a) if x 6= x + h

c1 + c0 if x = x + h,

we may define κ = c1 and ω = c0/(c1 + c0) which represents the ratio between the
nugget and the sill, so θ = (ω, a) where the parameter a stands for the range of the
spatial process. Let V (θ) denote the matrix whose diagonal entries are all 1/(1−ω)
and off-diagonal entries are of the form vij = exp(−hij/a), where hij is the distance
between the ith and jth sampling points.

In this context, suppose the covariance model as

Cov(z) = σ1V1 + σ2I,

where V1 = exp(−hij/a) and I is an identity matrix. One can suppose that κ = σ2

and ω = σ1

σ2
. Thus one has

Cov(z) = σ2(I + ωV1) = κV.

Then it could be written corresponding to model (3.1.1) as a general case Y ∼
N(Xβ; σ1V + σ2I). ¤

Example 3.2. The 1-way classification model with n observations in each of m
classes is given by

yij = µ + ci + eij i = 1, . . . , m, and j = 1, . . . , n

where µ is a general mean, c = (c1, . . . , cm) is the vector of effects, e = (e11, . . . , e1n, e21

. . . , emn) is the vector of residual errors, Var(ci) = σ2
c , Var(eij) = σ2

e and the vectors
e and c are uncorrelated. This model is given by Searle et al.(1992) as

y = (1m

⊗
1n)µ + (Im

⊗
1n)c + e,

with the dispersion matrix

Σθ = σ2
c(Im

⊗
Jn) + σ2

e(Im

⊗
In)
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where θ = (σ2
c, σ

2
e) and 1m vector of m elements 1 and Jn is a square matrix with

every element equal to one. ¤

In this project, the problem at hand is to estimate a linear function of the un-
known vector parameter θ = (θ1, θ2, . . . , θr)

′ , say

α(θ) = b′θ =
r∑

i=1

biθi, (3.1.2)

where the coefficients bi are known, by using the quadratic form α̂(Z) = Z ′QZ.
Here Q is n×n matrix which has to be symmetric and we are here interested to find
it. We restrict our consideration to the quadratic estimate α̂(Z) = Z ′QZ which is
invariant with respect to the translation Z → Z + Xβ, i.e. α̂(Z) = α̂(Z + Xβ), for
all β. Also it is unbiased and minimizes the Bayes risk, that is,

r(α̂) = E(EΘ(α̂(Z)− α)2)

=

∫

θ∈Θ

EΘ(α̂(Z)− α)2pΘ(θ)dθ

where pθ is a prior distribution for the vector parameter θ having the second order
moments of the form

E(ΘiΘj) =

∫

θ∈Θ

ΘiΘj pΘ(θ)dθ = Cij ≥ 0 , i, j = 1, . . . , r. (3.1.3)

in which the integral sign here represents multi-integral with respect to the number
of the parameters. In this work we assume that the prior information of the para-
meters is such that the matrix of second order moments is positive definite. Hence
one can use the square root of the second order moments matrix, thus let

(Cij)i,j=1,...,r = RR = (
r∑

k=1

rikrkj)i,j=1,...,r , (3.1.4)

see Corollary (5.23) in Appendix (5.4). Here Bayes invariant quadratic estimator
has to define.

Definition 3.3. A quadratic form α̂(Z) = Z ′QZ is called a Bayes invariant quadratic
estimate (BAIQE) if it minimizes E(EΘ(α̂(Z)−α)2) subject to all invariant quadratic
forms, and we call α̂(Z) a Bayes invariant quadratic unbiased estimate (BAIQUE)
if E(EΘ(α̂(Z) − α)2) is minimum subject to all invariant quadratic and unbiased
estimates. See Gnot and Kleffe(1983).
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Now let us introduce the projection matrix M which is expressed by the follow-
ing formula

M = I −X(X ′X)−1X ′ , (3.1.5)

and satisfies the conditions

M = M ′; M2 = M ; MX = 0.

The model (3.1.1) contains the unknown parameters β. The intention in this work
is just to estimate the vector of parameters θ, so one could filter out them by mul-
tiplying the model (3.1.1) by the projection matrix M . In this context, it is more
convenient to work with generalized increments of the data than to work with the
original data, see Kitanidis(1983). Thus, a linear transformation of the original data
vector Z into a vector Y of stationary data increments is

Y = MZ = MXβ + Me = Me ,

where MX = 0. Doing that and by using Theorem (5.24) in Appendix (5.4), the
transformed model can be given by

{
Y = MZ ; E(Y ) = 0,

V ar(Y ) = V ar(MZ) = MV ar(Z)M ′ = θ1V1 + θ2V2 + . . . + θrVr

(3.1.6)

where Vi = MUiM
′ ; i = 1, . . . , r. Clearly E(Y ) = 0, because of

E(Y ) = E(MZ) = ME(Z) = MXβ = 0.

Since M = M ′ is a symmetric matrix, the relation (3.1.6) could be written as,

V ar(Y ) = MV (θ)M = M(
r∑

i=1

θiUi)M =
r∑

i=1

θiMUiM =
r∑

i=1

θiVi.

From this, one can get the following model

Y = Me ; E(Y ) = 0 ; V ar(Y ) =
r∑

i=1

θiVi = V (θ) . (3.1.7)

The vector Y = MZ is invariant statistic and α̂(Z) = Z ′QZ is BAIQUE for α = b′θ
in the model (3.1.1) if and only if Q = MAM and α̂(Y ) = Y ′AY is Bayes quadratic
unbiased estimator for α under the transformed model (3.1.7), see Stuchly (1989).
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Now the unbiasedness of the estimator Y ′AY and minimization of Bayes risk in
sense of this estimator have to be presented. For this purpose, the following two
theorems are introduced.

Theorem 3.4. (Unbiasedness of Y ′AY ), see Rao (1972).
The quadratic estimator Y ′AY is unbiased estimator for the linear function α = b′θ
if and only if trAVi = bi ; i = 1, . . . , r.

Proof. By taking the expectation of the quadratic form Y ′AY with trace operation
to be written as tr,we can get

E(Y ′AY ) = E(tr(Y ′AY ))

= E(trAY Y ′) = trAE(Y Y ′)

= trAV ar(Y )

= trA
r∑

i=1

θiVi

=
r∑

i=1

θitrAVi

is unbiased estimator for α if and only if

trAVi = bi ; i = 1, . . . , r . (3.1.8)

Theorem 3.5. (Minimization Bayes risk), see Fathy and Qassim (2002).
The quadratic form Y ′AY has minimum Bayes risk with respect to the prior infor-
mation within all invariant, unbiased quadratic estimators if matrix A satisfies the
constraints (3.1.8) and
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vecV1 vecV2 . . . vecVr
... T

. . . . . . . . . . . .
... . . .

0 0 . . . 0
... vecV ′

1

0 0 . . . 0
... vecV ′

2
...

...
...

...
...

...

0 0 . . . 0
... vecV ′

r







λ1

λ2
...
λr

. . .
vecA




=




0
...
0
. . .
b1
...
br




(3.1.9)

where λ1, . . . , λr are some Lagrange multipliers corresponding to the constraints
(3.1.8), b1, . . . , br are constants, vec stands for vec operator as it defined in Ap-
pendix (5.1) and T =

∑r
k=1 Tk

⊗
Tk, Tk =

∑r
i=1 rikVi , rik are given by (3.1.4).

Proof. By using Theorem (5.22) (in Appendix (5.4)) of the cumulants of the quadratic
form, one can find out

r(α̂) =

∫
Eθ(α̂(Y )− α)2pΘ(θ)dθ

= E(Eθ(α̂(Y )− α)2)

= E(V arΘ(α̂(Y ))) = E(V arΘ(Y ′AY ))

= E(2trAV (Θ)AV (Θ)) = E(2trA(
∑

i

ΘiVi)A(
∑

i

ΘiVi))

= E(2
∑

i

∑
j

ΘiΘjtrAViAVj)

= 2(
∑

i

∑
j

E(ΘiΘj)trAViAVj)

= 2(
∑

i

∑
j

CijtrAViAVj). (3.1.10)

The prior information on the parameters are assumed to be available in the first and
second moments E(Θ) and E(ΘΘ′) respectively, thus

C = E(ΘΘ′) = V ar(Θ) + E(Θ)E(Θ)′ ; C =
√

C
√

C = RR (3.1.11)

where R is the square root of the second order moment matrix C which has been
expressed in Eq. (3.1.4), see Corollary (5.23) in Appendix (5.4). From Eq.(3.1.11)
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and (3.1.10) one can get

r(α̂) = 2
r∑

i=1

r∑
j=1

r∑

k=1

rikrkjtrAViAVj

= 2
r∑

k=1

trA(
r∑

i=1

rikVi)A(
r∑

j=1

rkjVj)

= 2
r∑

k=1

trATkATk (3.1.12)

where Tk =
∑r

i=1 rikVi. In order to minimize Bayes risk in Eq. (3.1.12), one has to
use lagrange multiplier with the condition (3.1.8). So the Lagrangian function for
this minimization becomes

S = 2
r∑

k=1

trATkATk + 4
r∑

i=1

λi(trAVi − bi), (3.1.13)

where 4λi represent the r Lagrange multipliers for the constrains (3.1.8) of unbiased-
ness. The partial derivatives of the function S in (3.1.13) with respect to matrix A
and λi by using Theorem (5.26) in Appendix (5.4) are

∂S

∂A
= 4

r∑

k=1

TkATk + 4
r∑

i=1

λiVi = 0

r∑

k=1

TkATk +
r∑

i=1

λiVi = 0 (3.1.14)

∂S

∂λi

= trAVi − bi

trAVi = bi , (3.1.15)

for i = 1, . . . , r. The equations (3.1.14) and (3.1.15) have the unknown variables
matrix A and λi. By using vec operation and Kronecker product (see the Appendix
(5.1) for more detail) these equations could be expressed as the following

(
r∑

k=1

Tk

⊗
Tk)vecA +

r∑
i=1

λivecVi = 0 . (3.1.16)
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(vecVi)
′vecA = bi. (3.1.17)

Let

T =
r∑

k=1

Tk

⊗
Tk.

So the equation (3.1.16) becomes

TvecA +
r∑

i=1

λivecVi = 0. (3.1.18)

One can rewrite the equations (3.1.17) and (3.1.18) in terms of partitioned matrices
and vectors leading to the following linear equations system




vecV1 vecV2 . . . vecVr
... T

. . . . . . . . . . . .
... . . .

0 0 . . . 0
... vecV ′

1

0 0 . . . 0
... vecV ′

2
...

...
...

...
...

...

0 0 . . . 0
... vecV ′

r







λ1

λ2
...

λr

. . .
vecA




=




0
...
0
. . .
b1
...
br




. (3.1.19)

3.2 Computation BAIQUE of two variance components

Having the system corresponding to BAIQUE in general case, the intention now is
to investigate and compute the equations system corresponding to BAIQUE of two
spatial variance components. That means, one has to regard the case when the num-
ber of the parameters in Eq. (2.2.6) of the generalized covariance function equal two
(i.e. r = 2). So one gets the parametric linear model of covariance function as follows

C(h) = θ1u1(h) + θ2u2(h), (3.2.1)

where u1(h) is a function of the distance h =‖ u − v ‖ between points u and v
while u2(h) refers to the nugget effect as it has mentioned before. θ = (θ1, θ2)

′ is
a vector of unknown variance components Θ = {θ : θ1 > 0, θ2 ≥ 0}. In spatial
statistics θ2 stands for a nugget effect and θ1 + θ2 represents the sill. We consider
here this model to find the general solution and to show that the matrix A of the
quadratic estimator is symmetric through solving the partitioned equations system
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model corresponding to this case.

Each point in the multidimensional space is described by xi = (xi1, xi2, . . . , xim),
where xik is the projection of the object i in the axis k, k = 1, . . . , m. This vector
is the coordinates vector of the object i. The origin of coordinates is assumed to be
0n = (01, . . . , 0n). In this context, we might define the correlation function u1(h) in
term of the distance between two sites i and j that belong to an Euclidean space
corresponding to the length of the segment of their connecting line,

U1 = D = (‖ xi − xj ‖)i,j=1,...,n = ((xi − xj)
′(xi − xj))

1/2
i,j=1,...,n . (3.2.2)

Whereas U2 = In×n is an identity matrix, in some references it is written by

U2 = δ(‖ xi − xj ‖)i,j=1,...,n (3.2.3)

and called dirac delta or Kronecker delta function δ(h) as it has defined before in
Eq. (2.2.7). So the covariance model of the transformed model Y = Me takes the
form

V ar(Y ) = θ1V1 + θ2V2 = V (θ), (3.2.4)

where V1 = MU1M and V2 = MU2M . From the unbiased condition (3.1.15) of
the estimator Y ′AY , we have E(Y ′AY ) = α = b′θ, where b = (b1, b2)

′ are known
constants and θ = (θ1, θ2)

′ parameters. So one obtains that

E(Y ′AY ) = trAV ar(Y ) = trA

2∑
i=1

θiVi

=
2∑

i=1

θitrAVi

is unbiased estimator for α if and only if

trAVi = bi ; i = 1, . . . , 2 . (3.2.5)
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To minimize Bayes risk, according to the relation (3.1.10), one has

r(α̂) = 2(
2∑
i

2∑
j

E(ΘiΘj)trAViAVj)

= 2(
2∑
i

2∑
j

CijtrAViAVj). (3.2.6)

Where

C = RR = (
2∑

k=1

rikrkj)i,j=1,...,2 . (3.2.7)

and Tk =
∑2

i=1 rikVi. Hence the Lagrangian function to minimize Bayes risk (3.2.6)
with condition (3.2.5) becomes

S = 2
2∑

k=1

trATkATk + 4
2∑

i=1

λi(trAVi − bi). (3.2.8)

Doing that the equations in (3.1.17) and (3.1.18) can be put in the following forms
respectively

(vecVi)
′vecA = bi, i = 1, 2, (3.2.9)

TvecA +
2∑

i=1

λivecVi = 0, (3.2.10)

where T =
∑2

k=1 Tk

⊗
Tk. Therefore the reducing model for two variance compo-

nents can be expressed in the following partitioned form




vecV1 vecV2
... T

. . . . . . . . . . . .

0 0
... vecV ′

1

0 0
... vecV ′

2







λ1

λ2

. . .
vecA


 =




0
...
0
. . .
b1

b2




. (3.2.11)

Hence to estimate θ1 one has to take b = (1, 0), while for θ2 one regards b = (0, 1)
and to find an estimate for θ1 + θ2 substitute b = (1, 1). The solution of system
(3.2.11) gives the matrix A which leads to the estimate of b′θ by the quadratic form
Y ′AY . Let us represent the above model by GO = W , where G is the partitioned
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matrix on the left-hand side of Eq.(3.2.11). Clearly, this matrix is of dimension
((n2 + 2)× (n2 + 2)). Vector W represents the right-hand side of Eq.(3.2.11) which
contains n2 zeros plus the vector b = (b1, b2), while O stands for the unknown vector
containing the Lagrange multipliers λ1, λ2 and the elements of matrix A which we
want to find for the purpose of getting the quadratic estimation Y ′AY . If the inverse
of matrix G exists, then the solution is given by O = G−1W . Unfortunately, this
inverse does not exist as we will show later in this subsection. That is why, the aim
of the next subsection is to find the general solution of this system. This solution
shall be presented in terms of ordinary inverse which in the same time satisfies con-
ditions of Moore-Penrose inverse, thus such a solution is unique.

Nonsensical negative estimates
Variance estimates should be positive. They are based on a sum of squares and the
square of any value, positive or negative, must also be positive. Still, nonsensical
negative outcomes can occur because one estimates and corrects for error variance
in a variety of statistical procedures. This variance is what one might expect on
average, but it can be considerable greater or less in any specific situation. When
there is less error than expected but one corrected based on what is expected, these
nonsensical estimates tend to happen, see Steel and Kammeyer-Mueller (2003).

When the estimate is negative, this is not viewed as negative for the method.
Negative variance component estimates should be allowed by the estimators used,
because negative estimates may indicate that the statistical model is misrepresenting
the true model, see Slanger (1996). In this context, Kitanidis (1985) has proposed
to set simply θ̂ = 0 if the used procedure gives θ̂ < 0.

The solution obtained in the sense minimizing the quadratic criterion is still
optimal even if the data are not gaussian. The estimates may not have minimum
variance but are unaffected by fitted drift coefficients and are generally unbiased.
See Kitanidis (1985).

Example 3.6. Consider the general linear model as follows

Z = 1nµ + e, E(Z) = 1nµ, V ar(Z) = θ1D + θ2I .

This represents the case of stationary, where E(Z) = 1nµ is constant for all ob-
servations and corresponds to Xβ = 1nµ in model (2.2.3), in which X = 1n is
the vector of ones. The covariance matrix D was defined in Eq.(3.2.2) and I is an
identity matrix or Kronecker delta matrix as it has defined in Eq. (2.2.7). By using
a projection matrix which takes in this case the form
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M = I − 1n(1′n1n)−11′n = I − 1

n
(1n1′n),

M is a symmetric idempotent matrix and satisfies MX = M1n = 0. Therefore the
transformed model is given by

Y = MZ = Me, E(Y ) = 0, V ar(Y ) = V1θ1 + V2θ2 = V (θ),

where V1 = MDM and V2 = MIM = M . Concerning the prior information, one
could assume according to Jeffreys’s prior (see Koch (1990) or Box and Tiao (1973))
that the parameters have the uniform distribution with probability density function
such that

{
p1(θ1) = 1

ϕ2−ϕ1
; ϕ1 ≤ θ1 ≤ ϕ2

p2(θ2) = 1
ϕ4−ϕ3

; ϕ3 ≤ θ2 ≤ ϕ4

where ϕ1, ϕ2, ϕ3, and ϕ4 are constants. Let the parameters θ1 and θ2 are indepen-
dent, so that,

p(θ1, θ2) = p(θ1) · p(θ2), Cov(Θ1, Θ2) = 0.

One needs only the first and second moments of the parameters, so the second order
moment matrix C which represent the prior information matrix is given by

C = E(Θ)E(Θ)′ + V ar(Θ)

=

(
ϕ1+ϕ2

2
ϕ3+ϕ4

2

) (
ϕ1+ϕ2

2
ϕ3+ϕ4

2

)
+

(
(ϕ2−ϕ1)2

12
0

0 (ϕ4−ϕ3)2

12

)

=

(
(ϕ1+ϕ2)2

4
(ϕ1+ϕ2)(ϕ3+ϕ4)

4
(ϕ1+ϕ2)(ϕ3+ϕ4)

4
(ϕ3+ϕ4)2

4

)
+

(
(ϕ1−ϕ2)2

12
0

0 (ϕ3−ϕ4)2

12

)

=

(
ϕ2

1+ϕ1ϕ2+ϕ2
2

3
(ϕ1+ϕ2)(ϕ3+ϕ4)

4
(ϕ1+ϕ2)(ϕ3+ϕ4)

4

ϕ2
3+ϕ3ϕ4+ϕ2

4

3

)
. (3.2.12)

¤

By taking the square root of this matrix as in Eq. (3.1.11). By doing that the
partitioned equations system (3.2.11) can be formulate.
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Example 3.7. Assume any design of two spatial points (u, v) and E(Z) = 1µ.
Hence the projection matrix M where x = (1, 1)′ given by

M =

(
1 0
0 1

)
− x(x′x)−1x

=

(
1/2 −1/2
−1/2 1/2

)
,

while the distance matrix D between these two sites is

|D| =
(

0 |u− v|
|u− v| 0

)
=

(
0 γ1

γ1 0

)
,

For purpose of facilitating to deal with the form of the partitioned system matrix,
let ζ = 1/2 and γ1 = |u− v|, hence

M =

(
ζ −ζ
−ζ ζ

)
; D =

(
0 γ1

γ1 0

)
.

Therefore the covariance matrix V1 takes the form

V1 =

(
ζ −ζ
−ζ ζ

)(
0 γ1

γ1 0

)(
ζ −ζ
−ζ ζ

)

=

(−2γ1ζ
2 2γ1ζ

2

2γ1ζ
2 −2γ1ζ

2

)
,

put γ = 2γ1ζ
2, while V2 = M . Consider the prior knowledge is the identity matrix

, i.e. R =

(
1 0
0 1

)
, since Tk =

∑2
i=1 rikVi implies

T1 = r11V1 = V1 and T2 = r22V2 = V2.

Hence one can obtain

T =

(−γ γ
γ −γ

) ⊗ (−γ γ
γ −γ

)
+

(
ζ −ζ
−ζ ζ

) ⊗ (
ζ −ζ
−ζ ζ

)

=




α −α −α α
−α α α −α
−α α α −α
α −α −α α


 ,
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where α = γ2+ζ2. By substituting vecV1, vecV2 and T into matrix G in Eq.(3.2.11),
the following matrix is obtained

G =




−γ ζ α −α −α α
γ −ζ −α α α −α
γ −ζ −α α α −α
−γ ζ α −α −α α
0 0 −γ γ γ −γ
0 0 ζ −ζ −ζ ζ




.

It is clear this matrix is singular since their columns and rows are linearly dependent.
This partitioned matrix can be represented in other form as follows

a =




1
−1
−1
1


 , b =

(−γ
ζ

)
,

thus the matrix G is given by G =

(
ab′ αaa′

02×2 ba′

)
.

The least square solution O = (G′G)−1G′W here fails since G′G is singular. That
can be noted as follows

G′G =

(
ab′ αaa′

02×2 ba′

)′ (
ab′ αaa′

02×2 ba′

)

=

(
ba′(ab′) ba′(αaa′) + 02×2(ba

′)
αa′a(ab′) + ab′(02×2) αa′a(αaa′) + ab′(ba′)

)

=




ζ1 −ζ2 −ζ3 ζ3 ζ3 −ζ3

−ζ2 ζ4 ζ5 −ζ5 −ζ5 ζ5

−ζ3 ζ5 ζ6 −ζ6 −ζ6 ζ6

ζ3 −ζ5 −ζ6 ζ6 ζ6 −ζ6

ζ3 −ζ5 −ζ6 ζ6 ζ6 −ζ6

−ζ3 ζ5 ζ6 −ζ6 −ζ6 ζ6




,

where 4γ2 = ζ1, −4γζ = ζ2, −4γα = ζ3, 4ζ2 = ζ4, 4ζα = ζ5 , and 4α2+γ2+ζ2 = ζ6.
It is easy to recognize that this matrix is also singular. ¤

It is useful to give numerical examples to realize more how this system does work
and to find out the matrix of the BAIQUE.
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Example 3.8. Suppose a one dimensional design of observations at 1, 3, 5 with the
design matrix X = 1, assume that the covariance model is

V ar(Z) = θ1(exp(−|D|) + θ2I3×3

where matrix D = (hij)i,j=1,2,3 represents the matrix of Euclidean distances and exp
stands for the exponential function, so one can find

D = (hij)i,j=1,2,3 =




0 2 4
2 0 2
4 2 0


 ,

and

exp(| −D|) =




1.0000 0.1353 0.0183
0.1353 1.0000 0.1353
0.0183 0.1353 1.0000


 ,

while

M = I −X(X ′X)−1X ′ =




0.6667 −0.3333 −0.3333
−0.3333 0.6667 −0.3333
−0.3333 −0.3333 0.6667


 .

Doing that matrices V1 and V2 corresponding to the transformed covariance model
are

V1 =




0.6285 −0.2752 −0.3532
−0.2752 0.5504 −0.2752
−0.3532 −0.2752 0.6285




and matrix V2 = MIM = M . Suppose the uniform prior information on the para-
meters is given by

{
p1(θ1) = 0.25 ; 1 ≤ θ1 ≤ 5

p2(θ2) = 0.33 ; 0 ≤ θ2 ≤ 3
,

Θ1 and Θ2 are independent. Thus, the prior information matrix C and its square
root matrix are

C =

(
127.0271 59.9998
59.9998 29.2500

)
, R =

(
10.3333 4.5000
4.5000 3.0000

)
.

respectively. The eigenvalues of matrix C are 0.7430 and 155.5341 while for matrix
R are 0.8620 and 12.4713. In this context, Matlab program has used to compute
the square root of the symmetric matrix.
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So one can find the solution O11×1 = G−
11×11W11×1 where G− stands for one gener-

alized inverse of matrix G. Consider the case when b = (1, 1)′, then the solution of
O in Eq.(3.2.11) gives

O =




λ1

λ2

vecA


 =




−15.3284
12.8534
0.6217
0.2478
−0.8696
0.1217
0.1304
−0.2522
−0.7435

0
0




.

After deleting Lagrange multipliers λ1 and λ2 from the solution, matrix A is ob-
tained as

A =




0.6217 0.2478 −0.8696
0.1217 0.1304 −0.2522
−0.7435 0 0


 .

¤

One can note that the matrix A is not symmetric whereas the quadratic estimator
Y ′AY requires that the matrix A should be symmetric. It is clear that the symmet-
ric property of this matrix is very important to get the Bayes invariant quadratic
estimate by the quadratic form Y ′AY . For this reason. The interest in this work to
present the necessary assumptions for the model to achieve the symmetric matrix
A. Consider now other numerical example which deals with Moore-penrose inverse
to find the solution of the model.

Example 3.9. Consider the two dimensional design with observations at (1, 1), (7, 3)
, (5, 6), (2, 9) and take matrices U1 and U2 as in example (3.6). Hence one can obtain

D = (‖ xi − xj ‖)i,j=1,...,4 =




0 6.3246 6.4031 8.0623
6.3246 0 3.6056 7.8102
6.4031 3.6056 0 4.2426
8.0623 7.8102 4.2426 0


 .

In this design f(x1,x2) = (1,x1,x2)
′, therefore
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X =




1 1 1
1 7 3
1 5 6
1 2 9


 ,

M =




0.0027 −0.0243 0.0413 −0.0198
−0.0243 0.2184 −0.3721 0.1780
0.0413 −0.3721 0.6339 −0.3032
−0.0198 0.1780 −0.3032 0.1450


 .

The covariance matrices of the filtered model are

V1 = MDM =




−0.0069 0.0624 −0.1063 0.0509
0.0624 −0.5618 0.9571 −0.4577
−0.1063 0.9571 −1.6306 0.7799
0.0509 −0.4577 0.7799 −0.3730




and V2 = M , assume the prior information matrix is given by the identity matrix
I2×2 , so matrices T16×16 and G18×18 can be found. By using the Moore-penerose
inverse of matrix G and by taking the case b = (1, 0)′ , the symmetric A matrix can
be obtained

A =




−0.0009 0.0082 −0.0140 0.0067
0.0082 −0.0738 0.1257 −0.0601
−0.0140 0.1257 −0.2141 0.1024
0.0067 −0.0601 0.1024 −0.0490


 .

¤

3.3 The symmetry of the matrix in BAIQUE

Now the matrix of the quadratic estimator Y ′AY has to be regarded. This matrix
has an essential effect on the estimation achieved by Bayesian invariant quadratic
unbiased estimators of spatial covariance components which is the interested object
in this work. Therefore, we are trying to show that this matrix takes the symmetric
form. This property is very important to obtain Bayes estimator of quadratic form
which requires that this matrix has symmetric form. As we have seen in the last
subsection the linear equations system (3.2.11) has the singularity property, there-
fore, the least square solution of this model which is O = (G′G)−1G′W fails to find
out a solution since G′G is singular. For this reason we consider Moore-Penrose
inverse of matrix G′G which appears here in the sense of the ordinary inverse form
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to obtain the unique solution, such a solution has the minimal norm and enables to
achieve the symmetric matrix of the quadratic estimator. Hence, in order to reach
this aim we shall introduce some lemmas and conditions which help to realize the
necessary assumptions for this purpose.

Lemma 3.10. Let Z = KK ′ ∈ Rp×p of rank r, where K ′K ∈ Rr×r is nonsingular,
and B ∈ Rp×p nonsingular symmetric matrix. Then the Moore-Penrose inverse of
ZBZ is given by

(ZBZ)− = K(K ′K)−1(K ′BK)−1(K ′K)−1K ′.

Proof. In order to prove that

(ZBZ)− = K(K ′K)−1(K ′BK)−1(K ′K)−1K ′

is the Moore-Penrose inverse of matrix ZBZ, the conditions of Moore-Penrose in-
verse have to be satisfied, thus one can obtain

(ZBZ)(ZBZ)−(ZBZ) = (KK ′BKK ′)(K(K ′K)−1(K ′BK)−1(K ′K)−1K ′)(KK ′BKK ′)

= KK ′BK(K ′BK)−1K ′BKK ′

= KK ′BKK ′

= ZBZ.

Thus K(K ′K)−1(K ′BK)−1(K ′K)−1K ′ is g-inverse of (ZBZ) matrix. To satisfy the
other conditions of Penrose inverse, one can find out

(ZBZ)−(ZBZ)(ZBZ)− = (K(K ′K)−1(K ′BK)−1(K ′K)−1K ′)(KK ′BKK ′)(K(K ′K)−1(K ′BK)−1

(K ′K)−1K ′)

= K(K ′K)−1(K ′BK)−1(K ′BK)(K ′BK)−1(K ′K)−1K ′

= K(K ′K)−1(K ′BK)−1(K ′K)−1K ′

= (ZBZ)−.

For the third condition, we have
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((ZBZ)(ZBZ)−)′ = ((KK ′BKK ′)(K(K ′K)−1(K ′BK)−1(K ′K)−1K ′))′

= (K(K ′K)−1(K ′BK)−1(K ′K)−1K ′)(KK ′BKK ′)

= K(KK ′)−1(K ′BK)−1K ′BKK ′

= K(K ′K)−1K ′

= K(K ′BK)(K ′BK)−1(K ′K)−1K ′

= K(K ′BK)(K ′K)(K ′K)−1(K ′BK)−1(K ′K)−1K ′

= (KK ′BKK ′)(K(K ′K)−1(K ′BK)−1(K ′K)−1K ′)

= (ZBZ)(ZBZ)−.

Therefore
((ZBZ)(ZBZ)−)′ = (ZBZ)(ZBZ)−

And similarity one can get ((ZBZ)−(ZBZ))′ = (ZBZ)−(ZBZ). Thus

(ZBZ)− = K(K ′K)−1(K ′BK)−1(KK ′)−1K ′

is Penrose inverse of ZBZ.

Lemma 3.11. Let H = ZCZ, where Z = M
⊗

M , M is a symmetric idempotent
matrix satisfying the conditions of Lemma(3.10) and u = Za, where a = vec(J ) is
the vec operation for any matrix J , then

(H + uu′)− = H− − H−uu′H−

1 + u′H−u
,

where u′H−u 6= −1.

Proof. From Sherman-Morrison-Woodbury Corollary (5.7), see Appendix (5.2), in
general if U− is a generalized inverse of matrix U and for a vector u, we set that
u = b = c is a vector of p × 1 satisfying HH−u = u and u′HH− = u′ and δ = 1,
then one gets that

(H + uu′)− = H− − H−uu′H−

1 + u′H−u
.

Thus the lemma is proved.
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In this context, one can show that HH−u = u and u′HH− = u′. Since that matrix
M is an idempotent thus matrix M

⊗
M is also idempotent, this can be shown as

follows

(M
⊗

M)2 = (M
⊗

M)(M
⊗

M)

= (M2
⊗

M2)

= M
⊗

M.

If H− is Moore-Penrose inverse of matrix H and matrix C is a nonsingular symmet-
ric then one gets by using Lemma (3.10) that

HH− = ZCZ(ZCZ)−

= KK ′CKK ′(K(K ′K)−1(K ′CK)−1(K ′K)−1K ′)

= KK ′CK(K ′CK)−1(K ′K)−1K ′

= K(K ′K)−1K ′

= KK ′ = Z,

where K ′K = I since that Z is a symmetric idempotent matrix, see Lemma (5.8)
in Appendix (5.2), also one can find

H−H = (ZCZ)−ZCZ
= (K(K ′K)−1(K ′CK)−1(K ′K)−1K ′)KK ′CKK ′

= K(K ′K)−1(K ′CK)−1K ′CKK ′

= K(K ′K)−1K ′

= KK ′ = Z.

Therefore one obtains
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HH−u = KK ′u

= Zu

= (M
⊗

M)vec(MJM)

= vec(M2JM2)

= vec(MJM)

= u,

and also

u′HH− = vec(MJM)′Z

= vec(MJM)′M
⊗

M

= vec(M2JM2)′

= vec(MJM)′

= u′.

Lemma 3.12. If H = ZCZ, u = Za, and v = Zb, where Z satisfies the conditions
of Lemma (3.10), then

(H + uu′ + vv′)− =
cH− −H−uu′H−

c
− (cH− −H−uu′H−)vv′(cH− −H−uu′H−)

c2d

Where c = 1 + u′H−u and d = 1 + v′(H + uu′)−v are constants not equal zero.

Proof. Let A = H + uu′ then from Lemma (3.11) one gets

(A + vv′)− = A− − A−vv′A−

1 + v′A−v
.

Now by making substitution of matrix A, one can find out,
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(A + vv′)− = A− − A−vv′A−

1 + v′A−v

= (H + uu′)− − (H + uu′)−vv′(H + uu′)−

1 + v′(H + uu′)−v

= (H− − H−uu′H−

1 + u′H−u
)− (H− − H−uu′H−

1+u′H−u
)vv′(H− − H−uu′H−

1+u′H−u
)

1 + v′(H + uu′)−v

=
cH− −H−uu′H−

c
− (cH− −H−uu′H−)vv′(cH− −H−uu′H−)

c2d

where c and d are constants not equal zero such that c = 1 + u′H−u and d =
1 + v′(H + uu′)−v.

Since the interested aim here is obtaining the solution of matrix A from the equa-
tions system of BAIQUE, it is useful to describe the general solution of this system
by means of partitioned generalized inverse. This representation helps to find the
form of the matrix A of the quadratic estimation and further it helps to show the
symmetric of this matrix. Therefore, we give the following lemma to constitute the
general solution through the partitioned generalized inverse.

Lemma 3.13. Let

G =




u v
... T

. . . . . . . . . . . .

0 0
... u′

0 0
... v′




, W =




0
...
0
....
b1

b2




where u = vecU , v = vecV and matrices U , V ∈ Rp×p, T = T1

⊗
T1 + T2

⊗
T2 ∈

Rp2×p2
are symmetric, moreover b1, b2 are constants. The solution of the equations

system GO = W can be given in form of partitioned generalized inverse by

O = (G′G)−G′W =

( −(S−BC−)L
(C− + C−B′S−BC−)L

)
, (3.3.1)

where S2×2 is the Schur complement of matrix C, i.e.

S2×2 = A−BC−B′, A =

(
u′u u′v
v′u v′v

)
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B2×p2 =

(
u′T
v′T

)
, Cp2×p2 = T 2 + uu′ + vv′ and Lp2×1 = b1u + b2v.

Proof. Firstly, one can find the matrix G′G which expressible in the partitioned
form as follows

G′G =




u′
... 0 0

v′
... 0 0

. . . . . . . . . . . .

T ′ ... u v







u v
... T

. . . . . . . . . . . .

0 0
... u′

0 0
... v′




=




u′u u′v
... u′T

v′u v′v
... v′T

. . . . . . . . . . . . . . .

Tu Tv
... T 2 + uu′ + vv′




.

Let H = T 2, suppose the partitioned matrices as following

A =

(
u′u u′v
v′u v′v

)

2×2

, B =

(
u′T
v′T

)

2×p2

and C =
(
H + uu′ + vv′

)
p2×p2 .

This implies to

G′G =




A2×2
... B2×p2

. . . . . . . . .

B′
p2×2

... Cp2×p2


 .

Doing that the general case of the partitioned generalized inverse (G′G)− is given by

(G′G)− =




S−
... −S−BC−

. . . . . . . . .

−C−B′S−
... C− + C−B′S−BC−


 ,

where S = A− BC−B′ is Schur complement of matrix C, see the Appendix (5.2) .
Since the partitioned matrix G′G is symmetric then its generalized inverse (G′G)−

is also has the symmetric form. Since that
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W =




0p2

. . .
b1

b2


 ,

where b1 and b2 are constants. So one can find

G′W =




u′
... 0 0

v′
... 0 0

. . . . . . . . . . . .

T
... u v







Op2

. . .
b1

b2




=




0
0
. . .

(b1u + b2v)




=




0
0
. . .

Lp2×1


 ,

where L = b1u + b2v. Therefore, the solution of the equations system through par-
titioned generalized inverse is given by

O = (G′G)−G′W =




S−
... −S−BC−

. . . . . . . . .

−C−B′S−
... C− + C−B′S−BC−







0
0
. . .

Lp2×1




=

( −(S−BC−)L
(C− + C−B′S−BC−)L

)
.

Lemma 3.14. If T = M
⊗

MBM
⊗

M and u = vecU , v = vecV , where B is a
symmetric nonsingular matrix and M is a symmetric idempotent matrix, then the
solution of Lemma (3.13) has the form

O =




λ1

λ2

vec(A)


 ,
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where

vec(A) = H−(ζ̃1u + ζ̃2v + λ1Tu + λ2Tv), (3.3.2)

in which H = T 2 , ζ̃1, ζ̃2, λ1 and λ2 are constants.

Proof. By using the assumptions of Lemma (3.12), put that

T = ZCZ = M
⊗

MBM
⊗

M,

where Z = M
⊗

M and C = B. Then one can obtain

(H+uu′+vv′)− = (
cH− −H−uu′H−

c
)− (cH− −H−uu′H−)vv′(cH− −H−uu′H−)

c2d
,

where c = 1 + u′H−u , d = 1 + v′(H + uu′)−v are constants. Hence to find out the
solution of the equations system, one has

−(S−BC−)L = −S−
(

u′TC−

v′TC−

)
(b1u + b2v)

= −S−2×2

(
(b1u

′TC−u + b2u
′TC−v)

(b1v
′TC−u + b2v

′TC−v)

)

2×1

= −
(

s11 s12

s21 s22

)(
δ1

δ2

)

= −
(

λ1

λ2

)

where δ1 = (b1u
′TC−u + b2u

′TC−v) , δ2 = (b1v
′TC−u + b2v

′TC−v), λ1 = (s11δ1 +
s12δ2) and λ2 = (s21δ1 + s22δ2) are represent Lagrange multipliers in this system.
Now Lemma (3.12) has to be used in order to handle with the second part of the
least squares solution in Eq. (3.3.1) of Lemma (3.13) which supplies the solution of
matrix A. Since matrix C = (H + uu′ + vv′) in the equations system (3.3.1), thus
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one can obtain

C−L = (
cH− −H−uu′H−

c
)L− (

(cH− −H−uu′H−)vv′(cH− −H−uu′H−)
c2d

)L

= (
cH− −H−uu′H−

c
)L

− (
c2H−vv′H− − cH−vv′H−uu′H− − cH−uu′H−vv′H− + H−uu′H−vv′H−uu′H−

c2d
)L

=
(cH−)L

c
− (H−uu′H−)L

c
− (c2H−vv′H−)L

c2d
+

(cH−vv′H−uu′H−)L
c2d

+
(cH−uu′H−vv′H−)L

c2d
− (H−uuH−vv′H−uu′H−)L

c2d

= H−(L− c1

c
u− c2

d
v +

kc1

cd
v +

kc2

cd
u− k2c1

c2d
u)

= H−(b1u + b2v − c1

c
u− c2

d
v +

kc1

cd
v +

kc2

cd
u− k2c1

c2d
u)

= H−(b1 − c1

c
+

kc2

cd
− k2c1

c2d
)u + (b2 − c2

d
+

kc1

cd
)v

= H−(ζ1u + ζ2v)

where c1 = u′H−L, c2 = v′H−L, k = v′H−u, ζ1 = (b1 − c1
c

+ kc2
cd
− k2c1

c2d
) and

ζ2 = (b2 − c2
d

+ kc1
cd

). Moreover, by using Lemma (3.12) one can get

(C−B′S−1BC−)L = C−B′
(

λ1

λ2

)

= C− (
Tu Tv

)(
λ1

λ2

)

= C− (
λ1Tu + λ2Tv

)

= C−(λ1ũ + λ2ṽ)

= C−L̃

=
(cH−)L̃

c
− (H−uu′H−)L̃

c
− (c2H−vv′H−)L̃

c2d
+

(cH−vv′H−uu′H−)L̃
c2d

+
(cH−uu′H−vv′H−)L̃

c2d
− (H−uuH−vv′H−uu′H−)L̃

c2d

= H−(L̃− d1

c
u− d2

d
v +

kd1

cd
v +

kd2

cd
u− k2d1

c2d
u)

= H−(λ1ũ + λ2ṽ − d1

c
u− d2

d
v +

kd1

cd
v +

kd2

cd
u− k2d1

c2d
u)

= H−(λ1û + λ2v̂ + (−d1

c
+

kd2

cd
− k2d1

c2d
)u + (−d2

d
+

kd1

cd
)v)

= H−(λ1ũ + λ2ṽ + ζ̂1u + ζ̂2v)
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where
L̃ = λ1ũ + λ2ṽ , ũ = Tu, ṽ = Tv, d1 = u′H−L̃, d2 = v′H−L̃,
k = v′H−u , ζ̂1 = (−d1

c
+ kd2

cd
− k2d1

c2d
) and ζ̂2 = (−d2

d
+ kd1

cd
).

Therefore, one can find out

(C− + C−B′S−1BC−)L = C−L + (C−B′S−1BC−)L

= H−(ζ1u + ζ2v) + H−(λ1ũ + λ2ṽ + ζ̂1u + ζ̂2v)

= H−((ζ1 + ζ̂1)u + (ζ2 + ζ̂2)v + λ1ũ + λ2ṽ)

= H−(ζ̃1u + ζ̃2v + λ1ũ + λ2ṽ),

where ζ̃1 = (ζ1 + ζ̂1) and ζ̃2 = (ζ2 + ζ̂2). Since that Hp2×p2 = T 2, T = T1

⊗
T1 +

T2

⊗
T2 and (ζ̃1u+ ζ̃2v+λ1ũ+λ2ṽ)p2×1 is a vector which equivalent to vec operation,

this implies

vec(A) = H−(ζ̃1u + ζ̃2v + λ1ũ + λ2ṽ)

= (T 2)−(ζ̃1u + ζ̃2v + λ1ũ + λ2ṽ)

= ((T1

⊗
T1 + T2

⊗
T2)

2)−(ζ̃1u + ζ̃2v + λ1Tu + λ2Tv).

Lemma 3.15. Let M = KK ′ with K ′K = Ir, T1 = MIM , where I = In is an
identity matrix, T2 = MJM , I

⊗
I + J

⊗
J nonsingular, limr→∞(K ′JK)k = 0.

Then

(T1

⊗
T1 + T2

⊗
T2)

− =
∞∑

k=0

(−1)kK(K ′JK)kK ′ ⊗ K(K ′JK)kK ′.

Proof. We have from Lemma (3.10) that

(ZBZ)− = K(K ′K)−1(K ′BK)−1(K ′K)−1K ′.

Since matrix M can be written as full rank factorization M = KK ′ and K ′K = I
where K is a matrix of full column rank. That implies

M
⊗

M = KK ′ ⊗ KK ′ = K
⊗

K ·K ′ ⊗ K ′,
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and

K ′ ⊗ K ′ ·K
⊗

K = K ′K
⊗

K ′K = I
⊗

I.

Moreover, since the matrices T1 = MIM and T2 = MJM , hence one can get

T1

⊗
T1 + T2

⊗
T2 = MIM

⊗
MIM + MJM

⊗
MJM

= (M
⊗

M)(I
⊗

I)(M
⊗

M) + (M
⊗

M)(J
⊗

J)(M
⊗

M)

= M
⊗

M(I
⊗

I + J
⊗

J)M
⊗

M.

Since that limk→∞(K ′JK)k = 0 by using Lemma (3.10) and the Theorem (5.11) of
the infinite series see Appendix (5.3), one can find out

(T1

⊗
T1 + T2

⊗
T2)−

= ((M
⊗

M)(I
⊗

I + J
⊗

J)(M
⊗

M))−

= K
⊗

K(K ′⊗K ′ ·K
⊗

K)−1[K ′⊗K ′(I
⊗

I + J
⊗

J)K
⊗

K]−1(K ′⊗K ′ ·K
⊗

K)−1

K ′⊗K ′

= K
⊗

K(I
⊗

I)−1[K ′⊗K ′(I
⊗

I + J
⊗

J)K
⊗

K]−1(I
⊗

I)−1K ′⊗K ′

= (K
⊗

K)(K ′K
⊗

K ′K + K ′JK
⊗

K ′JK)−1(K ′⊗K ′)

= (K
⊗

K)(I
⊗

I + K ′JK
⊗

K ′JK)−1(K ′⊗K ′)

= (K
⊗

K)
∞∑

k=0

(−1)k((K ′JK
⊗

K ′JK)k)(K ′⊗K ′)

=
∞∑

k=0

(−1)kK(K ′JK)kK ′⊗K(K ′JK)kK ′.

Lemma 3.16. Let Z = KK ′ ∈ Rp×p a symmetric idempotent matrix of rank r,
where K ′K = I ∈ Rr×r is identity matrix, and B ∈ Rp×p nonsingular symmetric
matrix. Then the Moore-Penrose inverse of (ZBZ)2 is given by

((ZBZ)2)− = K(K ′BK)−2K ′ = K[(K ′BK)−1]2K ′.
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Proof. Since that matrix Z = KK ′ and K ′K = Ir, so one can obtain

(ZBZ)2 = (KK ′BKK ′)(KK ′BKK ′)

= KK ′BKK ′BKK ′

= K(K ′BK)2K ′.

Now to prove that ((ZBZ)2)− = K(K ′BK)−2K ′, one needs to show that the Moore-
Penrose inverse conditions here are satisfied, that can be done as follows

(ZBZ)2((ZBZ)2)−(ZBZ)2 = (K(K ′BK)2K ′)(K(K ′BK)−2K ′)(K(K ′BK)2K ′)

= K(K ′BK)2(K ′BK)−2(K ′BK)2K ′

= K(K ′BK)2K ′

= (ZBZ)2.

((ZBZ)2)−(ZBZ)2((ZBZ)2)− = (K(K ′BK)−2K ′)(K(K ′BK)2K ′)(K(K ′BK)−2K ′)

= K(K ′BK)−2(K ′BK)2(K ′BK)−2K ′

= K(K ′BK)−2K ′

= ((ZBZ)2)−.

Also one can get

((ZBZ)2((ZBZ)2)−)′ = ((K(K ′BK)2K ′)(K(K ′BK)−2K ′))′

= K(K ′BK)−2K ′K(K ′BK)2K ′

= K(K ′BK)−2(K ′BK)2K ′

= KK ′

= K(K ′BK)2(K ′BK)−2K ′

= K(K ′BK)2K ′K(K ′BK)−2K ′

= (ZBZ)2((ZBZ)2)−.

similarly
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(((ZBZ)2)−(ZBZ)2)′ = ((K(K ′BK)−2K ′)(K(K ′BK)2K ′))′

= ((K(K ′BK)2K ′)(K(K ′BK)−2K ′))

= K(K ′BK)2(K ′BK)−2K ′

= KK ′

= K(K ′BK)−2(K ′BK)2K ′

= K(K ′BK)−2K ′K(K ′BK)2K ′

= ((ZBZ)2)−(ZBZ)2.

In this case one can note that (K ′BK) is regular matrix in which

((K ′BK)2)−1 = (K ′BKK ′BK)−1

= (K ′BK)−1(K ′BK)−1

= ((K ′BK)−1)2.

Hence
((ZBZ)2)− = K(K ′BK)−2K ′

which represents Moore-Penrose inverse.

Lemma 3.17. Let M = KK ′ with K ′K = Ir, T1 = MIM , where I = In is an
identity matrix, T2 = MJM , I

⊗
I +J

⊗
J nonsingular, limk→∞(K ′JK)k = 0, and

∞∑

k=0

(−1)k(K ′JK)k
⊗

(K ′JK)k

∞∑

l=0

(−1)l(K ′JK)l
⊗

(K ′JK)l

=
∞∑

k=0

∞∑

l=0

(−1)k+l(K ′JK)k+l
⊗

(K ′JK)k+l.

Then

[(T1

⊗
T1 + T2

⊗
T2)

2]− =
∞∑

k=0

∞∑

l=0

(−1)k+l(K(K ′JK)k+lK ′ ⊗ K(K ′JK)k+lK ′).

Proof. Since that M is a singular idempotent matrix which can be expressed as full
rank decomposition M = KK ′, thus the matrices T1 = MIM and T2 = MJM
are also singular. Therefore, one can find the generalized inverse of the expression
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(T1

⊗
T1 + T2

⊗
T2)

2 through using the Lemma (3.16) by putting Z = M
⊗

M ,
B = I

⊗
I + J

⊗
J , thus as it has been shown in Lemma (3.15), one can write

Z = M
⊗

M = KK ′ ⊗ KK ′ = K
⊗

K ·K ′ ⊗ K ′,

T1

⊗
T1 + T2

⊗
T2 = M

⊗
M(I

⊗
I + J

⊗
J)M

⊗
M.

Hence by using Lemma (3.16) and Theorems (5.10) or (5.11), see the Appendix
(5.3), one can find out

[(T1

⊗
T1 + T2

⊗
T2)2]−

= [(M
⊗

M(I
⊗

I + J
⊗

J)M
⊗

M)2]−

= K
⊗

K(K ′⊗K ′(I
⊗

I + J
⊗

J)K
⊗

K)−2K ′⊗K ′

= K
⊗

K(K ′K
⊗

K ′K + K ′JK
⊗

K ′JK)−2K ′⊗K ′

= K
⊗

K((I
⊗

I + K ′JK
⊗

K ′JK)−1)2K ′⊗K ′

= K
⊗

K(
∞∑

k=0

(−1)k(K ′JK
⊗

K ′JK)k)2K ′⊗K ′

= K
⊗

K(
∞∑

k=0

(−1)k(K ′JK)k
⊗

(K ′JK)k)(
∞∑

k=0

(−1)l(K ′JK)l
⊗

(K ′JK)l)K ′⊗K ′

= (
∞∑

k=0

(−1)kK(K ′JK)k
⊗

K(K ′JK)k)(
∞∑

k=0

(−1)l(K ′JK)lK ′⊗(K ′JK)lK ′)

= (
∞∑

k=0

(−1)k(
∞∑

l=0

(−1)lK(K ′JK)k(K ′JK)lK ′⊗K(K ′JK)k(K ′JK)lK ′))

=
∞∑

k=0

∞∑

l=0

(−1)k+l(K(K ′JK)k+lK ′⊗K(K ′JK)k+lK ′).

Theorem 3.18. Under the assumptions of Lemma (3.17) with u = vec(MJM) =
vec(T2) and v = vec(MIM) = vec(T1), the solution of matrix A which appears in
equations system of Lemma (3.13) is given by

vec(A) =
∞∑

k=0

∞∑

l=0

(−1)k+l(K(K ′JK)k+lK ′ ⊗ K(K ′JK)k+lK ′)(ζ̃1u+ζ̃2v+λ1Tu+λ2Tv),



3.3 The symmetry of the matrix in BAIQUE 47

where ζ̃1, ζ̃2, λ1 and λ2 are constants.

Proof. From Lemma (3.14), it has been shown

vec(A) = H−(ζ̃1u + ζ̃2v + λ1Tu + λ2Tv),

where H = T 2 = (T1

⊗
T1 + T2

⊗
T2)

2 and ζ̃1, ζ̃2, λ1 and λ2 are constants. Now
from Lemma (3.17) and Theorem (5.10) see Appendix (5.3), one can get

vec(A) = H−(ζ̃1u + ζ̃2v + λ1Tu + λ2Tv)

= ((T1

⊗
T1 + T2

⊗
T2)

2)−(ζ̃1u + ζ̃2v + λ1Tu + λ2Tv)

=
∞∑

k=0

∞∑

l=0

(−1)k+l(K(K ′JK)k+lK ′ ⊗ K(K ′JK)k+lK ′)(ζ̃1u + ζ̃2v + λ1Tu + λ2Tv).

Theorem 3.19. The solution of matrix A given by Theorem (3.18) is symmetric.

Proof. Since U = MJM , V = MIM = M , u = vecU , v = vecV and matrices T1

and T2 are as given in Lemma (3.17), by using Lemmas (5.3) or (5.4), see Appendix
(5.1), one can find

(T1

⊗
T1) · u = (MIM

⊗
MIM)vec(MJM)

= vec(MIMMJMMIM)

= vec(MMJMM)

= vec(MJM)

= vec(U),

(T1

⊗
T1) · v = (MIM

⊗
MIM)vec(MIM)

= vec(MIMMIMMIM)

= vec(MMM)

= vec(MIM)

= vec(M)

= vec(V ).
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(T2

⊗
T2) · u = (MJM

⊗
MJM)vec(MJM)

= vec(MJMMJMMJM)

= vec(MJMJMJM)

= vec(UJU),

(T2

⊗
T2) · v = (MJM

⊗
MJM)vec(MIM)

= vec(MJMMIMMJM)

= vec(MJMJM)

= vec(MJMMJM)

= vec(U2),

Thus, from the solution of matrix A in Eq. (3.3.2) of Lemma (3.14), one has

ζ̃1u + ζ̃2v + λ1Tu + λ2Tv

= ζ̃1u + ζ̃2v + λ1(T1

⊗
T1 + T2

⊗
T2)u + λ2(T1

⊗
T1 + T2

⊗
T2)v

= ζ̃1vec(U) + ζ̃2vec(V ) + λ1vec(T1UT1) + λ1vec(T2UT2) + λ2vec(T1V T1) + λ2vec(T2V T2)

= ζ̃1vec(U) + ζ̃2vec(V ) + λ1vec(U) + λ1vec(UJU) + λ2vec(V ) + λ2vec(U2)

= (ζ̃1 + λ1)vec(U) + (ζ̃2 + λ2)vec(V ) + λ1vec(UJU) + λ2vec(U2).

Let λ̃1 = ζ̃1 + λ1 and λ̃2 = ζ̃2 + λ2 which are constants and suppose K̂ = K ′JK
which is regular symmetric matrix. By using Theorem (3.18) and Lemma (5.3) in
Appendix (5.1), one can find out

vec(A) = H−(ζ̃1u + ζ̃2v + λ1Tu + λ2Tv)

=
∞∑

k=0

∞∑

l=0

(−1)k+l(K(K ′JK)k+lK ′ ⊗ K(K ′JK)k+lK ′)[λ̃1vec(U) + (λ̃2)vec(V )

+ λ1vec(UJU) + λ2vec(U2)]

=
∞∑

k=0

∞∑

l=0

(−1)k+l(K(K̂)k+lK ′ ⊗ K(K̂)k+lK ′)[λ̃1vec(U) + (λ̃2)vec(V )

+ λ1vec(UJU) + λ2vec(U2)]

=
∞∑

k=0

∞∑

l=0

(−1)k+l[λ̃1vec(K(K̂)k+lK ′UK(K̂)k+lK ′) + λ̃2vec(K(K̂)k+lK ′V K(K̂)k+lK ′)

+ λ1vec(K(K̂)k+lK ′(UJU)K(K̂)k+lK ′) + λ2vec(K(K̂)k+lK ′(U2)K(K̂)k+lK ′)],
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where K̂ = K ′JK. Since that matrix M = KK ′ where K ′K = Ir, one can show that

K ′UK = K ′(MJM)K = K ′KK ′JKK ′K = K ′JK,

K ′V K = K ′(M)K = K ′KK ′K = Ir,

K ′(UJU)K = K ′(MJMJMJM)K

= K ′KK ′JKK ′JKK ′JKK ′K

= K ′JKK ′JKK ′JK = (K ′JK)3,

K ′(U)2K = K ′(MJM)2K

= K ′(MJM)(MJM)K

= K ′(KK ′JKK ′)(KK ′JKK ′)K

= K ′JKK ′JK = (K ′JK)2.

Therefore, the solution in Eq. (3.3.2) can be written as follows

vec(A) =
∞∑

k=0

∞∑

l=0

(−1)k+l[λ̃1vec(K(K̂)k+lK ′UK(K̂)k+lK ′) + λ̃2vec(K(K̂)k+lK ′V K(K̂)k+lK ′)

+ λ1vec(K(K̂)k+lK ′(UJU)K(K̂)k+lK ′) + λ2vec(K(K̂)k+lK ′(U)2K(K̂)k+lK ′)]

=
∞∑

k=0

∞∑

l=0

(−1)k+l[λ̃1vec(K(K̂)k+l(K ′JK)(K̂)k+lK ′) + λ̃2vec(K(K̂)k+lIr(K̂)k+lK ′)

+ λ1vec(K(K̂)k+l(K ′JK)3(K̂)k+lK ′) + λ2vec(K(K̂)k+l(K ′JK)2(K̂)k+lK ′)]

=
∞∑

k=0

∞∑

l=0

(−1)k+l[λ̃1vec(K(K ′JK)(2(k+l)+1)K ′) + λ̃2vec(K(K ′JK)(2(k+l))K ′)

+ λ1vec(K(K ′JK)(2(k+l)+3)K ′) + λ2vec(K(K ′JK)(2(k+l)+2)K ′)].

Hence

A =
∞∑

k=0

∞∑

l=0

(−1)k+l[λ̃1(K(K ′JK)(2(k+l)+1)K ′) + λ̃2(K(K ′JK)(2(k+l))K ′) + λ1(K(K ′JK)(2(k+l)+3)K ′)

+ λ2(K(K ′JK)(2(k+l)+2)K ′)]
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which represents the summation of symmetric matrices, therefore matrix A is sym-
metric.

3.4 Infinite matrix series and the eigenvalues of K
′
JK

In the last paragraph the solution of the matrix in BAIQUE has been obtained and
also the symmetric property of the solution matrix has been found. This solution
has dealt with the Neumann series of an infinite sum of matrices. It has shown that

[(T1

⊗
T1 + T2

⊗
T2)2]−

= [(M
⊗

M(I
⊗

I + J
⊗

J)M
⊗

M)2]−

= K
⊗

K((I
⊗

I + K ′JK
⊗

K ′JK)−1)2K ′⊗K ′

=
∞∑

k=0

∞∑

l=0

(−1)k+l(K(K ′JK)k+lK ′⊗K(K ′JK)k+lK ′). (3.4.1)

This form contains the term (I
⊗

I + K ′JK
⊗

K ′JK)−1 which is represented
by the sum of the infinite series of matrices, so the purpose now is to investigate
when this form is converging. Clearly, the central part in this formula is the matrix
K ′JK. As it has been mentioned before, K is a full column rank matrix which has
found out by decomposing the projection matrix M into M = KK ′, while matrix
J is a covariance structure matrix. Concerning the matrix norm which we used
here, we consider the Euclidean norm (largest singular values) or called spectral
radius (see Appendix (5.3) of the matrix to deal with the convergence of matrix
series. In order to describe the eigenvalues of the term K ′JK and K ′JK

⊗
K ′JK,

Gerschgorin Discs and Poincare’s separation theorem shall be used. Firstly, let us
introduce the following results.

Theorem 3.20. See Lancaster and Tismenetsky (1985). If ‖ · ‖ denotes any matrix
norm for which ‖I‖ = 1 and if ‖M‖ < 1, then (I + M)−1 exists,

(I + M)−1 = I −M + M2 − . . .

and

‖(I + M)−1‖ ≤ 1

1− ‖M‖
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Corollary 3.21. See Graybill(1983). Let A be an n×n matrix. If |λ| < 1 for every
characteristic root λ of A, then the following holds.
1)

∑∞
i=0 Ai converges to (I − A)−1.

2) There exists a positive integer K such that for all positive integers k ≥ K the
matrix Bk is nonsingular where Bk = I + A + A2 + . . . + Ak.

Gerschgorin Discs is one of the methods used to estimate the eigenvalues of a
matrix. This method is useful for providing bounds to the magnitudes of the eigen-
values of a matrix. Gerschgorin Discs are defined as follows

Definition 3.22. (Gerschgorin Discs) Let A ∈ C matrix have entries aij. For each
i = 1, . . . , n we define the Gerschgorin disc Di associated to the i− th row of A by

Di = {z ∈ C :| z − aii |≤
n∑

i6=j;j=1

| aij |}. (3.4.2)

These discs D1, D2, . . . , Dn all lie in the complex plane. In other words, the eigen-
values are trapped in the collection of circles centered at aii with a radius given
by the sum of absolute values A with aii deleted. Furthermore, if a union

⋃
of k

Gerschgorin circles does not touch any of the other n − k circles, then there are
exactly k eigenvalues in the circles of the union

⋃
. See Lewis (1991).

Example 3.23. Assume the one dimensional design points (0.1, 0.4, 0.5, 0.8, 1), so
the distance matrix takes the form

D =




0 0.3000 0.4000 0.7000 0.9000
0.3000 0 0.1000 0.4000 0.6000
0.4000 0.1000 0 0.3000 0.5000
0.7000 0.4000 0.3000 0 0.2000
0.9000 0.6000 0.5000 0.2000 0




The Gerschgorin Discs for the rows of the distance matrix D are as follows;

| z |≤ 2.3, | z |≤ 1.4, | z |≤ 1.3, | z |≤ 1.6, | z |≤ 2.2

The union of these five discs is the single disc | z |≤ 2.3. Suppose the covariance
structure matrix is in the form J = exp(−|D|), hence J for our example is
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J =




1.0000 0.7408 0.6703 0.4966 0.4066
0.7408 1.0000 0.9048 0.6703 0.5488
0.6703 0.9048 1.0000 0.7408 0.6065
0.4966 0.6703 0.7408 1.0000 0.8187
0.4066 0.5488 0.6065 0.8187 1.0000




.

Its Gerschgorin Discs are

| z−1 |≤ 2.3143, | z−1 |≤ 2.8648, | z−1 |≤ 2.9225, | z−1 |≤ 2.7265, | z−1 |≤ 2.3806.

The union
⋃

is the third Disc which stands for the third row (column). Since
distance matrix D is symmetric, the Gerschgorin Discs for the columns of this matrix
are the same for the rows, hence the information obtained from the columns is the
same as the information from the rows. ¤

Theorem 3.24. (Gerschgorin’s theorem) See Lewis (1991). Let A ∈ C matrix, the
eigenvalues of A lie in the union of the n Gerschgorin discs associated to the rows
of A.

Example 3.25. Consider the covariance structure matrix J as it is defined above,
then the five Gerschgorin Discs of the matrix J have (centre, radius) = (aii,

∑3
i6=j;j=1

|aij|) given by (1,2.3143), (1,2.8648), (1,2.9225), (1,2.7265) and (1,2.3806). The
relation (3.4.2) guarantees that the eigenvalues are in (or on) the five circles centered
at 1, or all the eigenvalues lie in (or on) the largest circle (1, 2.3806). While the actual
eigenvalues are 0.0830, 0.1593, 0.3259, 0.7713 and 3.6605 lie well within the union of
these Discs, the maximum eigenvalue lies in the largest circle, i.e. 3.6605 < 3.3806.
That can be seen in the Figure 1. ¤
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Figure 1: Gerschgorin Discs and the eigenvalues of matrix J.

Clearly, the Euclidean norm (largest eigenvalue) of the matrix K ′JK
⊗

K ′JK
plays an important role in order to apply the Theorem (3.20), and to get the infinite
series sum. Therefore, it is necessary to deal with the eigenvalues of the matrix
K ′JK. For this purpose, consider again that the covariance structure matrix is
J = exp(−|D|), whereas D is the distance matrix D =‖ xi − xj ‖ i, j = 1, . . . , n
as it has been mentioned before, while K is a full column rank matrix and satisfies
KK ′ = M and K ′K = I. To get a relation between the eigenvalues of the matrices
K ′JK and J , one can handle here with Poincare’s separation theorem.

Lemma 3.26. For any real symmetric n× n matrix A and vector x,

λ1 ≤ x′Ax

x′x
≤ λn ,

where λ1, λ2, . . . , λn are the eigenvalues of matrix A in increasing order, so that
λ1 ≤ λ2 . . . ≤ λn.

Theorem 3.27. (Poincare’s separation theorem) See Magnus and Neudecker (1999).
Let A be a real symmetric n × n matrix with eigenvalues λ1 ≤ λ2 ≤ . . . ≤ λn, and
let G be a semi-orthogonal n × r matrix (1 ≤ r ≤ n), so that G′G = Ir. Then the
eigenvalues µ1 ≤ µ2 ≤ . . . ≤ µr of G′AG satisfy

λi ≤ µi ≤ λn−r+i (i = 1, 2, . . . , r)
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Note: For r = 1, Theorem (3.27) reduces to Lemma (3.26). For r = n, we obtain
the well-known result that the symmetric matrices A and G′AG have the same set
of eigenvalues, if G is orthogonal.

The interesting thing here is to know more about the Euclidean norm or the
largest singular value of the matrix K ′JK

⊗
K ′JK. If the covariance structures

matrix J has the form exp(−|D|), then matrix J represents here a correlation ma-
trix with all elements on the diagonal equal one while the off diagonal elements are
symmetric and lie between zero and one. Since that matrix K is semi-orthogonal
K ′K = Ir, one gets from Poincare theorem (3.27) that

λi ≤ µi ≤ λn−r+i (i = 1, 2, . . . , r)

where µ1 ≤ µ2 ≤ . . . ≤ µr are the eigenvalues of the matrix K ′JK and λ1, . . . , λn

the eigenvalues of matrix J .

Since matrix J is a symmetric matrix, from the spectral theorem (Theorem (5.20)
see Appendix 5.3), there exists an orthogonal matrix Q and diagonal matrix ∆ such
that J = Q∆Q′. Let x be a vector of order n such as

x = c1q1 + . . . + cnqn, (3.4.3)

whereas q1, . . . , qn are the eigenvectors of the symmetric matrix Q and c1, . . . , cn are
constants. This equation may be expressed in the form

x = Qc,

where c = (c1, . . . , cn). According to the spectral theorem (Theorem (5.20) see Ap-
pendix 5.3) or Corollary (5.30) in Appendix 5.5, consider any eigenvalue δ of the
matrix J and corresponding the eigenvector x. Premultiplying the eigenvalue equa-
tion by x′ gives

x′Jx = δx′x. (3.4.4)

Expressing the vectors x as a linear combination of the eigenvectors of matrix J
according to Eq.(3.4.3) gives

x′Jx− δx′x = c′Q′JQc− δc′Q′Qc = 0.

Since Q′Q = I and JQ = Q∆, thus

c′∆c− δc′c =
n∑

i=1

c2
i (λi − δ) = 0
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since all the terms (λi − δ) cannot have the same sign, then

λ1 ≤ δ ≤ λn. (3.4.5)

Now we focus on applying the Gerschgorin theorem on matrix J , considering the
eigenvalues equation Jq = λq in which the eigenvector has been normalized so that
the largest element qk = 1. This equation may be expressed as




∗ ∗ . . . ∗ . . . ∗
∗ ∗ . . . ∗ . . . ∗
· · · · · ·

jk1 jk2 . . . jkk . . . jkn

· · · · · ·
∗ ∗ . . . ∗ . . . ∗







q1

q2

·
1
·
qn




= λ




q1

q2

·
1
·
qn




(3.4.6)

the kth elemental equation of which is

λ− jkk =
∑

j 6=k

jkjqj.

Since |qj| ≤ 1, it follows that

|λ− jkk| ≤
∑

j 6=k

|jkj|. (3.4.7)

This can be interpreted on a diagram where λ must lie within a circle with its center
jkk and its radius

∑
j 6=k |jkj|. Since the position on the largest element in an eigen-

vector is normally unknown, it is only possible to say that every eigenvalue must
lie within the union of the discs constructed from n rows of the matrix according to
Eq.(3.4.7). It can be shown from Eq.(3.4.5) that

λ1 ≤ jii ≤ λn

By adopting a vector x which is null except for a unit term in position i in the
Eq.(3.4.4), one gets for a real symmetric matrix that

{
(jii)max) ≤ λn ≤ (jkk +

∑
j 6=k |jjk|)max

(jkk +
∑

j 6=k |jjk|)min ≤ λ1 ≤ (jii)min.
(3.4.8)

See Jennings and Mckeown (1993). Hence, the relation (3.4.8) gives the constraints
of the maximum eigenvalue of matrix J . From that one can deal with ‖ K ′JK ‖
and examine when it could satisfy the condition ‖ K ′JK

⊗
K ′JK ‖< 1.
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Example 3.28. Continue with the example above, the projection matrix M can be
found where in this case the design matrix is

X =




1.0000 0.1000
1.0000 0.4000
1.0000 0.5000
1.0000 0.8000
1.0000 1.0000




.

Thus

M = I −X(X ′X)−1X ′ =




0.3699 −0.3496 −0.2561 0.0244 0.2114
−0.3496 0.7480 −0.2195 −0.1220 −0.0569
−0.2561 −0.2195 0.7927 −0.1707 −0.1463
0.0244 −0.1220 −0.1707 0.6829 −0.4146
0.2114 −0.0569 −0.1463 −0.4146 0.4065




.

This matrix has a rank equal to three (rank(K) = 3), so one can find matrix K
which satisfies that M = KK ′ and K ′K = I, this matrix is given by

K =




−0.6082 −0.0000 −0.0000
0.5748 −0.6171 0.1916
0.4211 0.7783 0.0980
−0.0401 −0.0944 −0.8200
−0.3475 −0.0668 0.5303




.

Therefore, in order to examine Theorem (3.27) which tells us that the maximum
eigenvalue of K ′JK is less than or equal to the maximum eigenvalue of matrix J .
As mentioned before this is λi ≤ µi ≤ λn−r+i (i = 1, 2, . . . , r). The eigen-
values of matrix K ′JK in this example are 0.0830, 0.1673 and 0.3518 while ma-
trix J has the eigenvalues 0.0830, 0.1593, 0.3259, 0.7713 and 3.6605. It is clear
from that, that the condition of Poincare’s separation theorem is satisfied since
µr = 0.3518 < λn = 3.6605, where µr is the maximum eigenvalue (norm) of K ′JK
and λn stands for the maximum eigenvalue of J . Furthermore, one finds out that,
‖ K ′JK

⊗
K ′JK ‖= 0.1238 <‖ K ′JK ‖= 0.3518 < 1.

In this context, one can investigate whether the order of the summation in Eq.
(3.4.1) is exchanged as Theorem (5.19) in the Appendix (5.3) asserts. Also one can
check the assumptions of Lemma (3.17) and Theorem (3.18). For this purpose, one
has to determine the radius of convergence R in Theorem (5.19) in Appendix (5.3),
where the sums of power series convergent for |z| < R. So for our case, we can
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choose R = 1. In this case all the characteristics roots of the power series matrix
K ′JK lie in the interior of the circle of |R| < 1. One can note that in Figure 2.

1 −1 
x x x 

|z|<1 x eigenvalues of K’JK 

Figure 2: All the eigenvalues of matrix K ′JK lie in the interior of the circle |R| < 1.

Therefore, under this assumption one can deal with the exchangeability of the
order of the power of series matrices (K ′JK)k+l as Theorem (5.19) is postulated. In
this way, the assumptions of Lemma (3.17) and Theorem (3.18) can be shown. For
limk→∞(K ′JK)k = 0, consider k = 5 and 10 and find the corresponding results as
follows

(K ′JK)5 =




0.0052 0.0010 −0.0002
0.0010 0.0002 −0.0000
−0.0002 −0.0000 0.0001


 ,

(K ′JK)10 = 1.0e−004 ∗



0.2808 0.0519 −0.0087
0.0519 0.0096 −0.0016
−0.0087 −0.0016 0.0004


 .

The largest singular values (spectral radius) of these matrices are 0.0054 and 2.9072e−005

respectively, while for the matrix K ′JK was 0.3518. So one can note that the power
series of matrices (K ′JK)k converges to zero when k converges to infinity. On the
other hand, concerning computing the both sides of the following relation
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∞∑

k=0

(−1)k(K ′JK)k
⊗

(K ′JK)k

∞∑

l=0

(−1)l(K ′JK)l
⊗

(K ′JK)l

=
∞∑

k=0

∞∑

l=0

(−1)k+l(K ′JK)k+l
⊗

(K ′JK)k+l. (3.4.9)

Since in our example the matrix (K ′JK)
⊗

(K ′JK) will be of size (9× 9). For
purpose of dealing with matrices of small-size, consider the same example above but
with four points design such as x = (0.1, 0.4, 0.5, 1), then matrix K ′JK is given by

(K ′JK) =

(
0.0955 0.0486
0.0486 0.3424

)
.

Assume that k = 3 and l = 4, by using Matlab program, the following results
are obtained

3∑

k=0

(−1)k(K ′JK)k
⊗

(K ′JK)k =




−0.0000 −0.0000 −0.0000 −0.0001
−0.0000 −0.0001 −0.0001 −0.0003
−0.0000 −0.0001 −0.0001 −0.0003
−0.0001 −0.0003 −0.0003 −0.0018


 ,

4∑

l=0

(−1)l(K ′JK)l
⊗

(K ′JK)l = 1.0e−003 ∗




0.0003 0.0016 0.0016 0.0078
0.0016 0.0086 0.0078 0.0411
0.0016 0.0078 0.0086 0.0411
0.0078 0.0411 0.0411 0.2175


 ,

(
3∑

k=0

(−1)k(K ′JK)k
⊗

(K ′JK)k)(
4∑

l=0

(−1)l(K ′JK)l
⊗

(K ′JK)l)

= 1.0e−006 ∗




−0.0005 −0.0028 −0.0028 −0.0148
−0.0028 −0.0148 −0.0148 −0.0779
−0.0028 −0.0148 −0.0148 −0.0779
−0.0148 −0.0779 −0.0779 −0.4106


 ,
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3∑

k=0

4∑

l=0

(−1)k+l(K ′JK)k+l
⊗

(K ′JK)k+l

= 1.0e−006 ∗




−0.0005 −0.0028 −0.0028 −0.0148
−0.0028 −0.0148 −0.0148 −0.0779
−0.0028 −0.0148 −0.0148 −0.0779
−0.0148 −0.0779 −0.0779 −0.4106


 .

It is clearly that the both side of relation (3.4.9) have the same results and thus the
assumptions of Lemma (3.17) have examined. ¤



60 Comparison of designs and a practical example

4 Comparison of designs and a practical example

4.1 The influence of the position of the design points in a
fixed interval

The interesting thing here is to study the effect of the design points on the results
obtained by handling the system such as the eigenvalues or the norms of the ma-
trices D, J , K ′JK and K ′JK

⊗
K ′JK and Bayes risk. It is necessary to mention

here that Bayes risk has been obtained by taking always b = (1, 1)′ in the equa-
tions system (3.2.11) to find the matrix A. In this context, one can consider some
regressor functions in one and two dimensional designs and investigate the relations
between them with corresponding results for different covariance structures. For this
purpose, one can consider different sites of the design points on the fixed interval
[0, 1]. Let us assume the following four designs of four points.

1- (a, a + 0.5c, 1− 0.5c, 1), (border sites) the points lie at both ends of the interval.
2- (a, a + c, a + 2c, 1), (regular sites) the points have the same distances between
them.
3- (a, a+1.3c, a+1.7c, 1), (middle sites) some points near to each other in the center
and the design has both interval edges.
4- (c + 0.1, c + 0.2, c + 0.3, 1), (neighbor sites) some sites near to each other and the
design has one of the interval edges. Where a is the first point, 1 the last point, and
c = (1 − a)/3. For example, let a = 0.1 then c = (1 − 0.1)/3 = 0.3. Now, one can
get for the above designs the following results.

1- (0.1, 0.25, 0.85, 1),
2- (0.10, 0.40, 0.70, 1),
3- (0.1, 0.49, 0.61, 1),
4- (0.4, 0.5, 0.6, 1).

Figure 3 shows these designs.
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0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

border
regular
middle
neighbor

1−(0.1,0.25,0.85,1) 
2−(0.1,0.4,0.7,1)
3−(0.1,0.49,0.61,1)
4−(0.4,0.5,0.6,1)

Figure 3: Designs of four points in one dimension.

Firstly one can consider the case where the model has regression function of the
stationary case i.e. X = 1 and also when X = (1 x), where x refers to the design
points. Here, let us suppose a covariance structure such as J = I−exp(−|D|) where
D = |dij| is the distance between the points i and j in this case in one dimension,
while I stands for an identity matrix. The function I− exp(−|D|) has been used by
Stein(1987). Schuenemeyer and Power (2000) have used the form of the exponential
model 1− exp(−3d/a) where a is constant stands for the estimated range. For the
first design one can find out matrices D and J as follows

D =




0 0.1500 0.7500 0.9000
0.1500 0 0.6000 0.7500
0.7500 0.6000 0 0.1500
0.9000 0.7500 0.1500 0


 ; J =




0 −0.8607 −0.4724 −0.4066
−0.8607 0 −0.5488 −0.4724
−0.4724 −0.5488 0 −0.8607
−0.4066 −0.4724 −0.8607 0


 .

Matrix K, as it has been explained before, is a full column rank matrix. This
matrix satisfies that M = KK ′ and K ′K = I, where M is the projection matrix in
Eq. (3.1.5). Matrix K for the cases when the design matrix is X = 1 and X = (1 x)
takes the following forms




−0.0000 −0.8660 −0.0000
0.7715 0.2887 0.2673
−0.1543 0.2887 −0.8018
−0.6172 0.2887 0.5345


 ,




−0.6355 −0.0000
0.7565 0.1543
0.0303 −0.7715
−0.1513 0.6172
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respectively. Bayes risk can be computed from the relation in Eq. (3.1.12) which is

r(α̂) = 2
2∑

k=1

trA(
r∑

i=1

rikVi)A(
r∑

j=1

rkjVj)

= 2
r∑

k=1

trATkATk (4.1.1)

where Tk =
∑r

i=1 rikVi and rik are the components of the quare root matrix R of
the prior information matrix C as it has been given in Eq. (3.1.4). Assume that
the prior information matrix C is the identity matrix I2×2. In this case Bayes risk
is given by

r(α̂) = 2
2∑

k=1

trAVkAVk, (4.1.2)

where V1 = MJM and V2 = MIM = M . Moreover, the same vector b = (1, 1)′

has been used in the equations system (3.2.11) to get the matix A which is included
in Bayes risk, as one notes that in Eq. (4.1.2). Table 1 shows the corresponding
outcomes of matrices D, J , K ′JK, K ′JK

⊗
K ′JK and Bayes risk of these designs.

Designs Matrix X Eig.(D) ‖ D ‖ Eig.(J) ‖ J ‖ ‖ K′JK ‖ Bayes risk

1 X = 1 -1.3685,-0.1624, 1.6624 -1.8127,0.0829, 1.8127 0.8725 0.2609
-0.1315,1.6624 0.8573,0.8725

2 -1.0243,-0.3487, 1.5487 -1.8741,0.3191, 1.8741 0.8282 4.2497
-0.1757,1.5487 0.7267,0.8282

3 -0.9180,-0.4709, 1.4909 -1.9467,0.3947, 1.9467 0.8988 4.7920
-0.1020,1.4909 0.6532,0.8988

4 -0.7648,-0.1870, 1.0177 -2.2476,0.4760, 2.2476 0.9348 2.9788
-0.0660,1.0177 0.8367,0.9349

1 X = (1 x) 0.8635 4.6090e+003
2 0.8226 43.2778
3 = = = = 0.8986 11.7031
4 0.9340 32.2821

Table 1: Eigenvalues, norms and Bayes risk of some matrices of four point designs
with two regressor functions.

The norm used here is the Euclidean norm which represents the maximum eigen-
value of the matrix. One can note that the eigenvalues of the distance matrix D are
all negative except one of them as Lemma (5.34, see Appendix 5.5) asserts, while the
eigenvalues of the covariance structure matrix J are all positive except one of them
is negative. For these four designs, the last case has the minimum norm for matrix
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D. On the other hand, the first design has the minimum norm for the covariance
structure matrix J . One may explain this by saying that the matrix J has the expo-
nential function exp(−|D|) which entries lie between zero and one. That means, the
small entries in matrix D would have big values near to one in the corresponding
position in matrix J and this would reflect on the norm of both matrices. For the
norm of the decomposed matrix K ′JK, the four designs achieve similar norms and
all less than one for both cases X = 1 and X = (1 x). Anyway, the second design
has a little less norm than the other. Regarding Bayes risk, one can note that for
the first case of the regression function, the first design has the minimum Bayes risk
while in the second case of regression function the third design has the minimum
Bayes risk.

For the case of two dimensional designs of regression function X = (1 x1 x2),
three types of Minkowski distance in a metric space are used here. Minkowski dis-
tance is a generalization of Euclidean distance in Eq. (3.2.2) which is defined of
order r between two objects i and j by

dij = (
n∑

k=1

(xik − xjk)
r)

1
r ,

For r = 2 it gives Euclidean distance measure and, when r = 1, it gives first norm
distance or called city-block distance or rectangular distance measure. The third
type of the distance measure is the Lmax or L∞ which is the maximum difference
between any attribute of the objects. It can be defined by

dij = lim
r→∞

(
n∑

k=1

(xik − xjk)
r)

1
r .

Since one needs here two dimensional design points, the other vector points for these
four designs are given here by using a permutation with the third component of the
design points as follows
1-(0.8667, 0.2, 0.3333, 1)
2-(0.7333, 0.2, 0.4667, 1)
3-(0.6533, 0.2, 0.5467, 1)
4-(0.5667, 0.3667, 0.4667, 1)
where a = 0.2, c = 0.2667. One can note from the Figure 4 below the points of
these four designs in the interval [0, 1]2.
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Figure 4: Designs of four points in two dimensions.

Doing that, the corresponding distance matrices of these three types of distance
measures can be found. Consider the first design points, then one can get the fol-
lowing distance matrices respectively




0 0.6834 0.9203 0.9098
0.6834 0 0.6146 1.0966
0.9203 0.6146 0 0.6834
0.9098 1.0966 0.6834 0


 ;




0 0.8167 1.2834 1.0333
0.8167 0 0.7333 1.5500
1.2834 0.7333 0 0.8167
1.0333 1.5500 0.8167 0


 .




0 0.6667 0.7500 0.9000
0.6667 0 0.6000 0.8000
0.7500 0.6000 0 0.6667
0.9000 0.8000 0.6667 0


 .

In this case matrix K of the full column rank is given by




−0.3723
0.5683
−0.6075
0.4115


 .

For every case of these distance types one can compute the eigenvalues of matrices
D =‖ xi − xj ‖i,j=1,...,n, J = I − exp(−|D|) as it has been defined above, matrix
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K ′JK and Bayes risk. The results corresponding to the first design are shown in
Table 2 below.

Designs D type Eig.(D) ‖ D ‖ Eig.(J) ‖ J ‖ ‖ K′JK ‖ Bayes risk

1 L2 -1.1540,-0.9018, 2.4632 -1.3461,0.3067, 1.3461 0.6265 0.1072
-0.4074,2.4632 0.4119,0.6275

2 -1.1017,-0.7178, 2.1467 -1.5283,0.3288, 1.5283 0.7037 0.1569
-0.3271,2.1467 0.4901,0.7094

3 -1.0930,-0.6337, 2.0500 -1.5941,0.3339, 1.5941 0.7155 0.1664
-0.3232,2.0500 0.5324,0.7279

4 -1.1033,-0.2510, 1.4923 -1.9910,0.3418, 1.9910 0.8672 0.4841
-0.1380,1.4923 0.7774,0.8719

1 L1 -1.5802,-1.2769, 3.1270 -1.1081,0.1976, 1.1081 0.6240 0.1058
-0.2699,3.1270 0.2849,0.6256

2 -1.4768,-0.9505, 2.8771 -1.2225,0.2257, 1.2225 0.6060 0.0960
-0.4497,2.8771 0.3837,0.6130

3 -1.4694,-0.8625, 2.7406 -1.3198,0.2291, 1.3198 0.6461 0.1185
-0.4087,2.7406 0.4203,0.6704

4 -1.5521,-0.3332, 2.0804 -1.7525,0.2143, 1.7525 0.8160 0.3048
-0.1951,2.0804 0.7156,0.8226

1 Lmax -0.9372,-0.6981, 2.1997 -1.4546,0.3884, 1.4546 0.5536 0.0699
-0.5644,2.1997 0.4996,0.5666

2 -0.9717,-0.6454, 1.8738 -1.6733,0.3743, 1.6733 0.7576 0.2078
-0.2567,1.8738 0.5324,0.7666

3 -1.0050,-0.4923, 1.7756 -1.7293,0.3543, 1.7293 0.7433 0.1920
-0.2783,1.7756 0.6189,0.7561

4 -0.8712,-0.2342, 1.2031 -2.1301,0.4316, 2.1301 0.9033 0.7430
-0.0978,1.2031 0.7908,0.9077

Table 2: Eigenvalues, norms and Bayes risk of some matrices of four point designs
with three distance measures.

From this table, one can note some similar properties as it is the case with one
dimensional design and the stationary case above. The minimum norm of that dis-
tance matrix D obtained in the fourth design while the first design achieves the
minimum norm of the covariance structure matrix J . One can also note that all the
norms of matrix K ′JK are less than one. Moreover, the results obtained from using
the Euclidean and Lmax distances are more similar than using the distance (L1) in
the second case. In the cases L2 and Lmax, the minimum norm of matrix K ′JK and
minimum Bayes risk are received in the first design while for the L1 distance type,
the second design has the minimum norm of matrix K ′JK and also for Bayes risk.

Consider again the same four design above but with five points, suppose a = 0.1,
then c = 0.2250 for the first axis x1. As for the second axis x2, let a = 0.17, so
c = 0.2075, for these five points the designs can be given by

1-(a, a+0.5c ,a+c, 1-0.5c, 1).
2-(a, a+c, a+2c, a+3c, a+4c=1).
3-(a, a+1.8c, a+2c, a+2.2c, 1).
4-(c+0.1, c+0.2, c+0.3, c+0.4, 1).
Doing that, one can find out the five sites of the points in two dimensional design
as follows
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1− x1 = (0.1, 0.2125, 0.3250, 0.8875, 1) ,x2 = (0.3775, 0.8962, 0.17, 0.2737, 1).
2− x1 = (0.1, 0.3250, 0.5500, 0.7750, 1) ,x2 = (0.5850, 0.7925, 0.17, 0.3775, 1).
3− x1 = (0.1, 0.5050, 0.5500, 0.5950, 1) ,x2 = (0.5850, 0.6265, 0.17, 0.5435, 1).
4−x1 = (0.3250, 0.4250, 0.5250, 0.6250, 1) ,x2 = (0.5075, 0.6075, 0.17, 0.3075, 0.4075).
Figure 5 shows these pairs of points.
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Figure 5: Designs of five points in two dimensions.

The intention here is to see if the designs have similar qualities as if the number
of designs points were four. Table 3 shows the corresponding outcomes of this case.



4.2 The influence of scaling on the design points 67

Designs Matrix X ‖ D ‖ ‖ J ‖ ‖ K′JK ‖ Bayes risk

1 X = 1 2.0160 2.5674 0.9264 2.6785
2 1.8648 2.6270 0.8765 11.2874
3 1.6793 2.8740 0.9704 9.5247
4 1.3451 3.0183 0.9420 8.2532

1 X = (1 x) 0.9259 4.8422
2 0.8455 7.1271
3 = = 0.9704 2.1617
4 0.9418 3.2463

1 X = (1 x1 x2) 3.0499 1.9478 0.7690 19.9829
2 with 2.6446 2.1486 0.7740 137.7259
3 Euclidean(L2) 2.3741 2.3839 0.8931 3.8205
4 distance 1.6771 2.7067 0.8768 38.2191

1 X = (1 x1 x2) 3.8491 1.6587 0.6723 1.2382e+003
2 with 3.5123 1.7656 0.6824 550.7681
3 L1 distance 3.1001 2.1265 0.8457 6.2297
4 2.1419 2.4224 0.8063 238.2867

1 X = (1 x1 x2) 2.7217 2.0913 0.8377 5.0844
2 with 2.3198 2.3406 0.9133 3.8542
3 Lmax distance 2.0745 2.5224 0.9250 2.6537
4 1.5378 2.8137 0.9276 5.5254

Table 3: Eigenvalues, norms and Bayes risk of some matrices of five point designs
with some regressor functions.

Furthermore, one can note in this case that the minimum norm of the distance
matrix D is obtained in the fourth design while the least norm for matrix J is
given in the first design as in the case with four points. Regarding the norm of
the decomposed matrix K ′JK, there is also a similarity with the case of four point
designs. Here, one finds that for the design matrix when X = 1 and X = (1 x), the
second design has the least norm and the first design has the minimum norm for the
case of two dimensional design. Finally, concerning Bayes risk, one notes in both of
four and five points, the first and third design achieve the minimum Bayes risk for
X = 1 and X = (1 x) respectively. But for the two dimensional design case, the
third design for five points has the least risk while in the previous case of four pairs
points it was in general the first design has the minimum risk.

4.2 The influence of scaling on the design points

We investigate here the effect of the scaling on the design points. By doing so, one
can note the changing of the eigenvalues and norms of the interested matrices in our
system. These are the distance matrix D, covariance structure matrix J and the
decomposed matrix K ′JK. Let one considers the covariance structure matrices have
the forms J = I − exp (−|D|) and J = exp (−|D|). For this purpose, assume the
second design (regular case) with four points in the interval [0, 1] as it has mentioned
before. This design sites shall be studied with one and two dimensional designs, i.e.
X = (1 x) and X = (1 x1 x2) respectively. Here only the Euclidean distance is
used for the two dimensional design. By multiplying the points vector with scalers



68 Comparison of designs and a practical example

such as 10 and 100. One can move the sites of these design through three intervals,
(0, 1), (1, 10) and (10, 100). For these three cases the norms and the eigenvalues of
matrices D, J and K ′JK are given in Table 4.

Designs Eig.(D) ; Cov. function ‖ D ‖ ‖ J ‖ ‖ K′JK ‖
Eig.(J) ; J = I − exp(−|D|)

1-(0.1,0.4,0.7,1) -1.0243,-0.3487,-0.1757,1.5487 1.5487 1.8741 0.8226
-1.8741, 0.3191,0.7267,0.8282

2-(1,4,7,10) -10.2426, -3.4868,-1.7574,15.4868 15.4868 0.0828 0.0732
-0.0828,-0.0285,0.0329,0.0784

3-(10,40,70,100) -102.4264,-34.8683,-17.5736,154.8683 154.8683 1.5141e-013 1.4036e-013
-0.0000,-0.0000 ,0.0000,0.0000

1-(0.1,0.4,0.7,1) -1.1017,-0.7178,-0.3271,2.1467 2.1467 1.5283 0.7037
(0.7333,0.2,0.4667,1) -1.5283, 0.3288,0.4901,0.7094

2-(1,4,7,10) -11.0172,-7.1784,-3.2711,21.4668 21.4668 0.0185 0.0162
(7.333,2,4.667,10) -0.0185,-0.0001,0.0004,0.0182

3-(10,40,70,100) -110.1719,-71.7845,-32.7112,214.6675 214.6675 3.6902e-018 3.0750e-018
(73.33,20,46.67,100) -0.0000,-0.0000,0.0000,0.0000

Designs eig.(D) ; Cov. function ‖ D ‖ ‖ J ‖ ‖ K′JK ‖
eig.(J) ; J = exp(−|D|)

1-(0.1,0.4,0.7,1) -1.0243,-0.3487,-0.1757,1.5487 1.5487 2.8741 0.2841
0.1718,0.2733,0.6809,2.8741

2-(1,4,7,10) -10.2426,-3.4868,-1.7574,15.4868 15.4868 1.0828 0.9727
0.9216,0.9671,1.0285,1.0828

3-(10,40,70,100) -102.4264,-34.8683,-17.5736,154.8683 154.8683 1.0000 1.0000
1.0000,1.0000,1.0000,1.0000

1-(0.1,0.4,0.7,1) -1.1017,-0.7178,-0.3271,2.1467 2.1467 2.5283 0.2963
(0.7333,0.2,0.4667,1) 0.2906,0.5099,0.6712,2.5283

2-(1,4,7,10) -11.0172,-7.1784,-3.2711,21.4668 21.4668 1.0185 0.9838
(7.333,2,4.667,10) 0.9818,0.9996,1.0001,1.0185

3-(10,40,70,100) -110.1719,-71.7845,-32.7112,214.6675 214.6675 1.0000 1.0000
(73.33,20,46.67,100) 1.0000,1.0000,1.0000,1.0000

Table 4: Eigenvalues and norms of some matrices show the influence of the scaling
on the design points.

One can note that the eigenvalues of matrix J are all positive while for matrix
D all negative except one is positive as it has been mentioned before. Moreover, one
can see how the norm of the covariance structure matrix J is convergent to one when
the distance between the sites becomes larger while this norm has its maximum in
the first interval case when the distances between the sites lie in the interval [0, 1].
This is one of the important aspect of the exponential function effecting on the dis-
tances between the positions of the points. It can be seen that ‖ K ′JK ‖ is always
less than ‖ J ‖, too, which is what Poincare’s separation theorem has asserted.
Furthermore, the difference between the outcomes of ‖ K ′JK ‖ for the one and two
dimensional designs are very near to each other compared to the outcomes of ‖ J ‖.
For example, for the covariance structure exp(−|D|) in the first case, the difference
is 0.2963− 0.2841 = 0.0122 while for norm of matrix J is 2.8741− 2.5283 = 0.3458,
the same thing for the first covariance model. Anyway, ‖ K ′JK ‖ is also convergent
to one when the design points scaled by a high number such 100, as it is shown in
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the third case. But in such case, the rounding errors play a rule to realize when
exactly the norm of matrix J would be equal one or equal the size of this matrix.
For this reason, one might expect for the third case of the model exp(−|D|) above
that ‖ J ‖> 1 and ‖ K ′JK ‖< 1 or very near to one. This can be noted for the first
covariance model, where (1.5141e−013) is a little bigger than (1.4036e−013) but both
near to zero.

It is clear that the norm of the covariance structure matrix J lies between the size
of this matrix and one. This happens when the distance matrix D is multiplied by
scalers which are small and big enough. In the first case, the spectral norm (largest
singular value) of matrix J would be convergent to the size of the this matrix while
in the second case when the scaler is big enough, the norm would be convergent
to one. Let four sites of the observations (n = 4) in one dimensional design and
consider two scalers such as z11 (small enough) and z22 (big enough), therefore one
can write that

J = exp(−|z11D|) z11 →0−−−−→




1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1




J = exp(−|z22D|) z22 →∞−−−−−→




1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1




For that, suppose the design of sites x = (0.2; 0.3; 0.6; 0.8) and let z11 = 0.01,
z22 = 10, hence the distance matrix D and J = exp(−|D|) of these sites are given by

D =




0 0.1000 0.4000 0.6000
0.1000 0 0.3000 0.5000
0.4000 0.3000 0 0.2000
0.6000 0.5000 0.2000 0


 ; J =




1.0000 0.9048 0.6703 0.5488
0.9048 1.0000 0.7408 0.6065
0.6703 0.7408 1.0000 0.8187
0.5488 0.6065 0.8187 1.0000




Hence one finds that ‖ J ‖= 3.1493. By multiplying the distance matrix D men-
tioned above by z22 = 10 and z11 = 0.01, new matrices arise

z22D =




0 1.0000 4.0000 6.0000
1.0000 0 3.0000 5.0000
4.0000 3.0000 0 2.0000
6.0000 5.0000 2.0000 0


 ; z11D =




0 0.0100 0.0400 0.0600
0.0100 0 0.0300 0.0500
0.0400 0.0300 0 0.0200
0.0600 0.0500 0.0200 0


 .

Assume that J1 = exp(−|z22 ∗D|) and J2 = exp(−|z11 ∗D|). Now, one gets
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J1 =




1.0000 0.3679 0.0183 0.0025
0.3679 1.0000 0.0498 0.0067
0.0183 0.0498 1.0000 0.1353
0.0025 0.0067 0.1353 1.0000


 ; J2 =




1.0000 0.9900 0.9608 0.9418
0.9900 1.0000 0.9704 0.9512
0.9608 0.9704 1.0000 0.9802
0.9418 0.9512 0.9802 1.0000


 .

From that one gets ‖ J1 ‖= 1.3758 which is smaller than the norm of matrix J
and near to one. On the other hand, ‖ J2 ‖= 3.8973, is clearly bigger than ‖ J ‖ and
in the same time near to the size of matrix J which is in this case equal four (n = 4).

4.3 The influence of the covariance structure on the best
design

The aim here is to study the four designs which has been concentrated on in the first
subsection (4.1) but with other covariance structure functions, through that one can
note the influence of covariance structure on the design or on the best design which
has supplied the minimum bayes risk. For this purpose, some covariance structures
are presented here which have appeared in some references such exp(−|D|) which
has been used by Putter and Young (2001). They used the form θ1 exp(−θ2|D|),
where we fix θ2 = 1 in our system. One can use also the function exp(−|D2|) which
has been handled by Schmidt and O’Hagan (2003) and Lee et al. (2004). They used
exp(−βD2), where β can be fixed as a constant such 1/2a, where a is stands for
the range as they have mentioned. Also the function J = (D)−1 used here which
has been introduced in Davis (1986) as a distance weighting functions in contouring
programs. Last type of covariance structure handled here is (I+D2)−1, this function
is a special case of the model (I + Dα)−β, 0 < α < 2 , β > 0, which was presented
by Gneiting and Schlather (2004). Tables 5 and 6 show the corresponding results
of using these covariance structures with the four designs of four points considered
before in cases of stationary, one and two dimensional designs.
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Table 5: Some covariance structures with four point designs in two cases of regressor functions.
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Designs D type Cov. function ‖ D ‖ Eig.(J) ‖ J ‖ ‖ K′JK ‖ Bayes risk

1 exp(−|D|) 2.4632 0.3725,0.5881,0.6933,2.3461 2.3461 0.3735 0.0112
2 L2 2.1467 0.2906,0.5099,0.6712,2.5283 2.5283 0.2963 0.0028
3 2.0500 0.2721,0.4676,0.6661,2.5941 2.5941 0.2845 0.0021
4 1.4923 0.1281,0.2226,0.6582,2.9910 2.9910 0.1328 2.4593e-006

1 exp(−|D2|) -0.2706,-0.1823,0.0164,0.9495 0.9495 0.0144 1.5743e-013
2 -0.3066,-0.1602,-0.0118,1.3642 1.3642 0.0147 1.7966e-013
3 = -0.3165,-0.1249,-0.0401,1.5185 1.5185 0.0371 2.7740e-010
4 -0.5694,-0.0347,-0.0104,2.4151 2.4151 0.0131 1.4042e-006

1 D−1 -2.4546,0.4060,-1.1089,-0.8666 2.4546 2.4509 3.2857e+014
2 -3.0571,0.4658,-1.3931,-0.9077 3.0571 3.0199 2.1806e+018
3 = 0.4878,-0.9149,-1.5779,-3.0938 3.0938 3.0103 1.9096e+018
4 -7.2466,-3.9838,0.6701,-0.9064 7.2466 7.1744 5.7358e+033

1 (I + D2)−1 0.8577,0.1415,0.5515,0.4289 0.8577 0.8567 0.4348
2 0.1783,0.9033,0.6599,0.4517 0.9033 0.8960 0.6761
3 = 0.1922,0.4557,0.7135,0.9054 0.9054 0.8904 0.6300
4 0.3099,0.4510,0.9407,0.9813 0.9813 0.9752 2.3658

1 I − exp(−|D|) -1.3461,0.3067,0.4119,0.6275 1.3461 0.6265 0.1072
2 -1.5283,0.3288,0.4901,0.7094 1.5283 0.7037 0.1569
3 = -1.5941,0.3339,0.5324,0.7279 1.5941 0.7155 0.1664
4 -1.9910,0.3418,0.7774,0.8719 1.9910 0.8672 0.4841

1 exp(−|D|) 3.1270 0.3744,0.7151,0.8024,2.1081 2.1081 0.3760 0.0117
2 L1 2.8771 0.3870,0.6163,0.7743,2.2225 2.2225 0.3940 0.0151
3 2.7406 0.3296,0.5797,0.7709,2.3198 2.3198 0.3539 0.0083
4 2.0804 0.1774,0.2844,0.7857,2.7525 2.7525 0.1840 0.0001

1 exp(−|D2|) -0.2236,-0.1819,0.0890,0.4514 0.4514 0.0804 1.5841e-007
2 -0.2065,-0.1250,0.0205,0.6115 0.6115 0.0077 1.0958e-015
3 = -0.2111,-0.0894,-0.0284,0.7596 0.7596 0.0192 1.4917e-012
4 -0.6126,-0.0352,-0.0067,1.5920 1.5920 0.0095 2.2719e-006

1 D−1 -3.7051,0.3198,-0.7832,-0.6328 3.7051 3.6802 8.1453e+021
2 -2.2237,0.3476,-1.0521,-0.6771 2.2237 2.1951 2.9628e+012
3 = 0.3649,-2.4467,-1.1594,-0.6805 2.4467 2.3660 7.3249e+013
4 0.4807,-0.6443,-3.0012,-5.1248 5.1248 5.0733 4.3544e+027

1 (I + D2)−1 0.9321,0.0928,0.3802,0.2860 0.9321 0.9271 1.0399
2 0.8318,0.1078,0.5254,0.3144 0.8318 0.8238 0.3240
3 = 0.8569,0.5734,0.1175,0.3165 0.8569 0.8342 0.3532
4 0.1877,0.2933,0.9001,0.9633 0.9633 0.9559 1.6622

1 I − exp(−|D|) -1.1081,0.1976,0.2849,0.6256 1.1081 0.6240 0.1058
2 -1.2225,0.2257,0.3837,0.6130 1.2225 0.6060 0.0960
3 = -1.3198,0.2291,0.4203,0.6704 1.3198 0.6461 0.1185
4 -1.7525,0.2143,0.7156,0.8226 1.7525 0.8160 0.3048

1 exp(−|D|) 2.1997 0.4334,0.5004,0.6116,2.4546 2.4546 0.4464 0.0282
2 Lmax 1.8738 0.2334,0.4676,0.6257,2.6733 2.6733 0.2424 0.0007
3 1.7756 0.2439,0.3811,0.6457,2.7293 2.7293 0.2567 0.0011
4 1.2031 0.0923,0.2092,0.5684,3.1301 3.1301 0.0967 5.2944e-007

1 exp(−|D2|) -0.2263,-0.1248,-0.0840,1.2388 1.2388 0.0869 2.0629e-007
2 -0.3182,-0.1657,-0.0187,1.7550 1.7550 0.0207 2.7479e-012
3 = -0.3871,-0.0995,-0.0322,1.9265 1.9265 0.0418 7.0438e-010
4 -0.4616,-0.0373,-0.0073,2.8544 2.8544 0.0107 1.0208e-005

1 D−1 0.4546,-1.0670,-1.4325,-1.7718 1.7718 1.7182 6.9800e+007
2 -3.8959,0.5337,-1.5494,-1.0291 3.8959 3.8201 3.8068e+022
3 = 0.5632,-0.9950,-2.0314,-3.5933 3.5933 3.4539 5.9818e+020
4 -10.2276,-4.2706,0.8312,-1.1478 10.2276 10.1211 6.2631e+039

1 (I + D2)−1 0.1713,0.5324,0.6724,0.7584 0.7584 0.7413 0.1900
2 0.2217,0.5144,0.7059,0.9382 0.9382 0.9276 0.8992
3 = 0.2408,0.4975,0.8049,0.9281 0.9281 0.9122 0.8374
4 0.4086,0.5685,0.9480,0.9905 0.9905 0.9853 2.8798

1 I − exp(−|D|) -1.4546,0.3884,0.4996,0.5666 1.4546 0.5536 0.0699
2 -1.6733,0.3743,0.5324,0.7666 1.6733 0.7576 0.2078
3 = -1.7293,0.3543,0.6189,0.7561 1.7293 0.7433 0.1920
4 -2.1301,0.4316,0.7908,0.9077 2.1301 0.9033 0.7430

Table 6: Some covariance structures with four point designs of three types of distance
measures in two dimensions.
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For these cases one can see that the first design has also the minimum norm
of matrix J in case the covariance structures contain exponential function such as
exp(−|D|) and exp(−|D2|). Therefore, these models with I− exp(−|D|) assert that
the design which has maximum norm of matrix D would has minimum norm for
covariance structure matrix J . The models exp(−|D|) and (I + D2)−1 have all pos-
itive eigenvalues while the model D−1 has all negative eigenvalues except one. It is
clear from this that if the ‖ K ′JK ‖ is less than one then ‖ K ′JK

⊗
K ′JK ‖ is also

less than one and if the first is greater than one, the second one also would be so.
By the way, the minimum norm of the decomposed matrix K ′JK is obtained from
the case of the covariance structure exp(−|D2|), the model D−1 gives maximum
norm of matrix J , K ′JK and K ′JK

⊗
K ′JK where it is greater than one most of

time. Furthermore, for this model the design which has the minimum norm for the
matrices J and K ′JK is the same design which has minimum Bayes risk. On the
other hand, the model (I +D2)−1 achieves always ‖ J ‖ and ‖ K ′JK ‖ less than one,
in other word this model satisfies always the convergence condition of the infinite
series matrices.

Regarding Bayes risk, the models D−1 and exp(−|D2|) gives the maximum val-
ues for Bayes risk while the covariance structures I − exp(−|D|), exp(−|D|) and
(I + D2)−1 achieve minimum values and their outcomes of Bayes risk are near each
other. In case of the design matrix X = 1, all the covariance structures except the
model D−1 support that the first design has the minimum Bayes risk, therefore this
design is the best one in this case and one can see that this design has a stable be-
havior with different covariance structures. The same thing is repeated with the case
X = (1 x) but this time the third design gives the minimum Bayes risk. Concern
the case X = (1 x1 x2), the Euclidean distance L2 gives for most of the covariance
models the first design with minimum Bayes risk which was the same also with the
model I − exp(−|D|) in the first subsection. While for the city-block (L1) and Lmax

distance measures, most the models achieve the second and first design to be the
best with minimum Bayes risk respectively.

Now one can consider again these four designs which have presented in first sub-
section but with five points. Since the covariance structure models I − exp(−|D|),
exp(−|D|) and (I + D2)−1 have supplied similar results regarding minimum Bayes
risk, these three models shall be now considered. Tables 7 and 8 give the results of
these covariance models for the designs with five points.
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Designs Matrix X Cov. function ‖ D ‖ ‖ J ‖ ‖ K′JK ‖ Bayes risk

1-x=(0.1,0.2125,0.3250,0.8875,1) X = 1 exp(−|D|) 2.0160 3.5674 1.0747 5.5442e+005
2-x=(0.1,0.3250,0.5500,0.7750,1) 1.8648 3.6270 0.7895 6.6348
3-x=(0.1,0.5050,0.5500,0.5950,1) 1.6793 3.8740 0.5998 11.3032
4-x=(0.3250,0.4250,0.5250,0.6250,1) 1.3451 4.0183 0.6057 4.3306

1 X = 1 I − exp(−|D|) 2.0160 2.5674 0.9264 2.6785
2 1.8648 2.6270 0.8765 11.2874
3 1.6793 2.8740 0.9704 9.5247
4 1.3451 3.0183 0.9420 8.2532

1 X = 1 (I + D2)−1 2.0160 0.9945 0.9944 2.5516
2 1.8648 0.9845 0.9842 4.7575
3 1.6793 0.9991 0.9991 5.9034
4 1.3451 0.9966 0.9966 3.5895

1 X = (1 x) exp(−|D|) 0.2026 161.0905
2 = = 0.3062 42.4556
3 0.4666 4.2905
4 0.2545 58.2566

1 X = (1 x) I − exp(−|D|) 0.9259 4.8422
2 = = 0.8455 7.1271
3 0.9704 2.1617
4 0.9418 3.2463

1 X = (1 x) (I + D2)−1 0.9942 0.1133
2 = = 0.9743 0.9785
3 0.9991 1.4274
4 0.9965 0.3877

Table 7: Three covariance structures with five point designs in two cases of regressor
functions.
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Designs ; L2 for D Cov. function ‖ D ‖ ‖ J ‖ ‖ K′JK ‖ Bayes risk

1− x1 = (0.1, 0.2125, 0.3250, 0.8875, 1) exp(−|D|) 3.0499 2.9478 0.3993 69.3032
x2 = (0.3775, 0.8962, 0.17, 0.2737, 1)
2− x1 = (0.1, 0.3250, 0.5500, 0.7750, 1) 2.6446 3.1486 0.2762 941.7829
x2 = (0.5850, 0.7925, 0.17, 0.3775, 1)
3− x1 = (0.1, 0.5050, 0.5500, 0.5950, 1) 2.3741 3.3839 0.4087 21.4041
x2 = (0.5850, 0.6265, 0.17, 0.5435, 1)
4− x1 = (0.3250, 0.4250, 0.5250, 0.6250, 1) 1.6771 3.7067 0.1679 1.4884e+003
x2 = (0.5075, 0.6075, 0.17, 0.3075, 0.4075)

1 I − exp(−|D|) 3.0499 1.9478 0.7690 19.9829
2 2.6446 2.1486 0.7740 137.7259
3 2.3741 2.3839 0.8931 3.8205
4 1.6771 2.7067 0.8768 38.2191

1 (I + D2)−1 3.0499 0.9459 0.9457 2.7255
2 2.6446 0.9481 0.9481 3.1666
3 2.3741 0.9885 0.9883 1.3632
4 1.6771 0.9848 0.9842 0.1459

Designs ; L1 for D Cov. ‖ D ‖ ‖ J ‖ ‖ K′JK ‖ Bayes risk

1 exp(−|D| 3.8491 2.6587 0.3505 3.7486e+003
2 3.5123 2.7656 0.3513 1.7276e+003
3 3.1001 3.1265 0.4306 24.6477
4 2.1419 3.4224 0.2242 2.8029e+003

1 I − exp(−|D|) 3.8491 1.6587 0.6723 1.2382e+003
2 3.5123 1.7656 0.6824 550.7681
3 3.1001 2.1265 0.8457 6.2297
4 2.1419 2.4224 0.8063 238.2867

1 (I + D2)−1 3.8491 0.9690 0.9675 1.3350
2 3.5123 0.9105 0.9002 15.1345
3 3.1001 0.9743 0.9720 1.7296
4 2.1419 0.9615 0.9521 3.4363

Designs ; Lmax for D Cov. ‖ D ‖ ‖ J ‖ ‖ K′JK ‖ Bayes risk

1 exp(−|D| 2.7217 3.0913 0.5137 13.0178
2 2.3198 3.3406 0.3019 52.3366
3 2.0745 3.5224 0.4067 17.6324
4 1.5378 3.8137 0.1444 612.9243

1 I − exp(−|D|) 2.7217 2.0913 0.8377 5.0844
2 2.3198 2.3406 0.9133 3.8542
3 2.0745 2.5224 0.9250 2.6537
4 1.5378 2.8137 0.9276 5.5254

1 (I + D2)−1 2.7217 0.9814 0.9799 1.6390
2 2.3198 0.9993 0.9992 0.5932
3 2.0745 0.9951 0.9948 1.2186
4 1.5378 0.9962 0.9961 0.0305

Table 8: Three covariance structures and some distance measure with five point
designs in two dimensions.

For these outcomes, one can note the same properties which were achieved for
the case with four points. For example, the models exp(−|D|) and I − exp(−|D|)
give also the first design as the minimum norm of matrix J and in the same time the
last design is the minimum norm of matrix D. The model (I + D2)−1 gives always
the norm of matrix J less than one, so the matrices K ′JK and K ′JK

⊗
K ′JK

have always norm or maximum eigenvalues less than one according to Poincare’s
separation theorem. The covariance structure exp(−|D|) supplies large values for
Bayes risk comparing with the other two models. Anyway, the model I− exp(−|D|)
in the cases X = 1 and X = (1 x) achieves that the first and third designs are the
best with respect to minimum Bayes risk, like in the case of four points. But for the
case of two dimensions, it has shown for the case of four points that the first design
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in two types of distance measures has minimum Bayes risk, while here all the three
distance measures give the third design with least Bayes risk. Hence, for the cases
X = 1 and X = (1 x), two from these covariance models achieve that the first and
third design have minimum Bayes risk respectively. While for the two dimensional
case, also two from these covariance structures support that the third design has
the minimum Bayes risk. So one might consider for the case of X = 1 that the first
design as the best while for the case of X = (1 x) and two dimensional designs the
third design as the best concerning achieving the minimum Bayes risk.

Example 4.1. Consider two dimensional designs with four points in the interval
[1, 15]2, these points compose some geometrical forms (rectangular, square, trian-
gular, kite, and trapezoid ) as it is shown in the Figure 6 below. The summa-
tion of all the axes coordinates of these designs are equal to (40), for instance,
x1 = (1, 12, 1, 12),x2 = (1, 1, 6, 6), which is 1 + 12 + 1 + 12 + 1 + 1 + 6 + 6 = 40 and
so on. Suppose the covariance structure matrix is J = exp(−|D|), where D is the
distance matrix in the metric space and for the prior information let C = I2×2. Here
three types of distance measures (Euclidean, city block L1 norm and Lmax norm)
are considered for the purpose of comparing the outcomes of these designs. The
outcomes are shown in Table 9.

0 5 10 15
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5

10

15
rectangular
square
triangular
kite
trapezoid

, 0 5 10 15
0
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trapezoid

Figure 6: Some geometrical shapes are formed by four points.
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D and design shape Designs ‖ D ‖ ‖ J ‖ ‖ K′JK ‖ ‖ K′JK
N

K′JK ‖ Bayes risk

L2: rectangular 1-x1=(1, 12, 1, 12) 28.0830 1.0068 0.9933 0.9865 3.3805
x2=(1 , 1,6, 6)

square 2-x1=(1, 9, 1, 9) 27.3137 1.0007 0.9993 0.9987 3.8362
x2=(1, 1, 9, 9)

triangular 3-x1=(6, 1, 6, 8) 16.0727 1.1360 0.8764 0.7680 0.5341
x2=(1, 6, 6, 6)

kite 4-x1=(2, 6, 10, 6) 21.5661 1.0199 0.9811 0.9625 2.6369
x2=(2.5, 10, 2.5, 1)

trapezoid 5-x1=(1, 3, 9, 11) 19.2538 1.0606 0.9462 0.8954 1.4195
x2=(5, 3, 3, 5)

L1: = 1 32.0000 1.0068 0.9932 0.9865 3.3801
= 2 32.0000 1.0007 0.9993 0.9987 3.2325
= 3 18.7761 1.1358 0.8764 0.7680 0.5364
= 4 26.0141 1.0060 0.9946 0.9892 3.4884
= 5 22.1421 1.0197 0.9820 0.9644 2.7287

L∞: = 1 27 1.0068 0.9933 0.9866 3.3812
= 2 24 1.0010 0.9997 0.9993 3.3503
= 3 14.6611 1.1363 0.8764 0.7680 0.5352
= 4 20.2133 1.0261 0.9750 0.9507 2.3821
= 5 18.1980 1.1369 0.8790 0.7727 0.5505

Table 9: Outcomes of some geometrical shapes of four point designs in two dimen-
sions with some type of distance measures.

From these outcomes clearly the third design which represents the triangular
case has the minimum Bayes risk and minimum norm of matrices D, K ′JK and
K ′JK

⊗
K ′JK. The minimum norm for the covariance matrix J is obtained in the

second case (square shape) and very near to the first one (rectangular shape). These
results are valid for all three types of the distance measures. Bayes risk achieved by
using these distance types are very near to each other and the least one is given in
case of Euclidean distance (L2 norm). For the norm of the distance matrix D, one
can note that the L∞ distance achieves the least one since this kind of distance takes
only the maximum difference of the distance values between the pairs of the designs
points. On the other hand, the norms of matrices J , K ′JK and K ′JK

⊗
K ′JK for

all three metric distances are very near to each other. ¤

4.4 Prior knowledge about the parameters

The parameter of interest in the survey is the value of the probability p. Con-
ceivable, this could be any value in the interval (0, 1). From Bayesian viewpoint
a person expresses one’s belief about the location of population probability, before
observing any data, by means of probability density which called a prior density,
since it reflects a person’s beliefs prior to observing survey data. To illustrate such
a prior density in inference, consider a person who has little knowledge about this
parameter. For this individual all values of the probability p between 0 and 1 may
be equally approved a priori. To deal with this information about p, this person’s
prior beliefs may be summarized by a uniform density on the unit interval; that is

g(p) = 1, 0 < p < 1,
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as in Figure 7 (left). This density might be summarized by computing probabil-
ity or area under the density. This prior is often called vague or noninformative
since it reflects a lack of prior information about the value of the parameter.

A second person may have more precise beliefs about the location of the parame-
ter’s value. Suppose this person believes or has some information about the location
of the parameter. For this person, the prior density for p might be concentrated on
small values in the area. One density that might represent this prior information is
displayed in Figure 7 (right). One notes that most of the mass of this density lies
between 0 and 0.7. Such a prior is called an informative prior. See Johnson and
Albert (1999).
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Figure 7: Two prior densities,(left) uniform reflects vague prior beliefs and(right)
informative density reflects prior some beliefs.

For purpose of dealing with prior knowledge, let us consider here some prior
information about the parameters. Jeffrey (1961) has given a famous rule based on
the invariance of a transformation of the parameters. According to this approach,
Koch (1990) has given the noninformative prior density function for the variance σ2

as follows

p(σ2) ∝ 1

σ2
with 0 < σ2 < ∞.

In this context, we have given a prior information in Section 2 (Eq.(3.2.12)) ac-
cording to noninformative Jeffrey’s prior. The uniform distribution which represents
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noninformative prior has considered and has obtained the matrix

C =

(
ϕ2

1+ϕ1ϕ2+ϕ2
2

3
(ϕ1+ϕ2)(ϕ3+ϕ4)

4
(ϕ1+ϕ2)(ϕ3+ϕ4)

4

ϕ2
3+ϕ3ϕ4+ϕ2

4

3

)
(4.4.1)

where ϕ1 ≤ θ1 ≤ ϕ2 and ϕ3 ≤ θ2 ≤ ϕ4. The square root of this matrix represents
the prior information as it has mentioned before. By the way, the square root of
the symmetric matrix has been calculated by using Matlab program. Assume that
0 ≤ θ1 ≤ 2.5 and 0 ≤ θ2 ≤ 0.5, one gets the following prior matrix C with its square
root matrix R

C =

(
2.0833 0.3125
0.3125 0.0833

)
, R =

(
1.4309 0.1896
0.1896 0.2177

)
.

One can also consider the diagonal matrix of C as a prior knowledge matrix, i.e.

C =

(
ϕ2

1+ϕ1ϕ2+ϕ2
2

3
0

0
ϕ2

3+ϕ3ϕ4+ϕ2
4

3

)
. (4.4.2)

So for the last prior information matrix C, one gets the follows diagonal square root
matrix

R =

(
1.4434 0

0 0.2887

)
.

In this context, Berger and Bernardo(1989) and Datta and Ghosh(1996) have
considered two independent normal random variables X1 and X2 with unit variances
and means µ1(> 0) and µ2(> 0), respectively. They have given the prior matrix of
the parameterization θ1 = µ1µ2 and θ2 =

√
(µ2/µ1) as follows

R =

(
θ2
2+θ−2

2

4θ1

θ2(1−θ−4
2 )

2
θ2(1−θ−4

2 )

2
θ1(1 + θ−4

2 )

)
. (4.4.3)

Assume for that, µ1 = 2.5 and µ2 = 0.5 then from Eq. (4.4.3) above one obtains that

R =

(
1.6250 −5.3666
−5.3666 32.5000

)
.

Another kind of the prior knowledge which has presented by Stein(1987). He
has supposed gaussian process which has semivariogram and has shown that

var(θ̂1) ∼ (2θ2θ
3
1/r)

1/24N−1/2, var(θ̂2) ∼ 2θ2
2N

−1 and cov(θ̂1, θ̂2) ∼ −2θ1θ2N
−1,

(4.4.4)
where N is the number of the observations and r stands for the rank of design matrix
X. Hence, when one considers a design with four sites i.e. N = 4 and regression
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functions in cases r = 1, r = 2 and r = 3, these correspond to X = 1, X = (1 x)
and X = (1 x1 x2) respectively. Suppose that θ1 = 2.5 and θ2 = 0.5, so one gets
from Eq. (4.4.4) for r = 1, r = 2 and r = 3 the following matrices,

(
7.9057 −0.6250
−0.6250 0.1250

)
,

(
5.5902 −0.6250
−0.6250 0.1250

)
,

(
4.5644 −0.6250
−0.6250 0.1250

)

respectively. Let us denote for the square root matrix R obtained from Eq.
(4.4.1) and Eq. (4.4.2) by pr(1) and pr(2) respectively. Also pr(3) for the prior
matrix corresponds to Eq. (4.4.3) and pr(4) for the prior matrices achieved from
Eq. (4.4.4). Table 10 shows the results corresponding to the first design of four
points case, which is x1 = (0.1, 0.25, 0.85, 1) with covariance structure exp(−|D|)
for these four types of the prior information.

Designs Matrix X Prior Distance kind Bayes risk

1-x=(0.1,0.25,0.85,1) X = 1 pr(1) one dimension 1.0966e+005
pr(2) 2.9635e+006
pr(3) 7.9335e+013
pr(4) 2.7134e+007

X = (1 x) pr(1) one dimension 1.1441e+004
pr(2) 2.9895e+005
pr(3) 4.8211e+019
pr(4) 9.6211e+008

1-x1=(0.1,0.25,0.85,1) X = (1 x1 x2) pr(1) Euclidean distance 2.0333
x2=(0.8667,0.2,0.3333,1)

pr(2) 44.7514
pr(3) 1.3492e+015
pr(4) 0.0324

pr(1) L1 distance 1.9453
pr(2) 42.4271
pr(3) 1.3349e+015
pr(4) 0.0523

pr(1) Lmax distance 0.5399
pr(2) 9.6796
pr(3) 9.6586e+014
pr(4) 9.2411

Table 10: Some prior information with the first design of four points.

One notes that the first prior type achieves the minimum Bayes risk compared to
the other prior knowledge in case the regressor functions are in the one dimensional
designs but its results are very near to the second prior type, both of them based
on Jeffrey’ prior. On the other hand, for the case of two dimensional designs, one
can note that the first and fourth type of these priors give the least Bayes risk. The
third type gives in all these cases bigger results compared to the other. Furthermore,
these prior information achieve Bayes risk for case of two dimensional designs less
than the other cases of one dimensional designs except the third prior type.
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4.5 A practical example

It is nice to find applications where one could handle with the theoretical formulas of
any mathematical model. Hence, we turn now to apply our procedure of estimating
spatial covariance components through using a real data, these data describe the
pH measurements at 38 sites in Lower Saxony precipitation network in Germany for
April 1987. Berke(1998) has used this data with the exponential variogram model,
the model components are used to interpret the spatial variation of the process. He
has dealt with restricted maximum likelihood (REML) to find the estimations of
the spatial parameters.

It is interesting to find such estimations of these parameters by using our sys-
tem (BAIQUE), furthermore, to compare the results with REML results which
appeared in Berke’s article. In our model the parameter θ1 corresponding to the sill
and θ2 to the nugget effect which are famous largely in spatial statistics, moreover
the variance is σ2 = θ1 + θ2. According to the covariance function which Berke
has used in his model, we consider the covariance structure function in the form
J = exp(−|0.4 ∗D/0.1|), where 0.1 stands for the range of the spatial pH phenom-
ena which it regards here as a constant. REML estimates which have found in his

work are (θ̂1, θ̂2) = (0.4, 0.07), hence σ2 = (θ̂1 + θ2) = 0.47. Therefore, one can use
some prior information about the parameters θ1 and θ2, for this purpose, one can
consider Jeffrey’s prior when the parameters are independent. Hence, corroding to
the outcomes of REML, let us suppose the prior information matrix as a diagonal,
such as

(
0.3 0
0 0.05

)
.

Doing that, since the number of observations in our data here is n = 38, one has to
solve the equations system of size 1446× 1446. For this equations system BAIQUE
has given the following outcomes for this data

(θ̂1 + θ2, θ̂1, θ̂2) = (0.5014, 0.4618, 0.0395).

While their Bayes risk are

(0.0114, 0.0172, 0.0013),

respectively. Table 11 shows the results of our procedure BAIQUE and REML which
has found by Berke. Moreover, we have computed some other methods to find their
estimators corresponding to the same data, through that one can compare the results



82 Comparison of designs and a practical example

of these methods with our procedure. For this aim, we have computed maximum
likelihood estimation of spatial covariance parameter which has been dealt by Eulo-
gio Pardo-Iguzquiza (1998) and Pardo-Iguzquiza and Dowd (1998). Also MINQUE
(minimum norm quadratic unbiased estimator) has computed for this data. This
approach has been used by Sultan and Quassim (1997) as well. Another procedure
deals with minimum mean square which has found by LaMotte (1973). This proce-
dure considers the translation invariant unbiased estimator of variance components.
We have also calculated here the corresponding results of this procedure for this
data. The other methods which have calculated here were introduced by Volau-
fova and Witkovsky (1991). These methods are LBIMSE which stands for locally
best-MSE and invariant estimator, OLS which represents ordinary least squares es-
timator and finally, MLSE denotes modified least squares estimator.

For that, the outcomes of these methods are shown in the Figures 8 and 9. These

figures show three estimated values θ̂1, θ̂2 and (θ̂1 + θ2) of each method. In each
figure the outcomes obtained by BAIQUE and also the empirical variance (which
is 0.4982) of the data observations are given. The number of data observations are
(n = 38) as mentioned before. One can note from that, that BAIQUE gives very near
estimates to the empirical variance of the data, see figure (8), also both of BAIQUE
and REML achieve very similar estimates compared to the other procedures. In
the second class, one can diagnose that MLSE, OLS and MINQUE have similar
results. While the estimates of LBIMSE ML and LaMotte(1973) are farther from
the real variance of the data and thus also farther from the estimates obtained by
BAIQUE and REML. Finally, we mention again that we have used Matlab program
to calculate the outcomes.

Method type θ̂1 θ̂2 ̂θ1 + θ2 Empirical variance

BAIQUE 0.4618 0.0395 0.5014 0.4982

REML 0.40 0.07 0.47 0.4982

MINQUE 0.6798 -0.0299 0.6499 0.4982

ML 0.6323 0.3340 0.8900 0.4982

LBIMSE 0.2305 0.1153 0.3458 0.4982

MLSE 0.4393 -0.0272 0.4121 0.4982

OLS 0.5136 0.0944 0.6080 0.4982

LaMotte(1973) 0.6056 0.3340 0.9396 0.4982

Table 11: Estimates are obtained by applying BAIQUE and other approaches for
pH data of Lower Saxony.
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Figure 8: Comparing BAIQUE and REML results with the estimators of other
methods.
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5 Appendices

5.1 Some properties of Kronecker product and vec opera-
tion

Definition 5.1. Let A = (a1| . . . |ap) ∈ Rp×p with ai ∈ Rp. The vec operation is
defined as

vec(A) =




a1

a2
...
ap


 .

And the Matp operation is defined as

Matp







a1

a2
...
ap





 = (a1|, . . . , |ap).

Definition 5.2. See Harville(1997). The Kronecker product of two matrices, say
an m × n matrix A = aij and a p × q matrix B = bij, is denoted by the symbol
A

⊗
B and is defined to be the mp×nq matrix expressible in the partitioned form as

A
⊗

B =




a11B a12B . . . a1nB
a21B a22B . . . a2nB

...
... . . .

...
am1B am2B . . . amnB


 .

Here some of properties of Kronecker product which are used in this work.

1) For any m×n matrix A, p×q matrix B, n×u matrix C and q×v matrix D. Then

(A
⊗

B)(C
⊗

D) = (AC)
⊗

(BD).

2) For any m-dimensional column vector a and n-dimensional vector b. Then

vec(ba′) = a
⊗

b and a
⊗

b′ = b′
⊗

a = ab′.

3) For any k scalers c1, c2, . . . , ck and for any k matrices A1, A2, . . . , Ak of the same
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size,

vec(
k∑

i=1

ciAi) =
k∑

i=1

civec(Ai).

4) If there are a matrix such A = (a1, a2, . . . , an) and identity matrix

In =




u′1
u′2
...

u′n




where aj denote the jth column of A and u′j is the jth row of the matrix In (j=1,. . . ,n),
then the matrix A can be written matrix as

A =
n∑

j=1

aju
′
j = a1u

′
1 + a2u

′
2 + . . . + anu′n.

Lemma 5.3. See Harville (1997) p.341. For any m× n matrix A, n× p matrix B,
and p× q matrix C,

vec(ABC) = (C ′ ⊗ A)vec(B).

Proof. Making use of the properties of Kronecker product, matrix B is expressible as,

B =

p∑
j=1

vju
′
j

where vj is the jth column of B and u′j is the jth row of Ip. Thus one can find out
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vec(ABC) = vec[A(

p∑
j

vju
′
j)C]

=

p∑
j

vec(Avju
′
jC)

=

p∑
j

[(C ′uj)
⊗

(Avj)]

=

p∑
j

(C ′ ⊗ A)(uj

⊗
vj)

=

p∑
j

(C ′ ⊗ A)vec(vju
′
j)

= (C ′ ⊗ A)vec(

p∑
j=1

vju
′
j)

= (C ′ ⊗ A)vec(B).

By using Matp operation which has defined before, one gets

Matp(vec(ABC) = Matp(C
′ ⊗ A · vec(B)) = ABC.

Lemma 5.4. Let V ,T ∈ Rp×p are symmetric matrices. Then it holds

Matp(T
⊗

T · vec(V )) = TV T,

where TV T is of dimension p× p symmetric matrix.

5) There are alternative expressions for the vec of the product AB of an m× n
matrix A and an n× p matrix B can be obtained as a special cases of Lemma (5.3)
which are as follows.
a)

vec(AB) = (Ip

⊗
A)vec(B).

b)

vec(AB) = (B′ ⊗ Im)vec(A).
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c)

vec(AB) = (B′ ⊗ A)vec(In).

6) For any m× n matrices A and B,

tr(A′B) = (vecA)′vecB.

5.2 Some aspects of generalized inverse matrices

A matrix has an inverse only if it is square, and even then only if it is nonsingular
or, in other word , if its columns (or row) are linearly independent. In recent years,
some kind of partial inverse of a matrix that is singular or even rectangular have
been needed in some numerous areas of applied mathematics. Let Am×n matrix
then a matrix A−

n×m is said to be a generalized inverse (or a g − inverse) of A if
AA−A = A. If A is square and nonsingular, then A−1 = A− is unique, otherwise, A
has infinitely many g − inverse.

In 1955 Penrose showed that, for every finite matrix A (square or rectangular) of
real or complex elements, there is a unique matrix X satisfying the four equations
(that we call the Penrose equations)

AXA = A, XAX = X, (AX)∗ = AX, (XA)∗ = XA,

where A∗ denotes the conjugate transpose of A. It is commonly known as the
Moore − Penrose inverse, and is often denoted by A+. If A is nonsingular, then
X = A−1 trivially satisfies the four equations and it follows that the Moore-Penrose
inverse of a nonsingular matrix is the same as the ordinary inverse. See Ben-Isreal
and Greville (2003).

Definition 5.5. (Schur complement), see (Searle(1982), p.261).
The matrix of the expression

S = D − CA−1B

which occurring in

(
A B
C D

)−1

=

(
A−1 0
0 0

)
+

(−A−1B
I

)
(D − CA−1B)−1

(−CA−1 I
)
.



88 Appendices

is called the Schur complement of matrix A in

(
A B
C D

)

when A is nonsingular. And for singular A, the matrix D − CA−B is said to the
generalized Schur complement relative to A−.

Lemma 5.6. See Ehrbar (2003) or Henderson and Searle (1981).
Given a m× n matrix A, a m× h matrix B, a k× n matrix C and k× h matrix D
satisfying AA−B = BD−D and DD−C = CA−A where D− is the Penrose inverse
of D. Then

(A + BD−C)− = A− − A−B(D + CA−B)−CA−.

Proof. Note: This lemma has proved by Ehrbar (2003) but in a short style, we give
here a detailed proof of this lemma.

Define E = D + CA−B, then it follows from the assumptions that

(A + BD−C)(A− −A−BE−CA−) = AA− −AA−BE−CA− + BD−CA− −BD−CA−BE−CA−

= AA− −BD−DE−CA− + BD−CA− −BD−CA−BE−CA−

= AA− + BD−(I −DE− − CA−BE−)CA−

= AA− + BD−(I − (D + CA−B)E−)CA−

= AA− + BD−(I −EE−)CA−.

Since that AA−(A + BD−C) = A + BD−C, we have to show that the second term
on the right hand side annuls (A + BD−C), indeed,

BD−(I − EE−)CA−(A + BD−C)
= BD−CA−A + BD−CA−BD−C −BD−EE−CA−A−BD−EE−CA−BD−C

= BD−DD−C + BD−CA−BD−C −BD−EE−DD−C −BD−EE−CA−BD−C

= BD−(D + CA−B − EE−D −EE−CA−B)D−C

= BD−(D + CA−B − EE−(D + CA−B))D−C

= BD−(E − EE−E)D−C

= BD−(E − E)D−C = 0.
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Then one can get ,

(A + BD−C)(A− −A−BE−CA−)(A + BD−C)
= AA−(A + BD−C) + BD−(I −EE−)CA−(A + BD−C)
= A + BD−C + 0.

Therefore,

(A + BD−C)− = A− − A−B(D + CA−B)−CA−.

Corollary 5.7. (Sherman-Morrison-Woodbury), see Ehrbar (2003) and Henderson
and Searle (1981).
Given a m × n matrix A, a m × 1 vector b satisfying AA−b = b, a n × 1 vector c
satisfying c′AA− = c′, and a scaler δ. If A− is a g-inverse of A, then

A− − A−bc′A−

c′A−b + δ
is a g − inverse of A +

bc′

δ

Lemma 5.8. Let Z ∈ Rp×p of rank r < p and idempotent matrix. Then there exists
K ∈ Rp×r such that Z = KK ′ and K ′K is nonsingular and K ′K = I. See searle
(1982), Lee et al. (1977) and Bapat (2000).

Proof. Note: We give here a detailed proof which has been combined from the above
references.

Since matrix Z is symmetric , there exist nonsingular orthogonal matrix P such
that

P ′ZP =

(
Ir 0
0 0

)
.

Which is equivalent to

Z = P

(
Ir 0
0 0

)
P ′,

where P ′ = P−1. So matrix P can be partitioned as

P = [Kp×r Wp×(p−r)].
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Since P is nonsingular orthogonal so its columns are linear independent. In partic-
ular, the r columns of K are linear independent and so rank(K)=r, (of course, with
Z being p× p of rank r, it is clear that r ≤ p, the number of row in K). So one has

Z = P

(
Ir 0
0 0

)
P ′

=
(
Kp×r Wp×(p−r)

) (
Ir 0
0 0

)(
K ′

r×p

W ′
(p−r)×p

)

=
(
Kp×r 0

) (
K ′

r×p

W ′
(p−r)×p

)

= Kp×rK
′
r×p

= Z ′.

Now since the columns of matrix K are linear independent, let K = [x1, x2, . . . , xr]
where x1, x2, . . . , xr are the eigenvectors of matrix Z corresponding to eigenvalues
λ1, λ2, . . . , λr respectively. Since that x′ixi = 1 and x′ixj = 0 (i 6= j), therefore one
gets K ′K = I.

5.3 Infinite series representation of the matrix inverse

Let A1, A2, . . . represent a sequence of m × n matrices, and for (i = 1, . . . , m, j =

1, . . . , n and k = 1, 2 . . .) let a
(k)
ij represent the ijth element of Ak. If for every i and

j there exists a scaler aij such that aij is the limit of the sequence a
(1)
ij , a

(2)
ij , . . ., we

say that the m× n matrix A, whose ijth element is aij, is the limit of the sequence
A1, A2, . . .(or that the sequence A1, A2, . . . converges to A) and write limk→∞ Ak = A
(or Ak → A). If the sequence A1, A2, . . . has a limit, it is said to be convergent. If
the sequence does not have a limit for some i and j, it is said to be divergent. Some
basic properties of the sequence of matrices are presented in the following.

1) For any m×n matrix A, the sequence A, A,. . . (each of whose members equal
A) converges to A.
2) For any scaler c (including c = −1) and for any sequence A1, A2, . . . of m × n
matrices that converge to an (m× n) matrix A, limk→∞(cAk) = cA.
3) If A1, A2, . . . and B1, B2, . . . are sequence of m × n that converge to (m × n)
matrices A and B, respectively, then

lim
k→∞

(Ak + Bk) = A + B.
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4) For a square matrix A, if it has multiplied n times with own, gives

A.A . . . A = An.

5) If A1, A2, . . . is a sequence of m×n matrices that converges to an (m×n) matrix
A and B1, B2, . . . a sequence of n× p matrices that converges to an (n× p) matrix
B, then limk→∞ AkBk = AB. See Harville(1997).

Lemma 5.9. Let A0, A1, A2, . . . represent a sequence of m × n matrices. If the
infinite series

∑∞
k=0 Ak converges, then limk→∞ Ak = 0.

Proof. Suppose that
∑∞

k=0 Ak converges. And, for k = 0, 1, 2, . . ., let Sk =
∑k

i=0 Ai.
Then in light of our supposition the sequence S0, S1, S2, . . . has a limit, say S. Thus,
observing that (for k = 1, 2, . . .) Ak = Sk − Sk−1 and that limk→∞ Sk−1 = S, it
follows that

lim
k→∞

Ak = lim
k→∞

(Sk − Sk−1) = lim
k→∞

Sk − lim
k→∞

Sk−1 = S − S = 0.

Theorem 5.10. (Neumann series), see Harville(1997),p.429-430.
Let A represent an n × n matrix. Then, the infinite series I + A + A2 + A3 + . . .
converges if and only if limk→∞ Ak = 0, in which case I − A is nonsingular and

(I − A)−1 =
∞∑

k=0

Ak = I + A + A2 + A3 + . . . (5.3.1)

where A0 = I.

Proof. If the infinite series I + A + A2 + A3 + . . . converges, then it is clear from
Lemma (5.9) that limk→∞ Ak = 0.
Conversely, suppose that limk→∞ Ak = 0. And observe that

(I + A + A2 + . . . + Ak)(I − A) = I − Ak+1 (5.3.2)

also

lim
k→∞

(I − Ak+1) = I − lim
k→∞

Ak+1 = I − 0 = I. (5.3.3)

Then, for any n× 1 vector x such that (I − A)x = 0, one finds

(I − Ak+1)x = (I + A + A2 + . . . + Ak)(I − A)x = 0
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(k = 0, 1, 2, . . .) and consequently

x = Ix = [ lim
k→∞

(I − Ak+1)]x = lim
k→∞

(I − Ak+1)x = lim
k→∞

0 = 0.

Thus, I − A is nonsingular. Further, postmultiplying both sides of equality (5.3.2)
by (I − A)−1, one obtains the equality

(I + A + A2 + . . . + Ak) = (I − Ak+1)(I − A)−1.

And, in light of result (5.3.3), one concludes that the infinite series
∑∞

k=0 Ak con-
verges and that

∞∑

k=0

Ak = lim
k→∞

(I − Ak+1)(I − A)−1

= [ lim
k→∞

(I − Ak+1)](I − A)−1 = I(I − A)−1 = (I − A)−1.

This theorem can be generalized as follows.

Theorem 5.11. See Harville(1997), p.430-431. Let A and B represent n× n ma-
trices. Suppose that B is nonsingular, and define F = B−1A. Then the infinite
series B−1 + FB−1 + F 2B−1 + F 3B−1 + . . . converges if and only if limk→∞ F k = 0,
in which case B − A is nonsingular and

(B − A)−1 =
∞∑

k=0

F kB−1 = B−1 + FB−1 + F 2B−1 + F 3B−1 + . . . (5.3.4)

where F 0 = I.

Formula (5.3.1) is applicable if and only if limk→∞ Ak = 0, and, more generally,
formula (5.3.4) is applicable if and only if limk→∞ F k = 0. Depending on the nature
of A (or F ), it may be difficult to determine whether the condition limk→∞ Ak = 0
(or the condition limk→∞ F k = 0) is satisfied. A condition that is more stringent,
but that is typically easier to check, can be obtained from the Theorem (5.14).
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Definition 5.12. The spectral norm of a matrix A ∈ Cm×n is given by

‖ A ‖2= max{
√

λ : λ an eigenvalue of A∗A} (5.3.5)

which is the Euclidean norm of the mn− dimensional vector obtained by listing all
components of A. Where (∗) stands for the conjugate transpose.

Definition 5.13. The spectral radius ρ(A) of a square matrix A ∈ Cn×n is the
maximal value among the n moduli of the eigenvalues of A,

ρ(A) = max{|λ| : λ ∈ λ(A)}. (5.3.6)

Here two relations between the spectral radius and norms of the matrix.
1) Let ‖ . ‖ be any multiplicative norm on Cn×n. Then, for any A ∈ Cn×n,

ρ(A) ≤‖ A ‖ .

2) For any A ∈ Cn×n, the spectral norm ‖ . ‖2 of (5.3.5) equals

‖ A ‖2= ρ1/2(A∗A) = ρ1/2(AA∗).

In particular, if A is Hermitian, then ‖ A ‖2= ρ(A). See Ben-Israel and Greville
(2003).

Theorem 5.14. See Harville (1997), p.431. Let A represent n × n matrix, If
||A|| < 1, then limk→∞ Ak = 0. Where the norm is the usual norm.

Corollary 5.15. See Kincaid and Cheney(1991), p.172-173.
If A is an n× n matrix such that ||A|| < 1, then I − A is invertible, and

(I − A)−1 =
∞∑

k=0

Ak.

Corollary 5.16. See Mirsky (1990).
The series

∑∞
m=0 Am is absolutely convergent if and only if

∑∞
m=0 ||Am|| is conver-

gent.
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Theorem 5.17. See Mirsky (1990)
i) If all characteristic roots of A lie in the interior of the circle of convergence of
the power series

φ(z) =
∞∑

m=0

cmzm (5.3.7)

then the matrix power series

∞∑
m=0

cmAm (5.3.8)

converges absolutely.
ii) If at least on characteristic root of A lies outside the circle of convergence of
(5.3.7), then (5.3.8) diverges

Definition 5.18. If all characteristic roots of A lie in the interior of the circle of
convergence of the power series (5.3.7), the φ(A) is defined as the sum of the series
(5.3.8).

Theorem 5.19. See Mirsky (1990), p.337-338. Let

φ(z) =
∞∑

m=0

amzm, ψ(z) =
∞∑

m=0

bmzm, χ(z) =
∞∑

m=0

cmzm,

so that

cm = a0bm + a1bm−1 + . . . + amb0 (m = 0, 1, 2, . . .).

be sums of power series convergent for |z| < R and suppose that

φ(z)ψ(z) = χ(z) (|z| < R).

If all characteristic roots of A are less than R in modulus, then

φ(A)ψ(A) = χ(A).
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Proof. Let

dm =
m∑

v=0

|av||bm−v|.

Then
∑∞

m=0 dmzm is convergent for |z| < R and therefore by Theorem (5.17) (i),∑∞
m=0 dmAm is absolutely convergent. Hence, by Corollary (5.16),

∞∑
m=0

(
m∑

v=0

|av||bm−v|) ‖ Am ‖=
∞∑

m=0

‖ dmAm ‖

is convergent. Since this is a series of non-negative terms, we see that

∞∑
m=0

m∑
v=0

|av||bm−v| ‖ Am ‖=
∞∑

m=0

m∑
v=0

‖ avbm−vA
m ‖

is convergent. Hence, again by Corollary (5.16), the matrix series

∞∑
m=0

m∑
v=0

avbm−vA
m

is absolutely convergent and may therefore be rearranged. Accordingly, we have

χ(A) =
∞∑

m=0

cmAm =
∞∑

m=0

(
m∑

v=0

avbm−v)A
m =

∞∑
m=0

m∑
v=0

avbm−vA
m

=
∞∑

v=0

av

∞∑
m=v

bm−vA
m =

∞∑
v=0

av

∞∑
µ=0

bµA
v+µ =

∞∑
v=0

avA
v

∞∑
µ=0

bµA
µ

= φ(A)ψ(A).

Theorem 5.20. (The spectral theorem), see Bapat (2000), p.20.

Let A be a symmetric n × n matrix. Then there exists an orthogonal matrix P
such that

P ′AP = diag(λ1, λ2, . . . , λn).
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5.4 Distribution of quadratic forms

When the random variables in x
′
=[x1 x2 . . . xn] have a multivariate normal dis-

tribution with vector of means µ and variance-covariance matrix V , we write ”x is
N(µ, V )” or ”x∼ N(µ, σ2)”. When E(xi = µ) for all i then µ = µ1; and if the x′is
are mutually independent, all with the same variance σ2, then V = σ2I and we write
”x is N(µ1, σ2I)”. This is equivalent to the more usual notation NID(µ, σ2), but
by retaining the matrix notation of N(µ1, σ2I) we emphasize that this is just special
case of the general multivariate normal N(µ, V ). Where V > 0 positive definite,
then the joint probability density function is

f(x1, x2, . . . , xn) =
exp(−1

2
(x− µ)′ V −1(x− µ))

(2π)
1
2
n|V | 12

.

If V = σ2In then the probability density function simplifies to

f(x) =
exp(− 1

2σ2 (x− µ)′(x− µ))

(2πσ2)
1
2
n

.

Consider that X is a random variable whose moment generating function is M(t) =
E(exp(tx)) for all t. Since M(0) = 1 6= 0 and that the composition of two functions
which have power series expansion itself has a power series expansion, we may write

logM(t) =
∞∑

n=0

Knt
n

n!
,

for small t where the numbers K1, K2, . . .in this expansion are called the cumulants.
Notice that

Kn = [logM(t)](n)(0)

for all n, in particular K0 = log(M(0)) = log(1) = 0. Since the function logM
generate the cumulants it is called cumulants generating function. For examples let
x ∼ N (µ, σ2)then

M(t) = exp(tµ +
σ2t2

2
) and log M(t) = tµ +

σ2t2

2
,

for all t near zero and it gives K1 = µ, K2 = σ2, K3 = K4 = . . . = 0. Since the
first and second cumulants of any random variable are its mean and variance, the
normal distribution has the simplest possible cumulants.
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Lemma 5.21. See Searle(1971).
For any vector h and any positive definite symmetric matrix N then

(2π)
1
2
n|N | 12 exp(

1

2
h′Nh) =

∫ ∞

−∞
· · ·

∫ ∞

−∞
exp(−1

2
x′N−1x + h′x)dx1, . . . , dxn (5.4.1)

Proof. From the integral of a multivariate normal density N (µ, N). We have

(2π)
1
2
n|N | 12 =

∫∞
−∞ · · ·

∫∞
−∞ exp

[−1
2
(x− µ)′N−1(x− µ)

]
dx1, . . . dxn

=
∫∞
−∞ · · ·

∫∞
−∞ exp

[−1
2
x′N−1x + 1

2
µ′N−1x + 1

2
x′N−1µ− 1

2
µ′N−1µ

]
dx1, . . . , dxn

=
∫∞
−∞ · · ·

∫∞
−∞ exp

[−1
2
x′N−1x + µ′N−1x′ − 1

2
µ′N−1µ

]
dx1, . . . , dxn

Where 1
2
µ′N−1x and 1

2
x′N−1µ are scalers and have the same dimensions. Now writ-

ing h′ for µ′N−1 this gives (5.4.1).

(2π)
1
2
n|N | 12 exp(

1

2
h′Nh) =

∫ ∞

−∞
· · ·

∫ ∞

−∞
exp

[
−1

2
x′N−1x + µ′N−1x

]
dx1, . . . , dxn

where
1

2
h′Nh =

1

2
(µ′N−1)N(N−1µ) =

1

2
µ′N−1NN−1µ =

1

2
µ′N−1µ.

Theorem 5.22. See Searle(1971).
When x ∼ N(µ, V ) and A then
1)

E(x′Ax) = tr(AV ) + µ′Aµ;

(true also when x is non-normal);
2) the rth cumulant of x

′
Ax is

Kr(x
′Ax) = 2r−1(r − 1)![tr(AV )r + rµ′A(V A)r−1µ];

where r = 1 it gives E(x
′
Ax) and where r = 2 gives the variance of x

′
Ax

V ar(x′Ax) = 2tr(AV AV ) + 4µ′AV Aµ;

Proof. Note: This theorem has proved by Searle (1971) but in a short style, we give
here a detailed proof of this theorem.

1) With E(x) = µ and Var(x)= V we have

E(xx′) = V + µµ′.
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Hence

E(x′Ax) = Etr(Axx′)

= tr[AE(xx′)]

= tr(AV + Aµµ′)

= tr(AV ) + µ′Aµ.

It is clear from the proof that this part of the theorem holds whether x is normal
or not.

2) The moment generating function (m.g.f.) of the quadratic form x′Ax is

Mx′Ax(t) = E(exp(tx′Ax))

=

∫ ∞

−∞
· · ·

∫ ∞

−∞
exp(tx′Ax)f(x1, . . . , xn)dx1, . . . , dxn

= (2π)−
1
2
n|V |− 1

2

∫ ∞

−∞
· · ·

∫ ∞

−∞
exp

[
tx′Ax− 1

2
(x− µ)′V −1(x− µ)

]
dx1, . . . , dxn

= (2π)−
1
2
n|V |− 1

2

∫ ∞

−∞
· · ·

∫ ∞

−∞
exp

[
tx′Ax− 1

2
x′V −1x +

1

2
µ′V −1x +

1

2
x′V −1µ− 1

2
µ′V −1µ

]

dx1, . . . , dxn

=
exp(−1

2
µ′V −1µ)

(2π)
1
2
n|V | 12

∫ ∞

−∞
· · ·

∫ ∞

−∞
exp

[
tx′Ax− 1

2
x′V −1x + µ′V −1x

]
dx1, . . . , dxn,

and on rearranging the exponent this becomes

Mx′Ax(t) =
exp(−1

2
µ′V −1µ)

(2π)
1
2
n|V | 12

∫ ∞

−∞
· · ·

∫ ∞

−∞
exp

[
−1

2
x′(I − 2tAV )V −1x + µ′V −1x

]
dx1, . . . , dxn.

(5.4.2)

Now in Lemma (5.21) put h′ = µ′V −1 and N = [(I−2tAV )V −1]−1 = V (I−2tAV )−1.
So the right-hand side in (5.4.1) then equals the multiple integral in (5.4.2) which
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becomes

Mx′Ax(t) = exp(−1

2
µ′V −1µ)|V |− 1

2 |V (I − 2tAV )−1| 12 exp

[
1

2
µ′V −1V (I − 2tAV )−1V −1µ

]

= exp(−1

2
µ′V −1µ)|V −1| 12 |V (I − 2tAV )−1| 12 exp

[
1

2
µ′(I − 2tAV )−1V −1µ

]

= exp(−1

2
µ′V −1µ)(|V −1V (I − 2tAV )−1|) 1

2 exp

[
1

2
µ′(I − 2tAV )−1V −1µ

]

= exp(−1

2
µ′V −1µ)(|(I − 2tAV )|)− 1

2 exp

[
1

2
µ′(I − 2tAV )−1V −1µ

]

= |(I − 2tAV )|− 1
2 exp

[
−1

2
µ′(I − (I − 2tAV )−1)V −1µ

]
. (5.4.3)

The cumulant generating function is the logarithm of the m.g.f. hence

∞∑
r=1

Krt
r/r! = log[Mx′Ax(t)]

= −1

2
log|I − 2tAV | − 1

2
µ′(I − (I − 2tAV )−1)V −1µ (5.4.4)

The two parts of this are evaluated as follows. Use ”λi of X” to denote the ”ith
latent root of X”. Then for sufficiently small |t|

−1

2
log|I − 2tAV | = −1

2

n∑
i=1

log[λi of (I − 2tAV )]

= −1

2

n∑
i=1

log[1− 2t(λi of AV )]

= −1

2

n∑
i=1

∞∑
r=1

−[2t(λi of AV )]r/r

=
∞∑

r=1

2r−1tr/r

n∑
i=1

[(λiofAV )]r

=
∞∑

r=1

(2r−1tr/r)tr(AV )r.

And, by direct binomial expansion, for sufficiently small |t|, one obtains
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I − (I − 2tAV )−1 = I − (I + 2t(AV ) + 22t2(AV )2 + . . .)

= −(2t(AV ) + 22t2(AV )2 + . . .)

= −
∞∑

r=1

2rtr(AV )r.

Making these substitutions in (5.4.4) and equating the coefficients of tr gives

∞∑
r=1

Krt
r/r! =

∞∑
r=1

(2r−1tr/r)tr(AV )r − 1

2
µ′(−

∞∑
r=1

2rtr(AV )r)V −1µ

=
∞∑

r=1

tr[(2r−1/r)tr(AV )r +
1

2
µ′2r(AV )rV −1µ]. (5.4.5)

Since that (AV )r = A(V A)r−1V therefore one gets

Kr(x
′Ax) = (r − 1)! 2r−1tr(AV )r +

r!

2
µ′2rA(V A)r−1V V −1µ

= (r − 1)!2r−1tr(AV )r + r!2r−1µ′A(V A)r−1µ

= 2r−1(r − 1)![tr(AV )r + rµ′A(V A)r−1µ]. (5.4.6)

Equation (5.4.6) represent the rth cumulant of x
′
Ax. An important application of

this part of the theorem when r = 1 it gives E(x′Ax) and when r = 2 it gives the
variance of x

′
Ax

K2(x
′Ax) = V ar(x′Ax)

= 2tr(AV )2 + 4µ′A(V A)µ

= 2tr(AV AV ) + 4µ′AV Aµ.

So the theorem is proved.
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Corollary 5.23. (Square root of a symmetric matrix) If A is a non-singular sym-
metric matrix, then for any integer n,

Λn = diag(λn
i ) and An = ΓΛnΓ′. (5.4.7)

If all the eigenvalues of A are positive then one can define the rational powers

Ar/s = ΓΛr/sΓ′ where Λr/s = diag(λ
r/s
i ), (5.4.8)

for integers s > 0 and r. If some of the eigenvalues of A are zero, then (5.4.7) and
(5.4.8) hold if the exponents are restricted to be nonnegative.

Important special case of (5.4.8) are

A1/2 = ΓΛ1/2Γ′ where Λ1/2 = diag(λ
1/2
i ), (5.4.9)

when λi ≥ 0 for all i, so if A = R2 then

R = Γdiag(
√

λ1, . . . ,
√

λn)Γ′. (5.4.10)

Moreover,

A−1/2 = ΓΛ−1/2Γ′ where Λ−1/2 = diag(λ
−1/2
i ), (5.4.11)

when λi > 0 for all i. The decomposition in Eq. (5.4.9) or (5.4.10) is called the
square root decomposition of A. This has the following properties

1) (A1/2)′ = A1/2 (that is, A1/2 is symmetric).
2) A1/2A1/2 = A.
3) A1/2A−1/2 = A−1/2A1/2 = I and A−1/2A−1/2 = A−1 where A−1/2 = (A1/2)−1. See
Johnson and Wichern (1988) and Mardia et al. (1979).

Theorem 5.24. See Koch (1999). Let x be an n × 1 random vector with the co-
variance matrix D(x) and A an m× n matrix and b an m× 1 vector of constants.
Then the covariance matrix of the m× 1 random vector y resulting from the linear
transformation y = Ax + b is given by

D(y) = D(Ax + b) = AD(x)A′.

Theorem 5.25. Let f(x) be a real-valued differentiable function of the vector x ∈
En. Furthermore, let m ≤ n and

gi(x) = 0 for i ∈ {1, . . . , m},
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where the functions gi(x) are real-valued and differentiable and the n × n matrix
B = (∂gi/∂xj) has full row rank m. Let f(x) have a local extremum at the point x0

subject to the constrains gi(x) = 0. Then there exists the m × 1 vector k= (ki) of
Lagrange multipliers such that the Lagrange function w(x) with

w(x) = f(x) +
m∑

i=1

kigi(x)

has the stationary point x0, that is ∂w(x)/∂x|x = x0.

Theorem 5.26. a) Let A be an m× n and B an n×m matrix, then

∂tr(AB)/∂A = B′.

b) Let A and B be quadratic and A in addition symmetrical, then

∂tr(AB)/∂A = B + B′ − diag(B).

c) Let A be an m× n matrix and B and C two n×m matrices, then

∂tr(ABAC)/∂A = (BAC + CAB)′.

d) Let A, B and C be quadratic matrices, then

∂tr(ABA′C)/∂A = (BA′C)′ + CAB.

5.5 Some qualities of non-negative matrices

Definition 5.27. 1) Positive semidefinite matrix. An n× n matrix A is defined
to be positive semi-definite if and only if A = A′ and y′Ay ≥ 0 for each and every
vector y in Rn and the equality holds for at least one vector y such that y 6= 0.
2) Positive definite matrix. An n×n matrix A is defined to be positive definite if
and only if A = A′ and y′Ay > 0 for each and every vector y in Rn such that y 6= 0.
(3) Non− negative matrix. A matrix is defined to be non-negative if and only if it
is either positive definite or positive semidefinite.
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Lemma 5.28. See Graybill (1983). 1) If A is an n×n positive semidefinite matrix
then,
a) aii ≥ 0 for all i = 1, . . . , n; if att = 0, then each element in the tth row and tth

column of A is equal to zero.
b) P ′AP is a non-negative matrix for any n× n matrix P .
2) If A is an n× n positive definite matrix then,
a) aii > 0 for all i = 1, . . . , n.
b) P ′AP is positive definite matrix for any nonsingular n×n matrix P , in particular,
A−1 is positive definite.

Theorem 5.29. See Harville(1997).
Let A represent an n× n matrix, and P an n×m matrix.
1) If A is nonnegative definite, then P ′AP is nonnegative definite.
2) If A is nonnegative definite and rank(P ) < m, then P ′AP is positive semidefinite.
3) If A is positive definite and rank(P ) = m, then P ′AP is positive definite.

Corollary 5.30. A symmetric nonnegative definite matrix is positive definite if and
only if it is nonsingular (or equivalently, is positive semidefinite if and only if it is
singular).

Corollary 5.31. An n× n matrix A is a symmetric positive definite matrix if and
only if there exists a nonsingular matrix P such that A = P ′P .

Lemma 5.32. See Bapat and Raghavan (1997). 1) If A is positive semidefinite then
the matrix exp(aij) is positive semidefinite.
2) For any β > 0, the matrix exp(βaij) is positive semidefinite.

Definition 5.33. Conditional positive definite (conditional negative definite).
A real, symmetric n× n matrix A is said to be conditional positive definite (condi-
tional negative definite) if x′Ax ≥ 0 (≤ 0) for any x ∈ Hn, where

Hn = {x ∈ Rn :
n∑

i=1

xi = 0}

Lemma 5.34. 1) If A is a conditional negative definite matrix, then A has at most
one positive eigenvalue.
2) Let A be a nonnegative, nonzero matrix that is conditional negative definite. Then
A has exactly one positive eigenvalue.

If x1, . . . , xn are points in an Euclidean space, their squared distance matrix may
be defined as the matrix of inter-point squared distances (‖ xi − xj ‖2). Note that
such a matrix is symmetric and has zeros on the main diagonal.
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Lemma 5.35. Let x1, . . . , xn ∈ R for some s, and let A = (aij) be the n×n matrix
defined as aij =‖ xi − xj ‖2, i, j = 1, 2, . . . , n. Then A is conditional negative
definite.

Lemma 5.36. Let A be a symmetric n×n matrix with zero diagonal entries. Then
there exist vectors x1, . . . , xn ∈ Rs for some s such that aij =‖ xi − xj ‖2 for all i, j
if and only if A is conditional negative definite.
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