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Numerical Methods for
Non-Stationary Stokes Flow

Werner Varnhorn

Abstract We consider a first order implicit time stepping procedure (Euler scheme)
for the non-stationary Stokes equations in smoothly bounded domains of R3. Us-
ing energy estimates we can prove optimal convergence properties in the Sobolev
spaces Hm(G) (m = 0,1,2) uniformly in time, provided that the solution of the
Stokes equations has a certain degree of regularity. For the solution of the result-
ing Stokes resolvent boundary value problems we use a representation in form of
hydrodynamical volume and boundary layer potentials, where the unknown source
densities of the latter can be determined from uniquely solvable boundary integral
equations’ systems. For the numerical computation of the potentials and the solu-
tion of the boundary integral equations a boundary element method of collocation
type is used. Some simulations of a model problem are carried out and illustrate the
efficiency of the method.
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1 Introduction and Notation

Let T > 0 be given and G ⊂ R3 be a bounded domain with a sufficiently smooth
compact boundary S. In (0,T ) we consider the non-stationary Stokes equations

Dtv−ν∆v+∇p = F, div v = 0, v|s = 0, v|t=0 = v0 . (1.1)

These equations describe the linearized motion of a viscous incompressible fluid:
The vector v = (v1(t,x), v2(t,x), v3(t,x)) represents the velocity field and the scalar
p = p(t,x) the kinematic pressure function of the fluid at time t ∈ (0,T ) and at
position x ∈G. The constant ν > 0 is the kinematic viscosity, and the external force
density F together with the initial velocity v0 are the given data. The condition
div v = 0 means the incompressibility of the fluid, and v = 0 on the boundary S
expresses the no-slip condition, i. e. the fluid adheres to the boundary.
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It is the aim of the present paper to develop a method for the numerical solution
of (1.1). This method consists of three steps. In the first step, the implicit Euler
method in time is used in to transform (1.1) into a finite number of certain boundary
value problems. In the second step, these boundary value problems are studied with
methods of hydrodynamical potential theory. This leads to a representation of their
solutions consisting of volume and surface potentials, where the unknown densities
have to be determined from systems of boundary integral equations. In the third
step, for the discretization of the boundary integral equations and the numerical
computation of the potentials a boundary element method of collocation type and
suitable quadrature methods are used.

Let us consider the following semi-discrete first order Euler approximation
scheme for the Stokes equations (1.1): Setting

h = T/N > 0, tk = k h (k = 0,1, . . . ,N) ,

we approximate the solution v, p of (1.1) at time tk by the solution vk, pk(k =
1,2, . . . ,N) of the following equations in G:

(vk− vk−1)h−1−ν∆vk +∇pk = h−1
kh∫

(k−1)h
F(t)dt ,

div vk = 0, v0 = v0, vk
|s = 0 .

Here F and v0 are the given data. Thus for every k = 1,2,3, . . . ,N we have to deter-
mine in G the solution vk,qk of the Stokes resolvent boundary value problem

(λ −∆)vk +∇qk = Fλ ,k−1 , div vk = 0 , vk
|s = 0 ,

with λ = (νh)−1 > 0, qk = pk/ν , and

Fλ ,k−1(x) = λ


vk−1(x)+

kh∫

(k−1)h

F(t,x)dt


 . (1.2)

Using methods of hydrodynamical potential theory we find a representation of the
solution vk,qk in the form

(vk(x),qk(x)) = (Vλ Fλ ,k−1)(x)+(DλΨ)(x), x ∈ G . (1.3)

Here Vλ Fλ ,k−1 is a hydrodynamical volume potential with density Fλ ,k−1, and DλΨ
is a double layer potential with an unknown source density Ψ , which can be deter-
mined from the boundary integral equations

−(V ∗
λ Fλ ,k−1)(x) =

1
2

Ψ(x)+(D∗
λΨ)(x)− (PNΨ)(x) , x ∈ S . (1.4)
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Here the superscript ∗ indicates the velocity part of the above potentials. (D∗
λΨ) is

the direct value of the hydrodynamical double layer potential for the velocity, and
PN is a one-dimensional perturbation operator, which ensures that the solution Ψ is
unique in the space of continuous vector fields on S. For the spatial discretization of
(1.4) we use a boundary element method of collocation type as described in [1], [5].

At this point, let us introduce our notations. Throughout the paper, G ⊂ R3 is
a bounded domain having a compact boundary S of class C2. In the following, all
functions are real valued. As usual, C∞

0 (G) denotes the space of smooth functions
defined in G with compact support, and L2(G) is equipped with scalar product and
norm

( f ,g) =
∫

G

f (x)g(x)dx , || f || = ( f , f )
1
2 ,

respectively. For functions f ,g ∈ L2(G) we need the following well-known rela-
tions:

( f −g, f +g) = || f ||2−||g||2 ,

( f −g,2 f ) = || f ||2−||g||2 + || f −g||2 , (1.5)

2( f ,g) ≤ 2 || f || ||g|| ≤ || f ||2 + ||g||2 .

The Sobolev space Hm(G) (m = 0,1,2, . . .) is the space of functions f such that
Dα f ∈ L2(G) for all α = (α1,α2,α3) ∈ N3

0 with |α|= α1 +α2 +α3 ≤ m. Its norm
is denoted by

|| f ||m = || f ||Hm(G) =

(
∑
|α |≤m

||Dα f ||2
) 1

2

,

where Dα = Dα1
1 Dα2

2 Dα3
3 with Dk = d

dxk
(k = 1,2,3) is the distributional derivative.

The completion of C∞
0 (G) with respect to || · ||m is denoted by Hm

0 (G)(H0
0 (G) =

H0(G) = L2(G)) . If f ∈ H1
0 (G), in particular, we have Poincaré’s inequality

|| f ||2 ≤ CG||∇ f ||2 , (1.6)

where here the constant λ1 = C−1
G is the smallest eigenvalue of the Laplace operator

−∆ in G with zero boundary condition.
The spaces C∞

0 (G)3,L2(G)3,Hm(G)3, . . . are the corresponding spaces of vector
fields u = (u1,u2,u3). Here norm and scalar product are denoted as in the scalar
case, i. e. for example,

(u,v) =
3

∑
k=1

(uk,vk) , ||u|| = (u,u)
1
2 =

∫

G

|u(x)|2dx
1
2 ,

where |u(x)|= (u1(x)2 +u2(x)2 +u3(x)2)
1
2 is the Euclidian norm of u(x) ∈R3. The

completion of
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C∞
0,σ (G)3 = {u ∈C∞

0 (G)3|div u = 0}
with respect to the norm || · || and || · ||1 are important spaces for the treatment of the
Stokes equations. They are denoted by

H(G)3 , V (G)3 ,

respectively. In H1
0 (G)3 and V (G)3 we also use

(∇u,∇v) =
3

∑
k, j=1

(Dku j,Dkv j) , ||∇u|| = (∇u,∇u)
1
2

as scalar product and norm. Moreover, we need the B-valued spaces Cm(J,B) and
Hm(a,b,B), m ∈ N0, where J ⊂ R with a,b ∈ R (a < b), and where B is any of the
spaces above. In case of C0(,) we simply write C(,), and we use H,V,Hm, . . . instead
of H(G),V (G),Hm(G), . . ., if the domain of definition is clear from the context.
Finally, let

P : L2(G)3 −→ H(G)3 (1.7)

denote the orthogonal projection. Then we have

L2(G)3 = H(G)3⊕{v ∈ L2(G)3|v = ∇p for some p ∈ H1(G)} ,

with means

(u,∇p) = 0 for all u ∈V (G)3 and p ∈ H1(G) . (1.8)

2 An Implicit Euler Scheme

Because the projection P from (1.7) commutes with the strong time derivative Dt ,
from the Stokes equations (1.1) we obtain the following evolution equations for the
function t → v(t) ∈ H(G)3:

Dtv(t)−νP∆v(t) = PF(t) (t ∈ (0,T )) , v(0) = v0 . (2.1)

In this case, the condition div v = 0 and the boundary condition v = 0 on S are sa-
tisfied in the sense that we require v(t) ∈ V (G)3 for all t ∈ (0,T ). Concerning the
solvability of the evolution equations (2.1) it is known that for

v0 ∈ H2(G)3∩V (G)3 , F ∈ H1(0,T,H(G)3) (2.2)

there is a unique solution v of (2.1) in G such that

v ∈C([0,T ],H2(G)3∩V (G)3) , Dtv ∈C([0,T ],H(G)3)∩L2(0,T,H1(G)3) , (2.3)
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and that there is some constant K depending only on G,ν ,F,v0 and not on t ∈ [0,T ]
such that for all t ∈ [0,T ]

t∫

0

||∇Dσ v(σ)||2dσ ≤ K , ||v(t)||2 ≤ K , ||Dtv(t)|| ≤ K . (2.4)

Let us now consider the discrete equations under the weaker assumptions

v0 ∈ H(G)3 , F ∈ L2(0,T,H(G)3) . (2.5)

Using P as above and noting that F = PF we obtain in G(h = T/N > 0)

(vk− vk−1)−hνP∆vk =
kh∫

(k−1)h

F(t)dt , v0 = v0 . (2.6)

It is known that under the above assumptions (2.5) there is a unique solution

vk ∈ H2(G)3∩V (G)3 (k = 1,2, . . . ,N) (2.7)

of (2.6): If we define the Stokes operator A to be the extension of −P∆ in H(G)3,
then its domain of definition D(A) is H2(G)3 ∩V (G)3. Because λ = (νh)−1 > 0
belongs to the resolvent set of −A, the equations

vk = (λ +A)−1Fλ ,k−1 , Fλ ,k−1 ∈ H(G)3

(see (1.2)) are uniquely solvable with vk ∈ H2(G)3∩V (G)3, as asserted.
To prove the convergence of the discrete equations (2.6) to the evolution equa-

tions (2.1) and to estimate the discretization error, we use the approach ”’stability +
consistency → convergence”’. Let us define

(Πv)(tk) = v(tk)− v(tk−1)−νhP∆v(tk),
(
Π{v j})(tk) = vk− vk−1−νhP∆vk .

Then the discretization error
ek = vk− v(tk) (2.8)

satisfies the identity

ek− ek−1−νhP∆ek =
(
Π{v j})(tk)− (Πv)(tk) = Rk , (2.9)

which is used to obtain estimates of ek in terms of the right hand side Rk (≈ stability).
Then the behavior of
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Rk =
kh∫

(k−1)h

(Dtv(t)−νP∆v(t))dt−{(v(tk)− v(tk−1))−hνP∆v(tk)}

=
kh∫

(k−1)h

−νP∆(v(t)− v(tk))dt (2.10)

= −νP∆Ek

as h tends to zero (≈ consistency) follows from the regularity properties of the exact
solution of the Stokes equations (2.1).

Theorem 1. Let T > 0, N ∈ N, and G ⊂ R3 be a bounded domain with a smooth
boundary S of class C2. Assuming (2.2), let v and vk(k = 1,2, . . . ,N) denote the
solution of (2.1) and (2.6), respectively. Then the discretization error ek (see (2.8))
satisfies the following estimates:

||ek||2 +
k

∑
j=1

(hν ||∇e j||2 + ||e j− e j−1||2) ≤ Kh2 ,

||∇ek||2 +
k

∑
j=1

(2(hν)−1||e j− e j−1||2 +
1
2
||∇(e j− e j−1)||2) ≤ Kh .

Here the constant K depends only on G,ν , and the data. Moreover, we even have
convergence with respect to the H2-norm:

max{||ek||2 | k = 1,2, . . . ,N} = ◦(1) as h−→ 0 or N −→ ∞ .

Proof. From (2.9) and (2.10) we obtain for the defect ek the identity

(ek− ek−1)−hνP∆ek = −νP∆Ek . (2.11)

Multiplying (2.11) scalar in L2 by 2ek and using (1.5) we obtain

||ek||2 − ||ek−1||2 + ||ek− ek−1||2 + 2hν||∇ek||2 = 2ν(∇Ek,∇ek) ≤
2(hν)

1
2 ||∇ek||(h−1ν)

1
2 ||∇Ek|| ≤ hν ||∇ek||2 +h−1ν||∇Ek||2 = S1 +S2.

Because of

S2 = h−1ν
∥∥∥∥

kh∫

(k−1)h

kh∫

t

Dσ ∇v(σ)dσdt
∥∥∥∥

2

≤ ν
kh∫

(k−1)h

∥∥∥∥
kh∫

(k−1)h

|Dσ ∇v(σ)|dσ
∥∥∥∥

2

dt

≤ ν h
∥∥∥∥

kh∫

(k−1)h

|∇v(σ)|dσ
∥∥∥∥

2

≤ νh2
kh∫

(k−1)h

||Dσ ∇v(σ)||2dσ ,
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we find

||ek||2−||ek−1||2 + ||ek−ek−1||2 +hν ||∇ek||2 ≤ νh2
kh∫

(k−1)h

||Dσ ∇v(σ)||2dσ (2.12)

for all k = 1,2, . . . ,N. Thus using ||e0||2 = 0 and (2.4), the first estimate is proved.
Next let us multiply (2.11) scalar in L2 by 2(ek− ek−1). Here we obtain

2||ek− ek−1||2 +2hν(∇ek,∇(ek− ek−1))

= 2||ek− ek−1||2 +hν(||∇ek||2−||∇ek−1||2 + ||∇(ek− ek−1)||2)
= 2ν(∇Ek,∇(ek− ek−1))

≤ 2 ·
(hν

2

) 1
2 ||∇(ek− ek−1)|| · (2h−1ν)

1
2 ||∇Ek||

≤ hν
2
||∇(ek− ek−1)||2 +2h−1ν ||∇Ek||2 = S3 +2S2 .

Using the above estimate for S2 again, we have

2||ek− ek−1||2 +hν(||∇ek||2−||∇ek−1||2)− hν
2
||∇(ek− ek−1)||2

≤ 2νh2
kh∫

(k−1)h

||Dσ ∇v(σ)||2dσ ,

hence

||∇ek||2−||∇ek−1||2 +2(hν)−1||ek− ek−1||2 +
1
2
||∇(ek− ek−1)||2

≤ 2h
kh∫

(k−1)h

||Dσ ∇v(σ)||2dσ ,

which implies the second estimate. Next we want to prove convergence with respect
to the H2-norm. From (2.11) we conclude

P∆ek = (hν)−1(ek− ek−1)+h−1P∆Ek ,

which implies

||P∆ek||2 ≤ 2(hν)−2||ek− ek−1||2 +2h−2||P∆Ek||2 . (2.13)

By (2.3) we find the following estimate for the second term:
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2h−2||P∆Ek||2 ≤ 2h−2
∥∥∥∥

kh∫

(k−1)h

P∆(v(t)− v(tk))dt
∥∥∥∥

2

≤ 2 max
σ ,τ∈[0,T ]
|σ−τ|≤h

||P∆(v(σ)− v(τ))||2

= ◦(1) as h−→ 0 .

It remains to show that also the first term of (2.13) tends to zero. Using

T k =
(ek− ek−1)

h
(k = 1,2, . . . ,N)

for abbreviation, from (2.11) we obtain the identity

T k−T k−1−hνP∆T k

= −h−1νP∆





kh∫

(k−1)h

(v(t)− v(tk))dt−
(k−1)h∫

(k−2)h

(v(t)− v(tk−1))dt





= −h−1νP∆Gk ,

where Gk is defined by the above term in brackets. Scalar multiplication in L2 by
2T k yields as above

||T k||2−||T k−1||2 + ||T k−T k−1||2 +2hν ||∇T k||2 ≤ hν ||∇T k||2 +h−3ν ||∇Gk||2 ,
(2.14)

hence

||T k||2−||T k−1||2 + ||T k−T k−1||2 +hν ||∇T k||2 ≤ h−3ν ||∇Gk||2 .

Because

Gk = −
kh∫

(k−1)h

kh∫

t

(Dσ v(σ)−Dσ v(σ −h))dσdt ,

we find the estimate

||∇Gk||2 ≤ h3
kh∫

(k−1)h

||Dσ ∇(v(σ)− v(σ −h))||2dσ .

Thus from (2.14) we obtain
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||T k||2−||T k−1||2 +||T k−T k−1||2 +hν ||∇T k||2 ≤ ν
kh∫

(k−1)h

||Dt∇(v(t)−v(t−h))||2dt ,

and

||T k||2 +
k

∑
j=2

(||T j−T j−1||2 +νh||∇T j||2)

≤ ||T 1||2 +ν
T∫

h

||Dt∇(v(t)− v(t−h))||2dt (2.15)

= ◦(1) as h−→ 0 ,

because the integral vanishes as h→ 0, and because by (2.12) (note ||e0||= 0)

||T 1||2 = ||(e1− e0)h−1||2 ≤ ν
h∫

0

||Dt∇v(t)||2dt = ◦(1) .

Thus (2.15) implies that also the first term of (2.13) tends to zero as h → 0, hence
||P∆ek||2 = ◦(1) as h→ 0, and the asserted convergence with respect to the H2-norm
follows by means of Cattabriga’s estimate. This proves the theorem.

3 Hydrodynamical Potential Theory

Because every time step tk = kh (k = 1,2, . . . ,N ∈ N; h = T
N > 0) requires the so-

lution of the boundary value problem (??), we consider for fixed h,k, and λ =
(hν)−1 > 0 in G the system

(λ −∆)u+∇q = F , div u = 0 , u|s = 0 . (3.1)

Let us define the formal differential operator of (3.1) by

Sλ :
(

u
q

)
−→ Sλ

u
q

=
(

(λ −∆)u+∇q
∇ ·u

)
,

and let

S′λ :
(

u
q

)
−→ S′λ

u
q

=
(

(λ −∆)u−∇q
−∇ ·u

)
,

denote its formally adjoint operator. To construct an explicit solution u,q of (3.1)
with methods of potential theory, we first need the singular fundamental tensor Eλ =
(Eλ

jk) j,k=1,...,4, i. e. a solution of Sλ Eλ = δ I4 in the space of tempered distributions.
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Here δ is Dirac’s in R3, I4 the 4× 4 unity matrix, and Sλ Eλ = (SEλ
1 ,SEλ

3 ,SEλ
4 )

with columns Eλ
k = (Eλ

jk) j=1,...,4 for k = 1, . . . ,4. It is well-known ([?]) that the
fundamental tensor Eλ = (Eλ

jk(x)) j,k=1,...,4 has the following form:

Eλ
jk(x) =

1
4π

{
δ jk

|x| e1(−
√

λ |x|)+
x jxk

|x|3 e2(−
√

λ |x|)
}

(k, j 6= 4)

e1(ε) =
∞

∑
n=0

(n+1)2

(n+2)!
εn = exp(ε)(1− ε−1 + ε−2)− ε−2

e2(ε) =
∞

∑
n=0

1−n2

(n+2)!
εn = exp(ε)(−1+3ε−1−3ε−2)+3ε−2 (3.2)

Eλ
4k(x) = Eλ

k4(x) =
xk

4π|x|3 (k 6= 4) ,

Eλ
44(x) = δ (x)+

λ
4π|x| .

Using the exponential representation of the functions e1,e2 we obtain immediately
the behavior of Eλ (x) for x→ 0 and x→ ∞. Setting r = |x| we have for j,k 6= 4:

Eλ
jk(x) = O(r−1) as r −→ 0

Eλ
jk(x) = O(r−3) as r −→ ∞ (λ > 0) (3.3)

Eλ
4k(x) = O(r−2) as r −→ 0 or r −→ ∞ .

Note that Eλ
jk(λ > 0) decays stronger than E0

jk( j,k 6= 4) as r → ∞.
Now using the right hand side F from (3.1) and the fundamental tensor Eλ , we

can construct the hydrodynamical volume potential

(U(x),Q(x)) =
∫

G

<

(
F(y)

0

)
, Eλ (x− y) > dy , (3.4)

which satisfies the equations Sλ
U
Q =

(F
0

)
in G due to its construction. Here and in

the sequel, for ξ ∈ Rn and matrices A = (A ji) ∈ Rn×Rm (n,m ∈ N) we use

(ξ ,A) =

(
n

∑
j=1

ξ jA j1, . . . ,
n

∑
j=1

ξ jA jm

)
,

obtaining a row with m components.
In order to represent the solution of (Sλ ) by means of potentials we need the

hydrodynamical Green’s formulae. They are given in terms of the formal differential
operators
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Sλ :
(

u
q

)
−→ Sλ

u
q

, S′λ :
(

u
q

)
−→ S′λ

u
q

from above, and their corresponding adjoint stress tensors, which are defined by

T :
(

u
q

)
−→ T

u
q

= (−∇u− (∇u)T +qI3) ,

T ′ :
(

u
q

)
−→ T ′

u
q

= (−∇u− (∇u)T −qI3) .

Here (∇u)T is the transposed matrix of ∇u = (Diuk)k,i=1,2,3 and I3 the 3× 3 unity
matrix.

Let us assume that u,v ∈C2(G)3∩C1(G)3 are divergence-free vector fields, that
q, p ∈C1(G)∩C0(G), and that Sλ

u
q , S′λ

v
p ∈ L1(G)3(λ > 0). Then we have Green’s

first identity

∫

G

(Sλ
u
q
,

(
v
p

)
)dy

(3.5)
=

∫

S

(T
u
q

N,v)doy +
∫

G

(λu,v)dy+
∫

G

1
2
(∇u+(∇u)T , ∇v+(∇v)T )dy ,

and Green’s second identity

∫

G

{
(Sλ

u
q
,

(
v
p

)
)− (

(
u
q

)
,S′λ

v
p
)
}

dy =
∫

S

{
(T u

q N,v)− (u,T ′vp N)
}

doy . (3.6)

Here we use

< ξ ,η > =
n

∑
k=1

ξkηk for ξ ,η ∈ Rn and < A,B > =
n

∑
i,k=1

AikBik

for matrices A,B∈Rn×Rn (n∈N). The vector N = N(y)∈R3 denotes the exterior
normal in y ∈ S and T u

q N indicates the usual matrix vector product.
Now applying Green’s second identity with a solution u ∈ C2(G)3 ∩C1(G)3,

q ∈ C1(G)∩C0(G) of Sλ
u
q =

(F
0

)
, and with v, p being the columns of the funda-

mental tensor Eλ , by cutting off the singularity in x ∈ G we obtain the following
representation (compare [3], p. 335) of u and q in x ∈ G (N denotes the exterior
normal on the C2-boundary S):

∫

G

(
(

F(y)
0

)
,Eλ (x− y))dy− (u(x),q(x))

(3.7)
=

∫

S

(T u
q (y)N(y),E(r)

λ (x− y))doy−
∫

S

(u(y),T ′y Eλ (x− y)N(y))doy .
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Here E(r)
λ is the 3×4 matrix obtained from Eλ by eliminating the last row, and the

product in the last boundary integral equation is defined as follows: Treating the
4 columns of Eλ with T ′ yields four 3× 3 matrices, which, multiplied by N, give
four columns with 3 components, hence a 3×4 matrix. The subscript y in T ′ means
differentiation with respect to y.

The representation formula (3.7) suggests to introduce hydrodynamical boundary
layer potentials for general vector valued source densities Ψ = (Ψ1,Ψ2,Ψ3)∈C(S)3.
For x ∈ R3\S we define the single layer potential

(EλΨ)(x) =
∫

S

(Ψ(y),E(r)
λ (x− y))doy

and the double layer potential

(DλΨ)(x) =
∫

S

(Ψ(y),T ′y Eλ (x− y)N(y))doy .

Because Eλ = ET
λ , the single layer potential can be represented by

(EλΨ)(x) =
∫

S

E(c)
λ (x− y)Ψ(y)doy . (3.8)

Here the 4× 3 matrix E(c)
λ is obtained from Eλ by eliminating the last column and

E(c)
λ Ψ indicates the usual matrix vector product. If no confusion is possible, row

representation and column representation will be identified. In order to develop a
similar representation for the double layer potential we proceed as follows. Due to
DyiE

λ
jk(x−y) =−Dxi E

λ
jk(x−y)(i, j = 1,2,3; k = 1, . . . ,4) and observing the defini-

tion of T and T ′ we have T ′y Eλ
k (x−y) =−TxEλ

k (x−y) where Eλ
k denotes the kth col-

umn of Eλ (k = 1, . . . ,4). Defining the 3×4 matrix (Dλ (x,y))T =−TxEλ (x−y)N(y),
we first obtain the row vector

(DλΨ)(x) =
∫

∂G

< ψ(y),(Dλ (x,y))T > doy

and then the column

(DλΨ)(x) =
∫

∂G

Dλ (x,y)Ψ(y)doy , (3.9)

where the 4×3 matrix Dλ (x,y) is defined by

Dλ (x,y) = (−TxEλ (x− y)N(y))T =
(
(−TxEλ

k (x− y))i jN j(y)
)

ki
.
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Both the single layer potential (3.8) and the double layer potential (3.9) are analytic
functions in R3\S and satisfy there the homogeneous differential equations

Sλ
u
q

=
(

0
0

)
.

By elementary calculations we find (compare [?]) that the 4×3 kernel matrix Dλ =
(Dλ

ki(x,y))k=1,...,4;i=1,2,3 of the double layer potential DλΨ has the following form:
Setting r = x− y and N = N(y) we have

Dλ
ki(x,y) = − 1

4π

{
rkNi

|< r|3 d1(−
√

λ |r|)−
(

Nkri

|r|3 +δki
r ·N
|r|3

)
d2(−

√
λ |r|)+

rkrir ·N
|r|5 (3−3d1(−

√
λ |r|)+2d2(−

√
λ |r|))

}
,

d1(ε) =
∞

∑
n=2

2(n2−1)
(n+2)!

εn = exp(ε)(2−6ε−1 +6ε−2)−6ε−2 +1 , (3.10)

d2(ε) =
∞

∑
n=2

n(n2−1)
(n+2)!

εn = exp(ε)(ε−3+6ε−1−6ε−2) ,

Dλ
4i(x,y) = − 1

4π

{
6

rir ·N
|r|5 +

λNi

|r| −2
Ni

|r|3
}
−Niδ (r) .

The series representation above yields d1(0) = d2(0) = 0, hence as λ → 0 we obtain
from (3.6) the well known (see [3], p. 336) double layer kernel matrix for the Stokes
equations (S0):

D0
ki(x,y) = − 3

4π
rkrir ·N
|r|5 (k, i = 1,2,3) ,

(3.11)
D0

4i(x,y) = − 1
2π

(
3r ·Nri

|r|5 − Ni

|r|3
)
−Niδ (r) (i = 1,2,3) .

It follows easily that the last summand in d1 comes from the pressure q. This term
determines the decay for r = |r|= |x−y| → 0 and r→∞. Hence for k, i 6= 4 we have
(λ > 0):

Dλ
ki(x,y) = O(r−2) as r −→ 0 or r −→ ∞ (λ > 0) ,

Dλ
4i(x,y) = O(r−3) as r −→ 0 , (3.12)

Dλ
4i(x,y) = O(r−1) as r −→ ∞ .

In the following we consider the normal stresses of the single layer potential
EλΨ , which are defined in a neighborhood U ⊆R3 of S for x ∈U\S and Ψ ∈C(S)3

by
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(H∗
λΨ)(x) =

∫

S

Tx(E
(c)
λ (x− y)Ψ(y))N(x̃)doy .

Here the superscript ∗ indicates a column vector with 3 components, and N(x̃) de-
notes the outward unit normal in x̃ ∈ S, where x̃ is the unique projection of x ∈U\S
on S. Note that S ∈ C2 allows the construction of parallel surfaces, which implies
the existence of such a neighborhood U . If we use the representation

(H∗
λΨ)(x) =

∫

S

Hλ (x,y)Ψ(y)doy (3.13)

with some 3×3 matrix Hλ (x,y), then

Hλ (x,y) = D(r)
λ (y,x)T

with D(r)
λ is obtained by eliminating the last row of the 4×3 matrix Dλ given above.

The next statements concern the continuity properties of the potentials, if x ∈
R3\S approaches a point z ∈ S. For x ∈ R3\S let

(E∗λΨ)(x) =
∫

∂G

E(r,c)
λ (x− y)Ψ(y)doy , (3.14)

(D∗
λΨ)(x) =

∫

∂G

D(r)
λ (x,y)Ψ(y)doy , (3.15)

denote the single layer and the double layer potential corresponding to the velocity
part of the potentials, respectively. Here E(r,c)

λ is the 3×3 matrix obtained from Eλ
by eliminating the last row (≈ r) and the last column (≈ c). We first consider some
potentials with special densities.

It is well known (see [3], p. 337) that for the case λ = 0 we have

(D∗
0β )(x) =

∫

S

D0(x,y)βdoy =





β , x ∈ G ,
1
2 β , x ∈ S ,

0, x ∈ R3\G ,

(3.16)

where D0 is the 3× 3 matrix defined in (3.11) and β ∈ R3 is a constant column
vector. For λ > 0, however,

(D∗
λ β )(x) = λ

∫

G

E(r,c)
λ (x− y)βdy =





β , (x ∈ G) ,
1
2 β , (x ∈ S) ,

0, (x ∈ R3\G) .
(3.17)

Moreover, if N denotes the outward unit normal field on S, then for the single
layer potential Eλ N(λ > 0) with density N we have
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(Eλ N)(x) =
∫

S

E(c)
λ (x− y)N(y)doy =





−(0
1

)
(x ∈ G) ,

− 1
2

(0
1

)
(x ∈ S) ,

(0
0

)
(x ∈ R3\G) ,

(3.18)

which follows from Green’s second identity, and implies (E∗λ N)(x) = 0 for all x ∈
R3.

Next let us study the continuity properties of potentials with general continuous
source densities. Setting

w(z) = lim
x→z∈S

x∈G

w(x) , w(z) = lim
x→z∈S

x∈R3\G

w(x) ,

we obtain on the boundary S the important relations

(E∗λΨ)i = E∗λΨ = (E∗λΨ)e , (3.19)

(D∗
λΨ)i−D∗

λΨ =
1
2

Ψ = D∗
λΨ − (D∗

λΨ)e , (3.20)

(H∗
λΨ)e−H∗

λΨ =
1
2

Ψ = H∗
λ − (H∗

λΨ)i , (3.21)

where E∗λΨ ,D∗
λΨ , and H∗

λΨ are defined by (3.14), (3.15), and (3.13), respectively.
Now let Gc = R3\G be the complementing exterior domain having the same

boundary S as G. We consider the following boundary value problem: For a given
boundary b ∈C(S)3 find u ∈C2(G)3∩C(G)3, q ∈C1(G)∩C(G) satisfying

Sλ
u
q

=
(

0
0

)
in G , u = b on S . (3.22)

We refer to this problem as to the interior hydrodynamic Dirichlet problem. Besides
(3.22) we also consider the exterior hydrodynamic Neumann problem

Sλ
u
q

=
(

0
0

)
in Gc , T u

q N = b on S , (3.23)

being adjoint to (3.22). Using Green’s first identity we can easily prove that regular
solutions u,q of the exterior Neumann problem are uniquely determined provided
that we require for r = |x| → ∞(λ > 0)

u(x) = O(r−2) , ∇u(x) = O(r−1) , q(x) = O(r−1) , (3.24)

a condition, which takes into account the special decay properties of the potentials
(compare (3.3) and (3.12)).

Concerning the interior Dirichlet problem, u is uniquely determined, while q is
uniquely determined up to an additive constant only.
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In the following we prove the existence of a solution u,q of the interior Dirichlet
problem using the method of boundary integral equations. Let b ∈ C(S)3 be given
with ∫

S

b ·N do = 0 . (3.25)

Choosing in x ∈ G the ansatz
(u

q

)
(x) = (DλΨ)(x) as double layer potential, due to

the jump relations we obtain on S the weakly singular (S is of class C2) boundary
integral equations

b =
1
2

Ψ +(D∗λΨ) on S , (3.26)

which is a Fredholm system of the second kind on C(S)3. To solve it we have to
consider the corresponding homogeneous adjoint system

0 =
1
2

Φ +(H∗
λ Φ) on S . (3.27)

It follows from (3.18) that the normal vector N ∈ C(S)3 is a solution: Due to
(H∗

λ N)(x) = (T (Eλ N))(x)N(x̃) = −N(x̃) if x ∈ G (for x̃ see above (3.13)) and
(H∗

λ N)(x) = 0 if x ∈ Gc, from (3.21) we obtain

0 =
1
2

N +(H∗
λ N) on S .

Moreover, if Φ ∈C(S)3 is any solution of (3.27), then we have Φ ∈ βN with some
constant β ∈ R. To see this, consider the single layer potential

(u
q

)
= Eλ Φ defined

in (3.8). It decays as required in (3.24), and it solves the exterior Neumann problem
(3.23) with zero boundary data due to (3.21) and (3.27). Thus we habe Eλ Φ =

(0
0

)
in Gc from the uniqueness statement, and E∗λ Φ = 0 on S using (3.19). This again
implies that Eλ Φ also solves the interior Dirichlet problem with zero boundary data,
and the corresponding uniqueness statement yields Eλ Φ =

(0
α
)

in G, with some
constant α ∈R. Because H∗

λ Φ = 0 in Gc and H∗
λ Φ = αN in G, the assertion follows

by (3.21). Now using well known facts of Fredholm’s theory on integral equations
of second kind in spaces of continuous functions it follows that the condition (3.25)
is necessary and sufficient for the existence of a solution Ψ ∈C(S)3 of (3.26).

Because (3.27) has a unique nontrivial solution Φ = N, the homogeneous ver-
sion of (3.26) has a nontrivial solution, too. For numerical purposes, however, it is
desirable to deal with uniquely solvable systems. This ca be achieved as follows:
Instead of (3.26) consider the boundary integral equations system

b =
1
2

Ψ +(D∗
λΨ)− (PNΨ) on S (3.28)

with the one-dimensional operator Pn : C(S)3 →C(S)3 given by
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(PNΨ)(x) = N(x)
∫

∂G

N ·Ψdo .

Because the normal field N forms a basis of the null space of the operator 1
2 Ie +H∗

λ
which is adjoint to 1

2 I3 + D∗
λ , the system (3.28), too. Here the latter follows easily

by multiplying (3.28) with N, integrating over S, and noting that
∫

∂G

(D∗
λΨ) ·N do =

∫

∂G

Ψ · (H∗
λ N)do = −1

2

∫

∂G

Ψ ·N do .

Thus we have shown

Theorem 2. Let b ∈ C(S)3 with (3.25) be given on a C2-boundary S of a bounded
domain G⊆R3, and let 0 < λ ∈R. Then the interior hydrodynamic Dirichlet prob-
lem (3.22) has a solution u∈C2(G)3∩C(G)3,q∈C1(G)∩C(G). Here u is uniquely
determined, while q is unique up to an additive constant, only. The solution u,q can
be represented in G as a pure double layer potential

(u
q

)
(x) = (DλΨ)(x), where

the source density Ψ ∈ C(S)3 is the unique solution of the second kind Fredholm
boundary integral equations system

b =
1
2

Ψ +(D∗
λΨ)− (PNΨ) on S .

Here D∗
λΨ is the velocity part of DλΨ and PN : C(S)3 →C(S)3 is defined by

(PNΨ)(x) = N(x)
∫

∂G

N ·Ψdo .

4 A Boundary Element Method

Summarizing the results from the last two sections we find that the potential repre-
sentation given in (1.3) defines an approximate solution (vk(x),qk(x)) of the Stokes
equations (1.1) at time tk = kh (k = 1,2, . . . ,N). It depends on the solution Ψ of the
boundary integral equations system (1.4), which – for each time step – has the form
(3.28). For the discretization of (3.28) we choose a collocation procedure as de-
scribed in [1], [5]. To be concrete, in the following let us restrict our considerations
to the case of the unit ball G⊆R3 with boundary S and let us use the parametrization

f : S∧ = [0,1]2 −→ S , f (ϑ ,η) = (x1,x2,x3) ∈ S ,

i. e. x1 = sin(πϑ)cos(2πη), x2 = sin(πϑ)sin(2πη), x3 = cos(πϑ). For the sake of
illustration, in the following we suppress some analytical problems due to the non-
uniqueness of the inverse mapping f−1. For L ∈ N let σ = (2L)−1 and define on S∧
a so-called collocation grid
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C∧σ = {x∧ = (iσ , jσ)|i, j = 0, . . . ,2L}

consisting of (2L+1)2 collocation points and an integration grid

J∧σ = {((i+0.5)σ , ( j +0.5)σ) | i, j = 0, . . . ,2L−1}

consisting of (2L)2 integration points. For y∧ = ((i+0.5)σ , ( j +0.5)σ) ∈ J∧σ let

Q∧
y = {(ϑ ,η) | iσ < ϑ < (i+1)σ , jσ < η < ( j +1)σ}

be the square with length σ and center y∧. The projections of these sets on S are
denoted by

Cσ = f (C∧σ ), Jσ = f (J∧σ ), Qy = f (Q∧
y ) .

Setting

ω(τ) =





τ +1 for −1≤ τ ≤ 0 ,

1− τ for 0≤ τ ≤ 1 ,

0 elsewhere ,

for every x∧ = (x1,x2) ∈C∧σ let us define a bilinear B-spline

ξ∧ : S∧ −→ R , ξ∧(ϑ ,η) = ω
(

(ϑ − x1)
σ

)
ω

(
(η− x2)

σ

)
.

These splines are used for interpolation: the interpolate P∧σ Φ∧ : S∧ → R3 of some
vector function Φ∧ : S∧→ R3 is defined by

(P∧σ Φ∧)(ϑ ,η) = ∑
x∧∈C∧σ

Φ∧(x∧)ξ∧(ϑ ,η) ,

and it holds (P∧σ Φ∧)(u∧) = Φ∧(z∧) for all z∧ ∈C∧σ . Analogously, we call

Pσ Φ = (P∧σ (Φ ◦ f ))◦ f−1

the interpolate of Φ : S→ R3.
Let us now go back to the boundary integral equations system and look for an

approximate solution
Ψσ = Ψ∧

σ ◦ f−1 ,

where the vector function Ψ∧
σ : S∧→ R3 has the form

Ψ∧
σ (ϑ ,η) = ∑

x∧∈C∧σ

α(x∧,σ)ξ∧(ϑ ,η) .

Here the unknown coefficients α(x∧,σ) ∈ R3 have to be determined from the col-
location procedure
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Pσ b = Pσ (
1
2

Ψσ +(D∗
λ ,σΨσ )− (PN,σΨσ )) , (4.1)

where (compare (3.15) and (3.28))

(D∗
λ ,σΨσ )(x) = ∑

y∈Jσ

D(r)
λ (x,y)Φσ (y)|Qy| (x /∈ Jσ ) , (4.2)

(PN,σΨσ )(x) = N(x) ∑
y∈Jσ

N(y) ·Φ(yσ )|Q|y (x ∈ S) , (4.3)

and
|Qy| =

∫

Qy

do .

Hence integration has been replaced by a quadrature formula (midpoint rule). Thus
considering (4.1) on the collocation grid only, we obtain a linear algebraic sys-
tem for 3(2L + 1)2 unknowns (3 components, (2L + 1)2 collocation points) with
a non-sparse but diagonal-dominant system matrix, which is invertible for suffi-
ciently small ω > 0. This follows with the usual perturbation theory from the fact
that (3.28) is uniquely solvable in C(S)3. Moreover, the following estimates can be
obtained in case of boundary values b ∈C(S)3 as in [1]:

max
x∈S

|Ψ(x)−Ψσ (x)| ≤ c(λ )σ ln (
1
σ

) , (4.4)

max
x∈G0

|D∗
λΨ(x)−D∗

λ ,σΨσ (x)| ≤ c(λ )σ ln (
1
σ

) . (4.5)

Here (Gσ )σ>0 is a family of subregions G−σ exhausting G as σ → 0.
Extending both grids from the boundary S into the domain G, the volume po-

tentials can be approximated analogously, using the midpoint rule as quadrature
formula instead of integration. In the following, we present some test calculations
for the non-stationary Stokes equations (1.1) in the 3−d unit ball, which have been
performed without using any symmetry property of the ball: Let

(t,x)−→ v(t,x) = (t +1)(exp(−r2)− exp(−1))




x3− x2
x1− x3
x1− x2


 ,

(t,x)−→ p(t,x) = constant, r = (x2
1 + x2

2 + x2
3)

1
2 .

Then v,∇p is the unique solution of a constructed non-stationary Stokes problem
(1.1) with

ν = 1 , F = Dtv−∆v+∇p , v0 = v(0) .

The following numerical results illustrate the accuracy of our approach. The simu-
lation runs with a time step size h = 0.1 and a spatial step size σ = 1

16 on a PC with
single precision. Let E( j), j = 1,2,3 denote the mean (in space) relative error (%),
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i. e.

E( j) =
100
L

L

∑
l=1

∣∣∣∣∣
vappr

j (xl)− vexe
j (xl)

vexe
j (xl)

∣∣∣∣∣ .

Development in time of E(j)

t j = 1 j = 2 j = 3

0.1 1.216 1.594 2.932
0.2 1.316 1.373 2.721
0.3 1.517 1.354 2.490
0.4 1.615 1.354 2.331
0.5 1.748 1.392 2.229
0.6 1.872 1.444 2.159
0.7 1.931 1.454 2.099
0.8 1.991 1.466 2.049
0.9 2.049 1.478 2.012
1.0 2.108 1.492 1.985
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