
Evolving Classifiers – Evolutionary Algorithms

in Data Mining

Thomas Weise, Stefan Achler, Martin Göb, Christian Voigtmann, and
Michael Zapf

University of Kassel, Wilhelmshöher Allee 73, D-34121 Kassel, Germany
{weise|zapf}@uni-kassel.de, {achii|martingoeb|voigtmannc}@web.de

http://www.vs.uni-kassel.de

Abstract. Data mining means to summarize information from large
amounts of raw data. It is one of the key technologies in many ar-
eas of economy, science, administration and the internet. In this re-
port we introduce an approach for utilizing evolutionary algorithms to
breed fuzzy classifier systems. This approach was exercised as part of
a structured procedure by the students Achler, Göb, and Voigtmann
as contribution to the 2006 Data-Mining-Cup contest, yielding en-
couragingly positive results.

1 Introduction

Data mining is a means of extracting information from huge, unprocessed
data. Today, data mining methods are applied in almost all areas of economy,
science, the internet, and administration. Yet, it is still an active field of
research where gradually new methods, like the support vector machine [1]
approach that gained importance in the last ten years, are developed. Existing
methods are continuously improved, like learning classifier systems, where in
the same time span new systems have branched off [2,3].

In this report, we will discuss a simple general approach to data mining.
This approach has been exercised on Data-Mining-Cup contest. In order
to cope with the especially high complexity of the 2007 tasks in this biggest
international student data mining contest, we developed a small and efficient
fuzzy type of non-learning classifier systems. Similar to the Pittsburgh Learn-
ing Classifier Systems approach [4,5,6], these systems can be created as a
whole with a genetic algorithm.

In the following text, we give a short summary on data mining and the
Data-Mining-Cup, to which the work discussed in this report was con-
tributed. This contest contribution is mainly based on a combination of evolu-
tionary algorithms, genetic algorithms, and learning classifier systems which
are introduced as related work in Section 3. Section 4 subsequently defines
some advisable steps, which define a structured approach applicable to all
kinds of data mining problems. This methodology is then carried out in Sec-
tion 5 where a fuzzy form of classifier systems is developed especially suitable

http://www.vs.uni-kassel.de

2 Weise, Achler, Göb, Voigtmann, Zapf

for the DMC 2007 contest. Finally, Section 6 sums up the experiences and
conclusions that can be drawn from our work and ideas for future improve-
ments. These will on one hand be applied in next year’s contest, but are also
generally practical values on the other hand.

2 Data Mining

Data mining can be defined as the nontrivial extraction of implicit, previously
unknown, and potentially useful information from data [7] and the science of
extracting useful information from large data sets or databases [8].

Today, gigantic amounts of data are collected in the web, in medical
databases, by enterprise resource planning (ERP) and customer relationship
management (CRM) systems in corporations, web shops, by administrative
and governmental bodies, and in science projects. These data sets are way to
large to be incorporated directly into a decision process or to be understood
as-is by a human being. Instead, automated approaches have to be applied
that extract the relevant information, to find underlying rules and patterns,
or to detect time-dependent changes. Data mining subsumes methods and
techniques capable to perform this task. It is very closely related to estima-
tion theory [9,10] in stochastic [11,12] – the simplest digest of data sets is still
the arithmetic mean. Data mining is also strongly related to artificial intelli-
gence [13,14], which includes learning algorithms that can generalize the given
information. Some of the most wide spread and most common data mining
techniques are:

– (artificial) neural networks (ANN) [15,16],

– support vector machines (SVM) [17,18,19,20],

– logistic regression [21],

– decision trees [22,23],

– learning classifier systems as introduced in Section 3.3 on page 5, and

– näıve Bayes Classifiers [24,25].

The Data-Mining-Cup has been established in the year 2000 by the
prudsys AG and the Technical University of Chemnitz. It aims to provide
an independent platform for data mining users and data analysis tool vendors
and builds a bridge between academic science and economy. Today, it is one of
Europe’s biggest and most influential conferences in the area of data mining.

The DMC Contest is the biggest international student data mining com-
petition. In the spring of each year, students of national and international
universities challenge to find the best solution of a data analysis problem. It
provides an excellent platform to test new approaches or to apply established
methods in a challenging, inspiring environment.

Evolving Classifiers – Evolutionary Algorithms in Data Mining 3

3 Related Work

3.1 Evolutionary Algorithms

Evolutionary algorithms (EA) [26,27,28,29] are generic, population-based
meta-heuristic optimization algorithms that use biology-inspired mechanisms
like mutation, crossover, natural selection and survival of the fittest.

Reproduction

create new individuals
from the selected via
crossover and mutation

Selection

select the fittest indi-
viduals for reproduction

Evaluation

compute the objective
values of the
individuals

Fitness Assignment

use the objective values
to determine fitness
values

Initial Population

create an initial
population of random
individuals

Fig. 1: The basic cycle of evolutionary algorithms.

The family of evolutionary algorithms encompasses genetic algorithms (see
Section 3.2), genetic programming, evolution strategy, evolutionary program-
ming, and learning classifier systems (see Section 3.3).

The advantage of evolutionary algorithms compared to other optimization
methods is that they make only few assumptions about the underlying fitness
landscape and therefore perform consistently well in many different problem
categories.

All evolutionary algorithms proceed in principle according to the scheme
illustrated in Figure 1:

1. Initially, a population of individuals with a totally random genome is
created.

2. All individuals of the population are tested. This evaluation may incor-
porate complicated simulation and calculations.

3. With the tests, we have determined the utility of the different features
of the solution candidates and can now assign a fitness value to each of
them.

4. A subsequent selection process filters out the individuals with low fitness
and allows those with good fitness to enter the mating pool with a higher
probability.

5. In the reproduction phase, offspring is created by varying or combining
these solution candidates and integrated it into the population.

4 Weise, Achler, Göb, Voigtmann, Zapf

6. If the termination criterion is met, the evolution stops here. Otherwise, it
continues at step 2.

In the context of this report, especially genetic algorithms and learning
classifier systems are of interest.

3.2 Genetic Algorithms

Genetic algorithms are a subclass of evolutionary algorithms that employs
two different representations for each solution candidate. The genotype is
used in the reproduction operations whereas the phenotype is the form of the
individual which can be used for the determining its fitness [30,31,32,33,34,29].

Mutation

Mutation is an important method of preserving individual diversity. In fixed-
length string chromosomes it can be achieved by modifying the value of one
element of the genotype, as illustrated in Figure 2. More generally, a mutation
may change 0 ≤ n < |g| locations in the string. In binary coded chromosomes
for example, the elements are bits which are simply toggled.

Toggle One Bit Toggle n Bits

Fig. 2: Bit-toggling mutation of string chromosomes.

Crossover

Figure 3 outlines the recombination of two string chromosomes. This operation
is called crossover and is done by swapping parts of the genotypes between
the parents.

When performing crossover, both parental chromosomes are split at ran-
domly determined crossover points. Subsequently, a new child chromosome is
created by appending the first part of the first parent with the second part
of the second parent. This method is called one-point crossover. In two-point
crossover, both parental genotypes are split at two points, constructing a new
offspring by using parts number one and three from the first, and the mid-
dle part from the second ancestor. The generalized form of this technique is
n-point crossover.

Evolving Classifiers – Evolutionary Algorithms in Data Mining 5

Cut and Splice

Fig. 3: Crossover (recombination) of variable-length string chromosomes.

3.3 Learning Classifier Systems

In the late 1970s, Holland invented and patented a new class of cognitive
systems, called classifier systems (CS) [35,36,29]. These systems are a special
case of production systems [37,38] and consist of four major parts:

1. a set of interacting productions, called classifiers,
2. a performance algorithm that directs the action of the system in the en-

vironment,
3. a simple learning algorithm that keeps track on each classifier’s success in

bringing about rewards, and
4. a more complex algorithm that modifies the set of classifiers so that vari-

ants of good classifiers persist and new, potentially better ones are created
in a provably efficient manner [39].

Figure 4 illustrates Holland’s original idea of the structure of a Michigan-
style learning classifier system. A classifier system is connected via detectors
(b) and effectors (c) to its environment (a). The input in the system, coming
from the detectors, is encoded in binary messages that are written into a mes-
sage list (d). On this list, the classifiers, simple if-then rules (e), are applied.
The result of a classification is again encoded as a message and written to the
message list. These new messages may now trigger other rules or are signals
for the effectors [40]. The payoff of the performed actions is distributed by the
credit apportionment system (f) to the rules. Additionally, a rule discovery
system (g) (normally a genetic algorithm) is responsible for finding new rules
and adding them to the classifier population [41].

4 A Structured Approach to Data Mining

Whenever any sort of problem should be solved, a structured approach is
always advisable. This goes for the application of optimization methods like
evolutionary algorithms as well as for deriving classifiers in a data mining
problem. In this section we discuss a few simple steps which should be valid
for both kinds of tasks and which have been followed in our approach to the
2007 DMC.

6 Weise, Achler, Göb, Voigtmann, Zapf

(a) Environment

(b) Detectors (c) Effectors

(d) Message List

(e) Rule Base

(f) Apportionment of
Credit System

(e.g. Bucket Brigade)

(g) Rule Discovery
System

(e.g. Genetic Algorithm)

Learning Classifier System

information action

payoff

Non-Learning Classifier System,
Production System

Fig. 4: The structure of a Michigan style learning classifier system.

The first step is always to clearly specify the problem that should be solved.
Parts of this specification are possible target values and optimization criteria
as well as the semantics of the problem domain. The optimization criteria
tell us how different possible solutions can be compared with each other. If we
were to sell tomatoes, for example, the target value (subject to maximization)
would be the profit. Then again, the semantics of the problem domain allow
us to draw conclusions on what features are important in the optimization or
data mining process. Again, when selling tomatoes, the average weight of the
vegetables, their color, and maybe the time of the day when we open the store
are important. The names of our customers on the other hand are probably
not. The tasks of the DMC 2007 Contest, outlined in Section 5.1 on the next
page, are a good example for such a problem definition.

Before choosing or applying any data mining or optimization technique, an
initial analysis of the given data should be performed. With this review and the
problem specification, we can filter the data and maybe remove unnecessary
features. Additionally, we will gain insight in the data structure and hopefully
can already eliminate some possible solution approaches. It is of course better
to exclude some techniques that cannot lead to good results in the initial phase

Evolving Classifiers – Evolutionary Algorithms in Data Mining 7

instead of wasting working hours in trying them out to avail. We have now
to decide on one or two solution approaches that are especially promising for
the problem defined. We have performed this step for the DMC 2007 Contest
data in Section 5.2 on page 9.

The next step is to apply these approaches. Of course, running an optimizer
on all known sample data at once is not wise. Although we will obtain a
result with which we can solve the specified problem for all the known data
samples, it is possible not a good solution. Instead, it may be overfitted or
overspecialized and can only process the data we are given. Normally however,
we are only provided with fraction of the “real data” and want to find a system
that is able to perform well also on samples that are not yet known to us.
Hence, we need to find out whether or not our approach generalizes. Therefore,
it is sufficient to derive a solution for a subset of the available data samples,
the training data. This solution is then tested on the test set, the remaining
samples not used in its creations. The system we have created generalizes
well if it is rated approximately equally good by the optimization criterion for
both, the training and the test data. Now we can repeat the process by using
all available data. We have evolved classifier systems that solve the DMC 2007
Contest according to this method in Section 5.3 on page 11.

The students Achler, Göb, and Voigtmann have participated in the 2007
DMC Contest and proceeded according to this pattern. In order to solve the
challenge, they chose for a genetic algorithm evolving a fuzzy classifier system.
The results of their participation are discussed in Section 5.4 on page 13.

The following sections are based on their experiences and impressions, and
reproduce how they proceeded.

5 Applying the Structured Approach

5.1 The Problem Definition

Rebate systems are an important means to animate customers to return to a
store in classical retail. In the 2007 contest, we consider a check-out couponing
system. Whenever a customer leaves a store, at the end of her bill a coupon
can be attached. She then can use the coupon to receive some rebate on her
next purchase. When printing the bill at the checkout, there are three options
for couponing:

Case N: attach no coupon to the bill,
Case A: attach coupon type A, a general rebate coupon, to the bill, or
Case B: attach coupon type B, a special voucher, to the bill.

The profit of the couponing system is defined as follows:

– Each coupon which is not redeemed costs 1 money unit.
– For each redeemed coupon of type A, the retailer gains 3 money units.
– For each coupon of type B which is redeemed, the retailer gains 6 money

units.

8 Weise, Achler, Göb, Voigtmann, Zapf

It is thus clear that simply printing both coupons at the end of each bill
makes no sense. In order to find a good strategy for coupon printing, the
retailer has initiated a survey. She wants to find out which type of customer
has an affinity to cash in coupons and, if so, which type of coupon most likely.
Therefore the behavior of 50000 customers has been anonymously recorded.
For all these customers, we know the customer id, the number of redemptions
of 20 different coupons and the historic information whether coupon type A,
coupon type B, or none of them has been redeemed. Cases where both have
been cashed in are omitted.

C11

0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1

0
0
0
0
0
0
1
1
0
0
0
0
0
1
0
0
1
0
0
0
0
0

C12

1
0
0
1
0
0
0
0
1
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
1

0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
1
1
0
1
0
0
0

C13

0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

C14

0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

C15

0
0
1
0
1
1
1
1
1
1
1
0
1
1
0
0
1
1
0
1
0
1
1
1
1
0

1
0
1
0
0
0
1
1
1
1
0
0
1
1
0
1
1
0
1
0
1

C16

0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

C17

0
0
0
0
0
1
0
0
1
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0

0
0
0
0
0
1
1
0
0
0
0
0
1
0
0
0
0
0
0
0

C18

0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

C19

0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

C20

0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

C1

0
0
1
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
1
0
0
0
0

0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

C2

0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
0
0
0
0

1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0

C3

0
0
0
0
0
0
0
0
0
1
0
0
0
1
0
1
0
0
0
0
0
0
0

1
0
0
0
0
0
1
0
1
0
1
0
0
0
1
0
1
1
1
0
0
0
0

C4

0
1
0
0
0
0
0
0
1
1
0
0
0
1
1
0
0
0
0
1
0
0
1

1
0
0
0
0
1
1
0
0
0
1
0
0
1
0
1
1
1
0
1
0
0
1

C5

0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

0
0
0
0
0
0
0
0
0
1
0
0
0
1
0
0
0
0
0
0
0
1
0

C6

0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

C7

0
0
1
0
0
0
0
1
1
1
1
0
0
0
0
1
0
0
1
1
0
1
1
1

1
1
1
1
0
1
1
0
0
0
1
0
0
1
0
0
1
1
0
0
0
0
1

C8

0
0
0
0
1
1
1
0
0
0
0
1
1
1
0
0
0
1
0
0
0
0
0
0

0
0
0
1
0
0
1
1
0
0
0
1
0
1
1
0
0
1
0
1
0
0

C9

0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0

0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
0
0
0
0
0

C10

0
0
0
0
0
0
0
0
0
1
1
0
0
0
0
0
0
0
0
1
0
0
1
0

1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0

Coupon

N
N
A
N
N
A
N
N
B
A
N
N
N
N
N
N
N
N
N
A
N
N
N
N
N

N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
A
N

ID

97006
97025
97032
97051
97054
97061
97068
97082
97093
97113
97128
97143
97178
97191
97204
97207
94101
94116
94118
94126
94129
94140
94143
94149

83151
83159
83162
83172
83185
83197
83203
83224
83229
83233
83235
83245
83259
83264
83268
83276
83281
83285
83298
83315
83337
83347

. . .

Fig. 5: A few samples from the DMC 2007 training data.

Evolving Classifiers – Evolutionary Algorithms in Data Mining 9

Figure 5 shows some samples from this data set. The task is to use it as
training data in order to derive a classifier C that is able to decide from a
record of the 20 features whether a coupon A, B, or none should be provided
to a customer. This means to maximize the profit P (C) of retailer gained by
using the classifier C which can be computed according to

P (C) = 3 ∗ AA + 6 ∗ BB − 1 ∗ (NA + NB + BA + AB) (1)

where

– AA is the number of correct assignments for coupon A.
– BB is the number of correct assignments for coupon B.
– NA is the number of wrong assignments to class A from the real class N.
– NB is the number of wrong assignments to class B from the real class N.
– BA is the number of wrong assignments to class A from the real class B.
– AB is the number of wrong assignments to class B from the real class A.

Wrong assignments from the classes A and B to N play no role.
The classifier built with the 50000 training data sets is then to be applied

to another 50000 data samples. There however, the column Coupon is missing
and should be the result of the classification process. Based on the computed
assignments, the profit score P is calculated for each contestant by the jury
and the team with the highest profit will win.

5.2 Initial Data Analysis

The test dataset have some properties which make it especially hard for learn-
ing algorithms to find good solutions. Figure 6 for example shows three data
samples with exactly the same features but different classes. In general, there is
some degree of fuzzyness and noise, and clusters belonging to different classes
overlap and contain each other. Since the classes cannot be separated by

C11

0

0

0

C12

0

0

0

C13

0

0

0

C14

0

0

0

C15

1

1

1

C16

0

0

0

C17

0

0

0

C18

0

0

0

C19

0

0

0

C20

0

0

0

C1

0

0

0

C2

0

0

0

C3

0

0

0

C4

0

0

0

C5

0

0

0

C6

0

0

0

C7

0

0

0

C8

1

1

1

C9

0

0

0

C10

0

0

0

Coupon

N

A

B

ID

97054

94698

96366

......

......

......

Fig. 6: DMC 2007 sample data – same features but different classes.

hyper-planes in a straightforward manner, the application of neural networks
and support vector machines becomes difficult. Furthermore, the values of the

10 Weise, Achler, Göb, Voigtmann, Zapf

Table 1: Feature-values in the 2007 DMC training sets.

value number of ocurences

0 837′119
1 161′936
2 924
3 21

features take on only four different values and are zero to 83.7%, as illustrated
in Table 1. In general, such a small number of possible feature values makes
it hard to apply methods that are based on distances or averages.

At least one positive fact can easily be found by eyesight when inspecting
the training data: the columns C6, C14, and C20, marked gray in Figure 5,
are most probably insignificant since they are almost always zero and hence,
can be excluded from further analysis. The same goes for the first column,
the customer ID, by common sense.

The Solution Approach: Classifier Systems

From the initial data analysis, we can reduce the space of values a feature
may take on to 0, 1, and >1. This limited, discrete range is especially suited
for learning classifier systems (LCS) discussed in Section 3.3 on page 5.

Since we already know the target function, P (C), we do not need the
learning part of the LCS. Instead, our idea was to use the profit P (C) defined
in equation 1 directly as objective function for a genetic algorithm.

Very much like in the Pitt-approach [4,5,6] in LCS, the genetic algorithm
would base on a population of classifier systems. Such a classifier system is
a list of rules (the single classifiers). A rule contains a classification part and
one condition for each feature in the input data. We used a two bit alphabet
for the conditions, allowing us to encode the four different conditions per
feature listed in Table 2. The three different classes can be represented using

Table 2: Feature conditions in the rules.

condition condition corresponding feature value
(in genotype) (in phenotype)

00 0 must be 0
01 1 must be ≥ 1
10 2 must be > 1
11 3 don’t care (i.e. any value is ok)

two additional bits, where 00 and 11 stands for A, 01 means B, and 10

Evolving Classifiers – Evolutionary Algorithms in Data Mining 11

corresponds to N. We leave three insignificant features away, so a rule is in
total 17 ∗ 2 + 2 = 36 bits small. This means that we need less memory for
a classifier system with 17 rules than for 10 double precision floating point
numbers, as used by a neural network, for example.

When a feature is to be classified, the rules of a classifier system are ap-
plied step by step. A rule fits to a given data sample if none of its conditions
is violated by a corresponding sample feature. As soon as such a rule is found,
the input is assigned to the class identified by the classification part of the
rule. This stepwise interpretation creates a default hierarchy that allows clas-
sifications to include each other: a more specific rule (which is checked before
the more general one) can represent a subset of features which is subsumed
by a rule which is evaluated later. If no rule in the classifier systems fits to a
data sample, N is returned per default since misclassifying an A or B as an
N at least doesn’t introduce a penalty in P (C) according to equation 1.

Since the input data is noisy, it turned out to be a good idea to introduce
some fuzzyness in our classifiers too by modifying this default rule. During
the classification process, we remember the rule which was violated by the
least features. In the case that no rule fits perfectly, we check if the number
of these misfits is less than one fifth of the features, in this case 17

5
≈ 3. If

so, we consider it as a match and classify the input according to the rules
classification part. Otherwise, the original default rule is applied and N is
returned. Figure 7 outlines the relation of the genotype and phenotype of
such a fuzzy classifier system. It shows a classifier system consisting of four
rules that has been a real result of the genetic algorithm. In this graphic we
also apply it to the second sample of the dataset that is to be classified. As one
can easily see, none of the four rules matches fully – which is strangely almost
always the case for classifier systems that sprung of the artificial evolution.
The data sample however violates only three conditions of the second rule and
hence, stays exactly at the 1

5
-threshold. Since no other rule in the classifier

system has less misfit conditions, the result of this classification process will
be A.

5.3 Analysis of the Evolutionary Process

As already discussed in the previous section, we want to evolve the classifier
systems directly. Therefore we apply two objective functions:

f1(C) = −P (C) (2)

f2(C) = max {|C|, 3} (3)

Here f1 represents the (negated) profit gained with a classifier system C and
f2(C) is the number of rules in C (cut-off at a size of at 3). Both functions
are subject to minimization. Figure 8 illustrates the course of the classifier
system evolution. Here we have applied a simple elitist1 genetic algorithm

1 Elitist genetic algorithms always preserve the best solutions they have found while
non-elitist algorithms may loose them [29].

12 Weise, Achler, Göb, Voigtmann, Zapf

ID C11

0
0
0
0
0

C12

0
1
0
0
0

C13

0
1
0
0
0

C14

0
0
0
0
0
0

C15

1
0
0
1
1
0

C16

0
0
0
0
0
0

C17

0
0
0
0
0
1

C18

0
0
0
0
0
0

C19

0
0
0
0
0
0

C20

0
0
0
0
0
0

C1

0
0
0
0

C2

0
0
0
0

C3

1
0
0

C4

1
1
0

C5

0
0
0

C6

0
0
0
0

C7

0
0
0
0

C8

0
0
0
0

C9

0
0
0
0

C10

1
0
0
0

82583
82628
82638
82653
97054

Coupon

?
?
?
?
?

0 3 3 3 3 A3 3 1 0 3 3

0 3 0 3 3 3 A3 3 3 0 0 0 0 0

1 1 3 0 3 B3 0 3 0 3 3 3 0

3 3 3 3 3 0 A3 3 1 3 3

phenotype: classifier system

single classifier (rule) condition classification

00 00 11 11 01 01 11 1101 11 11 01 00 01 11 11 10

00 10 10 11 00 11 11 1111 10 11 11 00 00 00 00 00

11 00 11 11 11 01 11 0011 11 01 01 01 11 01 11 01

01 01 01 01 11 01 00 1111 01 00 11 00 11 11 11 00

11

00

00

01

genotype: variable-length bit string

1 1 2 1 1

2

0

2 2

1 1 1 1

1 1 1 1 0 1

p
ro

ce
ss

in
g
 o

rd
er

violated condition The second rule wins since it has only 3 violated conditions.
(and 3 is the allowed maximum for the default rule)

Þ

Fig. 7: An example classifier for the 2007 DMC.

with a population size of 10240 individuals. We can see a logarithmic growth
of the profit with the generations as well as with the number of rules in
the classifier systems. A profit of 8800 for the 50000 data samples has been
reached. Experiments with 10000 datasets held back and an evolution on
the remaining 40000 samples indicated that the evolved rule sets generalize
sufficiently well. The cause for the generalization of the results is the second,
non-functional objective function which puts pressure into the direction of
smaller classifier systems and the modified default rule which allows noisy
input data. The result of the multi-objective optimization process is the
Pareto-optimal set. It comprises all solution candidates for which no other
individual exists that is better in at least one objective value and not worse
in any others. Figure 9 displays some classifier systems which are members
of this set after generation 1000. C1 is the smallest non-dominated classifier
system. It consists of three rules which lead to a profit of 7222. C2, with one
additional rule, reaches 7403. The 31-rule classifier system C3 provides a gain
of 8748 to which the system with the highest profit evolved, C4, adds only 45
to a total of 8793 with a trade-off of 18 additional rules (49 in total).

As shown in Table 1 on page 10, most feature values are 0 or 1, there
are only very few 2 and 3-valued features. In order to find out how different
treatment of those will influence the performance of the classifiers and of the
evolutionary process, we slightly modified the condition semantics in Table 3

Evolving Classifiers – Evolutionary Algorithms in Data Mining 13

0 200 400 600 800

10

20

30

40

50

60

1000

2000

3000

4000

5000

6000

7000

8000

Profit P(C)

Number of rules

in classifier system C

Generation

1000

Fig. 8: The course of the classifier system evolution.

by changing the meaning of rule 2 from > 1 to ≤ 1 (compare with Table 2 on
page 10).

The progress of the evolution depicted in Figure 10 exhibits no significant
difference to the first one illustrated in Figure 8. With the modified rule
semantics, the best classifier system evolved delivered a profit of 8666 by
utilizing 37 rules. This result is also not very much different from the original
version. Hence, the treatment of the features with the values 2 and 3 does
not seem to have much influence on the overall result. In the first approach,
rule-condition 2 used them as distinctive criterion. The new method treats
them the same as feature value 1, with slightly worse results.

5.4 Contest Results and Placement

A record number of 688 teams from 159 universities in 40 countries registered
for the 2007 DMC Contest, from which only 248 were finally able to hand in
results. The team of the RWTH Aachen won place one and two by scoring
7890 and 7832 points on the contest data set. Together with the team from

14 Weise, Achler, Göb, Voigtmann, Zapf

Table 3: Different feature conditions in the rules.

condition condition corresponding feature value
(in genotype) (in phenotype)

00 0 must be 0
01 1 must be ≥ 1
10 2 must be ≤ 1
11 3 don’t care (i.e. any value is ok)

the Darmstadt University of Technology, ranked third, they occupy the first
eight placements.

Our team reached place 29 which is quite a good result considering that
none of its members had any prior experience in data mining.

Retrospectively one can recognize that the winning gains are much lower
than those we have discussed in the previous experiments. They are, however,
results of the classification of a different data set – the profits in our experiment
are obtained from the training sets and not from the contest data. Although
our classifiers did generalize well in the initial tests, they seem to suffer from
some degree of overfitting. Furthermore, the systems discussed here are the
result of reproduced experiments and not the original contribution from the
students. The system with the highest profit that the students handed in also
had gains around 8600 on the training sets. With a hill climbing optimizer,
we squeezed out another 200, increasing, of course, the risk of additional
overfitting. In the challenge, the best scored score of our team, a total profit
of 7453 (only 5.5% less than the winning team). This classifier system was
however grown with a much smaller population (4096) than in the experiments
here, due to time restrictions.

Remarkably we did not achieve the best result with the best single classifier
system evolved, but with a primitive combination of this system with another
one: If both classifier systems delivered the same result for a record, this
result was used. Otherwise, N was returned, which at least would not lead to
additional costs (as follows from equation 1 on page 9).

Evolving Classifiers – Evolutionary Algorithms in Data Mining 15

C1

31333333011130233 B

00000000000200022 A

33111333330332130 A

C3

03331333011130231 B

30111233133033133 A

31133103011313123 B

02311333332332333 A

33011103011310123 B

10300321012202233 B

10023302313300100 N

13133032333113230 A

03213300330031031 N

03020000013303113 N

13331332003110200 N

23213331131003032 A

11000330203002300 N

03300220010030331 N

33113233330032133 A

31330333011330123 B

00203301133033010 N

01201323030333330 N

30223313301003001 B

30131230133013133 A

00113010002133100 B

30033000311103200 B

11121311103310003 A

11313132101000310 B

13312102313010013 A

31100222331222302 N

01333333011130230 B

31113333100312133 A

21313101111013100 B

00000000030200022 A

33111333330331133 A

31333333011130233 B

01201333030333310 N

00000000000200022 A

33111333330332133 A

C2

03331333011130231 B

30111233133033133 A

31133103011313123 B

02311333332332333 A

33011103011310123 B

10023302313300100 N

13133032333113230 A

02232331022331121 B

11023300332213301 A

02311333332332333 A

03213300330031031 N

03020000013303113 N

13331332003110200 N

13331332003110200 N

03300220010030331 N

23213331131003032 A

03300220010000331 N

21130320011021302 A

33113233330032133 A

10023122212302322 A

11000330203002300 N

30210113033032112 N

11321310200313233 A

33113233330332133 A

31330333011330123 B

30223313301003002 B

00203301133033010 N

01201323030333330 N

30223313301003001 B

30131230133013133 A

00113010002133100 B

30033000311103200 B

11121311103310003 A

21133113001000202 B

11313132101000310 B

13312102313010013 A

01333333011130230 B

30223313301003002 B

31113333100312133 A

21313101111013100 B

11330302002121233 B

32021231303033130 A

00000000030200022 A

31133103011313123 B

13133032333113230 A

02311333332332333 A

21313101111013100 B

10030321130311103 A

33111330330332133 A

C4

ru
le

 p
ro

ce
ss

in
g

Fig. 9: Some elements of the Pareto-optimal set of evolved classifier systems.

16 Weise, Achler, Göb, Voigtmann, Zapf

0 200 400 600 800

10

20

30

40

50

60

2000

3000

4000

5000

6000

7000

8000

1000

Profit P(C)

Number of rules

in classifier system C

Generation

Fig. 10: The course of the modified classifier system evolution.

Evolving Classifiers – Evolutionary Algorithms in Data Mining 17

6 Conclusion and Future Work

In order to solve the 2007 Data-Mining-Cup contest we exercised a struc-
tured approach. After reviewing the data samples provided for the challenge,
we have adapted the idea of classifier systems to the special needs of the com-
petition. As a straightforward way of obtaining such systems, we have chosen
a genetic algorithm with two objective functions. The first one maximized the
utility of the classifiers by maximizing the profit function provided by the con-
test rules. The section objective function minimized a non-functional criterion,
the number of rules in the classifiers. It was intended to restrict the amount
of overfitting and overspecialization. The bred classifier systems showed rea-
sonable good generalization properties on the test data sets separated from
the original data samples, but seem to be overfitted when comparing these
results with the profits gained in the contest. A conclusion is that it is hard
to prevent overfitting in an evolution based on limited sample data – the
best classifier system obtained will possibly be overfitted. In the challenge,
the combination of two classifiers yielded the best results. Such combinations
of multiple, independent systems will probably perform better than each of
them alone.

In further projects, especially the last two conclusions drawn should be
considered. Although we used a very simple way to combine our classifier
systems for the contest, it still provided an advantage.

A classifier system in principle is nothing more but an estimator. There ex-
ist many sophisticated methods of combining different estimators in order to
achieve better results [42]. The original version of such “boosting algorithms”,
developed by Schapire [43], theoretically allows to achieve an arbitrarily low
error rate, requiring basic estimators with a performance only slightly better
than random guessing on any input distribution. The AdaBoost algorithm [44]
additionally takes into consideration the error rates of the estimators. With
this approach, even classifiers of different architectures like a neural network
and a learning classifier system can be combined. Since the classification task
in the challenge required non-fuzzy answers in form of definite set member-
ships, the usage of weighted majority voting [45,46], as already applied in a
very primitive manner, would probably have been the best approach.

References

1. Vladimir N. Vapnik. The Nature of Statistical Learning Theory. Information
Science and Statistics. Springer-Verlag, second edition, Nov 1999 (first edition:
1995).

2. Stewart W. Wilson. Classifier fitness based on accuracy. Evolutionary Compu-
tation, 3(2):149–175, 1995.

3. Tim Kovacs. XCS Classifier System Reliably Evolves Accurate, Complete, and
Minimal Representations for Boolean Functions, pages 59–68. Springer-Verlag,
Aug 1997.

18 Weise, Achler, Göb, Voigtmann, Zapf

4. William M. Spears and Kenneth A. De Jong. Using genetic algorithms for super-
vised concept learning. In Proceedings of the 2nd International IEEE Conference
on Tools for Artificial Intelligence, number IEEE Cat. No. 90CH2915-7, pages
335–341, Herndon, VA, 6-9 1990. IEEE Computer Society Press, Los Alamitos,
CA.

5. Kenneth A. De Jong and William M. Spears. Learning Concept Classification
Rules using Genetic Algorithms. In Proceedings of the Twelth International
Conference on Artificial Intelligence IJCAI-91, volume 2, 1991.

6. Stephen Frederick Smith. A learning system based on genetic adaptive algo-
rithms. PhD thesis, University of Pittsburgh, 1980.

7. William J. Frawley, Gregory Piatetsky-Shapiro, and Christo-
pher J. Matheus. Knowledge discovery in databases: An overview.
AI Magazine, pages 213–228, Fall 1992. Online available at
http://citeseer.ist.psu.edu/524488.html (version 2007-08-11) and
http://www.kdnuggets.com/gpspubs/aimag-kdd-overview-1992.pdf (ver-

sion 2007-08-11).
8. David J. Hand, Heikki Mannila, and Padhraic Smyth. Principles of Data Min-

ing. MIT Press, Cambridge, MA, Aug 2001.
9. John A. Rice. Mathematical Statistics and Data Analysis. Duxbury Press, third

edition, Apr 2006.
10. Steven M. Kay. Fundamentals of Statistical Signal Processing, Volume I: Esti-

mation Theory, volume 1. Prentice Hall PTR, us es edition, Mar 1993.
11. Alfréd Rényi. Probability Theory. Dover Publications, May 2007.
12. Gregory F. Lawler. Introduction to Stochastic Processes. Chapman & Hall/CRC,

second edition, May 2006.
13. Stuart J. Russell and Peter Norvig. Artificial Intelligence: A Modern Approach.

Prentice Hall, second edition, Dec 2002.
14. Werner Dilger. Einführung in die Künstliche Intelligenz. Apr 2006.

Lecture notes for the lectures artificial intelligence. Online available at
http://www.tu-chemnitz.de/informatik/KI/skripte.php (version 2007-08-06).

15. Joseph P. Bigus. Data Mining With Neural Networks: Solving Business Problems
from Application Development to Decision Support. Mcgraw-Hill (Tx), May
1996.

16. Christopher M. Bishop. Neural Networks for Pattern Recognition. Oxford Uni-
versity Press, USA, Jan 1996.

17. Sankar K. Pal and Pabitra Mitra. Pattern Recognition Algorithms for Data
Mining. Chapman & Hall/CRC, May 2004.

18. Lipo Wang, editor. Support Vector Machines: Theory and Applications. Studies
in Fuzziness and Soft Computing. Springer, first edition, Aug 2005.

19. Christopher J. C. Burges. A tutorial on support vector ma-
chines for pattern recognition. Data Mining and Knowl-
edge Discovery, 2(2):121–167, 1998. Online available at
http://citeseer.ist.psu.edu/burges98tutorial.html (version 2007-08-08)

and http://research.microsoft.com/~cburges/papers/SVMTutorial.pdf

(version 2007-08-08).
20. Christiaan M. van der Walt and Etienne Barnard. Data characteristics that

determine classifier performance. In Proceedings of the Sixteenth Annual Sym-
posium of the Pattern Recognition Association of South Africa, pages 160–165,
2006. Online available at http://www.meraka.org.za/pubs/CvdWalt.pdf (ver-

sion 2007-08-08).

http://citeseer.ist.psu.edu/524488.html
http://www.kdnuggets.com/gpspubs/aimag-kdd-overview-1992.pdf
http://www.tu-chemnitz.de/informatik/KI/skripte.php
http://citeseer.ist.psu.edu/burges98tutorial.html
http://research.microsoft.com/~cburges/papers/SVMTutorial.pdf
http://www.meraka.org.za/pubs/CvdWalt.pdf

Evolving Classifiers – Evolutionary Algorithms in Data Mining 19

21. Alan Agresti. An Introduction to Categorical Data Analysis. Wiley-Interscience,
first edition, Jan 1996.

22. Michael J. A. Berry and Gordon S. Linoff. Mastering Data Mining: The Art
and Science of Customer Relationship Management. Wiley, first edition, Dec
1999.

23. Ian H. Witten and Eibe Frank. Data Mining: Practical Machine Learning Tools
and Techniques with Java Implementations. The Morgan Kaufmann Series in
Data Management Systems. Morgan Kaufmann, first edition, Oct 1999.

24. Pedro Domingos and Michael Pazzani. On the optimal-
ity of the simple bayesian classifier under zero-one loss. Ma-
chine Learning, 29(2-3):103–130, Nov 1997. Online available at
http://citeseer.ist.psu.edu/domingos97optimality.html (version 2007-08-11)

and http://www.ics.uci.edu/~pazzani/Publications/mlj97-pedro.pdf

(version 2007-08-11).

25. Irina Rish. An empirical study of the naive bayes classifier. In
Proceedings of IJCAI-01 workshop on Empirical Methods in AI, Inter-
national Joint Conference on Artificial Intelligence, pages 41–46. Amer-
ican Association for Artificial Intelligence, 2001. Online available at
http://www.cc.gatech.edu/~isbell/classes/reading/papers/Rish.pdf (ver-

sion 2007-08-11).

26. Thomas Bäck. Evolutionary Algorithms in Theory and Practice: Evolution
Strategies, Evolutionary Programming, Genetic Algorithms. Oxford University
Press, Jan 1996.

27. Thomas Bäck, David B. Fogel, and Zbigniew Michalewicz. Handbook of Evo-
lutionary Computation. Computational Intelligence Library. Oxford University
Press in cooperation with the Institute of Physics, ringbound edition, Apr 1997.

28. Thomas Bäck, U. Hammel, and Hans-Paul Schwefel. Evolutionary computation:
comments on the history and current state. IEEE Transactions on Evolutionary
Computation, 1:3–17, Apr 1997.

29. Thomas Weise. Global Optimization Algorithms – Theory and Application. July
2007 edition, Jul 2007. Online available at http://www.it-weise.de/ (version

August 17, 2007).

30. John H. Holland. Outline for a logical theory of adaptive
systems. J. ACM, 9(3):297–314, 1962. Online available at
http://portal.acm.org/citation.cfm?id=321128 (version 2007-07-28).

31. John H. Holland. Adaptation in Natural and Artificial Systems. The University
of Michigan Press, Ann Arbor, 1975. Reprinted by MIT Press, April 1992,
ISBN-10: 0262581116, ISBN-13: 978-026258111.

32. Jack L. Crosby. Computer Simulation in Genetics. John Wiley and Sons Ltd,
Jan 1973.

33. David E. Goldberg. Genetic Algorithms in Search, Optimization and Machine
Learning. Addison-Wesley Longman Publishing Co., Inc. Boston, MA, USA,
first edition, Jan 1989.

34. Jörg Heitkötter and David Beasley, editors. Hitch-Hiker’s Guide
to Evolutionary Computation: A List of Frequently Asked Ques-
tions (FAQ). ENCORE (The EvolutioNary Computation REposi-
tory Network), 1998. USENET: comp.ai.genetic. Online available at
http://www.cse.dmu.ac.uk/~rij/gafaq/top.htm (version 2007-07-03) and
http://alife.santafe.edu/~joke/encore/www/ (version 2007-07-03).

http://citeseer.ist.psu.edu/domingos97optimality.html
http://www.ics.uci.edu/~pazzani/Publications/mlj97-pedro.pdf
http://www.cc.gatech.edu/~isbell/classes/reading/papers/Rish.pdf
http://www.it-weise.de/
http://portal.acm.org/citation.cfm?id=321128
http://www.cse.dmu.ac.uk/~rij/gafaq/top.htm
http://alife.santafe.edu/~joke/encore/www/

20 Weise, Achler, Göb, Voigtmann, Zapf

35. John H. Holland and Judith S. Reitman. Cognitive systems based on adap-
tive algorithms. In D. A. Waterman and F. Hayes-Roth, editors, Pattern di-
rected inference systems, pages 313–329. Academic Press, New York, NY, 1978.
Reprinted in: Evolutionary Computation. The Fossil Record. David B. Fogel
(Ed.) IEEE Press, 1998. ISBN: 0-7803-3481-7.

36. John H. Holland and Arthur W. Burks. Adaptive computing system capable of
learning and discovery. Number 619349 filed on 1984-06-11. US Patent Issued
on September 29, 1987, Current US Class 706/13, Genetic algorithm and ge-
netic programming system 382/155, LEARNING SYSTEMS 706/62 MISCEL-
LANEOUS, Foreign Patent References 8501601 WO Apr., 1985.

37. R. Davis and J. King. An overview of production systems. Technical Report
STAN-CS-75-524, Oct 1975.

38. R. Davis and J. King. An overview of production systems. Machine Intelligence,
8, 1977.

39. John H. Holland and Judith S. Reitman. Cognitive systems based on adaptive
algorithms. SIGART Bull., (63):49–49, 1977.

40. Bart de Boer. Classifier systems: a useful approach to machine
learning? Master’s thesis, Leiden University, Rijksuniversiteit Leiden,
Netherlands, Aug 1994. Internal Report Number IR94-02. Supervi-
sors Ida Sprinkhuizen-Kuyper and Egbert Boers. Online available at
citeseer.ist.psu.edu/deboer94classifier.html (version 2007-08-08).

41. Andreas Geyer-Schulz. Holland classifier systems. In APL ’95: Proceedings of
the international conference on Applied programming languages, pages 43–55,
New York, NY, USA, 1995. ACM Press.

42. Ran Avnimelech and Nathan Intrator. Boosting regression estimators. Neural
Computation, 11(2):499–520, 1999.

43. Robert E. Schapire. The strength of weak learnability. Machine Learning,
5:197–227, 1990.

44. Yoav Freund and Robert E. Schapire. A decision-theoretic generalization of
on-line learning and an application to boosting. In European Conference on
Computational Learning Theory, pages 23–37, 1995.

45. Yoav Freund. Boosting a weak learning algorithm by majority. In COLT: Pro-
ceedings of the Workshop on Computational Learning Theory. Morgan Kauf-
mann Publishers, 1990.

46. Robert E. Schapire, Yoav Freund, Peter Bartlett, and Wee Sun Lee. Boosting the
margin: a new explanation for the effectiveness of voting methods. In Proceedings
14th International Conference on Machine Learning, pages 322–330. Morgan
Kaufmann, 1997.

citeseer.ist.psu.edu/deboer94classifier.html

