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Abstract

In this paper, we solve the duplication problem

Pn(ax) =
n∑

m=0

Cm(n, a)Pm(x),

where{Pn}n≥0 belongs to a wide class of polynomials, including the classical orthogonal poly-
nomials (Hermite, Laguerre, Jacobi) as well as the classical discrete orthogonal polynomials
(Charlier, Meixner, Krawtchouk) for the specific casea = −1. We give closed-form expres-
sions as well as recurrence relations satisfied by the duplication coefficients.
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1 Introduction

Let P be the linear space of polynomials with complex coefficients. A polynomial sequence
{Pn}n≥0 in P is called apolynomial setif and only if deg Pn = n for all nonnegative integers
n.

Given a polynomial set{Pn}n≥0, the so-calledduplication or multiplication problemassociated to
this family asks to find the coefficientsCm(n, a) in the expansion

Pn(ax) =
n∑

m=0

Cm(n, a)Pm(x), (1.1)

wherea designates a nonzero complex number.

Such identities have applications in many problems in pure and applied mathematics, especially in
combinatorial analysis. This problem may be viewed as a special case of the so-calledconnection
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problembetween two polynomial sets where the first member of (1.1) is replaced by a polynomial
setQn(x).

The solution of this problem is known for some particular polynomial sets. For instance, the so-
called Fields-Wimp expansion [10] gives a solution for some hypergeometric polynomials [17].

A general method, based on lowering operators and generating functions, was developed in [2, 3] to
solve connection and linearization problems [4, 7]. The purpose of this work is to use this approach
to express explicitly the coefficientsCm(n, a). The method depends on simple manipulations of
formal power series. The approach we shall propose in this paper does not need the orthogonality
of the polynomials involved in the problem, and in this way the formulae obtained are still valid
outside the range of orthogonality of the parameters.

2 The method

Definition 2.1. Let {Pn}n≥0 be a polynomial set.{Pn}n≥0 is said to have a generating function
of Boas-Buck type (or is called a Boas-Buck polynomial set) if there exists a sequence of nonzero
numbers(λn)n≥0 such that

∞∑
n=0

λnPn(x)tn = A(t)B(xC(t)), (2.1)

whereA, B, C are three formal power series such that

A(0)C ′(0) 6= 0, C(0) = 0 and B(k)(0) 6= 0, k ∈ N. (2.2)

The choice ofC(t) = t gives the class of Brenke polynomials.

It is obvious to see that if the normalization is changed, say:Pn = cnP̃n, then the new duplication
coefficientsC̃m(n, a) are given by

C̃m(n, a) =
cm

cn

Cm(n, a).

That means that there is not loss of generality if we limit ourselves to the caseλn =
1

n!
in (2.1).

Theorem 2.2.Let{Pn}n≥0 be a Boas-Buck polynomial set generated by (2.1). Then the associated
duplication coefficients defined by (1.1) are given by

F(t) =
A(t)

A (Φ(t))
Φm(t) =

∞∑
n=m

m!

n!
Cm(n, a)tn (2.3)

whereΦ(t) = C−1(aC(t)) andC−1 is the inverse ofC, i.e. C−1(C(t)) = C(C−1(t)) = t.

Proof. The proof of this result is based on the following lemma.

Lemma 2.3 (see [3], Corollary 3.9).Let {Pn}n≥0 and{Qn}n≥0 be two polynomial sets of Boas-
Buck type that are generated, respectively, by

A1(t)B (xC1(t)) =
∞∑

n=0

Pn(x)

n!
tn and A2(t)B (xC2(t)) =

∞∑
n=0

Qn(x)

n!
tn.
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Then the connection coefficients in

Qn(x) =
n∑

m=0

Cm(n)Pm(x), (2.4)

are given by
A2(t)

A1 (Φ(t))
Φm(t) =

∞∑
k=m

m!

k!
Cm(k)tk, (2.5)

whereΦ(t) = C−1
1 (C2(t)).

In order to derive (2.3) from this lemma, we setA1 = A2 = A, C1 = C andC2 = aC in (2.5).

This result shows that the duplication coefficients of a Boas-Buck polynomial set generated by (2.1)
depend only onC andA.

3 Applications

3.1 Brenke polynomials

Corollary 3.1. The Brenke polynomials{Pn}n≥0, generated by

A(t)B (xt) =
∞∑

n=0

Pn(x)

n!
tn,

possess a duplication formula of the form

Pn(ax) =
n∑

m=0

(
n

m

)
amβn−m(a)Pm(x) (3.1)

where
A(t)

A(at)
=

∞∑
k=0

βk(a)

k!
tk. (3.2)

Proof. Applying Theorem 2.2 withC(t) = t, we obtainΦ(t) = at and

A(t)

A(at)
amtm =

∞∑
n=m

m!

n!
Cm(n, a)tn.

Put
A(t)

A(at)
=

∞∑
k=0

βk(a)

k!
tk. It follows, by identification, thatCm(n, a) =

(
n

m

)
amβn−m.

ForA(t) = et, Corollary 3.1 is reduced to Carlitz Formula [6]

Pn(ax) =
n∑

m=0

(
n

m

)
am(1− a)n−mPm(x). (3.3)

Let us mention that Corollary 3.1 was already given in [3] and applied essentially to a someq-
polynomial sets.

Next, we consider some examples.

3



3.1.1 Brafman polynomials

The Brafman polynomials defined by

B1
n((ap), (bq); x) = p+1Fq

(
−n, (ap)

(bq)

∣∣∣∣∣ x
)

(3.4)

are generated by ([5, 8])
∞∑

n=0

B1
n((ap), (bq); x)

tn

n!
= et

pFq

(
(ap)

(bq)

∣∣∣∣∣−xt

)
. (3.5)

For the definition of the generalized hypergeometric functionpFq see [18] or [15].

In the given case, we haveA(t) = et. According to (3.3), we obtain

B1
n((ap), (bq); ax) =

n∑
m=0

(
n

m

)
am(1− a)n−mB1

m((ap), (bq); x). (3.6)

A particular case of the Brafman polynomials are the Laguerre polynomials generated by ([18], p.
201)

et
0F1

(
−

α + 1

∣∣∣∣∣−xt

)
=

∞∑
n=0

L
(α)
n (x)

(α + 1)n

tn. (3.7)

According to (3.3) or (3.6), we find the well-known formula ([18], p. 209)

L(α)
n (ax) =

n∑
m=0

(α + 1)n

(n−m)!(α + 1)m

am(1− a)n−mL(α)
m (x).

3.1.2 Chaunday polynomials

The Chaunday hypergeometric polynomials

P λ
n (x) = p+1Fq+1

(
−n, (ap)

1− λ− n, (bq)

∣∣∣∣∣ x
)

are generated by [8]
∞∑

n=0

(λ)n

n!
P λ

n (x)tn = (1− t)−λ
pFq

(
(ap)

(bq)

∣∣∣∣∣ xt

)
.

For this case we haveA(t) = (1− t)−λ and

A(t)

A(at)
=

(
1− t

1− at

)−λ

It follows, using a Cauchy product,

(1− t)−λ(1− at)λ =
∞∑

n=0

(λ)n

n!
tn

∞∑
n=0

(−λ)n

n!
antn =

∞∑
n=0

(
n∑

k=0

(λ)n−k

(n− k)!

(−λ)k

k!
ak

)
tn

=
∞∑

n=0

(λ)n

n!

(
n∑

k=0

(−n)k(−λ)k

(1− λ− n)k

ak

k!

)
tn =

∞∑
n=0

(λ)n

n!
2F1

(
−n,−λ

1− λ− n

∣∣∣∣∣ a
)

tn .

(3.8)
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Note that this type of computation can be done completely automatically by theSumtohyper
command of the Maplehsum package [15]. We obtain from (3.1)

(λ)n P λ
n (ax) =

n∑
m=0

(
n

m

)
am(λ)n−m 2F1

(
m− n,−λ

1− λ− n + m

∣∣∣∣∣ a
)

(λ)mP λ
m(x). (3.9)

It is easy to obtain the recurrence equation

a m (m + 1) βm(a)− (λ + a m + a + m + 1− λ a) βm+1(a) + βm+2(a) = 0

for the coefficientsβk(a) defined by (3.2) in the given situation. This can be accomplished at least
in two ways: Either we use the given generating functionF (t) := A(t)/A(at) of βk(a)/k!, compute
the holonomic differential equation (i. e. linear, homogeneous with polynomial coefficients)

(−1 + t) (−1 + a t) F ′(t) + λ (a− 1) F (t) = 0

for F (t) and convert this differential equation into the above holonomic recurrence equation for the
corresponding series coefficients by the MapleFPSpackage (see [12] and [14]).

Or we use the hypergeometric representation ofβk(a) given by (3.8) and (3.2) together with Zeil-
berger’s algorithm (see e. g. [15]) via the Maplesumrecursion command which yields the same
recurrence.

3.1.3 Gould-Hopper polynomials

Recall that the Gould-Hopper polynomials are generated by [11]

ehtd exp(xt) =
∞∑

n=0

gd
n(x, h)

tn

n!
, d ∈ N. (3.10)

For this case we haveA(t) = ehtd and

A(t)

A(at)
= eh(1−ad)td =

∞∑
k=0

hk(1− ad)k

k!
tkd , (3.11)

which, by virtue of (3.1), gives

gd
n(ax, h) =

[n
d
]∑

m=0

ann!

m!(n− dm)!
hm(a−d − 1)mgd

n−dm(x, h). (3.12)

This family contains as special case the Hermite polynomialsHn(x) = g2
n(2x,−1), so, (3.12) is

reduced to

Hn(ax) =

[n
2
]∑

m=0

ann!

(n− 2m)!m!
(1− a−2)mHn−2m(x).
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3.2 Shifted Jacobi polynomials

The shifted Jacobi polynomials defined by [18]

R(α,β)
n (x) = P (α,β)

n (1− x) =
(α + 1)n

n!
2F1

(
−n, α + β + n + 1

α + 1

∣∣∣∣∣ x2
)

,

are generated by

(1− t)−λ
2F1

(
λ
2
, λ+1

2

α + 1

∣∣∣∣∣ −2xt

(1− t)2

)
=

∞∑
n=0

(λ)nR
(α,β)
n (x)

(1 + α)n

tn,

whereλ = α + β + 1.

To solve the duplication problem for the shifted Jacobi case, we need the following lemma

Lemma 3.2 (Lagrange’s inversion formula [20]).Let ξ be a function oft implicitly defined by

ξ = t(1 + ξ)s+1, ξ(0) = 0. (3.13)

Then we have

(1 + ξ(t))r =
∞∑

n=0

r

r + (s + 1)n

(
r + (s + 1)n

n

)
tn, (3.14)

wherer ands are complex numbers not independent ofn.

For this case we have
A(t) = (1− t)−λ and C(t) =

−t

(1− t)2
.

C−1 is implicitly defined by
(1− C−1(t))2t = −C−1(t) .

Using (3.14), withξ = −C−1, s = 1 andr = λ + 2m, we obtain

[C−1]m(t)

A(C−1(t))
= (−1)m(1− C−1(t))2m+λtm

= (−1)m

∞∑
n=0

λ + 2m

λ + 2n + 2m

(
2n + 2m + λ

n

)
tn+m .
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Replacingt by aC(t) and multiplying byA(t), we get moreover

F(t) = (1− t)−λ(−1)m

∞∑
n=0

λ + 2m

λ + 2n + 2m

(
2n + 2m + λ

n

)
(aC(t))n+m

=
∞∑

n=0

λ + 2m

λ + 2n + 2m

(
2n + 2m + λ

n

)
an+m(−1)n tn+m

(1− t)2n+2m+λ

=
∞∑

n=0

∞∑
k=0

(2n + 2m + λ)k

k!

λ + 2m

λ + 2n + 2m

(
2n + 2m + λ

n

)
an+m(−1)ntn+m+k

=
∞∑

n=0

n∑
k=0

(2k + 2m + λ)n−k

(n− k)!

λ + 2m

λ + 2m + 2k

(
2m + 2k + λ

k

)
am+k(−1)ktn+m

=
∞∑

n=m

(
n−m∑
k=0

(2m + 2k + λ)n−m−k

(n−m− k)!

λ + 2m

λ + 2m + 2k

(
2m + 2k + λ

k

)
am+k(−1)k

)
tn .

The duplication formula associated to shifted Jacobi polynomials can therefore be written in terms
of hypergeometric functions as follows

R(α,β)
n (ax) =

n∑
m=0

am

(n−m)!

(1 + α)n

(1 + α)m

(λ + n)m

(λ + m)m
2F1

(
m− n, m + n + λ

2m + λ + 1

∣∣∣∣∣ a
)

R(α,β)
m (x). (3.15)

ForCm(n, a) we get (again by Zeilberger’s algorithm) the recurrence

a (m− n) (α + β + 5 + 2 m) (α + β + 2 + m) (α + β + 1 + m)

(2 m + 4 + α + β) (m + n + α + β + 1) Cm(n)− (1 + α + m)

(α + β + 5 + 2 m) (α + β + 1 + 2 m) (α + β + 2 + m)(2 a m2 − 4 m2

− 4 m β + 2 a m α− 12 m + 2 a m β + 6 a m− 4 m α− 8 + 2 a α n

+ 2 a n + 2 a n2 + 2 a β n + 4 a β + 4 a α + 2 a β α + 4 a− 6 α

− 6 β + a α2 + a β2 − α2 − 2 β α− β2)Cm+1(n) + a (2 + m− n)

(2 + α + m) (1 + α + m) (2 m + α + β + 2) (α + β + 1 + 2 m)

(m + α + 3 + β + n) Cm+2(n) = 0

w. r. t. the variablem. The initial values for this recurrence are given byCn(n) = an andCn+1(n) =
0. In a similar way, the recurrence

(2 + α + n) (1 + α + n) (4 + 2 n + β + α) (m− n)

(m + n + α + β + 1) Cm(n)− (2 + α + n) (α + 3 + 2 n + β)

(α + β + 1 + n)(a α2 − α2 + 2 a β α− 2 β α− 2 α n− 4 α− 2 m α

+ 6 a α + 4 a α n− 4− 2 m2 − 2 m β − 2 n2 − 2 β n + 12 a n

+ 4 a n2 + 4 a β n + 6 a β + 8 a− 2 m− 4 β − 6 n + a β2 − β2)

Cm(n + 1) + (2 n + α + β + 2) (α + β + 2 + n) (α + β + 1 + n)

(m− n− 2) (m + α + 3 + β + n) Cm(n + 2) = 0

w. r. t. n is obtained, where we have replacedλ by α + β + 1, again.
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3.3 Classical discrete orthogonal polynomials

In this section, we limit ourselves to the following particular duplication problem

Pn(−x) =
n∑

k=0

Ck(n)Pk(x). (3.16)

3.3.1 Charlier polynomials

The monic Charlier polynomial set [9, Chapter VI, (1.2)]

C̃(α)
n (x) =

n∑
m=0

(
n

m

)
(−α)n−mm!

(
x

m

)
(n ≥ 0)

is generated by [9, Chapter VI, (1.2)]

G(x, t) = e−αtex log(1+t) =
∞∑

n=0

C̃
(α)
n (x)

n!
tn . (3.17)

For this case we have:

A(t) = e−αt, C(t) = log(1 + t), C−1(t) = et − 1 andΦ(t) = − t

t + 1
.

It follows that

F(t) =
A(t)

A (Φ(t))
Φm(t) = (1 + t)−m exp(−α

t

t + 1
)e−αt(−t)m . (3.18)

By sum manipulations, we get

(1 + t)−m exp(−α
t

t + 1
) =

∞∑
n=0

(−α)n

n!

tn

(1 + t)n+m

=
∞∑

n=0

(−α)n

n!
tn

(
∞∑

k=0

(−1)k (n + m)k

k!
tk

)

=
∞∑

n=0

(
n∑

k=0

(−1)n (m)n

(m)k

αk

k!(n− k)!

)
tn.

It follows

F(t) =
∞∑

n=0

(
n∑

k=0

(−1)n (m)n

(m)k

αk

k!(n− k)!

)
tn

∞∑
n=0

(−α)n

n!
tn(−t)m

=
∞∑

n=m

(−1)n

(
n−m∑
p=0

p∑
k=0

(m)p

(m)k

αn−m+k−p

k!(p− k)!(n−m− p)!

)
tn. (3.19)

Then the duplication coefficient in(3.16) is given by

Cm(n) = (−1)nαn−m

(
n

m

) n−m∑
k=0

(−n + m)k(m)k

k!
1F1

(
−k

m

∣∣∣∣∣−α

)
(−α)−k. (3.20)
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Recently, a fourth order recurrence relation to calculate the connection coefficients in this last dupli-
cation formula was given in [1] where the authors used a different approach based on the so-called
Navima algorithm. Unfortunately their recurrence [1, p. 386] contains a misprint and is wrong.

Using the above double sum and a Fasenmyer type algorithm [15] to deduce recurrence equations for
multiple hypergeometric series ([19], see also [22]) we get – using Sprenger’smultsum package –
the following much simpler third order recurrence forCm(n):

−α (m + 2) (m + 1) (m + 3) Cm+3(n)

− (m + 2) (m + 1) (1 + m + 2 α) Cm+2(n)

+ (m + 1) (−1− 2 m− 2 α + n) Cm+1(n) + (n−m) Cm(n) = 0

w. r. t. m with initial valuesCn(n) = (−1)n andCn+1(n) = Cn+2(n) = 0, as well as1

(n + 3−m) Cm(n + 3) + (n + 2) (n + 3) (n + 1 + 2 α) Cm(n + 1)

+ (n + 2) α (n + 1) (n + 3) Cm(n) + (n + 3) (2 n + 4 + 2 α−m) Cm(n + 2)

= 0

w. r. t. n.

3.3.2 Meixner polynomials

The monic Meixner polynomial set [16, Theorem 6]

M̃n(x; α, c) = (α)n

(
c

c− 1

)n

2F1

(
−n,−x

α

∣∣∣∣∣ 1− 1

c

)
(n ≥ 0)

is generated by [13, (1.9.11)]:

G(x, t) =
∞∑

n=0

(
c− 1

c

)n
M̃n(x; α, c)

n!
tn =

1

(1− t)α
exp(x ln

1− t
c

1− t
).

For this case, we have

A(t) =
1

(1− t)α
, C(t) = ln

1− t
c

1− t
, C−1(t) =

c (et − 1)

et c− 1
andΦ(t) =

c t

−c + c t + t
.

It follows that

F(t) =
A(t)

A (Φ(t))
Φm(t) =

(
1− t

c

1− t

)α
(−t)m(

1− (1 + 1
c
)t
)m+α .

By sum manipulations (as in (3.8)), we get

F(t) = (−t)m

∞∑
n=0

(α)n

n!
2F1

(
−n,−α

1− α− n

∣∣∣∣∣ 1c
)

tn
∞∑

n=0

(m + α)n

n!
(1 +

1

c
)ntn ,

which gives

F(t) = (−t)m

∞∑
n=0

(
n∑

k=0

(α)k

k!
2F1

(
−k,−α

1− α− k

∣∣∣∣∣ 1c
)

(m + α)n−k

(n− k)!
(1 +

1

c
)n−k

)
tn.

1Note that Maple sorts expressions by their memory allocation, therefore the output is not always in the usual order.
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Then the duplication coefficient in(3.16) is given by

Cm(n) = (−1)m n!

m!

(
c + 1

c− 1

)n−m n−m∑
k=0

(α)k(m + α)n−m−k

k!(n−m− k)!
(1 +

1

c
)−k

2F1

(
−k,−α

1− α− k

∣∣∣∣∣ 1c
)

.

(3.21)
Note that in [1, p. 385] a similar representation was obtained.

Using themultsum package, we get the recurrence

−(c− 1)3 (n−m) Cm(n)

−(m + 2)(m + 1)(c− 1)(cn− c2m− c2 − 2αc2 − 3cm− 4c− 2cα− 1−m)Cm+2(n)

−c(m + 3)(m + 2)(m + 1)(m + 2 + α)(c + 1)Cm+3(n)

+(c− 1)2(m + 1)(cn + n− 2cm− c− 2cα− 2m− 1)Cm+1(n) = 0

w. r. t. m with initial valuesCn(n) = (−1)n andCn+1(n) = Cn+2(n) = 0, as well as

c(n + 2)(n + 1)(n + 3)(α + n)(c + 1)Cm(n)

−(n + 3)(n + 2)(c− 1)(nc2 + c2 + 3cn + 3c + n + 1 + 2c2α + 2cα− cm)Cm(n + 1)

+(c− 1)2(n + 3)(2cn + 4c + 2n + 4− cm + 2cα−m)Cm(n + 2)

−(c− 1)3(n + 3−m)C(n + 3) = 0

w. r. t. n.

3.3.3 Krawtchouk polynomials

The monic Krawtchouk polynomial set [16, Theorem 6]

K̃p
n(x, N) = pn (−N)n 2F1

(
−n,−x

−N

∣∣∣∣∣ 1p
)

(n ≥ 0)

is generated by [21]

G(x, t) = (1− pt)N

(
1 + qt

1− pt

)x

=
∞∑

n=0

K̃p
n(x, N)

n!
tn ,

whereq satisfiesp + q = 1. For this case, we have

A(t) = (1− pt)N , C(t) = ln
1 + qt

1− pt
, C−1(t) =

et − 1

et p− p + 1
andΦ(t) =

t

2 p t− 1− t
.

It follows that

F(t) =
A(t)

A (Φ(t))
Φm(t) =

(
1− pt

1− (p− 1)t

)N
(−t)m

(1− (2p− 1)t)m−N
.

Again, by sum manipulation, we get

F(t) = (−1)m

∞∑
n=m

(
n∑

k=0

(N)k

k!
2F1

(
−k,−N

1−N − k

∣∣∣∣∣ p

p− 1

)
(m−N)n−k

(n− k)!
(p− 1)k(2p− 1)n−k

)
tn.

10



Then the duplication coefficient in(3.16) is given by

Cm(n) = (−1)m n!

m!
(2p− 1)n−m

n−m∑
k=0

(N)k(m−N)n−m−k

k!(n−m− k)!
(

p− 1

2p− 1
)k

2F1

(
−k,−N

1−N − k

∣∣∣∣∣ p

p− 1

)
.

(3.22)

One can find such a representation also by the formula

K̃p
n(x, N) = M̃n(x;−N,

p

p− 1
)

which follows from the hypergeometric representations. Therefore from representation (3.21) it
follows for the multiplication coefficients of the Krawtchouk polynomials

Cm(n) = (−1)n n!

m!
(2p−1)n−m

n−m∑
k=0

(−N)k (m−N)n−m−k

k! (n−m− k)!

(
p

2p− 1

)k

2F1

(
−k,N

1 + N − k

∣∣∣∣∣ p− 1

p

)
.

Note that this representation differs from (3.22) modulo some hypergeometric identity.

Using themultsum package, we get the recurrence

p (m + 3) (2 p− 1) (p− 1) (m + 2) (m + 1) (m + 2−N) Cm+3(n)−
(m + 2) (m + 1)

(m + 1 + 5 p2 m + 6 p2 − 5 p m− 6 p− 4 p2 N + 2 N p− n p2 + p n)

Cm+2(n)

+ (m + 1) (4 p m + 2 p− 2 m− 1− 2 N p− 2 p n + n) Cm+1(n)

+ (n−m) Cm(n) = 0

w. r. t. m with initial valuesCn(n) = (−1)n andCn+1(n) = Cn+2(n) = 0, as well as

p (n + 2) (n + 1) (n + 3) (2 p− 1) (p− 1) (n−N) Cm(n) + (n + 3) (n + 2)

(p2 m− p m + 5 p + 5 p n− 5 p2 − 5 n p2 − 1− n + 4 p2 N − 2 N p)

Cm(n + 1) + (m− n− 3) Cm(n + 3)

− (n + 3) (2 p m−m− 8 p− 4 p n + 4 + 2 n + 2 N p) Cm(n + 2) = 0

w. r. t. n.
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