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Abstract

Many recent Web 2.0 resource sharing applications can be subsumed
under the “folksonomy” moniker. Regardless of the type of resource
shared, all of these share a common structure describing the assignment
of tags to resources by users.

In this report, we generalize the notions of clustering and characteristic
path length which play a major role in the current research on networks,
where they are used to describe the small-world effects on many observable
network datasets. To that end, we show that the notion of clustering has
two facets which are not equivalent in the generalized setting.

The new measures are evaluated on two large-scale folksonomy datasets
from resource sharing systems on the web.

1 Introduction

A new family of so-called “Web 2.0” applications is currently emerging on the
Web. These include user-centric publishing and knowledge management plat-
forms like Wikis, Blogs, and social resource sharing systems. In this paper, we
focus on resource sharing systems, which all use the same kind of lightweight
knowledge representation, called folksonomy. The word ‘folksonomy’ is a blend
of the words ‘taxonomy’ and ‘folk’, and stands for conceptual structures created
by the people.

Resource sharing systems, such as YouTube1 or del.icio.us,2 have acquired
large numbers of users (from discussions on the del.icio.us mailing list, one
can approximate the number of users on del.icio.us to be several hundreds of
thousands) within less than three years. The reason for their immediate success
is the fact that no specific skills are needed for participating, and that these tools
yield immediate benefit for each individual user (e.g. organizing ones bookmarks
in a browser-independent, persistent fashion) without too much overhead. Large
numbers of users have created huge amounts of information within a very short
period of time.

1http://www.youtube.com/
2http://del.icio.us
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We investigate the network structure of folksonomies much on the same line
as the developments in an area of research called “the new science of networks”.
To that end, we will adapt measures for so-called “small world networks” which
have been used on a wide variety of graphs in recent years, to the particular tri-
partite structure of folksonomies and show that folksonomies do indeed exhibit
a small world structure.

2 Related Work

2.1 Folksonomies and Folksonomy Mining

As the field of folksonomies is a young one, there are relatively few scientific
publications about this topic. Refs. [11, 5] provide a general overview of folk-
sonomies, their structure, and provide some insights into their dynamics.

More recently, particular aspects of folksonomies have been elaborated in
more detail, e.g. ranking of contents [7], discovering trends in the tagging be-
haviour of users [4, 8], or learning taxonomic relations from tags [6, 16, 15, 12].

2.2 Small World Networks

The graph-theoretic notions of Section 4 are derived from those developed in
an emerging area of research which has been called “the new science of net-
works” [14], using concepts from social network analysis, graph theory, as well
as statistical physics; see [14] for an overview.

In particular, the notions of clustering coefficient and characteristic path
length as indicators for small world networks have been introduced by Watts
and Strogatz [19]; for particular kinds of networks, such as bipartite [10] or
weighted [1] graphs, variants of those measures have been devised. To the best
of our knowledge, no versions of these measures for tripartite hypergraphs such
as folksonomies, or hypergraphs in general, have been proposed previously.

2.3 Complex Networks

The graph-theoretic notions of Section 4 are derived from those developed in
an emerging area of research which has been called “the new science of net-
works” [14], using concepts from social network analysis, graph theory, as well
as statistical physics; see [14] for an overview.

Networks related to folksonomy, in line with other different human based
social or technological networks, possess lot of other peculiar characteristics.
Probably the most striking is the observation that the degree of nodes, i.e. the
number of links connected to a node, follows a fat tailed distribution index of a
complex interaction between human agents [17].

The notions of clustering coefficient and characteristic path length as indica-
tors for small world networks have been introduced by Watts and Strogatz [19];
for particular kinds of networks, such as bipartite [10] or weighted [1] graphs,
variants of those measures have been devised. To the best of our knowledge, no
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versions of these measures for tripartite hypergraphs such as folksonomies, or
hypergraphs in general, have been proposed previously.

Work has been done also on the complex network of WikiPedia [3] where
links also posses a specific direction.

3 Folksonomy Data Sets

In this section, we will introduce the formal notation used in the remainder of
the paper, as well as the two large scale data sets that we will discuss in the
following sections.

3.1 Folksonomy Notation

In the following, we briefly recapitulate the formal notation for folksonomies
introduced in [7], which we will use in the remainder of the paper.3

A folksonomy is a tuple F := (U, T,R, Y ) where

• U , T , and R are finite sets, whose elements are called users, tags and
resources, resp., and

• Y is a ternary relation between them, i. e. Y ⊆ U × T × R, called tag
assignments (TAS for short).

Another view on this kind of data is that of a 3-regular, tripartite hyper-
graph, in which the node set is partitioned into three disjoint sets: V = T∪U∪R,
and every hyperedge {t, u, r} consists of exactly one tag, one user, and one re-
source.

Sometimes it is convenient to consider all tag assignments of a given user to
a given resource. We call this aggregation of TAS of a user u to a resource r a
post P (u, r) := {(t, u, r) ∈ Y | t ∈ T}.

3.2 del.icio.us Dataset

For our experiments, we collected data from the del.ico.us system in the fol-
lowing way. Initially we used wget starting from the start page of del.ico.us to
obtain nearly 6,900 users and 700 tags as a starting set. Out of this dataset we
extracted all users and resources (i. e. del.icio.us’ MD5-hashed URLs). From
July 27 to 30, 2005, we downloaded in a recursive manner user pages to get
new resources, and resource pages to get new users. Furthermore we monitored
the del.icio.us start page to gather additional users and resources. This way
we collected a list of several thousand usernames which we used for accessing
the first 10,000 resources each user had tagged. From the collected data we fi-
nally took the user files to extract resources, tags, dates, descriptions, extended
descriptions, and the corresponding username.

3We use the simplified version without personomies or hierarchical relations between tags
here.
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We obtained a folksonomy with |U | = 75, 242 users, |T | = 533, 191 tags and
|R| = 3, 158, 297 resources, related by in total |Y | = 17, 362, 212 tag assignments.
In addition, we generated montly snapshots from the timestamps associated
with posts, so that 14 snapshots in monthly intervals from June 15th, 2004
through July 15th, 2005 are available.

3.3 BibSonomy Dataset

As the author is involved in the folksonomy site BibSonomy4, a second dataset
from that system could be obtained directly from a database dump.

As with the del.icio.us dataset, we created monthly snapshots from the times-
tamps, resulting in 20 datasets. The most recent one, from July 31st, 2006,
contains data from |U | = 428 users, |T | = 13, 108 tags, |R| = 47, 538 resources,
connected by |Y | = 161, 438 tag assignments.

4 Small Worlds in Three-Mode-
Networks

The notion of a small world has been introduced in a seminal paper by Mil-
gram [13]. Milgram tried to verify in a practical experiment that, with a high
probability, any two given persons within the United States would be connected
through a relatively short chain of mutual acquaintances. Recently, the term
“small world” has been defined more precisely as a network having a small
characteristic path length comparable to that of a (regular or Erdős) random
graph, while at the same time exhibiting a large degree of clustering [18] (which
a random graph does not). These networks show some interesting properties:
while nodes are typically located in densely-knit clusters, there are still long-
range connections to other parts of the network, so that information can spread
quickly. At the same time, the networks are robust against random node fail-
ures. Since the coining of the term “small world”, many networks, including
social and biological as well as man-made, engineered ones, have been shown to
exhibit small-world properties.

In this section, we will define the notions of characteristic path length and
clustering coefficient in tripartite hypergraphs such as folksonomies, and apply
these to the data sets introduced in Section 3 in order to demonstrate that these
graphs do indeed exhibit small world properties.

4.1 Characteristic Path Length

The characteristic path length of a graph [18] describes the average length of a
shortest path between two random nodes in the graph. If the characteristic path
length is small, few hops will be neccessary, on average, to get from a particular
node in the graph to any other node.

4http://www.bibsonomy.org
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As folksonomies are triadic structures of (tag, user, resource) assignments,
the user interface of such a folksonomy system will typically allow the user to
jump from a given tag to (a) any resource associated with that tag, or (b) any
user who uses that tag, and vice versa for users and resources. Thus, the effort
of getting from one node in the folksonomy to another can be measured by
counting the hyperedges in shortest paths between the two.

More precisely, let v1, v2 ∈ T ∪ U ∪ R be nodes in the folksonomy, and
(t0, u0, r0), . . . , (tn, un, rn) a minimal sequence of TAS such that (tk = tk+1) ∨
(uk = uk+1) ∨ (rk = rk+1) for 0 ≤ k < n and v1 ∈ {t0, u0, r0}, v2 ∈ {tn, un, rn}.
Then we call d(v1, v2) := k the distance of v1 and v2.

Following Watts [18], we define d̄v as the mean of d(v, u) over all u ∈ (T ∪U∪
R)−{v}, and call the median of the d̄v over all v ∈ T ∪U ∪R the characteristic
path length L of the folksonomy.

In Section 5, we will analyse the characteristic path length on our datasets.

4.2 Clustering Coefficients

Clustering or transitivity in a network means that two neighbors of a given node
are likely to be directly connected as well, thus indicating that the network is
locally dense around each node. To measure the amount of clustering around
a given node v, Watts [18] has defined a clustering coefficient γv (for normal,
non-hyper-graphs). The clustering coefficient of a graph is γv averaged over all
nodes v.

Watts [18, p. 33] defines the clustering coefficient γv as follows (Γv = Γ(v)
denotes the neighborhood of v):

Hence γv is simply the net fraction of those possible edges that
actually occur in the real Γv. In terms of a social-network analogy,
γv is the degree to which a person’s acquaintances are acquainted
with each other and so measures the cliquishness of v’s friendship
network. Equivalently, γv is the probability that two vertices in Γ(v)
will be connected.

Note that Watts combines two aspects which are not equivalent in the case
of three-mode data. The first one is: how many of the possible edges around a
node do actually occur, i. e. does the neighborhood of the given vertex approach
a clique? On the other hand, the second aspect is that of neighbors of a given
node being connected themselves.

Following the two motivations of Watts, we thus define two different clus-
tering coefficients for three-mode data:

Cliquishness: From this point of view, the clustering coefficient of a node is
high iff many of the possible edges in its neighborhood are present.

More formally: Consider a resource r. Then the following tags Tr and users
Ur are connected to r: Tr = {t ∈ T | ∃u : (t, u, r) ∈ Y }, Ur = {u ∈ U |
∃t : (t, u, r) ∈ Y }. Furthermore, let tur := {(t, u) ∈ T × U | (t, u, r) ∈ Y }
the (tag, user) pairs occurring with r.
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If the neighborhood of r was maximally cliquish, all of the pairs from
Tr × Ur would occur in tur. So we define the clustering coefficient γcl(r)
as:

γcl(r) =
|tur|

|Tr| · |Ur|
(1)

i.e. the fraction of possible pairs present in the neighborhood. A high
γcl(r) would indicate, for example, that many of the users related to a
resource r assign overlapping sets of tags to it.

The same definition of γcl stated here for resources can be made symmet-
rically for tags and users.

Connectedness (Transitivity): The other point of view follows the notion
that the clustering around a node is high iff many nodes in the neighbor-
hood of the node were connected even if that node was not present.

In the case of folksonomies: consider a resource r. Let t̃ur := {(t, u) ∈
T × U | (t, u, r) ∈ Y ∧ ∃r̃ 6= r : (t, u, r̃) ∈ Y } be the pairs of (tag, user)
from that set that also occur with some other resource than r. Then we
define:

γco(r) :=
|t̃ur|
|tur|

(2)

i.e. the fraction of r’s neighbor pairs that would remain connected if r
were deleted. γco indicates to what extent the surroundings of the resource
r contain “singleton” combinations (user, tag) that only occur once.

Again, the definition works the same for tags and users, and the clustering
coefficients for the whole folksonomy are defined as the arithmetic mean
over the nodes.

One might suspect that there is a systematic connection between the two,
such as γcl(r) < γcl(s) ⇒ γco(r) < γco(s) for nodes r, s ∈ T ∪U ∪R, or similarly,
on the level of the whole folksonomy, γco(F) < γco(G) ⇒ γcl(F) < γcl(G).

The following example demonstrates that this is not the case: consider a
folksonomy F with tag assignments Y1 = {(t1, u2, r2), (t1, u1, r1), (t1, u1, r2),
(t1, u2, r1), (t1, u3, r3), (t2, u3, r3), (t2, u4, r4)}.

Here we have γcl(t1) ≈ 0.556 > γcl(t2) = 0.5, but γco(t1) = 0.2 < γco(t2) =
0.5.

Also, there is no monotonic connection when considering the folksonomy as
a whole. For the whole folksonomy F, we have γcl(F) ≈ 0.906, γco(F) ≈ 0.470.

Considering a second folksonomy G with tag assignments Y2 = {(t1, u1, r1),
(t1, u1, r3), (t1, u2, r2), (t1, u3, r2), (t2, u1, r2), (t2, u2, r1), (t2, u2, r2), (t2, u2, r3),
(t3, u1, r2), (t3, u2, r2)}, we see that γcl(G) = 0.642, γco(G) = 0.669, thus γcl(F) >
γcl(G) while γco(F) < γco(G).
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Figure 1: Characteristic Path Length for the BibSonomy dataset

5 Experiments

5.1 Setup

In order to check whether our observed folksonomy graphs exhibit small world
characteristics, we compared the characteristic path lengths and clustering co-
efficients with random graphs of a size equal in all dimensions T , U , and R as
well as Y to the respective folksonomy under consideration.

Two kinds of random graphs are used for comparison:

Binomial: These graphs are generated similar to an Erdős random graph G(n, M)
[2]. T,U,R are taken from the observed folksonomies. |Y | many hyper-
edges are then created by picking the three endpoints of each edge from
uniform distributions over T , U , and R, resp.

Permuted: These graphs are created by using T,U,R from the observed folk-
sonomy. The tagging relation Y is created by taking the TAS from the
original graph and permuting each dimension of Y independently (using
a Knuth Shuffle [9]), thus creating a random graph with the same degree
sequence as the observed folksonomy.

As computing the characteristic path length is prohibitively expensive for
graphs of the size encountered here, we sampled 200 nodes randomly from each
graph and computed the path lengths from each of those nodes to all others in
the folksonomy using breadth-first search.

For all experiments involving randomness (i. e. those on the random graphs
as well as the sampling for characteristic path lengths), 20 runs were performed
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Figure 2: Characteristic Path Length for the del.icio.us dataset
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Figure 3: Cliquishness γcl of the BibSonomy dataset
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Figure 4: Cliquishness γcl of the del.icio.us dataset
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Figure 5: Transitivity γco of the BibSonomy dataset
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Figure 6: Transitivity γco of the del.icio.us dataset

to ensure consistency. The presented values are the arithmetic means over the
runs; the deviations across the runs were negligible in all experiments.

5.2 Observations

Figures 1–6 show the results for the clustering coefficients and the characteristic
path lengths for both datasets, plotted against the number |Y | of tag assign-
ments for the respective monthly snapshots. As the number of tag assignments
grows superlinearly over the months, we plot the time axis on a logarithmic
scale.

Both folksonomy datasets under consideration exhibit the small world char-
acteristics as defined at the beginning of this section. Their clustering coeffi-
cients are extremely high, while the characteristic path lengths are comparable
to (BibSonomy) or even considerably lower (del.icio.us) than those of the bino-
mial random graphs.

5.2.1 Del.icio.us

In the del.icio.us dataset (Figures 4 and 6), it can be seen that both clustering
coefficients are extremely high at about 0.86, much higher than those for the
permuted and binomial random graphs. This could be an indication of coherence
in the tagging behaviour: if, for example, a given set of tags is attached to a
certain kind of resources, users do so consistently.

On the other hand, the characteristic path lengths (Figure 2) are consid-
erably smaller than for the random binomial graphs, though not as small as
for the permuted setting. Interestingly, the path length has remained almost
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constant at about 3.5 while the number of nodes has grown about twentyfold in
the observation period.

As explained in Section 4.1, in practice this means that on average, every
user, tag, or resource within del.ici.us can be reached within 3.5 mouse clicks
from any given del.icio.us page. This might help to explain why the concept of
serendipitous discovery [11] of contents plays such a large role in the folksonomy
community – even if the folksonomy grows to millions of nodes, everything in
it is still reachable within few hyperlinks.

5.2.2 BibSonomy

As the BibSonomy system is rather young, it contains roughly two orders of
magnitude fewer tags, users, resources, and TAS than the del.icio.us dataset.

On the other hand, the values show the same tendencies as in the del.icio.us
experiments.

Figures 3 and 5 show that clustering is extremely high at γcl ≈ 0.96 and
γco ≈ 0.93 – even more so than in the del.icio.us data.

At the same time, Figure 1 shows that the characteristic path lengths are
somewhat larger, but at least comparable to those of the binomial graph.

There is considerably more fluctuation in the values measured for BibSonomy
due to the fact that the system started just before our observation period. Thus,
in that smaller folksonomy, small changes, such as the appearance of a new user
with a somewhat different behaviour, had more impact on the values measured
in our experiments.

Furthermore, current BibSonomy users are early adopters of the system,
many of which know each other personally, work in the same field of interest,
and have previous experience with folksonomy systems. This might also account
for the very high amount of clustering.

6 Summary and Outlook

In this paper, we have introduced measures for clustering and characteristic
path length which are suitable for tripartite hypergraphs such as those used as
the underlying data structure in folksonomy systems.

We analyzed the network structure of the folksonomies of two social resource
sharing systems, del.icio.us and BibSonomy. We observed that the tripartite hy-
pergraphs of their folksonomies are highly connected and that the relative path
lengths are relatively low, facilitating thus the “serendipitous discovery” of inter-
esting contents and users. According to the usual definition, these observations
show that the folksonomies under consideration exhibit a small world structure.

11



References

[1] Marc Barthelemy, Alain Barrat, Romualdo Pastor-Satorras, and Alessan-
dro Vespignani. Velocity and hierarchical spread of epidemic outbreaks in
scale-free networks. Physical Review Letters, 92:178701, 2004.

[2] B. Bollobas. Random Graphs. Cambridge University Press, 2001.

[3] A. Capocci, V. D. P. Servedio, F. Colaiori, L. S. Buriol, D. Donato,
S. Leonardi, and G. Caldarelli. Preferential attachment in the growth of
social networks: the case of wikipedia, 2006.

[4] M. Dubinko, R. Kumar, J. Magnani, J. Novak, P. Raghavan, and
A. Tomkins. Visualizing tags over time. In Proceedings of the 15th In-
ternational WWW Conference, May 2006.

[5] Scott Golder and Bernardo A. Huberman. The structure of collabora-
tive tagging systems. Journal of Information Science, 32(2):198–208, April
2006.

[6] Paul Heymann and Hector Garcia-Molina. Collaborative creation of com-
munal hierarchical taxonomies in social tagging systems. Technical Report
2006-10, Computer Science Department, April 2006.
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