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Chapter 1 
 
Outline of dissertation 
 
 
 
This thesis includes 8 chapters. The chapter 2 specifies how to generalize the usual 
Sturm-Liouville problems with symmetric solutions to a larger class. In other words, if 
the symmetric sequence )(xy nΦ=  satisfies a usual Sturm-Liouville problem as  
 

              ,0)(,0)(;0))()(()( >>=−+⎟
⎠
⎞

⎜
⎝
⎛ xxkyxqx

dx
dyxk

dx
d

n ρρλ                   (1.1)       

 
with the boundary conditions 

                                                1 1

2 2

( ) ( ) 0
;

( ) ( ) 0
y a y a

a x b
y b y b

α β
α β

′+ =⎧
< <⎨ ′+ =⎩

,            (1.1.1) 

 
then, under some specific conditions, it can be generalized to a more extensive problem 
as 

                       0))(
2

)1(1)()(()( =
−−

+−+⎟
⎠
⎞

⎜
⎝
⎛ yxExqx

dx
dyxk

dx
d n

n ρλ ,                      (1.2) 

 
with the individual condition 
 
                                           3 3( ) ( ) 0 ;y y xα θ β θ θ θ′+ = − < < .                          (1.2.1) 
 
It should be noted that the main advantage of this extension is that the generalized 
solutions preserve the orthogonality property. In this sense, by using the above 
theorem, the well-known symmetric associated Legendre functions (having extensive 
applications in physics and engineering) are generalized and it is shown that the 
orthogonality interval is the same as [-1,1]. 
  
Another important consequence of the extension of usual Sturm-Liouville problems 
with symmetric solutions is given in the chapter 3. In this chapter, by using the 
mentioned theme, a main class of symmetric orthogonal polynomials (MCSOP) with 
four free parameters is introduced and all its standard properties, such as a generic 
second order differential equation of the form                                                            (1.3) 
 

( ) 0)(2/))1(1())1(()()()()( 2222 =Φ−−+−+−Φ′++Φ ′′+ xsxpnrnxsrxxxqpxx n
n

nn , 
 
together with its explicit polynomial solution in the form  
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( )

( )∑ ∏
=

−
+−

=
+

+

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
++−+
++−+

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛ ]2/[

0

2
)1(]2/[

0
1

1

2)1(2
]2/[2)1(2]2/[n

k

kn
kn

i
n

n

n x
sqi

rpni
k

n
x

qp
sr

S ,          (1.3.1) 

 
a generic orthogonality relation, a generic three term recurrence relation and so on are 
obtained. Moreover, it is shown that four main sub-classes of symmetric orthogonal 
polynomials, i.e. the generalized ultraspherical polynomials, generalized Hermite 
polynomials and two new sequences of finite symmetric orthogonal polynomials are all 
special sub-cases of MCSOP. In this way, two half-trigonometric sequences of MCSOP 
are introduced.    
 
But, usually the finite orthogonal polynomials are less known (and discussed) in the 
literature. In chapter 4, a comprehensive treatment about finite classical orthogonal 
polynomials that are specific solutions of the well-known differential equation of 
Sturm-Liouville type    
 
                                       ( ) ( ) ( ) ( ) ( ) 0 ,n n n nx y x x y x y xσ τ λ′′ ′+ − =                                  (1.4) 
 
in which cbxaxx ++= 2)(σ , edxx +=)(τ  and ndannn +−= )1(λ  is given.   
In this chapter, three sequences of hypergeometric polynomials, which are finitely 
orthogonal with respect to the F, inverse gamma and generalized-T distribution 
functions are reintroduced in detail and their application in functions approximation 
and numerical integration are investigated. 
 
It is interesting to know that the weight function of the third class of finite orthogonal 
polynomials corresponds to a generalization of T distribution, which as far as we know 
has not appeared in the mathematical statistics branches. For this reason, chapter 5 is 
allocated to a large generalization of Student’s t-distribution with four free parameters 
and a comprehensive discussion of mathematical properties of this new distribution is 
investigated from special functions point of view. It is also shown that, similar to usual 
normal distribution, the generalized t-distribution converges to the normal distribution 
again when the number of samples tends to infinity. In this sense, since the Fisher F-
distribution has a close relationship with the t-distribution, a generalization of the F-
distribution is also introduced and shown that it similarly converges to the chi-square 
distribution as the number of samples tends to infinity.  At the end of the chapter, some 
special cases of the generalized distributions are studied.  
 
But as we observe, the introduced equation (1.3) has a generic polynomial solution as 
(1.3.1). Now, is it possible to find a generic polynomial solution for the differential 
equation (1.4) similarly? Chapter 6 replies this question in detail. In chapter 6, it is 
shown that the equation (1.4) has a generic monic polynomial solution as  
 

                        k
n

k

n
knn xedcbaG

k
n

x
cba
ed

Pxy ∑
=

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
=

0

)( ),,,,()(  ,                      (1.4.1) 

where 
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Then, it is shown that all six sequences of infinite and finite classical orthogonal 
polynomials described in chapter 4 can be indicated by the general derived formula.  
Some general properties of the formula (1.4.1), such as the affection of a linear change 
of variables, a generic three-term recurrence equation, a generic formula for the norm 
square value of the polynomials and so on are also given. At the end of the chapter, it is 
explained how to derive a generic formula for the values at the boundary points of 
monic classical orthogonal polynomials.   
 
Here is interesting to know that classical orthogonal polynomials have a direct use in 
the explicit computation of inverse Laplace transforms. In other words, if the Mobius 
transform Rqpqpzx ∈≠+= − ,0,1 is employed in each six sequences of classical 
orthogonal polynomials, then the generated rational orthogonal polynomials can be 
used to compute the inverse Laplace transform directly, with no additional calculation 
for finding their roots. In chapter 7, by achieving this purpose, three basic examples are 
given to explicitly obtain the inverse Laplace transforms. 
 
Finally, chapter 8 introduces some new sequences of special functions that have 
application in the solutions of classical potential, heat and wave equations in spherical 
coordinate.  
In other words, it is known that in the solution of Sturm-Liouville problems, usually 
zero eigenvalue is ignored. Now, if the foresaid eigenvalue is considered to be zero, 
one of the solutions will be pre-assigned. This approach causes to appear new 
sequences of special functions in the solutions of the classical equations of potential, 
heat and wave in spherical coordinate. By noting these comments, a class of special 
functions is introduced in the first part of chapter 8 and is applied in the mentioned 
classical equations. In this way, some applied examples are given. 
And eventually, in the second part of last chapter, two new classes of orthogonal 
hypergeometric functions are introduced and it is shown that using Fourier transforms 
and Paraseval identity they are finitely orthogonal with respect to two specific functions 
of Gamma type. Moreover, as the third new hypergeometric class, first a complicated 
integral is explicitly evaluated and then it is conjectured that the integrand of this 
integral may be finitely orthogonal with respect to the Ramanujan weight function on 
the real line. 
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Chapter 2 
 
A symmetric generalization of Sturm - Liouville 
Problems 
 
 
 
2.1. Introduction  
 
In this chapter, we present some conditions under which the usual Sturm-Liouville 
problems with symmetric solutions can be extended to a larger class. The main 
advantage of this extension is that the corresponding solutions preserve the 
orthogonality property. As a sample, we investigate a basic example of generalized 
Sturm-Liouville problems and obtain their orthogonal solutions. The foresaid example 
generalizes the well-known associated Legendre functions (having extensive 
applications in physics and engineering) and preserves the orthogonality interval [-1,1] 
for the generalized functions.  
 
2.2. Boundary value problems 
 
When partial differential equations are solved by the method of separation of variables 
(see also chapter 8 section 8.2), the problem reduces to the solution of ordinary 
differential equations. The solutions of these equations can, in many interesting 
problems of mathematical physics, be expressed in terms of special functions. In order 
to obtain such solutions of the partial differential equations in specific cases, we have to 
impose additional conditions on the solutions such that the problems will have unique 
solutions. These conditions in turn lead to conditions on the solutions of the ordinary 
differential equations and thus to boundary value problems. We here intend to first have 
a survey on the solution of boundary value problems by the method of separation of 
variables. 
        
2.2.1. Usual Sturm-Liouville problems 
 
It has been proved that the method of separation of variables can extensively be applied 
for solving partial differential equations of the form 
 

                                   ,)()(),,( *
2

2
* Lu

t
utB

t
utAzyx =⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
∂
∂

+
∂
∂

ρ                                    (2.1)           

where 
                                     =Lu div ),,(( zyxk grad uzyxqu ),,() − ,                            (2.1.1) 

                                     FvectorofDivergenceFdiv =
→

 ,                                        (2.1.2)        



A symmetric generalization of Sturm-Liouville problems 

 

10

 

                                      
→→→

∂
∂

+
∂
∂

+
∂
∂

= k
z
Fj

y
Fi

x
FFgrad  .                                         (2.1.3)           

The equation (2.1) describes the propagation of a vibration such as electromagnetic or 
acoustic waves if 1=)(* tA  and 0)(* =tB  and describes transfer processes such as heat 

transfer or the diffusion of particles in a medium when 0)(* =tA  and 1=)(* tB . 

Finally it describes the corresponding time-independent processes if 0)(* =tA  and 
0)(* =tB  [56, p. 299]. 

To have a unique solution of equation (2.1), which corresponds to an actual physical 
problem, some supplementary conditions must be imposed. The most typical conditions 
are initial or boundary conditions. The initial conditions for equation (2.1) are usually 
the values of ),,,( tzyxu  and ttzyxu ∂∂ /),,,( , while the simplest boundary condition is 
in the form 

                                          0),,(),,( =⎥
⎦

⎤
⎢
⎣

⎡
∂
∂

+
S

uzyxuzyx
η

βα ,                                  (2.2) 

 
where ),,( zyxα  and ),,( zyxβ  are given functions; S is the surface bounding the 
domain where (2.1) is to be solved; η∂∂ /u  is the derivative in the direction of the 
outward normal to S.  
But the particular solutions of (2.1) under the boundary conditions (2.2) will be found if 
one looks for a solution of the form  
 
                                               ),,()(),,,( zyxvtTtzyxu = .                                          (2.3)                    
 
By substituting (2.3) into the main equation (2.1) one respectively gets 
 
                                              ,0)()( ** =+′+′′ TTtBTtA λ                                         (2.4) 
                        
                                                        ,0=+ vvL ρλ                                                    (2.5)                 
 
where λ  is a constant. Clearly (2.4) can be solved for typical problems in mathematical 
physics. However, to solve (2.5) we should use a boundary condition that follows from 
(2.2), namely ( ( , , ) ( , , ) ) 0

S

vx y z v x y zα β
η
∂

+ =
∂

. The described problem is a known as 

multidimensional boundary value problem. Nevertheless, it can be simplified to a one-
dimensional problem if (2.5) is reduced to an equation of the form  
 
                                                        ,0)( =+ yxyL ρλ                                            (2.6)                              
where 

                          .0)(,0)(,)()( >>−⎟
⎠
⎞

⎜
⎝
⎛= xxkyxq

dx
dyxk

dx
dyL ρ                   (2.6.1)                   
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The equation (2.6) should be considered on an open interval, say ),( ba , with boundary 
conditions in the form  

                                                     
,0)()(
,0)()(

22

11

=′+
=′+

byby
ayay

βα
βα

                                           (2.7) 

where 21 , αα and 21 , ββ  are given constants and )(,)(,)( xqxkxk ′  and )(xρ  in (2.6) 
and (2.6.1) are to be assumed continuous for ],[ bax∈ .  
The simplified boundary value problem (2.6)-(2.7) is called a regular Sturm-Lioville 
problem. Moreover, if one of the boundary points a and b is singular (i.e. 0)( =ak  or 

0)( =bk ), the problem will be transformed to a singular Sturm-Liouville problem. In 
this case, one can ignore boundary conditions (2.7) and obtain the orthogonality 
property directly. 
Now, let )(xyn  and )(xym  be two solutions (eigenfunctions) of equation (2.6). 
According to the Sturm-Liouville theory [18, 56], these functions are orthogonal with 
respect to the weight function )(xρ  on ),( ba  under the given conditions (2.7), i.e. 
 

mn

b

a
n

b

a
mn dxxyxdxxyxyx ,

2 )()()()()( δρρ ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
= ∫∫    if    

⎩
⎨
⎧

=
≠

=
.1
,0

, mnif
mnif

mnδ                 (2.8)               

 
Many important special functions in theoretical and mathematical physics are the 
solutions of regular or singular Sturm-Liouville problems that satisfy the orthogonality 
condition (2.8). For instance, the associated Legendre functions [18], Bessel functions 
[18, 56], trigonometric sequences related to Fourier analysis [13], Ultraspherical 
functions [27, 70], Hermite functions [27, 70] and so on are particular solutions of 
some Sturm-Liouville problems. Fortunately, most of these mentioned functions have 
the symmetry property, namely )()1()( xx n

n
n Φ−=−Φ , and because of this they have 

found various applications in physics and engineering, see e.g. [18, 56] for more 
details. Now, if one can extend the mentioned examples symmetrically and preserve 
their orthogonality property, it seems that one will be able to find some new 
applications in physics and engineering that logically extend the previous applications. 
In the next sections, by achieving this matter, we generalize some classical symmetric 
orthogonal functions and obtain their orthogonality property.  
 
2.3. A symmetric generalization of Sturm-Liouville problems [12] 
  
Without loss of generality, let )(xy nΦ=  be a sequence of symmetric functions that 
satisfies the following differential equation 
 

0)()(
2

)1(1)()()()()()( =Φ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −−
+++Φ′+Φ ′′ xxExDxCxxBxxA n

n

nnn λ ,               (2.9)          

 
where )(,)(,)(,)( xDxCxBxA  and )(xE  are independent functions and }{ nλ  is a 
sequence of constants. Clearly choosing 0)( =xE  in (2.9) is equivalent to the one-
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dimensional Sturm-Liouville equation (2.6). Since )(xnΦ  is a symmetric sequence, by 
substituting the symmetry property )()1()( xx n

n
n Φ−=−Φ  into (2.9), one can 

immediately conclude that )(,)(,)( xDxCxA  and )(xE  are even functions, while )(xB  
must be an odd function. This note will frequently be used in this section. 
To prove the orthogonality property of the sequence )(xnΦ , first both sides of equation 
(2.9) should be multiplied by the positive function 
 

                        )
)(
)(exp(

)(
1)

)(
)()(exp()( ∫∫ =

′−
= dx

xA
xB

xA
dx

xA
xAxBxR ,                    (2.10) 

 
in order to convert in the form of a self-adjoint differential equation. Note that )(xR  in 
(2.10) is an even function, because )(xB  is odd and )(xA  is even. Therefore, the self-
adjoint form of equation (2.9) becomes 
                                                                                                                                   (2.11) 

.)()()(
2

)1(1)()())()(()
)(

)()(( xxRxExxRxDxC
dx

xd
xRxA

dx
d

n

n

nn
n Φ

−−
−Φ+−=

Φ
λ  

 
Since )()( xRxA  is an even function, the orthogonality interval corresponding to 
equation (2.11) should be considered symmetric, say ],[ θθ− . Hence, by assuming that 

θ=x  is a root of the function )()( xRxA  and applying the Sturm-Liouville theorem on 
(2.11) we have                                                                                                           (2.12)  
 

    
( )[ ]

.)()()()()
2

)1()1(()()()()()(

)()()()()()(

∫∫
−−

−

ΦΦ
−−−

−ΦΦ−

=ΦΦ′−ΦΦ′
θ

θ

θ

θ

θ
θ

λλ dxxxxRxEdxxxxRxC

xxxxxRxA

mn

nm

mnnm

nmmn

  

Obviously the left-hand side of (2.12) is zero. So, to prove the orthogonality property, it 
is enough to show that the value 
 

                    ∫
θ

θ−

ΦΦ
−−−

= dxxxxRxEmnF mn

nm

)()()()(
2

)1()1(),( ,                         (2.13)    

 
is always equal to zero for every +∈ Znm, . For this purpose, four cases should 
generally be considered for m and n:  
 

a) If both m and n are even (or odd), then 0),( =mnF , because we have 
0)12,12()2,2( =++= jiFjiF . 

 
b) If one of the two mentioned values is odd and the other one is even (or 

conversely) then 

                                 ∫
θ

θ−
+ΦΦ−=+ dxxxxRxEjiF ji )()()()()12,2( 122 .                    (2.14)   
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But in above relation )(,)( xRxE  and )(2 xiΦ  are even functions and )(12 xj+Φ  is odd. 
Thus the integrand of (2.14) is an odd function and consequently 0)12,2( =+jiF . 
This issue also holds for the case 12 += in  and jm 2= , i.e. 0)2,12( =+ jiF .  
By noting the above comments, the main theorem of section (2.3) can here be 
expressed. 
 
Theorem 1. [12]  
The symmetric sequence ( ) ( 1) ( )n

n nx xΦ = − Φ − , as a specific solution of differential 
equation (2.9), satisfies the orthogonality relation 
 

                            mnnmn dxxxWdxxxxW ,
2** )()()()()( δ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
Φ=ΦΦ ∫∫

θ

θ−

θ

θ−

,                  (2.15)     

where 

                             )
)(

)()(exp()()()()(* ∫
′−

== dx
xA

xAxBxCxRxCxW ,                     (2.16)    

 
denotes the corresponding weight function and is a positive and even function on 
[ , ]θ θ− .  
It is now a good position to propound a practical example that generalizes the well-
known symmetric associated Legendre functions and preserves their orthogonality 
property.  
 
2.3.1. A symmetric generalization of the associated Legendre functions [12] 
 
When Laplace’s equation 02 =∇ u  (or Helmholtz’s equation uu λ=∇ 2 ) is solved in 
spherical coordinates ϕθ ,,r , the following results appear [56] 

                                       u
r

uu r ϕθ ,2
2 1

Δ+Δ=∇ ,                                                       (2.17)                         

where  

                                     ,)(1 2
2 r

ur
rr

ur ∂
∂

∂
∂

=Δ                                                         (2.17.1)           

                                     .
sin

1)(sin
sin

1
2

2

2, ϕθθ
θ

θθϕθ ∂
∂

+
∂
∂

∂
∂

=Δ
uuu                        (2.17.2) 

 
As was explained in the section (2.2), by separating )()()( ϕθ ΩΨ= rRu  and 
substituting it into Laplace’s equation (Potential equation), three following ordinary 
differential equations are derived  
 

                                    

2

2

( ) ,
0 ,

sin (sin ) ( sin ) 0 ,

r R R

d d
d d

μ
υ

θ θ μ θ υ
θ θ

′ ′ =
′′Ω + Ω =

Ψ
+ − Ψ =

                          (2.18)      



A symmetric generalization of Sturm-Liouville problems 

 

14

 

where μ  and υ  are two constant values. For θcos=x , the last equation of (2.18) 
changes to   

                                0)
1

(2)1( 22

2
2 =Ψ

−
−+

Ψ
−

Ψ
−

xdx
dx

dx
dx υμ  ,                            (2.19)          

 
which is called the associated Legendre differential equation [18] and its solutions are 
naturally known as the associated Legendre functions. These functions play a key role 
in the theory of potential. In general, there are three types of solution for equation 
(2.19) depending on different values of μ  and υ :  
 
i) If )1)(( +++= ααμ nn  and 1,;2 −>∈= + ααυ Zn , then the solution of (2.19) is 
indicated by      

                                      )()1()()( ),(22)( xPxxUx nn
αα

α
α −==Ψ ,                                 (2.20) 

 
where )(),( xPn

αα , known as Ultraspherical polynomials, is a special case of Jacobi 
polynomials [27, 70] 

                                 k
n

k
n

x
kn

n
k

kn
xP )

2
1()(

0

),( −
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−
+

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ +++
= ∑

=

αβαβα ,                      (2.21)             

 
for βα = . In this way, the solution (2.20) satisfies the orthogonality relation                                               
                                                                                                                                                                         

mnmnnmn nnn
ndxxUdxxUxU ,

212

,

1

1

2)(
1

1

)()(

)12()122(!
)1(2)))((()()( δ
αα

αδ
α

ααα

++Γ++
++Γ

==
+

−−
∫∫ . (2.22) 

 
ii) If )1( += nnμ  and +∈= Znmm ,;2υ , (2.19) has a solution in the form (discovered 
by Legendre)     

                                      m
n

mm
m

n dx
xPd

xxPx
))((

)1()()( 22−==Ψ ,                               (2.23)             

 
where )()( )0,0( xPxP nn =  denotes the Legendre polynomials [56]. Moreover, according 
to [18], (2.23) satisfies the orthogonality relation 
                                                                                                           

              jiji
m

i
m
j

m
i mii

midxxPdxxPxP ,,

1

1

2
1

1 )!)(12(
)!(2)))((()()( δδ
−+

+
== ∫∫

−−

.                 (2.24)      

 
iii) To obtain the third type of solution, let us first consider the Jacobi polynomials 
differential equation [27, 70]  
 

( ) )(0)1()()2()1( ),(2 xPyynnyxyx n
βαβαβαβα =⇔=++++′−+++−′′− ,   (2.25) 
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and suppose )()1()1()( ),(2/2/ xPxxxA nn
βαβα +−= . After some computations in hand, 

the differential equation )(xAn  is derived as 
 

.0)()]1(4)()(2))((2

))1(4)2)([((
4
1)()1(2)()1(

2

2222

=+++−−++−−++

+++++++−′−−′′−

xAnnx

xnnxAxxxAx

n

nn

βαβαβαβαβα

βαβαβα
   (2.26) 

 
Now suppose 0=+ βα  in (2.26) that reduces it to the differential equation  
 

                                    0)
1

)1((2)1( 2

2
2 =

−
−++′−′′− A

x
nnAxAx α .                         (2.27) 

 
The condition 11 <<− α  is necessary for the orthogonality property of the 
polynomials )(),( xPn

αα − , because we must have 1,and0 −>=+ βαβα . Therefore, 
by considering )1( += nnμ  and 11;2 <<−= ααυ  in (2.19), the related solution 
takes the form      

                                        )()
1
1()()( ),(2)( xP

x
xxVx nn

αα
α

α −

+
−

==Ψ ,                               (2.28) 

satisfying the orthogonality relation 
 

mnmnnmn nn
nndxxVdxxVxV ,2,

1

1

2)(
1

1

)()(

)12()!(
)1()1(2)))((()()( δ

αα
δααα

+
−+Γ++Γ

== ∫∫
−−

.          (2.29) 

 
To extend the associated Legendre functions, it is enough in (2.9) to choose    
 

2

2

( ) 1 ( ) ; ( ) 2 ( ) ,

( ) 1 ( ) ; ( ) ( ) ,
1

; ( ) ( ) Arbitrary ,n n

A x x A x B x x B x

C x C x D x D x
x

E x E x

υ

λ μ

= − = − = − = − −

= = − = − = −
−

= = −

                          (2.30)       

 
and apply the theorem 1 to establish the orthogonality property on the same interval     
[-1,1]. To do this task, let ))(,;()( xExQx nn υ=Φ  be a known and predetermined 
solution of the differential equation 
 

            0)())(
2

)1(1
1

()(2)()1( 2
2 =Φ

−−
+

−
−+Φ′−Φ ′′− xxE

x
xxxx n

n

nnn
υμ .        (2.31)                              

 
According to the main theorem 1, we should have  
 

                 mnnmn dxxExQdxxExQxExQ ,

1

1

2
1

1

))))(,;((())(,;())(,;( δυυυ ∫∫
−−

= ,           (2.32) 
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provided that the arbitrary function )(xE  is even.  
The sequence ))(,;( xExQn υ  (as a known solution of equation (2.31)) is now 
orthogonal under the pre-assigned condition )()( xExE =− . So it is applicable in the 
theory of the expansion of functions, as many boundary value problems of 
mathematical physics are solved by using the expansion of functions in terms of the 
eigenfunctions of a usual Sturm-Liouville problem. Hence, if we assume 
                                        

                                     ∑
∞

=

υ=
0

))(,;()(
n

nn xExQqxf ,                                                (2.33) 

 
then according to the property (2.32), the unknown coefficients nq  are found by 
 

                            ∫∫
−−

υυ=
1

1

2
1

1

)))(,;(())(,;()( dxxExQdxxExQxfq nnn .                 (2.34) 

 
Clearly various options can be selected for )(xE , that are directly related to the 
orthogonal sequence ))(,;( xExQn υ . For example, choosing the even function 0)( =xE  
gives one of the three cases of usual associated Legendre functions, stated before. A 
further special example is when 2/2)()( xxExE −=−= . Let us study this case in the 
next section in detail. 
 
2.3.1.1. The special case 2/2)( xxE −=  in the generalized equation (2.31) 
If 2/2)( xxE −=  in (2.31) it reduces to the equation 
 

                0)()1)1(
1

()(2)()1( 22
2 =Φ

−−
+

−
−+Φ′−Φ ′′− x

xx
xxxx n

n

nnn
υμ .            (2.35) 

 
To obtain the solution of this equation for specific values of nμ  and υ , one should 
refer to the generalized ultraspherical polynomials (GUP), which were first investigated 
by Chihara [27]. On the other hand, according to the main theorem 1 if in the general 
equation (2.9) one chooses  
 

),122(
,;)(
,;0)(
,;)(
,;))1((2)(
,;)1()(

2

2

22

+++=
−=

=
=

−++−=

−=

nqpn
functionevenAnpxE
functionevenAnxD
functionevenAnxxC
functionoddAnqxqpxxB
functionevenAnxxxA

nλ

                                   (2.36) 

 
then the symmetric differential equation                       
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( ) ,0)()1)1(()122(

)())1((2)()1(
2

222

=Φ−−+++++

Φ′−++−Φ ′′−

xpxnqpn

xpxqpxxxx

n
n

nn    (2.37)   

 
is the generalized ultraspherical equation having the monic polynomial solution                                         
                                                                                                                                   (2.38) 

.
)1(222

])2/[2)1(222(2]2/[
])2/[2)1(222(2

)1(222)(

]2/[

0

2
)1(]2/[

0

1]2/[

0

),(

∑ ∏

∏

=

−
+−

=

−

=

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−−++

+−−++−−
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
×

+−−++−−
−−++

=

n

k

kn
kn

i
n

n

n

i
n

n
qp

n

x
pi

npqi
k

n
npqi

pixU
 

  
The monic GUP are orthogonal with respect to the weight function qp xx )1( 22 −  on      
[-1,1] and satisfies the following orthogonality relation  
 

.
)2/3(

)1()2/1()
)1222)(1222(

)2))1(1()())1(1(((

)()()1(

,
1

1

1

),(),(22

mn

n

i

ii

qp
m

qp
n

qp

qp
qp

qpiqpi
qpipi

dxxUxUxx

δ
++Γ

+Γ+Γ
+++−++
+−−+−−+

=

−

∏

∫

=

−  (2.39) 

 
Now, by defining  

                         ,1,
2
1;)()1(),;( ),(22 −>−>−= baxUxxbaxG ba

n

b
a

n               (2.40) 

 
and replacing it into equation (2.37), one gets                                                          (2.41) 
 

.0)())1((
1

)1)(()(2)()1( 22

2
2 =⎟⎟

⎠

⎞
⎜⎜
⎝

⎛ −−
+

−
−++++++′−′′− xG

x
aa

x
bbanbanxGxxGx n

n

nn

 
If the above equation is compared with (2.35), then it can be concluded that   
 

                               2
2

2( ; , ) ( ;1, ) ; 1 ,n nQ x b G x b b
x

− = > −                                (2.42) 

 
is a general solution of (2.31) for 2,)2)(1( bbnbnn =++++= υμ  and 2/2)( xxE −= . 
Moreover, substituting these values into (2.32) and noting (2.39) yields                                                       
                                                                                                                                   (2.43) 

.
)2/5(2
)1()

)322)(122(
)2)1(1)()1(1(()2,;()2,;( ,

1

1

1
2

2
2

2
mn

n

i

ii

mn b
b

bibi
biidx

x
bxQ

x
bxQ δπ

+Γ
+Γ

++++
+−−+−−+

=−− ∏∫
=−

      
Remark 1. Although some special functions such as Bessel functions [18], Fourier 
trigonometric sequences and so on are symmetric and satisfy a differential equation 
whose coefficients are alternatively even and odd, it is anyway important to note that 
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they do not satisfy the conditions of the main theorem 1. For instance, if in the generic 
equation (2.9) we choose 
 

                       
2

2 2

( ) ; ( ) ; ( ) 1,
( ) ; ( ) 0 ; ,n

A x x B x x C x
D x x E x nλ

= = =

= = = −
                           (2.44)                     

 
we get to the Bessel differential equation  
 
                                   0)()()()( 222 =Φ−+Φ′+Φ ′′ xnxxxxx nnn ,                           (2.45)  
 
with the symmetric solution as 
 

                2

0

( 1)( 1) ( ) ( ) ( ) ,
!( )! 2

k
n n k

n n
k

xJ x J x n
k n k

∞
+ +

=

−
− − = = ∈

+∑ Z ,                   (2.46) 

 
but the orthogonality interval of Bessel functions is not symmetric (i.e. ]1,0[ ). Hence, 
theorem 1 cannot be applied for )(xJ n , unless there exists a specific even function 

)(xE  for equation (2.9) such that the corresponding solution has infinity zeros (see e.g. 
[18, 56] for more details), exactly similar to the case of usual Bessel functions of order 
n . Therefore the conclusion of this chapter can be summarized as follows: the usual 
Sturm-Liouville problem 
 

                    ,0)(,0)(;0))()(()( >>=−+⎟
⎠
⎞

⎜
⎝
⎛ xxkyxqx

dx
dyxk

dx
d

n ρρλ                     

 
under the boundary conditions 

                                                 1 1

2 2

( ) ( ) 0
;

( ) ( ) 0
y a y a

a x b
y b y b

α β
α β

′+ =⎧
< <⎨ ′+ =⎩

 

 
can be extended to the following problem 
 

                       0))(
2

)1(1)()(()( =
−−

+−+⎟
⎠
⎞

⎜
⎝
⎛ yxExqx

dx
dyxk

dx
d n

n ρλ , 

 
with the boundary condition 3 3( ) ( ) 0 ;y y xα θ β θ θ θ′+ = − < < , provided that the 
solution of latter differential equation has the symmetry property, i.e. 

)()1()( xyxy n
n

n −=− .  



Chapter 3 
 
A main class of symmetric orthogonal polynomials 
  
 
 
3.1. Introduction  
 
In the previous chapter, we determined how to extend the usual Sturm-Liouville 
problems with symmetric solutions. In this chapter, by using the extended Sturm-
Liouville theorem for symmetric functions, we are going to introduce a main class of 
symmetric orthogonal polynomials (MCSOP) with four free parameters and obtain all 
its standard properties, such as a generic second order differential equation together 
with its explicit polynomial solution, a generic orthogonality relation, a generic three 
term recurrence relation and so on. Then, we show that essentially four main sequences 
of symmetric orthogonal polynomials can be extracted from the introduced class. They 
are respectively the generalized ultraspherical polynomials, generalized Hermite 
polynomials and two other sequences of symmetric polynomials, which are finitely 
orthogonal on the real line and can be expressed in terms of the mentioned class 
directly. In this way, we also introduce two half-trigonometric sequences of orthogonal 
polynomials as special sub-cases of MCSOP.    
 
3.2. A Main Class of Symmetric Orthogonal Polynomials (MCSOP) using the 
extended Sturm-Liouville theorem [1] 
 
By referring to the main theorem of chapter 2 and generic differential equation (2.9) 
choose the following options 
 

               

2 2

2

2

( ) ( ) ; ,
( ) ( ) ; ,
( ) ; ,
( ) 0 ; ,
( ) ; ,

A x x px q An even function
B x x rx s An odd function
C x x An even function
D x An even function
E x s An even function

= +

= +

=
=
= −

                                 (3.1) 

 
where rqp ,,  and s  are real free parameters and ( ( 1) )n n r n pλ = − + − . Therefore, one 
deals with a second order differential equation of the form                                        (3.2) 
                                                                                                                                          

( ) 0)(2/))1(1())1(()()()()( 2222 =Φ−−+−+−Φ′++Φ ′′+ xsxpnrnxsrxxxqpxx n
n

nn .     
 
To obtain the polynomial solution of above equation, let us first suppose that mn 2= , 
i.e. 
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0)())12((2)()()()( 22
2

2
2 =Φ−+−Φ′++Φ ′′+ xxpmrmxsrxxqpxx mmm .                 (3.3)       

 
After doing some calculations in hand, one can get the solution of equation (3.3) as 
 

               ,
)12(

)212(
0

22
)1(

0
2 ∑ ∏

=

−
+−

=
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

++
++−

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛ m

k

km
km

j
m x

sqj
rpmj

k
m

x
qp
sr

S                       (3.4)                       

 
where 1

1

0

=∏
−

=r
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Consequently, combining (3.4) with (3.6) gives   
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as the most common source of classical symmetric orthogonal polynomials with four 
free parameters rqp ,,  and s  where neither both values q and s nor both values p and r 
can vanish together. Here let us point out that almost all known symmetric orthogonal 
polynomials, such as Legendre polynomials, first and second kind of Chebyshev 
polynomials, ultraspherical polynomials, generalized ultraspherical polynomials 
(GUP), Hermite polynomials and generalized Hermite polynomials (GHP) are special 
sub-cases of (3.7) and can be expressed in terms of it directly. Because of this matter, 
we call these polynomials, “The second kind of classical orthogonal polynomials”. 
Furthermore, there are two other symmetric sequences of finite orthogonal polynomials 
that are special sub-cases of general representation (3.7) and we will introduce them in 
the sections 3.9 and 3.10.  
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this notation in the text, we will show it as );,,,( xsrqpSn .  A straightforward result 
from (3.7) is that 
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Moreover, since the monic type of orthogonal polynomials (i.e. with leading coefficient 
1) is often required, we define 
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For instance, if 5...,,0=n  in (3.9) we have  
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The explicit representation of (3.9) helps us now obtain a three-term recurrence relation 
for the polynomials. Hence, if we assume that they satisfy the relation 
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then after doing a series of computations in hand, we obtain 
 

         ( )
)32)(2(

2/))1(1()2()1()2(2

prpnprpn
sprnpsqprnpq

qp
sr

C
nn

n −+−+
−−−+−−−+

=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
,     (3.10.1)         

 
which reveals the explicit form of (3.10). 
On the other hand, since the recurrence relation (3.10) has explicitly been specified, to 
determine the norm square value of the polynomials one can use Favard's theorem [27] 
by noting that there is orthogonality with respect to a weight function. According to this 
theorem, if ∞

=0)}({ nn xP  is defined by 
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where realCBAxPxP nnn ,,,1)(,0)( 01 ==− and 01 >+nnCA  for ,...1,0=n , then there 
exists a weight function )(xW  so that 
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Moreover, if the positive condition 01 >+nnCA  only holds for Nn ,...,1,0=  then the 
orthogonality relation (3.12) only holds for a finite number of m, n. The latter note will 
help us in the next sections to obtain two new sub-classes of );,,,( xsrqpS n  that are 
finitely orthogonal on the interval ),( ∞−∞ . It is clear that the Favard theorem is also 
valid for the recurrence relation (3.10) in which 0,1 == nn BA  and 

),,,( srqpCC nn −= . Furthermore, the condition 0),,,(1 >− + srqpCn  must always be 
satisfied if one demands to apply the Favard theorem for (3.10). By noting this subject 
and (3.12), the generic form of the orthogonality relation of MCSOP can be designed as 
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where the weight function, by referring to (2.16) and (3.1), is defined as   
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and α  takes the standard values ∞,1 . Note that the function );,,,()( 2 xsrqpWqpx +  
must vanish at α=x  in order to establish the main orthogonality relation (3.13).  
  
3.3. An analogue of Pearson distributions family [1] 
The positive function (3.14) can also be investigated from statistical point of view. In 
fact, this function is an analogue of Pearson distributions family having the general 
form 

                                 ))()2(exp( 2∫ ++
−+−

=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
dx

cbxax
bexadx

cba
ed

ρ ,                          (3.15)                              

 
and satisfying the first order differential equation 
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Therefore, we would like to point out that, similar to equation (3.15.1), the weight 
function (3.14) satisfies a first order differential equation as 
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which is equivalent to  
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From (3.16) or (3.16.1) it can be deduced that );,,,( xsrqpW  is an analytic integrable 
function and since it is also a positive function, its probability density function (pdf) 
must be available. In general, there are four main sub-classes of distributions family 
(3.14) (and consequently sub-solutions of equation (3.16)) whose explicit pdfs are 
respectively as follows 
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The values 4,3,2,1; =iKi  play the normalizing constant role in above distributions. 
Moreover, as it is observed, the value of distribution vanishes at 0=x  in each four 
cases, i.e. 0)0;,,,( =srqpW  for 0≠s . Hence, let us call the positive function (3.14) 
“The dual symmetric distributions family”. 
 
3.3.1. A generalization of dual symmetric distributions family  
First it is important to remember that if 0=s  in (3.16), the foresaid equation will be 
reduced to a special sub-case of Pearson differential equation (3.15.1). Hence, we 
hereafter suppose that 0≠s . Since the explicit forms of );,,,( xsrqpSn  in (3.7), 

),,,( srqpCn  in (3.10.1) and );,,,( xsrqpW  in (3.14) are all known, a further main pdf 
can directly be defined by referring to the orthogonality relation (3.13), so that we have 
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Clearly choosing 0=m  in this definition gives the same as dual symmetric 
distributions family. Moreover, the Fisher information [36] and Boltzmann-Shannon 
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information entropy [28] are two important factors in statistical estimation theory that 
can be investigated for the generalized distribution (3.21).   
 
3.4. A direct relationship between first and second kind of classical orthogonal 
polynomials 
One can verify that there is a direct relation between first kind of classical orthogonal 
polynomials (including Jacobi, Laguerre and Hermite polynomials as well as three 
finite classes of orthogonal polynomials, see chapter 4) and the explicit polynomials 

);,,,( xsrqpSn  indicated in (3.7). To find this relationship, we start with the following 
differential equation 
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According to [56], the monic polynomial solution of (3.22) can be shown by a 
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where );,,,,( xedcbaρ  is defined as the same form as (3.15).  
But, since );,,,(2 xsrqpS n  is generally an even function, taking vwtx += 2  in (3.22) 
gives                                                                                                                          (3.24) 
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If (3.24) is equated with (3.3), we should have 
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The equation (3.24.2) is clearly a special case of (3.3). This means that                 (3.25) 
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where K  is the leading coefficient of the left-hand side polynomial of relation (3.25) 
divided to leading coefficient of the right-hand side polynomial. 
As we observe in the above relation, there exist 5 free parameters a, b, c, d, e in the left-
hand side of (3.25). So, one of them must be pre-assigned in order that one can get the 
explicit form of );,,,(2 xsrqpS n  in terms of );,,,,( 2 vwtedcbaPn +  similarly. For this 
purpose, if for instance 0=c  is considered in (3.25), two following cases appear 
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Furthermore, if (3.8) is applied for two latter relations we respectively get 
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3.5. Some further standard properties of MCSOP 
The relations (3.26)-(3.29) are useful tool to get a generating function for MCSOP. 
Usually, a generating function for a system of polynomials )(zPn  is defined by a 
function like ),( tzG  whose expansion in powers of t has, for sufficiently small || t , the 
form 
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If )(zPn  has the Rodrigues-type formula [56], Cauchy’s integral formula  
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where Ω  is a closed contour surrounding the point zu = , is employed to obtain 

),( tzG  explicitly, see e.g. [56, p. 27]. This means that by considering the Rodrigues-
type representation (3.23) for 0=c  and applying Cauchy’s integral theorem on it we 
have 
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Similarly by multiplying both sides of (3.32) by tz  and using (3.28) we get       (3.32.2) 
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Therefore, by noting (3.32.1) and (3.32.2) a kind of generating function for MCSOP is 
derived as                                                                                                                  (3.34) 
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where *u  is the same form as (3.32.1). 
The explicit form of polynomials (3.7) can also be applied to obtain a generic 
hypergeometric representation for the polynomials, because by using it one can easily 



A Main Class of Symmetric Orthogonal Polynomials 

 

27 

 

indicate the coefficients of polynomials (3.7) in terms of the Pochhammer symbol: 
)1)...(1()( −++= maaaa m . For instance, we have 
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Hence, after some calculations, we eventually find that  
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the integral representation of MCSOP can easily be derived by referring to (3.36). In 
this way, by applying the Gauss identity [43] 
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one can also determine the value of polynomials );,,,( xsrqpSn  at a specific boundary 

point, i.e. pqx /−= . To reach this goal, it is sufficient to put pqx /−=  in (3.36) 
and use (3.38) to get                                                                                                   
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Note that to derive the above identity, the following equalities have been used 
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The standard properties of MCSOP have been found now. So, it is a good position to 
introduce four special sub-cases of main polynomials (3.7) in detail. 
 



A Main Class of Symmetric Orthogonal Polynomials 

 

28 

 

3.6. First subclass, Generalized ultraspherical polynomials (GUP) 
 
These polynomials were first investigated by Chihara in detail [see 27]. He obtained the 
main properties of GUP via a direct relation between them and Jacobi orthogonal 
polynomials. The asymptotic behaviors of foresaid polynomials were also studied by 
Konoplev [48]. On the other hand, Charris and Ismail in [24] (see also [25, 41]) 
introduced the Sieved random walk polynomials to show that the generalized 
ultraspherical polynomials are a special case of them. Of course, there are some other 
generalizations of ultraspherical polynomials. For instance, Askey in [19] introduced 
two classes of orthogonal polynomials as a limiting case of the q-Wilson polynomials 
on ]1,1[−  with the weight functions 
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in which Nk ∈  is a fixed integer and )(xTk  and )(1 xU k−  are respectively the 
Chebyshev polynomials of the first and second kind, to generalize GUP for 1=k  and 

0=λ . For the case 0=λ  the polynomials were introduced by Al-Salam, Allaway and 
Askey [15] as a limiting case of the q-Ultraspherical polynomials of Rogers [64]. 
Anyway, we intend in this section to show that GUP can directly be represented in 
terms of );,,,( xsrqpSn  and consequently all its standard properties will be obtained. 
For this purpose, it is only enough to have the initial vector corresponding to these 
polynomials and replace it into the standard properties of MCSOP.   
 
3.6.1. Definition 
Choose the initial vector )2,222,1,1(),,,( abasrqp −−−−=  and substitute it into 
(3.7) to get                                                                                                                 (3.41) 
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as the explicit form of monic GUP. Moreover, since the ultraspherical (Gegenbauer), 
Legendre, and Chebyshev polynomials of the first and second kind are all special cases 
of GUP, they can be expressed in terms of );,,,( xsrqpSn  directly and we have 
Ultraspherical polynomials: 
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Legendre polynomials: 
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Chebyshev polynomials of the first kind: 
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Chebyshev polynomials of the second kind: 
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3.6.2. Recurrence relation of monic polynomials 
By replacing the initial vector (3.41) into the explicit expression ),,,( srqpC n , given in 
(3.10.1), the recurrence relation of monic GUP takes the form                                (3.42) 
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where according to (3.10.1)                                                                                   (3.42.1)      
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3.6.3. Orthogonality relation 
Clearly the weight function of GUP is the same distribution as (3.17) without 
considering its normalizing constant, i.e. ba xx )1( 22 − . Also, since this function must be 
even and positive, the condition 1)1( 2 =− a  is essential. Hence, the mentioned weight 
function can also be considered as ]1,1[;)1(|| 22 −∈− xxx ba . By noting this comment 
and generic relation (3.13) for 1=α , the orthogonality relation of first sub-class takes 
the form                                                                                                                     (3.43) 
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From (3.43.1) one can conclude that the constraints on the parameters a and b should 
be 02/1 >+a , 1)1( 2 =− a  01and >+b . Note that ),( 21 λλB  in (3.43.1) denotes the 
Beta integral [18] having various definitions in the form 
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3.6.4. Differential equation: );2,222,1,1()( xabaSx nn −−−−=Φ . 
To derive the differential equation of GUP it is enough to substitute its initial vector 
into the main differential equation (3.2) to get to                                                     (3.45)                             
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3.7. Fifth and Sixth kind of Chebyshev polynomials [1] 
 
As we know, four kinds of trigonometric orthogonal polynomials, known as first, 
second, third and fourth kind of Chebyshev polynomials, have been investigated in the 
literature up to now, see e.g. [63, 37, 27, 70]. The explicit definitions of them are 
respectively as  
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Now, we would like to add here that there exist two further kinds of Half-trigonometric 
orthogonal polynomials, which are particular sub-cases of );,,,( xsrqpSn . Since they 
are generated by using the first and second kind of Chebyshev polynomials and have 
the half-trigonometric forms, let us call them the fifth and sixth kind of Chebyshev 
polynomials.  
To generate these two sequences, we should refer to the important relation (3.8). 
According to (3.41.3), the initial vector of first kind Chebyshev polynomials is: 

)0,1,1,1(),,,( −−=srqp . So, if this vector is replaced into (3.8) then we have 
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By means of (3.50), the secondary vector )2,3,1,1(),,,( −−=srqp , as a special case of 
the set of vectors ),,,( srqp , appears. By using this new vector first we define the half-
trigonometric polynomials   
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where x=θcos . According to (3.51) and (3.10), )(xX n  satisfies the recurrence 
relation 
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Consequently, substituting the secondary vector (-1,1,-3,2) into the generic relation 
(3.13) gives the orthogonality relation of the first kind of half-trigonometric orthogonal 
polynomials as  
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On the other hand since 
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(3.54) is simplified to 
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Clearly a half of polynomials )(xX n  is decomposable and we have 
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So, if one can find the roots of )(12 xX n+  too, these polynomials will find many 
applications in numerical analysis such as Gaussian quadrature rules [27, 70]. 
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Similarly, the subject holds for the initial vector of the second kind Chebyshev 
polynomials, i.e. )0,3,1,1(),,,( −−=srqp . Again, if this vector is substituted into (3.8) 
then 
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and subsequently the secondary vector is obtained in the form )2,5,1,1(),,,( −−=srqp . 
Now, by assuming that x=θcos  let us define the polynomials 
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satisfying the recurrence relation 
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and having the orthogonality relation 
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The relation (3.61) simplifies (3.60) as 
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Similar to previous case, )(2 xY n  is decomposable as 
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Here it should be added that there are two other sequences of half-trigonometric 
polynomials that are not orthogonal, but can be shown in terms of MCSOP. These 
sequences are defined as 
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However since we have 
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they cannot fall into the half-trigonometric orthogonal polynomials category. Thus we 
can generally consider the following table showing some properties of the first kind to 
sixth kind of monic Chebyshev polynomials orthogonal on ]1,1[− .   
 
      Table 1: Representations of Chebyshev polynomials by );,,,( xsrqpSn  
 

Type Notation Definition  Weight  
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Remark 1. According to (3.41.4), the initial vector of the monic Chebyshev 
polynomials )(xU n  is )0,3,1,1(),,,( −−=srqp . If this vector is replaced in (3.10.1), a 
very simple case of three-term recurrence relation (3.10) with 4/1)0,3,1,1( −=−−nC  
is derived. A system of monic orthogonal polynomials that satisfies the relation  
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                           ,Z,1)(;)()()()( 011
+

−+ ∈=−−= nxPxPxPxxP nnnnn βα       (3.68)                 
  
and has the property 

                             
2

lim and lim 0 ; , ,
4n nn n

ba a bα β
→∞ →∞

= = > ∈R               (3.69)            

 
is said to belong to the class ),( baN . The monic polynomials corresponding to the 

conditions (3.69) are perturbations of )(
b

axUbx n
n −

→ . Now since  

 

                         
3 2 5 21 1lim and lim ,
1 1 1 14 4n nn n

C C
→∞ →∞

− −⎛ ⎞ ⎛ ⎞
= − = −⎜ ⎟ ⎜ ⎟− −⎝ ⎠ ⎝ ⎠

              (3.70)               

 
the defined polynomials )(xX n  and )(xYn  belong to the class )1,0(N .    
 
3.8. Second subclass, Generalized Hermite polynomials (GHP) 
The GHP were first introduced by Szego who gave a second order differential equation 
for these polynomials [70, problem 25] as almost the same form as we will give in this 
section. These polynomials can be characterized by using a direct relationship between 
them and Laguerre orthogonal polynomials [27]. Of course, there are some other 
approaches for this matter, see e.g. [32]. Because of this, it is better to only point to the 
main properties of GHP in terms of the obtained properties of );,,,( xsrqpSn . 
 
3.8.1. Initial vector 
                                                         )2,2,1,0(),,,( asrqp −=  .                              (3.71)                            
 
3.8.2. Explicit form of monic GHP                                                                                             
                                                                                                                                   (3.72) 
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3.8.3. Recurrence relation of monic GHP 
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3.8.4. Orthogonality relation  
                                                                                                                                   (3.74) 
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The above relation shows that orthogonality is valid for 021 >+ /a  and 1)1( 2 =− a . 
 
3.8.5. Differential equation: );2,2,1,0()( xaSx nn −=Φ .                                                                                
 
                ( ) 0)()1)1((2)()(2)( 222 =Φ−−++Φ′−−Φ ′′ xaxnxaxxxx n

n
nn  .           (3.75)          

 
Finally note that since the leading coefficient of Hermite polynomials )(xH n  is n2 , the 
following equality holds 
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3.9. Third subclass, A finite class of symmetric orthogonal polynomials with 
weight function ba xx −− + )1( 22  on ),( ∞−∞  [1] 
 
According to Favard theorem, if the condition 0),,,(1 >− + srqpCn  holds only for a 
finite number of positive integers, i.e. for Nn ,...,1,0=  then the related polynomials 
class would be finitely orthogonal. This note helps us obtain some new classes of finite 
symmetric orthogonal polynomials, which are special sub-cases of );,,,( xsrqpSn  and 
can be indicated by it directly. To derive the first finite sub-class, we should first 
compute the logarithmic derivative of the weight function ba xxxW −− += )1()( 22  as 
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If the above fraction is compared with the logarithmic derivative of the main weight 
function );,,,( xsrqpW  then we get 
                                                ),,,(),,,( abasrqp 222211 −+−−=  ,                     (3.78)                       
 
which is in fact the initial vector corresponding to the first finite sub-class of symmetric 
orthogonal polynomials. Hence, if (3.78) is replaced in (3.7) the explicit form of 
polynomials is derived as                                                                                          (3.79) 
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Replacing (3.78) in the main recurrence relation (3.10) also gives                          (3.80) 
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Therefore, the orthogonality relation  
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is valid iff 0and2/1;2/1;;0
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Here is a good position to explain how we can determine the parameters conditions to 
be established the orthogonality property (3.81). For this purpose, there is an interesting 
technique. Let us consider the differential equation of polynomials (3.79) using the 
initial vector (3.78) and subsequently the main equation (3.2) as                            (3.82)   
                                                                                                                   

( ) 011122121 2222 =Φ−−++−++Φ′+−+−Φ ′′+ )())(())(()())(()()( xaxnbanxaxbaxxxx n
n

nn

 
If the above equation is written in self-adjoint form, then according to theorem 1 the 
following term must vanish, i.e. 
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∞−
+−− xxxxxx nmmn

ba  .      (3.83)               
 
On the other hand, since )(xnΦ  is a polynomial of degree n, so  
 
                                    1))()()()(deg(max −+=ΦΦ′−ΦΦ′ mnxxxx nmmn  .           (3.84)                   
 
Consequently from (3.83) and (3.84) we must have 
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which gives the following result 
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In other words, (3.81) holds if and only if 21,...,1,0 /baNm,n −+≤=  in which 

},max{ nmN = , 2/1<a  and 0>b . 
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Corollary 1. The finite polynomial set { } Nn
nn xabaS =
=−+−− 0);2,222,1,1(  is orthogonal 

with respect to the weight function ba xx −− + )1( 22  on ),( ∞−∞  if and only if 
2/1−+≤ baN , 2/1<a  and 0>b .   

 
We add that the explained technique can similarly be applied for the first and second 
sub-classes of );,,,( xsrqpSn i.e. GUP and GHP.  
 
3.10. Fourth subclass, A finite class of symmetric orthogonal polynomials with 
weight function 

212 xaex /−−  on ),( ∞−∞  [1] 
 
Similar to the first finite sub-class, one can compute the logarithmic derivative of the 
given weight function to get respectively 
 
3.10.1. Initial vector    
                                                      )2,22,0,1(),,,( +−= asrqp .                            (3.87)                       
 
3.10.2. Explicit form of polynomials 
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3.10.3. Recurrence relation of monic polynomials        
                                                                                        

,,)(,1)(;)(
01
222

)()( 1011 N∈==⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ +−
+= −+ nxxSxSxS

a
CxSxxS nnnn    (3.89)     

where 

                                     
)122)(122(

2)()1(2
01
222

−−+−
−−−−

=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ +−
anan

aana
C

n

n  .                (3.89.1)             

3.10.4. Orthogonality relation  
                                                                                                                                   (3.90) 
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But (3.90) is valid if 
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Corollary 2. The finite polynomial set { } Nn
nn xaS =
=+− 0);2,22,0,1(  is orthogonal with 

respect to the weight function 
212 xaex /−−  on ),( ∞−∞  if and only if 2/1−≤ aN . 

 
3.10.5. Differential equation: );2,22,0,1()( xaSx nn +−=Φ . 
                                                                                

( ) 0)()1(1)21()()1)1((2)( 224 =Φ−−+−+−Φ′+−+Φ ′′ xxannxxaxxx n
n

nn  .      (3.93)        
                           
3.11. A unified approach for the classification of MCSOP 
As we observed in the previous sections, each four introduced sub-classes of symmetric 
orthogonal polynomials were determined by );,,,( xsrqpSn  directly and it was only 
sufficient to obtain the initial vector corresponding to them. On the other hand, it is 
clear that the orthogonality interval of the sub-classes, other than first one (GUP), are 
all infinite, i.e. ),( ∞−∞ . Hence, applying a linear transformation, say vwtx += , 
preserves the orthogonality interval. For example, if wvwtx /+=  in (3.74), the 
orthogonality interval will not change and consequently a more extensive class with 
weight function )2exp()( 2222 vttwvtw a −−+  will be derived on the interval ),( ∞−∞ . 
However, it is important to know that the latter weight corresponds to the class of 
orthogonal polynomials )/;,,,( wvwxsrqpSn + . Therefore, only by having the initial 
vector we can have access to all other standard properties and design a unified approach 
for the cases that may occur. In other words, if one can obtain the parameters 

),,,( srqp  by referring to the initial data, such as a given three term recurrence relation, 
a given weight function and so on, then all other properties will be derived 
straightforwardly. Here, we consider two special sub-cases of this approach. 
 
3.11.1. How to find the parameters srqp ,,,  if a special case of the main weight 
function  );,,,( xsrqpW  is given? 
By referring to third and fourth orthogonal sub-classes, it is easy to find out that the 
best way for deriving srqp ,,,  is to compute the logarithmic derivative )(/)( xWxW ′  
and then equate the pattern with (3.14). The following examples will clarify this matter. 
 
Example 1. The weight functions 
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and their orthogonality intervals are given. Find other standard properties such as 
explicit form of polynomials, orthogonality relation and …. 
To solve the problem, it is only sufficient to find the initial vector corresponding to 
each given weight functions. For this purpose, if the logarithmic derivative of the first 
weight is computed, then we have 
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Hence the related monic polynomials are { }∞=−− 0);16,8,4,1( nn xS . Note that these 
polynomials are orthogonal with respect to )4( 24 xx −  on ]2,2[−  for every n  and it is 
not necessary to know that they are the same as shifted GUP on ]2,2[− , because they 
can explicitly and independently be expressed by );,,,( xsrqpSn .  
But, for the weight function )(2 xW  it differs somewhat and we have 
                 

)2,2,1,0(),,,(22
)(
)(

)()
4

12(
4
1))

2
12(exp()

2
12(4)()

2

*
2

*
2

*
2

2
2

4
1

224
1

2

2

−=⇒
+−

=
′

→

==
+

⇒−−−= −−

srqp
t

t
tW
tW

tWettWexxexWii t

 

Hence the related orthogonal polynomials are as 
∞

=⎭
⎬
⎫

⎩
⎨
⎧ −−

0

)
2
12;2,2,1,0(

n
n xS . 

             

)2,6,1,1(),,,(
)1(
28

)(
)(

)(
)1(

)
2

1(2
))12(1(

)12(2)()

2

2

*
3

*
3

*
352

2

3
5

52

2
5

3

−=⇒
+
+−

=
′

→

=
+

=
−

⇒
++
+

= −

srqp
tt
t

tW
tW

tW
t

ttW
x

xxWiii

 

 
Consequently, by noting the orthogonality relation of the third sub-class of MCSOP, 
the finite set { } 3

0)12;2,6,1,1( =
=+− n

nn xS  is orthogonal with respect to )(3 xW  on ),( ∞−∞  
and the upper bound of this set has been determined based on the condition 

2/1−+≤ baN  for 5=b  and 1=a .    
 
3.11.2. How to find the parameters srqp ,,,  if a special case of the main three-
term recurrence equation (18) is given? 
In general, there are two ways to determine the special case of );,,,( xsrqpS n  
corresponding to a given three-term recurrence equation. The first way is to directly 
compare the given recurrence equation with (3.10). This leads to a system of 
polynomial equations in terms of the four parameters srqp ,,, . In [46] a similar 
method is applied for the first kind of classical orthogonal polynomials. The second 
way is to equate the first four terms of each two recurrence equations together, which 
leads to a polynomial system with 4 equations and 4 unknowns srqp and,,  
respectively. The following example will better illustrate these methods. 
Example 2. If the recurrence equation 
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is given, then find its explicit polynomial solution, differential equation of  
polynomials, the related weight function and finally orthogonality relation of 
polynomials. 
 
Solution. If the above recurrence equation is directly compared with the main equation 
(3.10) and subsequently (3.10.1), then one can obtain the values 

)2,10,0,1(),,,( −=srqp . Hence, the explicit solution of above recurrence equation is 
the polynomials );2,10,0,1( xSn −  and therefore their differential equation is found as 
 
            ( ) 0)()1(1)11()()210()( 224 =Φ−−+−−Φ′+−+Φ ′′ xxnnxxxxx n

n
nn . 

 
Moreover, by replacing the initial vector in the main weight function (3.14) as 
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one can find out that the related polynomials are a particular case of the fourth 
introduced sub-class. Hence we have 
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Second method. If the given recurrence relation is only expanded for n = 2, 3, 4, 5 and 
then equated with (3.9.1), the following system will be derived 
 

2 2 3
2 3 2 1

4 2
4 3 2

2 2 4 3( ) ; ( ) ( ) ( )
9 9 63 3

18 3 (3 )( ) 5 4( ) ( ) ( ) 2 and 2  .
35 5 (5 )(3 ) 7 3

q s q s q sS x x x S x x S x S x x x
p r p r p r

q s q s q s q sS x x S x S x x x
p r p r p r p r

+ + +
= − = + ⇒ = − = − = +

+ + +
+ + + +

= − = + + = −
+ + + +

 
Solving this system again results that )2,10,0,1(),,,( −=srqp . 
In conclusion, by using the extended Sturm-Liouville theorem for symmetric functions 
explained in chapter 2, one can define a generic second order differential equation 
having a main polynomial solution with four free parameters. This solution satisfies a 
generic orthogonality relation whose weight function corresponds to an analogue of 
Pearson distributions. In other words, there are four special cases of the dual symmetric 
distributions family that can respectively be considered as the weight functions of four 
introduced sub-classes of MCSOP. In this way, the following table shows the explicit 
forms of the mentioned sub-classes in terms of );,,,( xsrqpSn  as well as their weight 
functions, kind of polynomials (finite or infinite), orthogonality interval and finally 
constraint on the parameters.        
 



A Main Class of Symmetric Orthogonal Polynomials 

 

41 

 

                      Table 2: Four special sub-cases of );,,,( xsrqpSn  
Definition   Weight       
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Interval & Kind          Parameters  

         Constraint 
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Finally we repeat that since all weights in above table are even functions, the condition 

1)1( 2 =− a  must always be satisfied by noting the constraint of parameters for each 
introduced weight functions. Therefore, they can also be considered in the forms 

ba xx )1(|| 22 − , 
22|| xa ex − , ba xx −− + )1(|| 22  and 

2/12|| xa ex −−  respectively.     
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Chapter 4 
 
Finite classical orthogonal polynomials  
 
 
 
4.1. Introduction  
 
It is well known that the classical orthogonal polynomials of Jacobi, Laguerre and 
Hermite are infinitely orthogonal and satisfy a second order differential equation of the 
form 
                 0)())1(()()()()( 2 =+−−′++′′++ xyDAnnxyEDxxyCBxAx nnn   
 
in which EDCBA and,,,   are parameters independent of n. In this chapter, we intend 
to study three other sequences of hypergeometric polynomials in detail, which are 
special solutions of above equation and are finitely orthogonal with respect to three 
specific weight functions. These classes have respectively relation with the Jacobi and 
Laguerre polynomials. In particular, the second class is directly related to the 
generalized Bessel polynomials and consequently Laguerre polynomials. Let us start 
with the first finite case.  
 
4.2. First finite class of hypergeometric orthogonal polynomials 
 
Consider the differential equation of Sturm-Liouville type 
 
                           ( ) ( ) ( ) ( ) ( ) 0 ,n n n nx y x x y x y xσ τ λ′′ ′+ − =                                              (4.1) 
 
where CBxAxx ++= 2)(σ  and EDxx +=)(τ  are polynomials independent of n and 

nDAnnn +−= )1(λ  is the eigenvalue parameter depending on ,...2,1,0=n . 
The Jacobi orthogonal polynomials for 21)( xx −=σ , )()2()( αββατ −+++−= xx , 
Laguerre for xx =)(σ , xx −+= 1)( ατ  and finally Hermit for 1)( =xσ , xx 2)( −=τ  
are three known types of polynomial solutions of equation (4.1). But, there are three 
other types of polynomial solutions that are finitely orthogonal. The first finite class is 
defined when xxx += 2)(σ , )1()2()( qxpx ++−=τ  in (4.1). So, substituting these 
values in (4.1) gives the following differential equation 
 

            0)()1(()())2(()()( 2 =−+−′+−+′′+ xypnnxyqxpxyxx nnn .                       (4.2) 
 
By applying the Frobenius method, an explicit polynomial solution for the equation 
(4.2) will be derived as 
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Moreover, one can prove that these polynomials are finitely orthogonal with respect to 
the weight function )(

1 )1(),;( qpq xxqpxW +−+=  on ),0[ ∞  if and only if 
1}{max2 +> np  and 1−>q . To prove this claim, one should first write the self-

adjoint form of the equation (4.2) as 
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Then using the Sturm-Liouville theorem, one gets 
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where )1( pnnn −+=λ . As we applied in chapter 3, since  
                             max deg 1)}()()()({ −+=′−′ nmxyxyxyxy nmmn   
so if 1−>q , },max{,12 nmNNp =+> , the left side of (4.5) tends to zero and we 
will have 
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Corollary 1. The finite set 2/)1(

0
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0
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n
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n
N
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qNp
n xMxM  must be 

orthogonal with respect to the weight function )(
1 )1(),;( qpq xxqpxW +−+=  on ),0[ ∞ . 

 
As the differential equation (4.2) shows, the polynomials (4.3) have a direct relation 
with the Jacobi polynomials. Hence, by referring to the Rodrigues representation of 
Jacobi polynomials [16], the Rodrigues formula of the defined polynomials (4.3) can be 
indicated as  
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One of the advantages of above representation is to calculate the norm square value of 
the polynomials. For this purpose, if (4.7) is replaced in the norm 2 relation 
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then integration by parts yields 
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On the other hand 
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So, we have  
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The foresaid relation shows that 12 +> np  is a necessary condition for the 
orthogonality of the polynomials )(),( xM qp

n . Therefore 
 
Corollary 2 (Orthogonality relation) 
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4.3. Second finite class of hypergeometric orthogonal polynomials: If 2)( xx =σ  and 

1)2()( +−= xpxτ  in (4.1) 
 
The second case is directly related to the generalized Bessel polynomials. The Bessel 
polynomials for 2)( xx =σ , 22)( += xxτ  were first studied by [51] in 1949. They 
established the complex orthogonality of Bessel polynomials on the unit circle ( the real 
orthogonalizing weights of these polynomials have recently given in [35] ). Then, in 
1973, the generalized Bessel polynomials were reviewed by [38]. They are special 
solutions of equation (4.1) for 2)( xx =σ , 2)2()( ++= xx ατ ; ,...3,2 −−≠α  and are 
indicated by 
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where )()( xBn

α  denotes the monic Bessel polynomial. Now, without loss of generality, 
let us consider the following differential equation 
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                         0)()1(()()1)2(()(2 =−+−′+−+′′ xypnnxyxpxyx nnn  .                 (4.14) 
 
By applying the Frobenius method one can show that  
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is a polynomial solution of (4.14). Clearly these polynomials are related to the 
generalized Bessel polynomials as  
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If the equation (4.14) is written in self-adjoint form 
                                                                                                                                   (4.17) 
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then multiplying by )(xym , )(xyn  in (4.17) respectively and subtracting them, we get 
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where )1( pnnn −+=λ . Again, since max deg 1)}()()()({ −+=′−′ nmxyxyxyxy nmmn  
the condition },max{,12 nmNNp =+>  causes the left side of (4.18) to tend to zero 
and therefore  
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Corollary 3. The finite set 2/)1(
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But the Rodrigues representation of classical orthogonal polynomials can be denoted by 
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 where )(xW  is a weight function, nC  is a constant value and 

)(xP  is an appropriate polynomial. So, if n
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2)( xxP =  are supposed in the mentioned formula, then  



Finite classical orthogonal polynomials 

 

47

 

                          ,...2,1,0;)()1()(
/121

)( =−=
−+−

n
dx

exdexxN n

xnpn
xpnp

n                     (4.20) 

 
To complete the orthogonality relation of )()( xN p

n , one can use the above formula and 
compute the norm square value of the polynomials. Accordingly, if (4.20) is replaced in 
the relation 
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then integration by parts yields 
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Here one should note that if 1>p  then 
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Therefore, (4.22) is simplified as  
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and we finally get 
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Corollary 4.  (Orthogonality Relation) 
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4.3.1 A direct relationship between Bessel polynomials and Laguerre polynomials 
[8] 
It is interesting to know that there is a direct relationship between Bessel polynomials 
and Laguerre polynomials. To find this relation, we first consider the generalized 
Bessel equation 

                               0,0)()()()( 2321
2 ≠=+′++′′ rxyrxyrxrxyx                      (4.26)                             

 
and suppose that )/1()( xFxxy r= . Therefore )/1()( xyxxF r=  and (4.26) is 
transformed to 
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Now if in (4.27)  
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then it changes to 
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On the other hand, it is known that the general solution of  
 
                              0)()()()( =−′−+′′ xgbaxgbxcxgx ,                                          (4.28) 
 
can be indicated by the confluent hypergeometric functions [42] 
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So, by comparing the equations (4.27.2) and (4.28) it is concluded that the function 
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satisfies the equation (4.26) if and only if 02 ≠r . Subsequently the monic Bessel 
polynomials are representable in terms of the Laguerre polynomials and we have 
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In this way, )()( xN p

n  can also be represented by the Laguerre polynomials so that 
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The latter relation is useful to generate a new definite integral for the Laguerre 
polynomials, because substituting (4.31) into (4.25) yields 
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4.4. Third finite class: Classical hypergeometric orthogonal polynomials with 

weight function )arctanexp())()(( 22
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+++ −  on ),( ∞−∞  [9] 

As was expressed up to now, from the main equation 
 
         +∈=+−−′++′′++ ZnxyDAnnxyEDxxyCBxAx nnn ;0)())1(()()()()( 2  
 
one can extract six “infinite” and “finite” sequences of classical orthogonal 
polynomials. In this part, we study the last finite class of hypergeometric polynomials, 
which is “finitely” orthogonal with respect to the well-behaved weight function 

))/()(arctanexp())()(( 22 dcxbaxqdcxbax p +++++ −  on ),( ∞−∞ . The foresaid 
function can be considered as an important statistical distribution too, because by 
having its explicit criterion, one can generalize the T sampling distribution and prove 
that it tends to the Normal distribution just like T- student distribution. Of course, the 
next chapter is devoted to this subject with more details. However, before studying the 
last finite case, we should introduce a special sub-case of the equation (4.1) for 

21)( xx +=σ  and xpx )23()( −=τ  and show that the polynomials generated from this 

case are finitely orthogonal with respect to the positive measure 
)
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on the real interval ),( ∞−∞ . Hence, similar to previous cases, we see that the 
differential equation  
 
                    ,0)()22(()()23()()1( 2 =−+−′−+′′+ xypnnxyxpxyx nnn                  (4.33) 
 
has a polynomial solution in the form [10] 
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By transforming (4.33) as a Sturm-Liouville equation and applying the technique that 
was applied for the first and second kind of finite classical orthogonal polynomials we 
arrive at  
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On the other hand, since (see [10]) 
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we finally get 
 
Corollary 5.  (Orthogonality Relation) 
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It is important to point out that the weight function of above orthogonality relation 
corresponds to the usual T student distribution so that we have 
 

               .,;)1
2

;()
)2/(
)2/)1((();( N∈∞<<∞−+

Γ
+Γ

= nxn
n

x
nn

nnxT ρ
π

              (4.37) 

 
Now, we here wish to say that it is not the end of the story of polynomials )()( xI p

n , 
rather, there is a much more extensive polynomial class which is finitely orthogonal on 

),( ∞−∞  and generalizes the sequence )()( xI p
n . For this purpose, first we consider the 

following polynomials 
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. After doing some computations on (4.38), the 

following differential equation will be derived for the polynomials                        (4.39)           
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On the other hand, the equation (4.39) can be written in terms of the differential 
equation of hypergeometric function );,,(12 xcbaF  [56]. So, after applying an 
appropriate change of variable one will reach this result that 
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in which )(/)()( akaa k Γ+Γ= . This formula is an explicit representation for the 
defined polynomials (4.38). 
Furthermore, the polynomials (4.40) have an important linear property. Using the 
Rodrigues representation (4.38) it can be obtained easily, because if vwtx +=  is 
considered in (4.38), then                                                                                          (4.41) 
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For instance, if 0and1 =−= vw  in (4.41) then 
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Now, let us consider the differential equation (4.39) in the form of a self-adjoint 
equation 
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and apply the Sturm-Liouville theorem for it on ),( ∞−∞  to reach                          (4.43) 
 

( ) ( )

( )∫
∞

∞−

−

∞
∞−

−

+
+

+++×

−=′−′
+
+

+++

dxdcbaxJdcbaxJ
dcx
baxqdcxbax

xyxyxyxy
dcx
baxqdcxbax

qp
m

qp
n

p

mnnmmn
p

),,,;(),,,;()arctanexp()()(

))]()()()()(arctanexp()()([

),(),(22

122 λλ

where )21( pnnn −+=λ . Since ( ) 1)()()()(degmax −+=′−′ mnxyxyxyxy nmmn  is 
valid in (4.43), if the conditions R∈=+> qdcbanmNNp ,,,,and},max{,2/1  
hold, the left side of (4.43) tends to zero and consequently                                                                             
                                                                                                                                   (4.44) 
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It just remains to compute the norm square value of the polynomials. To compute the 
norm 2, let us first replace the Rodrigues representation (4.38) in 
   

( )

( )
.

))arctanexp()()((
),,,;()1(

)),,,;(()arctanexp()()(

22

),(

2),(22

∫

∫

∞

∞−

−

∞

∞−

−

+
+

+++
−=

+
+

+++

n

pnn

qp
n

n

qp
n

pn

dx
dcx
baxqdcxbaxd

dcbaxJ

dxdcbaxJ
dcx
baxqdcxbax

        (4.45)  



Finite classical orthogonal polynomials 

 

52

 

Then, by noting that ),,,;(),( dcbaxJ qp
n  has the orthogonality property, integration by 

parts from (4.45) yields 
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Now, suppose t
dcx
bax
=

+
+  in the right hand side of (4.46). This simplifies it as      (4.47) 
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Therefore, the orthogonality property of defined polynomials can be expressed as:  
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Note that (4.48) will be simplified more if one takes p2  as a natural number, because it 
is known that ∫ − θθθ θ deca qm)sincos(  is analytically integrable if N∈m . Hence, 
by knowing that 
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The equality (4.50) implies that                                                                             (4.50.1) 
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Thus, if p2  is a natural number in (4.48), the norm square value of the polynomials 

will explicitly be determined. For instance, set 
2

,1,0 mpdc ===  and N∈m  to get 
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    (4.51)                  

Here is a good position to propound a complete example of the above orthogonality 
property. Suppose the finite set 5

0
)2,6( )}1,0,1,2;({ =

=− n
nn xJ  is given. This set is orthogonal 

with respect to the measure ))12arctan(2exp()122()1,0,1,2;( 62)2,6( −+−=− − xxxxW  on 
),( ∞−∞  and satisfies the orthogonality relation                                                    (4.51.1) 
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4.5. Application of defined polynomials in functions approximation and numerical 
integration 
Usually, the finite sets of orthogonal polynomials are applied to the discrete orthogonal 
polynomials rather than continuous cases. In other words, there is a main difference 
equation in the form 
                                0)())()(())()(( =−Δ+∇Δ xyxyxxyx nλτσ ,                             (4.52)                              
 
with ;)()1()( xyxyxy −+=Δ  ;)1()()( −−=∇ xyxyxy  CBxAxx ++= 2)(σ  ;  

EDxx +=)(τ  and nDAnnn +−= )1(λ , that contains classical orthogonal 
polynomials of a discrete variable [57]. For instance, Hahn discrete polynomials [42] 
 
       NnNxnnFNxQn ,...,2,1,0),1;,1,,1,(),,,( 23 =−+−+++−= αβαβα       (4.53)             
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are finitely orthogonal with the known conditions 1, −>βα  or βα −<−< NN ,  and 
satisfy 

   .
)12()1(!)(

)1()1(!)1(
)()( ,

1

0
mn

nn

Nn
nN

x
mn nNN

nn
xQxQ

xN
xN

x
x

δ
βαα

βαββα
++++−

++++−
=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−
−+

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ + +

=
∑  (4.53.1)          

 
The Krawtchouk polynomials [57], Racah polynomials [57], Dual Hahn discrete 
polynomials [42] are some further cases that have been classified in the category of 
finite discrete hypergeometric orthogonal polynomials. According to orthogonal 
polynomials theory, it is obvious that any arbitrary function )(xf  can be expanded in 
terms of each mentioned polynomials, provided that )(xf  satisfies the Dirichlet 
conditions. Now, we would like to point out that the finite polynomial set 
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n  can similarly be applied for approximating the 

function )(xf  . For this purpose, it is enough to consider the following finite 
approximation 
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According to Corollary 6 
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Note that the integer 2/1−< pN  is the maximum precision degree of the 
approximation (4.54). For example, in the polynomial set )}1,0,0,1;({ )1,4( xJ n , the 
maximum precision degree is at most 3. The following example clarifies this matter by 
applying the Gram-Schmidt orthogonalization process [16].   
 
Example 1. Let us compute )1,0,0,1;(),( xJ qp

n  for 1,4 == qp  and 3≤n . Therefore 
}7123642,31020,16,1{)}1,0,0,1;({ 2323

0
)1,4( +−−−−−== =

= xxxxxxxJS n
nn  is a finite 

orthogonal polynomial set with respect to the weight function 
)exp()1()1,0,0,1;( 42)1,4( ArctgxxxW −+=  on ),( ∞−∞  and 

 

3,
))226(1()27(

)
2

sinh2()!7(!
)1,0,0,1;()1,0,0,1;(

)1(
)exp(arctan

,3

0

2

)1,4()1,4(
42 ≤⇔

−−+−

−
=

+ ∏
∫ −

=

∞

∞−

nm
knn

nn
dxxJxJ

x
x

mnn

k

mn δ

π

 
For example by referring to the set S , 2== nm  in this relation gives 
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Now, by noting the above orthogonality relation and considering the members of set S , 
one can approximate a third degree polynomial for )(xf  as 
 
           )7123624()31020()16()( 23

3
2

210 +−−+−−+−+≅ xxxcxxcxccxf , 
 
which eventually yields 
 

.)7123624()()7123624)(exp(arctan)1(

)31020()()31020)(exp(arctan)1(9

)16()()16)(exp(arctan)1(85

)()exp(arctan)1(629)()
2

sinh288(

232342

2242

42

42

+−−⎟
⎠
⎞⎜

⎝
⎛ +−−+

+−−⎟
⎠
⎞⎜

⎝
⎛ −−+

+−⎟
⎠
⎞⎜

⎝
⎛ −+

+⎟
⎠
⎞⎜

⎝
⎛ +≅

∫

∫

∫

∫

∞

∞−

−

∞

∞−

−

∞

∞−

−

∞

∞−

−

xxxdxxfxxxxx

xxdxxfxxxx

xdxxfxxx

dxxfxxxfπ

 

 
This approximation is exact for any arbitrary polynomial function of degree at most 3. 
Moreover, note that the monic polynomials set S  can be obtained by applying the 
Gram-Schmidt orthogonalization process if the moments of weight function 

)1,0,0,1;()1,4( xW  exist on ),( ∞−∞ . In this case we have  
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After calculating the coefficients nn CB ,  for 3≤n , the monic orthogonal set S  will be 
derived as 

                           }
24
7

2
1

2
3,

20
3

2
1,

6
1,1{ 232 +−−−−−= xxxxxxS . 

 
One of the other advantages of defined polynomials is to estimate a type of definite 
integrals using Gauss integration theory. By employing the zeros of polynomials 

),,,;(),( dcbaxJ qp
n  as the interpolator points in the Lagrange interpolation, one can 

approximate the integrals ∫
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the precision degree 12 −= nN .  This subject is clarified by the following example. 
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Example 2. By replacing the zeros of 31020)1,0,0,1;( 2)1,4(
2 −−= xxxJ  in the Lagrange 

interpolation, a two-points approximation will be derived in the form 
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This approximation is precise for 32 ,,,1)( xxxxf =  and any linear combination of these 
elements. Anyway, it should be noted that the maximum precision degree of the 

numerical approximation ∫
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4.6. A connection between infinite and finite classical orthogonal polynomials 
The Rodrigues representation of the finite classical orthogonal polynomials are useful 
tool to find some limit relations between ),,,;(),( dcbaxJ qp

n  and Hermite polynomials 
and also between )(),( xM qp

n  and Laguerre polynomials respectively. For this purpose, 
the following limits should first be considered 
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Hence we have                                                                                                          (4.57) 
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Similarly, this technique can be applied to derive a limit relation between )(),( xM qp
n  

and Laguerre polynomials. In this sense we have 
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Now, taking limit as ∞→p  yields 

                  )(!)1()()1()(lim )(),( tLn
dt

etdet
p
tM q

n
n

n

tqnn
tqnqp

np
−=−=

−+
−

∞→
.                     (4.59) 



Finite classical orthogonal polynomials 

 

57

 

At the end of this chapter we can summarize that generally there exist six sequences of 
classical orthogonal polynomials that are generated by the main differential equation 
(4.1). Also, the parameters EDCBA and,,,  corresponding to each six equations of 
mentioned sequences determine their characteristics. The following table shows this 
matter. 
                                                           Table(1) 
Kind Notation A  B  C  D  E  
1.Infinite )(),( xPn

βα  -1 0 1 2−−− βα  βα +−  
2.Infinite )()( wxLn

α  0 1 0 w−  1+α  
3.Infinite )2/( wvwxH n +  0 0 1 22w−  v−  
4. Finite ))/((),( xvwM qp

n  w  v  0 wp )2( +−  vq )1( +  
5. Finite )()( wxN p

n  w  0 0 wp )2( +−  1 
6. Finite ),,,;(),( dcbaxJ qp

n  *a  *b  *c  *d  *e  
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22**22*

cdabpbcadqecapd
dbccdabbcaa

+−+−=+−=

+=+=+=
 

 
Moreover, the following table shows the general properties of these six classes such as 
shifted orthogonal polynomials and their weight function, kind of polynomials (Finite 
or Infinite), orthogonality interval, the distribution corresponding to the weight function 
and finally the conditions of parameters: 
  
                                                            Table(2) 
Shifted 
polynomials 

Weight function Kind, Interval, 
Distribution 

Parameters 
conditions 
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2
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n   ),,,;(),( dcbaxW qp  Finite, ),( ∞−∞  
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RR ∈∈≠ qvw ,,0  

3. )()( wxLn
α  xwex −α  Infinite, ),0[ ∞  

Gamma 
 

1,0, −>>∀ αwn  

4. )(),( x
v
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n  
)()( qpq vwxx +−+  Finite, ),0[ ∞  

F sampling 
2/)1(max −< pn  

0,0,1 >>−> vwq
5. )()( wxN p
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Finite, ),0[ ∞  
Inverse gamma 

2/)1(max −< pn  
,0>w  

6. )(),( xPn
βα  βα )1()1( xx +−  Infinite, ]1,1[−  

Beta 
1,1, −>−>∀ βαn  
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Chapter 5 
 
A Generalization of Student’s t-distribution from the 
Viewpoint of Special Functions  
 
 
5.1. Introduction  
 
Student’s t-distribution has found various applications in mathematical statistics. One 
of the main properties of the t-distribution is to converge to the normal distribution as 
the number of samples tends to infinity. In this chapter, by using a Cauchy integral we 
introduce a generalization of the t-distribution function with four free parameters and 
show that it converges to the normal distribution again. We provide a comprehensive 
treatment of mathematical properties of this new distribution. Moreover, since the 
Fisher F-distribution has a close relationship with the t-distribution, we also introduce a 
generalization of the F-distribution and prove that it converges to the chi-square 
distribution as the number of samples tends to infinity. Hence, we start our discussion 
again with the Pearson differential equation with a simpler form in comparison with 
(3.15.1), Sec. 3.3: 
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which is directly connected with classical orthogonal polynomials and defines their 
weight functions ( )W x [56]. The solution of equation (5.1) can be indicated as 
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where edcba ,,,,  are all real parameters. There are several special sub-cases of (5.2). 
One of them is the Beta distribution, which is usually represented by the integral  
 
                                                 ∫

C

ba dttLtL ))(())(( 21 ,                                                   (5.3) 

where 1( )L t  and 2 ( )L t  are linear functions, ba ,  are complex numbers and C  is an 
appropriate contour [61]. The Euler and Cauchy integrals [18] are two important sub-
classes of Beta type integrals, which are often used in applied mathematics. The Euler 
integral is given by 
                                                                                                                                     (5.4) 
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while the Cauchy integral is represented by the formula 
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in which 1 , Re( ) 1 , Re 0i c d a= − + > >  and Re 0b > . Note that in both relations 

(5.4) and (5.5) ∫
∞

−−=Γ
0

1)( dxexa xa  denotes the Gamma function. The relation (5.5) is a 

suitable tool to compute some different looking definite integrals. For this purpose, we 
use the relation 
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which rewrites the complex left hand side in terms of the real right hand side. 
Consequently we have 
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Now if (5.7) is substituted, then the integral (5.5) changes towards 
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The above integral plays a key role to introduce a generalization of the t-distribution. 
 
5.2. A generalization of the t-distribution [4] 
 
The Student t-distribution [69, 73] having the probability density function (pdf) 
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mm tT t m t m
mm mπ

+
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= + −∞ < < ∞ ∈
Γ

N                (5.9) 

 
is perhaps one of the most important distributions in the sampling problems of normal 
populations. According to a theorem in mathematical statistics, if X  and 2S  are 
respectively the mean value and variance of a stochastic sample with the size m  of a 
normal population having the expected value μ  and variance 2σ , then the random 

variable 
/

XT
S m

μ−
=  has the probability density function (5.9) with )1( −m  degrees of 

freedom  [73]. This theorem is used in the test of hypotheses and interval estimation 
theory when the size of the sample is small, for instance less than 30.  
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Now, by using (5.8) one can extend the pdf of the t-distribution. To do this task, we 

substitute  
1, 1 ,

2
t mt b p
m

+
→ = = −  and 

2
qq →  in (5.8) to get 

 

            
12 1( )

2 2 ( )(1 ) exp( arctan ) 1 1( ) ( )
2 2

m mt t m mq dt m iq m iqm m
π∞ + −−

−∞

Γ
+ =

+ + + −
Γ Γ

∫  .                (5.10) 

 
Since the right hand side of (5.10) is an even function with respect to the variable q , we 
can take a linear combination and get accordingly                                                   (5.11) 
                                                                                                                                                                          

1 12 ( )
1 22

1 2
( ) 2 ( )(1 ) exp( arctan ) exp( arctan ) 1 1( ) ( )

2 2

m mm mt t tq q dt m iq m iqm m m
λ λ πλ λ

∞ + −−

−∞

+ Γ⎛ ⎞+ + − =⎜ ⎟ + + + −⎝ ⎠ Γ Γ
∫ .                              

 
The above integral can be used to generalize (5.9) as                                              (5.12) 
                                                                                                                                                     

12 ( )
2

1 2 1 21
1 2

1 1( ) ( )
2 2( , , , , ) (1 ) exp( arctan ) exp( arctan )

( ) 2 ( )

m

m

m iq m iq
t t tT t m q q q
mm m m m

λ λ λ λ
λ λ π

+
−

−

+ + + −Γ Γ ⎛ ⎞= + + −⎜ ⎟+ Γ ⎝ ⎠
 
where , ,t m−∞ < < ∞ ∈N q  is a complex number and 1 2, 0λ λ ≥ .  
Note that 0, 21 ≥λλ  is a necessary condition for (5.12), because the probability density 
function must always be positive. Also note that the normalizing constant  
 

       1
1 2

1 1( ) ( ) /(( ) 2 ( ) )
2 2

mm iq m iq m mλ λ π−+ + + −
Γ Γ + Γ  

 
of (5.12) is real, because the corresponding integrand is a real function on ),( ∞−∞ . It 
is clear that for 0=q  in (5.12) the usual t-distribution is derived. Moreover, for 0=q  
the normalizing constant of distribution (5.12) is equal to the normalizing constant of 
the t-distribution. This fact can be proved by applying the Legendre duplication 
formula [18] 

                                            )(
2

)
2

1()
2

( 1 zzz
z Γ=

+
ΓΓ

−

π .                                             (5.13)   

 
But, according to one of the basic theorems in sampling theory, ),( mtT converges to 
the pdf of the standard normal distribution )1,0,(tN  as ∞→m [61, 73], that is 
 
                                              lim ( , ) ( ,0,1) .

m
T t m N t

→∞
=                                              (5.14) 
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Here we intend to show that this matter is also valid for the generalized distribution 
),,,,( 21 λλqmtT . To prove this claim, we use the dominated convergence theorem 

(DCT) [31] to the real sequence of functions 
 

          
12 ( )(1) 2

1 2 1 2( , , , ) (1 ) exp( arctan ) exp( arctan )
m

m
t t tS t q q q
m m m

λ λ λ λ
+

− ⎛ ⎞= + + −⎜ ⎟
⎝ ⎠

.          (5.15)  

 
For every m ∈N  it is not difficult to see that 
 

                        (1)
1 2 1 2| ( , , , ) | ( ) exp( ) ( )

2mS t q q tπλ λ λ λ≤ + ∈R .                       (5.16) 

 
On the other hand, we have            
                                                                                                                                   (5.17)                 

12 2( )
2

1 2 1 2lim  (1 ) ( exp( arctan ) exp( arctan )) ( )exp( )
2

m

m

t t t tq q
m m m

λ λ λ λ
+

−

→∞
+ + − = + − .                                    

 
Since the dominated convergence theorem states that if for a continuous and integrable 
function )(xg  we have | ( ) | ( )mf x g x≤ , then  

                                                       lim ( ) lim ( )
b b

m mm m
a a

f x dx f x dx
→∞ →∞

=∫ ∫  ,                         (5.18)         

 
by considering the limit relation (5.17) we obtain                                                    (5.19) 
                                                                                                                                         

( )
( )

1( )2 2
1 2

1 2 1( )2 2
1 2

2
1 2

1
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lim ( , , , , )

lim(1 / ) exp( arctan( / )) exp( arctan( / ))
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(

m

m
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t m q t m q t m
T t m q

t m q t m q t m dt

t

λ λ
λ λ

λ λ

λ λ

λ

+
−

→∞
∞ +→∞ −

→∞
−∞

+ + −
=

+ + −

+ −
=

∫
2

2
2

1 1exp( ) ( ,0,1) .
22)exp( / 2)

t N t
t dt πλ

∞

−∞

= − =
+ −∫

 
Remark 1. Taking the limit on both sides of (5.11) as ∞→m , the following 
asymptotic relation is obtained for the Gamma function  
 

                          (2 1)

( ) ( ) 2lim
2 2 1 (2 1) 2xx

x iy x iy
x x π− −→∞

Γ + Γ −
=

− Γ −
.                                       (5.20) 

 
To compute the expected value of the distribution given by the pdf (5.12) it is sufficient 
to consider the definite integral 
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12 1( )
2 2 ( ) (1 ) exp( arctan ) ( )1 1 1( ) ( )

2 2

m mt t m m q mt q dt m iq m iqm mm
π∞ + −−

−∞

Γ
+ =

+ + + − −Γ Γ
∫ ,                (5.21) 

 
which gives the expected value of (5.12) as 

                                                       1 2

1 2

 [ ] ( )
1

q mE T
m

λ λ
λ λ

−
=

+ −
 .                                   (5.22) 

On the other hand, since 2 [1 / ]E T m+  can easily be computed, after some calculations, 
we get for the variance measure of (5.12) 

               
2

2 2
1 22 2

2
1 2

( 1) [ ]  [ ] [ ] ( )
( 2)( 1) ( 1)
m q m mqVar T E T E T
m m m

λ λ
λ λ

⎛ ⎞−+ −
= − = − ⎜ ⎟⎜ ⎟− − + −⎝ ⎠

.     (5.23) 

 
It is valuable to point out that as expected 0=q  in (5.22) and (5.23) gives the expected 
value and variance of the usual t-distribution, respectively.  
But it is known that the t-distribution has a close relationship with the Fisher F-
distribution [56], defined by its pdf 
                                                                                                                                   (5.24) 

/ 2 1 ( )
2 2(( ) / 2)( / )( , , ) (1 ) ( , , 0 )

( / 2) ( / 2)

k m kkm k k m kF x m k x x m k x
k m m

+
− −Γ +

= + ∈ < < ∞
Γ Γ

N , 

 
where 2x t= and 1k =  in (5.24). In other words we have  
 
                                                      )1,,(),( 2 mtFmtT =  .                                           (5.25) 
 
By referring to the above relation and the fact that the t-distribution was generalized by 
relation (5.12), it is now natural to generalize the pdf of the F-distribution (5.24) as 
follows                                                                                                                       (5.26)                             

1 ( )
2 2

1 2 1 2( , , , , , ) (1 ) ( exp( arctan ) exp( arctan )),
k m kk k kF x m k q Bx x q x q x

m m m
λ λ λ λ

+
− −

= + + −

where                                                                                                                 
 

1 ( )
2 2

1 2
0

1 (1 ) ( exp( arctan ) exp( arctan ))
k m kk k kx x q x q x dx

B m m m
λ λ

∞ +
− −

= + + −∫  .   (5.26.1) 

 
For 0=q , (5.26) is the usual F-distribution defined in (5.24). 
According to the following theorem, the generalized function (5.26) converges to a 
special case of the Gamma distribution [73], defined by 
 

                         1( , , ) exp( ) ( , 0 , 0 )
( )

xG x x x
α

αβα β α β
α β

−
− −

= > < < ∞
Γ

 .        (5.27)   
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Theorem 1. If the Gamma distribution is given by (5.27), then we have 
 

                        2
1 2lim ( , , , , , ) ( , , 2)

2 km

kF x m k q G xλ λ α β χ
→∞

= = = =  

 
where 2

kχ denotes the pdf of the chi-square distribution.  
Proof. Let us define the sequence 
 

1 ( )(2) 2 2
1 2 1 2( , , , , ) (1 ) ( exp( arctan ) exp( arctan )).

k m k

m
k k kS x k q x x q x q x
m m m

λ λ λ λ
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− −
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It is easy to show that  

           
1(2) 2

1 2 1 2| ( , , , , ) | ( ) exp( ) ( [0, ) , )
2

k

mS x k q x q x kπλ λ λ λ
−

≤ + ∈ ∞ ∈N ,   (5.28)  

and 

                         
1(2) 2

1 2 1 2lim ( , , , , ) ( ) exp( / 2)
k

mm
S x k q x xλ λ λ λ
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= + − .                      (5.29) 

 
Therefore, according to the DCT we have                                                                (5.30)                              
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Moreover, it is not difficult to show that  
 
                                     ),,,,(),,,1,,( 2121

2 λλλλ qmtTqmtF = .                               (5.31) 
 
5.3. Some particular sub-cases of the generalized t (and F) distribution 
 
In this section, we intend to study some symmetric and asymmetric sub-cases of the 
generalized distributions (5.12) and (5.26). 
 
5.3.1. A symmetric generalization of the t-distribution, the case q ib=  and 

1 2 1/ 2λ λ= =  
If the special case 1 2and 1/ 2q ib λ λ= = =  is considered in (5.12), then 
                                                                                                                                   (5.32)                             
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is a symmetric generalization of the ordinary t-distribution in which 11 ≤≤− b .  
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The usual pdf of the t-distribution is obviously derived by 0=b  in (5.32). Note that 
according to the Legendre duplication formula we will reach the normalizing constant 
of the t-distribution if 0=b  is considered in (5.32). In other words, we have  
 

                                
)2/(
)2/)1((

)(2
)2/)1((0

1

2

mm
m

mm
mb

m Γ
+Γ

=
Γ

+Γ
⇒=

− ππ
.                                (5.33)   

 
Also note that the parameter b in the generalized distribution (5.32) must belong to      
[-1,1], because the probability density function must always be positive and therefore 

we ought to have cos( arctan( / )) 0b t m ≥ . On the other hand, since for 
22
πθπ

≤≤−  

we have cos 0θ ≥ , therefore to prove cos( arctan( / )) 0b t m ≥  it is sufficient to show 
that 

                1 1 arctan [ , ] ( , )
2 2

tb b t m
m

π π
− ≤ ≤ ⇔ ⊆ − ∈ ∈R N .                       (5.34) 

For this purpose, let us define the sequence ( ) arctanm
tU t
m

=  to get                    (5.35) 

21( ) ( ) /(1 ) 0 [min ( ), max ( )] [ ( ), ( )] [ , ]
2 2m m m m m

tU t U t U t U U
mm

π π′ = + > ⇒ = −∞ ∞ = − .       

Now if we demand the sequence ( ) arctanm
tbU t b
m

=  to belong to ]
2

,
2

[ ππ
− , it is 

clear that we must have 1|| ≤b , which proves (5.34). The following figures clarify this 
matter for ]1,1[−∈b  and ]1,1[−∉b  in the interval (-10,10). 

     
                   Figure 1: 4,2/1 == mb                                     Figure 2: 4,3 == mb  
 
Fig. 1 shows the pdf )2/1,4,(tTS  with normalizing constant 128/235  and Fig. 2 
shows the non-positive function ( , 4,3)ST t =  2 5/ 2(4 / )(1 / 4) cos(3arctan( / 2))t tπ −+  in 
the interval ( 10,10).−  As the above figures show, the generalized distribution (5.32) is 
symmetric, i.e. 
                             ( , , ) ( , , ) ( ) .S ST t m b T t m b t− = ∈R                                           (5.36) 
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Moreover, according to (5.22) and (5.23) the expected value and variance of 
distribution (5.32) take the forms 

                                    
)2)(1(
)1(][,0][

2
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mm

bmmtVartE .                             (5.37) 

 
Clearly 0=b  in these relations gives the expected value and variance of the t-
distribution.  
Theorem 2. ),,( qmtTS  converges to )1,0,(tN  as ∞→m . 

Proof. If the sequence 
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m
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mm
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= +  is considered, then one 

can show that 
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Consequently we have 
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(5.39) 

 
By referring to (5.26), we can now define the generalized F-distribution corresponding 
to the first given sub-case as follows                                                                        (5.40)                              
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                   (5.40.1) 

 
Theorem 3. ),,,(F1 bkmx  converges to the chi-square distribution as ∞→m .                                             

Proof. We define the sequence 
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Hence, according to DCT we find out that 
 

(4) ( / 2) 1

1
(4) ( / 2) 1

0 0

( , , ) exp( / 2)lim ( , , , ) lim ( , , 2)
2

( , , ) exp( / 2)

k
m

m m
k

m

S x k b x x kF x m k b G x
S x k b dx x x dx

−

∞ ∞→∞ →∞
−

−
= = =

−∫ ∫
.   (5.42) 

It is not difficult to verify that the generalized distributions ),,( bmtTS  and 
),,,(1 bkmxF  are related to each other as follows 

 
                                             ),,(),1,,( 2

1 bmtTbmtF S= .                                            (5.43) 
Remark 2. Here is a good position to return to previous chapter and remember that the 
weight function of orthogonal polynomials ( , ) ( )p q

nM x  corresponds to the ordinary F-
distribution such that if 0=n  is considered in (4.11), then an integral is derived that 
corresponds to the F distribution.  
 
5.3.2. An asymmetric generalization of the t-distribution, the case 02 =λ   
Again let us come back to the chapter 4 and consider the weight function of finite 
orthogonal polynomials ( , ) ( ; , , , )p q

nJ x a b c d , i.e.                                                       (5.44) 
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where a, b, c, d, p, q are all real parameters. This function is a sub-case of the Pearson 
distribution (5.2), because the logarithmic derivative of (5.44) is a rational function. For 

convenience, if  1 , 0, 0, 1a b c d
m

= = = =  and  1 ( )
2

mp m+
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in (5.44) then 
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On the other hand since 
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Therefore, an asymmetric generalization of the t-distribution may be defined as 
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where 
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The distribution (5.48) with normalizing constant given by (5.48.1) was defined in [2] 
based on this particular approach. But we can still modify and simplify it. To do this 
task, we set 02 =λ  in (5.12) to get 
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which is an explicit representation for the asymmetric distribution (5.48). For the latter 
distribution, we clearly have  
                                                ( , , ) ( , , ) .A AT t m q T t m q− = −                                     (5.49.1) 
The asymmetry of distribution (5.48) (or (5.49)) is shown by Fig. 3 and 4 for specific 
values of q  and m . 

          
                      Figure 3: 4,1 == mq                                      Figure 4: 3,1 == mq  
 
According to (5.48) and (5.48.1), the explicit definitions of the two mentioned figures 
have respectively the forms 

                              Fig. 3:  
52 arctan

2 25( , 4,1) (1 )
6 cosh( / 2) 4

t

A
tT t e

π

−

= +  

                              Fig. 4:  
2 arctan

2 35 3( ,3,1) (1 )
12 sinh( / 2) 3

t

A
tT t e

π
−= +  

 
Now, the following statements (A1 to A5) collect the properties of the asymmetric 
distribution (5.48) (or (5.49)). 
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A1) The expected value and variance of (5.49) are respectively represented by 
 

                          2

22

)1)(2(
))1((][,

1
][

−−
−+

=
−

=
mm
mqmtVar

m
mqtE .                      (5.50) 

 
0=q  in these relations gives the expected value and variance of the t-distribution. 

 
A2) ),,( qmtTA  converges to )1,0,(tN  as ∞→m . 
The proof is similar to the first case if one chooses 02 =λ  and 11 =λ  in the defined 
sequence ),,,( 21

)1( λλqtSm . 
 
A3) By the definition (5.26) and considering the case 02 =λ  we can define 
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where                                                                                                                      (5.51.1)                              
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A4) ),,,(2 qkmxF  converges to the chi-square distribution as ∞→m . 
The proof is similar to the proof of Theorem 1 when 02 =λ  and 11 =λ . 
 
A5) The distributions ),,,(2 qkmxF  and ),,( qmtTA are related to each other by 
 
                                             ),,(),1,,( 2

2 qmtTqmtF A= .                                           (5.52) 
 
Remark 3. There is another symmetric generalization of the t-distribution when we set 

21 λλ =  in (5.12). Its pdf is given as                                                                        (5.53) 
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Therefore, at the end of this chapter, we in fact considered the three following 
particular sub-cases of the general distribution (5.12): 
 
                                     a)          1 2and 1/ 2 ; symmetric caseq ib λ λ= = =    
                                     b)          2 0 ; asymmetric caseλ =  
                                     c)          1 2 ; symmetric caseλ λ=  
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Chapter 6 
 
A generic polynomial solution for the differential 
equation of hypergeometric type and six sequences 
of orthogonal polynomials related to it 
 
 
 
6.1. Introduction  
 
In this chapter, we will present a generic formula for the polynomial solutions of the 
well-known differential equation of hypergeometric type 
 
                 0)())1(()()()()( 2 =−+−′++′′++ xyandnxyedxxycbxax nnn , 
 
and show that all the three infinite classical orthogonal polynomial families as well as 
three finite orthogonal polynomial families, investigated in chapter 4, can be identified 
as special cases of this derived polynomial sequence [3]. We will also present some 
general properties of the mentioned sequence. For this purpose, we should reconsider 
the differential equation 
                                              0)()()()()( =−′+′′ xyxyxxyx nnnn λτσ ,                         (6.1) 
 
in which, as before, cbxaxx ++= 2)(σ  is a polynomial of degree at most 2, 

edxx +=)(τ  is a polynomial of degree 1 and ndannn +−= )1(λ  is the eigenvalue 
parameter depending on ,...2,1,0=n , and suppose that the polynomial solution of (6.1) 
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So far extensive research has been done on equation (6.1) and its polynomial solutions. 
In 1929 Bochner [21] classified the polynomial solutions of (6.1) and showed that the 
only polynomial systems up to a linear change of variable arising as eigenfunctions of 
the differential equation (6.1) are (see also [14]) 
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Then, in 1988, Nikiforov and Uvarov [56] gave some general properties of 
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such as a generating function for the polynomials, a Cauchy integral representation and 
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so on in terms of the given )(xσ  and )(xτ . Of course their approach is based on the 
Rodrigues representation of the polynomials and is not expressed in an explicit form, 
the task that we will do in this chapter. Some other approaches in this regard are [14, 
44, 72]. But before deriving a generic solution for (6.1), we should introduce an 
algebraic identity, which is easy to prove but important. 
 
6.1.1. An algebraic identity  
If ba,  and ),...,1,0( nkCk =  are real numbers then 
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hypergeometric function of order (p, q) (see e.g. [43], Chapter 2). Note that to compute 
the relations (6.3) we have generally used the two identities 
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An interesting case takes place for (6.3) when 1and2 === bam . In this case we 
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which according to Gauss’ identity (introduced in chapter 3, formula (3.38))  
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The first identity of (6.6) can be found in [13], (15.3.6) and the second identity in (6.6) 
is a special case of [13], (15.3.7) for integer upper parameter. 
Now it is a good position to propound the main theorem of finding a generic 
polynomial solution for equation (6.1). 
 
6.2. The main Theorem. The monic polynomial solution of the differential equation 
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For 0=a  the equality can be adapted by limit considerations and gives (6.8) in the 
form 
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Proof. Consider the differential equation (6.7) and suppose that qptx += . Hence it 
will change to 
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If  1/)2(and02 −=+=++ apbaqcbqaq  are assumed in (6.9), then  
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On the other hand, equation (6.11) is a special case of the Gauss hypergeometric 
differential equation (see e.g. [43], p. 26): 
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(6.13) can also be written in terms of the variable x so that we have                       (6.14) 
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From (6.14) two following sub-cases are concluded                                                (6.15) 
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Note that both above relations only differ by a minus sign in the argument of the second 
formula (ii), which does not affect on the differential equation (6.7). In other words, if 
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(6.15). Therefore, only the formula (ii) must be considered as the main solution. To 
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So, by considering the main solution (6.15) and assuming 
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(6.17) is changed to                                                                                                   (6.19) 
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Simplifying this relation and substituting **K  by (6.16) finally gives the monic 
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polynomial solution of equation (6.7) in the form (6.8). Hence the first part of the 
theorem is proved. To deduce the limiting case when 0→a , one should use the limit 
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in which acb 42 −=Δ . Note that in the above simplified relation, all parameters 

edcba and,,,  are free and can adopt any value including zero since it is easy to find 
out that neither both values a and d nor both values b and e in (6.8) can vanish together. 
After simplifying ),,,,()( edcbaG n
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The above relation implies that                                                                              (6.22.1) 
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Moreover, (6.22) shows, for example, that if n = 0,1,2,3 then                              (6.22.2) 
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6.3. A special case of the generic polynomials (6.8) 

In the sequel, let us apply the Gauss identity again and assume that 1
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in (6.8). This assumption implies that 0=ac . If 0=c , the following special case for 
the generic polynomial (6.8) is derived                                                                     (6.23) 
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Furthermore, if one comes back to the Nikiforov and Uvarov approach and consideres 
the differential equation (6.7) as a self-adjoint form, then according to (3.23), chapter 3, 
the Rodrigues representation of ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
x
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 is given by                                          (6.24) 
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Now if we suppose 0=c  in this relation and refer to (6.23), we get                    (6.24.1) 
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6.4. Some further properties of the main polynomials (6.8) 
 
6.4.1. A linear change of variables  
Using the representation (6.24) one can derive a linear change of variables for the 
monic polynomials ⎟⎟
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Therefore (6.25) is transformed to 
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which shows the effect of a linear change of variables on the polynomials (6.8). For 
instance, if 0and1 =−= vw  in (6.27), then we have 
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6.4.2. A generic three-term recurrence equation 
 
The second formula of (6.15) is a suitable relation to compute the recurrence equation 
of the generic polynomials (6.8). In other words, it can be applied along with various 
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identities of the Gauss hypergeometric function for generating a recurrence relation. 
For example, the following identity holds for the function );,,(12 trqpF  [18],      (6.29) 
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By using the formula (ii) in (6.15) and its coefficient in (6.16) if one assumes in (6.29) 
that                                                                                                                          (6.29.1) 
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then after some computations, one finally gets                                                         (6.30) 
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in which )(xPn  denotes the monic polynomials of (6.8) and the initial values 

 )(and1)( 10 d
exxPxP +== are given. For other approaches to extract (6.30), see 

[52] and [45]. 
 
6.4.3. A generic formula for the norm square value of the polynomials 
Let ],[ UL  be a predetermined orthogonality interval which (besides for finite families) 
of course consists of the zeros of cbxaxx ++= 2)(σ or ∞± . By using the Rodrigues 
representation of the polynomials (6.8) we have 
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Consequently integrating by parts from right hand side of (6.31) yields 
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6.5. Six special cases of the generic polynomials (6.8) as classical orthogonal 
polynomials 
As we mentioned in chapter 4, from the main equation (6.1) one can extract six special 
sequences of orthogonal polynomials on the real line. Jacobi, Laguerre and Hermite 
polynomials are three of them, which are infinitely orthogonal and three other ones are 
finitely orthogonal for some restricted values of n. In this section we intend to use the 
previous generic formulas to redetect the properties of each of these six sequences. 
 
6.5.1. Jacobi orthogonal polynomials 
 
If βαβα +−=−−−===−= edcba and2,1,0,1  are selected in (6.8) then  
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are the Jacobi orthogonal polynomials with weight function 
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and orthogonality relation                                                                                         (6.35) 
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These polynomials can also be represented as 
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which is one of the known hypergeometric representations for the Jacobi polynomials 
(see e.g. [13], [70]). 
Since the Gegenbauer (ultraspherical), Legendre and Chebyshev polynomials of the 
first and second kind are all special sub-cases of the Jacobi polynomials, the following 
representations are straightforwardly concluded for them. 
Gegenbauer polynomials:                                                                                          (6.37) 
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Legendre polynomials: 
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Chebyshev polynomials of first kind: 
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Chebyshev polynomials of second kind: 
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6.5.2. Laguerre orthogonal polynomials 
If one puts 1,1,0,1,0 +=−==== αedcba  in (6.8) then  
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are the Laguerre orthogonal polynomials with weight function 
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and orthogonality relation 
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6.5.3. Hermite orthogonal polynomials 
If 0,2,1,0,0 =−==== edcba  are selected in (6.8) then  
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are the Hermite orthogonal polynomials with weight function 
 

                         )exp())2(exp(
1,0,0
0,2 2xdxxx −=−=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛−
∫ρ ,                                   (6.45) 

and orthogonality relation 

                            . 2!)()()exp( ,
2

mn
n

mn ndxxHxHx δπ=−∫
∞

∞−

                               (6.46) 



A generic polynomial solution for the hypergeometric differential equation 

 

82

 

6.5.4. Finite classical orthogonal polynomials with weight function  
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the Pearson’s differential equation one respectively gets  
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In [53] the family of this type of polynomials are called Romanovski-Jacobi 
polynomials, see also [65, 54]. In [10] the related polynomials are denoted by 
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Also, as it was shown in chapter 4, section 4.2, the finite set Nn

n
qp

n xM =
=0

),( )}({  is 
orthogonal with respect to the weight function ),,(1 qpxW  on ),0[ ∞  if and only if 

12and1 +>−> Npq . Let us add that to compute the norm square value of the 
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Thus, noting (6.48) yields 
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6.5.5. Finite classical orthogonal polynomials with weight function  
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 is generated then the main parameters are derived as 
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In [53], the polynomials of this type are called Romanovski-Bessel polynomials. In [10] 
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Moreover, in chapter 4, section 4.3, it was shown that the finite set Nn
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square value of these polynomials as follows 
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Consequently, the complete orthogonality relation takes the form                           (6.54) 
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6.5.6. Finite classical orthogonal polynomials with weight function 
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In [53], the polynomials of this type are called Romanovski-Pseudo-Jacobi 
polynomials. In [9] the related polynomials are denoted by ),,,;(),( DCBAxJ qp

n , for 
which we have 
                                                                                                                                    

    ( )

. 
))()((

)(2

22
2

,F

)()()21()1(

),(2,
))(1(2)(),)(1(2

)()21()1(),,,;(

12

22

2222

22

22),(

⎟⎟
⎟

⎠

⎞

⎜⎜
⎜

⎝

⎛

+++−
−

−

−+−−×

++−++−+−

=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

+++
+−+−+−

×

+−+−=

CiAxDiBCiA
BCADi

np

iqpnn

CAxiBCADCDABpn

x
DBCDABCA

CDABpBCADqCAp
P

CApnDCBAxJ

n
n

n

n

n
n

nqp
n

       (6.56) 

 
6.6. How to find the parameters if a special case of the main weight function is 
given? 
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Similar to the chapter 3, section 3.11.1, it is easy to find out that the best way for 
finding edcba ,,,,  is to compute the logarithmic derivative )(/)( xWxW ′  and match 

the pattern with 
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examples given below. 
 
Example 1. Consider the weight function 21;)23()( 102 <<−+−= xxxxW . If the 
logarithmic derivative of this weight function is computed, then we get  
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for every value n. Therefore it is not necessary to know that these polynomials are the 
shifted Jacobi polynomials on the interval [1,2] since they can explicitly be expressed 
by the generic polynomials (6.8).      
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Example 3. Consider the weight function ( ) exp( ( )) ; ,W x x x xθ θ= − −∞ < < ∞ ∈R . 
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Therefore, the monic orthogonal polynomials are ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −
xPn 0,4,2

6,11
 for 3≤n , 

because according to (4.6) in chapter 4, )2/1(812 −<+n . This means that the finite 
set 3

0});6,11,0,4,2({ =
=− n

nn xP  is orthogonal with respect to the weight function 
8)2/( +xx  on ),0[ ∞ .        

 
6.7. A generic formula for the values at the boundary points of monic classical 
orthogonal polynomials [2] 
 
In the previous sections of this chapter, we found a generic formula for the polynomial 
solution families of the well-known differential equation (6.1). Now, in the section 
(6.8) we intend to obtain another such formula, which enables us to present a generic 
formula for the values of monic classical orthogonal polynomials at their boundary 
points of definition. For this goal, we should again use the general form of the 
Rodrigues representation of the polynomials in (6.24) and recall its corresponding 
weight function, i.e. 

                                  2
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d e d a x e bx dx

a b c ax bx c
ρ
⎛ ⎞ − + −

=⎜ ⎟ + +⎝ ⎠
∫                      

 
Without loss of generality, let us suppose that ))(( 21

2 θθ ++=++ xxacbxax  in which 
 

                 
2 2

1 2
4 4and  .

2 2
b b ac b b ac

a a
θ θ− − + −
= =                          (6.57)                             

 
In the general case, 1θ−  and 2θ−  in (6.57) are the boundary points of the underlying 
interval for the corresponding classical orthogonal polynomials. This means that if 1θ  
and 2θ  are finite and equal, the polynomials are of the Bessel type and if both 1θ  and 

2θ  are finite but different from each other, the polynomials are of the Jacobi type, 
whereas if one of these values tends to ±∞ , the polynomials are of the Laguerre type, 
and finally if both values are ±∞ , then the polynomials are of the Hermite type. 
The relation (6.57) implies that the main weight function is simplified as 
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where R  is a constant and 
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Note that the relation (6.58) follows because the logarithmic derivative of the function 

BA xxxW )()()( 21
* θθ ++=  equals the logarithmic derivative of the main weight 

function, and since 
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so (6.58) is valid.  
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So, if (6.58) is replaced into the above representation, then 
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But according to the Leibniz rule 
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we have                                                                                                                      (6.63) 
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Hence, (6.61) is simplified as                                                                                    (6.64)                             
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This is in fact another general representation for the polynomial solution of equation 
(6.7). Combining (6.8) and (6.64), we get straightforwardly                                    (6.65)                             
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where again acb 42 −=Δ .  
 
Relation (6.64) can also be represented in terms of the hypergeometric form         (6.66)   
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where 1 2 and  θ θ  are defined by (6.57).  
Of course, this hypergeometric representation can still be simplified. To simplify 
(6.66), we use the hypergeometric identity 
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which was used already in (6.17) with a rather different form. If we choose in particular 
                                                                                                                                   (6.68) 
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then by (6.67) relation (6.66) reads as                                                                       (6.69) 
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On the other hand, using Gauss’s identity (i.e. ...)1;,,(12 =cbaF ) (6.69) can be further 
simplified as 
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which is the same form as the first formula of (6.15). Furthermore, since the identity 
  

                          0≠∀⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
λ

λλλ
λλ

x
cba
ed

Px
cba

ed
P nn ,                    (6.71)                             

 
is also valid for 1−=λ , the relation (6.70) can be brought in the form of the second 
formula of (6.15) too. 
 
6.7.1. Values of the classical orthogonal polynomials at the boundary points 
 
Using the explicit representations for the monic classical orthogonal polynomials, we 
can now compute the generic value of the polynomials at their boundary points of 
definition, 1θ−  and 2θ− , respectively. If we set in the second formula of (6.15) 
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respectively. Therefore we get 
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For example, by noting the section 6.5.1 for the monic Jacobi orthogonal polynomials 

)(),( xPn
βα  we have ),2,1,0,1(),,,,( βαβα +−−−−−=edcba . Consequently, (6.74) and 

(6.75) yield 
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Moreover, by noting the section 6.5.2 for the monic Laguerre polynomials ( ) ( )nL xα  with 
( , , , , ) (0,1,0, 1, 1)a b c d e α= − +  we have xcbxax =++2 . Therefore just one root i.e. 

021 ==θθ  is derived and by computing the corresponding limit one gets 
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                                                  ( ) (0) ( 1) (1 )  .n
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Furthermore, since the Hermite polynomials can be written in terms of the Laguerre 
polynomials (see e.g. [13], relation 22.5.40), we can also conclude that 
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Similarly, for the Bessel polynomials ( ) ( )nB xα  with ( , , , , ) (1,0,0, 2,2)a b c d e α= +  we 
have 22 xcbxax =++ . So, after computing the corresponding limit one can obtain that 
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Chapter 7 
 
Application of rational classical orthogonal 
polynomials for explicit computation of inverse 
Laplace transforms 
 
 
 
7.1. Introduction  
 
In the chapters 4 and 6, it was shown that from the hypergeometric differential 
equation, six finite and infinite classes of orthogonal polynomials could be extracted. In 
this chapter, we first apply the Mobius transform R∈≠+= − qpqpzx ,0,1 for the 
mentioned equation to generate the classical orthogonal polynomials with negative 
powers. Then we show that the generated rational orthogonal polynomials are a very 
suitable tool to compute the inverse Laplace transform directly, with no additional 
calculation for finding their roots. In this way, by applying infinite and finite rational 
classical orthogonal polynomials, we present (for example) three basic expansions of 
six ones to explicitly obtain the inverse Laplace transform. To do this task, we should 
again reconsider the hypergeometric differential equation  
 
            0)())1(()()()()( 2 =−+−′++′′++ xyandnxyedxxycbxax nnn ,                    (7.1)   
 
and suppose that R∈≠+= − qpqpzx ,0,1 .Therefore, the equation (7.1) eventually 
changes to  
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2 =−+−′+++′′++ yllnnylxlxlxylxlxlx ,            (7.2) 
 
where 01234 ,,,, lllll  are real parameters and n  is a positive integer. 
Obviously one of the main solutions of equation (7.2) is a rational (negative power) 
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respectively. According to the Sturm-Liouville theorem, one can find a weight function 
corresponding to the differential equation (7.2) as  
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Now assume that ],[ UL  is a predetermined orthogonality interval. So, we should have 
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denotes the norm square value. There exist six cases, corresponding to the main 
equation (7.2), that are orthogonal for some specific values of 01234 ,,,, lllll .  
As it is seen, the connection between equations (7.1) and (7.2) is a Mobius transform as 

qpzx += −1  for different values of qp and . For example, if 1and2 =−= qp  are 
considered then the rational Jacobi polynomials can be defined as                                                                 
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For n = 0,1,2 this definition respectively gives 
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Since the orthogonality relation of Jacobi polynomials is known, the orthogonality 
relation of )(),( xP n

βα
−  will also be known as                                                                (7.8) 
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Moreover, the differential equation of )(),( xPy n

βα
−=  is a special case of the main 

equation (7.2) for 1,1,0,3,2 01234 −===+−=−= lllll αβα  and we have                     
 
             0)1()2)3(()1(2 =+++′−++−+′′− ynnyxxyxx αααβ .                        (7.9) 
 
Similarly one can obtain the Mobius transforms of other five classes of rational 
classical orthogonal polynomials. Hence, it is better not to enter in details of them 
rather just we note that all differential equations of these transforms must however be 
the special cases of (7.2). For instance, the rational Laguerre orthogonal polynomials 

)1()( 1)()( −= −
− xLxL nn

αα  satisfies  
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                              0)12()1( 23 =+′−+−′′− ynyxxxyxx α ,                                  (7.10) 
 
as well as the rational Hermite orthogonal polynomials )()( 1 βα += −

− xHxH nn
 

satisfies  
                             02)(2 2224 =+′+++′′ ynyxxxyx αααβ .                                (7.11) 
 
7.2. Evaluation of Inverse Laplace Transform using rational classical orthogonal 
polynomials [8] 
 
It is well known that the Laplace transform provides a powerful method for analyzing 
the linear systems. However, many physical problems lead to Laplace transforms 
whose inverses are not readily expressed in terms of tabulated functions. Because of 
this problem, extensive researches have been done on this matter and its applications up 
to now.  
For example, Chandran and Pallath [23] have computed inverse Laplace transforms of 
a class of non-rational fractional functions. Evans and Chung in [34] have obtained 
Laplace transform inversions using optimal contours in the complex plane, see also 
[17]. Iqbal in [40] has stated a classroom note regarding the Fourier method for 
computation of Laplace transform inversion. The problem of inverse two-sided Laplace 
transform for probability density functions has been stated by Tagliani in 1998 [71]. 
Furthermore, the problem of numerical inversion of Laplace transform has been studied 
by several authors. For example, Cunha and Viloche in [29] have presented an iterative 
method for the numerical inversion of Laplace transform. In [26], Dong has introduced 
a regularization method for this purpose. In [30], Crump has used Fourier series 
approximation (see also [39]) while Miller and Guy in [55] have used Jacobi 
polynomials and Sidi [68] has applied a window function for Laplace transform 
inversion. Finally Piessens’ work [60] is a good bibliography in this regard that one can 
refer to it. But, in cases where the inverse Laplace transform is required for many 
values of the independent variable, it is convenient to obtain the inverse as a series 
expansion in terms of a set of linearly independent functions. Procedure based on this 
idea can be calculated by solving a system of equations, which can be reduced to a 
triangular system if one chooses to use “orthogonal polynomials”. Such a method, 
using orthogonal polynomials, gives an approximate evaluation of the inversion 
integral using “Gauss quadrature” in the complex plane [66, 58, 59, 67]. Of course, the 
chief disadvantage of this method is the necessity of finding all roots, real and 
complex, of a polynomial of high degree, and of the calculation of a set of complex 
Christoffel numbers [74, p. 419]. Hence, we wish here to insist that the orthogonal 
polynomials with negative powers are in turn suitable tool to compute the inverse 
Laplace transform without any effort for finding the roots of orthogonal polynomials. 
To achieve this goal, we should use the orthogonality properties of rational classical 
orthogonal polynomials introduced in section 7.1. In this way, we present three basic 
expansions for explicit computation of Laplace transform inversion. 
   
7.2.1. Inverse Laplace transform using rational Jacobi orthogonal polynomials 

)(),( xP n
βα

− .  
Let us consider the Laplace transform together with its inverse as                          (7.12) 
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By referring to the previous sections we can find an explicit solution of the above 
integral equation provided that )(sF  is known and expandable. First by noting (7.8), 
we clearly have 
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Now, let )(sF  satisfy the Dirikhlet conditions and 
 

                               ∑∑
∞

=

∞

=
− +

=+=
00

),(

)1(
)1()(

n
n

n

n
nn s

A
sPCsF βα  .                                   (7.14) 

 
By applying the property (7.13) in the expansion (7.14), the coefficients nC  are found 
as  
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On the other hand, taking the inverse Laplace transform from the equality (7.14) yields 
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Consequently the special series                                                                                 (7.18) 
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is an expanded solution for the integral equation (7.12). Note that the foresaid solution 
is valid if and only if its definite integrals are convergent and )(sF  in (7.14) is an 
expandable function under the Dirikhlet conditions. The function βα ss −+ )1(  in the 
right hand side of (7.18) plays in fact a weighted distribution role for computation of 
definite integrals (7.18) on ),0[ ∞ . Hence, if this distribution changes, another expanded 
solution will appear. The next section will specify this subject. 
 
7.2.2. Inverse Laplace transform using rational Laguerre orthogonal polynomials 
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that satisfies the orthogonality relation 
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is considered, then by applying (7.20) in (7.21), the coefficients nC  will be derived as 
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Therefore, we similarly have  
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so, eventually the special series  
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is a series solution for the Laplace transform inversion. Again, we mention that (7.25) 
is valid only if its definite integrals are convergent and the function )(sF  is expandable 
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under the Dirikhlet conditions. In relation (7.25), the function ses /1)2( −+− α  is in fact a 
weighted distribution on ),0[ ∞ . 
But, by noting the section 7.1, finite rational classical orthogonal polynomials can also 
be applied for approximate computation of inverse Laplace transform, because the 
function )(sF  can be expanded by them finitely, and only some limit conditions are 
imposed on their parameters.  For example, if we define the sequence 
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that satisfies the orthogonality relation 
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with },{,12,1 nmMaxNNpq =−>−> , then by considering the approximation 
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and applying (7.27) on (7.28) we get 
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Hence                                                                                                                         (7.32) 
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is an approximate solution for the integral equation )()]([ sFxfL = . Here we add that 
the inversion problem can also be propounded for the negative power polynomials 
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),,,;(and)(,)( ),()( dcbaxJxHxN qp
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n −−−  similarly. It is now a good position to present 

two practical examples in this way. 
   
7.3. Special examples of section 7.2 
Example 1. Let us consider a special case of rational Jacobi polynomials for 
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and called the rational Chebyshev polynomials of the first kind [70]. By noting the 

expansion (7.18) let us also suppose that for instance 
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integrals of (7.18) are simplified as 
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Therefore the inverse Laplace transform for the given )(sF  takes the form 
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Clearly the above relation is valid if it is expanded. 
 
Example 2. For this example, we use the analytic expansion (7.25) and consider the 

equation 
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= . To derive the solution of this integral equation, first we have 

to evaluate the definite integrals corresponding to (7.25). Hence we have 
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Note that for the latter integral we have used again the well-known Gauss identity. 
Consequently the expansion (7.25) is transformed to 
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The above relation holds if and only if .1and1 −∉−+−> Znαα  
 
   
 



Chapter 8 
 
Some further special functions and their applications 
 
 
 
8.1. Introduction  
 
In this chapter, we will introduce some new classes of special functions and study their 
applications in the classical equations of applied physics. 
 
8.2. Application of zero eigenvalue for solving the potential, heat and wave 
equations using a sequence of special functions [5]   
 
In the solution of boundary value problems, usually zero eigenvalue is ignored. This 
case also happens in calculating the eigenvalues of matrices, so that we would often 
like to find the nonzero solutions of the linear system XXA λ=  when 0≠λ . But on 
the other hand 0=λ  implies that 0det =A  for 0≠X  and then the rank of matrix A  is 
reduced at least one degree. This approach can be stated for the boundary value 
problems similarly. In other words, if at least one of the eigens of equations related to 
the main problem is considered zero, then one of the solutions will be specified in 
advance. By using this note, we can introduce a class of special functions and apply for 
the potential, heat and wave equations in spherical coordinate. Hence let us first define 
the following sequences 
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where )(za  can be a complex (or real) function and n is a positive integer number.  
It is not difficult to verify that both of defined sequences satisfy a unique second order 
differential equation in the form 
 
                   ( ) 0))(()()())()(()()( 32222 =′−′′′−′+′′′ yzanyzazazazayzaza ,            (8.2) 
 
provided that 0)()(2 ≠′ zaza . Consequently, we deal with only one class of special 
functions, which is in fact the solution of equation (8.2). The functions ))(;( zazCn  and 

))(;( zazSn  have several important sub-cases that are useful to study. First sub-case is 
the Chebyshev polynomials if one chooses )arccosexp()( ziza =  in (8.1) and uses the 
well-known Euler identity. In this case, the following sequences will appear 
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where )(&)( zUzT nn  denote the same as first and second kind of Chebyshev 
polynomials. Moreover, if the selected )(za  is replaced in (8.2), the differential 
equation of the first kind of Chebyshev polynomials is derived as 
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The second sample is the rational Chebyshev functions that can be generated by 
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In this way, replacing the related )(za  in (8.2) yields 
 

.
)1(

)arccot3exp())((,
)1(

)arccot3exp()12()()(

,
)1(

)arccot3exp())()((,
1

)arccot3exp()()(

32
3

22
2

22
2

2
2

z
ziiza

z
ziizzaza

z
zizaza

z
ziizaza

+
=′

+
−

=′′

+
−

=′
+

−
=′

                      (8.6) 

 
Therefore the functions (8.5) eventually satisfy    
 
                                      0)1(2)1( 2222 =+′++′′+ ynyzzyz .                                   (8.7) 
 
It should be noted that the explicit forms of the real functions ))arccotexp(;( zizCn  and 

))arccotexp(;( zizSi n−  in (8.5) could be derived by the Moivre’s formula. In other 
words, let us substitute xarccot=θ  in the Moivre formula to get 
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It can be shown that the above rational Chebyshev functions )(and)( ** xUxT nn  are 

orthogonal with respect to the weight function 21
1)(
x
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+

=  on ),( ∞−∞  and satisfy 

the following orthogonality properties respectively                                                                         
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Here is worthy to point out that J.P. Boyd in 1987 [22] applied the rational functions 

)2/)(( 2/12/1* −− xxTn  on the interval ),0[ ∞  in spectral methods, and we                 
should here mention that his functions could be derived only by replacing 

)arccot2exp()( ziza =  in (8.1).   
But, so far it has been investigated that the Legendre (or Associated Legendre) 
differential equation (introduced in chapter 2, equation (2.19)) 
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has three solutions in Cartesian coordinate as follows 
 
(a) 0,0 ≠≠ qp  that generates the associated Legendre functions; 
(b) 0,0 =≠ qp that generates the Legendre polynomials; 
(c) 0,0 == qp  that is reduced to the simple equation 0)(2)()1( 2 =′−′′− xyxxyx , 
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So, a fourth case 0,0 ≠= qp  remains, which is different from above mentioned ones 

and should be solved. To find the solution of fourth case, we substitute 2
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in (8.2) to arrive at the differential equation 
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Clearly (8.12) is a specific case of (8.11) for 2,0 nqp == . According to (8.1), the 
solutions of this equation are respectively 
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Here let us claim that the mentioned functions are very applied in the Helmholtz 
equation in spherical coordinate (see chapter 2, section 2.3.1). In other words, if the 
equation ∇ =2 2U r k U r( , , ) ( , , )θ θΦ Φ  is separated to several ordinary equations, 
then one of the separate equations takes the form 
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which is equivalent to equation (8.11) for θcos=x . Hence, if θcos=z  is considered 

in (8.12) or equivalently 
2

tan)( zza =  in (8.2), the special case of (8.14) for 0=m , i.e. 
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has the following solutions 
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These sequences will frequently appear in the given problems of the next section. 
 
8.2.1. Application of defined functions (8.16) in the solution of potential, heat and 
wave equations in spherical coordinate 
 
Usually most of the boundary value problems related to the wave, heat and potential 
equations in spherical coordinate are reduced to the Helmholtz partial differential 
equation ∇ =2 2U r k U r( , , ) ( , , )θ θΦ Φ . But, for the special case of k = 0 in this 
relation we have   
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which is known as the potential (Laplace) equation in spherical coordinate. Now, if the 
related variables in equation (8.17) are separated as )()()(),,( Φ=Φ BArRrU θθ , then 
the following ordinary differential equations will be derived 
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As we said, the solution of Laplace (potential) equation is generally determined when 
the boundary conditions are known, nevertheless, if in (8.18) λ 1 0=  and λ 2

2 0= − ≠k  
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are assumed, then for the variable r we must have 2
2
1

1)( c
r

crR +−=  ( c1  and c2  are 

constant) and for the third equation the same form as equation (8.15). Therefore, the 
general solution corresponding to the third equation would be 
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where 1A  and 2A  & 1a  and 2a  are all constant values. Accordingly, (8.19) implies to 
have the general solution of the potential equation 0),,(2 =Φ∇ θrU  with the pre- 

assigned condition 2
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It is interesting to know that the solution (8.20) shows the sensitivity of potential 
equation with respect to the variable r, so that we have ∞=Φ

→
),,(lim

0
θrU

r
.  

As an example, here let us consider the Laplace equation arrU <<=Φ∇ 0;0),,(2 θ  
(in spherical coordinate) when the variable r takes the pre-assigned form 

2

2
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r
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=  and the following initial and boundary conditions are given   

 

                                                 

.),
3

,(

,0),
2

,(

,0),,
2

(

,),,(lim
0

Φ=Φ

=Φ

=Φ

∞=Φ
→

π

π

θ

θ

aU

rU

aU

rU
r

 

The general solution of this problem, according to the given conditions and assuming 
211 cbaAk =  , 212 cbaBk =  would be finally as 
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On the other hand, putting the last condition in the above general solution yields 
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where kA  and kB  are calculated by 
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Consequently, the particular solution of potential equation under the given conditions is 
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As we see, a special case of the functions (8.1) has appeared in the above solution.  
Similarly application of zero eigenvalue can be propounded for the heat and wave 

equations respectively. For instance, if the classical heat equation ∇ =2U
U
t

∂
∂

 is         

considered, then separating the variables as U r t S r T t( , , , ) ( , , ) ( )θ θΦ Φ= , where 
)()()(),,( Φ=Φ BArRrS θθ , yields 
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So, the following ordinary differential equations are derived  
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Again, if λ 1 0= , 0and0 22

2 ≠−=≠−= kn αλ  are assumed in (8.22), then the 

general solution, when 
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in which )(and)( 2/12/1 xJxJ −  are two particular cases of the Bessel functions )(xJ p .  

For example, let us consider the heat equation 
t

UtrU
∂
∂θ =Φ∇ ),,,(2 ; ar <<0   (in 

spherical coordinate) when the variable r takes the pre-assigned form 
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By referring to the general solution (8.23) and using the given conditions we get 
012 == ac  and 021 =+ bb . So, if 112, cbaA nk = , then  
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is the general solution of this specific example. On the other hand, since the 
orthogonality relation of Bessel functions )(xJ p  is denoted by [18] 
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where ),( mpZ  is thm  zero of )(xJ p  (i.e. 0)( ),( =mpp ZJ ), it is better for the eigenvalues 

k  to be considered as 
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a
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Therefore, by applying the orthogonality relation of Bessel functions and using the 
orthogonality property of the sequence ∞

=Φ 1)}{sin( nn  on ],0[ π , *
,mnA  are found as 
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Finally, the problem can be stated for the wave equation ∇ =2
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 according to 

the following stages. First we have 
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which results the ordinary equations 
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Now, if λ 1 0= , 0and0 22
2 ≠−=≠−= nk αλ  are assumed in (8.26), then the general 

solution of the classical wave equation when 
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as follows 
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Here let us consider a specific problem regarding the wave equation in spherical 

coordinate when the variable r has the form 
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are given. To solve the problem, replacing the given conditions in the general solution 
(8.27) gives 0112 === dbc  and 021 =+ aa . If 2121, dcbaB nk =  is supposed, then 
(8.27) becomes 
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But similar to the previous problem, if 
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and using the orthogonality relation of Bessel functions )( ),2/1(2/1 a
rZJ m  on [0,a], the 

unknown coefficients *
,mkB  will be derived as  
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which determines the final solution of the given problem straightforwardly. 
 
8.3. Two classes of special functions using Fourier transforms of finite classical 
orthogonal polynomials [11] 
 
Some orthogonal polynomial systems are mapped onto each other by the Fourier 
transform or by another ones such as the Mellin or Hankel transforms, see [33]. The 
best-known examples of this type are the Hermite functions, i.e. the Hermite 
polynomials ( )nH x  multiplied by )2/exp( 2x− , which are eigenfunctions of the 
Fourier transform. More examples of this type are found in [49, 50] and [47]. The latter 
author showed that the Jacobi and continuous Hahn polynomials can be mapped onto 
each other in such a way, and the orthogonality relations for the continuous Hahn 
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polynomials then follow from the orthogonality relations of the Jacobi polynomials and 
the Parseval formula. Now, we intend to introduce two new examples of finite systems 
of this type in this section and obtain their orthogonality relations. We then estimate a 
complicated integral and propose a conjecture for a further example of finite orthogonal 
sequences. For this purpose, we should come back to the chapter 4 and recall the 
orthogonality property of the finite classical orthogonal polynomials. Hence, let us here 
recall the polynomials  
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In this sense, the Parseval identity of Fourier theory should also be considered as 
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for 2, ( )g h L∈ R . Now, to obtain the Fourier transform of )(),( xM qp
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It is clear that the Fourier transform exists for both above functions. However, for 
example, for the function )(xg  defined in (8.31) we have 
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where (...)23 F  is a special case of the generalized hypergeometric function defined by 
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On the other hand, if in the left hand side of (8.34) we take     
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then according to the orthogonality relation of polynomials )(),( xM qp
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Theorem 1. The special function 
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has a finite orthogonality property as 
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where , 2 , 0   and 0 .a d n b c n a b c d+ > − + > + > + >  
 
Remark 1. (i) Replacing n = m = 0 in (8.38) gives the Barnes’ first lemma from 1908, 
see e.g. Bailey [20] or Whittaker and Watson [76] for the original proof by Barnes.  
(ii) The weight function of the orthogonality relation (8.38) is positive for 

cbda == ,  or dcba == , . 
Similarly, the mentioned approach can be applied to the finite orthogonal polynomials  
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Thus, if we define the sequences  
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2 2
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and take the Fourier transform from ( )u x , then we get 
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In relation (8.40) the following definite integral has been used  
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− − − + + −= Γ + −∫                                      (8.41) 

 
Now, according to definitions (8.39) apply the Parseval’s identity again to get      (8.42) 
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By assuming 
                                                         1++== rpuq                                               (8.43) 
 
in (8.42) and noting the orthogonality relation of )()( xN p

n  given above we can finally 
deduce the following theorem. 
 
Theorem 2. The special function 
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has a finite orthogonality relation as 
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                                           if nba 2>+ . 
 
Remark 2. (i) If we put n = m = 0 in (8.45) then we obtain 
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(ii) The weight function of (8.46) is positive if ba = . 
 
8.3.1. Evaluating a complicated integral and a conjecture 
 
By applying the Ramanujan integral [62]                                                                 (8.47) 
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we can obtain the explicit value of the following definite integral                           (8.48) 
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For this purpose, we have                                                                                                   
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according to Ramanujan’s integral defined in (8.47) )(mIn  can be simplified towards 
                                                                                                                                   (8.51) 
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On the other hand, the Gosper-Saalschütz identity [75] implies that if 
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then  
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Therefore, the final value of the definite integral )(mIn  is obtained as                                    
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                                                                                                                                   (8.53) 
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But we evaluated the complicated integral (8.48) to be able to claim that the function 

),,,;( dcbaxAn  defined in Theorem 1 might essentially be orthogonal with respect to 
the Ramanujan integral. In other words, we conjecture that 
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