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OPTIIIVRJlU ROBUST ESTIMATION OF LINEaR ASPECTS EN 
CONDITIONALLY CONTAMINATED LINEAR MODELS 

Freie Universitat, Berlin 

P. J. Bickel's approach to and results on estimating the parameter 
vector p of a conditionally contamgated linear regression model by asyrnp- 
totically linear (AL) estimators p* which have minimum trace of the 
asymptotic covariance matrix among all AL estimators with a given bound 
b on their asymptotic bias (MT-AL estimators with bias bound b )  is here 
extended to conditionally contaminated general linear models and in partic- 
ular for estimating arbitrary linear aspects cp(P) = Cp of P which are of 
actual interest in applications. Admitting that p itself is not identifiable in 
the model (also a practically important situation), a complete characteriza- 
tion of MT-AL estimators with bias bound b including the case where b is 
smallest possible is presented here, which extends and sharpens H. Rieder's 
characterization of all AL estimators with minimum asymptotic bias. These 
characterizations (Theorem 1) represent generalizations (in different direc- 
tions) of those which define Hampel-Krasker estimators for p in linear 
regression models and admit (Theorem 2) explicit constructions of MT-AL 
estimators under generally applicable model assumption. Obviously, even 
ip linear regression models, $* = is not an MT-AL estimator for p if 
p* is one for p (there does not even exist an AL estimator nor an M 
estimator for p ,  if p is not identifiable in the model). Examples such p 
quadratic regression illustrate the not a t  all obvious relation between P* 
A d  $*, demonstrate the applicability of the general results and show 
explicitly the influence of the parametrization and the underlying design of 
the linear model. 

L. Introduction. There exist different approaches to robust estimation of 
the parameter vector p E RP of a contaminated linear regression model 
Yn = XD + Z,, X ,  E RP, n = 1, . . . , N. A selection of literature is given in the 
list of references. The aim of this paper is to show how, in particular, the 
generally applicable and mathematically attractive approach (because it is least 
restrictive) of Bickel (19811, (1984) and Rieder (1985), (1987) can be modified 
and extended to successfully attack the problem of estimating an arbitrary 
linear aspect q ( P )  = C@ of the parameter vector @ of a contaminated general 
linear model with an arbitrary linear parametrization and an arbitrary under- 
lying design admitting itself not being identifiable. 

One can obviously interpret a linear regression model as an implicit repre- 
T sentation of a general linear model by identifying the regressors X:, . . . , x~ 

with rows of a design matrix of a linear model. An attempt to translate by such 
an identification results on robust estimation of @ in a linear regression model 
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to those for p in a general linear model [as can be found in Hampel, Ronchetti, 
Rousseeuw and Stahel(1986)l translates also the usual distributional assump- 
tions on x19.. . , X,. The distributional assumption on X,, . . . , X ,  defining the 
linear regression model to be stochastic [see Bickel (1984)l or, equivalently, to 
have a random carrier [see Maronna and Yohai (1981)l translated to corre- 
sponding assumptions on the elements of the design matrix, .seems to create 
discrepancies in interpretations [see Harnpel, Ronchetti, Rousseeuw and Stahel 
(19861, page 3081 and restrict application of linear models which are predomi- 
nantly composed by a given pararnetrization and an underlying design. 

In this paper the random carriers will be identified with the underlying 
design of the linear model where the notion of a design will be used in its most 
general sense concerning its application as well as its mathematical form. 

To include besides the usual (linear, polynomial, trigonometric, spline) 
regression experiments also more important generalizations thereof such as 
experiments simultaneously influenced by qualitative and quantitative factors 
and to provide a sufficiently adequate basis for design problems intrinsically 
connected with (robust) estimation in (contaminated) linear models the follow- 
ing more explicit form of a general linear model will be considered: 

where t,, . . . , t, are experimental conditions ranging in a set T, a: T + RP is 
the vector of (known) regression functions, p E [WP is the vector of (unknown) 
parameters, ZNn are the error variables, YNn(tn) are the corresponding obser- 
vations. 

The following relatively simple but practically relevant example of a linear 
model with two qualitative and K quantitative factors may help as perceptual 
background for the general statements (and the relevance) of the problem 
considered in this paper. 

The regression functions and the parameter vector of a two-way cross-clas- 
sified covariance model with linear covariates are defined by 

with t = (i,, i,, x ) ~  E T c { l , .  . . , I,) X {l,. . . , I,} X [WK C RKt2 ,  

that is, 

(1.2) 
p = (p!", . . . , p$:), p?), . . . , BE), pi3), . - . , B$))  E RI,+I,+K 

and 

where l(ik,il is the indicator function over the set {i, = i) C T and n;. is the 
j t h  coordinate mapping (projection on the j t h  coordinate) of T. The case 
I, = I, = 1, that is, pi1) = . . = P::) = p0 defines the linear regression model 
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and for p0 = 0, one obtains aT(t)p = xTp, the linear regression through the 
origin. 

In the theory of general linear models aT(t)/.?, t E T, is called the linear 
parametrization of the modeel znd a speciEc selection t,, . . . , tN E T, is the 
allocation of experimental conditions according to the underlying design of the 
experiment. The mathematical description of a design S as a probability 
measure on (T, 5-1, where 5- is some suitable a-algebra on T, serves essen- 
tially two different practical purposes, namely describing: 

1.1. Deterministic designs. The probability measure 6 on ( T ,  97 deter- 
mines by its support supp(6) at which of the experimental conditions the 
experiment should be (or has been) performed. The weights of S determine 
the relative frequencies of replications of the experimental conditions in the 
sequence of n = 1, . . . , N of different runs constituting the experiment of size 
N E N. [See literature on approximate designs and their interpretation for 
cases when supp(6) is too large and, in particular, infinite; see dso Kurotschka 
(1987).] 

1.2. Randomized designs. The probability measure 6 on ( T ,  7) deter- 
mines randomiy through a sequence T,, . . . , TN of independent random ele- 
ments each distributed according to 6, the experimental conditions t,, . . . , t, 
as realizations of T,, . , . , TN at which the experiment should be (or has been) 
performed (and how frequently) in the sequence n = 1, . . . , N of different runs 
constituting the experiment of size N E N. 

The formal theory of robust estimation of an arbitrary identifiable linear 
aspect p(P) = GP, where C X R s X P ,  as presented here, is independent of either 
of the above interpretations of S (because of its asymptotic character) and 
independent of the fact whether the design is subject to choice or given by the 
particular experimental setup. The allocations d, := (t,, . . . , tN)T, N E N, of 
the experimental conditions may be viewed (completely in a formal way) as 
possible values of the (measurable) vector DN = (T,, . . . , T,)~ := ( r l , .  . . , r N )  T 

of projections 7,  on the (natural) product space (T", 7, 6=) and a specific 
observation (yN1, .  . . , yNN)T as a particular value of YN(DN) := (YNl(Tl), . . . , 
YN,(TN)>T, N E N. ..., A, 

The notion of identifiability of @(B) = CB in the model with an allocation 
{t,, . . . , t,) is classically (in the G&S-M&~OV theory) defined by the linear 
estimableness of p(p). But there it means actually (and is mathematically 
equivalent to the fact) that the knowledge of aT(t)/.? for all t E {t,, . . . , t,) 
implies the knowledge of q(P) = CP. This notion may be extended within the 
more general framework considered here (including obvious interpretations in 
general asymptotic approaches) to: 

DEFINITION 1. A linear aspect p(P) = CP of P will be called identifiable in 
the linear model, defined by a linear parametrization aT(t)@, t E T, and an 



' underlying design 6, if and only if aT(t)@ = 0 for all t E supp(6) implies 
q(P )  = 0. 

. From this definition, one sees in particular that the desirable economic 
design 6 [namely, those with small supp(8) saving the number of changes of 
experimental conditions but providing efficiency of statistical procedures by 
replications) will in general leave /3 unidentified even if @ itself is an identifi- 
able parametrization (see Example 3.3 in Section 3), that is, if aT(t)/3 = 0 for 
all t E T implies P = 0 [which in practical examples is not always the case, see 
(1.211. 

In the classical approach to estimation problems in general linear models, 
the deviations ZNn(tn) := YNn(tn) - aT(tn)@ of the observations from the true 
response of the experiment to the experimental conditions described by t, E T 
are modeled as stochastically independent, normal and, in particular, symmet- 
rical around zero and independent of t, E supp(6) distributed random vari- 
ables, that is, P Z ~ n ' t n '  = n(O,,z), where we set u2 = 1 for simplicity. 

But it obviously appears more realistic (not only to include the possibility of 
appearance of gross errors, but dso some deviation due to the imperfect 
description of the response of the experiment to some values t E T )  to admit 
contaminations of this classical assumption and to assume 

where the distribution Q(dz, t,) may depend on a particular value t, E supp(6) 
and is not necessarily symmetric around zero. 

Reasonable (i.e., technically tractable and for applications somehow suffi- 
ciently realistic) assumptions on such conditional contaminations are the 
following [see Bickel's acO stochastic linear regression models in (1984) and 
Rieder's (1985, 1987) (c, 1) models and the origin of them in Huber (198311: 

1. The m o u n t  of conditional contamination given t E supp(S) described by 
~ ~ ( t )  2 0 should decrease with the sample size N so that is bounded 
of order N-'l2 for all t E supp(6) or at least if supp(6) is infinite in the 
mean over all t E supp(6) with respect to 6, that is, 

(see the Markov inequality for possible practical interpretation). 
2. The form of conditional contamination given t E supp(6) described by some 

(not necessarily symmetric around zero) conditional distribution Q(dz, t) 
given t E supp(6) should have a (Lebesgue) density and therefore a condi- 
tional density f(z, t) given t E supp(6) with respect to the standard normal 
measure n(,,,, such that the sequence of the joint distributions of 
(Z,,(T,), T,), . . . ,(ZNN(TN), TN), N 2 1, is contiguous to (pN), , ,, where 
P := (n(,, ,, 8 6). 

Setting ~ , ( t )  = N-1/2R~(t), the formal description of these assumptions may 
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be given by: 

(Zprl(Tl), T,), . . . , (Z,,,,(T,), T,) s e  independent 2nd iden- 
tically distributed according to P, = QN 8 6, N r 1, where 

, QA,(dZ, t )  := pZNn(Tn)ITn-t = p Z N n ( t )  

( l  -3) = (1 - N-1/2R~(t))n(,,,,(dz) + N-1/2R~(t)Q(dz, t)  

= (1 + N-ll2R&(t)( f ( z , t )  - l))n(,,,,(dz) 

with E :  T + W(+) such that /E d6  I 1 and 11.4 f - 1)11, < m 

(llq 11, denoting the n(,, ,, 8 6-ess sup of Iql). 

Of course, these assumptions define a whole class 9, of sequences (P$)N l 

of distributions parametrized by E and f which can be viewed as a contamina- 
tion neighbourhood of the central normal model ( P  N)N,, with radius R 
motivating the name conditionally contaminated linear models. 

Bickel's (1981, 1984) and Rieder's (1985, 1987) essential generalization 
(motivated by Le Cam's general approach to asyrnptotics) of Kuber's M-esti- 
mators to asymptotically linear estimators with some influence function for 
estimating the parameter vector p of a contaminated linear regression model 
extends here for the considered general problem obviously as follows. 

DEFINITION 2. Let (P@) = CP be an identifiable linear aspect of the param- 
eter p of a conditionally contaminated linear model (1.1) and (1.3). Then 
@ = (@N)N will be called an asymptotically linear or briefly an AL estimator 
for (P with influence function rC, if and only if there exists a function 

such that - 

I N 

NW' ( ( D  D )  - u ( P )  - N - l  E ( n n  - a ' ( ~ n ) P , ~ n ) ]  + 0 
n =  l 

in probability (pN), , ,. Here l is defined by ((2, t) = z to avoid variables (z, t)  
of *. 

Under assumptions (1.3) on PR, no modification of Bickel's [(1981), page 
18, (1984), page 1351-13551 or Rieder's [(1987), page 317-3211 arguments are 
necessary to establish the asymptotic normality of AL estimators I$ for v, that 
is, the validity of 

as can be seen, for instance, from the results of Behnen and Neuhaus [(1975), 
page 13501. Therefore, one obtains immediately the two relevant components 
of the asymptotic mean square error of an AL estimator @ for in terms of its 
influence function $, namely the trace of its asymptotic covariance matrix 
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V(@) = dP, that is, t r  V(@) = dP, and its asymptotic bias BR(@) =. 
sup{lim sup, ,mlN1/214 dFNl; (P;), , , E gR1 = Rll$llm, where II$I I ,  stands 
for the P-ess sup of l$\. 
' Hampel's (1978) and Krasker's (1980) natural multivariate extension of 

Hampel's (1968) widely discussed and appreciated approach to optimum robust 
estimation, namely, bounding the asymptotic bias (or the infinitesimal sensi- 
tivity) of the estimators (robustness) and minimizing the trace of their asymp- 
totic covariance matrix (optimality), motivates the following definition and the 
resulting estimation problems. 

DEFINITION 3. An PeZ, estimator +* for p@) = CP with influence curve 
G* E WC) will be called a minimum trace-AL estimator (MT-AL. estimator) 
for 9 with bias bound b if and only if 4" E argmin{tr V(@); @ AL estimator 
for Q with BR(+) I b) or in terms of influence functions if and only if 
$* E argmin{trJ$i,hTdF; $ E W C )  with I I $ l l m  I b/Rl. 

Here argmin{G(x); X E X} stands for the set of all arguments X* E X of G 
which minimize G on X. 

With these definitions, the problem considered in this paper is to character- 
ize (as explicitly as possible) the MT-AL estimators with given bias bound for 
arbitrary (identifiable) linear aspects p@) = CP in concEitionalIy contaminated 
linear models with any given linear parametrization aT(t)p, t E T, and for an 
arbitrary underlying design S and in particular for those having finite support. 

Theorem 1 gives the general solution of this problem by establishing the 
existence and uniqueness, and by describing the general form of the influence 
functions of MT-AL estimators with arbitrary bias bound b including the 
boundary case where b is minimum possible (MT-AL estimators with mini- 
mum infinitesimal sensitivity). Under some assumptions on the parametriza- 
tion and the underlying design of the linear model which do not seriously 
restrict the relevant models for applications (see Remark 4), Theorem 2 
provides a more explicit and constructive characterization of the MT-AL 
estimators. The examples on quadratic regression in Section 3 demonstrate 
the applicability of Theorem 2 and serve besides being of interest in their own 
right) to illustrate the particular features of the general results presented in 
this paper and in particular their practical relevance. Among others the 
examples show the not-at-all obvious relation between MT-AL estimators for P 
and those for cp = Cp. But they also exhibit explicitly the (different) influence 
of the (different) underlying designs on the (different) estimation problems in a 
conditionally contaminated linear model and indicate the importance of design 
problems. 

The general setup and the general results of this paper therefore serve also 
as a basis for investigating optimal designs of conditionally contaminated 
general linear models. First results on these design problems have been 
obtained by Miiller (1987) and further work including constructions of differ- 
ent classes of examples is in progress. 
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2. The main results. Lemma 1 clarifies the identifiabilitjr of a linerr 
aspect cp(P) = Cp in terms of its estimabiljty hy PL estimrtsra.. 

LEMMA 1. = CP is identifiable in the model if and only if * ( C )  # 0. 

REMARK 1. Lemma 1 shows among other things, that for linear models in 
which P itself is not identifiable, an AL estimator of an identifiable aspect 
cp(P) = Cp cannot be defined by 4 = ~b with being an AL (or M) estimator, 
because the set of influence functions for P is empty. 

The generalization of Rieder's [(1985), Theorem 3.7(a)] characterization of 
all AL estimators for the parametervector p of a linear regression model with 
minimum asymptotic bias is stated here as a lemma (Lemma 2) because it 
appears here as an auxiliary result. It reduces the problem of characterizing 
MT-AL estimators (or other optimal robust estimators) with bias bound equal 
to the minimum possible by characterizing the class of influence functions of 
all AL estimators with minimum asymptotic bias. 

For the sake of brevity and without loss of generality, we omit the constant 
R (i.e., R := 1) and call I I + I l ,  the asymptotic bias and bo(C) := min{ll$II,; 
y? E *(C )} the minimum asymptotic bias. 

LEMMA 2. Let bo(C) be the minimum asymptotic bias of AL estimators for 
a linear identifiable cp(P) = CP, then: 

(i) There exists a matrix Q ,  E [WsXP, SO that 

= rna.x(tr Qa d S ) - ' ( ~ / 2 ) ~ ' ~ ;  Q E RsXp with Q C ~  3 0). 

(ii) If Q, satisfies (i), then the influence function of every AL estimator for 
cpCP) = CB with asymptotic bias equal to bo(C) coincides with 

where T, := {t E supp(S); Qla(t) # 0) and IT1 is the indicator function 
over T,. 

REMARK 2. Because in general (even when estimating the parameter vector 
p itself) the set Tl defined in Lemma 2 may have probability S(T,) < 1, the 
influence curve 4" of an AL estimator with minimum asymptotic bias may not 
be P-a.e. determined by the function G, of Lemma 2 [see examples (3.3b), 
(3.6a) and (3.6b)J. There are particular cases of appropriately chosen designs 6 
with respect to a given linear parametrization of the model for which +* 
coincides P-a.e. with $, [see examples (3.3a), (3.9) and (3.1211. Another exam- 
ple of such a particular case where +, and $* coincide P-a.e. is formulated 



as the assumption of Theorem 2 in Ronchetti and Rousseeuw (1985) for 
estimating 6 in a liiiem regression =ode1 thrcngh the origir- [ i .~ . ,  a ( t )  = 

a(x l , .  . . , x p )  = ( X , ,  . . . , xPlT = t 'E R P  = T l  assuming that the 6 on (T, 97 .= 
(RP,  @P) is such that j(xxT/llxll)6(dx) = kE ,  where E is the identity matrix 
and k E R. Such particular.designs are generally known as isotropic designs 
with respect to some given parametrization of the linear model. 

THEOREM 1. Let bo(C) be the minimum asymptotic bias of AL estimators 
for Q ( P )  = CP, then: 

(i) For every b 2 bo(C), an  MT-AL estimator @* for Q ( P )  = CP with bias 
bound b exists and is P-unique in  the following sense: If $* and $** are 
influence functions of  two MT-AL estimators, then $* = $** P-a.e. 

(ii) +* is an MT-AL estimator for cp(P) = C/3 with bias bound b > bo(C)  if 
and only if the influence function $* of @* is of the form 

where Q* E [ W S  X P  is a solution of  Q*jaaT[2@C blQ*al - l )  - 11 d 6 = C. 
(iii) @* is an MT-AL estimator for cp(P) = C/? with bias bound b = bo(G) if 

and only i f  the influence function G* of G* is P-a.e. of the form 
M - l  

where for m = 1, .  . . , M - 1, Q, E RSXp are solutions of 

and Q, E [ W S x p  is a solution of ~ ~ j ~ ~ a a ~ [ 2 @ ( b l ~ ~ a I - ~ )  - 11 d 8  = CM with 
T, := { t  E supp(6) \ U r=-:Tk; Qma(t)  # 01, m = 1,. . . , M 2 2, and C = 

c $=lCm. 

REMARK 3. As a referee pointed out to us, the if part concerning the 
optirnality of an influence function of form (2.3) of Theorem l(ii) for linear 
regression models can be deduced from Samarov's (1985) results (by setting 
his quantity M equal to cT@). Also the estimation of a part /3,  of the 
parameter vector p = (PT, given in Hampel, Ronchetti, Rousseeuw and 
Stahel [(1986), Section 4.41 can be regarded as a particular case of the if 
direction of Theorem l(ii). 

THEOREM 2. If the design 6 has finite support ( t l ,  . . . , t,) and the design 
matrix A, := ((aj(ti)){1$;::;,") has rank r such th,at cp(P) = Cj3 is identifiable, 
then : 

(i) The minimum asymptotic bias bo(C)  of an AL estimator is equal to 
bo(C) = max((a/2)1/2)CI-(6)a(ti)l; i = 1,.  . . , r ) ,  where I - (6 )  is any general- 
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ized inverse of the information matrix I(6) := la(t)aT(t) 6(dt) of 6. 
(ii) The influence function of a MT-AL estimator with bias bound b 2 b,(G) 

is P-a .e. equal to $* defined pointwise by 

foral l t  E {t , , . .  . , t r )  with 0 <lCI-(&)a( t ) I  - < b, 

$ * ( z ,  t )  = 

(0, for all other t E T, 

1/2  

for all t E {t l , .  . . , t,) with 1 ~ 1 - ( 8 ) a ( t )  l(;) = b, 

sgn(z)min{lzl, by(t)} 
61-(6)a(t)  

I c I - ( s )a ( t )  b ( t )  ' 

where y(t) is a positive fixed point of ft(y) := (2@(by) - 1)lC.T-fG)a(t)l -l, that 
is, the largest coordinate y = y(t) at  which the straight line 

intersects the (scaled) standard normal distribution function h(y) = @(by). 

REMARK 4. Theorem 2 shows that for designs S with minimum support, 
that is, designs with support points t,, . . . , t, which in particular create linear 
independent vectors a(t,), . . . , a(t,) of regression coefficients, the influence 
functions of MT-BL estimators for every identifiable aspect cp will have at 
most two different branches. That two different branches may actually occur 
when estimating with minimum asymptotic bias is demonstrated by examples 
(3.6a, b) even if estimating the whole parameter vector P in case of its 
identifiability [see (3.3b)l. Fortunately, designs with minimum support are of 
particular practical interest in applications (as already pointed out) so that the 
explicit characterization of the minimum bias and of influence functions given 
in Theorem 2 is of particular practical relevance. 

3. Example: Quadratic regression. To be able to compare estimators 
for p with those for q(/3) = Cp, the parameter p has to be identifiable in the 
model and to illuminate this comparison, C has to be as simple as possible (but 
not trivial), therefore, consider a conditionally contaminated quadratic regres- 
sion model X(t) = PO + P1t + p2t2 + Z(t), t E T C R, that is, a( t )  = (1, t, t2IT 

P = (PO, PI, Pz) T, and let = (P,, pz)T, that is, C = (: !). A rea- 
sonable classical optimum design on T = [ -  l ,  l ]  for p is 

where et is the Dirac measure (unit point mass) over t. 



To realize the influence of a design on the form of the influence function $* 
3f z MT-PL estimztcr, the fallax~,ing slight chazzge of 8 (zct~dlj7 ~ n $  of its 
weights) is very informative: 

Straightforward application of Theorem 2 by computing I-(S)a(t) solves 
the following estimation problems. 

3.1. Estimation of P = (P1, PB, &lT. The minimum asymptotic bias bo( E) 
(here E = identity matrix) of an AL-estimator for P is equal to 

2rr1/', for the design S, 

l ,  for the design 8. 

3.1.A. The (P-unique) influence function I+%* of a MT-AL estimator for P 
with bias bound b > bo( E )  is equal to 

( 0  l ,  1 ,  for t = -1, 
1 1  

(3.2a) $*(z,t)  = n; sgn(z)min{lzl,bu). ( o , , ) ~ ,  f o r t = l ,  

(I ,  0, - l T ,  for t = O 

for the design 6, where u is the positive solution of 2'l2u + 1/2 = @(bu), that 
is, u = 0.349 for b = 2b,(E) and 

2-'/'u-' sgn(z)min{lzl, bu}(O, -1, l lT ,  for t = - 1, 

(3.2b) $*(z, t)  = sgn(z)min{lzl,bu)(0,1,1)~, f o r t = l ,  

2-1~2v-1sgn(z)min(lzl,bv)(l,0,-1)T, f o r t = O  

for the design 8, where u and v are the positive solutions of 7(2-lI2)u/4 + 
1/2 = @(bu) and 7(2-1/2)v/3 + 1/2 = @(bv), that is, u - 0.404 and v = 
0.299 for b = 2bo(E). 

3.1.B. The (P-unique) influence function I+%,* of a MT-AL estimator for P 
with bias bound b = bo( E), that is, with minimum asymptotic bias, is equal to 

0 , - , l T ,  f o r t =  -1, 

(3.3a) I+%,*(z, t )  = (27~)"' sgn(z) - ( 0  l ,  1 for t = 1, 

( 1 0 ,  - l T  for t = O 



for the design 8 and 

2 -1 /2~ -1  sgn(z)miri{lzl, {&"u}(0, - 1 ,  l ) T ,  for t = - 1, 

l (3.3b) z ,  t )  = 2-1/'2u-' 8gn(z)min{lz1, $ i 1 1 / 2 ~ ) ( ~ ,  l, 1 lT ,  for t = 1, 

( f (.;/2)1/2spn(z)(1, 0, - l l T ,  for t = o 

for the design 6, where U is the positive solution of 7(2-lI2)u/4 + 1/2 = 

@ ( 7 ~ l / ~ u / 3 ) ,  that is, U E= 0.339. Note that for 6, 

and for 6, 

fulfil1 the characterizing properties of Theorem l(iii). 

3.2. Estimating cp(B) = Cp = (P,,  p2IT. The minimum asymptotic bias 
bo(C) of an &-estimator for cp is equal to 

2 ~ r ' / ~ ,  for the design 6, 
(3.4) , for the design 6. 

3.2.A. The (P-unique) influence function I,@ of a MT-PLL estimator for cp 
with bias bound b > bo(C) is equal to 

i 2 - 1 / 2 ~ - 1  sgn(z)min{lzl, bu) ( - l ,  I ) ~ ,  for t = - 1, 

(3.5a) @(z , t )  = 2-lI2u-l  sgn(z)min{lzl, bu}(l, l)', for t = 1, 

v-' sgn(z)min{lzl, bvj(0, - for t = 8 

for the design S,  where u and v are positive solutions of 2'/'u + 1/2 = @(bu) 
and v + 1/2 = cP(bv), that is U = 0.349 and v = 0.500 for b = 2b0(C) and 

2 - ' / 2 ~ - '  sgn(z)min{lzl, bu)( - l ,  for t = -1, 

(3.5b) $z(z, t)  = sgn(z)min{lzl, bu) ( l ,  for t = 1, 

v-lsgn(z)rnin{lzl, bu)(O, - f o r t  = 0, 
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for the design 6, where U and v are positive solutions of 7(2-l/')~/4 + 
1/2 = @(bu) and 7vJ6 + 1/2 = @(h) ,  that is, U = 0.399 and v .= 0.425 for 
b = 2bo(C). 

3.2.B. The (P-unique) influence function q!J,5,, of a MT-AE estimator for p 
with bias bound b = bo(C), that is, with minimum asymptotic bias, is equal to 

(2T) l/' sgR(z) ( - 1,1) T, for t  = -1, 

(3.6a) $c* ,o(~ ,  t)  = ( 2 ~ ) ' / ~ s g n ( z ) ( l ,  l )T ,  for t  = 1, 

v-'sgn(z)min{lzJ, 2 ~ l / ~ v )  (0, - for t = 0, 

for the design 6, where v is the positive solution of v + 1/2 = @(2.ir1/'v), that 
is, v = 0.441 and 

: ( ~ / 2 )  l/' sgn(z)( - 1, I) T ,  f o r t =  -1, 

(3.6b) $ z , o ( ~ ,  t )  = 1(77/2)'/ 's~(z)(l, for t  = 1, 
T v - l  sgn(z)min{lzl, $ T ' / ~ V ) ( ~ ,  - 1) , for t = 0, 

for the design 6, where v is the positive solution of 7v/6 + 1/2 = @(77r1/'v/4), 
that is, v = 0.194. Note that for 6 and 6, 

fulfil1 the characterizing properties of Theorem l(iii). 

3.3. Estimating p(@) = C,P = P,, that is, C, = (0,1,0). Under the design 
6 = e-,/4 + eo/2 + e1/4, the minimum asymptotic bias for ~ J ( P )  = CIP = P ,  
is equal to 

(3.7) bo(Cl) = (2~)"'. 

For this design the (P-unique) influence function of a MT-AL estimator 
with bias bound b for p(@) = PI is equal to 

where U is the positive solution of U + 1/2 = @(bu), that is, U = 0.493 for 
b = 2bo(Cl) and is equal to 

Note that under the classical optimum design 6* = e-,/2 + e,/2 for esti- 
mating the linear aspect p(P) = PI, the parameter vector p itself is not 
identifiable. Under this design the minimum asymptotic bias of an AL estima- 
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tor for cp(P) = p, is equal to 

The (P-unique) influence function of a MT-AL estimator with bias bound b 
is equal to 

where u is the positive solution of u/2 + 1/2 = @(bu), that is, u = 0.987 for 
b = 2bo(C,), and is equal to 

(3.12) $,*l,o(z, t) = ( ~ / 2 ) ' / ~  sgn(z)tl{ -,,,, ( t )  for b = b,(C,). 

A comparison of these worked out examples, which have their own interest 
in applications, may help one to appreciate the general set up and the general 
results presented in this paper, in particular, with regard to design problems in 
conditionally contaminated linear models. The examples show in particular 
how different designs of the linear model may influence the size of the 
asymptotic bias as well as the shape of the influence functions of MT-AL 
estimators (and therefore of M-estimators if these exist) and how differently if 
different linear aspects (p of P are of actual interest. Note in particular that 
there is neither an evident relation between $* and $,* nor between $,* and 
$S , ,  reflecting the simple relation between and p = CP. 

4. Proofs. 

PROOF OF LEMMA 1. If cp(P) = CP is identifiable, then the Gauss-Markov 
estimator for cp(P) exists and is an AL estimator for with influence 
function $m = C(/aaT d6)-a5 E WC), that is, WC) .it 0 ,  (here A- denotes 
m arbitrary g-inverse of A, that is, a matrix A- with AA-A = A). 

Assume $(C) # 0 ,  that is, there exists a 4, E WC). Then aT(t)p = 0 for 
6-a.e. t E T implies CP = l$,aTl d P P  = l$,aTpl cEP = 0 which shows identi- 
fiability of cp(P) = CP. 

PROOF OF L E N T  2. The proof can be based on the same standard argu- 
ments as used by Rieder (1985). But here they need some modification 
[because the matrix C defining = C(@) is not equal to the identity matrix 
and is not even square] and some extension (because it is not assumed that p 
is identifiable under S nor that P is at all an identifiable parametrization). 
Partitioning C = (c,l . . . Ic,) and Q = (q,l . IQ,) E [WsXP and considering 
g,($)  := ci - /$a , ldP  as functions on := (4: R X T + RS; jl$I2 d P  < 03, 

l$ dn(,, ,, = 01, one obtains t r  QCT - /$TQatdP = Cf=lqTgi($) .  This implies 
for all $ E WC), 
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tdat is, b,(C) 2 tr  Q c T ( / I ~ a l  d 6>-1(~/2>1/2 for all Q with QCT + 0 (note 
that QCT # 0 implies JlQaJ d 6 > 0). 

The existence of Q, satisfying (i) can be proved by first showing the 
existence of $ E WC) such that 1117/11m = inf{lIJTll,; +h E V!(C)) and then deduc- 
ing the existence or" Q, via the Lag~ange principle which provides the existence 
of Lagrange multipliers q,,, . . . , g,, E R" satisfying IIJTllm + Cf=lqEgL(JT) 2 
11$1Im + C:=,qEgl($) = I I & I I m  for all JT E q. 

Whereas the proof of the first part is standard (weak compactness argu- 
ments, as in the proof of Theorem l), the application of the Lagrange principle 
requires the linear independence of g,, . . . , g, on P, that is, in the here 
considered case, the linear independence of the regression functions a,, . . . , a, 
on suppC6). But this excludes the practically more realistic models and prob- 
lems. To overcome this difficulty, the following transformation argument 
appears helpful: 

Let E = (E,, . . . , E,) be a basis of lin{a,, . . . , a,) on supp(6), then there exist 
A E R P x r  and a generalized inverse A- of A such that a = AE, E = A-a on 
supp(6) md C(A-)TAT = C. 

Because for all $ E WC),  one has /JTETl d P  = /JTaTl dP(A-IT = 

C(A-)T =: c and for all 

F E T(C) := (JT: R X T + R'; / / $ l 2  dP < m, /JT dye, ,, = 0, /+ET(dF' = C), 

one has jFaT( d P  = /&ETl dPAT = = C(A-)TAT = C, it follows that - - 
F(C) = WC) and, in particular, b,(C) = min{ll&ll; F E WC)). 

This shows that the minimum bias of &-estimators in the model with 
arbitrary regression functions a coincides with that in the transformed model 
with linear independent regression functions E on supp(6). 

Therefore, the Lagrange principle applies to the transformed model: There 
exists Q, E R S X r  with glcT # 0 which satisfies (i) with a replaced by E. But 
because C = c ( A - ) ~  and E = A-a on supp(6), there exists Q, := Q,A- E R" - - 
with $,CT = g l ~ - C T  = QICT # 0 satisfying (i) with the originally given 
regression functions a (note that Q,a = Q1z by construction). 

The statement (ii) follows from the Cauchy-Schwarz and Holder inequdi- 
ties: Equality in (4.1) holds if and only if JT coincides with JT, for all t E supp(6) 
for which Q,a(t) # 0. 

PROOF OF THEOREM 1. (i) The weak compactness of qb(C) := {JT E $(C); 
IIJTllm I b) [see also Bickel(1984), page 1355, Rieder (19851, page 351 implies for 
every sequence (I), E Tb(C)), , , such that 

lirn tr/+,+: d~ = i := inf t,bJTTdp; JT E 'Y,(c)] 
n + m  

the existence of a subsequence (+h,(,,),,, of (JT,),,, and of an influence 
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function $* i Vb(C)  with 

This proves the existence of an influence function I,?* of an MT-AL estima- 
tor for cp with bias bound b 2 b,(C). The P-uniqueness of $* follows from (ii) 
and (iii). 

An AT., estimator +* = (@%lN2, with infiuence function +* can be obtained 
by extending Rieder's [(1985), page 711 construction of an AL estimator for the 
parameter vector of a linear regression model to the general problem as 
follows: For a realization dN = (t,, . . . , tN)T of the design 6 and the realization 
yN := (yN1, . . . , yNN)T of the corresponding observation YN(dN) = 

(YNl(tl), . . . , YNN(tN)IT, define @T;(yN, dhr )  := C(A-)T~T;(yN,  d N )  + 
N-'E ?==,+*(yNn - a ( t n ) T ( ~ - ) T ~ g ( Y N ,  dN) ,  tn), where Pg(yN,_dN) is a discre- 
tized version in the sense of Rieder [(1985), page 711 of ( ~ ( d , ) ~ X ( d , ) ) -  
X(dN)TyN with x (dN)  := (a(t,)l . . l ~ ( t , ) ) ~ ( A - ) ~  and A as in Lemma 2. The 
asymptotic linearity of (G:), ., can then be proved by introducing the follow- 
ing transformation: 

For i = l, . . . , S ,  let C"= eTC(A-IT E @h= e?+*, +& := eT@;, where 
e, is the i t h  unit vector of R'. 

Then there exist B E W'-' 4;: W X T -, (Wr-', + B  := W X T -+ R'-l and 
@E: KtN X T N  -+ ( W r - '  SO that 

fulfil1 conditions (4.23), (4.24) and (4.25) in Rieder [(1985), page 651 and 

Therefore, Theorem 4.10 in Rieder (1985) provides 

in probability 
with p :=  AT^ E R' and Z i  := A-a: T + R'. 



Premultiplication with Z,G where Bi is the i th unit vector in W' yields the 
asymptotic linearity of !G:?), , for e'C@ with influence functions r! ,bsbn thus 
completes the proof of (i). 

(ii) The problem of characterizing $* E arg&in{trj+$Td~; $ E V(@), 
11+11, I b) for b > b,(C) can be solved by modifying and extending arguments 
of Bickel [(1981), page 351 and Rieder [!1987), page 3361, see also the original 
arguments in Hmpel  [(1968), pages 51-52] and kasker  [(1980), page 13421. 
For a solution by the Lagrange principle, let gi: Y: -, R", i = 1, . . . , p, be as in 
Lemma 2. Then the Lagrange principle provides the existence of Eagrange 
multipliers g,, . . . , qp E iWs and q E R +  satisfying 

P 

t r /$$Tdp + 2 q?gi(+) + q(ll$Il- - b) 
i =  l 

= tr  dP for all $ E t. 

In case of linearly dependent g,, . . . , g,, reparmetrize the model as in 
Lemma 2 by a -, ii := A-a and c := C(A-)'. From the above inequality with 
accordingly redefined functions g,, . . . , g, and the corresponding matrix Q := 

(qll - - ]Br) E RSXr  of Lagrange multipliers, one obtains for every t,b E V with 
ll+llm I b: 

T because E i=lqigi($) = t r  $C - j$'@il d~ by definition of g,, . . . , g,. This 
reduces the original problem to the characterization of 

Because / I $  - gill2 d P  = / l $  - Q * U ~ I ~  dP for Q* := @A-E RSXP and be- 
cause l l $ l l m  I b implies / $ l  I b P-a.e., every solution of the reduced minimiza- 
tion problem is obviously P-a.e. equal to 
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The characterization of Q* in (ii) follows from $* E WC) which implies that 

[Note that the last equality is a consequence of the following well-known 
identity: jIxlmin{lxl, kln(o, ,,(dx) = 2 @ ( k  - 1.1 

The equality of arg min{/l$ - ~ " ~ 5 1 ~  D; 4 E WC), I I $ l l m  I b) and 
argmin(trl$t+bTdP; + E *(C), I I $ l l m  S h )  completes the proof [note that b > 
bo(C) follows from Lemma 2 because $* is not of form (2.2)]. 

(iii) According to Lemma 2, the influence function of every AL estimator of 
cp(P) = C(p) with minimum aslmptotic bias bo(C) is P-a.e. equal to $ = + 
$, with +, := $l,,pp~,,,,l and &, and T, are as in Lemma 2. For the two 
trivial cases T, = supp(8) and T, + supp(8) but j4,aTldP = C', that is, $, E 

Tf C), the P-unique influence function of an M T - U  estimator with bias bound 
b,(C) is obviously P-a.e. equal to $, [i.e., (2.4) holds with M = 2, Q, = 01. For 
the second of these two trivial cases, t r  dP  = d P  = j+F+, d P  + 
/t,!r;4b2 d P  2 dP provides the proof. 

The remaining more general case [see examples (3.3b), (3.6a), (3.6b) and 
Theorem 2 together with its proof] occurs when T, =k supp(8) and j$,aTl dP = 

C, # C, that is, 4, P WC) for T, and I), defined in Lemma 2. 
In this case, the original problem to determine +* = $, + $,* so that 

$* E arg min{tr / J I $ ~  dP;  $ E *(C), 114 l l m  = bo(C)) is obviously equivalent to 
the construction of $2 so that $,* E argmin{tr J$,$: dP; $, E WC,), f+k21T1 = 

0, l l $ , l l m  5 bo(C)), where WC,) is as in Definition 2 with C replaced by 
6, := C - Cl. 

This extremum problem for $2 can be identified with the problem of 
constructing the influence function of a MT-AL estimator for rp,(P) := C2P 
with bias bound b,(C) under the restriction 6, of the design 6, on T, := 

supp(6) \ T,, defined by 8,(S := 6(S n T,). The replacement of 6 by 6, in 
*(C,) discards the side condition q21T1 = 0 in the above minimization problem 
and redefines *(C,) to be the set *,(C,) := {$: R X T, -+ R"; jl$12 d(n(,,,, 8 
6,) < W, j$ dn(o, ,, = 0, j$aTg d(n(,, ,, 8 6,) = C,} of all influence functions for 
estimating cp, under the design 6,. Obviously for their minimum asymptotic 
bias b,,(C,), one obtains 

If b,,(C,) < b,(C), then Theorem l(ii) applied to the problem of estimating 
cp, with the set %(C,) of influence functions establishes the validity of (iii) 
with M = 2. 

If b,,(C,) = b,(C), then the arguments at the beginning of the proof of (iii) 
apply to the modified problem partitioning T, in T,, and T, := T, \ T,, and 
characterizing 14, = $,,lT,, + G31T3 on T, := T \ T, = T \ {t E supp(6); 
Q,a(t) # 0) according to Lemma 2. 
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Note that the characterization bf Q, in Lemma 2(i) translates to that given 
in Theorem l(iii) and analogously to that for Q,. The resulting two new trivial 
cases lead to the validity and uniqueness of (2.4) with M = 3 but Q3 = 0: 

The more general case restarts the chain of arguments which ends after at 
most r - 1 steps, where r is the dimension of the linear hull of a,, . . . , a, on 
supp(6). This follows immediately from the construction of the partition 
T,, T, := T,,, , . . , TM of T based on Lemma 2 and proves (iii) together with 
the corresponding uniqueness statement in (i). 

PROOF OF THEOREM 2. The main idea behind Theorem 2 is, that under the 
condition posed on A,, a coordinatewise solution of the matrix equations for 
Q* and for Q,, . . . , Q, of Theorem 1 can be constructed by (red-valued) fked 
points y(t), t E {t,, . . . , t,). To spare the reader the technical construction of 
the solution, the proof is given here by showing that the following definitions 
fulfil1 the characterizing properties of Theorem 1. 

Setting for the quantities in Theorem l(iii) with M = 2, 

T ,  := {t  s supp(6); I C I - ( S ) ~ ( ~ ) ~ ( T / ~ ) ' / ~  = b ) ,  

and 

C, := CI-(S)/ n(t)aT(t)6(dt) = C - C,, 
T2 

the matrices 

with S, := T, \ {t  E supp(6); CI-(S)a(t) = 01, 

will solve the equations given in Theorem l(iii): 

identifying b* := max{l C I - ( S ) U ( ~ ) ~ ( T / ~ ) ~ / ~ ;  t E supp(6)) to be the minimum 
bias b,(C). 

Note that for all b > b*, the set T, as defined above is empty so that 
Theorem l(ii) applies. 
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The following general argument supports the above statement. 
The integrals defining I(6), Q, and Q, are of the form 

with D = diag(dl,. . . , d,), where d ,  = k(t,)6{t,}, t, E supp(S), k(t,) E [W. The 
assumption that rank A, = r implies the existence of (specific) generalized 
inverses of A, and of ATDA, so that A, A; = E and (A;DA,)-= A;D-(A; IT. 
The identifiability of (o implies the existence of K E LW"' so that C = 

KA,. Therefore it holds true that c(A;DA,)-A; = KA,A,D-(A;)~AT = 

KD- = K diag(d;, . . . , d ;  ), where d;  = d; l if d ,  # 0 and 0 otherwise. 
This representation applied to CI-(8), Q, and Q, shows that Q,a(t) = 

CI-(8)a(t)(2@(by(t)) - l ) - '  for t E S, and 0 otherwise, that is, IQ,a(t)J = 

y-l(t) by definition of y(t), t E S,, and Q,a(t) = CI-(8)a(t) for t E T ,  and 0 
otherwise. 

This proves that indeed Q, and Q ,  are solutions of the matrix equation of 
Theorem 1 and +* from Theorem 2 is of the form presented in Theorem 1, 
namely characterized in (iii) if b = b" = bo(C) and in (ii) if b > b* = bo(C). 
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