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Chapter 1

Outline of dissertation

This thesis includes 8 chapters. The chapter 2 specifies how to generalize the usual
Sturm-Liouville problems with symmetric solutions to a larger class. In other words, if
the symmetric sequence y = ®_(x) satisfies a usual Sturm-Liouville problem as

}(k(x)ﬂ}wp(x)—q(x))y=o KX >0, p(x)>0, (L1)
X dx

with the boundary conditions
{aly(a)wly'(a):o

a,y®)+B,y'(0)=0 , as<x<b, (1.1.1)

then, under some specific conditions, it can be generalized to a more extensive problem
as

di(k(x)ﬂ} (2 P00+ 2= ED E(g)y =0, (12)
X dx 2
with the individual condition

Yy (@)+5y'(0)=0 ;, -O<x<6. (1.2.1)

It should be noted that the main advantage of this extension is that the generalized
solutions preserve the orthogonality property. In this sense, by using the above
theorem, the well-known symmetric associated Legendre functions (having extensive
applications in physics and engineering) are generalized and it is shown that the
orthogonality interval is the same as [-1,1].

Another important consequence of the extension of usual Sturm-Liouville problems
with symmetric solutions is given in the chapter 3. In this chapter, by using the
mentioned theme, a main class of symmetric orthogonal polynomials (MCSOP) with
four free parameters is introduced and all its standard properties, such as a generic
second order differential equation of the form (1.3)

X2(pX? + Q) D" (X) + X(rxZ +5) D', (x) = (n(r + (N =1) p)x? + (L (-1)")s/2)d, (x) =0,

together with its explicit polynomial solution in the form



/2 (e 2+ ()" +2[n/2])p+r
=20 Lo (i)D" +2)q+s

S[r >Ix jx”*k (1.3.1)
"p g ’ -

a generic orthogonality relation, a generic three term recurrence relation and so on are
obtained. Moreover, it is shown that four main sub-classes of symmetric orthogonal
polynomials, i.e. the generalized ultraspherical polynomials, generalized Hermite
polynomials and two new sequences of finite symmetric orthogonal polynomials are all
special sub-cases of MCSOP. In this way, two half-trigonometric sequences of MCSOP
are introduced.

k=0

But, usually the finite orthogonal polynomials are less known (and discussed) in the
literature. In chapter 4, a comprehensive treatment about finite classical orthogonal
polynomials that are specific solutions of the well-known differential equation of
Sturm-Liouville type

a(X)Yn () +7(x)y, () = 4.y, (x) =0, (1.4)

in which o(x) =ax” +bx+c, r(x) =dx+e and 4, =n(n-L)a+nd is given.

In this chapter, three sequences of hypergeometric polynomials, which are finitely
orthogonal with respect to the F, inverse gamma and generalized-T distribution
functions are reintroduced in detail and their application in functions approximation
and numerical integration are investigated.

It is interesting to know that the weight function of the third class of finite orthogonal
polynomials corresponds to a generalization of T distribution, which as far as we know
has not appeared in the mathematical statistics branches. For this reason, chapter 5 is
allocated to a large generalization of Student’s t-distribution with four free parameters
and a comprehensive discussion of mathematical properties of this new distribution is
investigated from special functions point of view. It is also shown that, similar to usual
normal distribution, the generalized t-distribution converges to the normal distribution
again when the number of samples tends to infinity. In this sense, since the Fisher F-
distribution has a close relationship with the t-distribution, a generalization of the F-
distribution is also introduced and shown that it similarly converges to the chi-square
distribution as the number of samples tends to infinity. At the end of the chapter, some
special cases of the generalized distributions are studied.

But as we observe, the introduced equation (1.3) has a generic polynomial solution as
(1.3.1). Now, is it possible to find a generic polynomial solution for the differential
equation (1.4) similarly? Chapter 6 replies this question in detail. In chapter 6, it is
shown that the equation (1.4) has a generic monic polynomial solution as

_=(d e (N A v
yn(x)_P{a A c|XJ_kZ_:j(k] G (a,b,c,d,e)x*, (1.4.1)

where



GM ( 2a Jk_n F k—n %H—%—n 2+/b* —4ac
=l 2avh? -4 — |
‘ b+b2—dac) ayb - dac b++/b? —4ac

2—-d/a-2n

Then, it is shown that all six sequences of infinite and finite classical orthogonal
polynomials described in chapter 4 can be indicated by the general derived formula.
Some general properties of the formula (1.4.1), such as the affection of a linear change
of variables, a generic three-term recurrence equation, a generic formula for the norm
square value of the polynomials and so on are also given. At the end of the chapter, it is
explained how to derive a generic formula for the values at the boundary points of
monic classical orthogonal polynomials.

Here is interesting to know that classical orthogonal polynomials have a direct use in
the explicit computation of inverse Laplace transforms. In other words, if the Mobius

transform x=pz " +q, p=20, qeR is employed in each six sequences of classical

orthogonal polynomials, then the generated rational orthogonal polynomials can be
used to compute the inverse Laplace transform directly, with no additional calculation
for finding their roots. In chapter 7, by achieving this purpose, three basic examples are
given to explicitly obtain the inverse Laplace transforms.

Finally, chapter 8 introduces some new sequences of special functions that have
application in the solutions of classical potential, heat and wave equations in spherical
coordinate.

In other words, it is known that in the solution of Sturm-Liouville problems, usually
zero eigenvalue is ignored. Now, if the foresaid eigenvalue is considered to be zero,
one of the solutions will be pre-assigned. This approach causes to appear new
sequences of special functions in the solutions of the classical equations of potential,
heat and wave in spherical coordinate. By noting these comments, a class of special
functions is introduced in the first part of chapter 8 and is applied in the mentioned
classical equations. In this way, some applied examples are given.

And eventually, in the second part of last chapter, two new classes of orthogonal
hypergeometric functions are introduced and it is shown that using Fourier transforms
and Paraseval identity they are finitely orthogonal with respect to two specific functions
of Gamma type. Moreover, as the third new hypergeometric class, first a complicated
integral is explicitly evaluated and then it is conjectured that the integrand of this
integral may be finitely orthogonal with respect to the Ramanujan weight function on
the real line.






Chapter 2

A symmetric generalization of Sturm - Liouville
Problems

2.1. Introduction

In this chapter, we present some conditions under which the usual Sturm-Liouville
problems with symmetric solutions can be extended to a larger class. The main
advantage of this extension is that the corresponding solutions preserve the
orthogonality property. As a sample, we investigate a basic example of generalized
Sturm-Liouville problems and obtain their orthogonal solutions. The foresaid example
generalizes the well-known associated Legendre functions (having extensive
applications in physics and engineering) and preserves the orthogonality interval [-1,1]
for the generalized functions.

2.2. Boundary value problems

When partial differential equations are solved by the method of separation of variables
(see also chapter 8 section 8.2), the problem reduces to the solution of ordinary
differential equations. The solutions of these equations can, in many interesting
problems of mathematical physics, be expressed in terms of special functions. In order
to obtain such solutions of the partial differential equations in specific cases, we have to
impose additional conditions on the solutions such that the problems will have unique
solutions. These conditions in turn lead to conditions on the solutions of the ordinary
differential equations and thus to boundary value problems. We here intend to first have
a survey on the solution of boundary value problems by the method of separation of
variables.

2.2.1. Usual Sturm-Liouville problems

It has been proved that the method of separation of variables can extensively be applied
for solving partial differential equations of the form

o(X, Y, z)(A*(t)gt—l:Jr B*(t)aa—l:] _Lu, 2.1)
where
Lu =div(k(x,y,z)gradu) —q(x,Yy,z)u , (2.1.1)

divE=Divergence of vector F , (2.1.2)
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gradF:(Z—F7+%T+%E . (2.1.3)
X z

The equation (2.1) describes the propagation of a vibration such as electromagnetic or
acoustic waves if A (t)=1 and B"(t) =0 and describes transfer processes such as heat

transfer or the diffusion of particles in a medium when A"(t)=0 and B*(t):l.

Finally it describes the corresponding time-independent processes if A*(t) =0 and
B”(t) =0 [56, p. 299].

To have a unique solution of equation (2.1), which corresponds to an actual physical
problem, some supplementary conditions must be imposed. The most typical conditions
are initial or boundary conditions. The initial conditions for equation (2.1) are usually
the values of u(x,y,z,t) and ou(x,y,z,t)/ot, while the simplest boundary condition is

in the form

=0, (2.2)

S

[a(x, y.2)u+ (X, y,z)j—ﬂ

where a(x,y,z) and p(x,y,z) are given functions; S is the surface bounding the
domain where (2.1) is to be solved; ou/dn is the derivative in the direction of the

outward normal to S.
But the particular solutions of (2.1) under the boundary conditions (2.2) will be found if
one looks for a solution of the form

u(x,y,z,t) =T({)v(x,y,2). (2.3)

By substituting (2.3) into the main equation (2.1) one respectively gets
AT OT"+B ()T'+AT =0, (2.9)
Lv+Apv=0, (2.5)

where A is a constant. Clearly (2.4) can be solved for typical problems in mathematical
physics. However, to solve (2.5) we should use a boundary condition that follows from

(2.2), namely (4 (x,y,z)v +ﬁ(x7y,z)ﬂ) —0- The described problem is a known as
on

S
multidimensional boundary value problem. Nevertheless, it can be simplified to a one-
dimensional problem if (2.5) is reduced to an equation of the form

Ly+4 p(x)y=0, (2.6)
where
d

Ly:d—(k(x)d—y]—q(x)y, k(x)>0, p(x)>0. (2.6.1)
X dx
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The equation (2.6) should be considered on an open interval, say (a,b), with boundary
conditions in the form
ay(@)+py'(@)=0,
a,y(b)+ ,y'(0) =0,
where «,, a, and p,, S, are given constants and k(x),k’(x),q(x) and p(x) in (2.6)
and (2.6.1) are to be assumed continuous for x €[a,b].
The simplified boundary value problem (2.6)-(2.7) is called a regular Sturm-Lioville
problem. Moreover, if one of the boundary points a and b is singular (i.e. k(a) =0 or
k(b) =0), the problem will be transformed to a singular Sturm-Liouville problem. In
this case, one can ignore boundary conditions (2.7) and obtain the orthogonality
property directly.
Now, let y (x) and y,(x) be two solutions (eigenfunctions) of equation (2.6).
According to the Sturm-Liouville theory [18, 56], these functions are orthogonal with
respect to the weight function p(x) on (a,b) under the given conditions (2.7), i.e.

(2.7)

0 if nzm,

2.8
1if n=m. (28)

[ POOY, ()Y, (x) dx = ( [ PCOYZ (0 dx]an,m if 5, = {

Many important special functions in theoretical and mathematical physics are the
solutions of regular or singular Sturm-Liouville problems that satisfy the orthogonality
condition (2.8). For instance, the associated Legendre functions [18], Bessel functions
[18, 56], trigonometric sequences related to Fourier analysis [13], Ultraspherical
functions [27, 70], Hermite functions [27, 70] and so on are particular solutions of
some Sturm-Liouville problems. Fortunately, most of these mentioned functions have
the symmetry property, namely @ (-x)=(-1)"®,(x), and because of this they have
found various applications in physics and engineering, see e.g. [18, 56] for more
details. Now, if one can extend the mentioned examples symmetrically and preserve
their orthogonality property, it seems that one will be able to find some new
applications in physics and engineering that logically extend the previous applications.
In the next sections, by achieving this matter, we generalize some classical symmetric
orthogonal functions and obtain their orthogonality property.

2.3. A symmetric generalization of Sturm-Liouville problems [12]

Without loss of generality, let y=®_ (x) be a sequence of symmetric functions that
satisfies the following differential equation

A(X)q)’r:(x) + B(X)q)'n (X) —I—(ﬂn C(X) + D(X) + 1— (2_1)n

E(x)j(bn(x) -0, (2.9)

where A(x), B(x), C(x), D(x) and E(x) are independent functions and {4,} is a
sequence of constants. Clearly choosing E(x) =0 in (2.9) is equivalent to the one-
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dimensional Sturm-Liouville equation (2.6). Since @ (x) is a symmetric sequence, by
substituting the symmetry property @ (-x)=(-1)"® (x) into (2.9), one can
immediately conclude that A(x), C(x), D(x) and E(x) are even functions, while B(x)
must be an odd function. This note will frequently be used in this section.

To prove the orthogonality property of the sequence @ (x), first both sides of equation
(2.9) should be multiplied by the positive function

R(x) = exp( w _ mexp( | igxi i), (2.10)

in order to convert in the form of a self-adjoint differential equation. Note that R(x) in
(2.10) is an even function, because B(x) is odd and A(x) is even. Therefore, the self-

adjoint form of equation (2.9) becomes
(2.11)

12209y~ (2, c0+ DOYROY P, (1 -+ P EIR®, ().

—(A( )R(x)

Since A(x)R(x) is an even function, the orthogonality interval corresponding to
equation (2.11) should be considered symmetric, say [—68,8]. Hence, by assuming that
X =@ is aroot of the function A(x) R(x) and applying the Sturm-Liouville theorem on
(2.11) we have (2.12)

[ACOR() (@}, (), (x) - @, (0@, ()], =
G~ 22) [COR0I®, 00, 0006~ (2~ TEGIRM @, (0, () 0
Obviously th_e? left-hand side of (2.12) is zero. So, to prove_tghe orthogonality property, it

is enough to show that the value

F(n,m)=MTE(X)R(X)®n(X)®m(X)dX, (2.13)

is always equal to zero for every m,ne Z". For this purpose, four cases should
generally be considered for m and n:

a) If both m and n are even (or odd), then F(n,m)=0, because we have
F(2i,2j)=F(2i+1,2j+1)=0.

b) If one of the two mentioned values is odd and the other one is even (or
conversely) then

F(2i,2)+1) = —i E(X) R(X) @ (X) D,;,, (X) dX.. (2.14)

-0
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But in above relation E(x) , R(x) and @, (x) are even functions and ®@,, ,(x) is odd.
Thus the integrand of (2.14) is an odd function and consequently F(2i,2j+1)=0.
This issue also holds for the case n=2i+1and m=2j,i.e. F(2i+1,2j)=0.

By noting the above comments, the main theorem of section (2.3) can here be
expressed.

Theorem 1. [12]
The symmetric sequence @, (x)=(-1)" @, (-x), as a specific solution of differential

equation (2.9), satisfies the orthogonality relation

j.W*(x)QDn (X))@, (x)dx = Ui W™ (X) D2 (x) deSn'm, (2.15)
where _ _
W*(x) =C(X)R(x) =C(x) exp(j%d ), (2.16)

denotes the corresponding weight function and is a positive and even function on
[-0,6].

It is now a good position to propound a practical example that generalizes the well-
known symmetric associated Legendre functions and preserves their orthogonality

property.

2.3.1. A symmetric generalization of the associated Legendre functions [12]

When Laplace’s equation V?u =0 (or Helmholtz’s equation V?u = Au) is solved in
spherical coordinates r, 8, ¢, the following results appear [56]

Vu—Au+lA9¢,u, (2.17)
where
6u
Au=— 2 , 2.17.1
r? ar( 6r ( )
1 o%u
Uu=———¢sin . 2.17.2
00 n¢98¢9( ) sin? @ 0¢’ ( )

As was explained in the section (2.2), by separating u=R(r)¥(0)Q(e¢) and
substituting it into Laplace’s equation (Potential equation), three following ordinary
differential equations are derived

(PRY=uR,
Q"+0Q=0, (2.18)

) d , . d¥ .
sin@— (sin@—) + (usin’0-v)¥ =0 ,
dH( de) (u V)
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where g and o are two constant values. For x=cosé, the last equation of (2.18)
changes to
d?y dy v

— Xt (-

1—x?
( ) dx? dx 1-x?

)P =0, (2.19)

which is called the associated Legendre differential equation [18] and its solutions are
naturally known as the associated Legendre functions. These functions play a key role
in the theory of potential. In general, there are three types of solution for equation
(2.19) depending on different values of p and v:

NIf u=(n+a)(n+a+1) and v=a®; neZ*, a > -1, then the solution of (2.19) is
indicated by
P (x) =U " (x) = 1-x2)2 P“)(x), (2.20)

where P““(x), known as Ultraspherical polynomials, is a special case of Jacobi
polynomials [27, 70]

nn+a+pf+k)(n+a), x-1
P (@h) (x) = ~, 221
(%) ZOL( ) ](n_k]( ) (2.21)
for a = S . In this way, the solution (2.20) satisfies the orthogonality relation

1 1 200+11-2
.[Urga)(x)ur(na)(x)dxz(J.(Ur(]a)(x))Z dx)é‘nm _ 2 r (n+0{+1)
he' % on(2n+ 2 +)IN(n+ 2a +1)

S, (2.22)

i) If z=n(n+1) and v =m?; m,ne Z*, (2.19) has a solution in the form (discovered
by Legendre)

¥(x)=P"(x) :(1—x2)zw, (2.23)

where P, (x) = P®?(x) denotes the Legendre polynomials [56]. Moreover, according
to [18], (2.23) satisfies the orthogonality relation

2(i +m)!

@i+1)i—m) (2.24)

[ PP 0PP 0 dx = ([ (P ()2 0405, =

iii) To obtain the third type of solution, let us first consider the Jacobi polynomials
differential equation [27, 70]

A-x)Y" —((@+p+2x+(@-p))Y +n(n+a+B+1)y=0<y=P“"(x), (2.25)
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and suppose A (x) = (1-x)*?(1+x)?"?P*# (x). After some computations in hand,
the differential equation A, (x) is derived as

L—x%)% A’(X) = 2x(L— x*) A/ (X) —%[((a + )+ f+2)+4n(n+a+ B +1) x>

(2.26)
+2(a+Ba—-B)x-2a+p)+(a-p)° -4n(n+a+B+D]A (X)=0.
Now suppose « + £ =0 in (2.26) that reduces it to the differential equation
2
(1—x2)A”—2xA'+(n(n+l)—1a )A=0. (2.27)
— X

The condition —-1<a <1 is necessary for the orthogonality property of the
polynomials P!*~*(x), because we must have a+ £ =0 and «, >-1. Therefore,

by considering x#=n(n+1) and v=0a’; -1<a <1 in (2.19), the related solution
takes the form
P =V, (x) = G2)2 P (x), (2.28)
1+x
satisfying the orthogonality relation

1 1
JV 0V 00k = (] (V) () ) 0, = 2In trf!;f(‘;ﬁ‘fgl‘“) Sume (229)
To extend the associated Legendre functions, it is enough in (2.9) to choose
A(x)=1-x>=A(-x) ; B(x)=-2x =-B(-x),

C(x)=1=C (-x) : D(x):—l_” =D (~x), (2.30)
A = U ; E(x)=E(—x) Arbitrary,

and apply the theorem 1 to establish the orthogonality property on the same interval
[-1,1]. To do this task, let @ (x)=Q,(x;v,E(x)) be a known and predetermined

solution of the differential equation

(L= x*) @7 (x) = 2X D, (X) + (4, =

b, 1‘(2‘1)n EQ)D. ()=0.  (231)

1—x?

According to the main theorem 1, we should have

[ Qu(x0, E()Q, (0 E() dx = ([ (Q, (0, E())’ )5, (232)
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provided that the arbitrary function E(x) is even.
The sequence Q,(x;v,E(x)) (as a known solution of equation (2.31)) is now
orthogonal under the pre-assigned condition E(—x) = E(x). So it is applicable in the

theory of the expansion of functions, as many boundary value problems of
mathematical physics are solved by using the expansion of functions in terms of the
eigenfunctions of a usual Sturm-Liouville problem. Hence, if we assume

F(x) = iqn Q. (v, E(X)), (2.33)

then according to the property (2.32), the unknown coefficients g, are found by

g = [ £(0Q, (X0, E)dx / [(Q, (v, E()? dx. (2.34)

Clearly various options can be selected for E(x), that are directly related to the
orthogonal sequence Q,(x;v, E(x)) . For example, choosing the even function E(x) =0
gives one of the three cases of usual associated Legendre functions, stated before. A

further special example is when E(x) = E(—x) = ~2/%?. Let us study this case in the
next section in detail.

2.3.1.1. The special case E(x) =-2/x” in the generalized equation (2.31)
If E(x) =-2/x” in (2.31) it reduces to the equation

=)D (- 2x, (0 + (1, - o+ EL o, 0=0. 239

2 X2

To obtain the solution of this equation for specific values of «, and v, one should

refer to the generalized ultraspherical polynomials (GUP), which were first investigated
by Chihara [27]. On the other hand, according to the main theorem 1 if in the general
equation (2.9) one chooses

A(x) = x*(1—x?) ; An even function,
B(x)=-2x((p+q+1)x*—-q) ; An odd function,

2 . :
C(x)=x ; An even function, (2.36)
D(x)=0 ; An even function,
E(X)=-p ; An even function,

A, =n(2p+2q+n+1),

then the symmetric differential equation
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X* (L= x*) @7 (x) = 2x((p + 9 +Dx* - p) @} (X)

(2.37)
+(n@2p+2q+n+1)x% + ((-1)" ~1)p)®, (x) =0,

is the generalized ultraspherical equation having the monic polynomial solution
(2.38)

o [n/2]-1 . o q\n
Un(p'q)(X): H : 2|+2p+2 ( 1)
io —2i—(2q+2p+2-(-1)"+2[n/2])

w2 ([n/ 2]\ (/26D _ 2~ (2q+2p+2—(=1)" +2[n/2]) ) 10
XZ( Kk j( l_! 2i+2p+2- (1) o

k=0

The monic GUP are orthogonal with respect to the weight function x*°(1—x?)? on
[-1,1] and satisfies the following orthogonality relation

1
[Xx?P(=x?)TTP9 (U P (x) dx
-1

: - : : (2.39)
_ (11[ (i+@-ED)p)i+A-(=1)")p+29), I(p+1/2)T(G+1) o
L (2i+2p+29-D)(2i+2p+2q+1) C(p+q+3/2) ™™
Now, by defining
b
G (xab)=x(1-x)? T () : a> —% b>-1, (2.40)
and replacing it into equation (2.37), one gets (2.41)

2

(1- xz)csg(x)—2x<3,;(x)+((n+a+|o)(n+a+b+1)—1f’2X ; a((—l)zz _a)JGn(x) -0

If the above equation is compared with (2.35), then it can be concluded that
, 2
Q,(x;b%,——)=G,(x;1b) ; b>-1, (2.42)
X

is a general solution of (2.31) for u, =(n+b+1)(n+b+2), v =b*and E(x) =-2/x>.

Moreover, substituting these values into (2.32) and noting (2.39) yields
(2.43)

(=L + 20) Vel
@@ mey arpesin

[ Q,06b% ~2)Q, (xb* ) dx = (
e} X X

Remark 1. Although some special functions such as Bessel functions [18], Fourier
trigonometric sequences and so on are symmetric and satisfy a differential equation
whose coefficients are alternatively even and odd, it is anyway important to note that
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they do not satisfy the conditions of the main theorem 1. For instance, if in the generic
equation (2.9) we choose

A(x)=x> B(x)=x . C(x)=1,
D((x)) =x> E (E( )):0 ; in( :)—nz, (2.49)
we get to the Bessel differential equation
X2 D" (X)+ XD (X)+ (x> —n*)D_(x)=0, (2.45)
with the symmetric solution as
(=D)"J (=x) =3 (x) = i (D" Xyea oz (2.46)

0k'(n+k)' 2

but the orthogonality interval of Bessel functions is not symmetric (i.e. [0,1]). Hence,
theorem 1 cannot be applied for J (x), unless there exists a specific even function
E(x) for equation (2.9) such that the corresponding solution has infinity zeros (see e.g.

[18, 56] for more details), exactly similar to the case of usual Bessel functions of order
n. Therefore the conclusion of this chapter can be summarized as follows: the usual
Sturm-Liouville problem

Hk(x)ﬂ}uﬂp(x)—q(x))y=o KX >0, p(x)>0,
X dx

under the boundary conditions
{aly @+A4y'(@)=0

, , a<x<b
a,y([0)+p,y'(0)=0

can be extended to the following problem
1
[P pt9-aw + =SV ey -0

with the boundary condition o,y (8)+£,y'(0)=0 ; -6 <x <@, provided that the
solution of latter differential equation has the symmetry property, i.e.

Yo (=X) = (=D"y, (%)



Chapter 3

A main class of symmetric orthogonal polynomials

3.1. Introduction

In the previous chapter, we determined how to extend the usual Sturm-Liouville
problems with symmetric solutions. In this chapter, by using the extended Sturm-
Liouville theorem for symmetric functions, we are going to introduce a main class of
symmetric orthogonal polynomials (MCSOP) with four free parameters and obtain all
its standard properties, such as a generic second order differential equation together
with its explicit polynomial solution, a generic orthogonality relation, a generic three
term recurrence relation and so on. Then, we show that essentially four main sequences
of symmetric orthogonal polynomials can be extracted from the introduced class. They
are respectively the generalized ultraspherical polynomials, generalized Hermite
polynomials and two other sequences of symmetric polynomials, which are finitely
orthogonal on the real line and can be expressed in terms of the mentioned class
directly. In this way, we also introduce two half-trigonometric sequences of orthogonal
polynomials as special sub-cases of MCSOP.

3.2. A Main Class of Symmetric Orthogonal Polynomials (MCSOP) using the
extended Sturm-Liouville theorem [1]

By referring to the main theorem of chapter 2 and generic differential equation (2.9)
choose the following options

A(X)=x*(px*+q) ; An even function,
B(X)=x(rx?+s) ; An odd function,
C(x)=x"? ; An even function, (3.1)
D(x)=0 ; An even function,
E(x)=-s ; An even function,

where p,q,r and s are real free parameters and A, =—n(r +(n —1)p). Therefore, one
deals with a second order differential equation of the form (3.2)

X2 (X2 + Q) D" (X) + X(rXZ +8) D', (X) = ((r + (N=1) p)x? + (L (~1)") s/ 2)d, (x) = 0.

To obtain the polynomial solution of above equation, let us first suppose that n =2m,
ie.



A Main Class of Symmetric Orthogonal Polynomials 20

X(px? +q) Dy, (X) + (x> +8) @} (X)—2m(r + (2m-1) p) xd,_(x) =0. (3.3)

After doing some calculations in hand, one can get the solution of equation (3.3) as

rosi o) &(my("&YQ2j-1+2m)p+r | oma
SZm[p ; J_Z(kJ(H ]x : (3.4)

k=0 j=0 (2j+D)qg+s
where ﬁar —1. Similarly, if n=2m+1 is considered in (3.2), the simplified equation

r=0

(3.5)
X2 (pX* +0) D0 (X) + X(X? +8) @y (X) = ((2M +1) (r +2mp) X +5) @, (X) =0,

has the polynomial solution

r s mom("ED 25 +1+2m)p+r ) o
ng+1[p q XJZZ(k]( H ( J )p ]XZ 1-2k . (36)

k=0 j=0 (2j+3)g+s
Consequently, combining (3.4) with (3.6) gives

s(; ; X}[fl([n/z]j (["’ﬁk*” (2i+(—1)“+1+2[n/2])p+rj R

k o (2i + (=)™ + 2) q+Ss

as the most common source of classical symmetric orthogonal polynomials with four
free parameters p,q,r and s where neither both values q and s nor both values p and r
can vanish together. Here let us point out that almost all known symmetric orthogonal
polynomials, such as Legendre polynomials, first and second kind of Chebyshev
polynomials, ultraspherical polynomials, generalized ultraspherical polynomials
(GUP), Hermite polynomials and generalized Hermite polynomials (GHP) are special
sub-cases of (3.7) and can be expressed in terms of it directly. Because of this matter,
we call these polynomials, “The second kind of classical orthogonal polynomials”.
Furthermore, there are two other symmetric sequences of finite orthogonal polynomials
that are special sub-cases of general representation (3.7) and we will introduce them in
the sections 3.9 and 3.10.

The symbol S{r s Xj is used only because of Symmetry property, however, to shorten

k=0

P q
this notation in the text, we will show it as S, (p,q,r,s;x). A straightforward result
from (3.7) is that
r s r+2p s+2
SM( XJ - xSZn( posred ‘x] . (3.8)
P q p q

Moreover, since the monic type of orthogonal polynomials (i.e. with leading coefficient
1) is often required, we define
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_ [n/2]-1 H _\n+l
s{r Sx]=H _(2”(“}1) +2)q+s sn(r Sx]. (39)
P q o (2i+ (D" +2n/2])p+r "lp g
For instance, if n=0,...,5 in (3.9) we have
_(r s
SO( szl,
P q
_(r s
S, X |=X,
[p q ]
S, TSk _xz 4453
+r
. P (3.9.1)
g, rs | =y 3q+s
P q 3p+r
5|7 S|x|oxt4230tS 0, B4+9)@G+S)
P q Sp+r (5p+n)@Bp+r)

Sy :X5+25q+s N (59 +s)(39 +5) “
Tp+r (7Tp+r)Bp+r)

The explicit representation of (3.9) helps us now obtain a three-term recurrence relation
for the polynomials. Hence, if we assume that they satisfy the relation

s‘m(x)zxs‘n(x)mn(; ng“(x) . 5,(0=1,50)=x,neN, (310

then after doing a series of computations in hand, we obtain

C{r s]:pqn2+((r—2p)q—(—1)”pS)n+(f—2P)S(1‘(‘1)")/2, (3.10.1)

P q (2pn+r—p)(2pn+r-3p)

which reveals the explicit form of (3.10).

On the other hand, since the recurrence relation (3.10) has explicitly been specified, to
determine the norm square value of the polynomials one can use Favard's theorem [27]
by noting that there is orthogonality with respect to a weight function. According to this
theorem, if {P, (x)},_, is defined by

XP.(x)=AP.,(xX)+B,P,(xX)+C,P_,(x) ; n=012,..., (3.11)

where P, (x)=0, P,(x)=1, A,,B,,C, realand AC,,, >0 for n=0.1,..., then there
exists a weight function W (x) so that
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n-1

i=0

TW(X)Pn (X) P, (x)dx = ( CA':l .[W(x) dxj . (3.12)

Moreover, if the positive condition A C,, >0 only holds for n=0.1...,N then the

orthogonality relation (3.12) only holds for a finite number of m, n. The latter note will
help us in the next sections to obtain two new sub-classes of S, (p,q,r,s;x) that are

finitely orthogonal on the interval (—oo,). It is clear that the Favard theorem is also
valid for the recurrence relation (3.10) in which A =1, B,=0 and
C,=-C,(p,q,r,s). Furthermore, the condition —-C_.(p,q,r,s)>0 must always be

satisfied if one demands to apply the Favard theorem for (3.10). By noting this subject
and (3.12), the generic form of the orthogonality relation of MCSOP can be designed as

(3.13)
J.W Sx§nr Sx§mr dx—(l)HC( jj.W X |dX [S,m
= \Pq P q p 4 P a5, \P ¢

where the weight function, by referring to (2.16) and (3.1), is defined as

w(; :xJ:xzexp(j(r“‘p)x +(5229) 4y — ex p(Imdx), (3.14)

x(px* +q)
and « takes the standard values 1,o0. Note that the function (px? +q)W(p,q,r,s;X)
must vanish at x = « in order to establish the main orthogonality relation (3.13).

3.3. An analogue of Pearson distributions family [1]
The positive function (3.14) can also be investigated from statistical point of view. In
fact, this function is an analogue of Pearson distributions family having the general

form
(B,
and satisfying the first order differential equation
%((ax2 +bx +c) p(x)) = (dx +e) p(x) . (3.15.1)

Therefore, we would like to point out that, similar to equation (3.15.1), the weight
function (3.14) satisfies a first order differential equation as

x%(( px? + Q)W (x)) = (rx? +s)W (x), (3.16)

which is equivalent to
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* * ) = 2
i(xz(px2 + Q)W (X)) = x(r'x*> +s)W(x) st {r* rrep (3.16.1)
dx S =5+2(

From (3.16) or (3.16.1) it can be deduced that W(p,q,r,s;x) is an analytic integrable
function and since it is also a positive function, its probability density function (pdf)
must be available. In general, there are four main sub-classes of distributions family
(3.14) (and consequently sub-solutions of equation (3.16)) whose explicit pdfs are
respectively as follows

—-2a-2b-2, 2a
K, W
-1 1

o - I'(a+b+3/2) X2 (1-x2)° ; —1<x<1;
I'a+1/2)r'(b+1) (3.17)

a+1/2>0; b+1>0.

-2, 2a 2
K,W X =; x2e ™ ;. —w<Xx<ow ; a+1/2>0. (3.18)
0, 1 r'a+1/2)
(3.19)
; —0<X <0 ;

—2a-2b+2, -2a
W
1, 1

e r'(b) x 2
" T(b+a-1/2)T(-a+1/2) (L+x2)

b+a>1/2 ; a<l1/2 ;b >0.

—-2a+2, 2 1 pa—m
K,W X|=————x e ¥ ; —o<x<ow;a>1/2. (3.20)
1, 0 I'a-1/2)
The values K, ; i=12,34 play the normalizing constant role in above distributions.

Moreover, as it is observed, the value of distribution vanishes at x =0 in each four
cases, i.e. W(p,q,r,s;0)=0 for s=0. Hence, let us call the positive function (3.14)
“The dual symmetric distributions family”.

3.3.1. A generalization of dual symmetric distributions family

First it is important to remember that if s=0 in (3.16), the foresaid equation will be
reduced to a special sub-case of Pearson differential equation (3.15.1). Hence, we
hereafter suppose that s= 0. Since the explicit forms of S (p,q,r,s;x) in (3.7),

C,(p,q,r,s) in (3.10.1) and W(p,q,r,s;x) in (3.14) are all known, a further main pdf
can directly be defined by referring to the orthogonality relation (3.13), so that we have

i Mol )
D, X |= X [x|S, X||.(3.21)
P q P q

_q)m r s
J__ (-1) W(
i=m r s)\% r s
HC{ ]J‘W( x]dx b4
Clearly choosing m=0 in this definition gives the same as dual symmetric

i1 P q P q
distributions family. Moreover, the Fisher information [36] and Boltzmann-Shannon

—a
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information entropy [28] are two important factors in statistical estimation theory that
can be investigated for the generalized distribution (3.21).

3.4. A direct relationship between first and second kind of classical orthogonal
polynomials

One can verify that there is a direct relation between first kind of classical orthogonal
polynomials (including Jacobi, Laguerre and Hermite polynomials as well as three
finite classes of orthogonal polynomials, see chapter 4) and the explicit polynomials
S,(p,q,r,s;x) indicated in (3.7). To find this relationship, we start with the following

differential equation
(ax® +bx+c)y"(x)+ (dx+e)y (x)-n((n-Da+d)y, (x)=0 . (3.22)
According to [56], the monic polynomial solution of (3.22) can be shown by a

Rodrigues-type formula as (3.23)
_(d e e
P“(a be | d e e XJ)’
d k-2
([Td+m+ )a>/{a D x]

bc
where p(a,b,c,d,e;x) is defined as the same form as (3.15).
But, since S, (p,q,r,s;x) is generally an even function, taking x=wt? +v in (3.22)
gives (3.24)

n d
x} ! d ((ax? +bx + c)”p(a

t*(aw’t* + w(2av + b)t* +av® + bv +c)y/ (t) + t ((2d —a)w?t* + (2wv(d — a) + w(2e — b))t?
—(av® +bv +¢))y’ (t) —4w?n(d + (n —Da)t*y, (t) =0.

If (3.24) is equated with (3.3), we should have

_—b++b®-4ac

2a

av’ +bv+c=0 or v (3.24.1)

The condition (3.24.1) simplifies the equation (3.24) to
(3.24.2)

t(awt? /b2 — 4ac)y’ (t) + ((2d — a)wt? + (%—1)(—bi\/b2 —4ac) +2e by (1)

_(d - A/b? —
_4wn(d +(n-Dayty, @) =0y, (t) = Pn( € lwtz 4 ZREVD 4ac}.
abec 2a
The equation (3.24.2) is clearly a special case of (3.3). This means that (3.25)
5 { d e W —b++b? —4acJ_ KS (2d —a)w, (%—1)(—b4_r\/b2 —4ac)+2e—-b ;
n - 2n
abe 2 an b7 —dac
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where K is the leading coefficient of the left-hand side polynomial of relation (3.25)
divided to leading coefficient of the right-hand side polynomial.

As we observe in the above relation, there exist 5 free parameters a, b, ¢, d, e in the left-
hand side of (3.25). So, one of them must be pre-assigned in order that one can get the
explicit form of S, (p,q,r,s;x) in terms of P, (a,b,c,d,e;wt? +v) similarly. For this

purpose, if for instance ¢ =0 is considered in (3.25), two following cases appear

_(r s _|r+p 5+9q

SZH( tjzw‘”Pn ow | 2 |wt? ; w=0, (3.26)
P q p/w, g, O

(r s _(r+p sp-rq ]

SZ{ '[J:W‘”Pn w 2p wt? + w— : p,w=0. (3.27)
P4 p/w, -q, O P

Furthermore, if (3.8) is applied for two latter relations we respectively get

_ r s _(r+3p s+3q

SZM{ '[}=W‘”'[Pn ow o |wt® ; w=0, (3.28)
P d p/w, q, O

_ r s _[r+3p sp-rq q

52n+{ tj=W_ntPn 2w | 2p  (wtP+w— ; pw=0. (3.29)
P p/w, —-q, O P

3.5. Some further standard properties of MCSOP
The relations (3.26)-(3.29) are useful tool to get a generating function for MCSOP.
Usually, a generating function for a system of polynomials P.(z) is defined by a

function like G(z,t) whose expansion in powers of t has, for sufficiently small |t |, the
form

Gzt)=Y Pn(z)% . (3.30)

If P_(z) has the Rodrigues-type formula [56], Cauchy’s integral formula

Moy N f(u)
PO @) =~ i T du , (3.31)

where @ is a closed contour surrounding the point u =z, is employed to obtain
G(z,t) explicitly, see e.g. [56, p. 27]. This means that by considering the Rodrigues-
type representation (3.23) for ¢ =0 and applying Cauchy’s integral theorem on it we
have
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d e
G d e| )t p(abou] 1
> d+(n+k—2)a)l3n[ H—= . x . (332
0 kL abo )n d e J(@—bt)? —4atz
» a, b0
— —_— 2_
where: y oL bt +/(1—bt) 4atz
2at
Now if z > z?, t >t?, a= p,b=q,d=r;p and e=->"9 are substituted into
(3.32), by noting the relations (3.26)-(3.29) we obtain (3.32.1)
(r+p)/2 (s+q)/2 u*]
© N _(r s| ¥ , 0, 0
>[I +n+k-2p)S, ‘z L !
1 p g |n p{(r+p)/2 (s+0)/2 ZZJ\/(l_qtz)z_llptzzz
p, g0

. 1-qt? +\/(1—qt2)2 —4pt?z®

where: u 5
2pt

Similarly by multiplying both sides of (3.32) by tz and using (3.28) we get  (3.32.2)

(r+3p)/2 (s+3q)/2 u*]

= e r+3p < [r s|_ |t p. g 0 tz
( +(n+k-2)p)$ ( zj -
;Q 2 2n+1 P q nl (r+3p)/2 (s+3q)/2 ZZJ \/(1—qt2)2—4pt222
p, 0, 0
Finally let us define
[n/2]
f s Hr/2+((2n—5+(—1)”+1)/4+k)p Fos
S:( xj: ket _n[ xj . (3.33)

P q [n/2]! P q
Therefore, by noting (3.32.1) and (3.32.2) a kind of generating function for MCSOP is
derived as (3.34)

p[(r+ p)/2, (s+q)/2u,,J (tz)p((r+3p)/2, (s+3q)/2u*J
is*(r s zjt”: 1 p. a0 s p. a0
=" p q Ja-qy2—aptz?| ((r+p)/2, (s+a)/2 22) p((r+3p)/2, (s+3q)/2 22)
p, g0 p, d, 0

where u” is the same form as (3.32.1).
The explicit form of polynomials (3.7) can also be applied to obtain a generic
hypergeometric representation for the polynomials, because by using it one can easily
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indicate the coefficients of polynomials (3.7) in terms of the Pochhammer symbol:
(@), =a(a+1)..(a+m-1). For instance, we have

[n/2]-(k+1)

[T@i+@E)™ +2[n/2]) p+r=(p/2)a* (r/2p +[n/2]+ (- /2)[5]—k' (3.35)

Hence, after some calculations, we eventually find that

_ —[n/2 —-s)/29- 1)/2
S{r > XJ:XHZF{ n/2). (a-s)i2q-ln+D)iz)) qzj, (3.36)
P q —(r+(2n-3)p)/2p px
where | ( \ j Z(O‘i gﬁ)k kl denotes the hypergeometric function of order
k=0 7 )k :
(2,1) [43]. Furthermore, since (3.37)

b 1
,F, 2 |z |= __I© j '1-t)"'(l-tz) *dt & Rec>Reb>0 ; |z|<1,
c r(b)r(c-b)?

the integral representation of MCSOP can easily be derived by referring to (3.36). In
this way, by applying the Gauss identity [43]

2 F{a b|1j: r'(c)'(c—a-b) (3.38)

c I'(c—a)l(c—b)

one can also determine the value of polynomials S_(p,q,r,s;x) at a specific boundary

point, i.e. x=./—q/ p. To reach this goal, it is sufficient to put x=,/—q/ p in (3.36)
and use (3.38) to get

_4a 21“7_71” -
§(r s _&] ( ) (2 Zp)( 2q ZD) . (3.39)
P g\ p _r 3_r L s _r
( n), F( 2p [2] n)l“(1+2q 2p [2])

Note that to derive the above identity, the following equalities have been used

[”—*1] [21—1 ‘21) | [””] +E1=n

Ly (3.40)
n n n
[E]:E 4 , (@),=-D"1-a-n),.

The standard properties of MCSOP have been found now. So, it is a good position to
introduce four special sub-cases of main polynomials (3.7) in detail.
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3.6. First subclass, Generalized ultraspherical polynomials (GUP)

These polynomials were first investigated by Chihara in detail [see 27]. He obtained the
main properties of GUP via a direct relation between them and Jacobi orthogonal
polynomials. The asymptotic behaviors of foresaid polynomials were also studied by
Konoplev [48]. On the other hand, Charris and Ismail in [24] (see also [25, 41])
introduced the Sieved random walk polynomials to show that the generalized
ultraspherical polynomials are a special case of them. Of course, there are some other
generalizations of ultraspherical polynomials. For instance, Askey in [19] introduced
two classes of orthogonal polynomials as a limiting case of the g-Wilson polynomials
on [-11] with the weight functions

1
W, (X, 00,2) = (@-x?) 2 [U, ()T, () [*
and

1
W, (0, h) = (1=x") 2 U, ()| T () "

in which ke N is a fixed integer and T,(x) and U, ,(x) are respectively the
Chebyshev polynomials of the first and second kind, to generalize GUP for k =1 and
A =0. For the case A =0 the polynomials were introduced by Al-Salam, Allaway and
Askey [15] as a limiting case of the g-Ultraspherical polynomials of Rogers [64].

Anyway, we intend in this section to show that GUP can directly be represented in
terms of S_n(p,q,r,s; x) and consequently all its standard properties will be obtained.

For this purpose, it is only enough to have the initial vector corresponding to these
polynomials and replace it into the standard properties of MCSOP.

3.6.1. Definition
Choose the initial vector (p,q,r,s)=(-1,1,—2a—2b—-2,2a) and substitute it into
(3.7) to get (3.41)

N X
-1, 1

3 —-2a—-2b-2, 2a
io —2i—(2b+2a+2-(-1)"+2[n/2)])

]_[“’ZH 2i+2a+2—(-1)"

1

w2 (n/ 2]\ 2™ Z i~ (2b+2a+2—(=1)" +2[n/2]) | 10
x D I1 : X
k o 2i+2a+2-(-1"

k=0

as the explicit form of monic GUP. Moreover, since the ultraspherical (Gegenbauer),
Legendre, and Chebyshev polynomials of the first and second kind are all special cases
of GUP, they can be expressed in terms of S_(p,q,r,s;x) directly and we have

Ultraspherical polynomials:
" _(—-2a-1 0
cox) = 2@ g ( 4 1‘x] | (3.41.1)

Legendre polynomials:
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I (-2 0
p()=-2M 5 x| . (3.41.2)
(22" " -1 1
Chebyshev polynomials of the first kind:
(-1 0
T(xX)=2""S5S X1 . 3.41.3
() |1 1 (341.3)
Chebyshev polynomials of the second kind:
_ (-3 0
U,(x)=2"S§ X 3.41.4
(0=2"8, 1‘ (3414)

3.6.2. Recurrence relation of monic polynomials
By replacing the initial vector (3.41) into the explicit expression C_(p,q,r,s), given in

(3.10.1), the recurrence relation of monic GUP takes the form (3.42)
— — —-2a-2b-2, 2a) - — —

Spa(X) =xS,(x)+C, 1 Spa(X) 3 S() =1, S;(x)=x, neN,
where according to (3.10.1) (3.42.1)

c —2a-2b-2, 2a) -n’-(2b+2(1-(-1)")a)n—2a(a+h)1-(-)")
" -1, 1) (2n+2a+2b—-1)(2n+2a+2b+1)
—(n+@-()Ma)(n+ (1-(-1)")a+ 2b)
~ (2n+2a+2b-1)(2n+2a+2b+1)

3.6.3. Orthogonality relation
Clearly the weight function of GUP is the same distribution as (3.17) without
considering its normalizing constant, i.e. x**(1—x?)". Also, since this function must be

even and positive, the condition (-1)** =1 is essential. Hence, the mentioned weight
function can also be considered as |x[** (1-x%)"; xe[-11]. By noting this comment

and generic relation (3.13) for « =1, the orthogonality relation of first sub-class takes
the form (3.43)

— (-2a-2b-2, 2a
XS, X | dx
-1, 1

=[(_1)nﬁci(— Za:ib—Z, ZlaJ j‘XZa(l_XZ)bde Sn,m’

-1

—2a-2b-2, 2a

1
X2a1_X2bS_
_jl ( ),{ 1

where
I'a+1/2)r(b+1)

(3.43.1)
I'a+b+3/2)

1
[xer@—x)y dx= B(a+%,b+1) _
e
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From (3.43.1) one can conclude that the constraints on the parameters a and b should
be a+1/2>0, (-1)** =1 and b+1>0. Note that B(1,,4,) in (3.43.1) denotes the
Beta integral [18] having various definitions in the form

B(4,,4,) = j'x”ﬂ‘l(l— x)%=tdx = Jl‘x“i‘l(l— x%)% " dx = T
° N ° (3.44)

wl2
=2 jsin(“i‘l) xcos @D xx = LT () _ B(1,,4,).
; (4, +4,)

3.6.4. Differential equation: @, (x) =S, (-11,-2a-2b-2,2a;X).

To derive the differential equation of GUP it is enough to substitute its initial vector
into the main differential equation (3.2) to get to (3.45)

X2 (=X% +1) @ (x) - 2X((@ +b+1)x* —a) D/, () + (n(2a+ 2b + N +1)x* + ((-1)" —~D)a)d, (x) =0
3.7. Fifth and Sixth kind of Chebyshev polynomials [1]

As we know, four kinds of trigonometric orthogonal polynomials, known as first,
second, third and fourth kind of Chebyshev polynomials, have been investigated in the

literature up to now, see e.g. [63, 37, 27, 70]. The explicit definitions of them are
respectively as

T.(x)= 2”‘1f[(x — cos%) =cos(ng) ; x=cosd , (3.46)

U,(x)= ZHILI(X—COS ke ) = sin((n+1)0)

- ; X=co0sé (3.47)
n+1 siné

V. (x) = Z”ﬁ(x —COS (22kn_+1iﬂ = cos(éssn(;)l)e) . x=c0s(20) , (3.48)
W (x) = 2“f[(x ~cos Zikfl) - Si”(iizn”(;)l)‘g) . x=c0s(20) . (3.49)

Now, we would like to add here that there exist two further kinds of Half-trigonometric
orthogonal polynomials, which are particular sub-cases of S, (p,q,r,s;x). Since they

are generated by using the first and second kind of Chebyshev polynomials and have
the half-trigonometric forms, let us call them the fifth and sixth kind of Chebyshev
polynomials.

To generate these two sequences, we should refer to the important relation (3.8).
According to (3.41.3), the initial vector of first kind Chebyshev polynomials is:
(p,q,r,s)=(-11,-1,0). So, if this vector is replaced into (3.8) then we have
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_ -1 0 — _ (-3 2
S2n+1 _1 l X :T2n+1(x):X82n —l l

By means of (3.50), the secondary vector (p,q,r,s) =(-11-3,2), as a special case of
the set of vectors (p,q,r,s), appears. By using this new vector first we define the half-
trigonometric polynomials

x] . (3.50)

-1)"? cos((n+1)0) .

-3 2 ( if n=2m,

><n(><)=8n[_l 1 XJ= n+l  cosd (3.51)
S, (-11,-3,2;x) if n=2m+1,

where cosé@ = x. According to (3.51) and (3.10), X (x) satisfies the recurrence
relation

Yn+1(X)=X>7n(X)+Cn[j ﬂfn_l(X) . Xe(¥)=1, X;()=x,neN, (352

in which

-1 1 4n(n+1)

Consequently, substituting the secondary vector (-1,1,-3,2) into the generic relation
(3.13) gives the orthogonality relation of the first kind of half-trigonometric orthogonal

polynomials as
L (-3 o (=3 2)b (-3 2
_jlw(_l xjxn(x)xm(x)dx:((—l) Hci(_l J_jlw[_l ) dexJan,m. (3.53)
tox 31
xJolx:jl ix=B(,))=- . (354)

i=1
On the other hand since

(3.54) is simplified to

2

L 3 2\\n
_jlﬂx (X)X (x)dx_(( 1" 1‘1[(:( . 1)]5 8. . (3.55)

Clearly a half of polynomials X (x) is decomposable and we have

2k -~

2 )) (3.56)

X, (X) = H(x cos

So, if one can find the roots of X, ,(x) too, these polynomials will find many
applications in numerical analysis such as Gaussian quadrature rules [27, 70].



A Main Class of Symmetric Orthogonal Polynomials 32

Similarly, the subject holds for the initial vector of the second kind Chebyshev
polynomials, i.e. (p,q,r,s)=(-11-3,0). Again, if this vector is substituted into (3.8)

then
S. -3 0 x|=U, .(X)=xS. = 2
2n+1 —l 1 - 2n+1 - 2n _1 1

and subsequently the secondary vector is obtained in the form (p,q,r,s) = (-11,-5,2).
Now, by assuming that cosé& = x let us define the polynomials

x) : (3.57)

n/2 <
s (-2)™° sin((n +_2)¢9) it n=o2m,
Y, (X)=S, {1 X|=4 n+2 cosdsiné (3.58)
S, (-11,-5,2;x) if n=2m+1,
satisfying the recurrence relation
_ _ -5 2\_ _ _
Ym(x):xvn(ch{ . 1]Yn_l(x) . Y,(0)=1,Y,(x)=x,neN, (359
where
-5 2 _ _(_1\" _(_1\"
C. _—(+1-(=)")(n+2-(=1)") 1 (3.59.1)
-1 1 4n+1)(n+2)

and having the orthogonality relation

S

where

x]?n(x)\fm(x)dx_ (-1)" ]l[c(

Xj dx]&n,m , (3.60)

2 3 3 T
X |dx = | X*V1-x*dx=B(=,>) == . 3.61
1 I 2'2" 8 ( )

M

The relation (3.61) simplifies (3.60) as

_[x V1-X2Y (XY, (x)dx_(( 1)" Hc( > an 8,n. (362

Similar to previous case, Y,, (x) is decomposable as

_ 2n T

Y, (X) g(x cos 2n+2) : (3.63)
Here it should be added that there are two other sequences of half-trigonometric
polynomials that are not orthogonal, but can be shown in terms of MCSOP. These
sequences are defined as
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_(1 -2 S,(-111,-2;x) if n=2m,
S, X|=+ _ (3.64)
-1 1 XT,1(X) if n=2m+1
_(-1 -2 S (-11-1-2;x) if n=2m,
S, X |= _( ) _ (3.65)
-1 1 XU, ,(x) if n=2m+1
However since we have
1 1 _ 2 1
Jw X dx:jizm, (3.66)
-1 -1 1 a x24/1—x?
L1 =2 L 1-x2
Jw x |dx = | L X ¢ = 40 | (3.67)
-1 1 X

they cannot fall into the half-trigonometric orthogonal polynomials category. Thus we
can generally consider the following table showing some properties of the first kind to
sixth kind of monic Chebyshev polynomials orthogonal on [-11].

Table 1: Representations of Chebyshev polynomials by S (p,q,r,s;X)

Type Notation Definition Weight
_(-1 0 1
First Kind T (X) Sl 1 /X 1 X2
_ (-3 0
Second Kind U, (x) Sal 1 1/¥ Hox
) ) . = [—3 2] [1+x 1+x
Third Kind V. (X) 2"S,, 1 1IN T x
_ B (-3 2| 1=« 1-x
Fourth Kind W, (X) 2°S,, 11N 2 Tox
_(-3 2 x?
Fifth Kind X (X) Sol 4 q|X T
_ (-5 2
Sixth Kind Y (%) Sol 4 1] N

Remark 1. According to (3.41.4), the initial vector of the monic Chebyshev
polynomials U, (x) is (p,q,r,s) = (-1,1,—3,0). If this vector is replaced in (3.10.1), a
very simple case of three-term recurrence relation (3.10) with C, (-1,1,-3,0) =-1/4
is derived. A system of monic orthogonal polynomials that satisfies the relation
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Poi()=(x-a,)P,(0)-A,P.(x) ; PR(X)=1,neZ", (368

and has the property

2

limeg, =a and Iimﬂnzb?>0 ; a,beR, (3.69)

n—oo

is said to belong to the class N(a,b). The monic polynomials corresponding to the

conditions (3.69) are perturbations of x —b"U, (%) . Now since

32 5 2
limC. 1 ad dimc, -1 (3.70)
n—o -1 1 4 n—o -1 1

the defined polynomials X, (x) and Y, (x) belong to the class N(0,1).

3.8. Second subclass, Generalized Hermite polynomials (GHP)

The GHP were first introduced by Szego who gave a second order differential equation
for these polynomials [70, problem 25] as almost the same form as we will give in this
section. These polynomials can be characterized by using a direct relationship between
them and Laguerre orthogonal polynomials [27]. Of course, there are some other
approaches for this matter, see e.g. [32]. Because of this, it is better to only point to the
main properties of GHP in terms of the obtained properties of S, (p,q,r,s;X).

3.8.1. Initial vector
(p.q,r,s)=(0,1,-2,2a) . (3.71)

3.8.2. Explicit form of monic GHP
(3.72)
(=2 2 n N [n/2] /2 [n/2]-(k+1) _
3 al, =(_1)[2](a+1—( 1) 3 [n/2] 1 - 12 -2k
0 1 2 sk i 2i+(-)"+2+2a

3.8.3. Recurrence relation of monic GHP

s‘M(x):xs‘n(x)+cn(_02 Zla]s‘nl(x) . §.(0=1, 5,(\=x,neN, (373

where

-2 2a —(=D"
C, =—£n—1 ) a. (3.73.1)
0 1 2 2

3.8.4. Orthogonality relation

T ooa o= [—2 2a] |- (-2 2a
J'x e S, XS,
c 0 1 0 1

(3.74)
x]dx :(Zinﬁ(l—(—l)i)a+ijl“(a+%) 8,1
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The above relation shows that orthogonality is valid for a+1/2 >0 and (-1)* =1.
3.8.5. Differential equation: @ (x)=S,(0,1,-2,2a;Xx).
X2D (x) — 2X(x? —a) ', (x) + (20 x? + (-1)" —=Da)d, (x) =0 . (3.75)

Finally note that since the leading coefficient of Hermite polynomials H, (x) is 2", the
following equality holds

H,(x)=2" 97{ ° Xj : (3.76)

0 1

3.9. Third subclass, A finite class of symmetric orthogonal polynomials with
weight function x*(1+x*)™ on (—oo,) [1]

According to Favard theorem, if the condition —C,_,(p,q,r,s) >0 holds only for a
finite number of positive integers, i.e. for n=0,1,...,N then the related polynomials

class would be finitely orthogonal. This note helps us obtain some new classes of finite
symmetric orthogonal polynomials, which are special sub-cases of S, (p,q,r,s;x) and

can be indicated by it directly. To derive the first finite sub-class, we should first
compute the logarithmic derivative of the weight function W (x) = x 2*(1+ x*) ™ as

W'(x) -2(a+b)x*-2a
W)  x@+x?)

(3.77)

If the above fraction is compared with the logarithmic derivative of the main weight
function W(p, q,r,s; x) then we get
(p,q,r,8)=(1,1,-2a-2b+2,-2a) , (3.78)

which is in fact the initial vector corresponding to the first finite sub-class of symmetric
orthogonal polynomials. Hence, if (3.78) is replaced in (3.7) the explicit form of
polynomials is derived as (3.79)

1, 1

k=0

“2a-2b+2, —2a| | )0y —)" +2-2a-
Sn( s XJZ[[ ]] [] 2+A02+ (0 +2-2-20 |,
i=0

2 2i+(-1)"™ +2-2a

Replacing (3.78) in the main recurrence relation (3.10) also gives (3.80)

—-2a-2b+2, —-2a)\—

S_n+1(x):XS_n(X)+Cn[ 1 1 jsn—l(x) , §0(X):1, S_l(X):X, nEN,

where
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—2a-2b+2, -2 -1-(-1" -1-(-D)")a-
c[T2a-2+2 -2) (n-(-(D)HO-U-(D)a=2) g0
1, 1 (2n-2a-2b+1)(2n—-2a—-2b-1)
Therefore, the orthogonality relation
T ox® _(-2a-2b+2, -2a| |- (-2a-2b+2, -2a
J‘ﬁ N XSy X |dX =
c(@+x%) 1, 1 1, 1
2a-2b+2, -2 (38D
(_1)nHCi —Z2a-2b0+2, —Z2a)|I'b+a-1/2)I'(-a+1/2) 5
i-1 1, 1 I'(b) '

. - -2a-2b+2 -2a
is valid iff —CM( ) . j>0 - YneZ': b+a>1/2:a<1/2 and b>0-

Here is a good position to explain how we can determine the parameters conditions to
be established the orthogonality property (3.81). For this purpose, there is an interesting
technique. Let us consider the differential equation of polynomials (3.79) using the
initial vector (3.78) and subsequently the main equation (3.2) as (3.82)
X2(X? +1) D" () - 2x((@+b—1)x* +a) ®, (x) + (n(2a + 2b - (N+1)) X* + (1— (-)")a)d, (x) = 0

If the above equation is written in self-adjoint form, then according to theorem 1 the
following term must vanish, i.e.

X2 @+ x) @ ()@, (X) = O ()P, ())]7, =0 . (3.83)
On the other hand, since @, (x) is a polynomial of degree n, so
max deg(®/ (X)®, (x) - D, (X)D,(X))=n+m-1. (3.84)
Consequently from (3.83) and (3.84) we must have
—-2a+2(-b+1)+n+m-1<0, (3.85)

which gives the following result

—-2a-2b+n+m+1<0,
(3.86)

a<1/2,b>0.

In other words, (3.81) holds if and only if mn=01..,N <a+b-1/2 in which
N =max{m,n}, a<1/2 and b >0.
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Corollary 1. The finite polynomial set {S (1,1-2a-2b+2,~2a;x)}"") is orthogonal

with respect to the weight function x**(1+x?)™® on (—w,0) if and only if
N<a+b-1/2,a<1/2 and b>0.

We add that the explained technique can similarly be applied for the first and second
sub-classes of S (p,q,r,s;x)i.e. GUP and GHP.

3.10. Fourth subclass, A finite class of symmetric orthogonal polynomials with

weight function X 22e™"*" on (o0, ) [1]

Similar to the first finite sub-class, one can compute the logarithmic derivative of the
given weight function to get respectively

3.10.1. Initial vector
(p.q,r,8)=(1,0,-2a+2,2). (3.87)

3.10.2. Explicit form of polynomials

[D1-(k+1)
-2a+2 2 2 n/2])| 2 20+ 2[n/2]+ (D" +2—-2a |,
S X |= X", (3.88
T vl Iy 2 (329

k=0 i=0

3.10.3. Recurrence relation of monic polynomials

_ _ -2a+2 2)\-— _ _
Sn+1(x):xSn(x)+Cn[ L 0]Sn_l(x) ;o Se(X)=1, S;(x)=x, neN, (3.89)
where
-2a+2 2 —2(=D"(n=2a) -
C. a+ _ 2(-)"(n—a)-2a ' (3.89.1)
1 0/ (2n-2a+1)(2n-2a-1)
3.10.4. Orthogonality relation
(3.90)

2 e (-2a+2 2| . (-2a+2 2
_[x e xS, 1 oxSm 1 Oxdx

o (-2a+2 2 1
=[(_1) HCI( 1 Oj]r(a_g) 8n,m'

But (3.90) is valid if
[x** e><|0(—X—12)(<I>’n ()@, (x) - @, ()@, (x)]%, =0, (3.91)
or equivalently

2—2a+n+m—ls0<:>N£a—% ;N =max{m,n} . (3.92)
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n=N

", s orthogonal with

Corollary 2. The finite polynomial set {S, (1,0,—2a+2,2;x)}

1/x

respect to the weight function x %™ on (—o0,0) ifand only if N <a-1/2.

3.10.5. Differential equation: @ (x)=S,(1,0,—-2a+2,2;x) .
X* @ (x) +2x((1—a)x* + 1) @' (x) — (n(n +1-2a) x* +1— (-1)")d,(x) =0 .  (3.93)

3.11. A unified approach for the classification of MCSOP
As we observed in the previous sections, each four introduced sub-classes of symmetric

orthogonal polynomials were determined by S, (p,q,r,s;x) directly and it was only
sufficient to obtain the initial vector corresponding to them. On the other hand, it is
clear that the orthogonality interval of the sub-classes, other than first one (GUP), are
all infinite, i.e. (—o,). Hence, applying a linear transformation, say X=wt+vV,
preserves the orthogonality interval. For example, if x=wt+v/w in (3.74), the
orthogonality interval will not change and consequently a more extensive class with
weight function (w’t +v)?* exp(-w’t® —2vt) will be derived on the interval (-o,).
However, it is important to know that the latter weight corresponds to the class of
orthogonal polynomials S, (p,q,r,s;wx+Vv/w). Therefore, only by having the initial

vector we can have access to all other standard properties and design a unified approach
for the cases that may occur. In other words, if one can obtain the parameters
(p,q,r,s) by referring to the initial data, such as a given three term recurrence relation,

a given weight function and so on, then all other properties will be derived
straightforwardly. Here, we consider two special sub-cases of this approach.

3.11.1. How to find the parameters p,q,r,s if a special case of the main weight
function w(p,q,r,s;x) is given?

By referring to third and fourth orthogonal sub-classes, it is easy to find out that the
best way for deriving p,q,r,s is to compute the logarithmic derivative W'(x) /W (x)

and then equate the pattern with (3.14). The following examples will clarify this matter.

Example 1. The weight functions

i) W, (x) = -x° +4x* ; —2<Xx<2
i) W, (X) = (16x* —8x +1)exp(2x(1-2X)) ; —-w<X<o
iii) W, (X) = (2x+2)?(2x* +2x+1)™° © < X<

and their orthogonality intervals are given. Find other standard properties such as
explicit form of polynomials, orthogonality relation and ....

To solve the problem, it is only sufficient to find the initial vector corresponding to
each given weight functions. For this purpose, if the logarithmic derivative of the first
weight is computed, then we have
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W/(x)  6x°-16 (r—2p)x*+s
Wy(x)  x(x*=4)  x(px’ +q)

) = (p,q,r,s)=(,—4,8,-16).
Hence the related monic polynomials are {S_n(l,—4,8,—16;x)}°n°zo. Note that these
polynomials are orthogonal with respect to x*(4—x*) on [-2,2] for every n and it is
not necessary to know that they are the same as shifted GUP on [-2,2], because they
can explicitly and independently be expressed by S_(p,q.r,s;x).
But, for the weight function W, (x) it differs somewhat and we have

y 1

1
i) W, (x) = de* (2x —%)2 exp(—(2x -%)2) - Ze‘4w2 (2t4+1

)=te™ =W, (1)

W) _ -2t 2

W, (t) = ((Pars)=01-22

o0

Hence the related orthogonal polynomials are as {sn(o,l,—z,z; 2X — %)}

n=0

2 _ 2
(2x+1) N 2_5\/\/3(t 1) t

i) W,(x)=2° NG = 215
@+ (2x+1)°) 2 @+t

= Ws* ®

W, (t) -8t*+2
W, (t)  t(t®+1)

= (p,q,r,s)=(11-6,2)

Consequently, by noting the orthogonality relation of the third sub-class of MCSOP,
the finite set {S,(L,1,-6,2; 2x+1)}". is orthogonal with respect to W,(x) on (-, )

n=
n=0
and the upper bound of this set has been determined based on the condition
N<a+b-1/2 forb=5and a=1.

3.11.2. How to find the parameters p,q,r,s if a special case of the main three-
term recurrence equation (18) is given?

In general, there are two ways to determine the special case of S, (p,q,r,s;X)
corresponding to a given three-term recurrence equation. The first way is to directly

compare the given recurrence equation with (3.10). This leads to a system of
polynomial equations in terms of the four parameters p,q,r,s. In [46] a similar
method is applied for the first kind of classical orthogonal polynomials. The second
way is to equate the first four terms of each two recurrence equations together, which
leads to a polynomial system with 4 equations and 4 unknowns p,q,r and s
respectively. The following example will better illustrate these methods.

Example 2. If the recurrence equation

6+(-1)"(n-6) & o o
n_1D@n_1g) o 1 Se(0=1 and S,09=x,

S_n+l(x) =X S_n (X) -2
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is given, then find its explicit polynomial solution, differential equation of
polynomials, the related weight function and finally orthogonality relation of
polynomials.

Solution. If the above recurrence equation is directly compared with the main equation
(3.10) and subsequently (3.10.1), then one can obtain the values
(p,q,r,s) =(1,0,-10,2). Hence, the explicit solution of above recurrence equation is

the polynomials S_(1,0,—10,2;x) and therefore their differential equation is found as
X* @ (x)+ X (~10X* + 2) @', (x) - (n (=11 x> +1— (-1)" ), (x) = 0.
Moreover, by replacing the initial vector in the main weight function (3.14) as
(—10
W
1

one can find out that the related polynomials are a particular case of the fourth

introduced sub-class. Hence we have
i=n 10 2
de—(( " HC[ JJF( )8 ym < MN<5

iz _(-10 2 -10
J'x S ( ‘xJSm(
0 1
Second method. If the given recurrence relation is only expanded for n = 2, 3, 4, 5 and
then equated with (3.9.1), the following system will be derived

1

2 12x +2 12,52
OXJ_e (j dx)=x"e *,

S_Z(x):xz—g:x2+q+s a+ts __2 S, (x)=x S,(x)- S(x) X3 +3q+sx
9 p+r p+r 9 3p+r

S,(x)=x S,(x)- S ,(x)=x"* 3q+s X+ (30+5)@+s) and g MFS _ 4
5p+r Gp+r)@Bp+r) 7p+r 3

Solving this system again results that (p,q,r,s) = (1,0,-10,2).

In conclusion, by using the extended Sturm-Liouville theorem for symmetric functions
explained in chapter 2, one can define a generic second order differential equation
having a main polynomial solution with four free parameters. This solution satisfies a
generic orthogonality relation whose weight function corresponds to an analogue of
Pearson distributions. In other words, there are four special cases of the dual symmetric
distributions family that can respectively be considered as the weight functions of four
introduced sub-classes of MCSOP. In this way, the following table shows the explicit
forms of the mentioned sub-classes in terms of S, (p,q,r,s;x) as well as their weight

functions, kind of polynomials (finite or infinite), orthogonality interval and finally
constraint on the parameters.



A Main Class of Symmetric Orthogonal Polynomials

41

Table 2: Four special sub-cases of S, (p,q,r,s;X)

Definition Weight Interval & Kind Parameters
function Constraint
S —2a-2b-2, 2aX o a>-1/2
n 1 1 x?(1-x%)" | [-11], Infinite b>_1
~2, 2a _1
Sy 0, 1 Xj )(Zaefx2 (=00, 0) ,Infinite a> 2
s —2a-2b+2, —2aX X2 o N<a+b-1/2
" 1 1 1+ x2)° | (-o0.0), Finite a<1/2,b>0
—-2a+2, 2 1 1
S 1 O‘XJ X 2% x (—o0,00), Finite N < a_E

Finally we repeat that since all weights in above table are even functions, the condition
(-1)** =1 must always be satisfied by noting the constraint of parameters for each
introduced weight functions. Therefore, they can also be considered in the forms

x| (1-x2)°, | x| e_xz, | x| (1+x*)™ and | x| e

-1/ x?

respectively.
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Chapter 4

Finite classical orthogonal polynomials

4.1. Introduction

It is well known that the classical orthogonal polynomials of Jacobi, Laguerre and
Hermite are infinitely orthogonal and satisfy a second order differential equation of the
form

(AX* +Bx+C)y"(x)+ (Dx+E)y! (X) —=n(n—1)A+ D)y, (x) =0

in which A, B,C,D and E are parameters independent of n. In this chapter, we intend

to study three other sequences of hypergeometric polynomials in detail, which are
special solutions of above equation and are finitely orthogonal with respect to three
specific weight functions. These classes have respectively relation with the Jacobi and
Laguerre polynomials. In particular, the second class is directly related to the
generalized Bessel polynomials and consequently Laguerre polynomials. Let us start
with the first finite case.

4.2. First finite class of hypergeometric orthogonal polynomials

Consider the differential equation of Sturm-Liouville type
g ()Y, () +7(X) ¥, (X) = 4,¥,(x) =0, (4.1)

where o(x) = Ax” + Bx+C and r(x) = Dx+ E are polynomials independent of n and
A, =n(n—=1)A+nD is the eigenvalue parameter depending on n=01,2,....

The Jacobi orthogonal polynomials for o(x)=1-x*, 7(X)=—(a+B+2)x+(Bf-a),
Laguerre for o(x) = x, 7(X) =a +1—x and finally Hermit for o(x) =1, 7(Xx) = -2x
are three known types of polynomial solutions of equation (4.1). But, there are three
other types of polynomial solutions that are finitely orthogonal. The first finite class is
defined when o(x)=x*+x, 7(X)=(2- p)x+(1+q) in (4.1). So, substituting these
values in (4.1) gives the following differential equation

(X* +X)y; (x) + (2= p)x+a)y; () —n((n+1- p)y,(x) =0. (4.2)

By applying the Frobenius method, an explicit polynomial solution for the equation
(4.2) will be derived as
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. . k=n p_(n l) q n ) a lk—l .
M P9 (x) = (-1) n!kZ(;( ’ + J(nth(_x) @Kkaﬁg(a—o . 4.3)

Moreover, one can prove that these polynomials are finitely orthogonal with respect to
the weight function W, (x;p,q)=xL+x)"®? on [0,00) if and only if
p>2{maxn}+1 and q>-1. To prove this claim, one should first write the self-
adjoint form of the equation (4.2) as

O @0y, () = n(n 1 p)x L+ 3) 1y, (),
O @ )P0y (0) = m(m 1= P @ x) PPy, (97 Y, (0 =M PO (9. (4

Then using the Sturm-Liouville theorem, one gets
(4.5)

X ' . 0 _aa X (p.a) (p.a)
|:(1+ X) p+q-1 (yn (X) ym (X) ym (X) yn (X)):|0 (ﬂ’n ﬂ’m )_(‘; (1+ X) p+q M n (X)M m (X) dx

where A4, =n(n+1- p). As we applied in chapter 3, since

max deg{y, (X)y, (X) = yn (¥)y,(x)}=m+n-1
soif g>-1, p>2N+1, N =max{m,n}, the left side of (4.5) tends to zero and we
will have
m=n, p>2N+1, q>-1,

N = max{m, n}. (4.6)

2 q
[ —(1+XX) MPIOMED (x)dx=0 {
0

Corollary 1. The finite set {M P2V DN =M PP () PPD2 must be

orthogonal with respect to the weight function W, (x; p,q) = x* L+ x) "% on [0,0) .

As the differential equation (4.2) shows, the polynomials (4.3) have a direct relation
with the Jacobi polynomials. Hence, by referring to the Rodrigues representation of
Jacobi polynomials [16], the Rodrigues formula of the defined polynomials (4.3) can be
indicated as

M rEpvq)(x) _ (_1)n (1+ X) pra g n (Xn+q (1+ X)n—p—q) .

: n=0212,.. 4.7
x4 dx" (4.7)

One of the advantages of above representation is to calculate the norm square value of
the polynomials. For this purpose, if (4.7) is replaced in the norm 2 relation

d" (LT

dx" (4.8)

] (1+XW(|V|§W(X))2 dx=(-1)"[ M (x)

then integration by parts yields
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_ ”w (p.q) dn(xn+q(1+x)n—p—q) _n!(p_(n'i':l-))!OO n+q n-p-q
(1) !Mn (x) e dx_(p_(2n+l))! !x (L+X)"P dx . (4.9)

On the other hand
w _ I I
jx”*“ @L+x)" " dx:(p (2n+ 2)Xa + n)! : (4.10)
0

(p+g—(n+1))!
So, we have

OOL (p.9) 2 o N(p-n-Dig+n)!
[ e O = prqn-p D

The foresaid relation shows that p>2n+1 is a necessary condition for the
orthogonality of the polynomials M (*® (x) . Therefore

Corollary 2 (Orthogonality relation)

J. x° M(p'q)(X)M(p’Q)(X)dX: n!(p_n_l)!(q"‘n)!
o @+x)P T i (p-2n-1)(p+qg-n-1)+ ™"

p-1

ifand only if m,n=012,...,N <

,q>-1.
k=n —

For instance, the polynomial set {Mm 2% (x)}® ={(—1)”n!2(20t n}@j(—x)k}ln(fo is
k=0

finitely orthogonal with respect to the weight function W, (x,202,0) = (1+ x)
[0,0) and

-202 on

o0 l 2
@722 M 220 ()M @20 (x)dx = ()" 5 omn<100. (4.12)
) 201—2n" "

4.3. Second finite class of hypergeometric orthogonal polynomials: If o(x)=x* and
7(x)=(2-p)x+1in (4.1)

The second case is directly related to the generalized Bessel polynomials. The Bessel
polynomials for o(x)=x?, 7(x)=2x+2 were first studied by [51] in 1949. They
established the complex orthogonality of Bessel polynomials on the unit circle ( the real
orthogonalizing weights of these polynomials have recently given in [35] ). Then, in
1973, the generalized Bessel polynomials were reviewed by [38]. They are special
solutions of equation (4.1) for o(x)=x*, 7(X)=(2+a)x+2; a=-2-3,. and are
indicated by

>, (4.13)

_ L(MT(n+k+a+1) x
B (x)=2" =
v () Z(k] r2n+a+1) "2

k=0

where B“(x) denotes the monic Bessel polynomial. Now, without loss of generality,
let us consider the following differential equation
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X*yy () + (2= p)x+Dy, () —n((n+1- p)y,(x) =0 . (4.14)

By applying the Frobenius method one can show that

Nr(]P)(X):(_1)nkn§0k![p_k(n+1)J(nikj(_x)k’ (415)

is a polynomial solution of (4.14). Clearly these polynomials are related to the
generalized Bessel polynomials as

Ngm(x):zi:(p_i_njgn(p>(2x). (4.16)

If the equation (4.14) is written in self-adjoint form
(4.17)
(x"% exp(=1/x)y; (x))" = n(n +1- p)x " exp(=1/x)y, (x),

(X2 exp(=1/X) ¥, (x))" = m(m + 1= p)x~" exp(=1/ %)Y, (X); ¥, (X) = M P (x),

then multiplying by vy, (x),y,(X) in (4.17) respectively and subtracting them, we get

X% X (yh (X)Yp(X) = Vi, (x)yn(x))} = (2 = ) [ X P& *NEP OONP (x) dx (4.18)

where A4, =n(n+1- p). Again, since max deg{y; (X)y,,(X) -y, ,(X)y,(X)}=m+n-1
the condition p >2N+1, N =max{m,n} causes the left side of (4.18) to tend to zero
and therefore

m=n, p>2N+1

0 1
[ xPe NP OONP (x)dx =0 < { (4.19)
0 N = max{m,n}

Corollary 3. The finite set {N{*MD ()}, ={NP )PP D'? must be an
orthogonal one with respect to the weight function W, (x; p) = x""exp(-1/x) on
[0,00) . For instance, the polynomial set {N #* (x)}* must be finitely orthogonal with

respect to the weight function W, (x,202) = x ** exp(~1/ x) on [0, ).

But the Rodrigues representation of classical orthogonal polynomials can be denoted by
C, d"(P"(xX)W(x))

W (X) dx"

P(x) is an appropriate polynomial. So, if W(x)=x"exp(-1/x), C, =(-1)"and

P(x) = x* are supposed in the mentioned formula, then

where W (x) is a weight function, C_ is a constant value and
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d ( —p+2ne—1IX)
dx"

NP (x) = (-1)"xPe* © n=012,.. (4.20)

To complete the orthogonality relation of N (x), one can use the above formula and

compute the norm square value of the polynomials. Accordingly, if (4.20) is replaced in
the relation

jx Pe X(N(”)(x)) dx=(-1)" jN“’)( )%2) , (4.21)

then integration by parts yields

1

d" (x Peng x) n(p—(n+D)N7% _
)" NP (x dx= Pr2ng Xd 4.22
(- )j (%) X (p_(zm»!j X. (4.22)
Here one should note that if p >1 then
= w1
sz(x; p)dx:J'x‘pe xdx=T'(p-1) . (4.23)
0 0
Therefore, (4.22) is simplified as
I(p— 1% 1 I(p— I
ni(p—(n+1)! (n+1))'jx’p*2”e de:—n'(p (n+1)! (4.24)
(p—(@n+1))! § p—(2n+1)
and we finally get
i H)!
e X (N (x))? dx = TP = (N D) 4.25
!xe( () == o (4.25)

Corollary 4. (Orthogonality Relation)

jx e XN(p)(x)N(p’(x)dx_[MJénm omn=012..N<P1
) (p—(n+y ) 2

4.3.1 A direct relationship between Bessel polynomials and Laguerre polynomials
[8]

It is interesting to know that there is a direct relationship between Bessel polynomials
and Laguerre polynomials. To find this relation, we first consider the generalized

Bessel equation
2 "

Y'(X)+(nx+n)y(xX)+rnyx)=0 , r,=0 (4.26)

and suppose that y(x)=x"F@/x). Therefore F(x)=x"y(@/x) and (4.26) is
transformed to
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X2F"(X) + X(=1,x 4+ 2 =1, = 2n)F'(X) + (r,x+ 1 + (, ~)r+ ;) F(x) =0 (4.27)

Now if in (4.27)

1-r, +4/(r,-1)% —4r
1 £y ) & (4.27.1)

r’+m-Dr+r,=0=>r-= 5 :

then it changes to

AE" () + (15 DF —ar e x)F/ sy, NG TD AR 4212)

2
On the other hand, it is known that the general solution of
Xg"(x) + (c—bx)g’'(x) —bag(x) =0, (4.28)

can be indicated by the confluent hypergeometric functions [42]

g(x)=,F,(a,c;bx) = Z(:)k (b:!) . (4.28.1)

So, by comparing the equations (4.27.2) and (4.28) it is concluded that the function

e r—l+W D74 (@29)

Y(X):X 2 1 1

satisfies the equation (4.26) if and only if r, #0. Subsequently the monic Bessel
polynomials are representable in terms of the Laguerre polynomials and we have

JECES 1()pn+(2pn)+ln) L =E (4.30)

In this way, N{”(x) can also be represented by the Laguerre polynomials so that
(p) 0y (p-neny (1
NP (x) =nIx" L; ). (4.31)
X

The latter relation is useful to generate a new definite integral for the Laguerre
polynomials, because substituting (4.31) into (4.25) yields

pr—le—x(l_(np)(x))zdle(n 'l:!p)! '

(4.32)
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4.4. Third finite class: Classical hypergeometric orthogonal polynomials with

a)H_b) on (—o0,) [9]
cx+d

weight function ((ax + b)? + (cx + d)?) " exp(q arctan

As was expressed up to now, from the main equation
(AX® +Bx+C)y"(x)+ (Dx+E)y. (X)—=n(n-)A+D)y,(x)=0 ; neZ’

one can extract six “infinite” and “finite” sequences of classical orthogonal
polynomials. In this part, we study the last finite class of hypergeometric polynomials,
which is “finitely” orthogonal with respect to the well-behaved weight function
((ax +b)? + (cx +d)?) P exp(qarctan (ax + b) /(cx +d)) on (-o,). The foresaid
function can be considered as an important statistical distribution too, because by
having its explicit criterion, one can generalize the T sampling distribution and prove
that it tends to the Normal distribution just like T- student distribution. Of course, the
next chapter is devoted to this subject with more details. However, before studying the
last finite case, we should introduce a special sub-case of the equation (4.1) for
o(x) =1+ x? and 7(x) = (3—2p)x and show that the polynomials generated from this
1
case are finitely orthogonal with respect to the positive measure p(x, p) = 1+ xz)_(p_i)
on the real interval (—oo,0). Hence, similar to previous cases, we see that the
differential equation

@+x*)yr (x) + (3= 2p)x ¥, (x) —n((n+2-2p)y, (x) =0, (4.33)

has a polynomial solution in the form [10]
[n/2] -1 —k
1P =n S (04 P g (4.34)
k=0 n - k k

By transforming (4.33) as a Sturm-Liouville equation and applying the technique that

was applied for the first and second kind of finite classical orthogonal polynomials we

arrive at

7 ~(p-) m=n, p>N+1

Ja+x®) 1P e01P (0 dx =0 (4.35)
N = max{m,n}

On the other hand, since (see [10])
1
n—(p—3)

(2" (P=1)y (g, oyvs 4" (@) ")

10 (= L2
(2p-2n-1), dx"

: n=012,.. (4.36)
we finally get

Corollary 5. (Orthogonality Relation)
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22z T2 (p)[(2p - 2n)
(p—n=-DI'(p—n)I'(p—-n+1/2)T'(2p—n-1)

T (X, p) 1P )1 (x) dx = ( ) Snm

If and only if m,n=012,..,N < p-1and p(x, p) = L+ x*)" "2,

It is important to point out that the weight function of above orthogonality relation
corresponds to the usual T student distribution so that we have

o Ly x on
T(X’n)_(\/ﬁr(nIZ))p(\/ﬁ'ZJrl) ; <X<owo, neN. (4.37)

Now, we here wish to say that it is not the end of the story of polynomials 1" (x),
rather, there is a much more extensive polynomial class which is finitely orthogonal on
(—o0,00) and generalizes the sequence 1P (x). For this purpose, first we consider the
following polynomials

JP9(x;a,b,c,d) = (—1)”((ax +b)% + (cx + d)z)p exp(—qarctan ax+3)
CX+

N 438
d" (((ax+b)? + (cx+d)? )" exp(qarctan z‘)’(‘*s)) (4.38)
+

X

dx"
a
c
following differential equation will be derived for the polynomials (4.39)

b
such that det[ OI}zad—bc>0. After doing some computations on (4.38), the

((@x+hb)? + (cx+d)?)y”(x) +(2(1— p)(@® +c®)x+q(ad —bc) + 2(1— p)(ab+cd))y,;(x)
-n(n+1-2p)@*+c?)y, (x) =0.

On the other hand, the equation (4.39) can be written in terms of the differential
equation of hypergeometric function ,F (a,b,c;x) [56]. So, after applying an
appropriate change of variable one will reach this result that

(4.40)
J P9 (x;a,b,c,d) = (-1)"((ab +cd) +i(ad —bc))"(n+1-2p), x

kzzri n a? +c2 ‘ . k-n p-n-iq/2 2(ad —bc) K
Z\k )\ (@b+cd)+i(ad —bc) | > * 2p-2n

(ad —bc) —i(ab +cd)
in which (a), =I'(a+k)/T"(a). This formula is an explicit representation for the
defined polynomials (4.38).
Furthermore, the polynomials (4.40) have an important linear property. Using the
Rodrigues representation (4.38) it can be obtained easily, because if x=wt+v is
considered in (4.38), then (4.41)
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309 (wt+v;a,b,c,d) =(~1/w)" ((awt + av+b)? + (cwt +cv+d)? )* exp(q arctan VLAV HD
cwt+cv+d
dn (((awt +av+Db)? + (cwt+cv+d)? )H exp( arctanuawrb
y cwt+cv+d
dt"
=w"J P9 (t;aw,av+b,cw,cv+d).
For instance, if w=-1 and v=0 in (4.41) then
JPP(-t;a,b,c,d) = (-1)" I P (t;—a,b,—c,d). (4.41.1)

Now, let us consider the differential equation (4.39) in the form of a self-adjoint
equation

(((ax+b)? + (cx+d)2 )} exp(q arctan ) y (X))
; (4.42)
= n(n+1-2p)(a® +c?)((ax+b)? + (cx + ol)z)‘p exp(qarctan > *d )Y, (X)
CX +
and apply the Sturm-Liouville theorem for it on (—o0,0) to reach (4.43)

[((ax+b)? + (cx+d)? )" exp(qarctan )(yn(x)ym(x) Vo (0, O, = (4, = 2n)

x J'((axjtb)2 +(cx +d)? ) exp(qarctanC )J(p‘”(x a,b,c,d)J " (x;a,b,c,d)dx
X +

—00

where 4, =n(n+1-2p). Since max deg(yn )Y, () -y, ()Y, (x)) =n+m-1 1is
valid in (4.43), if the conditions p>N+1/2, N =max{m,n} and a,b,c,d,qeR
hold, the left side of (4.43) tends to zero and consequently

(4.44)

j((ax+b)2 +(cx+d)?)” exp(qarctanc )J“"”(x a,b,c,d)J "9 (x;a,b,c,d)dx =0
—o X+

m=n,p>N+1/2,N = max{m,n}
a,b,c,d,geR, ad—bc>0

It just remains to compute the norm square value of the polynomials. To compute the
norm 2, let us first replace the Rodrigues representation (4.38) in

o0

[(@x+b)? +(ox+d)?)"™? exp(qarctancx XDy 509 (x: 2., ,d))2dx

- b (4.45)
y ) |

d"(((ax+b)? + (cx+d)?)"" exp(garctan ax+
X+

= —1”wJ(p'q) x:a,b,c,d
( )j ( ) —
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Then, by noting that J{*®(x;a,b,c,d) has the orthogonality property, integration by

parts from (4.45) yields
ax+b

. d"(((ax+1b)? + (cx+d)? )" exp(garctan ] )
D" I I (x;a,b,c,d) : X+
- ox (4.46)
ni@*+c*)"T@2p-n) 7 , i ax+b
- b d exp(qarctan dx.
T(2p—2n) J;O((ax+ )° +(cx+d) ) p@ cx+d)
ax+b

Now, suppose =t in the right hand side of (4.46). This simplifiesitas (4.47)

CX +

j ((ax-+b)? + (cx+d)?)"” exp(arctan

—00

+Dy _ (ad — by x
cx+d

0 7l2

I(a —ct)?P 22 (14t%)" P exp(garctan)dt = (ad —bc) > 2P J'(a cos@ —csind)*P 2" ?e%dg.

—rl2

Therefore, the orthogonality property of defined polynomials can be expressed as:

X+Dy s the
cx+d

Corollary 6. If W ®%¥(x;a,b,c,d) = ((ax +0)% + (cx + d)z)fp exp(qarctan

weight function of the polynomials J ("% (x;a,b,c,d), then we have

IW ®9(x;a,b,c,d) I{P?(x;a,b,c,d)J PP (x;a,b,c,d)dx

(52 2yn _ zl2
= 2'(ab ;iz)lrr(?zp n; ) J (acoso—csing) e d0)5,, - (448)
ad —he p_ n —l2 '

If andonlyif m,n=012,..,N<p-1/2, geR & ad-bc>0.

Note that (4.48) will be simplified more if one takes 2p as a natural number, because it
is known that I(acose—csin 0)" e d@ is analytically integrable if me N. Hence,

by knowing that

acosé —csiné = a+|ce‘9+a_2|0e“‘9 & cisf=cos@+isind =¢e", (4.49)
we have (4.50)

i . knm ic)"*(a—ic)* , (2wl (m-20)ir0)”

j(acos@—csm O e¥dg=2" (a+ic) ("_i ic) gl W g 2)
212 o\ K (m-2k)i+q

The equality (4.50) implies that (4.50.1)
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72 2m 2 in)2m-K o iAK
J'(acose—csin 0)"e¥d6 = 2‘2“”1(—1)'“sinh(q—ﬁ)Z(—l)k[ mj (a+ic) (6_1 ic)
2 23 k (2m-2k)i+q

and (4.50.2)

72 2m+1 2 1 ir)2mH-k o 5K
J(acose—csiné? amled?dg = 27" (-)" cosh(q—”) D (=D m+1)(@+ic) (a_ ic)
2 k (2m+1-2k)i+q

—rl2 k=0

Thus, if 2p is a natural number in (4.48), the norm square value of the polynomials

. - . : m
will explicitly be determined. For instance, set c =0, d =1, p= > and me N to get

m
>

T(1+ (ax+b)?) Z exp@arctanax-+ b)) (x a,b.01)  dx

_afni(m-n-iq-Q1-(-)™)(@-1/2) (eq7 - (—1)'”eq7) (4.51)
- [+ '
(m-2n-1)( J]a®+(m-2n-2k-2)%)
Here is a good position to propound a (I:(oomplete example of the above orthogonality
property. Suppose the finite set {J*?(x;2,-1,0,)}'= is given. This set is orthogonal
with respect to the measure W ©? (x;2,—1,0,1) = (2x* — 2x +1)® exp(2arctan(2x —1)) on
(—o0,0) and satisfies the orthogonality relation (4.51.1)

0

J. eprezzrctanQX —61)) 382 (x:2,-1,00)3 ©? (x;2,-1,01)dx =
(2x° —2x+1)

2" nl(11-n)!(sinhz)

5-n 5
@1-2n)(J J1+G-n-k)?)

nm

if and only if m,n <5.

4.5. Application of defined polynomials in functions approximation and numerical
integration

Usually, the finite sets of orthogonal polynomials are applied to the discrete orthogonal
polynomials rather than continuous cases. In other words, there is a main difference
equation in the form

o (x)(AVY(x)) +7(x)(A y(X)) - 4,y(x) =0, (4.52)

with Ay(X)=y(x+1)-y(X); VyX) =yX) -y(x-1); o(x)=Ax*+Bx+C ;
7(x)=Dx+E and A, =n(n-1)A+nD, that contains classical orthogonal
polynomials of a discrete variable [57]. For instance, Hahn discrete polynomials [42]

Q,(X,a, B,N) =,F,(-n,n+a+ f+1-X,a+1-N), n=012,..,N (4.53)
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are finitely orthogonal with the known conditions «, 8 >-1 or N<—-a, N <-4 and
satisfy

L(a+X)(B+N-=Xx D"n(B+Y),(n+a+ B +1),
Z;( y j( N — x an(x)Qm(x)—( N) Ni(er ). (2n+a+ﬂ+1)§”m (4.53.1)

The Krawtchouk polynomials [57], Racah polynomials [57], Dual Hahn discrete
polynomials [42] are some further cases that have been classified in the category of
finite discrete hypergeometric orthogonal polynomials. According to orthogonal
polynomials theory, it is obvious that any arbitrary function f(x) can be expanded in

terms of each mentioned polynomials, provided that f(x) satisfies the Dirichlet
conditions. Now, we would like to point out that the finite polynomial set
{39(x;a,b,c,d)}=) ; N < p—-1/2 can similarly be applied for approximating the
function f(x) . For this purpose, it is enough to consider the following finite
approximation

N
f(x)=> C 3P (xab,cd) ; N<p-1/2, geR,ad-bc>0. (4.54)
According to éorollary 6
(ad —bc)?* > 'T(2p - 2n)
Cn = 7l2

ni(a’ +¢*)"T(2p-n) [(acos@—csing)*™ " e?dg
2 (4.55)

.[((ax+b) +(cx+d)?)” pexp(qarctan )J(p“)(x a,b,c,d) f (x)dx.

Note that the integer N <p-1/2 is the maximum precision degree of the
approximation (4.54). For example, in the polynomial set {J*"(x;1,0,0)}, the

maximum precision degree is at most 3. The following example clarifies this matter by
applying the Gram-Schmidt orthogonalization process [16].

Example 1. Let us compute J{»?(x;1,0,01) for p=4,q=1 and n<3. Therefore
S ={3"(x1,0,0)}= ={1,6x—-1,20x" —10x —3,24x> —36x* —12x + 7} is a finite
orthogonal  polynomial set with respect to the weight function
W 9 (x:1,0,0,1) = (L+ x?) ™ exp(Arctgx) on (—oo,0) and

n!(7—n)!(2sinh§)

J ‘ex(rl)—(arit)—i"‘) 3 (20093 (41002) dx=——— Sun M3
bt +X

(7-2n)] Ja+©E-2n-2k)?)

For example by referring to the set S, m =n =2 in this relation gives
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0

J- exp(arctanx)

(20x? —10x —3)? dx =32sinh~..
@+ x?)* 2

—00

Now, by noting the above orthogonality relation and considering the members of set S,
one can approximate a third degree polynomial for f(x) as

f(x)=c, +¢,(6x—1) +c,(20x* —10x —3) +c,(24x° —36x* —12x +7),

which eventually yields

(288sinh %) f(x) = (629 [7 @+ x?)* explarctan) f (x)dx) ;
[85]_"; (1+ x2)™* exp(arctan x)(6x — 1) f (x)dx) (6x—1) +
(Qr; (1+ x*)™* exp(arctan x)(20x* —10x — 3) f (x)dx) (20x* —10x —3) +

U_w (1+ x*)* exp(arctan x)(24x°® —36x° —12x +7) f (x)dx) (24x% —36x* —12x+7).

This approximation is exact for any arbitrary polynomial function of degree at most 3.
Moreover, note that the monic polynomials set S can be obtained by applying the
Gram-Schmidt orthogonalization process if the moments of weight function

W *Y(x;1,0,0,2) exist on (—o0,0). In this case we have

P, =(x-B,)P,(0-C,P,(x) st R(¥)=1;PR(x)=x-B and

Tx(1+ x*)™* exp(arctarx) (P, (X))* dx Tx(l+ x*)* exp(arctarx)P_, (X)P,_, (X) dx
Bn = _(:: ; Cn == 0
I @+ x*)"* exp(arctanx)(P, , (X))* dx I @1+ x?)* exp(arctanx) (P, _, (X))* dx

—00 —00

After calculating the coefficients B,,C, for n <3, the monic orthogonal set S will be

derived as

§:{1,x—1,x2 —Ex—i,x3 3y —1x+l} .
6 2 20 2 2 24

One of the other advantages of defined polynomials is to estimate a type of definite
integrals using Gauss integration theory. By employing the zeros of polynomials
J(P9(x;a,b,c,d) as the interpolator points in the Lagrange interpolation, one can

XHDy £ ) dx with
cx+d

the precision degree N =2n—-1. This subject is clarified by the following example.

approximate the integrals j((ax +b)* + (cx+d)?) " exp(qgarctan

—00
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Example 2. By replacing the zeros of J{*¥(x;1,0,0,1) = 20x* —10x —3 in the Lagrange
interpolation, a two-points approximation will be derived in the form

J-exp(arctan X) £ (x) dx
1+ x?)* 1069

>~ */— (51— J_)f(5+*/—

S|nh—((51 +/85) f ( )

—00

This approximation is precise for f(x) =1,x,x?,x° and any linear combination of these
elements. Anyway, it should be noted that the maximum precision degree of the

numerical approximation J.((ax+b) +(cx+d)?)” pexp(qarctanC )f( )dx is:

—0

N =2{maxn|n< p—%}—l . For example if p e (7,9] then we have N =5. See also

[6] and [7] in this regard. [6] is applied for the weight function of polynomials 1" (x)
and [7] for the weight function of N (" (x).

4.6. A connection between infinite and finite classical orthogonal polynomials
The Rodrigues representation of the finite classical orthogonal polynomials are useful

tool to find some limit relations between J (¥ (x;a,b,c,d) and Hermite polynomials
and also between M (¥ (x) and Laguerre polynomials respectively. For this purpose,
the following limits should first be considered
1 2
limw 9 (x;—,0,0,1) = I|m (1+—) P exp(qarctan—) e

s Jp Jp (4.56)

2

lim @+ )" =1.
p—o0 p
Hence we have (4.57)
dr(@+> )vv”’q)(x\/_001))
Iim Jép'q) (X;L,O,O,l) = Ilm ( ( 1)71/2 x p p
o ) P2 W P9 (x: p2,0,0) dx”

n +><2 d"(e™”
e CED
Similarly, this technique can be applied to derive a limit relation between M ("% (x)
and Laguerre polynomials. In this sense we have

d"t"™@+t/p)" ")

M P9 () = ()"t Q)P n (4.58)
p p dt
Now, taking limitas p — o yields
n 4 n+q -t
lim M (P9 (lp) = (-1)"t %" % = (-D)"nIL@(t). (4.59)
p—o0
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At the end of this chapter we can summarize that generally there exist six sequences of
classical orthogonal polynomials that are generated by the main differential equation
(4.1). Also, the parameters A,B,C,D and E corresponding to each six equations of
mentioned sequences determine their characteristics. The following table shows this
matter.

Table(1)

Kind Notation A B C D E
Linfinite | p#)(x) -1 0 1 -—a—-p-2 | —a+p
2.Infinite L (wx) 0 1 0 -W a+1
3.Infinite | H_ (wx+v/2w) |0 0 1 —2w? —-V
4. Finite M PP ((w/v)x) | W v 0 (-p+2w | (g+Dv
5. Finite N (P (wx) w 0 0 -p+2w |1
6. Finite | J(P9(x:a,b,c,d) | a” b” ¢’ d” e’

a"=a’+c?, b"=2(ab+cd) , ¢ =b*+d?
where

d"=2(1-p)@*+c*) , e =q(ad—bc)+2(1- p)(ab+cd).

Moreover, the following table shows the general properties of these six classes such as
shifted orthogonal polynomials and their weight function, kind of polynomials (Finite
or Infinite), orthogonality interval, the distribution corresponding to the weight function

and finally the conditions of parameters:

Table(2)

Shifted
polynomials

Weight function

Kind, Interval,
Distribution

Parameters
conditions

1. Hn(WX+L)
2w

exp(—=x(v + w?x))

Infinite, (—o0, o0)
Normal

vYnw=z0veR

2% 1P (wx +v) ,~(o-Y) | Finite, (—o0,0) maxn< p-1
L+ (wx+v)7) 2 T Sampling w=0,veR,
2.9 (x;a,b,c,d) | WP (x;a,b,c,d) Finite, (—oo, o0) maxn<(p-1)/2
Generalized T w=0,veR,geR
3. L (wx) x“e WX Infinite, [0, )
Gamma vnw>0,a>-1
4. M (P9 (ﬂx) X9 (wx +v) P+ Finite, [-O,oo) maxn < (p-1)/2
"y F sampling q>-1,w>0,v>0
5. N (wx) - Finite, [0,0) maxn < (p—-1)/2
x“'e™ Inverse gamma w>0,
6. P (x) 1-x)*(1+ x)” Infinite, [-11] vn, a>-1,45>-1

Beta
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Chapter 5

A Generalization of Student’s t-distribution from the
Viewpoint of Special Functions

5.1. Introduction

Student’s t-distribution has found various applications in mathematical statistics. One
of the main properties of the t-distribution is to converge to the normal distribution as
the number of samples tends to infinity. In this chapter, by using a Cauchy integral we
introduce a generalization of the t-distribution function with four free parameters and
show that it converges to the normal distribution again. We provide a comprehensive
treatment of mathematical properties of this new distribution. Moreover, since the
Fisher F-distribution has a close relationship with the t-distribution, we also introduce a
generalization of the F-distribution and prove that it converges to the chi-square
distribution as the number of samples tends to infinity. Hence, we start our discussion
again with the Pearson differential equation with a simpler form in comparison with
(3.15.1), Sec. 3.3:

dw  dx+e
dx ax®+bx+c

W(X) , (5.1)

which is directly connected with classical orthogonal polynomials and defines their
weight functions W (x) [56]. The solution of equation (5.1) can be indicated as

d
w=w| " °|x :@mq_gﬁii_@@, (5.2)
abec ax“ +bx+c

where a,b,c,d,e are all real parameters. There are several special sub-cases of (5.2).
One of them is the Beta distribution, which is usually represented by the integral

(L) (L) dt, (5.3)

C
where L, (t) and L,(t) are linear functions, a,b are complex numbers and C is an

appropriate contour [61]. The Euler and Cauchy integrals [18] are two important sub-
classes of Beta type integrals, which are often used in applied mathematics. The Euler
integral is given by

(5.4)
b

j(t—a)°‘1(t—b)“‘ldt _rera) (a+b)** (Rec>0, Red >0, a>0, b>0),
rc+d)

a
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while the Cauchy integral is represented by the formula

17 dt LD e

: — = : (5.5)
27 ¢ (a+it)*(b—it)*  T(c)r(d)

in which i =v-1 | Re(c+d)>1 , Rea>0 and Reb>0. Note that in both relations
(5.4) and (5.5) I'(a) = Ixa‘le‘xdx denotes the Gamma function. The relation (5.5) is a
0

suitable tool to compute some different looking definite integrals. For this purpose, we
use the relation

. iq
[a— !b ) = exp(2q arctan E) (a,b,qg eR), (5.6)
a+ib a

which rewrites the complex left hand side in terms of the real right hand side.
Consequently we have

(b—it)*" (b +it)"™ = (b® +t?)" exp(2q arctan %) . (5.7)

Now if (5.7) is substituted, then the integral (5.5) changes towards

r-2p-1

2b)?P, 5.8
[(=p+iq)l'(-p-iq) ) &9

1 % t
— | (b? +t?)P exp(2garctan —) dt =
27r£( )° exp(2q 0

The above integral plays a key role to introduce a generalization of the t-distribution.
5.2. A generalization of the t-distribution [4]

The Student t-distribution [69, 73] having the probability density function (pdf)

r'((m+1)/2) (1+E)_(m7+l) (~o<t<w, meN) (5.9)

Jmz T(m/2)° m

T({,m)=

is perhaps one of the most important distributions in the sampling problems of normal
populations. According to a theorem in mathematical statistics, if X and S® are
respectively the mean value and variance of a stochastic sample with the size m of a
normal population having the expected value x and variance o, then the random
X —u
S/m

freedom [73]. This theorem is used in the test of hypotheses and interval estimation
theory when the size of the sample is small, for instance less than 30.

variable T = has the probability density function (5.9) with (m—1) degrees of
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Now, by using (5.8) one can extend the pdf of the t-distribution To do this task, we
substitute t—)L b=1, p :_mT+l and q —> 5 in (5.8) to get

I
t2 (™ ~ Jm 22"r(m) # _
J'(1+ exp(garctan \/ﬁ) dt_r(1+m+|q)r(1+m q) . (5.10)

Since the right hand side of (5.10) is an even function with respect to the variable q, we
can take a linear combination and get accordingly (5.11)

m+1

IO (1+%)(2> ( A exp(garctan ﬁ) + A, exp(—garctan ﬁ j dt = (4 + %)\/E 2°"T(m) 7«

1+m+iq)r(1+m—iq) '

3 2 2
The above integral can be used to generalize (5.9) as (5.12)
i F(1+rr;+iq)r(l+rr;—iq) e, t :
(t.m.a,4,4)= Gt dm 27T = @ —) [ﬂiexp(qarctanﬁ)%eXp(—qarctanﬁ)j

where —oo <t <oo, m eN, q is a complex numberand 4,,4, >20.
Note that 4,,4, >0 is a necessary condition for (5.12), because the probability density
function must always be positive. Also note that the normalizing constant

1+m +i 1+m—

re— S

'q)/((zim Jm 22"r(m) 7)

of (5.12) is real, because the corresponding integrand is a real function on (—o0,0). It
is clear that for g =0 in (5.12) the usual t-distribution is derived. Moreover, for q =0

the normalizing constant of distribution (5.12) is equal to the normalizing constant of
the t-distribution. This fact can be proved by applying the Legendre duplication

formula [18]
ré )r(z—”)— Zf

I'(z). (5.13)

But, according to one of the basic theorems in sampling theory, T (t,m) converges to
the pdf of the standard normal distribution N(t,0,1) as m — « [61, 73], that is

fim T(t,m)=N(t,0.) . (5.14)
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Here we intend to show that this matter is also valid for the generalized distribution
T(t,m,q,4,,4,). To prove this claim, we use the dominated convergence theorem

(DCT) [31] to the real sequence of functions

1) _ E _(m7+1) L 3 L
Sy (ta,4,4)=>1+ m) (ﬂl exp(garctan \/E)M? exp(—garctan \/E)j' (5.15)

For every m e N it is not difficult to see that

|s;“(t,q,ﬂl,zz)|s(zl+zz)exp(|q|§) teR). (5.16)

On the other hand, we have
(5.17)

2 m+1
t

: Ay t _ LN s
rlnlir; (1+E) (4, exp(qarctan \/ﬁ)+/12exp( garctan \/ﬁ))_(ﬂl+22)exp( 2).

Since the dominated convergence theorem states that if for a continuous and integrable
function g(x) we have | f_(x)|< g(x), then

b b
lim [ £, (dx = [ lim £, (x)dx , (5.18)
by considering the limit relation (5.17) we obtain (5.19)
m+1
lim(1+t*/ m)_(T) (21 exp(garctan(t//m)) + A, exp(—qarctan(t /x/ﬁ)))
limT(t,m,qg,4,4,) =—"2= —
I lim(@+t?/ m)f(T) (/?1 exp(qarctan(t/~/m))+ 4, exp(—qarctan(t / \/ﬁ))) dt

_ (A+R)epi2) 1 exp(-=t) = N(t,0,)

]O (A +4) exp(—t? 1 2)dt Vor

Remark 1. Taking the limit on both sides of (5.11) as m — oo, the following
asymptotic relation is obtained for the Gamma function

lim C(x+iy)'(x-iy) 2

e @D oy 1 T2x-1) 27

To compute the expected value of the distribution given by the pdf (5.12) it is sufficient
to consider the definite integral

(5.20)
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2 m+1 1-m
jt (1+t—) 2 )exp(qarctan —) dt= Jm 2 I(m) i (q\/ﬁ), (5.21)
Jm 1+m+iq, . 1+m—iq, ‘m-1
I'( 5 )I( > )
which gives the expected value of (5.12) as
A=Ay, q/m
Er)= &2y 5.22
M=) o (522)

On the other hand, since E [1+T?%/m] can easily be computed, after some calculations,
we get for the variance measure of (5.12)

2 _ 1. -2 2 2
Var [T]=E [T2]- E3T]= M@ +M 1)—( ! 2]( ™) . (5.23)

(m-2)(m-1) (A4,+4,) (m-1)

It is valuable to point out that as expected g =0 in (5.22) and (5.23) gives the expected

value and variance of the usual t-distribution, respectively.
But it is known that the t-distribution has a close relationship with the Fisher F-
distribution [56], defined by its pdf

(5.24)

L(m+k)/2)(k /m)"* (1+k )(%) mkeN, 0<x <w)
T(k/2) T(m/2) m | | |

F(x,m,k)=

where x=t> and k =1 in (5.24). In other words we have
T(t,m)=F(t*mQ) . (5.25)

By referring to the above relation and the fact that the t-distribution was generalized by
relation (5.12), it is now natural to generalize the pdf of the F-distribution (5.24) as
follows (5. 26)

k_ ,m;k
F(x,mKk,q,4,,4,) = Bx? 1(1 )( (1, exp(qarctan‘/ X)+ A4, exp(— qarctan,/ X)),

where

ok m-+k
% I X2 1+—x) AES )(ilexp(qarctan,/%x)+}tzexp(—qarctan‘/%x))dx . (5.26.1)
0

For g =0, (5.26) is the usual F-distribution defined in (5.24).

According to the following theorem, the generalized function (5.26) converges to a
special case of the Gamma distribution [73], defined by

G(xaﬂ)—ﬂ_a 1exp(%‘) (@, >0, O<x<w). (5.27)

[(a)
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Theorem 1. If the Gamma distribution is given by (5.27), then we have
. k 2
lim F(x,mk,q,4,,4,) =G(x, :E’ﬂ: 2)=y;

where yZ denotes the pdf of the chi-square distribution.
Proof. Let us define the sequence

k. _m+k
Srf)(x,k,q,il,/lz)zxz1(1+£x)( 2 )(/Ilexp(q arctan,/hx)wizexp(—q arctan Lx)).
m m m

It is easy to show that

k
|S,$12)(X’k!q’ﬂl!ﬂz)|g (11"'/12) Xglexp(|q|%) (X e[O,oo) , ke N), (5.28)

and
k_
lim SP(x,k,q,4,,4,) = (A, +4,) X2 lexp(—x/2). (5.29)
Therefore, according to the DCT we have (5.30)
limS?(x,k,q,4,,4,) (K1 py(
lim F(x,m,k,q,/ll,ﬂz) =— m—% 172 _ X EXP( X/2) IG(X,E,Z).

j lim S (x, k., 2,,4,) dx _[x("’z)‘l exp(—x/2) dx
0 0

Moreover, it is not difficult to show that
F(t*,mLq,4,,4,)=T(tm,q,4,,1,). (5.31)

5.3. Some particular sub-cases of the generalized t (and F) distribution

In this section, we intend to study some symmetric and asymmetric sub-cases of the
generalized distributions (5.12) and (5.26).

5.3.1. A symmetric generalization of the t-distribution, the case q=ib and
A=4,=1/2
If the special case q=ib and A =4, =1/2 is considered in (5.12), then

(5.32)
b - b 1ﬁ(1+r2+b)r(1+r2—b) - 7(m2+1) b t
T(t,m,ib,=,=) =T.(t,m,b) = 1+— cos(barctan —
( 5 2) s ( ) Jn 270 = ( m) ( Jﬁ)

IS a symmetric generalization of the ordinary t-distribution in which —1<b <1.
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The usual pdf of the t-distribution is obviously derived by b =0 in (5.32). Note that
according to the Legendre duplication formula we will reach the normalizing constant
of the t-distribution if b = 0 is considered in (5.32). In other words, we have

C2(@+my/2)  T(A+m)/2)

Jm2r"r(m)z  JmzT(m/2)

Also note that the parameter b in the generalized distribution (5.32) must belong to
[-1,1], because the probability density function must always be positive and therefore

b=0= (5.33)

we ought to have cos(barctan(t/~/m))>0. On the other hand, since for —% <0 g%

we have cos@ >0, therefore to prove cos(barctan(t/~/m))=>0 it is sufficient to show
that

_1<b slebarctanﬁg[—%,%] (teR, meN). (5.34)
For this purpose, let us define the sequence U (t) = arctan % to get (5.35)
m
T T
U/ (t /1+— 0=[minU_(t),maxU_(t U U -——,=
n(t) = (()( )>0=] » (0), n(D]=[U, (=0),U ()] = [22]
Now if we demand the sequence bUm(t)zbarctanL to belong to [——,—], it is
Jm 2'2

clear that we must have |b|<1, which proves (5.34). The following figures clarify this
matter for b € [-11] and b ¢ [-11] in the interval (-10,10).

0§ -Ewﬂ Wé & 10
A0 & & 4 2" 2 i.. & 10

Figure1l: b=1/2 , m=4 Figure2: b=3, m=4

Fig. 1 shows the pdf Tg(t,4,1/2) with normalizing constant 35v2/128 and Fig. 2

shows the non-positive function T,(t,4,3)= (4/7)(1+t°/4)>"?cos(3arctan(t/2)) in
the interval (-10,10). As the above figures show, the generalized distribution (5.32) is

symmetric, i.e.
T, (-t,m,b)=T,(t,mb) (teR). (5.36)
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Moreover, according to (5.22) and (5.23) the expected value and variance of
distribution (5.32) take the forms

_1_h2
E[]=0 ., Var[f]= MM=1=b") (5.37)
(m-1)(m-2)
Clearly b=0 in these relations gives the expected value and variance of the t-
distribution.
Theorem 2. T, (t,m,q) convergesto N(t,0,1) as m — .

2 m+1

Proof. If the sequence S (t,b) = cos(barctan L)(1+—)7 2’ s considered, then one
Jm m
can show that
2 m+1
1SO(t,b)| = | cos(b arctan——) || (L+ t—) 21<1 (teR). (5.38)

Im

Consequently we have

+1

=)

cos(barctan(t //m))(L+t?/m) "’ “

lim T, (t, m,b) = lim
*(*)

m-—oo

Icos(barctan(t/f))(lﬂ /m)
(5.39)

+1

I|m cos(barctan(t/\/— m))(L+t> /m) 2 exp(—t2/2)

T Ml :oo ZN(t,O,l).
j lim cos(barctan(t /~/m))(L+t?/m) Dt j exp(—t2/2) dt

By referring to (5.26), we can now define the generalized F-distribution corresponding
to the first given sub-case as follows (5.40)

m+k

F(x, m,k,|b ) F(x,mk,b)= Bx2 (1+£x) 2 )cos(barctan hx) (-1<b <))
m

where

m+k

© ok
% J'x2 (1+—x) )cos(barctan Lx)dx
m
0 (5.40.1)

7l2

=2 AL j sin® 2 g cos™ Y g cos(b)d 6 .

Theorem 3. F,(x,m,k,b) converges to the chi-square distribution as m — oo .
m-+k

k_ _(m+k
Proof. We define the sequence S (x,k,q) = x2 1(1+—x) 2 )cos(barctan hx) to
m m

get
k
i

1S (x,k,b) < x (x e[0,0) , keN, [b|<]) . (5.41)
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Hence, according to DCT we find out that

(4) (k/2)-1 _
lim F,(x, m,k,b) = lim —om kD) XTTexpx/2) =G(x,g,2). (5.42)

m T [sWkib) dx [P texp(-—x/2) dx
0 0

It is not difficult to verify that the generalized distributions T (t,m,b) and
F,(x,m,k,b) are related to each other as follows

F, (t*,m1b) =T, (t,m,b). (5.43)
Remark 2. Here is a good position to return to previous chapter and remember that the
weight function of orthogonal polynomials M *®(x) corresponds to the ordinary F-

distribution such that if n=0 is considered in (4.11), then an integral is derived that
corresponds to the F distribution.

5.3.2. An asymmetric generalization of the t-distribution, the case 4, =0
Again let us come back to the chapter 4 and consider the weight function of finite
orthogonal polynomials J "% (x;a,b,c,d), i.e. (5.44)

ax+h

W9 (x;a,b,c,d) = ((ax+b)* +(cx+d)?) " exp(garctan ) (~o<x<w),

where a, b, ¢, d, p, q are all real parameters. This function is a sub-case of the Pearson
distribution (5.2), because the logarithmic derivative of (5.44) is a rational function. For
m+1

convenience, if a:i b=0, ¢c=0, d=1and p=-

NS

(m e N) is selected

in (5.44) then

™) 1 2 (™ t
W 2?2 (t ;—,0,01)= (1+—) 2 exp(qarctan— meN,qgeR). (545
( I )= ( m) p(q \/ﬁ) ( qeR). (5.49)
On the other hand since
0 t2 _(Lﬂ) t rl2
j(1+—) 2" exp(qarctan—) dt =~/m j e cos™ Y 9 dg, (5.46)
—o m \/H -zl2
we have
1+(-D)" z g
(m-dxa-(* T @-0) @7 e )
J‘ e’ cos™ g do= = (5.47)
w2 IT (@ +(m-2k-1)?%)

k=0

Therefore, an asymmetric generalization of the t-distribution may be defined as
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T, (t,m,q)=K 1+ 2 exp(q arctant—) (-o<t<o, meN, geR) (5.48)
m Jm
where
| (m-1)/2]
[T (@ +(m-2k-1)*)
K = R _ . (5.48.1)
Jmm-2a-(Ey@-1) @ +1re )

The distribution (5.48) with normalizing constant given by (5.48.1) was defined in [2]
based on this particular approach. But we can still modify and simplify it. To do this
task, we set 1, =0 in (5.12) to get

1+m +iq)r(1+m —iq

1—‘( ) 2 m+1
_ 2 2 -5 t
T,(t.m,q)= Jn 2T 7 1+ m) exp(q arctan \/H) ,  (5.49)

which is an explicit representation for the asymmetric distribution (5.48). For the latter
distribution, we clearly have

To(=t,m,q) =T, (t,m,—q) . (5.49.1)

The asymmetry of distribution (5.48) (or (5.49)) is shown by Fig. 3 and 4 for specific
values of g and m .

067

N R N A I I 08 b

Figure3: q=1, m=4 Figure4: q=1, m=3

According to (5.48) and (5.48.1), the explicit definitions of the two mentioned figures
have respectively the forms

5 t2 S arctand
D (l+—)e  ?
6 cosh(z/2) 4

2 arcani
L(ﬂt—)’ze B
12 sinh(z/2) 3

Fig. 3: T,(t,4,1) =

Fig. 4: T,(t,31) =

Now, the following statements (Al to A5) collect the properties of the asymmetric
distribution (5.48) (or (5.49)).
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Al) The expected value and variance of (5.49) are respectively represented by

Q\/_ m(q® +(m-1)?)
E[t]= , Var[t]—( o) (5.50)

g =0 in these relations gives the expected value and variance of the t-distribution.

A2) T,(t,m,q) convergesto N(t,01) as m —> .
The proof is similar to the first case if one chooses 4, =0 and A, =1 in the defined
sequence S®(t,q,4,,4,).

A3) By the definition (5.26) and considering the case 4, =0 we can define

Ka k- k
_ — 2 _ 2 —
FOm,K,0,4,0) =F,(¢,m k) =Dx 2 (L+—-x) " * " exp(q arctan, |- x) (5.51)

@eR, mkeN , 0<x<w),
where (5.51.1)

+k 7l2

kg
%: I X2 1+—x) K exp(qarctan‘} X) dx=2(— )"’Zj'sin"“l)e cos™ 9 e¥do.
0 0

A4) F,(x,m,k,q) converges to the chi-square distribution as m — o .
The proof is similar to the proof of Theorem 1 when 4, =0 and 4, =1.

A5) The distributions F,(x,m,k,q) and T,(t,m,q) are related to each other by
F,(t>,m1q)=T,(t,m,q). (5.52)

Remark 3. There is another symmetric generalization of the t-distribution when we set
A, =2, in(5.12). Its pdf is given as (5.53)

1+m+i 1+m—i
O G Bt ,
T(-t,mq,A,4,)=T(,maq,4,4,)= T 2T 7 (1+E) 2 cosh(qarctanﬁ .

Therefore, at the end of this chapter, we in fact considered the three following
particular sub-cases of the general distribution (5.12):

a) q=ib and A4, =4,=1/2 ; symmetric case
b) A, =0 ; asymmetric case
C) A=A, ; symmetric case
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Chapter 6

A generic polynomial solution for the differential
equation of hypergeometric type and six sequences
of orthogonal polynomials related to it

6.1. Introduction

In this chapter, we will present a generic formula for the polynomial solutions of the
well-known differential equation of hypergeometric type

(ax® + bx + c)y, (X)+(dx+e)y, (x)—n(d +(n-Da)y,(x)=0,

and show that all the three infinite classical orthogonal polynomial families as well as
three finite orthogonal polynomial families, investigated in chapter 4, can be identified
as special cases of this derived polynomial sequence [3]. We will also present some
general properties of the mentioned sequence. For this purpose, we should reconsider
the differential equation

o (x)Y, () +7(x)y; (¥) = 4.y, () =0, (6.1)

in which, as before, o(x)=ax*+bx+c is a polynomial of degree at most 2,
7(x) =dx+e is a polynomial of degree 1 and A, =n(n—-1)a+nd is the eigenvalue
parameter depending on n=0,12,..., and suppose that the polynomial solution of (6.1)

is denoted by p{ d e XJ.

abec
So far extensive research has been done on equation (6.1) and its polynomial solutions.
In 1929 Bochner [21] classified the polynomial solutions of (6.1) and showed that the
only polynomial systems up to a linear change of variable arising as eigenfunctions of
the differential equation (6.1) are (see also [14])

Jacobi polynomials {P“” (x)}>, , (a,B.a+pB+1e{-1-2..})
Laguerre polynomials {L”(x)}, , (xe{-1-2..}
Hermite polynomials {H (x)},_,
Bessel polynomials {B“* (x)}-, ., (a¢{0,-1-2..}and g =0).
Then, in 1988, Nikiforov and Uvarov [56] gave some general properties of p{ d X € XJ,
a C

such as a generating function for the polynomials, a Cauchy integral representation and
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so on in terms of the given o(x) and z(x). Of course their approach is based on the

Rodrigues representation of the polynomials and is not expressed in an explicit form,
the task that we will do in this chapter. Some other approaches in this regard are [14,
44, 72]. But before deriving a generic solution for (6.1), we should introduce an
algebraic identity, which is easy to prove but important.

6.1.1. An algebraic identity
If a,b and C, (k =0,,...,n) are real numbers then

3°C, (ax +b)* = Z(z(”; I]b”“Cni](%)k - ZLZ[E i ka I} J(ax)”‘k. 6.2)
(=M (P2)k (Pa) (P
()i (@) (A ) K
we get (6.3)

- IO2"""'O"‘|ax+b)
G v s O

_ (=D)"(P2)o-(Pn) Zm . ( k=n,  1-0; =N 1=y - |_j(_)
(ql)n(qz)n"'(qm—l)n k=0 k)" " 1- P, —N, 1- Pz —N,. - Pp—N b

(—ax)" (P) - (Pp)n (N -k,  1-¢,-n,.1-q,,— J
= F = (=
(92) 0 (A2) (U ) g(k] '“‘{1— p,—n, 1-p;-n,....1-p,—n Ib (ax

a,, a,,..,a = (a,)(a,),.-(a,), x*
where qu(b b bplX]:Z bl n bp F
o Dy, by o (0) (by) (g )

hypergeometric function of order (p, q) (see e.g. [43], Chapter 2). Note that to compute
the relations (6.3) we have generally used the two identities

For instance, if we set C, =

k-1
such that (r), =] Jr+i then
i=0

m mel

denotes the generalized

L(r+k)=T(r)(r),

( k)_r(r)( 1) = (r)n -i T
(1-r),

_ (=DM,

-~ -~ reR ; k,nieZ. (6.4)
a—r—nx

An interesting case takes place for (6.3) when m=2 and a=b=1. In this case we

have
-n =D"(P2)n k=n 1-g,-n K
ZF{ , |X+1j @), ;U“( 1-p,-n lljx
(=x)" (pz) k 1-g,—n K
1
(@), ZU ( 1-p,-n 'jx

which according to Gauss’ identity (introduced in chapter 3, formula (3.38))

(6.5)
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2 Fl(a b|1] _T(e)r(c—a-b) |
I'(c—a)'(c—b)

-n (9~ P2)n ( -n p, J
F 2 x41 |- Pdn =
’ l( q, J ( l)n t 1_Q1+ P, —n

:(_X)n(pz)n F[_n 0. — P2 1]

|__
(ql)n 1_ p2_n X

simplifies to

(6.6)

The first identity of (6.6) can be found in [13], (15.3.6) and the second identity in (6.6)
is a special case of [13], (15.3.7) for integer upper parameter.

Now it is a good position to propound the main theorem of finding a generic
polynomial solution for equation (6.1).

6.2. The main Theorem. The monic polynomial solution of the differential equation
(ax?+bx +c)y/(x)+(dx +e)y/(x)-n((n-Da+d)y (x)=0 ; neZ" (6.7)

is given by the formula

_(d n
v (X) = Pn[ ¢ |xJ= [”j G™(a,b,c,d,e)x* , (6.8)
abec = \k
where
-n 2ae —
cm ( 2a ]k F k—n %H—%—n 2v/b* —4ac
TN 2 -4 S |
“ lb+vb?-dac) ° az_d/aa_czn b++b?® —4ac
For a=0 the equality can be adapted by limit considerations and gives (6.8) in the
form
cd —be 2
Gk(“)(O,b,c,d,e)—IirrgGk(“’(a,b,c,d,e)—(%)k”ZFO[k_n’ Yzt S—d]
which is valid for c¢,d = 0, leading to
_(d
B &SI, eb-cal 9
Obec v b b?|

Finally for a=b =0 and d = 0 (6.8) is transformed to

_(d d _nh n-1
P, |X —|ImP e|X :(X"‘E)n Fol 27 2 2cd 2 |-
00 a0 labec d _ (dx +¢€)




A generic polynomial solution for the hypergeometric differential equation 74

Proof. Consider the differential equation (6.7) and suppose that x = pt+q. Hence it
will change to

2aq+b aq +bg+c

(t? + -
ap ap

)dzy G 8XIhd N Day 0. (6.9)
dt a pa “dt a

If ag®>+bg+c=0 and (2aq+b)/ap =—1 are assumed in (6.9), then

2 _ 2
D=F b a4ac and = bi\/Zba 4ac. (6.10)

Therefore (6.9) is simplified as

d’y d, 2ae—bd+d+b*—4ac dy n

(-1 ot )=~ 2(d +(n-1)a)y =0. (6.11)
a a

T 2a+/b? — 4ac dt

On the other hand, equation (6.11) is a special case of the Gauss hypergeometric
differential equation (see e.g. [43], p. 26):

2
t(t-12) C(;t3/+((a+ﬂ+l)t—y)(;—¥+aﬂy:0 (6.12)
for a=-n , p=n-1+d/a and 7:2ae bd +d Vb —4ac respectively. So, by

T 2avb? —4ac

considering P(d exj as a pre-assigned solution of (6.7) and comparing the relations

ab
(6.11) and (6.12), we must have (6.13)
-n n-1+d/a
d e| 4b%*- —b++/b? -
P”{a b ol b a4act+ b+ 2ba 4acJKZF1 2ae —bd +d+/b?* —4ac |t .
+2a+vb® - 4ac
(6.13) can also be written in terms of the variable x so that we have (6.14)

-n n-1+d/a

d e
P”(abcb(j K,F,| 2ae—bd +d+/b® - 4ac
+2a+/b* —4ac

From (6.14) two following sub-cases are concluded (6.15)

( ax b+x/b2—4ac
\/b? —4ac 2«/b2—4ac

-n n-1+d/a

_(d e
(i) P“(abc|XJ K",F,| 2ae—bd +d+b?* - 4ac
2a+/b?® —4ac

ax b—\/b2—4ac

\/b2 _dac  2+4/b% —4ac

k)
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d e -n n-1+d/a
(i) E(a X C|xj— — (2ae —bd) + d+/b? —4ac
2a+/b? — 4ac

Note that both above relations only differ by a minus sign in the argument of the second
formula (ii), which does not affect on the differential equation (6.7). In other words, if

—d XJ we will reach the second formula of

ax b+\/b2—4ac
vb? —4ac 2b? —dac |

-a -b -c
(6.15). Therefore, only the formula (ii) must be considered as the main solution. To
compute K™, it is sufficient to obtain the leading coefficient of 2Fl(...|...)

corresponding to formula (ii), which is given by

w_nt (vb? —4ac)" ((bd - 2ae + d+b* — 4ac)/(2avb® —4ac)),,

a"(-n),(n-1+d/a),

in (i) we consider the case p{

K (6.16)

But according to identity (6.3)

ZF{_nq plmsj:(—l)n(p)ni(Ean_kzF{k n 1-q- nﬁ](x) 6.17)

(q)n k=0 1- p—n

So, by considering the main solution (6.15) and assuming

p:n—1+9 | q:bd—2ae+dx/b2—4ac
a 2a+vb’® —4ac
a S:b+\/b2—4ac
b® - 4ac 2+/b? —4ac

(6.17) is changed to (6.19)

(6.18)

-n n-1+d/a

,F,| bd—2ae+dvb*—4ac
2avb? —4ac

xi(nj(bﬂ/b —4ac)n_k( a

2b? —4ac Jb? —4ac

ax b++/b? —4ac (_1)n(Q+n_1)

+
Jb2—dac  24Jb*—4ac  bd— 2ae+d+/b? 4ac

(
2avb? —4ac

) x

2ae—bd—(d +(2n-2)aWb* —4ac . [
E k—n | 2Vb —dac 2vb” —4ac
2
271 2avb* —4ac bt /bz _Jac

—d/a-2n+2
Simplifying this relation and substituting K™ by (6.16) finally gives the monic

k
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polynomial solution of equation (6.7) in the form (6.8). Hence the first part of the
theorem is proved. To deduce the limiting case when a — 0, one should use the limit

relation Iing a' (—9 +2-2n), = (-d)" and the following identity
a—> a

-n I'(l-p-n) k-=n 1-p-n_1)r .,
1Fl(p|rx+s) Z(kj [ l_gJ(EX)' (6.20)

rd-p i< -
which is a special case of identity (6.2) for C, = ((;)n)lkd .
Kt

Here we would like to point out that the general formula G (a,b,c,d,e) is a suitable

tool to compute the coefficients of x* for any fixed degree k and arbitrary a. If for

example the coefficient of x"™ is needed in the generic polynomial P{ d e XJ then it
abec
is enough to calculate the term
2ae—bd — (d +(2n-2)a)A

G (a,b,c,d,e) = ( ) el 2aA |28

! 21 d+(2n-2)a

—(%) b+A (6.21)

:(b+A)(1+2ae—bd—(d+(2n—2)a)Ax 2A y a _ e+(n-1b

2a 2aA b+A d+(2n-2)a” d+(2n-2)a

in which A =+/b* —4ac. Note that in the above simplified relation, all parameters
a,b,c,d and e are free and can adopt any value including zero since it is easy to find
out that neither both values a and d nor both values b and e in (6.8) can vanish together.
After simplifying G" (a,b,c,d,e) for k =n—-1,n-2,... we eventually get (6.22)

F_’n(d e| jzxn{nj e+(n-1)b XnlJ{nj(e+(n—1)b)(e+(n—2)b)+c(d+(2n—2)a) -2
abc 1)d+(2n-2)a 2 (d+(2n—2)a)(d +(2n—23)a)

2ae—bd —(d +(2n—2)a)vb* —4ac

n) b++b?—dac,, _| " Jb? —dac 24b* —4ac
tot| |(—————)",F, 2a\b* —4ac | —|.
n 2a _(d +(2n—2)a) b++/b*—4ac
a
The above relation implies that (6.22.1)

2ae—bd — (d + (2n—2)a)/b* —4ac
fi-2 -nNn 2

g )", F, '
abc 2a 2 _(d +(2n—2)a) b+\/b2 4ac
a

Moreover, (6.22) shows, for example, that if n =0,1,2,3 then (6.22.2)
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—(d e
°lab c|x =1
—(d e e
) [ X [=x+—,
abec d
5 d e|X _ 42,9 8*b c(d+2a)+e(e+b)
labec d+2a (d +2a)(d +a)
5[ d ® Ix 3 ,38%2 o c(d+da)+(e+b)(e+2b)
labec d+4a (d +4a)(d +3a)

N 2c(d +3a)(e + 2b) + ce(d + 4a) +e(e + b)(e + 2b)
(d +4a)(d + 3a)(d + 2a) '

6.3. A special case of the generic polynomials (6.8)

2+/b? —4ac _
b++/b% —4ac

in (6.8). This assumption implies that ac =0. If ¢ =0, the following special case for

In the sequel, let us apply the Gauss identity again and assume that 1

the generic polynomial (6.8) is derived (6.23)
2ae —hd d
=(d e o (M)A k=n ————+1-—~-n K
X X|= =", F 1|x
[a b 0 ] kzzi(kj b” * 1{ 2 2Wacon |

Z": n (E)kfn '2-2n-d/a)rl—k—e/b) = b"T'(2-2n—-d/a)'1—e/b)
—=\k/)b r2-n-k-d/ar@-n-e/b) a'l'(2-n-d/a)(1-n-e/b)

(—n n-1+d/al a J
X, F ——X|.
b

e/b
Furthermore, if one comes back to the Nikiforov and Uvarov approach and consideres
the differential equation (6.7) as a self-adjoint form, then according to (3.23), chapter 3,

d e Visgiven by (6.24)
|
abc

the Rodrigues representation of p

n

d e
d"((ax? +bx +¢)" X
((ax” +bx +c) p(a b C| ])

_(d e 1
I:)”abc|X:n d e 8 dx" '
d+(n+k-2)a
e+ ))p[abcnj

d e d—2a)x+(e—b
where p(a ] C|xj:exp(J'( ~ 1bxic )dx).

Now if we suppose ¢ =0 in this relation and refer to (6.23), we get (6.24.1)
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exp( I(d 2a)x +(e - b)dx) d" ((ax % +bx)" exp(j(d 2a)x +( - b)OI X))
ax ® +bx +bx
dx "

(Hd +(n+k —2)a)

_I'(2-2n-d/a) Ay I'(l-k -e/b) K
~ I'l-n-e/b) Z( j( ) r2-n—k-d/a)

6.4. Some further properties of the main polynomials (6.8)

6.4.1. A linear change of variables
Using the representation (6.24) one can derive a linear change of variables for the

d

monic polynomials pn[ beX] explicitly. Assuming x = wt +v, the mentioned
a C

relation changes to (6.25)

_(d e ]

P, (wt+v | =
abec

On the other hand p( d A ¢ WHVJ can be simplified as
a C

d
w" d"((aw’t® + (2awv + bw)t + (av® + bv + c))“p(a . ec| wt + Vj)

: d
q1d +(n+k—2)a)p( e|wt+vj dt"
) abec

P(:beC|Wt+VJ=eXp(J. (d —2a)(wt +V) + (e —b) wdt)

aw’t? + (2av +b)wt +av® +bv+c 626
~ ( dw?, (dv+e)w |tJ (6.26)

aw’, (2av+b)w, av’ +bv+c
Therefore (6.25) is transformed to

2

_(d _
P{ © | wt +VJ =w" Pn( aw?, (v e)w | t], (6.27)
abec

w?, (2av +b)w, av® +bv +c

which shows the effect of a linear change of variables on the polynomials (6.8). For
instance, if w=-1and v=0 in (6.27), then we have

_(d, -
(a . C|— J (D" P{a’ _b,ec | t]. (6.28)

6.4.2. A generic three-term recurrence equation

The second formula of (6.15) is a suitable relation to compute the recurrence equation
of the generic polynomials (6.8). In other words, it can be applied along with various
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identities of the Gauss hypergeometric function for generating a recurrence relation.
For example, the following identity holds for the function ,F, (p,q,r; t) [18], (6.29)

(p-a)(p-a-D(p-a+Dt+2pg+rl-p-qa)),F(p,ar;t)+
ar-p)(p-q+1),F(p-Lg+Lr;t)+p(r-q)(p-9-1),R(p+Lg-Lr;t)=0.

By using the formula (ii) in (6.15) and its coefficient in (6.16) if one assumes in (6.29)
that (6.29.1)

d - r_bd—2ae+d\/b2 —4ac a b+\/b2
a

and t=

2avb? —4ac Vb? —4a c 2/b? —4a

then after some computations, one finally gets (6.30)

B (0= (H 2n(n+1)ab + (d - 2a)(e + 2nb)JF—) )
(d +2na)(d + (2n—2)a)
n(d +(n- 2)a)(c(d +(2n-2)a)> —nb?*(d + (n—2)a) + (e —b)(a(e + b) — bd))
(d +(2n-3)a)(d + (2n—-2)a)*(d + (2n -1)a)

nl()

in which P (x) denotes the monic polynomials of (6.8) and the initial values
P,(x)=1 and P,/(x)= x+§ are given. For other approaches to extract (6.30), see

[52] and [45].

6.4.3. A generic formula for the norm square value of the polynomials
Let [L,U] be a predetermined orthogonality interval which (besides for finite families)

of course consists of the zeros of o(x) = ax? +bx+cor +o. By using the Rodrigues
representation of the polynomials (6.8) we have

_z_U_Z d e d 1
Pl =1, (a b c|xjp(a b c|XJdX_

L Hd+(n+k—2)a
k=1

(6.31)

U o d d
<] Pn(a bec|xJ(d”((ax2+bx+c)”p(a bec|xJ)/dx")dx.

L

Consequently integrating by parts from right hand side of (6.31) yields

ni(-1)"

j(ax +bx+¢)" (exp | (d- Za)“(e b) ixydx.  (6.32)
Hd+(n+k 2)at ax’ +bx+c

k=1
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6.5. Six special cases of the generic polynomials (6.8) as classical orthogonal
polynomials

As we mentioned in chapter 4, from the main equation (6.1) one can extract six special
sequences of orthogonal polynomials on the real line. Jacobi, Laguerre and Hermite
polynomials are three of them, which are infinitely orthogonal and three other ones are
finitely orthogonal for some restricted values of n. In this section we intend to use the
previous generic formulas to redetect the properties of each of these six sequences.

6.5.1. Jacobi orthogonal polynomials

Ifa=-1,b=0,c=1,d=-a-f-2 and e=-a+ B are selected in (6.8) then

PR = " 1,01

_(nta+p+]), e K-n-n-«
2"n! Z(l)(j (Zna,b’

are the Jacobi orthogonal polynomials with weight function

(n+a+ﬂ+Dn5(—a—ﬂ—Z —a+ﬂ|€
(6.33)

ZJXK’

~—a-p-2, —a+p —(a+ )X+ pf-a i
p( ~1,0 1 |X]:eXp(j a1 dx) = (1-x)“(L+x)”, (6.34)

and orthogonality relation (6.35)

201/ r(n+a+)C(n+ L +1)
n@n+a+p+1) T(+a+f+1) nm’

1
[@=x)@+x)7 P? ()P (x)dx =
These polynomials can also be represented as

n

_ (—a—ﬂ—Z, —a+p | XJ

) ) -n—a-n| 2
P Lo =(-1)"(1-x) zFl( ] (6.36)

—a—p-2n|1-x

which is one of the known hypergeometric representations for the Jacobi polynomials
(see e.g. [13], [70]).

Since the Gegenbauer (ultraspherical), Legendre and Chebyshev polynomials of the
first and second kind are all special sub-cases of the Jacobi polynomials, the following
representations are straightforwardly concluded for them.

Gegenbauer polynomials: (6.37)

2
1-x )

nl/2—-A-n

o 20 2,-1 0 ) 2'(A
CH (x) = () ( |Xj (4) e

101 —y D=0 (

Legendre polynomials:
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@ (=20 ) @m o o [—nen
P (0 = (n1)?2" P”( 10 1|Xj_(n!)22“( D= 2F1£—2n

2
ﬁ] , (6.38)

Chebyshev polynomials of first kind:

-nl/2-n

1B -1 n-1 n n
T,(x) =2 ( Lo 1|xj 2" (-D)"(1-x) ZFl[ Lo

2
ﬁ} , (6.39)

Chebyshev polynomials of second kind:

-3 0 -n,-1/2—-n
U 2"P =2"(-D)"1-x)",F ’
(0= [ Lo 1|xj (-1"A-9", [ Lo

6.5.2. Laguerre orthogonal polynomials
Ifoneputsa=0,b=1,c=0,d=-1,e=a+1 in(6.8) then

2
EJ . (6 .40)

-N" (-1 +1 -n
100 =Cp T @] et g 70 L (6.41)
n! 010 n! a+1
are the Laguerre orthogonal polynomials with weight function
-1, 0!+1 X+a
= ex dx) = x“e™*, 6.42
'0(0,1,0 J p(J——dx) (6.42)
and orthogonality relation
“ I
[x“e™ L9 (LY (x) dx = M Sim - (6.43)
0
6.5.3. Hermite orthogonal polynomials
Ifa=0,b=0,c=1,d=-2,e=0 areselected in (6.8) then
(-2 0 _hon-4y
H(x)=2"P X|=02x)",F ' -, 6.44
n() n(001|j()20 2_2 XZ ( )
are the Hermite orthogonal polynomials with weight function
D ~2 |x exp(J (—2x) dx) = exp(-x?) (6.45)
0,01 ’

and orthogonality relation

Texp(—xz)Hn(x)Hm(x) dx=n12"Jz 8, . (6.46)
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6.5.4. Finite classical orthogonal polynomials with weight function
W, (X, p,q) = x* L+ x) "% on [0, )

According to the approach explained in chapter 3, section 3.11.1, if one computes the
W/(x) _ —px+g
W, (x) X2 +X
the Pearson’s differential equation one respectively gets

logarithmic derivative of the given weight as , then by referring to

a=1,b=1,c=0,d=-p+2,e=q+1. (6.47)

In [53] the family of this type of polynomials are called Romanovski-Jacobi
polynomials, see also [65, 54]. In [10] the related polynomials are denoted by

M (P9 (x), for which we get (6.48)

Also, as it was shown in chapter 4, section 4.2, the finite set {MPY(x)}'3) s
orthogonal with respect to the weight function W, (x, p,q) on [0,) if and only if
g>-1and p>2N+1. Let us add that to compute the norm square value of the

polynomials one can also use the general relation (6.32). According to the foresaid
relation we have

-n,n+1-p
g+1

p+2 q+1

(P.Q) (v — (_1\N _ ol
M (09 =(-1"(n+1 p)nP{ 1o

| X]=(—1)”(OI +1), 2'{

0 q _ 0 - q
[ 'Snz[ P2 q+l|><j0|><=nn¢j(x2+x)" . (6.49)
o @+Xx) 110 [TCpenik)® 1+x)
k=1

Thus, noting (6.48) yields

T ‘ I(p=n—1! !

[ T VL i K R 6:50)

o (1+X%) (p—2n-1)(p+gq-n-1)!

6.5.5. Finite classical orthogonal polynomials with weight function
W, (x, p) = x "™ on [0,0)

If the fraction zvvzgxi =— px2+1 is generated then the main parameters are derived as
, (X X
a=1,b=0,c=0,d=-p+2,e=1. (6.51)

In [53], the polynomials of this type are called Romanovski-Bessel polynomials. In [10]
these polynomials are denoted by N (x), for which we have
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_(—p+2 1 —nl-
NG00 = (-1)" (n+1- p), P{ AR |xj=(—1)“2F{ e

- xj. (6.52)

Moreover, in chapter 4, section 4.3, it was shown that the finite set {Nrfp)(x)}ﬂj)“ IS

orthogonal with respect to the weight function W,(x, p) on [0,e0) if and only if
p > 2N +1. Nevertheless, using the general relation (6.32) helps us obtain the norm
square value of these polynomials as follows

« 1 (—p+2 1 T 1
J. X Pe XPHZ( 1pw(; 0 |xjdx: - ni(=1) sznx‘pe e (6.53)
0 [[Cp+n+k)o
k=1
Consequently, the complete orthogonality relation takes the form (6.54)

2 - I(p— I _
jx‘peXNﬁp)(X)Né”’(x)dx: (e —(n+D)! 5, for m,n=0,1,2,...,N<p—1.
0 p-(2n+1) ' 2

6.5.6. Finite classical orthogonal polynomials with weight function

W, P9 (x; A,B,C,D) = ((Ax + B)?> + (Cx + D)*) " exp(q arctan éx il B) on (-0, )
X

+D

W5 (x)

Similar to the two previous cases, by computing we get the parameters

3

a=A>+C’, b=2(AB+CD) , ¢=B’+D?,

(6.55)
d=2(1-p)(A*+C?) , e=q(AD-BC)+2(1- p)(AB+CD).

In [53], the polynomials of this type are called Romanovski-Pseudo-Jacobi
polynomials. In [9] the related polynomials are denoted by J{*%(x;A,B,C,D), for
which we have

JP9(x; A B,C,D)=(-1)"(n+1-2p), (A* +C?)"
B 2(1- p)(A*+C?%), q(AD-BC)+2(1- p)(AB+CD)|X ~
" A?+C? 2(AB+CD), B?+D? -
(1)"(n+1-2p), (AB +CD + (AD - BC)i + x(A? +C?)' (6.56)
o —n-n+p-Ji 2i(AD - BC)
ok 2 [(A—Ci)(B+Di+x(A+Ci) |

2p-2n

6.6. How to find the parameters if a special case of the main weight function is
given?
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Similar to the chapter 3, section 3.11.1, it is easy to find out that the best way for
finding a,b,c,d,e is to compute the logarithmic derivative W'(x)/W (x) and match
the pattern with 2 (%) _ (d=23)x+(e-b)

p(X) ax?+bx+c
examples given below.

. Let us clarify the subject by some

Example 1. Consider the weight function W (x) = (—x* +3x—2)" ; 1<x<2. If the
logarithmic derivative of this weight function is computed, then we get

W'(x) —-20x+30 (d-2a)x+(e—h) 2

=— = 2 =-1,b=3,c=-2,d=-22,e=33.
W(x) —x"+3x-2 ax” +bx+c

-22, 33

1 3 -2
that these polynomials are orthogonal with respect to the given weight function on [1,2]
for every value n. Therefore it is not necessary to know that these polynomials are the

shifted Jacobi polynomials on the interval [1,2] since they can explicitly be expressed
by the generic polynomials (6.8).

Consequently the related monic orthogonal polynomials are FT{ |x] Note

Example 2. The weight function W (x) = (2x*+2x+1)™ ; —wo<x <o is given.
Thus
W'(x) —40x-20

=— = (a,b,c,d,e) =(2,2,1,-38,-18),
W(Xx) 2x°+2x+1

n
1

. i _(-38, -18
and the related monic orthogonal polynomials are P(z - |x] These

polynomials are finitely orthogonal for n <9 , because according to (4.44) in chapter 4
we must have N = max{n} <10— (1/2). Hence, the finite set {P, (2,2,1,-38,-18;x)}"=
is orthogonal with respect to the weight function (2x* + 2x+1)"° on (—o0, ).

Example 3. Consider the weight function W (x) =exp(x (0 —X)) ; —o<X <o, feR.

Then we have

W(x) =-2x+6 = (a,b,c,d,e) =(0,01,-2,0),
W (x)

which gives the related monic orthogonal polynomials as FTH( ’ 91 |XJ for every

’ ’

value n.

_x
(x+2)°
case of the second kind of the Beta distribution, we have

Example 4. For the weight function W (x) = ;  0< x<oo, which is a special

W/'(x) —15x+2
W(x) 2x*+4x

= (a,b,c,d,e) =(2,4,0,-11,6).
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-11,
2, 4,
because according to (4.6) in chapter 4, 2n+1<8—(1/2). This means that the finite
set {P (24,0-116;x)}"=> is orthogonal with respect to the weight function

X 1(x+2)® on [0,).

_ 6
Therefore, the monic orthogonal polynomials are Pn{ 0 |XJ for n<3,

6.7. A generic formula for the values at the boundary points of monic classical
orthogonal polynomials [2]

In the previous sections of this chapter, we found a generic formula for the polynomial
solution families of the well-known differential equation (6.1). Now, in the section
(6.8) we intend to obtain another such formula, which enables us to present a generic
formula for the values of monic classical orthogonal polynomials at their boundary
points of definition. For this goal, we should again use the general form of the
Rodrigues representation of the polynomials in (6.24) and recall its corresponding
weight function, i.e.

d — _
p[ eCI XJ:eXp(J’(d 2a)x + (e b)dx).

a b ax?+bx +c

Without loss of generality, let us suppose that ax” +bx +c=a(x +6,)(x +6,) in which

b—+/b? —4ac b++/b® —4ac
6, =" and G =

- (6.57)

In the general case, —6, and —6, in (6.57) are the boundary points of the underlying
interval for the corresponding classical orthogonal polynomials. This means that if 6,
and @, are finite and equal, the polynomials are of the Bessel type and if both 6, and
0, are finite but different from each other, the polynomials are of the Jacobi type,

whereas if one of these values tends to oo, the polynomials are of the Laguerre type,
and finally if both values are +oo, then the polynomials are of the Hermite type.
The relation (6.57) implies that the main weight function is simplified as

d e
p(a A C|xj:R(x+91)A(x+92)B, (6.58)
where R is a constant and
d 2ae—bd d 2ae—bd
A=—-14+————— and B=—-1-—n—o-. (6.59)
2a 2a+v/b? —4ac 2a 2a+/b? —4ac

Note that the relation (6.58) follows because the logarithmic derivative of the function
W (x)=(x+8)"(x+6,)° equals the logarithmic derivative of the main weight
function, and since
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u'(x) v'(x)
u(x) v(x)

<ux)=Rv(x), (6.60)

S0 (6.58) is valid.

On the other hand, according to (6.24) the Rodrigues representation of p{ d ] ¢ X] is
a c

_(d " d
P”(a be|xj= — 1 . jn((ax2+bx+c)”w( be|xB.
¢ (Hd+(n+k—2)a]W( |xJ X abe
k=1

abec

So, if (6.58) is replaced into the above representation, then

n

o0 ]_inm (x40 (X0, (X +6) (x+0,)°)
C

R ﬁ;id+(n+k—2)a](x+01)“(x+92)B (6.61)

1 d"
C(n—-1+d/a) (x+6,) (x+6,)" dx"

((x+6)""(x+6,)"") .

But according to the Leibniz rule

d"(f(x)g(x)) . o n ) (n=k)

- é(kJ f O x)g" M (x), (6.62)
we have (6.63)
d"((x +91);;An(x +92)n+B) _(cay k=n (: j(_n _A), (n—B), , (x +91)n+A—k (X + 92)B+k_

Hence, (6.61) is simplified as (6.64)

—_(d e 1
P, |x = X
(a bc J (2-2n-d/a),
kii(nj(—n—i+l—ﬂ) (_n_i+1+ﬂ)
o\ K 2a 2ab? —4ac 2a 2avb? —4ac
b—«/bz—4ac)n,k(x+b+x/b2—4ac
2a

k
2a )

x (X +

This is in fact another general representation for the polynomial solution of equation
(6.7). Combining (6.8) and (6.64), we get straightforwardly (6.65)
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K n d 2ae bd 2ae —bd b Ak b+A,,
n-—+1- n-—+41+ = "k (x +
;)(k]( oa I ke o I ) X )

k-n 2ae —bd d
nin k —n +1-—-n
_(2-2n-d /a), Z( j(bzaAj F, 2ah 2a bZAA x*,
* 2-d/a-2n *
where again A =+/b* —4ac .
Relation (6.64) can also be represented in terms of the hypergeometric form (6.66)
d 2ae—hd d 2ae—hd
-Nn-——+1+ X+0, -n -n—+1-———
a4 €y N 2an XTA) el T T 2 [ x40,
"labc (2-2n-d/a), 2t d  2ae-hd X+0,
2a 2aA

where 6, and 6, are defined by (6.57).

Of course, this hypergeometric representation can still be simplified. To simplify
(6.66), we use the hypergeometric identity

-n p.r 1 o k 1-g-n, 1
ZF{ |—+j eI ZUr F[ | ](t) (667
q t @.t" = 1-p-n
which was used already in (6.17) with a rather different form. If we choose in particular
(6.68)
p——n—i+l— 2ae —bd q_i_ 2a¢-bd _ . _+b®—4ac
2a 2ab? —4ac 28 2ab? —4ac’ © a
W2
s=1 and t:x+b_b—_‘mc,
2a
then by (6.67) relation (6.66) reads as (6.69)

_ —k -n-B
a b c (2 2n— d/a) 1+ B)n k=0 1+ A
On the other hand, using Gauss’s identity (i.e. ,F,(a,b,c;1) =...) (6.69) can be further

simplified as
2ae —hd
(Vb* —4ac)" (f —F—h
s d ¢ x |= 28 2ab’ -4ac
c a"(2-2n-d/a),
-n n-1+d/a
,F| d 2ae —bd

_+—
2a  2a+\/b?-4ac

X

(6.70)
—ax —b ++b?—4ac
vb? - 4ac 2yb? —4ac
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which is the same form as the first formula of (6.15). Furthermore, since the identity

—( Ad Ae —(d e
P, x|=P, x VA£0, (6.71)
Aa Ab Ac abc

is also valid for 4 =-1, the relation (6.70) can be brought in the form of the second
formula of (6.15) too.

6.7.1. Values of the classical orthogonal polynomials at the boundary points
Using the explicit representations for the monic classical orthogonal polynomials, we

can now compute the generic value of the polynomials at their boundary points of
definition, -6, and -6, , respectively. If we set in the second formula of (6.15)

ax__ b+b®-dac _{0 6.72)
Jb?’—dac  2b*-4ac (1
then
2 2
X=—b—\/b —4ac=_6’2 and X=—b+\/b —4ac=_911 (6.73)
2a 2a
respectively. Therefore we get
_(d e (vb% —4ac)" ((d/2a) - (2ae —bd)/(2a+/b* —4ac)),
P -6, |= , (6.74)
abec (-a)"(n-1+d/a),
and
5 d e |- (vb® —4ac)" ((d/2a)+(2ae—hd)/(2av/b* —4ac)), (6.75)
"la b ¢ ! a"(n-1+d/a), T

For example, by noting the section 6.5.1 for the monic Jacobi orthogonal polynomials
P/ (x) we have (a,b,c,d,e) = (-1,01,~a - B —2,~a + ). Consequently, (6.74) and
(6.75) yield

(x+1), _on rn+l+a)l(n+1+a+ p)

P@”(41)=2" =
(n+l+a+p), MNa+)I'@2n+1+a+ p)

(6.76)

F_)n(a,ﬁ') (_1) _ (_2)n (ﬂ +1)n _ (_2)n F(n +1+ ﬂ)r(n +1+a+ ﬁ) .

= (6.77)
(n+1l+a+p), r(p+Yr2n+i+a+ p)

Moreover, by noting the section 6.5.2 for the monic Laguerre polynomials L\*(x) with

(a,b,c,d,e)=(0,1,0,-1,a+1) we have ax®+bx+c=x. Therefore just one root i.e.
6, =6, =0 is derived and by computing the corresponding limit one gets
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L“%0)=(-1)"(L+a), . (6.78)

Furthermore, since the Hermite polynomials can be written in terms of the Laguerre
polynomials (see e.g. [13], relation 22.5.40), we can also conclude that

H,(0) 1+D" (6.79)

n!
~ 2™ (n/2)!
Similarly, for the Bessel polynomials B“)(x) with (a,b,c,d,e)=(10,0,a+2,2) we
have ax® +bx+c = x*. So, after computing the corresponding limit one can obtain that

2n

B“(0)= ———— .
o () (n+1+a),

(6.80)
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Chapter 7

Application of rational classical orthogonal
polynomials for explicit computation of inverse
Laplace transforms

7.1. Introduction

In the chapters 4 and 6, it was shown that from the hypergeometric differential
equation, six finite and infinite classes of orthogonal polynomials could be extracted. In
this chapter, we first apply the Mobius transform x=pz " +q, p#0,qeR for the
mentioned equation to generate the classical orthogonal polynomials with negative
powers. Then we show that the generated rational orthogonal polynomials are a very
suitable tool to compute the inverse Laplace transform directly, with no additional
calculation for finding their roots. In this way, by applying infinite and finite rational
classical orthogonal polynomials, we present (for example) three basic expansions of
six ones to explicitly obtain the inverse Laplace transform. To do this task, we should
again reconsider the hypergeometric differential equation

(ax?® +bx+c)y”(x)+ (dx+e)y’ (x)—n(d + (n-Da)y, (x) =0, (7.2)

and suppose that x=pz™+q, p=0, qe R .Therefore, the equation (7.1) eventually
changes to

X2 (LX% +Lx+1)y"+x2Lx* +1L,x+1,)y —=n((n+1l, -1,)y =0, (7.2)

where |,,1,,1,,1,,1, are real parameters and n is a positive integer.
Obviously one of the main solutions of equation (7.2) is a rational (negative power)
polynomial like p_n£||4| l Xj:irk x % that depends on the parameters |,,1,,1,,1,,1,

2 "1 70 k=0
respectively. According to the Sturm-Liouville theorem, one can find a weight function
corresponding to the differential equation (7.2) as

Lol ) 2Lx (1= 3)x+ (l, —21,)
W(IZ , |0|XJ_equ X(L,X? + 1 x+1,) ). (7.3)

Now assume that [L,U] is a predetermined orthogonality interval. So, we should have
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U, l, | l, |
jw[ ¢ |X]P_n( ‘0 |xJP_m( ‘0 |dex:Aq5n'm, (7.4)
L |2 Il IO I2 Il IO IZ I1 IO

I l, 1, l, 1, 2
A :JL.W[I2 ] |0|xj(P_n[| |xj) dx, (7.5)

2|1 IO

where

denotes the norm square value. There exist six cases, corresponding to the main
equation (7.2), that are orthogonal for some specific values of 1,,1;,1,,1,,1,.

As it is seen, the connection between equations (7.1) and (7.2) is a Mobius transform as
x = pz ' +q for different values of p and q. For example, if p=-2 and q=1 are
considered then the rational Jacobi polynomials can be defined as

k=n —_ I
P (x) = PEA20 (oxt 41) = Z (1) [n + Otk 2+ kj(n +f]t k2 ,3) — (7.6)
k=0 -

For n = 0,1,2 this definition respectively gives

P (x) =1
PeA(X)=—ax™+(a—-f-1) (7.7)

P&/ (x) = %(a +2)(a+)x 7 —(a+1)(a-B)x™ +%(a - BAa-p-1)

Since the orthogonality relation of Jacobi polynomials is known, the orthogonality
relation of P*#(x) will also be known as (7.8)

[v-a 1\ p@p) (@.5) _ (n+a-p-2)I(n+p)! _
!x (x—1)7 P& ()P (x)dx_(2n+a_l)n!(n+a_2)! Som<e a>0and > -1,

Moreover, the differential equation of y=P“” (x) is a special case of the main
equation (7.2)for |, =a-2,l;,=p-a+3,1,=0,1, =1, 1, =-1 and we have

XCX=DY" +x(B-a+3)x+a-2)y'+n(n+a+1)y=0. (7.9)

Similarly one can obtain the Mobius transforms of other five classes of rational
classical orthogonal polynomials. Hence, it is better not to enter in details of them
rather just we note that all differential equations of these transforms must however be
the special cases of (7.2). For instance, the rational Laguerre orthogonal polynomials

L@ (x) = L' (x* —1) satisfies
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X*(L-X)y" = x(2x* +ax -1y’ +ny =0, (7.10)

as well as the rational Hermite orthogonal polynomials H, (X)=H_ (ax*+p)
satisfies
XY+ 2x (X2 +af x+a’)y +2na’y =0. (7.11)

7.2. Evaluation of Inverse Laplace Transform using rational classical orthogonal
polynomials [8]

It is well known that the Laplace transform provides a powerful method for analyzing
the linear systems. However, many physical problems lead to Laplace transforms
whose inverses are not readily expressed in terms of tabulated functions. Because of
this problem, extensive researches have been done on this matter and its applications up
to now.

For example, Chandran and Pallath [23] have computed inverse Laplace transforms of
a class of non-rational fractional functions. Evans and Chung in [34] have obtained
Laplace transform inversions using optimal contours in the complex plane, see also
[17]. Igbal in [40] has stated a classroom note regarding the Fourier method for
computation of Laplace transform inversion. The problem of inverse two-sided Laplace
transform for probability density functions has been stated by Tagliani in 1998 [71].
Furthermore, the problem of numerical inversion of Laplace transform has been studied
by several authors. For example, Cunha and Viloche in [29] have presented an iterative
method for the numerical inversion of Laplace transform. In [26], Dong has introduced
a regularization method for this purpose. In [30], Crump has used Fourier series
approximation (see also [39]) while Miller and Guy in [55] have used Jacobi
polynomials and Sidi [68] has applied a window function for Laplace transform
inversion. Finally Piessens’ work [60] is a good bibliography in this regard that one can
refer to it. But, in cases where the inverse Laplace transform is required for many
values of the independent variable, it is convenient to obtain the inverse as a series
expansion in terms of a set of linearly independent functions. Procedure based on this
idea can be calculated by solving a system of equations, which can be reduced to a
triangular system if one chooses to use “orthogonal polynomials”. Such a method,
using orthogonal polynomials, gives an approximate evaluation of the inversion
integral using “Gauss quadrature” in the complex plane [66, 58, 59, 67]. Of course, the
chief disadvantage of this method is the necessity of finding all roots, real and
complex, of a polynomial of high degree, and of the calculation of a set of complex
Christoffel numbers [74, p. 419]. Hence, we wish here to insist that the orthogonal
polynomials with negative powers are in turn suitable tool to compute the inverse
Laplace transform without any effort for finding the roots of orthogonal polynomials.
To achieve this goal, we should use the orthogonality properties of rational classical
orthogonal polynomials introduced in section 7.1. In this way, we present three basic
expansions for explicit computation of Laplace transform inversion.

7.2.1. Inverse Laplace transform using rational Jacobi orthogonal polynomials
PR (%) .
Let us consider the Laplace transform together with its inverse as (7.12)
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A+io

F(s) = L[f(X)]= je‘sxf(x)dx<:>f(x)—L‘l[F(s)] ZijeSXF(s)ds . Vs>0.

By referring to the previous sections we can find an explicit solution of the above
integral equation provided that F(s) is known and expandable. First by noting (7.8),

we clearly have

<2 |
[t+Dt” PU (t+)PEA (t + 1)t = (n+a=p=2+h)! 5 (713
5 @n+a-Yniin+a-2)! ~
Now, let F(s) satisfy the Dirikhlet conditions and
F(s)=) C,PL(s+1)= Z( D (7.14)
n=0 S+

By applying the property (7.13) in the expansion (7.14), the coefficients C are found
as

@n+a-)ni(n+a-2)! v f o@p)

= s+1)“s” P!*” (s+1)F(s)ds. 7.15

= nra g2 gy | C TN S PE S DF) (7.15)

On the other hand, taking the inverse Laplace transform from the equality (7.14) yields
f(x) = L[F(s)] = Zc L [P (s +1)]. (7.16)

Moreover, according to the definition (7.6) we have

j LM [(s+1) %]

L1[P<s*ﬂ’<s+1)1=§(—1)k[”+“‘2+'<}(n+a—2—ﬂ

k n—k

n+a—-2-p4 n+a-2+k\(n+a-2-4 k1 (7.17)

_ S-S )
a-2-p &~ k n—k (k —1)!
1/ 0<x<
in which §(x) = Lim f_(x) such that f_(x) :{ ¢ * s the Dirac function.
£-0 0 X>¢&

Consequently the special series (7.18)

(a-p-2)p
@n+a-Yn(n+a—-2)!
2| (N+a—-B-2)Y(n+ )+

n
1 n+a-2-4 Jan+a-2+k\(n+a-2-4)(-x)**
[( a-2-p ]M_e Z{ ‘ j( n-k j(k—l)!}

f(x)= (& [s+Ds” F(s) dsJ&(x)

j( +1) s’ P (“ﬁ)(s+1)F(s)ds)
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is an expanded solution for the integral equation (7.12). Note that the foresaid solution
is valid if and only if its definite integrals are convergent and F(s) in (7.14) is an

expandable function under the Dirikhlet conditions. The function (s+1)"“s” in the

right hand side of (7.18) plays in fact a weighted distribution role for computation of
definite integrals (7.18) on [0,0) . Hence, if this distribution changes, another expanded

solution will appear. The next section will specify this subject.

7.2.2. Inverse Laplace transform using rational Laguerre orthogonal polynomials
L) (x).
First, let us define the sequence
k=0 (=D* (n+
@=L =3 & ( “] 5, (7.19
S

that satisfies the orthogonality relation

1

0 - I
J‘S_(a+2)e s L ()L (s) ds = (n+a)! Oom - (7.20)
0
If the expansion
FO) =3 LY@ =3 (7.21)
n=0 n=0

is considered, then by applying (7.20) in (7.21), the coefficients C_ will be derived as

1% =
C, =[5 e LD (5) F(s)ds . (7.22)
(n+a)ty
Therefore, we similarly have
f(x)=L"[F(8)]=D.C,L7[L (s)] - (7.23)
n=0
On the other hand, since
k=n (_1\k
RGO By Y= MR e (7.24)
—~ k! {n-Kk S

s0, eventually the special series

F(x) = (ifs*a*z)ej E(s) ds}é(x)

(7.25)
= N e @ n+o gnta) (-x)
+§((n+a)!js ¢ Lo (S)F(S)ds)(( n ]5(x) é(n—k} k!(k—l)!J

0

is a series solution for the Laplace transform inversion. Again, we mention that (7.25)
is valid only if its definite integrals are convergent and the function F(s) is expandable
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under the Dirikhlet conditions. In relation (7.25), the function s™“*?e™"* is in fact a
weighted distribution on [0, ).

But, by noting the section 7.1, finite rational classical orthogonal polynomials can also
be applied for approximate computation of inverse Laplace transform, because the
function F(s) can be expanded by them finitely, and only some limit conditions are

imposed on their parameters. For example, if we define the sequence

M(pq)(s) M(p+2q)( )=(-1" n'Z( 1)* (erl nJ(::?] s, (7.26)

that satisfies the orthogonality relation

[ MED (MG (s)ds = L IIZWNAEE 5 7 57)
o(1+s)p+q+ (p+1-2n)(p+qg+1-n)! ™

with g > -1, p > 2N -1, N = Max{m, n} , then by considering the approximation

N N
F(s);ZCanﬁ'q’(s):Z':”—n . N< p;1 , (7.28)
n=0 n=0

and applying (7.27) on (7.28) we get

_(p+1-2n)(p+q+1-n)t7 sP M (P
" nli(p+1-n)(q+n)! !(1+s)p+q+2 (S)F(s)ds . (7.29)
Therefore
f(x) = L'[F(s)] = ZN:CnL‘l[M fﬁ'q)(s)] , (7.30)
in which
Ara ) (Y] — (e STy PEITAE) oL
L' M S ()] = (D) n!kZ:;( 1) ( ) j(n_kj L] (7.31)
Hence (7.32)

f(X)E((erqul)!“

plg! { (L+s)Pr? ") dSJ o0

(b2 200 AL S M eI (9 F(9)ds
ni(p+1-n)i(q+n)! 0(1+S)p+q+2 -n

. e p+1-n)g+n) (=x)<
x(( 0 j5(x)—(_1) n!;( k J(n_kJM]

is an approximate solution for the integral equation L[f (x)]= F(s). Here we add that
the inversion problem can also be propounded for the negative power polynomials

N
+2
n=1
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NP (x),H_ (x) and J{»?(x;a,b,c,d) similarly. It is now a good position to present
two practical examples in this way.

7.3. Special examples of section 7.2
Example 1. Let us consider a special case of rational Jacobi polynomials for
a =1, f=-1/2.This case is defined by

v 7)(x +1) =T, ( 1) = cos(n arccosx—_l), (7.33)
+1 X+1

and called the rational Chebyshev polynomials of the first kind [70]. By noting the

expansion (7.18) let us also suppose that for instance F(s) = % This implies that the
+5

integrals of (7.18) are simplified as

J.(ls+s)2 ds:% and .[(11) (_5)(S)ds—
kz n+k-1\(n-1/2\% s?2 ds_\/;F(n+1/2)kzri(—l)k(n+k—1)!(2k+1)
0k n—k Js@+s)? " 2r(n) & k(n-k)!(k+1)!

Therefore the inverse Laplace transform for the given F(s) takes the form

L? (i) et o)+

af(n+) & (D' (n+i-!(2i +1),, T(n+1/2) an+k-1)(n-1/2)(—x)**
le 20(n) Z(,: il(n—i)l(i +1)! ) Jzn o) -e kzll( k J[ ](k—l)!

Clearly the above relation is valid if it is expanded.

Example 2. For this example, we use the analytic expansion (7.25) and consider the

N

equation L[ f(x)]= ﬁ To derive the solution of this integral equation, first we have
SV'sS

to evaluate the definite integrals corresponding to (7.25). Hence we have

VT Jr

5 % =
F(s) = = [s“Pes F(s)ds=——T(a+~=) and [s“?Pes ¥ (s)F(s)ds=
6= j (5)ds == -T'(a+2) j “(S)F(s)
ﬂk:n(_l)k N+«o ]ZS—(oH;Jrk)e_sldS_\/;F(n+l+a)r(a+5/2) E —N a+5/2|1
2 & k' \n-k)Jy r'(n+) (e +1) 2t a+1

_30(-n-3/2)[(a +1+n)[(a +5/2)
8 I'(n+1 (e +1-n) '
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Note that for the latter integral we have used again the well-known Gauss identity.
Consequently the expansion (7.25) is transformed to

L AT = N7 T(@+5/2)
VoD T Ty 0t

S 3T(-n-3/2)'(¢+5/2) | (n+a N+a) (-x)**
;(g IN'a+1-n) J[[ j() Z[ jkl(k 1)|]

The above relation holds if and only if « >-1 and a+1-ngZ".




Chapter 8

Some further special functions and their applications

8.1. Introduction

In this chapter, we will introduce some new classes of special functions and study their
applications in the classical equations of applied physics.

8.2. Application of zero eigenvalue for solving the potential, heat and wave
equations using a sequence of special functions [5]

In the solution of boundary value problems, usually zero eigenvalue is ignored. This
case also happens in calculating the eigenvalues of matrices, so that we would often
like to find the nonzero solutions of the linear system AX =4 X when A1 #0. Buton

the other hand 4 =0 implies that det A=0 for X =0 and then the rank of matrix A is
reduced at least one degree. This approach can be stated for the boundary value
problems similarly. In other words, if at least one of the eigens of equations related to
the main problem is considered zero, then one of the solutions will be specified in
advance. By using this note, we can introduce a class of special functions and apply for
the potential, heat and wave equations in spherical coordinate. Hence let us first define
the following sequences

c,(za(@) = B2 O _conainaay),

s, (zza(2)) = OO _gnninaqy,

(8.1)

where a(z) can be a complex (or real) function and n is a positive integer number.

It is not difficult to verify that both of defined sequences satisfy a unique second order
differential equation in the form

a?(2)a'(2)y" +(a(2)(@'(2))* -2’ (2)a"(2) )y’ -’ (@'(2))° y = O, 8.2)

provided that a®(z)a’(z) #0. Consequently, we deal with only one class of special
functions, which is in fact the solution of equation (8.2). The functions C,(z;a(z)) and
S, (z;a(z)) have several important sub-cases that are useful to study. First sub-case is
the Chebyshev polynomials if one chooses a(z) = exp(iarccosz) in (8.1) and uses the
well-known Euler identity. In this case, the following sequences will appear
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C, (z;exp(iarccosz)) = cos(narccosz) =T, (z),

8.3
S, (z;exp(iarccosz)) = isin(nArccosz) = iv1-2z*U, ,(z), (5.3

where T, (z) & U (z) denote the same as first and second kind of Chebyshev
polynomials. Moreover, if the selected a(z) is replaced in (8.2), the differential
equation of the first kind of Chebyshev polynomials is derived as

(1-z%)y"—zy' +n’y=0. (8.4)

The second sample is the rational Chebyshev functions that can be generated by
a(z) = exp(iarccot z) . Thus, for this selected case we have

C, (z;exp(iarccot z)) = cos(narccot z),

. .. (8.5)
S, (z;exp(iarccot z)) = isin(narccot z).
In this way, replacing the related a(z) in (8.2) yields
, —iexp(3iarccot z , —exp(3iarccot z
a?(2)a(z) - OPEACAND) o ) (a))? - R ACCOL2)
1+2 1+2z°) (8.6)
) 2iz —1) exp(3iarccot z i exp(3iarccot z '
a.2 (Z)a (Z) — ( ) p(z ) ( ( )) — p( )
(1+2%)? (1+2%)°
Therefore the functions (8.5) eventually satisfy
(A+2°)°y"+2z0+2°)y' +n’y =0. (8.7)

It should be noted that the explicit forms of the real functions C(z;exp(iarccot z)) and
—iS,(z;exp(iarccotz)) in (8.5) could be derived by the Moivre’s formula. In other
words, let us substitute & = arccotx in the Moivre formula to get

(x+1i)"

(V1+x*)"

Consequently we have

= cos(narccot x) + isin(narccot x) . (8.8)

[n/2]

C, (x;exp(iarccot X)) = ( > (-1) ( j X" Y I(N1+xP)" =T (X),
0 (8.9)

[n/2]

—iS,,;(x;exp(iarccotx)) = (D_(-1) {2k J "YWL+ X2 =U(X).

k=0
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It can be shown that the above rational Chebyshev functions T. (x) and U (x) are

orthogonal with respect to the weight function W (x) = ] 1 on (—oo,0) and satisfy
+

X2

the following orthogonality properties respectively

* * 0
Jm T 09T, () (X)T”Z(X)dx: 7z if  m=n,
- 1+X )
2z if m=n=0. (8.10)

ImU:(X)U:(X)dx:{O if m=n,

if m=n,

- 1+ x2 7 if m=n.

Here is worthy to point out that J.P. Boyd in 1987 [22] applied the rational functions
T ((x"*=x?)/2) on the interval [0,00) in spectral methods, and we
should here mention that his functions could be derived only by replacing
a(z) = exp(2iarccot/z) in (8.1).

But, so far it has been investigated that the Legendre (or Associated Legendre)
differential equation (introduced in chapter 2, equation (2.19))

(1-x")y"(x) =20/ (x) + (P~ = 5)¥(9) =0, (8.11)

has three solutions in Cartesian coordinate as follows

(@ p=#0,q=0 that generates the associated Legendre functions;
(b) p =0, qg=0 that generates the Legendre polynomials;
(c) p=0,qg=0 that is reduced to the simple equation (1—x?)y”"(x)—2xy'(x)=0,
which has the solution y(x) =c; In?—x+ C,.
—X

So, a fourth case p=0, g = 0 remains, which is different from above mentioned ones

1
and should be solved. To find the solution of fourth case, we substitute a(z) = (_i_ Z)z
+12

in (8.2) to arrive at the differential equation
2

(1-z%)y"—-2zy' - y=0. (8.12)

1-2°
Clearly (8.12) is a specific case of (8.11) for p=0, g=n?. According to (8.1), the
solutions of this equation are respectively

1

Ayt Aoy

C”(Z’(m)l)_Z((lﬂ) D (8.13)
Aoy Aoz Aoz

Sn(L(m) )_2((1+z) (l+Z) )
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Here let us claim that the mentioned functions are very applied in the Helmholtz
equation in spherical coordinate (see chapter 2, section 2.3.1). In other words, if the
equation VZU(r,8,®)=k?U (r,8,®) is separated to several ordinary equations,
then one of the separate equations takes the form

2

1 d,. _dy n
————(Infd—=)+(Mm(m+1) -
sin@de( dH) (m( ) sin’ @

)y(0) =0, (8.14)

which is equivalent to equation (8.11) for x = cosé@. Hence, if z=cosé is considered
in (8.12) or equivalently a(z) = tan% in (8.2), the special case of (8.14) for m=0, i.e.
2

Y +Heotz)y' -~y =0, (8.15)
SIN~ z

has the following solutions

z, 1 z z
C,(z;tan=) ==((tan=)" + (tan=) "),

22 12 22 22 (8.16)
Sn(z;tanE):E((tanE) —(tanE) ).

These sequences will frequently appear in the given problems of the next section.

8.2.1. Application of defined functions (8.16) in the solution of potential, heat and
wave equations in spherical coordinate

Usually most of the boundary value problems related to the wave, heat and potential
equations in spherical coordinate are reduced to the Helmholtz partial differential

equation V2U(r,8,®)=k*U (r,0,d). But, for the special case of k = 0 in this
relation we have

AU 20U 1 7°U cotdou 1 AU
2 + + 2 2 + 2 + 2 At 2 2
or ror r° o200 r- 260 r°sin“0 oo

=0, (8.17)

which is known as the potential (Laplace) equation in spherical coordinate. Now, if the
related variables in equation (8.17) are separated as U (r,0,®@) = R(r)A(6)B(®), then

the following ordinary differential equations will be derived

r’R"+2rR'— A,R =0,
B"-1,B=0, (8.18)
/12
A”+(C0t Q)Al'i'(ﬂ,l +T)A: 0.
sin“ @

As we said, the solution of Laplace (potential) equation is generally determined when
the boundary conditions are known, nevertheless, if in (8.18) 4 ,=0 and 1 ,=-k* #0
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. 1
are assumed, then for the variable r we must have R(r)=-c/=+c, (c, and c, are
r

constant) and for the third equation the same form as equation (8.15). Therefore, the
general solution corresponding to the third equation would be

A(@) = AC, (6;tan g) +A,S, (0;tan g) = a,tan* (g) +a,tan ™ (g) , (8.19)

where A and A, & a, and a, are all constant values. Accordingly, (8.19) implies to
have the general solution of the potential equation V?U(r,8,®) =0 with the pre-
assigned condition R(r) :—clzi+c2 as
r
_C:L2
r

U(r,8,®)=(

+¢,) (b,coskd + b, sink®d)(a, tan* (g) +a, tan™ (g)) . (8.20)

It is interesting to know that the solution (8.20) shows the sensitivity of potential
equation with respect to the variable r, so that we have Iing U(r,8,d)=ow.

As an example, here let us consider the Laplace equation VU (r,0,®)=0 ; O<r<a

(in spherical coordinate) when the variable r takes the pre-assigned form
2
R(r) = —G + ¢, and the following initial and boundary conditions are given
r

lim U (r,0,0) =,
u@ em)-=o,
2
T
U(r,—®)=0,
( 5 )
U(a,%,qb):d).

The general solution of this problem, according to the given conditions and assuming
A, =abc, , B, =a,b,c, would be finally as

U(r,0,®)=>U,(r6,),
k
a K 0 « 0 .
U, (r,0,0)= (1—2—)(tan (E) —tan (E))(Akcoskqwr B, Sink®).
r
On the other hand, putting the last condition in the above general solution yields

20 =3 (3 =/3")(A, cosk® + B, sinkd),
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where A, and B, are calculated by

)k -1

k?

W3 -3 A = —J.<I>coskCDdCD_4((

T

3 -v37)B, :-jqn sinkod = 4CD"
72:0

Consequently, the particular solution of potential equation under the given conditions is

u(r,0,®) = (1- )2(4(((313,2 1)5;;cosk®+%sink®}tankz tan‘kz

As we see, a special case of the functions (8.1) has appeared in the above solution.
Similarly application of zero eigenvalue can be propounded for the heat and wave

i . : : . . ou .
equations respectively. For instance, if the classical heat equation V?U :E IS
considered, then separating the variables as U(r,0,®,t) = S(r,8,®)T(t), where

S(r,0,®) = R(r)A(6)B(®d), yields

VU =V?(ST)=TV?S ,
2 ' VS—-aS=0
oU  J(ST) AT =TV S=T'(t)S= (8.21)
—=——2=5— T'—aT =0
ot ot ot
So, the following ordinary differential equations are derived

T -aT=0,

r’R"+2rR' —(a r* +1,)R =0,

B"-41,B=0, (8.22)

p)
A"+ (cotO) A+ (A, +——)A=0.
sin“ @

Again, if 1,=0, 1,=-n*>=0and a=-k*=#0 are assumed in (8.22), then the
¢ Jy,(kr)+c¢,d 4, (kr)

Jkr

general solution, when R(r) =

is pre-assigned, takes the form

L) e 3 k)b’ () by an (D) o

x (a,cosnd + a,sinnd),

U(r,0,d,t) =
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in which J,,,(x) and J,,(x) are two particular cases of the Bessel functions J (x).
For example, let us consider the heat equation V?U(r,8,d,t) =%; O<r<a (in

spherical coordinate) when the variable r takes the pre-assigned form
¢ Jy,(kr)+¢,d 4, (Kr)

R(r) = N and the following conditions hold
Iirr01U(r,¢9,cD,t) <M,
v
Uu(r,—,o,t)=0,
( 5 )
u(r,8,0,t)=0,

U(r,%,CD,O) = f(r,®) ; arbitrary
By referring to the general solution (8.23) and using the given conditions we get
c,=a,=0and b, +b, =0.So, if A, =a,bc,, then

U(r,0,@,t)=>>U, (r,6,0,.1),
k n
—k2t

Jkr

is the general solution of this specific example. On the other hand, since the
orthogonality relation of Bessel functions J  (x) is denoted by [18]

U (r,0,0,t)=A J,,, (kr)(tan " %— tan ™" %) sinn®,

2

t X X a
j X‘Jp(z(p,m) E)Jp(z(p,n) g) dx :?‘]§+l(z(p,m))5n,m ’ (824)
0

where Z is mth zero of J (x) (i.e. J,(Z., ) =0), itis better for the eigenvalues

(p.m) (p.m)

YA
k to be considered as k =—“2™

; pzé. Therefore, the general solution of the
problem is simplified as

Z
(=)
u(r,0,o,t) = A
Zn"zm: ’ VZaamt/a

inwhich A, =A , . Now, it is sufficient to compute the coefficients A, . To do
H,T

this, substituting the last condition of the problem in above relation yields

J1(Zgomr/a)tan” g— tan ™" g)sin nod
2

-n

r An(32 -37) o
—f(r,®)= ' J1/2(Zgsam =) SIN(ND) .
\/; Zn:; VL w2m w8




Some further special functions and their applications 106

Therefore, by applying the orthogonality relation of Bessel functions and using the
orthogonality property of the sequence {sin(n®)}., on [0, 7], A:’m are found as

3

T r, . >
4L wom J. f(r,®)J,,,(Zg2m —)sin(n@)r? drd®
A = ° 2
m EREI
(32 _32)32‘]3‘2/2(2(1/2,m))

Oy

. . o °?
Finally, the problem can be stated for the wave equation V?U =

according to

the following stages. First we have

VU =V?*(ST)=TV?S

VS —aS =
22U F3(ST) AT =TV?S=T"(t)S :>{ ”S @5 =0 (8.25)
P e T =0
which results the ordinary equations
T"—aT=0,
r’R"+2rR" —(a r*+1,)R =0,
B"-4,B=0, (8.26)

A,
A"+ (cotd) A"+ (4, + G)A_O'

Now, if 1,=0,4,=-k*#0 and a=-n* # O are assumed in (8.26), then the general

¢ Jyp(nr)+¢,d 4, (nr)
Jnr

as follows

U (r,6,®,t) = (d,cos nt +d,sin nt)(b,coskd + b,sin k).
0y Eudua(00) £ 63 (1) (8.27)

Jor )

Here let us consider a specific problem regarding the wave equation in spherical
Cl‘]llz(nr)+c2"]—l/2(nr)

solution of the classical wave equation when R(r) = would be

x (a,tan * §+ a,tan

coordinate when the variable r has the form R(r) = and the

Jnr
conditions
1. IingU(r,H,CD,t)< M : 2. U(r D,1)=0
3.U (r,@,O,t) =0 , 4.U (r,H,CD,O) =0

5. U(r @,q) =g(r,®) ; arbitrary
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are given. To solve the problem, replacing the given conditions in the general solution
(8.27) gives ¢, =b,=d, =0 and a, +a,=0. If B, =ab,c,d, is supposed, then
(8.27) becomes

U(r,0,@,t)=> > U, (r0,o.1),
k n

U, (r,6,ot) =8, sin(nt)‘]“—(nr)(tan <9 _ tan* Q)sin K.
’ ' A/nr 2 2
Z(l/Z,m)

But similar to the previous problem, if n = is taken, then

a

Ji2(Zgjomr /@)

. . t
u(r,g,o,t)= B, . SiN(Z ., —)
Zklzm: “ arzm g VZawambla

(tan %— tan g)sin kd ,

where B, =B Zo)om - BY SUDstituting the last condition of the problem in the above
k ,m

a

relation, i.e.
-k k

B;,m (37 - 3E)Sin(z(1/z,m) 2)

r r, .
—g(r,®) = 312 (Z 42 m =) SIN(KD) ,
\/;9( ) Zklzm: m 12 ( e, )a) (kD)

and using the orthogonality relation of Bessel functions J,,,(Z,,m L) on [0,a], the
" a

unknown coefficients B, , will be derived as

3

e ry . =
WZsam | ] 9 9)3112(Z 2 ) Sin(ke®)r? drdd
B;,m = - K kK 3 '

7 SIN(Z 4 5.my 2) (3% -3%)a?33,(Zy1om)

which determines the final solution of the given problem straightforwardly.

8.3. Two classes of special functions using Fourier transforms of finite classical
orthogonal polynomials [11]

Some orthogonal polynomial systems are mapped onto each other by the Fourier
transform or by another ones such as the Mellin or Hankel transforms, see [33]. The
best-known examples of this type are the Hermite functions, i.e. the Hermite
polynomials H_(x) multiplied by exp(-x®/2), which are eigenfunctions of the

Fourier transform. More examples of this type are found in [49, 50] and [47]. The latter
author showed that the Jacobi and continuous Hahn polynomials can be mapped onto
each other in such a way, and the orthogonality relations for the continuous Hahn
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polynomials then follow from the orthogonality relations of the Jacobi polynomials and
the Parseval formula. Now, we intend to introduce two new examples of finite systems
of this type in this section and obtain their orthogonality relations. We then estimate a
complicated integral and propose a conjecture for a further example of finite orthogonal
sequences. For this purpose, we should come back to the chapter 4 and recall the
orthogonality property of the finite classical orthogonal polynomials. Hence, let us here
recall the polynomials

M P D(x)=(-1)" nIZ(p (n+1)](q+nJ(_ >,

that satisfy the orthogonality relation

T X—qM(p’q)(X)M(p’q)(x)dx:( nl(p—(n+2)(g+n)! ]6
0 (1+X)p+q n m (p_(2n+1))(p+q_(n+1))! n,m

for myn=012,...,N <pT—l and q>-1. To derive the Fourier transform of the

polynomials M (" (x) we should first refer to the definition of the Fourier transform of
a function, say g(x), as

() =S (x)) = [e™g(x)dx , (8.28)
and consider its inverse transform as -
1 5 .
g(x)=— j e F(s)ds . (8.29)
2 7,

In this sense, the Parseval identity of Fourier theory should also be considered as

]

[ 900n@)x == [ 50 <NTRENS | (8.30)

-0

for g,h e L?(R). Now, to obtain the Fourier transform of M (" (x) first define the
following functions

eqx eax
X)=——m—M "™ e*) & h(x)=—W——
g(x) y €") (x) e )™

s M D). (8.31)

It is clear that the Fourier transform exists for both above functions. However, for
example, for the function g(x) defined in (8.31) we have

0 . eqx © tq
— e—lsx M (ru) ex d — t—ls—l
F(9(x)) J Troryp M E)x j GO

U (D) (=n), (n+1-r), (Tt
_( 1) n ( j g (U +1)kk' [!(1+t)p+q dt}

M () dt
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() (u +n) Z( 1" (-n), (n+1-r), T(q—is +k)[(p +is —k)
k=0 U+, k! [(p+q)
_(—1)“F(u+n+1)F(q—|s)F(p+|s) F -n n+l-r q—is| 1
- TUu+D)I(p+q) 2 u+l —p+l-is

(8.32)

where ,F,(...) is a special case of the generalized hypergeometric function defined by

B B By ) (@), (), (), x*©
"F‘{bp b0 ... ,bq'xj “ 20,0, .0, KU

for (p,q)=(3,2) and again (r), =r(r +1)..(r +k —1). Note that to derive (8.32) we
have used the two identities

k
I'a+k)=TI'(a)(a), and T(a—k) :M . (8.33)
(1-a),
Now, by substituting (8.32) in Parseval’s identity we get

(8.34)
M M EO ()t

0 e (q+a)x tQ+a—l

(ru) (ax €d) (5 x
27Z'J‘ WMI} (e )Mm (e )dX

_(EDMTU+n+D)r(d +m +1)
F(u +DI(p+9)I'(d +1)F(a+b)

S

u+l, —p+1l-is

-m, m+l-c, a-is
x 4k, . |l ds
d+1 -b+1-is

On the other hand, if in the left hand side of (8.34) we take

jr(q—us)r(pﬂs)r(a )LD +is), F[ o Ml q_is| 1]

u=d=q+a-1 and r=c=p+b+1, (8.35)

then according to the orthogonality relation of polynomials M ("¥(x) given above,
relation (8.34) reads as

(27) ni(p+b-n)i(g+a-1+n)! T*@+a)(p+q)(a+b) B
(p+b—2n)(p+q+a+b—-n-1! (<)""I(@+a+n)(g+a+m) "

Tr(q—is)r(p+is)r(a—is)r(b+is)3F2[_n’ n=p-b, q_is’| 1} (8.36)

q+a, —p+1-is

-m, m-p-b, a-is
x 4F, . |1 ds .
g+a, -b+1-is
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Theorem 1. The special function

I'a+d+n) -n, n-b-c, d-x
r(a+d) ° { a+d, —c+1-x

has a finite orthogonality property as

A, (x;a,b,c,d) =

1} (8.37)

ZL T I'(a+ix)['(b—ix)['(c+ix)['(d —ix)A,(ix;a,b,c,d)A (-ix;d,c,b,a) dx
72-—00

(8.38)
n! I'a+d+nr(b+c+l1-nI'(c+d)'(a+b) s

~(b+c—2n) T(a+b+c+d—n) i

where a+d>-n, b+c>2n, a+b>0 and c+d>0.

Remark 1. (i) Replacing n = m =0 in (8.38) gives the Barnes’ first lemma from 1908,
see e.g. Bailey [20] or Whittaker and Watson [76] for the original proof by Barnes.

(i) The weight function of the orthogonality relation (8.38) is positive for
a=d,b=cora=b, c=d.

Similarly, the mentioned approach can be applied to the finite orthogonal polynomials

n p—(n+1) n
N®x)=(1D"> k! —x )
o= T P01 Jeo
that satisfy the orthogonality relation

p-1

® - I(p— 1
jx‘peXNrﬁp)(x)Nrf]p)(x)dx :{Mjé for m,n=0,1,2,..,N <
0

p—(2n+1) i

Thus, if we define the sequences
1 -X @) fa X 1 -X W) fa X
u(x) =exp(—px —Ee IN (") and v (x)=exp(—rx —Ee IN (%), (8.39)

and take the Fourier transform from u(x) , then we get

1
pX+=

_y © -1
2T NG @)k = [t e NO (bt

0

Fu0)= | ee’

n . -1 “ T —is—1-p+k ;71
=(-1)"ni(q-n-1)! Z_(;(q—n—l(—k))!k!(n—k)!ut e dt]

_ (_l)n 2p+is F( P+ IS)Z (_?]?k_(r;i::-s_) q)k (Zl; I)

. ] -n, n+l-q| 1
=(-D"2""T F — .
(172" T (p-+is) ( 1 pois ‘Zj

~

(8.40)

>
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In relation (8.40) the following definite integral has been used
-1

It_ls_l_p+ke2t dt = 2p+is—k r‘( p+ is— k) . (841)

0

Now, according to definitions (8.39) apply the Parseval’s identity again to get  (8.42)

-1

27 j e (P e N@ (e )NO (e¥)dx = 27zjt (et N@ (1) NO(t)dt =

= (N, n+l-q| 1 -m, m+1-u
=)™ | T(p+is)L(r+is), F = |,k
-9 L(p T(r+is), ( - pois ‘2]( Loris

1]ds.
2

q=u=p+r+1 (8.43)

By assuming

in (8.42) and noting the orthogonality relation of N (" (x) given above we can finally
deduce the following theorem.

Theorem 2. The special function

—a+1l-x 2

B, (x;a, b)=zF1(

has a finite orthogonality relation as

-n, n—a—b‘ 1

_J (8.44)

“ I _

% L I'(a+iX)T(b—ix) B, (ix;:a,b)B, (~ix;b,a)dx = ’Zﬂtt;:)lzag) (8.45)
if a+b>2n.
Remark 2. (i) If we put n =m =0 in (8.45) then we obtain
%_]il"(a+ X )T(b —ix ) dx = F(azaﬁbb ) (8.46)

(ii) The weight function of (8.46) is positive if a=Db.
8.3.1. Evaluating a complicated integral and a conjecture
By applying the Ramanujan integral [62] (8.47)

T dx I'a+b+c+d-3)
*T(@+x)I'(b+x)'(c—x)'(d-x) F(a +c-Dlr'(a+d-)I'(b+c-HI'(b+d -1)
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we can obtain the explicit value of the following definite integral (8.48)

In(m)=T3F{_”’ noboes A |1]—(d‘x)m
2 a+d, —C +1-X 1-b-x),
5 dx
IFl-a+x)I'l-d +x)I'l-c-x)I'(l-b-x)

For this purpose, we have

(8.49)
= (=n)(h-=b-c), y
'”(m)_; (a+d),k!
([ 80,00, dx
J(@-c-x),1-b-x), Tl-a+x)I'1-d+x)I'A-c—x)I'(1-b—x)
and since
(a_x)k — (_1)k and (d _X)m — (_1)m (850)
I'l—-a+x) TI'(l-a+x-k) 't—d+x) I'l-d+x-m)

according to Ramanujan’s integral defined in (8.47) 1,(m) can be simplified towards
(8.51)

= (- k _b_ k k+m
In<m):kz_;(”()a(+”d)kk!") (1" x

K dx
J| T(l—a+X—K)T(1—d +x—m)(1—c—x+KI{I—b—x+m)
n (-D“"(-n),(n-b-c) T'l-a-b-c-d)
“(@a+d) KIT(L-a—c)l(l-b—d)[(1—a—b+m—-K)I(L-c—d—m+k)

—00

a+d, 1-c-d-m
rl-a-c)rd-b-d)yr@-a-b+m)r@d-c—-d-m)

(-)"Tr'l-a-b-c-d) BFZ{

-n, n-b-c, a+b-m
| 1

On the other hand, the Gosper-Saalschiitz identity [75] implies that if

e=a+b+c+1-d
then

F(a, b, ¢ | 1J: 7’ y
2d, e cos(d ) cos(err) + cos(ar) cos(brr) cos(crr)
I'(d) I'(e)
><1“(d —a)l'(d-b)r(d-c)r(e-ayr(e-b)re-c)

(8.52)

Therefore, the final value of the definite integral I (m) is obtained as
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(8.53)
3 7T (a+d) 5
_cm«a+Mﬁymﬁm+cyﬂ—cm«a+@nﬁmﬁ@+dﬁﬂra—a—wra—b—®
1
Ira+d+nr(@+b+c+d-nr(d-b+mr@-c—d-m+nIl'l+b-d-m-n)'(l-a-b+m)

I, (m)

But we evaluated the complicated integral (8.48) to be able to claim that the function
A, (x;a,b,c,d) defined in Theorem 1 might essentially be orthogonal with respect to

the Ramanujan integral. In other words, we conjecture that

2 -n, n-b-c, d-x -m, m-b-c, a-xXx
[.F, | 1|,F, |1
7 a+d, —b+1-x a+d, —Cc+1-Xx

0" (8.54)

X =K, 0, -
rl-a+x)rd-d+x)rd—c—x)rd—b—-x) ‘
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