Duplication Coefficients via Generating Functions
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Abstract

In this paper, we solve the duplication problem
Py(ax) = > Cr(n,a)Pn(),
m=0

where{ P, },,>0 belongs to a wide class of polynomials, including the classical orthogonal poly-
nomials (Hermite, Laguerre, Jacobi) as well as the classical discrete orthogonal polynomials
(Charlier, Meixner, Krawtchouk) for the specific case= —1. We give closed-form expres-
sions as well as recurrence relations satisfied by the duplication coefficients.
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1 Introduction

Let & be the linear space of polynomials with complex coefficients. A polynomial sequence
{P.}n>0 In & is called apolynomial seif and only if deg P, = n for all nonnegative integers
n.

Given a polynomial sef P, },,>o, the so-callealuplication or multiplication problenassociated to
this family asks to find the coefficients,,(n, a) in the expansion

Py(ax) = Cp(n,a)Py(x), (1.1)

wherea designates a nonzero complex number.

Such identities have applications in many problems in pure and applied mathematics, especially in
combinatorial analysis. This problem may be viewed as a special case of the socoalhedtion
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problembetween two polynomial sets where the first membey of (1.1) is replaced by a polynomial

setQ,(z).

The solution of this problem is known for some particular polynomial sets. For instance, the so-
called Fields-Wimp expansion [10] gives a solution for some hypergeometric polynomials [17].

A general method, based on lowering operators and generating functions, was developged in [2, 3] to
solve connection and linearization problems |4, 7]. The purpose of this work is to use this approach
to express explicitly the coefficients,,(n,a). The method depends on simple manipulations of
formal power series. The approach we shall propose in this paper does not need the orthogonality
of the polynomials involved in the problem, and in this way the formulae obtained are still valid
outside the range of orthogonality of the parameters.

2 The method

Definition 2.1. Let { P, },>¢ be a polynomial set{P,},>o is said to have a generating function
of Boas-Buck type (or is called a Boas-Buck polynomial set) if there exists a sequence of nonzero
numberg\,,),.>o such that

D APa(@)t" = A(t)B(zC(t)), (2.1)

whereA, B, C are three formal power series such that

A(0)C'(0) £ 0, C(0)=0 and B®(0)#0, k € N. (2.2)
The choice o’ (t) = t gives the class of Brenke polynomials.

It is obvious to see that if the normalization is changed, say:= cnﬁn, then the new duplication
coefficientsC,, (n, a) are given by
Chu(n,a) = c—mC'm(n,a).

n

. o - 1.
That means that there is not loss of generality if we limit ourselves to thekc,;ase—| in ).
n:

Theorem 2.2.Let{ P, },>, be a Boas-Buck polynomial set generated by| (2.1). Then the associated
duplication coefficients defined Hy ([L.1) are given by

Al o e ml N
A(@(t))(l) (t) = mCm(n,a)t (2.3)

n=m

whered(t) = C~!(aC(t)) andC ! is the inverse of’, i.e. C~1(C(¢t)) = C(C~'(t)) = t.

F(t) =

Proof. The proof of this result is based on the following lemma.

Lemma 2.3 (seel[B], Corollary 3.9).Let{ P, }.>o and {Q, }.>o be two polynomial sets of Boas-
Buck type that are generated, respectively, by

n(7)

n!

A (t)B (zCy(t)) =

n=0

Ay

@n(2)

n!

" and Ay(t)B (zCs(t)) = i )
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Then the connection coefficients in

Qn(z) = Z Cn(n) Pr(), (2.4)
are given by
Agt m > m! k
W{E()t))@ (t) = ;;n (k) (2.5)

whered(t) = C7' (Cy(t)).
In order to derive[(2]3) from this lemma, we skt = A, = A, C, = C andCy, = aC'in (2.5). O
This result shows that the duplication coefficients of a Boas-Buck polynomial set generdied by (2.1)

depend only o’ and A.

3 Applications

3.1 Brenke polynomials

Corollary 3.1. The Brenke polynomialSP, },.>o, generated by
- P,(z)

A(t)B (xt) = ; et
possess a duplication formula of the form
n n .
P,(ax) = mzzo (m)a B (@) Py () (3.1)
where
Alt) o Brla)
Alat) _; B (3.2)

Proof. Applying Theorenj 2.2 withC'(¢) = ¢, we obtain®(t) = at and

=, m!

Afat) 25
PUtA(at) = kzo o t*. It follows, by identification, tha€,,,(n, a) = o )a Br—m- ]
For A(t) = ¢!, Corollary[3:1 is reduced to Carlitz Formula [6]
- n m n—m
Palaz) =) (m)a (1= a)"" By (). (3.3)

m=0
Let us mention that Corollary 3.1 was already givenlin [3] and applied essentially to aggome
polynomial sets.

Next, we consider some examples.



3.1.1 Brafman polynomials

The Brafman polynomials defined by

—n, (ap>

B (ay), (0,):) = F( ()

:1:) (3.4)

—xt) . (3.5)

are generated by ([5] 8])

1 tr ot (ap)
3 o 001 = F((m)

For the definition of the generallzed hypergeometric functibnsee [18] or[[15].

In the given case, we havi(t) = ¢'. According to[(3.B), we obtain

A(ap) OJsan) = 3 (1) (1= @B )2 36)

A particular case of the Brafman polynomials are the Laguerre polynomials generated by ([18], p.

201)
_ 00 L(a)(x)
toF —xt | = ” . 3.7
ely 1(a+1 x) HZ:()<Q+1)R (3.7)

According to [3.B) or[(316), we find the well-known formula ([18], p. 209)

n

LY (ax) = Z n _<TO;;—(01(>:_ 1)mam(l —a)" "L ().

m=

3.1.2 Chaunday polynomials

The Chaunday hypergeometric polynomials

-n, (ap)

PXz) = puF
@) = pi1 q+1<1 A=, (b)

)

are generated by|8]

For this case we havA(t) = (1—t)"*and

Ay (1=t
A(at)  \1—at
It follows, using a Cauchy product,

-0 —a) = Z<2),”t”2(_$)”a”f"=2( (nAfZ“.(_kA.)’“a’“> 3




Note that this type of computation can be done completely automatically b$uheohyper
command of the Maplesum package![15]. We obtain from (3.1)

(N PMaz) = mZ (2 )am oo ( o

a) (NP2 (). (3.9)

It is easy to obtain the recurrence equation

m(m+1)Fn(a) —(A+am+a+m+1—Xa)fBnii(a)+ Brnia(a) =0

for the coefficients’;,(a) defined by[(3.R) in the given situation. This can be accomplished at least
in two ways: Either we use the given generating functitn) := A(t)/A(at) of B(a)/k!, compute
the holonomic differential equation (i. e. linear, homogeneous with polynomial coefficients)

(—1+t)(—1+at)F'(t) + A(a—1)F(t) =0

for F'(t) and convert this differential equation into the above holonomic recurrence equation for the
corresponding series coefficients by the MapRS package (seé [12] and [14]).

Or we use the hypergeometric representatiofi,f;) given by [3.8) and[(3]2) together with Zeil-
berger’s algorithm (see e. 4. [15]) via the Maplanrecursion = command which yields the same
recurrence.

3.1.3 Gould-Hopper polynomials

Recall that the Gould-Hopper polynomials are generated by [11]

i exp(zt) Zgn x, h d e N. (3.10)

For this case we havé(t) = ¢"" and

A(t) h(1—ad)td - hE = a)* 4,
=0

which, by virtue of (3.1L), gives

a3

|
g (az, h) = (et — 1)yl (s h), (3.12)

= ml(n — dm)!

This family contains as special case the Hermite polynonfilér) = ¢2(2z, —1), so, [3.12) is
reduced to



3.2 Shifted Jacobi polynomials

The shifted Jacobi polynomials defined by![18]

RP)(z) = Pl (1 — 2) =

n

(a+1), (—n,a+ﬁ+n+1
2F1
a—+1

T
92 )

are generated by

(1 —1t)2 (1+a), ’

Q
+
—_

A Afl
(1_t))\2F1<2’ 2

wherel = a + 3 + 1.

—2xt ) _ i (/\)nR%a’ﬁ)(x)tn

n=0

To solve the duplication problem for the shifted Jacobi case, we need the following lemma

Lemma 3.2 (Lagrange’s inversion formula [20]). Let¢ be a function of implicitly defined by

E=t(1+&, £0)=0. (3.13)
Then we have
- r+(s+1)n\,,
(1+£(t) ;HS“ ( ; )t, (3.14)

wherer and s are complex numbers not independent of

For this case we have
Alt)=(1—-t)and C(t) =

11—t
C~'is implicitly defined by

(1—-C7't)’t=-C'(t).
Using (3.14), withé = —C~!, s = 1 andr = A + 2m, we obtain

cme avm(q =1 2maAm

o0

R A+2m (2n+2m+)\)tn+m

:0)\+2n+2m n



Replacingt by aC(t) and multiplying byA(¢), we get moreover

o0

Ft) = (11—t =1 A+2m (2n+2m+)\

n:0A+2n+2m

_ AT amo a _
‘= A+2n+2m n (1 — t)2nt2mtA

B ii(2n+2m+mk A +2m (2n+2m+)\
B k

Jacwy

n

) gt ( _ 1)ntn+m+k’

s ! A+ 2n+2m n

= (2k4+2m A+ Nk A +2m 2m + 2k + A\ ik .
= > Y a" R (— 1)k

oot (n—k)! A+ 2m+ 2k k

) i<n—m(2m+2k+/\)n_m_k A+ 2m (2m+2k+/\)am+k(—1)k>t”.

(n—m—k)!  A+2m+2k k

k=0

n=m

The duplication formula associated to shifted Jacobi polynomials can therefore be written in terms

of hypergeometric functions as follows

n

m I+a), A+n)ny m—mn,m+n-+ A
R@B) (42 — “ (
w ' (az) Z(n—m)!(1+a)m(A+m)m2 o2m a4

m=0

ForC,.(n,a) we get (again by Zeilberger’s algorithm) the recurrence

a(m—n)(a+B+5+2m)(a+pf+2+m)(a+G+1+m)
Cm+4+a+p)(m+n+a+F+1)Cphn)—(1+a+m)
(a+pB+5+2m)(a+B+1+2m)(a+B+2+m)(2am? —4m?
—4dmpB+2ama—12m+2ampB+6am—4dma—8+2aan
+2an+2an*+2aBn+4aB+4aa+2afa+4a—6a
—68+aa’+aBF —a*—-20a—F)Chii(n)+a(2+m—n)
2+a+m)(l+a+m)2m+a+p8+2)(a+F+1+2m)
(m+a+3+5+n)Chpia(n) =0

a) R@H) (z),

(3.15)

w. r. t. the variablen. The initial values for this recurrence are givend®y(n) = o™ andC,, 1 (n) =

0. In a similar way, the recurrence

24+a+n)(l+a+n)d+2n+ G+ a)(m—n)
(m+n+a+F+1)Chn) —2+a+n)(a+3+2n+03)
(a+B8+1+n)(ac?—a?+2afa—-2Fa—2an—4a—2ma
+6aa+4aan—4—-2m>—2mpB—2n*—-2pn+12an
+4an®+4afn+6af+8a—2m—43—6n+ap®— %)
Coln+1D)+2n+a+8+2)(a+f+2+n)(a+8+1+n)
(m—-n—-2)(m+a+3+5+n)Cph(n+2)=0

w. . t. n is obtained, where we have replacelly o + 5 + 1, again.



3.3 Classical discrete orthogonal polynomials

In this section, we limit ourselves to the following particular duplication problem

P,(—z) =Y _ Ci(n)Pi(x). (3.16)

3.3.1 Charlier polynomials

The monic Charlier polynomial set/[9, Chapter VI, (1.2)]

Cl(x) = (j;) (—a)"~"m! (;) (n > 0)

m=0
is generated by [9, Chapter VI, (1.2)]

o ~(a)
G(:L‘,t) _ e—ateaxlog(l—i—t) _ Z Cn (gj)

n=0

. (3.17)
n!
For this case we have:

A(t) = e C(t) =log(1 +1), C7Ht) = €' — 1 and®(t) = b

t+1
It follows that
A
F(t) = Y (qgt()t))CD’”(t) =1+t eXp(—Ozt i 1)e‘at(—t)m : (3.18)
By sum manipulations, we get
. t = (—a)" "
(L1 " exp(—a7) = ZO nl (14 ¢)ntm
2 (=a) (&, e+ m)
_ - - _ n(m)n ak n
- §<k:0( 2 (m)kkv(n—ky)t

It follows

n=0 \k=0 0
B e8] . n—m p (m)p &n—m+k—p .
B ,;1(_1) (M £ (m), k!(p—k)!m_m_p)!)t- (3.19)

Then the duplication coefficient if3.16)) is given by

Crn(n) = (=1)"a"™™ (”> nf (=n+ Z)k(m)k B ( —k

k=0

—a) (—a)™". (3.20)
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Recently, a fourth order recurrence relation to calculate the connection coefficients in this last dupli-
cation formula was given in [1] where the authors used a different approach based on the so-called
Navima algorithm. Unfortunately their recurrence [1, p. 386] contains a misprint and is wrong.

Using the above double sum and a Fasenmyer type algofitim [15] to deduce recurrence equations for
multiple hypergeometric series (]19], see alsd [22]) we get — using Spremgalisum package —
the following much simpler third order recurrence €@y, (n):

—a(m+2) (m+ 1) (m+3) Coss(n)
—(m+2)(m+1)(1+m+2a)Chpia(n)
+(m+1)(-1-2m—-2a+n)Cpii(n)+ (n—m)Cyp(n) =0

w. r. t. m with initial valuesC,,(n) = (=1)" andC,,;1(n) = C,,2(n) = 0, as well a§

m+3-—m)Cpr(n+3)+(n+2)(n+3)(n+1+2a)Cp(n+1)
+(n+2)an+1)(n+3)Cp(n)+(n+3)2n+4+2a—m)Cy(n+2)
=0

W. I. t.n.

3.3.2 Meixner polynomials

The monic Meixner polynomial set [16, Theorem 6]

— c n —n, —x
Mn(l’;Oé7C):(Oé>n (C—l) 2F1< a 1

is generated by [13, (1.9.11)]:

> fe—1\" M,(z;a,c . 1 11
G(x,t)zZ( ) ( )t :(1_t>aexp(xln1 ;)

c n!
n=>0

For this case, we have

1 -t clet —1 ct
AW = g CO =1, C l(t)——e(tc_1> ande(t) = ————

It follows that

A ey (L7 2)° (=)™
0= 3?0 = (124 (= )™
By sum manipulations (as ifi (3.8)), we get

F(t)= (0" 3 “jj"m(l‘”’ -

c

1 > n 1
)tn (m + O[) (1 + _)ntn ,
c

o —a—n = n!
which gives
(= (@) —k,—a |1\ (m+a),_k I
= (=t)™ —= O F — |1+ -)" "
Ft)=(=1) 2(16:0 D 2N 1—a—k|lc) (n—Fk) ( +c) !

INote that Maple sorts expressions by their memory allocation, therefore the output is not always in the usual order.
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Then the duplication coefficient if3.16)) is given by

Cin(n) = (_1)mn_! (ﬂ)nmg (a)e(m + a)n,m,k(l " %)_%ﬂ( —k, —« 1

m! \ec—1 Elln —m — k)! l—a—k|c

(3.21)
Note that in[[1, p. 385] a similar representation was obtained.

Using themultsum package, we get the recurrence

—(c=1)°(n—m) Cpn(n)
—(m+2)(m+1)(c—1)(cn — *m — * — 2ac® — 3em — 4¢c — 2ca — 1 — m)Cpia(n)
“elm 4 3)(m - 2)(m 4 D+ 2+ a)(e + )Cnisln)

)

+(c—=1)*(m+ 1) (ecn+n—2cm —c—2ca —2m —1)Cyyiq(n) =0

w. r. t. m with initial valuesC,,(n) = (—1)" andC,,;1(n) = Cy12(n) = 0, as well as
cn+2)(n+1)(n+3)(a+n)(c+1)Cp(n)
—(n+3)n+2)(c—1)(nc*+c+3cn+3c+n+1+2c2a+ 2ca — em)Cp(n + 1)
+(c—1)*(n +3)(2en + 4c+ 2n + 4 — em + 2ca — m) Gy (n + 2)
—(c—1)*(n+3-m)C(n+3)=0

w. r. t.n.

3.3.3 Krawtchouk polynomials

The monic Krawtchouk polynomial set [16, Theorem 6]

is generated by [21]

G(z,t) = (1 —pt)N (—

whereq satisfiep + ¢ = 1. For this case, we have

1+ qt =1 B t

Alt) = (1 —pt)Y, C(t) =In T

It follows that




Then the duplication coefficient if3.16)) is given by

Cn(n) = (-1 e F —_—
(n) = =D" 00 m! kZ:O k'n—m k) (2p—1) 1-N—-k|p—1

(3.22)

One can find such a representation also by the formula

L »
Ry, N) = My =N, )

which follows from the hypergeometric representations. Therefore from represenfation (3.21) it
follows for the multiplication coefficients of the Krawtchouk polynomials
p—1
P :

= (=N (m = N)pme g —k,N
) = (1) 2 -1y 3 = e (7 )QE(

k=0
Note that this representation differs from (3.22) modulo some hypergeometric identity.

kl'(n —m —k)! 2p—1 1+N -k

Using themultsum package, we get the recurrence

p(m+3)(2p—1) (p— 1) (m+2) (m+ 1) (m+2 — N) Cruya(n) —
(m+2)(m+1)
(m+1+5p>m+6p>—5pm—6p—4p? N+2Np—np?>+pn)
Cm—l—Q(n)
+(m+1)dpm+2p—2m—1—-2Np—2pn+n)Chpii(n)
+(n—m)Cp(n) =0

w. r. t. m with initial valuesC,,(n) = (—1)" andC,,;1(n) = Cy12(n) = 0, as well as

p(n+2)(n+1)(n+3)2p—1)(p—1)(n—N)Cpn(n)+(n+3)(n+2)
(P*m—pm+5p+5pn—5p*—bnp?—1—-n+4p* N —2Np)
Cn(n+1)+ (m—n—3)Cp(n+3)
—(n+3)2pm—m—-8p—4pn+4+2n+2Np)C,(n+2)=0

W. . t.n.
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