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Abstract

A recurrent iterated function system (RIFS) is a genaralization of an IFS and provides
nonself-affine fractal sets which are closer to natural objects. In general, it’s attractor
is not a continuous surface in R3. A recurrent fractal interpolation surface (RFIS) is an
attractor of RIFS which is a graph of bivariate continuous interpolation function. We
introduce a general method of generating recurrent interpolation surface which are at-
tractors of RIFSs about any data set on a grid.

Keywords: Recurrent Iterated function system(RIFS); Fractal interpolation function(FIF);
Box-counting dimension

1 Introduction

Fractal interpolation surfaces (FISs) are graphs of bivariate fractal interpolation functions
(FIFs), which have been used in approximation theory, computer graphics, image compression,
metallurgy, physics, geography, geology and so on. Barnsley (1986, [3]) introduced the idea of
a FIF as a function whose graph is an attractor of IFS, which by many scientists (Massopust,
Elton, Hardin, Geronimo, Zhao, Malysz, Bouboulis etc.) has widely been studied and applied.

Massopust (1990, [16]) presents the construction of self-affine FISs on triangular data sets,
where the interpolation points on the boundary data are coplanar, which by Geronimo and
Hardin (1993, [13]) was generalized to allow more general boundary data and by Zhao (1996,
[18]) more general vertical scaling factor.

Dalla (2002, [10]) introduced the construction of a FIS by an IFS in the case where the
interpolation points on the boundary data sets on a grid are collinear and Malysz (2006, [15])
generalized this method to allow more general data set on the grid, where the free contrativity
factor is constant. The FISs generated by the above construction are all self-affine. By Metzler
and Yun (2008, [17]), the construction of FISs with a free vertical contractivity factor function
on grids was presented which generalizes the results in [15].
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There are no objects in nature which have an exact structure of a self-affine set, which
is nothing but special model of a fractal for modelling natural objects. That requires more
flexible constructions of FISs, for which a recurrent iterated function system (RIFS) is a good
way. Bouboulis etc. (2006, [6], 2007, [8]) present more general constructions of nonself-affine
FISs on grids by RIFS and apply to image compression, which has a lack because the free
vertical constractivity factor is still there constant.

In this paper, we introduce a more flexible construction of recurrent fractal interpolation
surfaces which are attractors of RIFSs with a free vertical contractivity factor function on
grids and consider the construction in RN .

2 Recurrent fractal interpolation surfaces (RFISs) on rect-
angular grid

In general, a recurrent iterated function system (RIFS) is defined as a pair of a collection
w1, . . . , wN of Lipschitz mappings in complete metric space (i.e. an IFS) and a row irreducible
stochastic matrix P = (pij)N×N satisfying

∑N
j=1 pij = 1 for all i ∈ {1, . . . , N}, and for any

i, j ∈ {1, . . . , N}, there exist i1, . . . , ik such that pii1 · pi1i2 · . . . · pikj > 0 (Barnsley, Elton and
Hardin[4]). The attractor A of a RIFS is computed as follows: By a stochastic matrix P , for
an initial k0 ∈ {1, . . . , N} a sequence {ki}∞0 is given, which obeys pab = Pr {ki+1 = b|ki = a}.
With this, we get a sequence of transformations {wki}

∞
0 that generates an orbit {qi}∞0 for

an initial q0 ∈ R3, that is, ki+1 is chosen with the probability that ki+1 = j equals to pkij
and then we have qi+1 = wki+1 (qi). In the matrix (pkl), pkl shows the possibility of applying
the transformation wl to the point in state k, so that the system transits to state l. The
attractor A is defined as a limit set of these orbits, which consists of the points whose every
neighbourhood contains infinitely many qi for almost all orbits. By Barnsley, Elton and Hardin
([4]) the existance, uniqueness and characteristics of this limit set A was proved. Usually, a
RIFS is constructed with a given data set in a complete metric space and it’s attractor generally
is not a graph of a continuous interpolaion function about the data set. The attractor A which
is a graph of a bivariate continuous fractal interpolation function of a given data set in R3 is
called a recurrent fractal interpolation surface (RFIS).

We present a construction of RIFS, whose attractor is a graph of fractal interpolation
function of a given data set on a grid. To do this, an IFS and an irreducible row stochastic
matrix P should be defined.

2.1 Local IFSs

Because an attractor of RIFS depends on the IFS and only a connection matrix C = (ckl)N×N
defined by the stochastic matrix P as follows:

ckl =
{

1 : plk > 0
0 : plk = 0 , (1)

we consider the IFS and the connection matrix C.
We construct a local IFS

{
R3;wij = (Lij , Fij) , i = 1, . . . ,m, j = 1, . . . , n

}
over the grid,

whose general definition is as follows ([2])(An idea of such IFS was introduced by Jacquin
([14])).

Definition 1 Let (X, d) be a compact metric space. Let R be a nonempty subset of X. Let
w : R→ X and let s be a real number with 0 ≤ s < 1. If

d (w (x) , w (y)) ≤ s · d (x, y) for all x, y in R,
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then w is called a local contraction mapping on (X, d). The number s is a contractivity factor
for w.

Definition 2 Let (X, d) be a compact metric space, and let wi : Ri → X be a local contraction
mapping on (X, d), with contractivity factor si, for i = 1, 2, . . . , N , where N is a finite positive
integer. Then

{wi : Ri → X : i = 1, 2, . . . , N}

is called a local iterated function system (local IFS) (or partitioned IFS ([12])). The number
s = max {si : i = 1, 2, . . . , N} is called the contractivity factor of the local IFS.

Let the data set on the rectangular grid be

S =
{

(xi, yj , zij) ∈ R3; i = 0, 1, . . . ,m, j = 0, 1, . . . , n
}
,

such that x0 < x1 < . . . < xm, y0 < y1 < . . . < yn. Let denote

Nmn = {1, . . . ,m} × {1, . . . , n} , Ix = [x0, xm], Iy = [y0, yn],
Ixi = [xi−1, xi], Iyj = [yj−1, yj ], E = Ix × Iy
Eij = Ixi × Iyj (which we call the region) , for (i, j) ∈ Nmn,

Pxα = {(xα, yl, zαl) ∈ S; l = 0, 1, . . . , n } , for α ∈ {0, . . . ,m},
Pyβ = {(xk, yβ , zkβ) ∈ S; k = 0, 1, . . . ,m } , for β ∈ {0, . . . , n}.

Let choose an interval Ĩxi to be
[
x′ii−1

, x′ii

]
=
⋃mi
k=1 Ixk for i ∈ {1, . . . ,m} (then, there exist

xk1 , xk2 ∈ [0,m] such that x′ii−1
= xk1 and x′ii = xk2 , which we denote by γx

(
x′ii−1

)
and

γx
(
x′ii
)

respectively) such that

(i) For any i ∈ {1, . . . ,m} , xi − xi−1 < x′ii − x
′
ii−1

(ii) For any i ∈ {2, . . . ,m− 1}, there exist x′i−1α
∈{x′i−1i−2

, x′i−1i−1
} , x′i+1β

∈{x′i+1i
, x′i+1i+1

}
such that x′i−1α

= x′ii−1
and x′ii = x′i+1β

, which we denote these points - the endpoints
of connecting the intervals Ĩxi - by x̃i−1,i and x̃i,i+1 respectively.

An interval Ĩyj has the same form for j ∈ {1, . . . , n}. We denote Ẽij = Ĩxi × Ĩyj and call Ẽij
the domain.

We define the domain contraction transformations Lij : Ẽij → Eij , for (i, j) ∈ Nmn by

Lij (x, y) =
(
Lxi (x) , Lyj (y)

)
,

where Lxi : Ĩxi → Ixi , Lyj : Ĩyj → Iyj are contractive homeomorphisms with contractivity
factors axi , ayj obeying

(i) For any i ∈ {1, . . . ,m} , j ∈ {1, . . . , n},

Lxi :
{
x′ii−1

, x′ii

}
→ {xi−1, xi} , Lyj :

{
y′jj−1

, y′jj

}
→ {yj−1, yj} ,
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Figure 1: Shape of Lxi

(ii) For any i ∈ {1, . . . ,m− 1} , j ∈ {1, . . . , n− 1} , there exist x̃i,i+1, ỹj,j+1 such that

Lxi+1 (x̃i,i+1) = Lxi (x̃i,i+1) = xi, Lyj+1 (ỹj,j+1) = Lyj (ỹj,j+1) = yj . (2)

(See Figure 1). Denote aij = Max
{
axi , ayj

}
, for (i, j) ∈ Nmn. Then, the aij are contractivity

factors of the transformations Lij .
Let Fij : Ẽij ×R→ R, for (i, j) ∈ Nmn be defined by

Fij (x, y, z) = d (Lij (x, y)) (z − g (x, y)) + h (Lij (x, y)) , (3)

where d (x, y) is a vertical continuous contraction such that |d (x, y)| < 1 on E , h (x, y) and
g (x, y) are continuous Lipschitz mappings on E with the Lipschitz constants Lh, Lg satisfying

g
(
x′iα , y

′
jβ

)
= zγ̃(iα,jβ), for (α, β) ∈ {i− 1, i} × {j − 1, j} ,

h (xi, yj) = zij , for (i, j) ∈ Nmn,

where γ̃ (iα, jβ) = γ̃
(
γx
(
x′iα
)
, γy

(
y′jβ

))
= γ̃ (xk, yl) = (k, l), that is, g goes through 4 end-

points of Ẽij , h all data points of E. Then, the Fij satisfy ‘join up’ conditions, for α ∈
{i− 1, i} , β ∈ {j − 1, j} ,

Fij

(
x′iα , y

′
jβ
, zγ̃(iα,jβ)

)
= z

σ
(
Lij

(
x′iα ,y

′
jβ

)),
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Figure 2: Mapping the domain to the region

where σ
(
Lij

(
x′iα , y

′
jβ

))
= σ (xa, yb) = (a, b) ∈ {i− 1, i} × {j − 1, j} . By (2), (3) we have on

the common borders {xi} × [yj−1, yj ] for (i, j) ∈{ 1, . . . ,m −1} ×{1, . . . , n} ([xi−1, xi] ×
{yj} for (i, j) ∈ {1, . . . ,m} × {1, . . . , n− 1})

Fi+1 j (x̃i,i+1, y, z) = Fij (x̃i,i+1, y, z)
(Fi j+1 (x, ỹj,j+1, z) = Fij (x, ỹj,j+1, z)) ,

where x̃i,i+1, xi, ỹj,j+1, yj obey (2).
Hence, for (i, j) ∈ Nmn the transformations wij coincide on common borders.
Fourthermore, there exists some metric ρ that is equivalent to the Euclidean metric on R3

such that the wij are contractions for all (i, j) ∈ Nmn with respect to ρ, which is given on R3

for (x, y, z) , (x′, y′, z′) ∈ R3 by

ρ ((x, y, z) , (x′, y′, z′)) = |x− x′|+ |y − y′|+ θ |z − z′| ,

where

θ =
1−Max

{
axi , ayj ; i = 1, . . . ,m, j = 1, . . . , n

}
2Max

{
dmaxLg + Lhaxi , dmaxLg + Lhayj ; i = 1, . . . ,m, j = 1, . . . , n

}
and dmax = MaxE |d (x, y)| , dmin = MinE |d (x, y)| .A contractivity of wij is Max {a, dmax},

where

a =
1 + Max

{
axi , ayj ; i = 1, . . . ,m, j = 1, . . . , n

}
2

< 1.

Remark 1. To be simple, let the endpoints of interval [x0, xm] be 0 and 1. If Ẽij = E
for any (i, j) ∈ Nmn, then the above Lxi can take two ways of corresponding endpoints of
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Figure 3: Shapes of L(1)
xi , L

(2)
xi

intervals as follows:

L(1)
xi (α) =

{
xi−1+α i : odd
xi−1+(1−α) i : even

or

L(2)
xi (α) =

{
xi−1+(1−α) i : odd
xi−1+α i : even

for α ∈ {0, 1} . L(1)
yj , L

(2)
yj are the same forms. Thus, for Lij there are 4 cases(See Figure 3):(

L(1)
xi , L

(1)
yj

)
,
(
L(1)
xi , L

(2)
yj

)
,
(
L(2)
xi , L

(1)
yj

)
,
(
L(2)
xi , L

(2)
yj

)
.

In the paper[15], Lij has the form
(
L

(1)
xi , L

(1)
yj

)
, where L(1)

xi , L
(1)
yj are linear mappings.

Remark 2. d (Lij (x, y)) is the vertical contraction factor function on the region Eij . In

(3), d (Lij (x, y)) can be replaced by d
(
Luxi (x) , Lvyj (y)

)
, where

Luxi (x) =
{
L
θi1
xi1
◦ · · · ◦ Lθiuxiu (x) u ∈ Z+

x u = 0
(4)

and θik ∈ {−1, 1} , ik ∈ {1, . . . ,m} , k = 1, . . . , u. Lvyj (y) is of the same form. This can
improve more flexibility of the IFS, but normally the transformations wij , can not coincide on
common borders, excepting the case where in (3) d is given by d

(
Lxi (x) , Lyj (y)

)
and d (x, y)

from (4).

2.2 Row stochastic matrix P

We enumerate the set Nnm = {1, . . . ,m} × {1, . . . , n} by a injective mapping τ : {1, . . . ,m} ×
{1, . . . , n} → {1, . . . ,m · n} and denote M = τ (Nmn). For simplicity, we denote (i, j) = τ−1 (k)
by k and m · n by N .
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On the basis of the above construction of local IFS, we define the connection matrix
C = (ckl)N×N as follows:

ckl =
{

1 : El ⊆ Ẽk
0 : otherwise

The connection matrix C shows that the transformation wk can follow the transformation wl
iff ckl = 1. Because this matrix C hase to be irreducible, in the above construction of the IFS ,
the relation between the domain Ẽi and the region Ej for i, j ∈ {1, . . . , N} should be taken so
that this condition is satisfied. For example, for any i ∈ {2, . . . , N}, Ei−1 ⊂ Ẽi (or Ei ⊂ Ẽi−1

) and EN ⊂ Ẽ1 (or E1 ⊂ ẼN )(See Figure 4).
Then we have a row irreducible stochastic matrix P = (pkl)N×N by (1).
A pair consisting of the above local IFS and the row irreducible stochastic matrix P is the

RIFS. The existence, uniqueness and characteristic of the attractor A of this RIFS has been
proved by Barnsley Elton and Hardin ([4]).

2.3 Attractor of RIFS

In this section, we review some of the work of Barnsley, Elton and Hardin [4] on the attractor
A of RIFS. Let (Ki, di) be compact metric spaces for i ∈ {1, . . . , N}, (Hi, hi) denote the
associated metric spaces of nonempty compact subsets which use the Hausdorff metrics and
HN = H1 × · · · ×HN . The transformation W : HN → HN is defined by

W =


c11w1 c12w1 . . . c1Nw1

c21w2 c22w2 . . . c2Nw2

...
...

. . .
...

cN1wN cN2wN . . . cNNwN

 ,
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for B = (B1, . . . ,BN ) ∈ HN ,

W (B) =


c11w1 (B1)

⋃
c12w1 (B2)

⋃
. . .
⋃
c1Nw1 (BN )

c21w2 (B1)
⋃
c22w2 (B2)

⋃
. . .
⋃
c2Nw2 (BN )

...
cN1wN (B1)

⋃
cN2wN (B2)

⋃
. . .
⋃
cNNwN (BN )



=


⋃
j∈Λ(1) w1 (Bj)⋃
j∈Λ(2) w2 (Bj)

...⋃
j∈Λ(N) wN (Bj)

 ,

where Λ (i) = {j : cij = 1} for i ∈ {1, . . . , N}. For example, in the case where P =
(

0.3 0.7
0 1

)
,

C =
(

1 0
1 1

)
,W =

(
w1 0
w2 w2

)
,

W (B) =
(
w1 (B1)
w2 (B1)

⋃
w2 (B2)

)
.

Then, an unique invariant set A of this transformation W exists , which is called an attractor
of the RIFS :

W (A) = A

i.e. there exist the unique nonempty compact sets A1, . . . ,AN such that

Ai =
⋃

k∈Λ(i)

wi (Ak) ,

A =
N⋃
i=1

Ai =
⋃

k∈Λ(i)

wi (Ak) . (5)

2.4 Recurrent fractal interpolation surfaces

The following theorem shows that this attractor A is a recurrent fractal interpolation surface.

Theorem 1 Let the set A be the attractor of the above RIFS of data set S. Then, there exists
a continuous interpolation function of data set S whose graph is the attractor A.

Proof Let denote

C (E) =
{
ϕ ∈ C0 (E) : ϕ (xi, yj) = zij , i = 0, . . . ,m, j = 0, 1 . . . , n

}
,

F (E) = {f |f : E→ R} .

Defining an operator T : C (E)→ F (E) by

(Tϕ) (x, y) = Fij

(
L−1
xi (x) , L−1

yj (y) , ϕ
(
L−1
xi (x) , L−1

yj (y)
))

, for (x, y) ∈ Eij ,

it can be easily proved that the operator T has the following properties:
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Table 1: The interpolation points of RIFS.
x

y 0 50 100 150 200
0 45 30 80 60 50
50 65 80 70 90 40
100 80 70 100 70 30
150 70 80 60 90 60
200 50 48 70 50 40

Table 2: The interpolation points of the free vertical contractivity function d (x, y).
x

y 0 25 50 75 100 125 150 175 200
0 0.75 0.90 0.60 0.60 0.74 0.65 0.80 0.70 0.80
25 0.65 0.80 0.70 0.90 0.84 0.75 0.60 0.60 0.70
50 0.80 0.70 0.90 0.70 0.30 0.85 0.80 0.50 0.70
75 0.70 0.80 0.60 0.90 0.60 0.65 0.90 0.80 0.60
100 0.65 0.48 0.70 0.50 0.40 0.50 0.80 0.70 0.80
125 0.45 0.30 0.80 0.60 0.50 0.65 0.70 0.60 0.70
150 0.65 0.80 0.70 0.90 0.84 0.85 0.60 0.70 0.60
175 0.80 0.70 0.90 0.70 0.30 0.75 0.70 0.60 0.70
200 0.70 0.80 0.60 0.90 0.60 0.65 0.60 0.90 0.60

(i) Tϕ ∈ C (E)

(ii) T is contractive in the sup-norm ‖·‖∞ with contractivity factor dmax.

Thus, according to the fixed point theorem in the complete metric space C (E), the operator
T has a unique fixed point f ∈ C (E) with

f (Li (x, y)) = Fi (x, y, f (x, y)) , for (x, y) ∈ Ẽi, i ∈ {1, . . . , N}.

This means that

Gr (f) =
N⋃
i=1

⋃
k∈Λ(i)

wi (Gr (f |Ek)) . (6)

by (5), (6), we have Gr (f) = A. 2

Example. Figure 5 shows the RFIS of the data set in Table 1 with the vertical contractivity
factor function d (x, y) which is given by a polynomial interpolation of a data set in Table 2.
The transformation Lxi , Lyj are linear one, the function g, h are defined by the polynomial
interpolation. Here d (x, y) , g, h can be defined by the fractal interpolation.

3 Box-counting dimension of RFIS

In general, it is not easy to calculate a fractal dimension of the attractor of a RIFS. In the
case where the attractor is a RFIS, we estimate the box-counting dimension of a RFIS, which
is denoted by dimB (A).
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Figure 5: RFIS of data set in Table 1 with the vertical contractivity factor function d (x, y)
which is a polynomial interpolation function of a data set in Table 2

Theorem 2 In th section 2, let the transformation Li be similitude with scaling a for i ∈
{1, . . . , N} , d (x, y) = d0 and A be the RFIS. If there exist k ∈ {1, . . . , N} and α ∈ {0, . . . ,m}
(or β ∈ {0, . . . , n}) such that the points of Pxα ∩ Ẽk (or Pyβ ∩ Ẽk) are noncolinear, and

ρ (diag (|d0| a)C) > 1,

then dimB (A) is the unique D such that

ρ
(
diag

(
|d0| aD−1

)
C
)

= 1,

otherwise dimB (A) = 2. Here ρ (B) denotes the spectral radius of the matrix B.

Proof The proof is similar to Theorem 4.2 in [4], THEOREM 4.1 in [13]. 2

4 Construction in RN

We consider the construction of RIFSs with the data set on grid in RN . The idea is the same
as that in R3. Therefore, we present the results. Let the data set be denoted by

S =
{

(x1,i1 , x2,i2 , . . . , xM,iM , zi1,i2,...,iM ) ∈ RM+1; ik = 0, 1, . . . ,mk, mk ∈ N, k = 1, . . . ,M
}
,

where xk,0 < xk,1 < . . . < xk,mk for k ∈ {1, . . . ,M} , M, mk ∈ N, and denote Pk,ik =
{(x1,i1 , . . . , xk,ik , . . . , xM,iM , zi1,...,ik,...,iM ) ∈ P; il = 0, . . . ,ml, l = 1, . . . , k − 1, k + 1, . . . ,M} ,
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for k ∈ {1, . . . ,M} , ik ∈ {0, . . . ,mk}. We denote

Ik = [xk,0, xk,mk ] , Ik,l = [xk,l−1, xk,l] ,
Ei = I1,i1 × . . .× IM,iM ( which we call the region) ,
Ω = {(1, i1) , . . . , (M, iM ) ; ik = 1, . . . ,mk, k = 1, . . . ,M} , (7)

where i ∈ Ω, ik ∈ {1, . . . ,mk} , k ∈ {1, . . . ,M}. Then E = I1×. . .×IM =
⋃

i Ei, Ik =
⋃mk
l=1 Ik,l.

Let choose an interval Ĩk,l to be
[
x′k,ll−1

, x′k,ll

]
= ∪jIk,j for k ∈ {1, . . . ,M} (then there exist

xk,l1 , xk,l2 ∈ [0, mk] such that x′k,ll−1
= xk,l1 and x′k,ll = xk,l2 , which we denote by γk

(
x′k,ll−1

)
and γk

(
x′k,ll

)
respectively) such that

(i) For any l ∈ {1, . . . ,mk} , xk,l − xk,l−1 < x′k,ll − x
′
k,ll−1

(ii) For any l ∈ {2, . . . ,mk − 1} , there exist x′k,l−1α
∈
{
x′k,l−1l−2

, x′k,l−1l−1

}
, x′k,l+1β

∈{
x′k,l+1l

, x′k,l+1l+1

}
such that x′k,l−1α

= x′k,ll−1
and x′k,ll = x′k,l+1β

i.e. the endpoints of

connecting the intervals Ĩk,l , which we denote by x̃k,l−1,l and x̃k,l,l+1 respectively, gen-
erally x̃k,j,j+1 for j ∈ {1, . . . ,mk − 1} (which connects the interval Ĩk,j and the interval
Ĩk,j+1). We denote Ẽi = Ĩ1,i1 × . . .× ĨM,iM for i ∈ Ω, which we call the domain. Then Ẽi

contains some of regions Ei for i ∈ Ω.

We construct a local IFS
{
RM+1; Wi = (Li, Fi) ; i ∈ Ω

}
. The contraction transformations

from the domain to the region Li : Ẽi → Ei with contractivity factors ai are defined by

Li (x1, . . . , xM ) = (L1,i1 (x1) , . . . , LM,iM (xM )) ,

where Lk,ik : Ĩk,ik → Ik,ik , for ik ∈ {1, . . . ,mk} , k ∈ {1, . . . ,M} are contractive homeomor-
phisms with the contractivity factors ak,ik satisfying

(i) Lk,ik :
{
x′k,ikik−1

, x′k,ikik

}
→ {xk,ik−1, xk,ik} , ik ∈ {1, . . . ,mk},

(ii) For any xk,ik ∈ {xk,1, . . . , xk,mk−1} , there exist x̃k,ikik+1
such that

Lk,ik+1

(
x̃k,ikik+1

)
= Lk,ik

(
x̃k,ikik+1

)
= xk,ik , (8)

and ai = Max {a1,i1 , . . . , aM,iM } .
We define the vertical contraction functions Fi : Ẽi ×R→ R by

Fi (x, z) = d (Li (x)) (z − g (x)) + h (Li (x)) , for (x, z) ∈ Ẽi ×R, (9)

where d (x) obeys |d (x)| < 1 and g, h are continuous Lipschitz mappings on E with Lipschitz
constants Lh,Lg satisfying, for (α1, . . . , αM ) ∈ {i1 − 1, i1}× . . .×{iM − 1, iM}, (i1, . . . , iM ) ∈
{0, . . . ,m1} × . . .× {0, . . . ,mM} ,

g
(
x′1,i1α1

, . . . , x′M,iMαM

)
= zγ̃(i1α1 ,...,iMαM ),

h (x1,i1 , . . . , xM,iM ) = zi1,...,iM ,

11



where γ̃ (i1α1 , . . . , iMαM ) = γ̃
(
γ1

(
x′1,i1α1

)
, . . . , γM

(
x′M,iMαM

))
=(x1,β1 , . . . ,

xM,βM )=(β1, . . . , βM ).
Then, the Fi satisfy ‘join-up’ conditions

Fi

(
x′1,i1α1

, . . . , x′M,iMαM
, zγ̃(i1α1 ,...,iMαM )

)
= z

σ

(
Li

(
x′1,i1α1

,...,x′M,iMαM

)),
for (α1, . . . , αM ) ∈ {i1 − 1, i1} × . . .× {iM − 1, iM} ,

where σ
(
Li

(
x′1,i1α1

, . . . , x′M,iMαM

))
= (x1,j1 , . . . , xM,jM ) = (j1, . . . , jM ) ∈ {i1 − 1, i1} ×

. . .× {iM − 1, iM}.
Consequently, Wi are contractive transformations for all i ∈ Ω with respect to some metric

which is equivalent to Euclidean metric on RM+1.
Let m1 · . . . ·mM be denoted by m1−M and enumerate the set Ω by a injective mapping

τ : Ω→ {1, . . . ,m1−M}. We defined a connection matrix C = (ckl)m1−M
by

ckl =
{

1 : Eτ−1(l) ⊆ Ẽτ−1(k)

0 : otherwise
.

In the construction of local IFS, the relation between Ei and Ẽi so that the connection
matrix defined above should be irreducible. Then we get a RIFS, whose attractor A is a graph
of continuous fractal interpolation function of the data set S.

The following theorem gives the Box-counting dimension of the attractor A.

Theorem 3 Let Lτ−1(i) be similitude with scaling a for i ∈ {1, . . . ,m1−M}, d (x, y) = d0 and
A be the RIFS. If there exist k ∈ {1, . . . ,m1−M} and iα ∈ {0, . . . ,mα} such that the points of
Pα,iα ∩ Ẽτ−1(k) are not in M-1 dimension space and

ρ (diag (|d0| a)C) > 1,

then dimB (A) is the unique D such that

ρ
(
diag

(
|d0| aD−1

)
C
)

= 1,

otherwise dimB (A) = M .
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