
On the Descriptional Complexity of Simple
RL-Automata?

H. Messerschmidt1, F. Mráz2, F. Otto1, and M. Plátek2

1 Fachbereich Mathematik/Informatik, Universität Kassel
34109 Kassel, Germany

{hardy,otto}@theory.informatik.uni-kassel.de
2 Charles University, Faculty of Mathematics and Physics
Department of Computer Science, Malostranské nám. 25

118 00 Praha 1, Czech Republic

mraz@ksvi.ms.mff.cuni.cz, Martin.Platek@mff.cuni.cz

Abstract. Analysis by reduction is a method used in linguistics for checking the
correctness of sentences of natural languages. This method is modelled by restarting
automata. Here we study a new type of restarting automaton, the so-called t-sRL-
automaton, which is an RL-automaton that is rather restricted in that it has a window
of size 1 only, and that it works under a minimal acceptance condition. On the other
hand, it is allowed to perform up to t rewrite (that is, delete) steps per cycle. We
focus on the descriptional complexity of these automata, establishing two complexity
measures that are both based on the description of t-sRL-automata in terms of so-
called meta-instructions. We present some hierarchy results as well as a non-recursive
trade-off between deterministic 2-sRL-automata and finite-state acceptors.

1 Introduction

The original motivation for introducing the restarting automaton was the desire to
model the so-called analysis by reduction of natural languages. Analysis by reduction
is usually presented by finite samples of sentences of a natural language and by
sequences of their correct reductions (e.g., tree-banks) (see, e.g., [5]).

Here we continue the study of a new variant of the restarting automaton, the so-
called simple RL-automaton (sRL-automaton) [9], that is rather restricted in various
aspects to ensure that its expressive power is limited. However, by admitting that
t (≥ 1) delete operations may be performed in each cycle, the expressive power
of the obtained model of the restarting automaton is parametrized by t, which
yields an infinite hierarchy of automata and language classes. In [9] we studied the
number of gaps generated during a reduction as a dynamic complexity measure for
t-sRL-automata. A bounded number of gaps implies that only feasible languages are
accepted, that is, languages that are recognizable in polynomial time, while with an
unbounded number of gaps these automata accept NP-complete languages.

Here we concentrate on the descriptional complexity of sRL-automata. We in-
troduce two descriptional complexity measures, the number of meta-instructions,
which is a fairly rough measure, and the descriptional size. We establish an infinite
? F. Mráz and M. Plátek were partially supported by the Grant Agency of the Czech Republic under

Grant-No. 201/04/2102 and by the program ‘Information Society’ under project 1ET100300517.
F. Mráz was also partially supported by the Grant Agency of Charles University under Grant-
No. 358/2006/A-INF/MFF.



2 H. Messerschmidt, F. Mráz, F. Otto, M. Plátek

hierarchy with respect to the first measure, and we show that even deterministic
2-sRL-automata allow very succinct representations of (certain) regular languages
by presenting a non-recursive trade-off. Observe that deterministic 1-sRR-automata,
that is, deterministic 1-sRL-automata that do not use move-left instructions, only
accept regular languages. In [3] exponential trade-offs between nondeterministic and
deterministic finite-state acceptors and deterministic 1-sRR-automata are given.

The paper is structured as follows. After introducing the simple RL-automaton in
Section 2 and restating some of its basic properties, we show that deterministic t-sRL-
automata are as expressive as nondeterministic t-sRL-automata that are correctness
preserving. Then we define our descriptional complexity measures in Section 3. We
illustrate them by various examples, and we present an infinite hierarchy with respect
to our first measure. Then in Section 4 we establish the announced non-recursive
trade-off between deterministic 2-sRL-automata and finite-state acceptors.

2 The t-sRL-Automaton

Here we describe in short the type of restarting automaton we will be dealing with.
More details on restarting automata in general can be found in [10].

An sRL-automaton (simple RL-automaton) M is a (in general) nondeterministic
machine with a finite-state control Q, a finite input alphabet Σ, and a head (window
of size 1) that works on a flexible tape delimited by the left sentinel c and the right
sentinel $. For an input w ∈ Σ∗, the initial tape inscription is cw$. To process this
input M starts in its initial state q0 with its window over the left end of the tape,
scanning the left sentinel c. According to its transition relation, M performs move-
right steps and move-left steps, which shift the window one position to the right or
to the left, respectively, thereby changing the state of M , and delete steps, which
delete the content of the window, thus shortening the tape, change the state, and
shift the window to the right neighbour of the symbol deleted. Of course, neither the
left sentinel c nor the right sentinel $ must be deleted. At the right end of the tape
M either halts and accepts, or it halts and rejects, or it restarts, that is, it places
its window over the left end of the tape and reenters the initial state. It is required
that before the first restart step and also between any two restart steps, M executes
at least one delete operation.

A configuration of M is a string αqβ where q ∈ Q, and either α = λ and
β ∈ {c} · Σ∗ · {$} or α ∈ {c} · Σ∗ and β ∈ Σ∗ · {$}; here q represents the current
state, αβ is the current content of the tape, and it is understood that the window
contains the first symbol of β. A restarting configuration is of the form q0cw$.

Each part of a computation of an sRL-automaton M from a restarting configu-
ration to the next restarting configuration is called a cycle. The part after the last
restart operation is called the tail. We assume that no delete operation is executed in
a tail computation. We use the notation u `c

M v to denote a cycle of M that begins
with the restarting configuration q0cu$ and ends with the restarting configuration
q0cv$; the relation `c∗

M is the reflexive and transitive closure of `c
M .

An input w ∈ Σ∗ is accepted by M , if there is an accepting computation
which starts with the (initial) configuration q0cw$. By L(M) we denote the lan-



Descriptional Complexity of sRL-Automata 3

guage consisting of all words accepted by M ; we say that M recognizes (accepts)
the language L(M). By S(M) we denote the simple language accepted by M ,
which consists of all words that M accepts by tail computations. Obviously, S(M)
is a regular sublanguage of L(M). By RS(M) we denote the reduction system
RS(M) := (Σ∗,`c

M , S(M)) that is induced by M . Observe that, for each w ∈ Σ∗,
we have w ∈ L(M) if and only if w `c∗

M v holds for some word v ∈ S(M).

We say that M is an sRR-automaton if M does not use any move-left steps.
By sRL (sRR) we denote the class of all sRL-automata (sRR-automata). A t-sRL-
automaton (t ≥ 1) is an sRL-automaton which uses at most t delete operations in a
cycle, and similarly we obtain the t-sRR-automaton. By L(A) we denote the class of
languages that are accepted by automata of type A (A-automata), and by L≤n(A)
we denote the class of finite languages that are accepted by automata of type A and
that do not contain any words of length exceeding the number n.

On the set of words Σ∗, we consider the well-founded partial ordering ≤ that is
defined by u ≤ v if and only if u is a scattered subword of v. By < we denote the
proper part of ≤.

For L ⊆ Σ∗, let Lmin := {w ∈ L | u < w does not hold for any u ∈ L }, that
is, Lmin is the set of minimal words of L. It is well-known that Lmin is finite for
each language L (see, e.g., [6]). We say that an sRL-automaton M accepting the
language L works with minimal acceptance if it accepts in tail computations exactly
the words of the language Lmin, that is, S(M) = Lmin. Thus, each word w ∈ LrLmin

is reduced to a word w′ ∈ Lmin by a sequence of cycles of M . We will use the prefix
min- to denote sRL-automata that work with minimal acceptance.

An sRL-automaton working with minimal acceptance is forced to perform se-
quences of cycles even for accepting a regular language. In fact, this is even true for
most finite languages.

Example 1. Let t ≥ 1, and let L<t> := {at, λ}. Then L<t>
min = {λ}. Hence, an sRL-

automaton for the language L<t> that works with minimal acceptance must execute
the cycle at `c λ, which means that it must execute t delete operations during this
cycle. Hence, it is a t-sRL-automaton.

Concerning the relationship between sRR- and sRL-automata, we have the fol-
lowing important result.

Theorem 1. [9] For each integer t ≥ 1 and each t-sRL-automaton M , there exists a
t-sRR-automaton M ′ such that the reduction systems RS(M) and RS(M ′) coincide.

Observe that, in each cycle, M ′ executes its up to t delete operations strictly
from left to right, while M may execute them in arbitrary order.

Based on Theorem 1 we can describe a t-sRL-automaton by meta-instructions of
the form (c · E0, a1, E1, a2, E2, . . . , Es−1, as, Es · $), where 1 ≤ s ≤ t, E0, E1, . . . , Es

are regular languages (often represented by regular expressions), called the regular
constraints of this instruction, and a1, a2, . . . , as ∈ Σ correspond to letters that are
deleted by M during one cycle. On trying to execute this meta-instruction starting
from a configuration q0cw$, M will get stuck (and so reject), if w does not admit



4 H. Messerschmidt, F. Mráz, F. Otto, M. Plátek

a factorization of the form w = v0a1v1a2 . . . vs−1asvs such that vi ∈ Ei for all i =
0, . . . , s. On the other hand, if w admits factorizations of this form, then one of them
is chosen nondeterministically, and q0cw$ is transformed into q0cv0v1 . . . vs−1vs$. In
order to also describe the tails of accepting computations, we use accepting meta-
instructions of the form (c · E · $,Accept), where E is a regular language. Actually
we can require that there is only a single accepting meta-instruction for M . If M
works with minimal acceptance, then this accepting meta-instruction is of the form
(c · L(M)min · $,Accept).

Example 2. Let t ≥ 1, and let LRt := { c0wc1wc2 . . . ct−1w | w ∈ {a, b}∗ }, where
Σ0 := {a, b} and Σt := {c0, c1, . . . , ct−1} ∪Σ0. We obtain a t-sRR-automaton Mt for
the language LRt through the following sequence of meta-instructions:

(1) (cc0, a,Σ∗
0 · c1, a,Σ∗

0 · c2, . . . , Σ
∗
0 · ct−1, a,Σ∗

0 · $),
(2) (cc0, b, Σ

∗
0 · c1, b, Σ

∗
0 · c2, . . . , Σ

∗
0 · ct−1, b, Σ

∗
0 · $),

(3) (cc0c1 . . . ct−1$,Accept).

It follows easily that L(Mt) = LRt holds, and that Mt works with minimal accep-
tance. Actually, the automaton Mt is even deterministic.

For each integer n ∈ N+, we consider the finite approximation of order (n+1) · t
of the language LRt which is defined as follows:

LR
(n)
t := { c0wc1wc2 . . . ct−1w | w ∈ {a, b}∗, |w| ≤ n }.

A t-sRR-automaton M
(n)
t for LR

(n)
t , also working with minimal acceptance, is eas-

ily obtained from Mt by taking the following sequence of meta-instructions, where
Σ≤n−1

0 := {w ∈ Σ∗
0 | |w| ≤ n− 1 }:

(1) (cc0, a,Σ≤n−1
0 · c1, a,Σ≤n−1

0 · c2, . . . , Σ
≤n−1
0 · ct−1, a,Σ≤n−1

0 · $),
(2) (cc0, b, Σ

≤n−1
0 · c1, b, Σ

≤n−1
0 · c2, . . . , Σ

≤n−1
0 · ct−1, b, Σ

≤n−1
0 · $),

(3) (cc0c1 . . . ct−1$,Accept).

We emphasize the following properties of restarting automata, which are used im-
plicitly in proofs. They play an important role in linguistic applications of restarting
automata (e.g., for the analysis by reduction, grammar-checking, and morphological
disambiguation).

Definition 1. (Correctness Preserving Property)
A t-sRL-automaton M is (strongly) correctness preserving if u ∈ L(M) and u `c∗

M v
imply that v ∈ L(M).

Definition 2. (Error Preserving Property)
A t-sRL-automaton M is error preserving if u 6∈ L(M) and u `c∗

M v imply that
v 6∈ L(M).

It is rather obvious that each t-sRL-automaton is error preserving, and that all
deterministic t-sRL-automata are correctness preserving. On the other hand, one can
easily construct examples of nondeterministic t-sRL-automata that are not correct-
ness preserving.

Concerning the parameter t and the relation of t-sRL-automata to other language
classes the following results have been obtained.



Descriptional Complexity of sRL-Automata 5

Theorem 2. [9] For each suffix Y ∈ {sRR, sRL}, and each integer t ≥ 2,
(a) L(det-(t− 1)-Y) ⊂ L(det-t-Y) and

L((t− 1)-Y) ⊂ L(t-Y).
(b) L(min-det-(t− 1)-Y) ⊂ L(min-det-t-Y) and

L(min-(t− 1)-Y) ⊂ L(min-t-Y).
(c) L≤n(min-det-(t− 1)-Y) ⊂ L≤n(min-det-t-Y) and

L≤n(min-(t− 1)-Y) ⊂ L≤n(min-t-Y) for each n ≥ t.

Theorem 3. [9]
(a) DCFL ⊂

⋃
t∈N+

L(min-det-t-sRL) ⊂
⋃

t∈N+
L(min-t-sRL).

(b) The language classes
⋃

t∈N+
L(min-t-sRL) and

⋃
t∈N+

L(t-sRL) are incompara-
ble under inclusion to the class CFL of context-free languages and to the class
GCSL of growing context-sensitive languages.

Correctness preserving nondeterministic t-sRR-automata are strictly more ex-
pressive than deterministic t-sRR-automata. For example, the language L :=
{ anbnc, anb2nd | n ≥ 0 } is accepted by the 3-sRR-automaton M that is given through
the following meta-instructions:

(1) (c, a, a∗, b, b∗ · c · $), (2) (c, a, a∗, b, {λ}, b, b∗ · d · $), (3) (c · (c + d) · $,Accept).

If M should select the wrong meta-instruction, then this is recognized at the right
sentinel, and then M simply halts and rejects. Thus, M is correctness preserving.
On the other hand, it is easily shown that L cannot be accepted by a deterministic
sRR-automaton. Surprisingly, however, we have the following equivalence for sRL-
automata.

Theorem 4. For each correctness preserving t-sRL-automaton M , there exists a
deterministic t-sRL-automaton M ′ such that L(M ′) = L(M).

Proof. Let M be a correctness preserving t-sRL-automaton that is given through
meta-instructions I1, . . . , Ii. We will describe a deterministic t-sRL-automaton M ′

recognizing the same language as M . First, for each j = 1, . . . , i, we construct a finite-
state acceptor Aj for the set of words to which meta-instruction Ij is applicable. The
automaton M ′ will then proceed as follows:

1. M ′ scans the current word w on its tape from left to right simulating all the
acceptors A1, . . . , Ai in parallel. At the right sentinel M ′ knows which meta-
instructions of M are applicable to the current word. If none is applicable, then
M ′ halts and rejects; if one of the applicable meta-instructions is accepting,
then M ′ halts and accepts. Otherwise, any correct application of any of the
applicable meta-instructions will yield a word w′ such that w′ ∈ L(M) if and
only if w ∈ L(M), as M is correctness preserving. Thus, M ′ simply chooses one
of the applicable meta-instructions, e.g., the one with the smallest index. By I
we denote this meta-instruction.

2. M ′ simulates an application of I on its current tape content.

It remains to show how M ′ can simulate an application of I to the configu-
ration q0cw$. Let w = y1 . . . yn, where y1, . . . , yn ∈ Σ, and assume that I =



6 H. Messerschmidt, F. Mráz, F. Otto, M. Plátek

(c · E0, x1, E1, x2, E2, . . . , Es−1, xs, Es · $), where 1 ≤ s ≤ t. M ′ must determine
a factorization of the form w = v0x1v1x2 . . . vs−1xsvs such that vi ∈ Ei for all
i = 0, . . . , s, and remove the symbols x1, x2, . . . , xs. As w may have many such fac-
torizations, M ′ must choose one of them deterministically. For this task M ′ will
use finite-state acceptors M1, . . . ,Ms and MR

1 , . . . ,MR
s , which accept the following

regular languages:

L(M1) = E0 · x1, (E1 · x2 · E2 · x3 · · ·Es−1 · xs · Es)R = L(MR
1 ),

L(M2) = E1 · x2, (E2 · x3 · · ·Es−1 · xs · Es)R = L(MR
2 ),

...
...

L(Ms−1) = Es−2 · xs−1, (Es−1 · xs · Es)R = L(MR
s−1),

L(Ms) = Es−1 · xs, (Es)R = L(MR
s ).

After step (1) above (that is, when choosing the meta-instruction I), M ′ is at the
right sentinel. Now it scans its tape again, this time from right to left, thereby
simulating the finite-state acceptors MR

1 , . . . ,MR
s in parallel. For each 0 ≤ j ≤ s

and 1 ≤ ` ≤ n, let q(j, `) denote the state of MR
j after reading the word yn . . . y`+1.

When reaching the left sentinel, M ′ changes direction again. Now, while moving to
the right, M ′ simulates the finite-state acceptor M1. Simultaneously, it recomputes
the internal states of all the acceptors MR

1 , . . . ,MR
s on the respective tape symbol,

that is, it runs these acceptors in reverse. This it can do due to the following technical
result from [1] (pages 212–213).

Lemma 1. Let A be a deterministic finite-state acceptor. For each word x and each
integer i, 1 ≤ i ≤ |x|, let qA(x, i) be the internal state of A after processing the prefix
of length i of x. Then there exists a deterministic two-way finite-state acceptor A′

such that, for each input x and each i ∈ {2, 3, . . . , |x|}, if A′ starts its computation
on x in state qA(x, i) with its head on the i-th symbol of x, then A′ finishes its
computation in state qA(x, i− 1) with its head on the (i− 1)-th symbol of x. During
this computation A′ only visits (a part of) the prefix of length i of x.

As meta-instruction I is applicable to the configuration q0cw$, w belongs to the
set E0 · x1 · E1 · x2 · E2 · x3 · · ·Es−1 · xs · Es. Hence, there is a smallest index `1

such that y1 . . . y`1 ∈ L(M1) and y`1+1 . . . yn ∈ [L(MR
1 )]R. That is, after scanning

y1 . . . y`1 , the finite-state acceptor M1 is in an accepting state, and simultaneously
q(1, `1) is an accepting state of MR

1 . On reaching this position, M ′ deletes y`1 = x1,
aborts the simulations of M1 and MR

1 , and starts to simulate M2 from its initial
state. Now M ′ looks for an index `2 > `1 such that M2 is in an accepting state after
processing y`1+1 . . . y`2 , and q(2, `2) is an accepting state of MR

2 . Once this position
is reached, M ′ deletes the symbol y`2 = x2, aborts the simulations of M2 and MR

2 ,
and starts to simulate M3. This process is then continued for i = 3, 4, . . . , s. In
this way, M ′ deletes s symbols y`1 , . . . , y`s such that y1 . . . y`1−1 ∈ E0, y`1 = x1,
y`1+1 . . . y`2−1 ∈ E1, y`2 = x2, . . . , y`s = xs, and y`s+1 . . . yn ∈ Es.

It is easy to see that the t-sRL-automaton M ′ constructed in the way described
above is deterministic, and that it accepts the same language as the given t-sRL-
automaton M . ut



Descriptional Complexity of sRL-Automata 7

3 Complexity Measures for sRL-Automata

A t-sRL-automaton M can be interpreted as a description of the language L(M).
Hence, the question about the succinctness of this description in comparison to other
descriptions of the same language arises. Thus, we need to introduce a measure for
the size of a t-sRL-automaton.

In [3] the descriptional complexity of various types of deterministic restarting
automata is investigated. There the number of instructions in the transition relation
of a restarting automaton is taken as the size of that automaton, that is, for an
sRL-automaton M this would yield the number sizeδ(M) := |Q| · (|Σ|+ 2) ·µ, where
µ denotes the maximal degree of nondeterminism that M has in any situation.
However, the description of sRL-automata in terms of transition relations is rather
cumbersome. Therefore we prefer to consider measures that are based on descriptions
of sRL-automata in terms of meta-instructions.

Definition 3. Let M be a t-sRL-automaton that is given through meta-instructions
I1, . . . , Ir. Then sizeI(M) := r is called the instruction size of M .

The t-sRL-automata Mt and M
(n)
t of Example 2 have instruction size 3. Obvi-

ously, each regular language L can be accepted by a restarting automaton of in-
struction size 1 that is given through the single meta-instruction (c ·L ·$,Accept). It
is easy to construct a sequence of languages L1, L2, . . . with growing alphabets such
that any t-sRL-automaton recognizing Li has instruction size at least i. However, we
have a sequence of 3-sRL-automata with growing instruction size and a fixed finite
alphabet with this property.

Let Σ := {a, b}, let i > 1, and let wj := ajbi+1−j (1 ≤ j ≤ i). For each j ∈
{1, . . . , i}, let Ei

j denote the language Ei
j := {w1, . . . , wj−1, wj+1, . . . , wi} ⊂ Σi+1,

and let Mi be the 3-sRL-automaton with input alphabet Σ := {a, b} that is given
through the following meta-instructions:

1. (c · (w1 · a∗ · w1 + . . . + wi · a∗ · wi + w1 · b+ · Ei
1 + . . . + wi · b+ · Ei

i) · $,Accept),
2. (c · wj · a∗, a, {λ}, b, b∗ · wj · $), j = 1, . . . , i,
3. (c · wj · a∗, a, {λ}, b, {λ}, b, b∗ · Ei

j · $), j = 1, . . . , i.

Obviously, sizeI(Mi) = 2i + 1, and it is easily verified that

L(Mi) =
i⋃

j=1

{wja
nbmwj | n ≥ m ≥ 0 } ∪

i⋃
j,k=1

j 6=k

{wja
nbmwk | m > 2n ≥ 0 }.

On the other hand, we have the following lower bound result.

Lemma 2. If M is an sRL-automaton for L(Mi), then sizeI(M) ≥ 2i + 1.

Proof. Let i > 1 be an integer, and let M be an sRL-automaton recognizing the
language L(M) = L(Mi). Let wk,l,µ,ν := wka

µbνwl, let p be the number of states
of M , and let n := p !. None of the words wk,k,n,n (1 ≤ k ≤ i) can be accepted by M



8 H. Messerschmidt, F. Mráz, F. Otto, M. Plátek

in a tail computation, as otherwise it could be shown by using pumping techniques
that M will then also accept certain words which do not belong to L(Mi).

Each meta-instruction which is used in an accepting computation on an input
wk,l,µ,ν ∈ L(Mi) deletes only some of the symbols a and b in the middle. Here the
fact is used that all words wj (1 ≤ j ≤ i) have the same length, and so neither the
prefix wk nor the suffix wl can be converted into another word wj for any index j
by applying deletions.

If there are less than i meta-instructions that are used for accepting all words
of the form wk,k,cn,cn (1 ≤ k ≤ i, c ≥ 1), then at least one of them applies to
two different words wk,k,cn,cn and wl,l,cn,cn, l 6= k. Hence, this instruction cannot
distinguish between wka

cnbcnwk and wla
cnbcnwl. As neither the prefixes nor the

suffixes wl and wk are affected by this instruction, we see that this instruction also
applies to the word wla

cnbcnwk.
Each meta-instruction which is used in an accepting computation for a word of

the form word wla
cnbcnwl (c a large constant) deletes at least as many symbols b as a.

Now assume that, after some cycles of an accepting computation starting with the
word wla

cnbcnwl, the number α of symbols a deleted and the number β of symbols
b deleted satisfy the condition β = α + m for some integer m satisfying m ≥ n = p!.
Thus, wla

cnbcnwl is reduced to a word of the form wla
cn−αbcn−α−mwl. The restarting

automaton M cannot distinguish between wla
cnbcnwl and wla

cnbcn+nwl 6∈ L(Mi).
However, by applying the same sequence of cycles to the latter word, M will derive
the word wla

cn−αbcn−α+n−mwl, which belongs to L(Mi), as m ≥ n. This contradicts
the Error Preserving Property.

Hence, for all sequences of cycles starting with a word of the form wla
cnbcnwl,

the number α of symbols a deleted and the number β of symbols b deleted satisfy the
restiction α ≤ β < α + n. As seen above the word wla

cnbcnwk can also be processed
by the same sequence of cycles, and the same is true for the word wla

cnb2cnwk 6∈
L(Mi). However, after a sufficient number of cycles α > n is obtained, and therewith
β < α+n ≤ 2α holds. Hence, the resulting word is wla

cn−αb2cn−βwk, which belongs
to L(Mi), again contradicting the Error Preserving Property.

It follows that, for each value of j ∈ {1, . . . , i}, there is at least one meta-
instruction with prefix and suffix wj that is involved in the accepting computations
of M for the words of the form wk,k,cn,cn (1 ≤ k ≤ i). Thus, there are at least i
different meta-instructions of this form.

Essentially the same method also works for those meta-instructions that are used
in accepting computations for words of the form wja

nbmwk (m > 2n). At least i
different meta-instructions must be used in these computations. As they differ from
the meta-instructions above, and as M needs at least one accepting meta-instruction,
we see that sizeI(M) ≥ 2i + 1 holds. ut

The instruction size does not allow to distinguish ‘complicated’ regular languages
from ‘simple’ ones. Therefore we now define a finer complexity measure for sRL-
automata.

Definition 4. We measure the size of a t-sRL-automaton M through the size of
its description in terms of meta-instructions. As meta-instructions contain regular



Descriptional Complexity of sRL-Automata 9

expressions, we first have to assign a size to each regular expression. Let E be a
regular expression over Σ. Then its size size(E) is defined inductively as follows:

E = λ : size(E) := 1,
E = a1a2 . . . an (ai ∈ Σ, n ≥ 1) : size(E) := n,
E = E1 · E2 : size(E) := size(E1) + size(E2),
E = E1 ∪ E2 : size(E) := size(E1) + size(E2) + 1,
E = E∗

1 : size(E) := size(E1) + 1,
E = En

1 (n ≥ 2) : size(E) := size(E1) + log(n),
E = E≤n

1 (n ≥ 2) : size(E) := size(E1) + log(n) + 1.

Now the size of a meta-instruction I of M is defined as follows:

I = (c · E · $,Accept) : size(I) := size(E) + 3,
I = (E0, u1, E1, u2, E2, . . . , Es−1, us, Es) : size(I) :=

∑s
i=0 size(Ei) + s.

Finally, if M is given through the meta-instructions I1, I2, . . . , Im, then

size(M) :=
m∑

i=1

size(Ii).

We illustrate this definition through an example.

Example 3. The t-sRL-automaton Mt of Example 2 has size 13 t+7, as its accepting
meta-instruction has size t + 3, and each of its other two meta-instructions has
size 6 t + 2. Observe that size(Σ∗

0) = size((a ∪ b)∗) = 4.
On the other hand, the t-sRL-automaton M

(n)
t from the same example has size

(13 + 2 · log(n − 1)) · t + 7, as each of its two deleting meta-instructions has size
(6+log(n−1)) · t+2. Observe that size(Σ≤n−1

0 ) = size((a∪b)≤n−1) = 4+log(n−1).
Finally, the 3-sRL-automaton Mi of Lemma 2 has size 2i3 + 8i2 + 28i + 2.

If a t-sRL-automaton M is given through a sequence of meta-instructions
I1, I2, . . . , Im, then the transition relation for M can simply be constructed by deriv-
ing nondeterministic finite-state acceptors for all the regular expressions occurring
in these meta-instructions. Thus, sizeδ(M) will be bounded by the combined size of
all these acceptors. Essentially, for all regular expressions E, the size of the resulting
finite-state acceptor coincides with the number size(E) with the one exception that
a finite-state acceptor for Em has size size(E) ·m instead of size(E)+ log(m). Thus,
we see that size(M) and sizeδ(M) are related to each other by a logarithmic factor.

We close this section with a couple of further examples.

Example 4. Let Σ := {a, b}. We consider the language Lpal and its finite approxi-
mations L

(n)
pal (n ∈ N+) that are defined as follows:

Lpal := {wwR | w ∈ Σ∗ } and L
(n)
pal := {wwR | w ∈ Σ≤n }.

Then Lpal is accepted by the deterministic 2-sRL-automaton Mpal that is specified
by the following three meta-instructions:

(1) (c, a, (Σ2)∗, a, $), (2) (c, b, (Σ2)∗, b, $), (3) (c · $,Accept),



10 H. Messerschmidt, F. Mráz, F. Otto, M. Plátek

and L
(n)
pal is accepted by the deterministic 2-sRL-automaton M

(n)
pal that is specified by

the following three meta-instructions:

(1) (c, a, (Σ2)≤n−1, a, $), (2) (c, b, (Σ2)≤n−1, b, $), (3) (c · $,Accept).

Observe that size(Mpal) = 21, while size(M (n)
pal ) = 21 + 2 · log(n− 1).

The situation is very different for the following example language.

Example 5. Let Σ := {a, b}. We consider the language Lcopy and its finite approxi-
mations L

(n)
copy (n ∈ N+) that are defined as follows:

Lcopy := {ww | w ∈ Σ∗ } and L(n)
copy := {ww | w ∈ Σ≤n }.

Then L
(n)
copy is accepted by the 2-sRR-automaton M

(n)
copy that is specified by the fol-

lowing meta-instructions:

(c, c, Σm, c, Σm · $) for all c ∈ Σ and m = 0, 1, . . . , n− 1, (c · $,Accept),

which are of combined size O(
∑n

m=1 log m) = O(n · log n), while it can be shown
that Lcopy is not accepted by any 2-sRL-automaton at all.

The following language has been considered before in various contexts [8, 11].

Example 6. For t ≥ 1, let Σt := {a1, a2, . . . , at}. The language LEt and its finite
approximations LE

(n)
t (n ∈ N+) are defined as follows:

LEt := {w ∈ Σ∗
t | |w|a1 = |w|a2 = ... = |w|at } and

LE
(n)
t := {w ∈ Σ∗

t | |w|a1 = |w|a2 = ... = |w|at ≤ n }.

A deterministic t-sRR-automaton MLEt for LEt is given through the following meta-
instructions, where π varies over all permutations of the set {1, 2, . . . , t}:

(1.π) (c, aπ(1), a
∗
π(1), aπ(2), {aπ(1), aπ(2)}∗, aπ(3), . . . , (Σt r {aπ(t)})∗, aπ(t), Σ

∗
t · $),

(2) (c · $,Accept).

In each cycle MLEt simply deletes the first occurrence of each of the t letters of Σt.
Obviously, the size of MLEt is O(t2 · t!).

In order to construct a t-sRR-automaton M
(n)
LEt

for the finite approximation LE
(n)
t

of LEt, we must ensure that no string of length exceeding the number n·t is accepted
by changing the regular constraints of the meta-instructions of MLEt accordingly.
This involves the incorporation of a counter that ensures that M

(n)
LEt

rejects each
tape content that exceeds this length bound. Accordingly, the size of the description
of M

(n)
LEt

will be even larger than the size of MLEt .



Descriptional Complexity of sRL-Automata 11

4 A Non-Recursive Trade-off

Let T be a single-tape Turing machine. Then the language VALC(T ) of all valid
computations of T consists of all words of the form ω0#ω1# . . .#ωn#, where ω0

is an initial configuration of T , ωn is an accepting configuration of T , and ωi+1 is
an immediate successor configuration of the configuration ωi for all 0 ≤ i ≤ n − 1.
Each configuration ωi is of the form t0t1 . . . tj−1qtjtj+1 . . . t`, where t0t1 . . . t` is the
support of the tape inscription and q is the current state of T , scanning tj . Let
ΣT be the input alphabet of T , let ΓT = {s1, . . . , sm} be the tape alphabet of T
containing ΣT , let QT = {q1, . . . , qn} be the set of internal states of T , where q1 is
the initial state and qn is the only final state. We encode the language VALC(T )
over Σ := {q, s, 0, 1, c, #} using the morphism ϕ that is defined as follows, where
k := max{m,n}+ 1:

qi 7→ q0i1k−ic3 (1 ≤ i ≤ n), si 7→ s0i1k−ic3 (1 ≤ i ≤ m), # 7→ #c3.

By VALCϕ(T ) we denote the image ϕ(VALC(T )).

Lemma 3. From a single-tape Turing machine T we can construct a deterministic
2-sRL-automaton MT and a regular language ET over Σ such that VALCϕ(T ) =
L(MT ) ∩ ET .

Proof. First we define a number of auxiliary regular languages:

CONFi := ϕi(Γ ∗
T ) · ϕi(QT ) · ϕi(Γ+

T ) ·#ci for i = 1, 2, 3;
CONFinit,i := ϕi(q1) · ϕi(Σ+

T ) ·#ci for i = 1, 2, 3;
CONFfinal,i := ϕi(Γ ∗

T ) · ϕi(qn) · ϕi(Γ+
T ) ·#ci for i = 1, 2, 3;

CONFi,i+1 := ϕi(Γ ∗
T ) · ϕi+1(Γ ∗

T ) · ϕi+1(QT ) · ϕi+1(Γ ∗
T ) ·#ci+1

∪ ϕi(Γ ∗
T ) · ϕi(QT ) · ϕi(Γ ∗

T ) · ϕi+1(Γ ∗
T ) ·#ci+1 for i = 1, 2.

Here ϕi is obtained from ϕ (= ϕ3) by replacing each factor c3 by the factor ci,
i = 1, 2. Without a restart the deterministic 2-sRL-automaton MT will accept the
regular language S := CONFinit,1 · CONF∗1 · CONFfinal,2. In each cycle it will check
that the current tape contents belongs to the regular language

E := CONFinit,3 · CONF∗3 · CONFfinal,3

∪ CONFinit,1 · CONF∗1 · CONF1,2 · CONF2,3 · CONF∗3 · CONFfinal,3,

where CONFinit,1 can coincide with CONF1,2, and CONFfinal,3 can coincide with
CONF2,3. In each cycle MT compares the first letter from ϕ2(QT ∪ΓT ) of the factor
from CONF1,2 with the first letter from ϕ3(QT ∪ΓT ) of the factor from CONF2,3. If
these two symbols correspond to each other with respect to the transition relation of
the Turing machine T , then from the suffix of each of these encoded letters, a single
occurrence of the symbol c is deleted. Thus, MT is a deterministic 2-sRL-automaton.
Taking ET as the regular language ET := CONFinit,3 · CONF∗3 · CONFfinal,3, it is
easily verified that VALCϕ(T ) = L(MT ) ∩ ET holds. ut

Based on this technical result we will now establish a non-recursive trade-off. For
doing so we need the following general result, which is a generalization of Hartmanis’



12 H. Messerschmidt, F. Mráz, F. Otto, M. Plátek

technique [2] for establishing non-recursive trade-offs. Here a descriptional system
D is a recursive set of finite descriptions, where each descriptor A ∈ D describes
a formal language L(A), and there exists an effective procedure to convert A into
a Turing machine that decides (or semi-decides) membership in L(A), if L(A) is
recursive (recursively enumerable). For example, the class of finite-state acceptors
and the class of sRL-automata constitute descriptional systems.

Theorem 5. [7] Let D1 and D2 be two descriptional systems. If for every Turing
machine T , a language LT ∈ L(D1) and a descriptor AT ∈ D1 for LT can be effec-
tively constructed such that LT ∈ L(D2) if and only if the language L(T ) accepted
by T is finite, then the trade-off between D1 and D2 is non-recursive.

Let D := (det-2-sRL,REG) consist of pairs of the form (M,E), where M is a de-
terministic 2-sRL-automaton and E is a regular expression. A pair (M,E) describes
the language L(M,E) := L(M) ∩ E. Obviously, D is a descriptional system.

Given a (single-tape) Turing machine T , let LT denote the language VALCϕ(T ) of
encodings of valid computations. From Lemma 3 we see that a descriptor (M,E) ∈ D
can be constructed effectively for this language. Further, there exists a finite-state
acceptor for the language VALCϕ(T ) if and only if this language is regular, which
in turn is the case if and only if the language L(T ) is finite (see, e.g, [4]). Thus, we
obtain the following consequence.

Corollary 1. There is a non-recursive trade-off between the descriptional system
D = (det-2-sRL,REG) and the finite-state acceptors.

Thus, deterministic 2-sRL-automata (in combination with a regular expression)
allow a very succinct representation of (certain) regular languages.

It currently remains open whether a corresponding non-recursive trade-off exists
between the (deterministic) 2-sRL-automata and the finite-state acceptors.

References

1. A. V. Aho, J. E. Hopcroft, and J. D. Ullman. A general theory of translation. Math. Systems
Theory 3 (1969) 193-221.

2. J. Hartmanis. On the succinctness of different representations of languages. SIAM J. Comput. 9
(1980) 114-120.

3. M. Holzer, M. Kutrib, and J. Reimann. Descriptional complexity of deterministic restarting
automata. In: C. Mereghetti, B. Palano, G. Pighizzini, and D. Wotschke (eds.), DCFS 2005,
Proc., Università degli Studi di Milano, 2005, 158–169.

4. J. E. Hopcroft and J. D. Ullman. Introduction to Automata Theory, Languages, and Compu-
tation. Addison-Wesley, Reading, MA, 1979.

5. M. Lopatková, M. Plátek, and V. Kuboň. Modeling syntax of free word-order languages:
Dependency analysis by reduction. In: V. Matoušek, P. Mautner, and T. Pavelka (eds.), TSD
2005, Proc., LNCS 3658, Springer, Berlin, 2005, 140–147.

6. M. Lothaire. Combinatorics on Words. Encyclopedia of Mathematics, Vol. 17, Addison-Wesley,
Reading, 1983.

7. A. Malcher. Descriptional complexity of cellular automata and its decidability questions. J. Au-
tom. Lang. Comb. 7 (2002) 549–560.

8. F. Mráz, F. Otto, and M. Plátek. Degrees of free word-order and restarting automata. Gram-
mars, to appear.



Descriptional Complexity of sRL-Automata 13

9. F. Mráz, F. Otto, and M. Plátek. On the gap-complexity of simple RL-automata. DLT 2006,
to appear.

10. F. Otto. Restarting automata and their relations to the Chomsky hierarchy. In: Z. Ésik and
Z. Fülöp (eds.), DLT 2003, Proc., LNCS 2710, Springer, Berlin, 2003, 55–74.

11. G. Păun. Marcus Contextual Grammars, Studies in Linguistics and Philosophy, vol. 67. Kluwer,
Dordrecht/Boston/London, 1997.


