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gewährte Hilfestellung, sowie für interessante fachliche und nichtfachliche Gespräche während
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Dr. O. Mihailov, Dr. M. Szanto and all additional students and people, who have contributed in

all working groups to the achievements made within this project significantly. I would like to

express my special gratitude towards my colleagues from Israel for their heartly hospitality and

the outstanding caretaking during our visits in Beer-Sheva. I will never forget this time of my

life.

I want to express my best thanks to my supervisor PD Dr.-Ing. S. Hartmann for providing the

interesting research topic and taking over the position of the main referee for the thesis. Beyond

that I want to thank him for the excellent guidance and his never ending willingness to discuss

and teach. Furthermore, I thank him for creating excellent and friendly working conditions. I

owe him my deepest gratitude as a student, colleague and human being for my time at the IfM.

Additionally, I thank Prof. Tsakmakis for being the second reviewer and his help as well as

some discussions regarding the formulation of the constitutive model. For their willingness to

participate in the jury I would like to thank Prof. B. Scholtes and Prof. K. Steinhoff.

I thank all the current and former professors of the IfM, Prof. T. Böhlke, Prof. H. Irretier,
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Danladi, F. Endeshewa, Dr.-Ing. S. Gerlach, A. Hamkar, C. Justine, Dr.-Ing. Ch. Kardelky, Dr.-
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Schäfers, G. Schneider, M. Streng, H. Wahl, W. Zugreif for all their help. Particularly I want

to thank my former colleagues M. Conic, M. Fiolka, and D. Strohschein, who helped me within

and beyond the professional level.

I thank all my friends outside the IfM, especially Mr. Marc Fischbach, for their reliable

friendship and support during the sometimes strenuous time of writing my thesis. For their help

in preparing the disputation and in my final days in Kassel I thank Mrs. B. Röhling and Mr. B.
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Deutschsprachige Zusammenfassung der Dissertation

,,A Constitutive Model for Metal Powder and its
Numerical Treatment using Finite Elements“

,,Ein Konstitutives Modell für Metallpulver und
dessen Numerische Behandlung mittels Finiter Elemente“

Die Zuwachsraten bei der Herstellung mechanischer Werkstücke auf pulvermetallurgischem

Weg sind seit Jahren hoch. Darum wird es immer wichtiger in der Designphase neuer Teile kost-

spielige und zeitraubende ”trial and error”-Experimente zur Auffindung optimaler Bedingungen

für das Pressen der Teile, durch numerische Simulation des Pressprozesses zu ersetzen. Die

Qualität der Simulationsergebnisse hängt von der Qualität der verwendeten Konstitutivgleich-

ungen (Materialmodell) ab. Es muss in der Lage sein, das mechanische Verhalten des Metall-

pulvers während des Pressens hinreichend genau zu beschreiben. Von gleicher Bedeutung für

die Anwendbarkeit der numerischen Simulation ist die robuste und effiziente Implementation

der Modellgleichungen. Darüber hinaus ist der Einsatz effizienter Lösungsverfahren für das

Anfangsrandwertproblem (ARWP), welches aus den Gleichgewichtsbedingungen, den Konsti-

tutivgleichungen und den Anfangs- und Randbedingungen eines Pressprozesses gebildet wird,

notwendig.

Nach einer Einführung und Abgrenzung des Themas der Arbeit in der Einleitung werden im

zweiten Kapitel die benötigten kontinuumsmechanischen Grundlagen für die Beschreibung des

Metallpulverpressens bereitgestellt. Hierzu gehört eine für große Deformationen geeignete kine-

matische Formulierung. Weiterhin werden die Bilanzgleichungen, aus denen sich das Prinzip der

virtuellen Verschiebungen ableiten lässt, welches ein möglicher Startpunkt für die numerische

Lösung der Anfangsrandwertprobleme der Festkörpermechanik ist, angegeben. Anschließend

werden einige der später angewandten Regeln und Konzepte zur Formulierung von Konstitutiv-

gleichungen eingeführt, wie zum Beispiel das von HAUPT und TSAKMAKIS entwickelte Konzept

der dualen Variablen, welches auf die multiplikative Zerlegung des Deformationsgradienten

angewendet wird.

Auf der Basis dieser fundamentalen Konzepte wird im dritten Kapitel die Entwicklung des

Konstitutivmodells beschrieben. Hierbei steht zunächst die neu entwickelte Fließfläche als zen-

trales Element des entwickelten Elastoplastizitätsmodells im Vordergrund. Sie kann als glatte

Verbindung eines in der Literatur vorgeschlagenen Ellipsoids sowie einer ebenfalls etablierten

exponentialen Versagenslinie aufgefasst werden. Die beiden Teile werden mit Hilfe einer log-

arithmischen Interpolation zu einer einzigen Fließfläche verschmolzen. Weiterhin wird für den

entwickelten Satz an Konstitutivgleichungen, welche ein Modell der finiten druckabhängigen

Elastoplastizität darstellen, explizit gezeigt, dass sie in Einklang mit der Clausius-Duhem Un-

gleichung stehen und in diesem Sinne thermodynamisch konsistent sind. Die nachfolgend be-

schriebene Verallgemeinerung des Materialmodells auf ein Modell der Viskoplastizität im Sinne

einer Perzyna-Typ Verallgemeinerung wird vorrangig betrieben, um die Auswirkungen dieses

Schrittes auf die numerische Lösbarkeit zu studieren. In der Tat werden positive Effekte bei der

Stabilität der durchgeführten Testrechnungen durch die eingeführte Viskosität erzielt.

Das vierte Kapitel behandelt die Identifikation der in den Konstitutivgleichungen auftretenden

Materialparameter für ein Kupferpulver. Zu diesem Zweck werden zunächst die an der Univer-

sität in Beer Sheva (Israel) durchgeführten Experimente und deren Aufbau beschrieben. An-

schließend erfolgt die Auswertung der Daten und die Identifikation der Materialparameter.



Das fünfte Kapitel stellt die numerische Behandlung des Kompaktierens von Metallpulver im

Rahmen impliziter finiter Elemente Formulierungen dar. Die hierfür benötigten mathematischen

Algorithmen werden im ersten Teil des fünften Kapitels erörtert. Zunächst werden diagonal im-

plizite Runge-Kutta Verfahren zur Lösung von Algebro-Differentialgleichungssystemen erläutert

und anschließend wird das Multilevel-Newton Verfahren (MLNA) zur Lösung des in jeder Stufe

der DIRK-Verfahren auftretenden nichtlinearen Gleichungssystems vorgestellt. Dies stellt eine

moderne Betrachtung impliziter Finite-Elemente Verfahren auf der Basis von Materialmodellen

vom Evolutionsgleichungstyp dar. Diese Vorgehensweise offeriert zudem die Möglichkeit einer

fehlerkontrollierten Zeitintegration der gesamten Problemstellung. Innerhalb des Multilevel-

Newton Verfahrens ist die Lösung eines nichtlinearen Gleichungssystems auf Gauss-Punkt Ebene

erforderlich, welches üblicherweise mit dem klassischen Newton-Verfahren gelöst wird. Da je-

doch dies aufgrund der extremen Nichtlinearitäten des zugrunde liegenden Materialmodells zu

einer nicht zufriedenstellenden schlechten Konvergenz führt, werden Globalisierungsstrategien

für das Newton-Verfahren auf Gauss-Punkt Ebene eingeführt. Der zweite Teil des fünften Kapi-

tels zeigt, wie die im ersten Teil besprochenen Methoden bei der numerischen Lösung des zu

lösenden ARWP eingesetzt werden. Nach der Raumdiskretisierung wird das sich ergebende

Algebro-Differentialgleichungssystem mit geeigneten DIRK Verfahren integriert, was in jeder

Stufe des DIRK Verfahrens die Lösung eines nichtlinearen Gleichungssystems notwendig macht.

Hierbei kommt das genannte Multilevel-Newton Verfahren zum Einsatz, welches die Berech-

nung der in der Literatur bekannten konsistenten Tangente beinhaltet. Diese kann sowohl nu-

merisch als auch analytisch berechnet werden. In dieser Arbeit werden für das vorgestellte

Materialmodell die aufwendigen analytischen Ausdrücke (Ableitungen) hergeleitet und im An-

hang zusammengestellt.

Im sechsten Kapitel wird die Anwendbarkeit des entwickelten konstitutiven Modells sowie

der dargestellten Verfahren anhand einiger Finite-Elemente Berechnungen für einfache Geome-

trien dargestellt. Die Berechnungen sind mit Hilfe des FE-Programms TASA-FEM durchgeführt

worden, wobei die Konstitutivgleichungen in entsprechende Materialroutinen implementiert sind.

Die im Rahmen der Arbeit gewonnen Erkenntnisse werden im siebten Kapitel zusammenge-

tragen. Hierzu zählt ein Vergleich der Spannungsalgorithmen mit den stabilisierten Newton Ver-

fahren. Hier erweist sich ein Newton-Verfahren mit ”line search”-Algorithmus unter Beachtung

von Nebenbedingungen als am robustesten. Beim Vergleich der getesteten DIRK Verfahren mit

dem klassischen Backward-Euler Verfahren schneidet das Verfahren zweiter Ordnung allgemein

am besten ab, da Verfahren höherer Zeitintegrationsgenauigkeit aufgrund eines Ordnungsre-

duktionsphänomens keine Vorteile liefern. Hiermit wurden erstmals Zeitintegrationsverfahren

höherer Ordnung zur Lösung der auftretenden Algebro-Differentialgleichungssysteme auf ein

Modell der finiten kompressiblen Elastoplastizität sowie Viskoplastizität angewendet.
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Chapter 1

Introduction

1.1 Scope of the thesis

The production of mechanical parts through powder metallurgical routes is rapidly increasing.

Numerical simulation of the necessary pressing process during the design phase of new parts

can reduce or even replace costly trial and error experiments to find suitable pressing conditions,

see for example KRAFT [86], KRAFT AND YAZICI [87]. The quality of the numerical simu-

lations strongly depends on the applied constitutive model, which has to be able to capture the

mechanical behavior of the metal powder during the pressing process. Of equal importance to

the applicability of numerical simulations in the field of powder metallurgy is the robustness

and efficiency of the implementation of the constitutive model. For the simulation of realistic

compaction processes, defining initial boundary value problems (IBVP), the efficiency of the

numerical treatment of these IBVP is of equal importance.

In order to enhance the current treatment of metal powder compaction processes a collabora-

tion between five groups of scientists has been funded by the GIF1 under the project title ”p-FEM

for a class of pressure dependent plasticity models with application to cold isostatic pressing

(CIP)”. Besides the group in Kassel led by Dr. Hartmann, there are two groups at the Ben Gurion

University of the Negev in Beer Sheva (Israel) and two groups in Munich. The group in Beer

Sheva led by Prof. Frage provides the experimental capabilities to facilitate the development of a

constitutive model and the necessary parameter identification. The second group in Beer Sheva

led by Prof. Yosibash offers expertise in the field of numerics and explicit finite element simu-

lations. The focus of the group of Prof. Rank at the TU München lies on the application of the

p-version finite element method, which is supposed to be beneficial for the numerical treatment

of the highly non-linear powder compaction processes. The concern of Prof. Holzers group at the

Universität der Bundeswehr München is the shape and process conditions optimization. Further

details about the GIF project can be found in the final scientific report FRAGE ET AL. [49] and

the publications originating from the project, see Appendix E for a list of references.

As a central part of the GIF project this thesis, stemming from the work done in Kassel,

treats the development of a suitable constitutive model describing metal powder compaction pro-

cesses. This is done within the framework of continuum mechanics and implicit finite element

methods. With respect to the constitutive modeling a certain emphasis is placed on the devel-

opment of a new flexible yield function and a thermo-mechanically consistent formulation of

the material model. In order to determine the material parameters contained in the constitutive

equations several experiments are analyzed which have been set up and conducted by the part-

1German Israeli Foundation for scientific research and development
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ner group of Prof. Frage in close cooperation. The second major task examined in this thesis is

the efficient numerical treatment of powder compaction processes. To this end the constitutive

model (stress algorithm) is implemented in the in-house implicit finite elements code TASA-

FEM, HARTMANN [62]. The system of equations, originating from the space discretization of

the principle of virtual displacements, can be interpreted as a coupled system of differential al-

gebraic equations (DAE) in the case of the developed constitutive model. This interpretation

gives rise to the application of, for example, diagonally implicit Runge-Kutta methods (DIRK)

methods. Furthermore, TASA-FEM features the application of efficient time adaptive integra-

tion by embedded error estimation also based on DIRK methods. The application of these higher

order time integration methods is compared to the usual Backward-Euler method in scientific

examples of compaction processes. The systems of nonlinear equations are solved with the

Multilevel-Newton algorithm at each stage of the applied DIRK methods, see HARTMANN [61],

HARTMANN [60] for a clarification of the notion Multilevel-Newton method. At each spatial

integration (Gauss) point, i.e. on the local level of the Multilevel-Newton algorithm, a system

of nonlinear equations, containing only the internal variables of the same integration point as

unknowns, has to be solved. Often this local nonlinear system can be efficiently solved with

the Newton algorithm. Due to convergence problems of the classical Newton method several

globalization strategies for the Newton algorithm are studied in order to obtain an efficient and

robust stress algorithm. Although the application of numerical derivatives on the local as well

as on the global level (consistent tangent operator) of the Multilevel-Newton method is possible,

analytical tangents have been derived reducing the computational cost significantly.

1.2 Review of related research

The constitutive modeling and numerical treatment of powder metallurgical production processes

is much too vast a field to be treated exhaustively within a single thesis. The main focus of the

GIF project is placed on the cold isostatic pressing but due to the major importance of (uni-

axial) die compaction at ambient temperature and in view of the necessary material parameter

identification this process is considered as well. Other powder metallurgical production routes

like powder rolling, metal injection molding or hot isostatic pressing are not discussed. De-

tailed information on powder metallurgy can, for example, be found in ASM [13]. Furthermore,

the attention of this work is restricted to the pressing process. The necessary sintering process,

which is subsequently applied, has been treated by, for example, LIPPMANN AND IANKOV [98],

SVOBODA ET AL. [130]. An overview over the usual modeling of the compaction and sintering

process can be found in COCKS [31]. For warm compaction or hot isostatic pressing the consti-

tutive models have to include temperature, this has been addressed among others by LARSSON

ET AL. [92], MÄHLER ET AL. [101], WIKMAN ET AL. [140], SVOBODA ET AL. [129] and

ARIFFIN ET AL. [8]. For the processes at ambient temperature like cold isostatic pressing and

die compaction, the influence of temperature can be ignored. The development of constitutive

models for metal powder compaction started about thirty years ago, extensions of the famous von

Mises yield criterion have been suggested by GREEN [52], KUHN AND DOWNEY [89], SHIMA

AND OYANE [122] to include a dependence of the yield strength on the hydrostatic component

of stress. These models have initially been developed to describe the constitutive behavior of

already sintered parts with different relative densities. Based on the works of ARZT [11] and

HELLE ET AL. [72] Fleck and coworkers proposed a micro-mechanically motivated constitutive

model to describe the compaction behavior of metal powders, FLECK ET AL. [48]. This model

has been extended afterwards among others by FLECK [47] and OGBONNA AND FLECK [104].
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Furthermore, it has been studied experimentally, for example by AKISANYA ET AL. [4]. The

micro-mechanically motivated models assume an assembly of spherical powder particles which

deform plastically. From this assumption macroscopic yield functions are derived. In STORAK-

ERS ET AL. [127] further extensions to include the effect of two different populations of spheres

with different properties are discussed and the spheres are assumed to behave viscoplastic. Since

the micro-mechanically motivated model proposed by FLECK ET AL. [48] can be considered

to be valid only at low relative densities, it has been combined with the famous Gurson model

for voided metals, see GURSON [55], for simulating compaction processes up to high relative

densities, see for details REDANZ [114], REDANZ [115], REDANZ [116] and REDANZ AND

FLECK [117]. Beside the micro-mechanically motivated models a large number of authors have

proposed and applied phenomenological plasticity models to describe the compaction behavior

of metal powders. Constitutive models originating from the field of geomechanics have been

adopted, taking into account the initially granular behavior of the metal powder and leading

to so-called cap models. These models combine a Drucker-Prager failure cone, or exponential

failure line (DIMAGGIO AND SANDLER [39]) or a Mohr-Coulomb surface with an usually el-

lipsoidal cap, which closes the surface in the direction of hydrostatic pressure, see for example

CORAPCIOGLU AND UZ [32], WATSON AND WERT [139] or COUBE [33]. The experimental

works of ABOU-CHEDID [3] and CARNAVAS [23] support the use of two part yield surfaces,

which incorporate an asymmetry of the yield envelope with respect to the first invariant of the

stress tensor. Yield function free, endo-chronic plasticity models, have been proposed and ap-

plied by BAKHSHIANI ET AL. [15], KHOEI ET AL. [81] and KHOEI ET AL. [78]. In addition

to the differences in the constitutive approaches found in the literature on metal powder com-

paction, there are also different approaches and focuses with respect to the numerical treatment.

While some authors propose and apply explicit time integration schemes, e.g. HÄGGBLAD AND

ODENBURG [56], XIN ET AL. [141] or COUBE AND RIEDEL [34], others rely on implicit time

integration, e.g. MÄHLER ET AL. [101], PEREZ-FOGUET ET AL. [109]. In order to handle the

large deformations undergone by the powder, KHOEI AND LEWIS [80] discuss the application

of re-meshing to avoid distorted meshes. Huerta and coworkers utilize an Arbitrary Lagrangian

Eulerian (ALE) formulation to cope with the large deformations in powder forming processes,

see HUERTA ET AL. [74], PEREZ-FOGUET AND HUERTA [108], RODRIGUEZ-FERRAN ET AL.

[118] or PEREZ-FOGUET ET AL. [110] for details.

In this thesis a new yield function is proposed, which can be conceived as a smooth combi-

nation of the shifted ellipsoid proposed by ABOU-CHEDID [3] and the failure line introduced

by DIMAGGIO AND SANDLER [39]. They are merged into a single surface yield function us-

ing a logarithmic interpolation previously applied in different contexts by KREISSELMEIER AND

STEINHAUSER [88] and ARNOLD AND FRISCHMUTH [10]. For the developed constitutive

model falling into the class of elastoplasticity models it is explicitly demonstrated that the pro-

posed (evolution) equations fulfill the second law of thermodynamics in the form of the Clausius-

Duhem inequality, i.e. the model is thermo-mechanically consistent. For the solution of the initial

boundary value problem formed by the balance equations together with the constitutive equations

and initial and boundary conditions an implicit finite elements approach is chosen. The system of

equations resulting from the space discretization is identified as a coupled system of differential

algebraic equations (DAE). For the time integration diagonally implicit Runge-Kutta methods

are applied. The system of non-linear equations, occurring in each stage of the DIRK method is

solved using a Multilevel-Newton algorithm, see HARTMANN [61], HARTMANN [60]. For the

treatment of the non-linear system of equations on the local level enhanced versions of the New-

ton algorithm are applied since the classical Newton method frequently leads to convergence
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problems. Such convergence problems have been reported for a similar constitutive model in

ARMERO AND PEREZ-FOGUET [9] and PEREZ-FOGUET AND ARMERO [107] together with

strategies to improve the convergence behavior.

1.3 Structure of the thesis

Chapter 2 establishes the necessary preliminaries for the continuum mechanical description of

metal powder compaction processes. A kinematic description capable of handling the large de-

formations, which the powder material undergoes during compaction, is introduced. After that

the universal balance relations are recapped. Out of these the principle of virtual displacements

can be derived, which is one starting point for the numerical calculation of initial boundary value

problems in solid mechanics. A few of the “rules” and concepts for the proper formulation of a

constitutive model are stated in the third section of Chapter 2. Among these concepts we con-

sider the concept of dual variables, which is due to HAUPT AND TSAKMAKIS [69] as well as

the multiplicative decomposition of the deformation gradient, going back to LEE [93] and LEE

AND LIU [94]. On the basis of these fundamental ideas a constitutive model to describe the

compaction behavior of metal powder is developed in Chapter 3. The attention is focused on

the yield function, which is a major part of the constitutive model for the pressure dependent

material behavior. After a review of pressure dependent yield functions the formulation of a

suitable new yield function on the basis of earlier proposals from the literature is discussed. Af-

terwards, the entire rate-independent (elastoplastic) version of the model is summarized and its

thermo-mechanical consistency is established. The expansion of the model to viscoplasticity is

considered mainly to study the influence of the introduced viscosity on the numerical treatment.

The numerical treatment is supposed to benefit from this, since the viscoplastic model leads to

smoother equations. Chapter 4 deals with the identification of the material parameters of the

constitutive model. The experimental setup and the obtained experimental data as well as its

treatment are discussed. It is shown that a reasonable set of material parameters can be obtained

from the uniaxial die compaction experiments on cylindrical specimens with intermediate un-

loading and reloading cycles. The subsequent fifth Chapter deals with the numerical treatment of

the metal powder compaction within the framework of implicit finite element formulations. To

this end, some of the applied mathematical algorithms are introduced in the first section starting

with diagonally implicit Runge-Kutta (DIRK) methods applied to solve systems of differential

algebraic equations (DAE). A short discussion of efficient embedded time adaptive algorithms is

included. The second topic of Chapter 5 is the introduction of the Multilevel-Newton algorithm

utilized to solve a coupled system of nonlinear equations. Since a two level Newton algorithm is

applied afterwards, the discussion is restricted to two levels. Usually a simple Newton algorithm

is applied to solve the system of nonlinear equations on the local level of the Multilevel-Newton

algorithm. Since the classical Newton algorithm leads to convergence problems, a number of

generalized, i.e. globalized Newton-like iteration algorithms are discussed as well at the end of

the first section of Chapter 5. The second section of Chapter 5 discusses the numerical solution of

the initial boundary value problem formed by the constitutive equations together with the balance

relations and the boundary conditions. The previously introduced mathematical concepts are ap-

plied. After the space discretization the resulting DAE is solved with suitable DIRK methods and

the resulting nonlinear system of equations is computed with the help of the Multilevel-Newton

algorithm. The Multilevel-Newton algorithm demands the computation of the consistent tangent

matrix which can be done either numerically or analytically. The analytical expressions for the

proposed constitutive model can be found in the Appendix D. Before the thesis closes with a
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summary in Chapter 7, addressing also major open questions and possible future directions for

further developments and improvements, some numerical examples with rather simple geome-

tries are presented in Chapter 6. The numerical examples in Chapter 6 have been computed using

the in house finite element code TASA-FEM featuring the application of several DIRK methods

as well as time adaptive computation.
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Chapter 2

Continuum mechanical foundations

The scope of continuum mechanics is the mathematical description of the motion and deforma-

tion of so called material bodies under thermomechanical loads. A material body is a continuous

assembly of material points. All physical quantities are represented by continuous fields which

can be related to either the material points (material representation) or the place in space (spatial

representation). These fields can be scalar fields like the spatial density distribution ρ(x, t) or

tensor fields of any order like the spatial velocity field v(x, t) (first order) or the field of Cauchy

stresses T(x, t) (second order), where x denotes the place of a material point at time t.
The theory of continuum mechanics rests upon three cornerstones. The first one is the kine-

matical description of the motion and deformation a material body can undergo. The second

one is the formulation of kinetical laws in form of balance relations. These first two fields state

fundamental assumptions on the structure of space and time and the principles of mechanics.

They represent a generalization of a great variety of observations and are considered to be valid

for all materials. The third field of continuum mechanics, the theory of materials, deals with the

modeling of individual material behavior by the introduction of so called constitutive equations.

These constitutive equations are not valid in general, they are merely meant to represent the spe-

cific behavior of a certain material under consideration. Material theory gives certain guidelines

for the formulation of constitutive models in order to guarantee that the constitutive equations

do not contradict any fundamental physical principles. According to HAUPT [67] the material

behavior of solids can be subdivided into four groups namely elasticity, viscoelasticity, plasticity

and viscoplasticity. Here, the considered continua are restricted to so called simple materials of

first degree, see ALTENBACH AND ALTENBACH [6, P.154], i.e. the constitutive equations relate

only quantities which belong to the same material point and its infinitesimal neighborhood.

19
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2.1 Kinematics

The purpose of kinematics is the mathematical description of the motion of material points, i.e.

the deformation of material bodies. To this end the term motion and the concept of configuration

will be specified. The deformation will be characterized locally by the deformation gradient from

which several strain tensors can be derived. The time rates of deformations can be measured by

the spatial velocity gradient, which will in turn be used to define appropriate strain rates.

2.1.1 Motion and configuration

In continuum mechanics the notion material body B is introduced, see HAUPT [67]. A material

body B is a set of material points P for which a set K of one-to-one mappings

χ : B −→ χ[B] ⊂ R
3

P 7−→ χ(P) = (x1, x2, x3) (2.1)

exists. Due to the bijectivity of χ, P = χ−1(x1, x2, x3) holds. The mapping χ is called a

configuration (of the material body). Furthermore, it is demanded that any composition of two

configurations χ1, χ2 ∈ K given by

χ2 ◦ χ−1
1 : χ1[B] −→ χ2[B] (2.2)

is continuously differentiable.

The motion of the material body is defined as a sequence of configurations parameterized by

the time t

χt : B −→ χt[B] ⊂ R
3

P 7−→ χt(P) = (x1(t), x2(t), x3(t)). (2.3)

The configuration at time t is named current configuration. In order to identify each material

point P , a reference configuration R ∈ K is introduced

R : B −→ R[B] ⊂ R
3

P 7−→ R(P) = (X1, X2, X3). (2.4)

Any configuration of the set K can be chosen as reference configuration. Often the initial con-

figuration χt0 is chosen as reference configuration

R ≡ χt0 : B −→ χt0 [B] ⊂ R
3

P 7−→ χt0(P) = (X1, X2, X3). (2.5)

The motion of the material body is accordingly characterized by the mapping

x = Φt0(X, t) with Φt0 = χt ◦ χ−1
t0
. (2.6)

In the reference configuration as well as in the current configuration a frame of reference (co-

ordinate system) is introduced by the three basis vectors G1,G2,G3 for the reference config-

uration and the three basis vectors g1, g2, g3 for the current configuration. The three numbers

(X1, X2, X3) are called the material coordinates and the three numbers (x1, x2, x3) are the spa-

tial coordinates. By using the same frame of reference in the initial and current configuration the

motion can be described alternatively by the displacement vector

u(X, t) = x − X = Φt0(X, t) − X . (2.7)
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X

x = Φt0(X, t)

u

Bt0

Bt

Φt0(X, t)

Figure 2.1: Configurations

2.1.2 Deformation gradient

According to Eq. (2.6) the motion of a material body is defined by the family of vector func-

tions Φt0(X, t) with the family parameter t representing the time. The difference in motion of

neighboring material points is measured by the (material) deformation gradient

F = GradΦt0(X, t) =
∂x

∂X
=

∂xi

∂Xj gi ⊗ Gj = F i
jgi ⊗ Gj . (2.8)

The coefficients F i
j of F are the coefficients of the Jacobi matrix of the coordinate transformation

induced by the vector mapping x = Φt0(X, t). Since one of the basis vectors of F belongs to the

reference configuration (Gj) and one belongs to the current configuration (gi) the deformation

gradient is sometimes called a two-field tensor. However, for the description in one Cartesian

coordinate system, where the co- and contravariant base systems coincide, one may write

F =
∂xi

∂Xj ei ⊗ ej = F ijei ⊗ ej. (2.9)

Far more important is the geometrical meaning of the deformation gradient F. The deformation

gradient maps material line elements dX (tangent vector of a material line in the reference

configuration) into material line elements dx (tangent vector of a material line in the current

configuration). In order to demonstrate this, a material line in the reference configuration shall

be defined by

X = C(α), (2.10)

where α is the curve parameter. The same material line in the current configuration is than given

by

x = c(α) = Φt0(C(α), t). (2.11)

The tangent vectors of the material line are

dX = C ′(α)dα and dx = c′(α)dα (2.12)

in the reference and current configuration, respectively. Insertion of (2.11) into (2.12)2 and ap-

plication of the chain rule yields

dx = c′(α)dα =
d

dα
Φt0(C(α), t)dα =

(

Grad Φt0(X, t)|X=C(α)

)

︸ ︷︷ ︸

F

C ′(α)dα
︸ ︷︷ ︸

dX

(2.13)
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The essential property of the deformation gradient

dx = FdX (2.14)

to map tangents of material lines from the reference to the current configuration contains all the

information about the local deformation, which will subsequently be used to introduce appropri-

ate strain tensors. From the property (2.14) of the deformation gradient F the equations

da = (detF)F−T dA (2.15)

dv = detF dV (2.16)

can be derived, which describe the deformation of a material surface (volume) element dA (dV )
from the reference into the current configuration. The deformation gradient F is non-symmetric

in general and due to its invertibility and the continuity of the motion detF > 0 holds. Although

F contains all the necessary information about the deformation, it is usually not used directly

in constitutive equations, since F itself is not independent of rigid body motions. To be more

precise, F is independent of rigid body translations but not independent of rigid body rotations.

X

dX dx

x = Φt0(X, t)

Bt0

Bt

c(α)C(α)

G1

G2

G3

g1

g2

g3

Φt0(X, t)

Figure 2.2: Transformation of a material line

Polar decomposition

As a non-singular (detF 6= 0) tensor of second order, the deformation gradient F can be decom-

posed multiplicatively into an orthogonal tensor R (RT = R−1, detR = +1) and a symmetric,

positive definite tensor U (or V),

F = RU = VR. (2.17)

This decomposition is denoted as the polar decomposition of F. The orthogonal tensor R de-

scribes a pure rotation of a material line element dX , whereas U (or V) describes a pure elon-

gation of the line element dX (or RdX). The tensors U, called right stretch tensor, and V,

denoted as left stretch tensor, are related via the similarity relation

V = RUR−1, (2.18)
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which means that V and U have the same eigenvalues. The polar decomposition is unique. With

U and V two tensors have been found which characterize the deformation and do not dependent

on rigid body motions. In order to avoid the non-rational calculation of roots, which is necessary

to calculate U and V from F, the right Cauchy Green tensor

C = FT F = U2 (2.19)

and the left Cauchy Green tensor

b = FFT = V2 (2.20)

are introduced. The tensor C operates on the reference configuration1 and the tensor b operates

on the current configuration.2 With the help of the introduced kinematical quantities a number of

strain tensors can be defined, which vanish in the case of pure rigid body motions and characterize

the state of strain.

2.1.3 Strain tensors

The Green strain tensor

E =
1

2

(
FTF − 1

)
=

1

2
(C − 1) =

1

2

(
U2 − 1

)
(2.21)

operating in the reference configuration and the Almansi strain tensor

A =
1

2

(
1 − F−1F−T

)
=

1

2

(
1 − b−1

)
=

1

2

(
1 − V−2

)
(2.22)

operating in the current configuration are connected by the covariant push forward F−T (·)F−1

A = F−T EF−1 (2.23)

and pull back FT (·)F
E = FTAF (2.24)

operations.3 The tensors E and A are embedded in a general class of strain tensors defined with

the help of the stretch tensors U and V, see for example HAUPT AND TSAKMAKIS [70],

E(m) =

{
1
m

(Um − 1) | m 6= 0
lnU | m = 0

(2.25)

A(m) =

{
1
m

(Vm − 1) | m 6= 0
lnV | m = 0

. (2.26)

For m = 2 the Green strain tensor is retrieved from (2.25) and for m = −2 the Almansi tensor

is obtained from Eq. (2.26). The tensor E(0) = lnU is known as the Hencky strain tensor

(logarithmic strain tensor). Alternative strain tensors, for example, the Piola tensor

e =
1

2

(
C−1 − 1

)
(2.27)

1Actually C operates on the tangent space of the reference configuration.
2Actually b operates on the tangent space of the current configuration.
3The tensors E and A are termed covariant because they operate on the tangent spaces of the reference and

the current configuration, see HAUPT [67]. Alternative strain tensors operating on the cotangent spaces can be

introduced as well, for their transformation contravariant push forward and pull back operations must be used.
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and the Finger tensor

a =
1

2
(1 − b) , (2.28)

operating in the cotangent spaces of the reference and current configurations respectively, can

be defined. They are connected through contravariant push forward F(·)FT and pull back

F−1(·)F−T operations, details can be found in HAUPT [67].

2.1.4 Deformation velocities

The fundamental tensor describing the rate of change of material line, area and volume elements

is the (spatial) velocity gradient

L = grad v(x, t) = ḞF−1 (2.29)

and is calculated from the velocity field v(x, t). The dot denotes the material time derivative, i.e.

the total derivative of a function f(X, t) with respect to time t. Material line, area and volume

elements change in time according to

ḋx = Ldx, (2.30)

ḋa = ((trL)1 − LT )da, (2.31)

ḋv = (trL)dv, (2.32)

where tr denotes the trace operator trA = Aii. The spatial velocity gradient decomposes addi-

tively in a symmetric part D and a skew symmetric part W,

L = D + W (2.33)

with D =
1

2

(
L + LT

)
(2.34)

and W =
1

2

(
L − LT

)
. (2.35)

The symmetric part D is denoted as strain rate tensor and the skew symmetric part is known as

spin or vorticity tensor.
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2.2 Balance relations and stress tensors

The balance relations of continuum (thermo)mechanics are formulations of fundamental phys-

ical principles, in particular, the conservation of momentum, angular momentum and energy.

Furthermore, the conservation of mass is valid for the processes considered in continuum me-

chanics and a balance relation for the entropy will be given. The balance of entropy has to be

accompanied by an appropriate formulation of the second law of thermodynamics, which states

that the entropy of a closed system never decreases. The balance relations can be formulated

either in the current (spatial) or in the reference (material) configuration. They have the general

form

d

dt

∫

v

ρ(x, t)Ψdv =

∫

a

Φ(x, t)nda+

∫

v

ρ(x, t)(ϕ(x, t) + p(x, t))dv (2.36)

d

dt

∫

V

ρ(X , t)ΨRdV =

∫

A

ΦR(X, t)nRdA+

∫

V

ρR(X, t)(ϕR(X, t) + pR(X, t))dV (2.37)

where ρ, ρR represent the mass density of the material body in the current and reference configu-

ration respectively. The physical quantity, which is balanced, is represented by Ψ (ΨR), the flux

of the physical quantity through the surface of the material body is denoted as Φ (ΦR), whereas

the volume distributed exchange of Ψ (ΨR) with the outside world is represented by ϕ (ϕR) and

the production density of Ψ (ΨR) is given by p (pR) in the current (reference) configuration. For

the representation of conservation laws by means of a balance relation the right hand side of

Eqns. (2.36) and (2.37) is zero. The physical quantity Ψ under consideration may be scalar or

vector valued. If the physical quantity Ψ is a tensor field of order n, the flux accordingly is a

tensor of order (n+ 1). Under sufficient conditions regarding the continuity and differentiability

of the fields one can derive local forms of the balance relations with the help of the divergence-

theorem. In the following, the balance of mass, momentum, angular momentum and energy as

well as entropy will be stated.

2.2.1 Balance of mass

The mass m(B, t) of a material body B is a scalar quantity which measures the resistance of the

material body against accelerations (inertia) as well as the strength of its gravitational interactions

with other masses. Each material point P is attributed a mass density ρ. Accordingly, the mass

of the material body is given by

m(t) =

∫

V

ρR(X, t)dV =

∫

v

ρ(x, t)dv. (2.38)

The conservation of mass states that

d

dt
m(t) =

d

dt

∫

V

ρR(X, t)dV =
d

dt

∫

v

ρ(x, t)dv = 0. (2.39)

The local form in the reference configuration can be derived immediately, since the volume

integral over the material body in the reference configuration is time-independent

∂ρR(X, t)

∂t
= 0 ⇔ ρR(X, t) = ρR(X). (2.40)

In order to obtain the local form in the current configuration, the integral has to be transferred to

the reference configuration whereupon the differentiation with respect to time can be exchanged
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with the volume integral. Afterwards, the resulting expression is stated in spatial coordinates

again using the relation (2.16) between the infinitesimal volume element in the current and the

reference configuration

0 =
d

dt
m(t) =

d

dt

∫

v

ρ(x, t)dv =
d

dt

∫

V

ρ detFdV

=

∫

V

d

dt
(ρ detF)dV =

∫

V

(

ρ̇ detF + ρ detF F−T · Ḟ
︸ ︷︷ ︸

div v=trL

)

dV

=

∫

v

(ρ̇+ ρdiv v) dv. (2.41)

Alternatively, the local balance of mass can be written as

ρ̇+ ρdiv v = 0 ⇔ ∂ρ

∂t
+ div (ρv) = 0. (2.42)

And due to ρRdV = ρdv and Eq. (2.16) we can also state

ρR = (detF) ρ. (2.43)

2.2.2 Balance of momentum

The momentum of a material body is the product of mass density and velocity integrated over

the domain of the body. The derivative of the momentum with respect to time is equal to the sum

of the external forces exerted on the material body

d

dt

∫

v

ρ(x, t)v(x, t)dv =

∫

a

t(x, t)da+

∫

v

ρ(x, t)k(x, t)dv. (2.44)

The right hand side of (2.44) represents the external forces acting on the material body and the

left hand side is the rate of its momentum. In Eq. (2.44) t(x, t) denotes the stress vector acting

on the surface of the material body. According to Cauchy’s theorem the stress vector t(x, t) is

related to the stress tensor T(x, t) (Cauchy stress tensor) via

t(x, t,n) = Tn. (2.45)

The volume distributed force density acting on the material body is ρ(x, t)k(x, t) in (2.44).

Often ρ(x, t)k(x, t) = ρ(x, t)k are gravitational forces where the acceleration is (in good ap-

proximation) constant in space and time. With the help of the divergence-theorem the surface

integral can be transformed into a volume integral. With the help of the mass balance in the form

ρdv = ρRdV the local form of the balance of momentum reads,

ρ(x, t)v̇(x, t) = div T(x, t) + ρ(x, t)k(x, t). (2.46)

In the reference configuration the global form of the balance of momentum reads

∂

∂t

∫

V

ρR(X)Φ̇t0(X, t)dV =

∫

A

tR(X, t)dA+

∫

V

ρR(X)kR(X, t)dV (2.47)

where the stress vector tR has been introduced representing the force per area of the reference

configuration. In analogy to (2.45) the stress vector tR is related to the stress tensor TR by

tR(X, t) = TR(X, t)nR, (2.48)
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which is known as the first Piola-Kirchhoff stress tensor. The local form of the balance of mo-

mentum in the reference configuration is given by

ρR(X)Φ̈t0(X, t) = DivTR(X, t) + ρR(X)k(X, t). (2.49)

In Section 2.2.6 a summary of commonly applied stress tensors and their interconnection is

compiled.

2.2.3 Balance of angular momentum

The balance of angular momentum (moment of momentum) states that the temporal change of

rotational momentum with respect to any fixed point in space c is equal to the sum of external

angular momentum due to forces acting on the material body. The spatial form of the balance of

angular momentum is

d

dt

∫

v

((x − c) × ρv)dv =

∫

a

((x − c) × t)da+

∫

v

((x − c) × ρk)dv. (2.50)

The local form of the balance relation (2.50) together with the balance of mass and momentum

implies the symmetry of the Cauchy stress tensor

TT = T. (2.51)

2.2.4 Balance of energy

In order to establish the balance of energy, the notion internal energy of the material body is

introduced

E =

∫

v

eρdv, (2.52)

where e is the (mass) specific internal energy. E represents the total energy content of the material

body except for the kinetical energy K given by

K =

∫

v

ρ

2
v2dv. (2.53)

The sum of internal energy E and kinetical energy K represent the total energy content of the

material body. The temporal change of this energy content is due to the power of the external

forces

Pa =

∫

a

v · (Tn)da+

∫

v

ρk · vdv (2.54)

acting on the material body and also due to the non-mechanical energy exchange, i.e. the heat

flux Q given by

Q =

∫

a

qda+

∫

v

rρdv, (2.55)

with q denoting the heat flux density and r representing a volume distributed heat supply (ana-

logue to the volume distributed acceleration k). The balance of energy for the material body now

reads
d

dt
(K + E) = Pa +Q. (2.56)
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With the help of q = −q · n, where q is the Cauchy heat flux vector, the global form of the

energy balance in spatial representation is given by

∫

v

˙(
1

2
v2 + e

)

ρdv =

∫

a

(
(TTv) · n − q · n

)
da+

∫

v

(k · v + r) ρdv. (2.57)

Application of the divergence-theorem to the surface integral in (2.57) and using the symmetry

T = TT together with the product rule in the form div
(
TT v

)
= (div T) · v + T · grad v =

(div T) · v + T · D yields

∫

v

[(ρv̇ − div T + ρk) · v + ρė+ div q − ρr − T · D] dv = 0. (2.58)

This can be simplified with the help of the balance of momentum giving the local form of the

energy balance in spatial representation

ė = −1

ρ
div q + r +

1

ρ
T · D. (2.59)

Alternatively the balance of energy can be formulated on the reference configuration and reads

in local form

ė = − 1

ρR
DivqR + r +

1

ρR
T̃ · Ė. (2.60)

2.2.5 Balance of entropy and dissipation inequality

In continuum mechanics the entropy content S of a material body is defined as the volume inte-

gral of the entropy density s over the realm of the material body

S =

∫

v

sρdv. (2.61)

Every heat exchange of the material body with its surroundings is likewise an exchange of en-

tropy. The total exchange of entropy H is the sum of the entropy exchange through the surface

Σ of the material body and a volume distributed entropy exchange σ,

H =

∫

a

Σda+

∫

v

σρdv. (2.62)

In addition to the exchange of entropy with the surroundings a volume distributed entropy pro-

duction within the material body is introduced via

Γ =

∫

v

γρdv. (2.63)

The entropy flux Σ through the surface in (2.62) is Σ = −Σ · n with the entropy flux vector Σ,

given by

Σ =
q

T
, (2.64)

where T denotes the absolute temperature. Accordingly the volume distributed entropy supply

is

σ =
r

T
. (2.65)
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The entropy balance states that

Ṡ = H + Γ (2.66)

and the second law of thermodynamics demands that

Γ = Ṡ −H ≥ 0. (2.67)

This means that the entropy production within a material body during all processes is always

positive. The entropy production represents a measure for the irreversibility of the considered

process. Under idealized assumptions the entropy production during a process may at most be

zero, which is equivalent to the statement that the process is reversible. With the assumptions

on the entropy exchange of the material body with its surroundings in Eqns. (2.64) and (2.65),

Eq. (2.67) can be written in the form

Γ =
d

dt

∫

v

sρdv +

∫

a

q · n
T

da−
∫

v

r

T
ρdv ≥ 0 (2.68)

which is known as the Clausius-Duhem inequality in continuum mechanics, see HAUPT [67].

The local form in spatial representation reads

γ = ṡ+
1

ρT
(div q − ρr) − 1

ρT 2
q · g (2.69)

with the spatial temperature gradient g = gradT . Using the energy balance in local form (2.59),

we can rewrite Eq. (2.69) and obtain

Tγ = −ė+ T ṡ+
1

ρ
T · D − 1

ρT
q · g ≥ 0. (2.70)

The term Tγ on the left-hand side of (2.70) is called dissipation. We will use the Clausius-Duhem

inequality later to define a constitutive model which is a priori thermodynamically consistent, i.e.

it fulfills the second law of thermodynamics in all processes. Instead of the internal energy e, the

(Helmholtz) free energy ψ = e− sT will be used; introducing this into Eq. (2.70) yields

−ψ̇ − sṪ +
1

ρ
T · D − 1

ρT
q · g ≥ 0. (2.71)

For isothermal processes (Ṫ = 0) and a uniform temperature distribution (g = 0), to which we

will restrict our considerations, Eq. (2.71) simply becomes

T · D − ρψ̇ ≥ 0. (2.72)

2.2.6 Stress tensors

In (2.45) we have already introduced the Cauchy stress tensor T through t(x, t,n) = Tn, with

t being the stress vector in the current configuration. The stress vector t is also called true

stress vector. The current force df , acting on a cutting plane with the surface da(= da · n)
and the surface normal n through the point x, is divided by the surface element in the current

configuration da,

t =
df

da
= Tn. (2.73)
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If the actual force df is divided by the surface element in the reference configuration dA, we

obtain the stress vector

tR =
df

dA
= TRnR, (2.74)

which has already been introduced in (2.48). In contrast to the true stress tensor T, the stress

tensor TR is denoted as a nominal stress tensor, see ALTENBACH AND ALTENBACH [6]. A

pseudo stress tensor T̃ is gained, as soon as the force vector df is transferred to the reference

configuration in the same manner as a material line element dx and then divided by the surface

in the reference configuration,

t̃ = F−1 df

dA
= T̃nR. (2.75)

The stress tensor T̃ is called the second Piola-Kirchhoff tensor and is used in constitutive models

more frequently than the first Piola-Kirchhoff stress tensor since T̃ is symmetric. Table 2.1

summarizes the introduced stress tensors and gives the transformation formulas to calculate them

from each other. In addition to the stress tensors T, TR and T̃ introduced so far, Table 2.1

contains the weighted Cauchy stress tensor S (Kirchhoff stress tensor), which is frequently used

in constitutive models. Furthermore, Table 2.1 shows the stress tensor T̂ and the Mandel stress

tensor P̂, which operate on the plastic intermediate configuration. They will be introduced in

Section 2.3.3 and are applied later on to formulate the constitutive model.

Table 2.1: Stress tensors

1. Piola- 2. Piola- weighted

Kirchhoff Kirchhoff Cauchy Cauchy Mandel

TR T̃ S T T̂ P̂

TR FT̃ SF−T JTF−T F̂eT̂F−T
p F−T

e P̂F−T
p

T̃ F−1TR F−1SF−T JF−1TF−T F−1T̂F−T
p F−1F−T

e P̂F−T
p

S TRFT FT̃FT JT F̂eT̂FT
e F−T

e P̂FT
e

T 1
J
TRFT 1

J
FT̃FT 1

J
S 1

J
F̂eT̂FT

e
1
J
F−T

e P̂FT
e

T̂ F−1
e TRFT

p FpT̃FT
p F−1

e SF−T
e JF−1

e TF−T
e C−1

e P̂

P̂ FT
e TRFT

p FT
e FT̃FT

p FT
e SF−T

e JFT
e TF−T

e CeT̂
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2.3 Fundamental issues of constitutive modeling

The third cornerstone of continuum mechanics is the theory of material behavior (material the-

ory). It is obvious that the system of equations formed by the balance of mass, momentum

angular momentum and energy together with the entropy inequality is not sufficient to determine

the unknown fields velocity v, temperature T , density ρ, Cauchy stress T, internal energy e, heat

flux vector q and the entropy s. The entropy inequality (2.69) can not be used directly to deter-

mine these fields, it rather acts as a constraint, which needs to be fulfilled by all solutions of the

basic equations. Taking into account the balance of angular momentum in the form T = TT , 5

scalar equations4 remain for the 16 unknown fields v[3], T [1], ρ[1], T[6], e[1], q[3] and s[1]. If

pure mechanical processes are considered, the situation is slightly better, since there are 4 scalar

equations5 for 10 unknown fields6. In order to close the system of equations, additional relations

between the unknowns must be established. These additional equations are called constitutive

equations. At least 11 additional equations in the thermomechanical case and at least 6 additional

equations in the pure mechanical case are required. In many cases the constitutive equations in-

troduce additional unknowns (internal variables), increasing thereby the number of unknowns

and, consequently, the number of required equations as well.

In contrast to the kinematical description of the motion of a material body in Section 2.1

and the balance relations described in Section 2.2 the constitutive equations are not valid for all

material bodies. They rather define the behavior of the individual material under consideration.

Material theory provides a number of essential rules, which should be obeyed by the constitutive

equations in order to ensure that the constructed mathematical model is consistent with observa-

tions. Obviously, the constitutive equations are not allowed to contradict the balance relations.

Additionally, the constitutive equations should not produce a contradiction to the second law of

thermodynamics for any solution under any initial and boundary conditions. This can either be

checked after a constitutive equation has been stated, which might become rather difficult. Al-

ternatively, the second law of thermodynamics in the form of the Clausius-Duhem inequality can

be used to construct constitutive equations, which are a priori thermodynamically consistent, i.e.

fulfill the second law in any thermomechanical process.

Moreover, a constitutive theory should follow further principles like the principle of deter-

minism, local action and frame-indifference (material objectivity), see HAUPT [67, P.257]. The

principle of determinism states that the current state at each point of the material body may de-

pend on the current state of strain and the complete strain history in each and every material point

of the material body. In essence, this principle excludes a dependence of the current state of the

material on future strains. The principle of local action states that the current state of stress at

a material point is influenced only by the strain history of this material point. Further assump-

tions, which promote the development of constitutive theories, are for example the principles of

equipresence and fading memory, see for details ALTENBACH AND ALTENBACH [6]. The prin-

ciple of frame-indifference (material objectivity) will be discussed in some detail in the following

subsection. Afterwards the concept of dual variables introduced by HAUPT AND TSAKMAKIS

[69] is discussed and subsequently the multiplicative decomposition of the deformation gradient

F due to LEE [93] and LEE AND LIU [94], which is a fundamental assumption for the formula-

tion of finite strain plasticity, is introduced. Besides the rules for the formulation of constitutive

equations, two major concerns of material theory are the utilization of symmetries of the material

4balance of mass [1], balance of momentum [3] and balance of energy [1]
5balance of mass [1], balance of momentum [3]
6namely the velocity field v[3], the density ρ[1] and the Cauchy stress T[6]
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as well as the inclusion of kinematical constraints, e.g. incompressibility, in the formulation of

the constitutive models. These subjects will not be addressed here, but details can be found in

ALTENBACH AND ALTENBACH [6], HAUPT [67], GREVE [53], HUTTER AND JÖHNK [76].

2.3.1 Objectivity

The principle of material objectivity (material frame-indifference) states that the constitutive

equations should be indifferent under so called Euclidean transformations (2.76), which represent

a general change of frame of reference

x∗ = Q(t)x + c(t), t∗ = t− a. (2.76)

In the Euclidean transformation (2.76) the time t and spatial coordinates x of an arbitrary event

in the unstarred coordinate system are transferred into a second frame of reference (the starred

system). The functions Q(t) and c(t) define a rigid body motion of the reference frame consisting

of a time dependent rotation Q(t) and a time-dependent translation of the origin described by

c(t).7

In order to make the verification of the material objectivity of a constitutive equation pos-

sible, it is useful to analyze the transformation behavior of physical quantities under Euclidean

transformations. Furthermore, the transformation behavior under Euclidean transformations is

used to subdivide the quantities into objective and non-objective quantities. A scalar a, vector

a or second order tensor A valued quantity is called objective if it transforms under Euclidean

transformations according to

a∗ = a, (2.77)

a∗ = Q(t)a, (2.78)

A∗ = Q(t)AQT (t). (2.79)

This definition of objectivity agrees with the definitions used, for example, in TRUESDELL AND

NOLL [134], ALTENBACH AND ALTENBACH [6], HAUPT [67], BETTEN [18]. According to

this definition the deformation gradient F, which transforms like F∗ = Q(t)F and the right

Cauchy Green tensor C which transforms like C∗ = C, are called non-objective. It should be

mentioned that several authors, e.g. MALVERN [102], DOGHRI [40], GREVE [53], HUTTER

AND JÖHNK [76], would also refer to F and C as objective quantities, since F transforms like

3 objective vectors and C transforms like 9 objective scalars. A definition yielding this kind of

separation in objective and non-objective quantities can be found in DOGHRI [40] and is there

traced back to HUGHES [75] and reads

“A tensor Aij...kAB...C transforms objectively if under the transformation (14.116) it trans-

forms according to the following rule: A+
ij...kAB...C = QilQjm...QkmAlm...nAB...C”8

In this thesis a scalar, vector or tensor is called objective only if it fulfills the transformation

behavior stated in (2.78)-(2.79). As stated by HAUPT [67, P.168] one possibility is to establish

the objectivity of a physical quantity individually, a priori by virtue of its definition, like in the

7A well-known subset of the Euclidean transformations are the Galilei transformations, which are characterized

by a time independent rotation Q(t) = Q0 and a translation with a constant velocity c(t) = c0 + c1t.
8The transformation in 14.116 to which DOGHRI [40] refers is the euclidean transformation Eq.(2.76), the lower

case indices are for the current and the upper case indices are for the reference configuration.
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case of mass, force, internal energy, heat, entropy, temperature and entropy flux. This definition

also implies the objectivity of the corresponding density functions mass density, Cauchy stress

vector, Cauchy stress tensor, volume force density, specific internal energy, specific entropy and

heat flux vector. The other possibility is to confirm the objectivity by calculation based on ear-

lier definitions. Without proof a list of important objective quantities is given in the following

itemization:

• dx, da, dv: Line, surface and volume element

• V, b: Left stretch tensor, left Cauchy Green tensor

• A: Almansi strain tensor

• D: Deformation velocity tensor

Furthermore, a list of non-objective quantities is presented with the transformation behavior of

the considered quantity:

• F∗ = QF, R∗ = QR: Deformation gradient and rotational tensor

• U∗ = U, C∗ = C: Right stretch tensor and right Cauchy Green tensor

• E∗ = E, L∗ = QLQT + Q̇QT : Green strain tensor and velocity gradient

• W∗ = QWQT + Q̇QT , T∗
R = Q: Vorticity tensor and first Piola-Kichhoff stress tensor

• T̃∗ = T̃: Second Piola-Kichhoff stress tensor

Additionally, it can be shown, see HAUPT [67] for a proof, that the set of objective quantities

is closed with respect to algebraic operations, e.g. if a and b are objective vectors, a · b is an

objective scalar. With these prerequisites the material objectivity of a constitutive equation is

guaranteed, if all quantities within it are objective and are combined only by operations which

preserve objectivity. Although the principle of material frame indifference seems perfectly plau-

sible, especially for mechanical processes, some criticism can be found in the literature, see e.g.

JOU ET AL. [77] and the literature cited therein. These authors state that there are indications in

some fields that frame dependence of constitutive equations may be necessary and should not be

ruled out a priori.

Objective vector, tensor rates

Unfortunately, the material time derivative of an objective vector or tensor is not objective. We

consider the Cauchy stress tensor for example, which is objective and transforms accordingly as

T∗ = QTQT , (2.80)

whereas the material time derivative of T∗ reads

Ṫ∗ = QṪQT + Q̇TQT + QTQ̇T , (2.81)

which is not objective due to the additional terms Q̇TQT and QTQ̇T . In order to overcome

the problem that material time derivatives of objective tensors are not objective several tensor
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rates can be introduced, which are objective, see for example HAUPT [67] or ALTENBACH AND

ALTENBACH [6]. In this work so called Oldroyd rates are applied, which are defined by

△
T = Ṫ + LTT + TL, (2.82)
▽
T = Ṫ − LT + TLT . (2.83)

The concept of dual variables, which is due to HAUPT AND TSAKMAKIS [69], provides further

insights about which tensors and which tensor rates should be chosen and connected to each

other in constitutive equations. These aspects are discussed in the next section.

2.3.2 Dual variables

The concept of dual variables introduced by HAUPT AND TSAKMAKIS [69] can be considered as

a guideline for the choice of stress and strain measures as well as their objective rates especially

for the formulation of constitutive equations of evolutionary type. The starting point for the

concept of dual variables is the observation that products of the quantities T̃ (second Piola-

Kirchhoff stress tensor) and E (Green strain tensor) and their material time derivatives
˙̃
T and

Ė appear in the formulation of physical principles on the reference configuration. The balance

of energy (2.60) formulated on the reference configuration contains the specific stress power
1

ρR
T̃ · Ė. Furthermore, the product T̃ · δE emerges in the principle of d’Alembert and the

principle of virtual displacements and the term
˙̃
T · δĖ (incremental virtual stress power) appears

in the incremental form of d’Alemberts principle (principle of virtual velocities). The fact that

the product T̃ · Ė yields the stress power is usually described by denoting the pair T̃ and E

as conjugated variables. HAUPT AND TSAKMAKIS [69] introduce the term dual variables for

T̃ and E in the sense that they (and their material time derivatives) emerge in the physically

significant scalar products

T̃ · Ė stress power (2.84)

˙̃
T · E complementary stress power (2.85)

˙̃
T · Ė incremental stress power (2.86)

T̃ · E accumulated work (2.87)

Stress and strain tensors operating on other than the reference configuration are called dual to

each other if they, together with suitable tensor rates, preserve all four products introduced in

(2.84) - (2.87). In the following it is demonstrated how a pair of dual variables (dual derivatives)

can be constructed for a given (intermediate) configuration, which arises from a multiplicative

decomposition of the deformation gradient F

F = FbFa = (FF−1
a )Fa. (2.88)

Dual stress and strain tensors on the intermediate configuration induced by Fa as well as their

rates are then gained from the transformations

Π = F−T
a EF−1

a (2.89)

△
Π = F−T

a ĖF−1
a = Π̇ + ΛTΠ + ΠΛ (2.90)

Σ = FaT̃FT
a (2.91)

▽
Σ = Fa

˙̃
TFT

a = Π̇ −ΛΣ + ΣΛT (2.92)
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with the tensor Λ defined by

Λ = ḞaF
−1
a . (2.93)

With the choice Fa = F the dual quantities of the current configuration are retrieved

A = F−T EF−1,
△
A = F−T ĖF−1 = Ȧ + LTA + AL (2.94)

S = FT̃FT ,
▽
S = F

˙̃
TFT = Ṡ − LS − SLT (2.95)

with Λ ≡ L. In Section 2.3.3 the concept of dual variables is applied to introduce stress and

strain measures (and appropriate rates) operating on the so-called plastic intermediate configu-

ration, which arises from the multiplicative decomposition F = F̂eFp and will later be used for

the formulation of the constitutive model. It should be mentioned that the transformations intro-

duced here belong to the first family of dual variables. A second family of dual variables can be

introduced based on the Piola tensor e and the convected stress tensor t̃ = FTSF. Since they are

not used in this work, the reader is referred to HAUPT AND TSAKMAKIS [69] or HAUPT [67]

for further details.

2.3.3 The multiplicative decomposition F = F̂eFp

One fundamental concept for the modeling of elastoplastic material behavior is the subdivision

of the model in two parts. One part is the formulation of an elasticity relation, which operates on

a stress-free intermediate configuration and the other part is the representation of the evolution

of this intermediate configuration. In order to obtain the stress free intermediate configuration

the multiplicative decomposition of F is introduced,

F = F̂eFp, with det F̂e > 0, detFp > 0. (2.96)

This decomposition is not of mere kinematical nature, since the evolution of Fp is defined through

constitutive equations. The decomposition established in (2.96) defines the plastic intermediate

configuration, see Figure 2.3. The stresses are defined by a constitutive equation, which depends

on F̂e like

T = f(F̂e) with f(1) = 0, (2.97)

to ensure that the intermediate configuration is stress free. One can imagine the intermediate

configuration to arise from a local unloading process, see HAUPT [67, P.432]. After a given

deformation the material body is assumed to be separated in (small) volume elements with ex-

ternal forces applied to their surfaces according to the free-body principle. Reduction of these

surface forces (stresses) to zero (local unloading) gives rise to a deformation which is related to

the local state of stress whereas the remaining deformation relative to the reference configuration

is assumed to be given by Fp. Since this assumed unloading happens locally in each individual

volume the resulting volume elements of the material body will in general no longer fit together,

because they change their shape independent of each other. This is described with the notion

that the plastic intermediate configuration is (in general) incompatible. Following the concept of

dual variables and identifying Fa = Fp, we introduce the following set of dual stress and strain

tensors operating on the intermediate configuration and their associated dual rates. The quantity

ḞaF
−1
a becomes ḞpF

−1
p and is denoted as the plastic velocity gradient

L̂p = ḞpF
−1
p . (2.98)
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Figure 2.3: Multiplicative decomposition and intermediate configuration

The rates

△

Γ̂ and

▽

T̂ represent Oldroyd derivatives formed with L̂p:

Γ̂ = F−T
p EF−1

p ,
△
Γ̂ = F−T

p ĖF−1
p =

˙̂
Γ + LT

p Γ̂ + Γ̂L̂p (2.99)

T̂ = FpT̃FT
p ,

▽
T̂ = Fp

˙̃
TFT

p =
˙̂
T − LpT̂ − T̂LT

p (2.100)

In Figure 2.5 the strain tensors and rates operating on the intermediate configuration and the rela-

tions with strain tensors (and their rates) of the reference and current configuration are depicted.

The stress tensors of the three configurations, their rates and transformations are presented in

Figure 2.4. The strain tensor Γ̂ decomposes in the intermediate configuration additively in a

Bt0

B̂t

Bt

F(·)FT

Fp(·)FT
p F̂e(·)F̂T

e

T̃

˙̃
T

T̂
▽

T̂ =
˙̂
T − L̂pT̂ − T̂L̂T

p

S

▽
S = Ṡ− LS − SLT

Figure 2.4: Stress tensor in the reference, intermediate and current configuration
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pure elastic part (depending only on F̂e) and a pure plastic part (depending only on Fp).

Γ̂ = Γ̂e + Γ̂p (2.101)

Γ̂e =
1

2

(

F̂T
e F̂e + 1

)

(2.102)

Γ̂p =
1

2

(
1 − F−T

p F−1
p

)
(2.103)

Furthermore, the plastic deformation rate

△
Γ̂p is also purely plastic (depends only on Fp) and is

identical with the symmetric part of the plastic velocity gradient

△

Γ̂p = D̂p with D̂p =
1

2

(

L̂p + L̂T
p

)

. (2.104)
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Ėp = 1
2
Ċp
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Figure 2.5: Strain tensors and strain tensor rates in the reference, intermediate and current configuration



Chapter 3

Constitutive modeling of metal powder

At first the constitutive model is developed within the framework of elastoplasticity for finite

strains and is subsequently generalized to viscoplasticity. The elastic behavior is modeled using

an elasticity relation derived from a free energy function (hyperelasticity). The model is yield

function based and the developed pressure-dependent yield function is adapted to reproduce the

behavior of metal powders, see BIER AND HARTMANN [19]. Section 3.1 provides a motivation

for the application of a finite strains elastoplasticity model based on available experimental data.

Furthermore, the structure of an elastoplasticity model is introduced. Subsequently, the backbone

of the three-dimensional constitutive model, which is the pressure-dependent yield function is

described. There, we start with a review of existing formulations and their application in the

constitutive modeling of metal powder compaction (Section 3.2). Afterwards, in Section 3.3

the other ingredients of the elastoplasticity model are introduced. Finally, in Section 3.4 the

expansion of the model to viscoplasticity is discussed.

3.1 Motivation

Taking a look at experimental data in Fig. 4.8 from a uniaxial constrained compression exper-

iment with intermediate unloading and reloading cycles, we notice that during unloading and

reloading the material deforms elastically. The boundaries of this elastic domain in stress space

increase with the amount of preloading the material has undergone. Such a behavior can be de-

scribed by a model of elastoplasticity. One of the special things to consider is that initially the

elastic domain is essentially non-existent. However, it grows subsequently under compressive

loading.

The main ingredients of an elastoplasticity constitutive model are summarized in Tab. 3.1.

The yield function defines the border of the elastic domain and determines through the loading

condition the onset of plastic deformations and an evolution of the internal variables. The elas-

ticity relation is valid during elastic as well as plastic loading. The flow rule defines the evolution

of the plastic strains during plastic loading. Often the flow rule is connected to the yield function

such that the direction of the plastic strain rate is perpendicular to the yield function (associa-

tive flow rule). The evolution equations determine how the internal variables besides the plastic

strains evolve during plastic loading. They are ordinary differential equations of first order.

39
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Table 3.1: General structure of elastoplasticity constitutive model (for brevity a small strain-state is con-

sidered) formulated with the stress measure σ, the strain measure ǫ and the internal variables q which

contain the plastic strain measure ǫp. The proportionality factor λ is denoted as plastic multiplier.

yield function f(σ, q) = 0

loading condition f < 0 ∨ f = 0 ∧ ḟ |q fixed < 0 f = 0 ∧ ḟ |q fixed ≥ 0

elastic elastoplastic

elasticity relation σ = h(ǫ, q)

flow rule ǫ̇p = 0 ǫ̇p = λrp(ǫ, q)

evolution equations q̇ = 0 q̇ = λrq(ǫ, q)

3.2 Yield functions for pressure dependent material behavior

The yield function is one of the most important ingredients of an elastoplasticity model. It defines

the size and shape of the elastic domain in stress space, i.e. whether a given state of stress leads

to plastic deformations or not. The state of stress in each material point is defined by the stress

tensor T, which is symmetric, i.e. T has six independent components. As a symmetric tensor of

second order T can be represented (diagonalization) by the three principal stresses σ1, σ2 and σ3,

T =
3∑

k=1

σk~nk ⊗ ~nk. (3.1)

With respect to the principal directions ~nk, the state of stress is given by the three coordinates σ1,

σ2 and σ3, which define a point in the three-dimensional principal stress space. In this principal

stress space the yield function defines a surface which encloses the elastic domain. It is possible

to use the principal stresses σ1, σ2 and σ3 for the mathematical definition of the yield surface,

but usually the yield surface is defined using the invariants I1, I2 and I3 of the stress tensor

or a combination of one invariant I1 of the stress tensor and invariants of the deviator of the

stress tensor J2, J3 or quantities which can be derived from these invariants (Haigh-Westergaard

coordinates, octahedral stresses). We define the invariants of the stress tensor

I1 = trT, I2 =
1

2
T · T, I3 = detT (3.2)

as well as the invariants of the deviator

J1 = trTD = 0, J2 =
1

2
TD · TD, J3 = detTD =

1

3
TD · (TDTD) (3.3)

with the deviator being defined through

TD = T − 1

3
(trT) 1. (3.4)

Alternatively, Haigh-Westergaard coordinates can be introduced via the definitions, see CHEN

AND HAN [28],

π =
1√
3
I1, ̺ =

√

2J2, θ =
1

3
arccos

(√
27

2

J3

J
3/2
2

)

. (3.5)
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The Haigh-Westergaard representation corresponds to the introduction of a cylindrical coordi-

nates like coordinate system in principal stress space. The coordinate π measures the hydrostatic

component of the state of stress and is connected to the hydrostatic pressure via π = −
√

3p
with p being the hydrostatic pressure −p = 1

3
(σ1 + σ2 + σ3) = 1

3
I1. The coordinate ̺ measures

the distance from the hydrostatic axis and θ is an angle between 0◦ and 60◦, which defines the

position of the stress state relative to the projections of the axis of the principal stresses upon

the deviatoric plane. The deviatoric plane may be any plane in the principal stress space per-

pendicular to the hydrostatic axis, i.e. all stresses in the plane have the same hydrostatic stress

component. Instead of θ in Eq. (3.5) the angle

Θ =
1

3
arcsin

(

(
√

27/2)(J3/J
3/2
2 )
)

− 30◦ ≤ Θ ≤ 30◦ (3.6)

may be used. In this thesis the yield surface is defined, using the first invariant of the stress

tensor I1 and the second and third invariant of its deviator J2, J3, where the dependence on

the third invariant is usually neglected, i.e. a circular shape of the yield surface in the deviator

plane is assumed and the discussion of the shape of the yield surface is restricted mostly to the

I1-
√
J2-plane.

The famous von Mises yield function (3.7) for metals defines a cylinder around the hydro-

static axis, i.e. in the I1-
√
J2-plane it is represented by a straight line parallel to the hydrostatic

axis and in the deviator plane it is represented by a circle with its center on the hydrostatic axis,

see Figure 3.1(b),

F =
√

J2 − κ = 0. (3.7)

The simplest expansion of the von Mises yield function to incorporate a pressure dependence is

due to Drucker and Prager

F =
√

J2 − βI1 − κ = 0, (3.8)

which is represented by a circle in the deviatoric plane, where the radius of the circle depends

on I1, which can be seen from the representation in the I1-
√
J2-plane. There, the Drucker-

Prager yield function defines a straight line with the slope β and the intersection −κ/β with the

hydrostatic axis, see Figure 3.1(b). The following discussion of yield functions from the literature

and the subsequent introduction of a new yield function will be restricted to the I1-
√
J2-plane,

i.e. it is assumed that the yield function is independent of the third invariant of the deviator J3.

Other authors have discussed and introduced yield functions with a rounded triangular like shape

in the deviatoric plane, e.g. EHLERS [42] or BIGONI AND PICCOLROAZ [20]. It can be shown

that the new yield function can be expanded to incorporate a dependence on the third invariant

following, for example, the suggestion of EHLERS [42]. Due to lack of experimental data to

identify the shape in the deviatoric plane a dependence on the third invariant will actually not be

included in the proposed constitutive model.

3.2.1 A review of existing pressure dependent yield functions

With respect to the modeling of metal powder compaction processes, it is very common to intro-

duce the notion of relative density,

ρrel(x, t) = ρ(x, t)/ρparticle material (3.9)

where ρ is the bulk density in the current configuration. The density of the particle material

ρparticle material is assumed to be a constant and represents the density of the (pore free) base mate-

rial. In our experiments, see Section 4, we made use of copper with ρparticle material = 8.96 g/cm3.
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√
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Figure 3.1: Von Mises and Drucker-Prager yield surface as well as Mohr-Coulomb yield function

From the balance of mass in the form of the continuity equation (2.43) we obtain in view of

Eq. (3.9) the relations

ρ

ρparticle material

(detF) =
ρR

ρparticle material

⇒ ρrel detF = ρR,rel. (3.10)

Where ρR,rel denotes the initial relative density of the bulk powder. Accordingly, the material

time derivative reads (
d

dt
ρrel

)

det F + ρrel

d

dt
detF = 0 (3.11)

because the density ρR(X) and, hence ρR,rel are independent of time t. Using the property

d(detF)/dt = (detF)trL = (detF)trD, with L being the spatial velocity gradient, see

Eq. (2.29), and D its symmetric part, see Eq. (2.34), we obtain the result of the balance of

mass in the local form
d

dt
ρrel = −ρreltrD. (3.12)

Sometimes Eq. (3.12) is written in terms of plastic variables. This can be obtained apply-

ing the multiplicative decomposition of the deformation gradient, see Eq. (2.96), which im-

plies detF = (det F̂e)(detFp). The polar decomposition, see Eq. (2.17), of the elastic part

F̂e = ReUe, detRe = 1, RT
e = R−1

e , yields, together with the assumption of small elastic

strains, Ue ≈ 1

detF ≈ detFp. (3.13)

Consequently, we obtain from (3.11)

d

dt
ρrel = −ρrel(trDp) (3.14)
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using the relation
d

dt
det Fp = (detFp)(trLp) = (detFp)(trDp) (3.15)

with Lp and Dp from Eqns. (2.98) and (2.104). Equation (3.14) is, for example, proposed in

GOVINDARAJAN AND ARAVAS [51]. Of course, this holds in the case of rigid plasticity, D =
Dp, as well. After these introductory remarks about the notion relative density we actually start

the review of existing pressure dependent yield functions with ellipsoidal shaped yield functions.

Ellipsoidal shaped yield functions

The earliest proposals to describe the compaction behavior of metal powders using yield func-

tions are due to KUHN AND DOWNEY [89] as well as GREEN [52]. They proposed independent

of each other yield functions of the form

F = AJ2 +BI2
1 − Cκ2 = 0, (3.16)

which can be conceived as modifications of the von Mises surface introducing a dependence

upon the first invariant of the stress tensor (hydrostatic pressure). KUHN AND DOWNEY [89]

were interested in the description of the constitutive behavior of already sintered powder com-

pacts during forging and repressing, while GREEN [52] developed the model for a metal with

isotropically distributed voids or cracks. The parameters A, B and C in (3.16) are usually as-

sumed to be density dependent in such a way, that for a fully dense material (ρrel = 1) the von

Mises yield function (3.7) is retrieved from (3.16) and accordingly κ represents the von Mises

yield strength of the base material.

Several authors like SHIMA AND OYANE [122], CORAPCIOGLU AND UZ [32] as well as

KUHN AND DOWNEY [89] and GREEN [52] themselves have proposed specific dependencies

of the given parameters on the relative density. A compilation of the proposed dependencies can

be found in DORAIVELU ET AL. [41], where DORAIVELU ET AL. [41] propose an additional

one, based on their experimental observations. The proposals of KUHN AND DOWNEY [89],

GREEN [52] and SHIMA AND OYANE [122] are visualized in Figures 3.2(a) - 3.2(c) showing

that the yield surface grows with increasing relative density in different manners towards the

von Mises yield function. These elliptical shaped yield functions are still applied in more recent

publications on powder compaction problems, for example by PEREZ-FOGUET ET AL. [110],

OLIVER ET AL. [105] and RODRIGUEZ-FERRAN ET AL. [118].

Based upon numerous experiments ABOU-CHEDID [3] proposed a simple modification of

the elliptical yield function as depicted in Figure 3.3. ABOU-CHEDID [3] suggested shifting the

ellipse along the hydrostatic axis in order to take the limited strength under tensile and shear

conditions of the metal powder into account. This idea has been adopted for the proposal of a

constitutive model for metal powders by TSZENG AND WU [136].

Gurson model

A pressure-dependent yield function for porous ductile media, quite similar to the ellipse, has

been developed by GURSON [55]. The yield function is given in (3.17) and has been derived

from micro-mechanical considerations,

F =
J2

κ2
+ 2n cosh

(
I1

2
√

3κ

)

− (1 + n2) = 0, (3.17)

F =
J2

κ2
+ 2q1n cosh

(
q2I1

2
√

3κ

)

− (1 + (q1n)2) = 0. (3.18)
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(b) GREEN [52] for the
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(c) SHIMA AND OYANE [122]

for the relative densities ρrel =
{0.5, 0.7, 0.9, 0.99} with A =

3,B(ρrel) = 2.49(1−ρrel)
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and
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Figure 3.2: Dependence of ellipsoidal yield function on relative density according to KUHN AND

DOWNEY [89], GREEN [52] and SHIMA AND OYANE [122].

I1

√
J2

increasing relative density

Figure 3.3: Suggested modification of elliptical yield function due to ABOU-CHEDID [3]

The quantity n in (3.17) and (3.18) represents the porosity. The assumptions entering the micro-

mechanical derivation of the yield function (3.17) are only valid for high relative densities (void

ratio ≤ 15 %). For this reason the yield function of GURSON [55] is sometimes applied in

combination with micro-mechanically motivated models for low relative densities due to FLECK

ET AL. [48], for example, by REDANZ [115, 116], REDANZ AND FLECK [117], CEDERGREN

ET AL. [26] and CEDERGREN ET AL. [27]. Actually, a modified version of the yield function

of GURSON [55] is applied in these publications. The modifications are due to TVERGAARD

[137, 138] and introduce two adjustable parameters q1, q2 to the yield function proposed by

GURSON [55], see (3.18).

Cap models

The most widespread kind of yield functions applied to metal powder compaction problems are

so-called cap-models. Cap-models form a yield function by combination of two (or more) yield

functions. Usually the Drucker-Prager yield function (3.8) (DPC) is used in combination with
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a cap, which is part of an ellipse, see for example WATSON AND WERT [139], ABAQUS [1],

COUBE [33] and COUBE AND RIEDEL [34]. Instead of the Drucker-Prager cone some authors

use the exponential yield (failure) function tracing back to DIMAGGIO AND SANDLER [39], see

for example CHTOUROU ET AL. [30], SHAMLOO ET AL. [121] or KHOEI AND AZIZI [83],

which has been proposed originally for granular materials like soil, sand or rock. The combi-

nation of the Mohr-Coulomb yield function1, which gives a non-smooth shape in the deviatoric

plane with a usually elliptical cap (MCEC), has been considered in LEWIS AND KHOEI [96],

KHOEI AND LEWIS [79], KHOEI AND LEWIS [80], LEWIS AND KHOEI [97] and GU ET AL.

[54]. Instead of a cap, which is part of an ellipse, KIM ET AL. [84], KIM ET AL. [85] and LEE

AND KIM [95] applied a hyperbolic cap of the form

Fhyperbolic cap = C − A cosh(Bp) − q = 0, with q =
√

3J2, p = −1

3
I1 (3.19)

withA,B,C being parameters depending on the relative density. In addition to the failure surface

(Drucker-Prager, Mohr-Coulomb or exponential) and the cap, some authors, e.g. CHTOUROU

ET AL. [30], COUBE AND RIEDEL [34] and KHOEI AND AZAMI [82] introduce an additional

tension cut-off of the form

Ftension cut off = TC − I1 = 0 (3.20)

to limit the hydrostatic tensile stresses. Furthermore, COUBE AND RIEDEL [34] introduce a von

Mises cut off to the applied DPC function of the form

Fvon Mises cut off = Y −
√

J2 = 0. (3.21)

The non-smooth intersection between the yield surfaces that are combined, lead to difficulties

I1

√
J2

von Mises cut off

tension cut offelliptical cap

Drucker-Prager cone

Figure 3.4: Drucker-Prager-Cap yield function with tension and von Mises cut off.

when associative flow rules are applied, which is very common, since the normal is not defined

uniquely at the intersection points. These difficulties can be addressed either by local smooth-

ing techniques, see, for example, BEJARANO ET AL. [16], or by special considerations (corner

modes) in the numerical treatment of the equations, see, for example, CHTOUROU ET AL. [29].

1The Mohr-Coulomb yield function reads F =
√
J2−

I1
3 sin(φ)+c cos(φ)

cos(Θ)− sin(Θ) sin(φ)
√

3

= 0, c and φ being material parameters

usually referred to as cohesion and friction angle respectively.
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In addition to the corners associated with the intersections of the yield functions, there is a singu-

larity also at the intersection of the Drucker-Prager or Mohr-Coulomb cone with the hydrostatic

axis for which ABBO AND SLOAN [2] have proposed a suitable smoothing procedure.

Cam-clay models

The yield functions proposed as parts of the so-called “Cam-clay” and “modified Cam-clay”

models are not frequently applied to metal powder compaction processes. Therefore, they are

addressed only briefly. On the other hand, SUN ET AL. [128] reports good agreement with exper-

imental data for the application of a modified Cam-clay model to a uniaxial powder compaction

problem. The Cam-clay models go back to the 1960s and have been suggested to describe the

constitutive behavior of granular media like soils, clay or rock. According to CALLARI ET AL.

[22] the yield function of the original Cam-clay model can be written in the form

F = q +Mp ln

(
p

pc

)

= 0 (3.22)

whereas the modified Cam-clay model reads

F =
q2

M2
+ p(p− pc) = 0 (3.23)

with q =
√

3J2 and p = −1
3
I1 and M representing the slope of the so called critical state line

in the p − q-plane. This critical state line is the line through the origin of the p − q-plane and

the maximum of the yield function plotted in the p − q-plane. The parameter pc usually called

preconsolidation pressure represents the intersection of the yield function with the hydrostatic (p)

axis, see 3.5(a) and 3.5(b). The yield function of the modified Cam-clay model, see Eq. (3.23),

is going back to ROSCOE AND BURLAND [119]. It is just an ellipse in the p − q-plane (or

likewise the I1 −
√
J2-plane) going through the origin of the p − q-plane and its center lies on

the hydrostatic axis. This means that the yield function of the modified Cam-clay model can be

considered as a special case of the generalized elliptical model proposed by ABOU-CHEDID [3]

discussed earlier.

Micro-mechanically motivated models

There is a significant number of publications on the derivation of macroscopic constitutive mod-

els (with an emphasis on the formulation of yield surfaces) motivated from micro-mechanical

models of the powder material. One common starting point for such a derivation can be the

model assumption that the powder consists of equal-sized spherical particles which behave per-

fectly plastic with a uniaxial yield stress σY . Of course, modifications of these assumptions

regarding the constitutive behavior, shape and contact laws of and between the particles have

been studied leading to a variety of macroscopic yield surfaces. In an arrangement of densely

packed spherical powder particles an external macroscopic load is transferred within the powder

through the contacts between the powder particles. If the local load at the contact between two

particles exceeds the yield strength σY of the material, then the particles start to deform plasti-

cally. In case of an compressive external load the centers of the spherical particles come closer to

each other and the number of contacts Z (coordination number) and the size of the contact area

Ac increases. This change of Ac and Z leads to a macroscopic hardening. ARZT [11] proposed

relations for the dependencies of Ac and Z on the achieved relative density during an isostatic
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Figure 3.5: Cam-clay and modified Cam-clay yield function.

compaction and HELLE ET AL. [72] derived a relation for the macroscopic yield stress under

isostatic external load (3.24), which is also the starting point for the derivation of a macroscopic

yield surface presented in the very influential publication of FLECK ET AL. [48].

pY = 2.97D2D −D0

1 −D0
σY (3.24)

In Eq. (3.24)D denotes the relative density of the particle assemblage andD0 is the initial relative

density which is D0 = 0.64 for a dense packing of spherical particles. A detailed discussion of

the development of micro-mechanical based yield surfaces for powder materials can be found in

ASM [13]. An overview can also be found in the thesis of MEYER [103] or COUBE [33] and

a brief summary is given in COCKS [31]. FLECK ET AL. [48] derives expressions for the yield

function under axisymmetric loading conditions formulated in the deviatoric stress Σ and the

means stress Σm (F (Σ,Σm) = 0) and derives afterwards approximations to these expressions

formulated in second deviatoric invariant Σe =
√

3J2 and the mean stress Σm = 1
3
I1 which are

(linear approx.) F =
2

3

Σe

pY

+
Σm

pY

− 1 = 0 | pY

3
≤ Σm ≤ pY (3.25)

(linear approx.) F =
2

3

Σe

pY
− Σm

pY
− 1 = 0 | − pY ≤ Σm ≤ −pY

3
(3.26)

(quadratic approx.) F =

(√
5Σm

3pY

)2

+

(
5Σe

18pY

+
2

3

)2

− 1 = 0 (3.27)

(3.28)

for more general loading conditions. The shape of the quadratic approximation is depicted in

Figure 3.6. The micro-mechanically motivated models based on the assumption of spheres in

contact with each other by isolated (non-overlapping) contact areas can only be considered to
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Figure 3.6: Quadratic approximation to the micro-mechanical motivated yield surface proposed by

FLECK ET AL. [48].

be valid at comparatively low relative densities. For higher relative densities D > 0.9 FLECK

ET AL. [48] recommends the use of the likewise micro-mechanically motivated Gurson model,

see GURSON [55]. For intermediate relative densities between D = 0.75 and D = 0.9 he

suggests defining a transition from his yield function to the Gurson model. This combination

of the model of FLECK ET AL. [48], actually the more advanced model incorporating limited

tensile strength of the contacts due to FLECK [47], and the model of GURSON [55] have been

applied successfully for example by REDANZ [115], REDANZ [116] and REDANZ AND FLECK

[117] to simulate metal powder compaction problems.

MEYER [103] discusses in his thesis the influence of friction between the particles as well

as the influence of the contact assumption between the particles (from full cohesive contact to

cohesionless contact). Furthermore, he demonstrates that the micro-mechanical model also pre-

dicts a dependence of the yield surface on the third invariant of stress. A common feature of the

micro-mechanical motivated yield surfaces is the existence of vertices, which make their applica-

tion in numerical simulations more difficult since the normal to the yield surface is not uniquely

defined in the vertices. There is a growing number of publications dealing with the derivation

of yield surfaces using discrete or finite element simulations of particle arrangements (often

two-dimensional) to compute macroscopic yield surfaces from the simulation of compaction of

these particle assemblages, see, for example, XIN ET AL. [141], HEYLIGER AND MCMEEK-

ING [73] and PROCOPIO AND ZAVALIANGOS [112]. LARSSON ET AL. [92] and STORAKERS

ET AL. [127] considered more realistic constitutive models for the particles and SHRIDHAR

AND FLECK [123] considered the compaction of composite powders to mention only a few of

the many publications dealing with the extension of the ideas introduced in the original works on

the micro-mechanical modeling of the powder behavior.

Single surface models

Another way to circumvent the problems related to corners in the yield function is the application

of single surface yield functions, which resemble the shape of cone-cap yield functions. These

kind of single surface yield functions are predominantly applied in constitutive models for gran-

ular materials like soils, sand and rock, see among others DESAI [37], LADE AND KIM [90],
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DE BOER AND DRESENKAMP [35]. The three yield functions which will be discussed in Sec-

tion 3.2.2 in some detail fall also in this kind of yield function. They exhibit the special feature

of being very flexible with respect to shape due to 7 (5) parameters that determine their shape.

Up to 5 parameters define their shape in the I1-
√
J2-plane and up to 2 parameters modify the

shape in the deviatoric plane from circular to almost triangular. Recently, in KHOEI AND AZAMI

[82] a single surface yield function for powder materials (metals) was proposed and adapted to

experimental data of the literature.

3.2.2 General 7(5) parameter yield functions

For the purpose of replacing multi-surface cone-cap yield functions by a smooth single surface

yield function, less than five parameters are sufficient for reproducing a teardrop-like shape in the

I1-
√
J2-plane, see, for example, DE BOER AND DRESENKAMP [35], KHOEI AND AZAMI [82].

The following discussion deals with the general, very shape flexible yield functions proposed by

EHLERS [42], BIGONI AND PICCOLROAZ [20], and AUBERTIN AND LI [14]. All these authors

provide (among other representations) one representation of their yield function of the form2

F =
√

J2 − Fh(I1)Fd(Θ) or F =
√

J2 − Fh(I1)Fd(θ) (3.29)

with θ and Θ defined in Eq. (3.5)3 and Eq. (3.6):

EHLERS [42]

Fh(I1) =

[

(ε2 − δ2)I4
1 + 2βεI3

1 +

(

β2 − 1

2
α− 2εκ

)

I2
1 − 2βκI1 + κ2

]1/2

(3.30)

Fd(Θ) =

[

1 +
2√
27
γ sin(3Θ)

]−m/2

(3.31)

parameters : {α, β, γ, δ, ε,m, κ}

BIGONI AND PICCOLROAZ [20]

Fh(I1) =

{

Mpc

√

(Φ − Φm)[2(1 − α)Φ + α] Φ ∈ [0, 1]
∞ Φ /∈ [0, 1]

(3.32)

Fd(θ) =
1

cos
[
β π

6
− 1

3
arccos(γ cos(3θ))

] (3.33)

parameters : {M, pc, c, α,m, β, γ} , Φ =
c− 1

3
I1

c + pc

AUBERTIN AND LI [14]

Fh(I1) =
[
α2(I2

1 − 2a1I1) + a2
2 − a3 〈I1 − Ic〉2

]1/2
(3.34)

Fd(Θ) =

(

b
[
b2 + (1 − b2) sin2(45◦ − 1.5Θ)

]1/2

)ν

(3.35)

parameters : {a1, a2, a3, α, Ic, b, ν} 3

Here, Fd(Θ) determines the shape in the deviatoric plane and Fh(I1) defines the shape in the

I1-
√
J2-plane. These models have in common that they use up to 7 parameters to specify the

2Actually BIGONI AND PICCOLROAZ [20] does use p = − 1
3I1 and q =

√
3J2 instead of I1 and

√
J2 to

formulate the yield function, the expressions have been transformed.
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shape of the yield function. Up to 5 of these parameters are used for establishing the shape

in the I1-
√
J2-plane. The large shape flexibility, which is achieved by using 5(7) parameters

for the definition of the yield function has the potential to cause several difficulties. Since we

are currently not interested in the dependence on Θ, Θ is assumed to be constant. This allows

to simplify Eq. (3.29) into J2 = Fh(I1) for representing the yield surface. In the proposal

of EHLERS [42] as well as in some other single surface yield functions, e.g. DE BOER AND

DRESENKAMP [35], KHOEI AND AZAMI [82], Fh(I1) takes the special form

Fh(I1) =

√
√
√
√

n∑

k=0

akIk
1 . (3.36)

The polynomials under the root can have more than 2 solutions depending on their degree n and

the choice of parameters. This means that solutions to F = 0 can exist outside the elastic domain,

see, for example, Figure 3.7 where the situation is depicted for the yield function of EHLERS

[42]. The yield surface proposed by AUBERTIN AND LI [14] shares this problem. In their

2020
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Figure 3.7: Yield surface in stress space with solutions to F = 0 away from the elastic domain.

proposal the sum of a second order polynomial and another second order polynomial in Macauley

brackets is applied leading to up to three roots of Fh(I1). The existence of further solutions to

F = 0 for points in principal stress space beyond the elastic domain causes difficulties using

these yield functions in finite elements in view of predictor-corrector schemes usually applied.

BIGONI AND PICCOLROAZ [20] avoid this problem by a special case distinction in their yield

function formulation setting F = ∞ for points with I1 beyond the I1 range of the elastic domain.

On the other hand, their yield function can no longer be used as a flow potential, since the gradient

is not defined in the aforementioned regions in stress space.

The second difficulty encountered in the case of the yield function of EHLERS [42] and also

with the yield function proposed by KHOEI AND AZAMI [82] is that convexity of the yield

surface is not guaranteed for all admissible choices of parameters. If the shape of the yield
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function depends on internal variables, evolving according to differential equations to describe

the hardening behavior of the material, additional effort is necessary to ensure the convexity

throughout the process.

3.2.3 A new pressure dependent yield function based on log-interpolation

In order to circumvent difficulties like non-convexity throughout the process, corner edges, non-

uniqueness in stress-space, a new yield function concept is proposed. The new yield function is

constructed with the aim to be comparably shape flexible as the functions proposed by EHLERS

[42], BIGONI AND PICCOLROAZ [20] and AUBERTIN AND LI [14] circumventing the prob-

lems of guaranteeing convexity by simple constraints on the parameters. Furthermore, it avoids

solutions to the yield function beyond the elastic domain, which would make the application of

predictor-corrector schemes in the numerical treatment essentially impossible. The basic idea

for the new yield function concept is founded on the cap-models described earlier. The two

simple yield functions constituting the cap-model are combined by a so-called log-interpolation

introducing two additional parameters resulting in a smooth, convex single surface yield func-

tion without the difficulty of solutions beyond the elastic domain. The first simple yield function

constituent of the new proposal is the generalized ellipse due to ABOU-CHEDID [3] with its

center shifted along the hydrostatic axis. The second is the exponential function due to DIMAG-

GIO AND SANDLER [39] also frequently applied in cap models. After an introduction of the

log-interpolation concept, it will be applied directly to the yield function formulation in the form√
J2 = Fh(I1). For the application in the constitutive model a modified approach is chosen,

which will be discussed subsequently, leading to a more suitable formulation for the numerical

treatment. Furthermore, an expansion of the model to viscoplasticity, where also stress states

with F > 0 become admissible, is discussed. In BIER AND HARTMANN [19] the application

of the elastoplastic constitutive model to describe data from a compaction experiment of a metal

powder taken from CARNAVAS AND PAGE [24] has been presented. Additionally, in BIER AND

HARTMANN [19] the shape flexibility of the new yield function is demonstrated by adapting it to

a variety of materials including sand, soil and metal powders, for which experimental data could

be found in the literature.

Log-interpolation

In KREISSELMEIER AND STEINHAUSER [88] and ARNOLD AND FRISCHMUTH [10] the in-

terpolation formula (weighted mean) of two scalar functions y1 = f1(x) and y2 = f2(x) was

proposed, defined by

f(x) = −c ln

(
e−f1(x)/c + e−f2(x)/c

2

)

, c > 0. (3.37)

The following properties hold for this function:

• f(x0) = f1(x0) = f2(x0) holds at the intersection point x0 of both functions.

• In a certain distance from the intersection point, the resulting function f(x) tends towards

the function with the smaller values. In order to see this, the interpolation function (3.37)
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is written in the form

f(x) = −c ln

(
1

2
e−f1(x)/c

(
1 + e−(f2(x)−f1(x))/c

)
)

=

= f1(x) + c ln 2 − c ln
(
1 + e−(f2(x)−f1(x))/c

)
. (3.38)

If we assume that f2(x) ≫ f1(x) and monotonicity of f1(x) and f2(x) is given, then, the

difference of the second and third term converges towards zero and the function f(x) tends

towards f1(x). Even without monotonicity the difference between f(x) and the smaller

function (here f1(x)) is always less than c ln 2.

• If f2(x) ≫ f1(x) holds, limc→0 f(x) = f1(x) is obviously satisfied in Eq. (3.38), i.e. the

weighting factor c enforces the rate of approximation towards the smaller one of the two

functions f1(x) and f2(x). Actually, the difference between f(x) and the smaller one of

the two functions can always be reduced below an arbitrary limit by choosing c sufficiently

small.

• The value of the interpolated function f(x) is enclosed between the two function values

f1(x) and f2(x) for all x.

• If one changes the sign of c, f(x) tends towards the function with larger values.

• If the functions f1(x) and f2(x) are convex (f ′′
1 (x) ≤ 0 and f ′′

2 (x) ≤ 0), the resulting

function f(x) is also convex (f ′′(x) ≤ 0). In order to see this, we calculate

f ′(x) =
ef2/cf ′

1 + ef1/cf ′
2

ef1/c + ef2/c
, (3.39)

f ′′(x) = −e
(f1+f2)/c(f ′

1 − f ′
2)

2

c(ef1/c + ef2/c)2

︸ ︷︷ ︸

<0

+
ef2/cf ′′

1 + ef1/cf ′′
2

ef1/c + ef2/c
. (3.40)

Obviously, the convexity of f1(x) and f2(x) implies the convexity of f(x). The prime

indicates the derivative with respect to the arguments. One can also see that f ′(x) is smooth

and does not show any jumps if f ′
1(x) and f ′

2(x) are continuous.

• In the case of c→ ∞ one obtains the mean value of the two functions

lim
c→∞

f(x) =
f1(x) + f2(x)

2
. (3.41)

Direct application of the log-interpolation

In the following, the main objective is to deal with the application of the interpolation concept to

a combination of two yield functions. In the first step, there is no interest in a curved triangular

shaped yield function in the deviatoric plane, which is related to the third invariant (3.3)3. If we

assume that the yield function F (I1,
√
J2, J3) is independent of the third invariant J3, it describes

a circular form in the deviatoric plane. Thus, one can confine one’s considerations to the I1-
√
J2-

plane. According to a proposal of ABOU-CHEDID [3], an ellipsoidal shaped yield function is

assumed, which is described by its center 3ξ in I1 direction, the intersection point I0 > 0 with

the hydrostatic axis, as well as the ratio
√
α of the two principal axes of the ellipse in

√
J2 and

I1 direction. In Fig. 3.8 the functions are depicted. The ellipse has the representation
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Figure 3.8: Interpolation of ellipse and exponential function and its intersections

f1(I1) =
√

k2 − α(I1 − 3ξ)2 with k =
√

α(I0 − 3ξ)2. (3.42)

In order to obtain a drop-like form, which is more suitable for representing the shear failure

region, use is made of an exponential function

f2(I1) = A1 − A2e
A3I1. (3.43)

Such a function is fully specified by three (positive) parameters. Here A1 symbolizes the limit

value A1 = limI1→−∞ f2(I1). A2 defines (together with A1) the intersection with the
√
J2-axis,

f2(0) = A1 − A2 . A3 specifies (together with A2) the slope of f2 at the intersection with the√
J2-axis, f ′

2(0) = −A2A3. If we demand that f2 and f1 intersect the hydrostatic axis at I0, and if

we fix the limit value A1 = k as well as specifying the second intersection point with the ellipse

f1 using the parameter r, see Fig. 3.8, then the coefficients of the exponential function have the

representation

A1 = k, A2 =
k

(
1 −

√
1 − r2

)I0/((3ξ−I0)(1+r))
, A3 = ln(k/A2)/I0. (3.44)

According to the interpolation (3.37), Fig. 3.8 shows the resulting function f(I1) as well as the

ellipse f1(I1) and the exponential function f2(I1).
A yield function is built, if we subtract the interpolated function (3.37) from the ordinate√

J2,

F (I1,
√

J2) =
√

J2 − f(I1) =

=
√

J2 + c ln

(
e−f1(I1)/c + e−f2(I1)/c

2

)

. (3.45)

This function is a convex single surface because the ellipse and the exponential function are

convex.
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The parameters contained in the yield function f(I1) of Eq.(3.37) can be chosen in such a way

that f mirrors some of the well known yield functions, at least in the physically relevant region of

stress space, which may be defined as large as needed. In other words, the yield function concept

is able to approximate other known yield functions, such as

• the Drucker-Prager yield function,

• the ellipse, either centered or shifted in the stress space, as well as

• the von Mises yield function.

This is shown in Appendix A. These approximations are shown in order to demonstrate the

flexibility of the concept.

Modified yield function formulation based on log interpolation

Principally, one could finish the presentation of the previous sections using the yield function

(3.45). However, an essential drawback arises in view of the application of an elastic predictor

and plastic corrector scheme usually applied in the finite element method. If an elastic predictor

computes a stress state outside the range of I1, where the ellipse function f1(I1) is not defined,

f(I1) is not defined either. Thus, a modified approach has to be taken into account. The functions

(3.42) and (3.43) are reformulated into the form

g1(I1,
√

J2) =

√

J2 + α (I1 − 3ξ)2 − k (3.46)

g2(I1,
√

J2) =
√

J2 − A1 + A2e
A3I1 (3.47)

(from
√
J2 − fk(I1) = 0, k = 1, 2, one obtains (3.46) and (3.47) by reordering). The extension

of the interpolation (3.37) to a function in two variables leads to the final yield function

F (I1,
√

J2) = ck ln

(

eg1(I1,
√

J2)/(ck) + eg2(I1,
√

J2)/(ck)

2

)

, (3.48)

where the interpolation weight c is replaced by ck. This is done for two reasons: first, it normal-

izes the value range of g1 and g2 for the points inside the yield surface to the interval (0, 1), and,

accordingly, reduces a process dependence of the interpolation. Second, the value of the argu-

ment is reduced which is favorable in view of evaluating the exponential function. Apparently,

the factor ck in front of the ln in Eq.(3.48) could be omitted in the case of F = 0. However, for

didactic reasons it is preserved in the following. Fig. 3.9(a) shows the modified yield function for

F (I1,
√
J2) ≥ 0, where for F = 0 the intersection of both surfaces represents the curve depicted

in Fig. 3.8. Here, it must be emphasized that the interpolation formula (3.48) tends towards the

larger of the two functions. In the following, it is required that I0 ≥ 0 and ξ ≤ 0 in order to

guarantee that the origin of stress space lies within the yield surface. Furthermore, the conditions

0 ≤ r ≤ 1, 0 ≤ α < ∞, and c > 0 are assumed. In Fig. 3.9(b) the yield surface F = 0 is

depicted in principal stress space showing its drop-like form.

Since the resulting single surface yield function (3.48) is a function of I1 and
√
J2, it obvi-

ously differs from Eq. (3.37). Thus, a proof of convexity has to be adapted. In other words, it

must be shown that

F (I1,
√

J2) = G(g1(I1,
√

J2), g2(I1,
√

J2)) (3.49)
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Figure 3.9: Proposed yield function in various representations

is a convex function in I1 and
√
J2. This is shown in Appendix B.

The reformulation of the yield function produces one difficulty. Although F (I1,
√
J2) in

its original form (3.45) is smooth everywhere, this does not hold for the formulation given in

Eq. (3.48). The new form exhibits one corner at the intersection of the yield envelope with the

hydrostatic axis at I1 = I0. Since such a corner might lead to numerical difficulties a rounding

off of the yield function following a proposal of ABBO AND SLOAN [2] can be considered. This

can be done by changing g2(I1,
√
J2) from Eq. (3.47) in the following way,

g2(I1,
√

J2) =
√

J2 + δ − A1 + A2e
A3I1, δ > 0. (3.50)

Replacing Eq. (3.47) by (3.50) still guarantees the convexity of the yield function. The constant δ
should be chosen small enough in order to ensure that the elastic domain still includes the origin

of principal stress space and big enough to remove the corner efficiently.

3.3 Rate-independent constitutive model

On the basis of the proposed yield function in the previous section, a new constitutive model for

metal powder compaction is developed. The finite strain constitutive model is derived in such

a way that it cannot produce contradictions to the Clausius-Duhem inequality, see Section 2.2.5

(thermo-mechanically consistent).

Since the yield function represents an interpolation between an ellipsoid and an exponential

function, ξ controls the hardening in the direction of the hydrostatic stress state and α influences

the form of the drop-like yield function. I1 = tr P̂ and J2 = 1/2 P̂D · P̂D symbolize invariants

of the concerned stress tensor P̂. In the constitutive model proposed later, P̂ defines the Mandel

stress tensor, see definition (3.68). Within the proposed constitutive model the yield function

given in Eq.(3.48) is applied. In contrast to the general formulation given in Eq.(3.48), where

only the dependence on the invariants of the stress tensor (and its deviator) is considered the



56 Constitutive modeling of metal powder

dependence on the internal variable α and the accumulated plastic strain through the variable ξ
are explicitly assumed in the following. Furthermore, we replace

√
J2 by J2. This reads in detail

F̂ (I1, J2, ξ, α) := F (I1,
√

J2, ξ, α) = ck ln

(

eg1(I1,
√

J2)/(ck) + eg2(I1,
√

J2)/(ck)

2

)

(3.51)

where the dependence on α and ξ is contained in g1 and g2 given by Eq.(3.46) and Eq.(3.47)

which is omitted in the representation for brevity. The associative flow rule

△
Γ̂p = λ

∂F̂

∂P̂
= λ

(

∂F̂

∂I1
I +

∂F̂

∂J2

P̂D

)

(3.52)

is assumed with λ defining the plastic multiplier. Here, the derivatives

∂F̂

∂I1
=
∂F

∂I1
=
∂F

∂g1

∂ĝ1

∂I1
+
∂F

∂g2

∂ĝ2

∂I1
, (3.53)

∂F̂

∂J2
=

1

2
√

J2

∂F

∂
√

J2

=
1

2
√

J2

(

∂F

∂g1

∂ĝ1

∂
√

J2

+
∂F

∂g2

∂ĝ2

∂
√

J2

)

(3.54)

occur due to the application of the chain rule, which requires the derivatives

∂F

∂g1
=

eg1/(ck)

eg1/(ck) + eg2/(ck)
,

∂F

∂g2
=

eg2/(ck)

eg1/(ck) + eg2/(ck)
, (3.55)

∂ĝ1

∂I1
=

α(I1 − 3ξ)
√

J2 + α(I1 − 3ξ)2
,

∂ĝ2

∂I1
= A2A3e

A3I1, (3.56)

∂ĝ1

∂
√

J2

=

√
J2

√

J2 + α(I1 − 3ξ)2
,

∂ĝ2

∂
√

J2

= 1. (3.57)

In order to motivate a constitutive model in a thermo-mechanically consistent framework,

use is made of the concept of dual variables of Section 2.3.2, particularly, family 1 variables

(HAUPT AND TSAKMAKIS [69], HAUPT AND TSAKMAKIS [70]). Furthermore, the approach

proposed by TSAKMAKIS [135] and LÄMMER AND TSAKMAKIS [91] is extended to the case

of the pressure-dependent yield function (3.48). Accordingly, an additive split of the specific

free-energy into an elastic and a plastic part is assumed,

ψ̂(Γ̂e, rK , rD) = ψ̂e(Γ̂e) + ψ̂p(rK , rD). (3.58)

Furthermore, the plastic part is assumed to decompose into two parts, where ψ̂K results from

kinematic and ψ̂D from distortional hardening processes

ψ̂p(rK , rD) = ψ̂K(rK) + ψ̂D(rD). (3.59)

rD defines a strain-like scalar-valued internal variable and

rK = r̂K(Cp) = ln(detCp)/2 = ln(detFp) (3.60)

is related to the plastic volume change,

ṙK =

.

ln(detCp)

2
=

1

2
Ċp · C−1

p = tr
△
Γ̂p. (3.61)
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Under the assumption of isothermal processes, the Clausius-Duhem inequality (2.72) reads

T̃ · Ė − ρR
˙̂
ψ = S · D − ρR

˙̂
ψ = T̂ ·

△

Γ̂ − ρR
˙̂
ψ ≥ 0. (3.62)

with the stress tensor operating on the plastic intermediate configuration

T̂ = F̂−1
e SF̂−T

e = FpT̃FT
p , (3.63)

see Section 2.2.6 and Tab. 2.1. If the specific free-energy (3.58) is inserted into the dissipation

inequality (3.62), one obtains

(

T̂ − ρR

dψ̂e

dΓ̂e

)

·
△

Γ̂e + T̂ ·
△

Γ̂p + ρR

dψ̂e

dΓ̂e

Γ̂e · LT
p + ρRΓ̂e

dψ̂e

dΓ̂e

· Lp − ρR
˙̂
ψp ≥ 0, (3.64)

where use is made of definitions (2.101)-(2.103). Firstly, the potential relation

T̂ = ρR

dψ̂e

dΓ̂e

= 2ρR

dψe

dĈe

(3.65)

with the property of isotropy is assumed, as is customary. This implies the commutativity of

Γ̂e

dψ̂e

dΓ̂e

=
dψ̂e

dΓ̂e

Γ̂e (3.66)

leading to the remaining dissipation inequality

Dp = P̂ ·
△
Γ̂p − ρR

˙̂
ψp ≥ 0, (3.67)

where the Mandel stress tensor

P̂ = (I + 2Γ̂e)T̂ = ĈeT̂ = T̂Ĉe (3.68)

has been introduced. Secondly, a hydrostatic stress part is separated introducing the stress-like

variable ξ

Dp = (P̂ − ξI) ·
△

Γ̂p + ξI ·
△

Γ̂p − ρR
˙̂
ψp ≥ 0. (3.69)

If the flow rule (3.52) is inserted into the first term and if the definitions

ξ := ρR

dψ̂K

drK
and α := ρR

dψ̂D

drD
(3.70)

are taken into account, the remaining inequality

Dp =
ṡ

χ
(P̂− ξI) · ∂F

∂P̂
+ ξtr

△
Γ̂p − ξṙK − αṙD ≥ 0 (3.71)

arises. Here, the plastic multiplier λ is replaced by the rate of the plastic arc-length

ṡ =

√
△

Γ̂p ·
△

Γ̂p = λχ (3.72)
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with

χ = χ̂(I1, J2, ξ, α) =

√
√
√
√3

(

∂F̂

∂I1

)2

+ 2J2

(

∂F̂

∂J2

)2

, (3.73)

where use is made of the flow rule (3.52).

In view of the definitions (3.70) the partial specific free-energies

ρRψ̂K(rK) =
a1

a2
2

e−a2rK +
cK
2
r2
K (3.74)

ρRψ̂D(rD) =
cD
2
r2
D (3.75)

are assumed, leading to the internal variable α and its evolution equation

α = cDrD −→ α̇ = cDṙD (3.76)

as well as to the hardening variable

ξ = −a1

a2
e−a2rK + cKrK . (3.77)

ξ describes the kinematic hardening behavior in the sense that the center of the yield function

moves in the direction of the hydostatic axis, and rK is related to the plastic volume change, see

Eq. (3.60).

We consider again the remaining inequality (3.71) of the form

Dp = DK + DD ≥ 0. (3.78)

The term

DK = ξ(tr
△

Γ̂p − ṙK) ≥ 0 (3.79)

holds due to definition (3.60) and the time derivative (3.61). Additionally,

DD =
ṡ

χ
(P̂ − ξI) · ∂F

∂P̂
− αṙD = (3.80)

= α

(
ṡ

αχ
(P̂ − ξI) · ∂F

∂P̂
− α̇

cD

)

≥ 0 (3.81)

must hold, where use is made of (3.76)2. This inequality can be satisfied for

ṡ

αχ
(P̂ − ξI) · ∂F

∂P̂
− α̇

cD
= α

bD
cD
ṡ, (3.82)

with bD > 0, cD > 0. In other words, inequality (3.81) is fulfilled, owing to the evolution

equation

α̇ =

(
cD
αχ

(P̂ − ξI) · ∂F
∂P̂

− αbD

)

ṡ. (3.83)

Since α has always to be positive, this ordinary differential equation, which is briefly studied

in Appendix C, has to be investigated. Only in the case of non-negative first term, i.e. (P̂ −
ξI) · ∂F/∂P̂ ≥ 0, α ≥ 0 is guaranteed. This inequality is related to the convexity of the yield

function. Shortly spoken, a function is convex if and only if f(y) ≥ f(x)+{∂f(x)/∂x}T {y−x}
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is satisfied (see, for example, LUENBERGER [99]). For the stress state x=̂P̂ satisfying the yield

condition F (P̂) = 0, and the center of the ellipsoid y=̂ξI, this condition reads

F (3ξ, 0, ξ, α) ≥ ∂F (I1,
√

J2, ξ, α)

∂P̂
· (ξI− P̂). (3.84)

In view of Eq.(3.51) one obtains F (3ξ, 0, ξ, α) ≤ 0 so that

∂F (I1,
√

J2, ξ, α)

∂P̂
· (P̂ − ξI) = (I1 − 3ξ)

∂F

∂I1
+
√

J2
∂F

∂
√

J2

≥ 0 (3.85)

is satisfied. Whether α increases or decreases is mainly controlled by the material parameters cD
and bD and depends also on the initial condition α(0) = α0.

The elastic deformations are very small in comparison to the inelastic strains. Thus, use is

made of a rather simple strain-energy function in Eq. (3.58), see also (3.65), proposed by SIMO

AND PISTER [125],

ρRψe(Ĉe) =
Λ

2
(ln(Je))

2 − µ ln Je +
µ

2
(tr Ĉe − 3) (3.86)

with Je = (det Ĉe)
1/2. In view of the potential relation (3.65) we obtain

T̂ = (Λ lnJe − µ)Ĉ−1
e + µI (3.87)

i.e.

P̂ = ĈeT̂ = (Λ lnJe − µ)I + µĈe, (3.88)

(P̂D = µĈD
e ).

In conclusion, the constitutive model, which is recapped in Tab. 3.2, is thermo-mechanically

consistent in the sense of fulfilling the Clausius-Duhem inequality. Beside the flow rule, one

evolution equation for α, see Eq.(3.83), describes the distortional hardening behavior and the

kinematical hardening variable ξ is described by Eq.(3.77). The variables control the hardening

behavior and are connected to the geometrical idea of the center and the axes-ratio of ellipsoidal

part of the yield function. The proposed model, formulated with quantities relative to the refer-

ence configuration, is collected in Tab. 3.3.

3.4 Expansion to viscoplasticity

Despite the fact that the rate-dependent effects at ambient temperature might be negligible for

metal powders, it has been decided to generalize the original elastoplasticity model to viscoplas-

ticity. This has the further merit of easing the numerical solution of the constitutive equations of

evolutionary type. The expansion of the model from elastoplasticity to viscoplasticity is straight-

forward. The elasticity relation remains unchanged. The loading condition, see Tab. 3.3, is

simplified in such a way that for F̂ ≤ 0 the behavior is assumed to be elastic and for F̂ > 0 the

behavior is viscoplastic. The yield function still represents the border of the elastic domain, how-

ever it does no longer serve as an additional constraint from which the plastic multiplier could

be calculated. Accordingly, the plastic multiplier in the flow rule and the evolution equation,
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elasticity elastoplasticity

loading

condition

F̂ < 0 or F̂ = 0 ∧ ˙̂
F
∣
∣
∣
˙̂q=0

≥ 0

F̂ = 0 ∧ ˙̂
F
∣
∣
∣
˙̂q=0

< 0

free ψ̂(Γ̂e, rK , rD) = ψ̂e(Γ̂e) + ψ̂K(rK) + ψ̂D(rD)

energy ψ̂e(Γ̂e) = 1
ρR

(
Λ
2 (ln(Je))

2 − µ ln Je + µtr Γ̂e

)

ψ̂K(rK) = 1
ρR

a1

a2
2
e−a2rK + cK

2 r
2
K , ψ̂D(rD) = 1

ρR

cD
2 r

2
D

elasticity

relation

P̂ = (Λ ln Je − µ)I + µĈe

flow rule

△
Γ̂p = 0

△
Γ̂p = λ

(

∂F̂
∂I1

I + ∂F̂
∂J2

P̂D

)

distortional

hardening

α̇ = 0 α̇ = λ

(

cD
α

(

(I1 − 3ξ)∂F̂
∂I1

+
√

J2
∂F̂
∂
√

J2

)

− bDαχ

)

abbrev. I1 = tr P̂, J2 = (P̂D · P̂D)/2, Je = (det Ĉe)
1/2

rK = ln(detC/det Ĉe)/2, ξ = −a1
a2
e−a2rK + cKrK

Table 3.2: Constitutive model expressed with quantities relative to the intermediate configuration (with

q̂ = {s,Fp, α})

elasticity elastoplasticity

loading

condition

F̂ < 0 or F̂ > 0 or

F̂ = 0 ∧ ˙̂
F
∣
∣
∣
Ċp=0

< 0 F̂ = 0 ∧ ˙̂
F
∣
∣
∣
Ċp=0

≥ 0

elasticity

relation

T̃ = (Λ ln Je − µ)C−1 + µC−1
p

flow rule Ċp = 0 Ċp = λ2

(

∂F̂
∂I1

I + ∂F̂
∂J2

(CT̃− (I1/3)I)

)

Cp

distortional

hardening

α̇ = 0 α̇ = λ

(

cD
α

(

(I1 − 3ξ)∂F̂
∂I1

+
√

J2
∂F̂
∂
√

J2

)

− bDαχ

)

abbrev. I1 = tr (T̃C), J2 = (CT̃ · T̃C− I21/3)/2, Je = ((detC)/(detCp))
1/2

rK = ln(detCp)/2, ξ = −a1
a2
e−a2rK + cKrK

Table 3.3: Constitutive model expressed with quantities relative to the reference configuration

see Tab. 3.3, is replaced by the additional variable λ̃, which is calculated from the additional

constitutive equation, see PERZYNA [111],

λ̃ =

〈

F̂

σ0

〉rvp

1

η
. (3.89)

Here, the three parameters η, σ0 and rvp have been introduced. It is worthwhile mentioning that

for η = 0 the original equations of elastoplasticity are retrieved, see HAUPT ET AL. [68]. Thus,

the implementation of the model of viscoplasticity includes the limit case of elastoplasticity in a

very simple manner. The parameter σ0 is needed to make the expression in the Macauley brackets

〈·〉 dimensionless. The viscoplasticity model is summarized in Tab. 3.4 expressed in quantities

relative to the reference configuration.
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elasticity viscoplasticity

loading

condition

F̂ ≤ 0 F̂ > 0

elasticity

relation

T̃ = (Λ ln Je − µ)C−1 + µC−1
p

flow rule Ċp = 0 Ċp = λ̃2

(

∂F̂
∂I1

I + ∂F̂
∂J2

(CT̃− (I1/3)I)

)

Cp

distortional

hardening

α̇ = 0 α̇ = λ̃

(

cD
α

(

(I1 − 3ξ)∂F̂
∂I1

+
√

J2
∂F̂
∂
√

J2

)

− bDαχ

)

abbrev. I1 = tr (T̃C), J2 = (CT̃ · T̃C− I21/3)/2, Je = ((detC)/(detCp))
1/2

rK = ln(detCp)/2, ξ = −a1
a2
e−a2rK + cKrK , λ̃ =

〈
F̂
σ0

〉rvp
1
η

Table 3.4: Constitutive model (viscoplasticity) expressed with quantities relative to the reference config-

uration
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Chapter 4

Material parameter identification

This chapter deals with the material parameter identification of the constitutive model. First, a

survey of the literature available on the topic of material parameter identification from experi-

ments on metal powders is provided. Afterwards, the experiments that have been developed and

conducted in close cooperation with Prof. Frage at the Ben Gurion University of the Negev in

Beer Sheva, Israel are described. This includes the description of the experimental setup as well

as the characterization of the treatment of the raw data. Subsequently, the material parameter

identification itself is discussed and the results are provided.

4.1 Experimental-based parameter determination

All constitutive models contain a number of material parameters. While the general behavior

of a material is already defined by the structure of the constitutive equations, the material para-

meters provide the possibility to adapt quantitatively the model behavior to experimental results.

Usually, the material parameters are determined from simple experiments (leading to a homoge-

neous deformation), which are only or at least dominantly influenced by one or a subset of the

material parameters. With respect to the material parameter identification of the metal powder

compaction models, various authors have proposed different approaches which invoke different

levels of experimental effort.

Among the publications which suggest an elaborate experimental program for the parameter

identification, are, for example, the thesis of COUBE [33] and the article of CHTOUROU ET AL.

[30]. In CHTOUROU ET AL. [30] the material parameter identification for a cap model (elasto-

plasticity) is discussed in some detail. They apply resonant frequency tests on pre-compacted

specimen of various relative densities, which were machined into rectangular bars, in order to de-

termine the elastic properties of the material. For identifying the hardening properties (growth of

cap surface due to densification) they apply hydrostatic compression experiments. Additionally,

they use a triaxial apparatus to superimpose an increasing axial stress on a number of hydrostatic

pre-compaction stress states in order to determine the shape of the cap yield surface. Further-

more, they perform free uniaxial compression tests on pre-compacted specimen for the determi-

nation of the shear failure surface. A somewhat similar approach, which does also rest mainly

upon testing of pre-compacted samples, is presented by COUBE [33] for his Drucker-Prager cap

model. He uses data from free compression and ”Brazilian disc” tests on pre-compacted spec-

imens of various densities for the identification of the failure line (Drucker-Prager cone) and

applies ultrasonic tests on machined pre-compacts to determine the elasticity parameters. Fur-

thermore, results from triaxial and die compaction testing (iso-density points) are used for the

63
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identification of the cap surface and its evolution. Tests to determine the tensile cut-off value are

described, which are conducted with the help of a special two-part die, tearing the compacted

specimen apart with rather small tensile stresses of about 1-2 MPa (increasing with density). On

the one hand, a detailed experimental analysis of a given powder material is of course desir-

able for the material parameter identification. On the other hand, such experimental effort may

not always be feasible and some of the experiments mentioned above, especially the ones con-

ducted with pre-compacted and machined specimens are questionable in view of their reliability

in respect to material parameter identification of a metal powder model.

One of the earliest publications suggesting the application of a Drucker-Prager cap model for

metal powder compaction problems is due to WATSON AND WERT [139]. They also suggest

and use the application of ultrasonic wave speed measurements to determine the elasticity pa-

rameters of pre-compacts (aluminum powder). Furthermore, they determine the yield function

and its evolution from hydrostatic compression, constrained compression (die compaction), free

compression and unconstrained tension tests. Since the die used is not fully instrumented, they

have to calculate the radial stress state inside the die from the elasticity parameters identified

previously and the measured axial stress.

In the thesis of CARNAVAS [23] experimental data on several metal powders is proposed,

obtained in uniaxial constrained compression and triaxial experiments. In addition to the pure

loading experiments, he reports loading experiments with intermediate unloading and reloading

cycles. Since the apparatus is fully instrumented, the radial stress as well as the axial stress are

known during loading and unloading and can be used to determine the elasticity parameters as

presented in CARNAVAS AND PAGE [24]. This way of determining the elastic properties has

the merit that the experiments are not conducted on machined pre-compacts. The unloading and

reloading behavior of the compacted powder is studied directly, so that there is no intermediate

process (machining) which might have undesired influence on the results. On the other hand, this

procedure demands the determination of the radial stress inside the die, which is a non-trivial

task. CARNAVAS [23] solves this problem by measuring the hoop strains (with strain gauges)

on the outer surface of the die calibrating the apparatus by pressurizing castor oil (hydrostatic

pressure) inside the die. A similar procedure to determine the radial stress during die compaction

is used by GEINDREAU ET AL. [50], who also measure the circumferential strains at the outer

die surface and calibrate their apparatus using an unspecified incompressible material.

In BIER AND HARTMANN [19] the experimental data from die compaction experiments

reported by CARNAVAS [23] has been used to identify the material parameters of the constitutive

model defined in the previous chapter. Additionally, it is shown that the model response, adapted

to die compaction data only, does also represent the triaxial data reported by CARNAVAS [23] for

the same powder fairly well, see Fig. 4.1 taken from BIER AND HARTMANN [19]. The positive

experience with the parameter identification from (fully instrumented) die compaction data gives

reason to rely mainly on this kind of experiment for the parameter identification for the powder

under consideration, which is discussed in the following section.

4.2 Description of the experiments

The investigated material, within this project is a fine grained copper powder with irregular mor-

phology as shown in the SEM image of the loose powder (Fig. 4.2). The copper powder has been

purchased from Alfa under Stock number 13990. The density of the particle base material (Cu)

is 8.96 g/cm3. The average particle size of the powder particles, as stated by the supplier, is 8-11

µm with less than 10% of the powder particles greater than 44 µm (+325 mesh).
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(b) Comparison of the reported iso-density points

(◦=̂ρrel = 0.7, �=̂ρrel = 0.8, ▽=̂ρrel = 0.85)

from triaxial loading experiments of the copper

powder with irregular shaped particles. Shown

is the yield surface (relative densities ρrel =
0.70, 0.80, 0.85) using the parameter identified

from the experimental data of Fig.4.1.

Figure 4.1: Response of parameter identification applied to data of CARNAVAS [23], see BIER AND

HARTMANN [19].

A number of uniaxial constrained compression experiments in a cylindrical die are performed

with the experimental setup described in Subsection 4.2.1. In addition to the axial displacement

(axial stretch) and the axial stress (compaction pressure), the setup allows the determination of

the radial stress (radial pressure) inside the die through the measurement of the radial expansion

of the die. Details about the processing of the measured data and the calibration are provided

in Subsection 4.2.2. The rate-dependence of the material is checked in three compaction experi-

ments at different velocities of the upper punch. In addition to pure loading experiments, which

are predominantly used to identify the material parameters in the evolution equation, the yield

function and the flow rule, a number of experiments with intermediate unloading and reload-

ing cycles are performed and used to identify the elasticity parameters from the initial part of

the unloading curve, which is assumed to be elastic. Details about the parameter identification

procedure are provided in Section 4.3.

4.2.1 Experimental setup

The loose powder is compacted in a cylindrical die, with an internal and external diameter of

14 mm and 22 mm, respectively. Two true scale drawings of the setup are provided in Fig. 4.4

and Fig. 4.5 containing all the relevant dimensions of the setup. Pictures of the setup as well as

pictures of the disjointed setup are shown in Fig. 4.3 providing a better impression. The pressure

is applied by an ”Instron 1186” testing machine and measured by the load cell below the depicted
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Figure 4.2: SEM image of the loose powder

(a) Setup in action (b) Disjointed setup

Figure 4.3: Images of the setup and of the disjointed setup

setup. The axial load (axial stress) is transferred from the testing machine to the powder inside

the die via the upper and bottom punches. The axial displacement of the upper punch is measured

with a ”Solartron dc miniature” displacement transducer. The rod of the displacement transducer

is attached to the top punch, see Fig. 4.4, and the displacement transducer’s body is fixed to

the outermost cylinder of the setup. The small radial expansion of the die, caused by the radial

pressure exerted by the powder onto the inner die wall, is measured at one fixed position. The

radial expansion of the die at this position is amplified mechanically by a newly developed device

and measured at the end of its arm with the help of a Hall effect sensor allowing the determination

of the radial expansion of the die. Assuming a linear elastic behavior of the die, the radial pressure

inside the die can be calculated from the measured deflection, see Subsection 4.2.2. In order to

reduce the friction between the powder particles and the die wall, the punches and the die are

mechanically cleaned (in acetone and alcohol environment) and are lubricated with ”silicon mold
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Figure 4.4: Drawing of the setup showing the instrumentation for the determination of the axial displace-

ments (all dimensions are in mm)

release”. The die and the punches are fabricated from 4340 steel, with Young’s modulusE = 200
GPa, Poisson ratio ν = 0.3 and a yield strength of σY = 1300 MPa.

4.2.2 Treatment of experimental data

A limited number of compaction experiments are conducted and analyzed with the setup de-

scribed above. In each compaction experiment an amount of 10 g copper powder is poured in the

die and compacted up to a final axial stress of approximately 500 MPa. Except for the experi-

ments to check the rate dependence of the material, which were conducted at higher velocities of

the machines traverse, the velocity is kept constant at 0.05 cm/min during the compaction phase.

The axial stress, the axial displacement of the upper punch and the radial expansion of the die

are recorded every 1.5 seconds. In Fig. 4.6 the measured axial stress and the measured radial

displacement (expansion of the die) are each plotted versus the axial displacement of the upper

punch. Since the stresses are always negative (pressure), the sign is omitted throughout this sec-

tion and compressive stresses are counted with positive sign. The observed reproducibility in

the three depicted runs is satisfactory. In order to check the rate-dependence of the material, the
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Figure 4.5: Drawing of the setup showing the instrumentation for the determination of the radial expan-

sion of the die (all dimensions are in mm)

same experiment is repeated with different displacement velocities (1x = 0.05cm/min, 4x ,10x)

of the machine’s traverse. The raw data obtained in these experiments are depicted in Fig. 4.7.

For the studied velocities no significant rate-dependence is observed. At higher velocities a rate-

dependent behavior may of course be present, but will be ignored due to the lack of experimental

data. In addition to the pure loading tests, experiments with intermediate unloading (σaxial = 0)

and reloading cycles are conducted. The measured data of one of the three conducted experi-

ments is shown in Fig. 4.8. In order to be able to use the obtained experimental results to identify

the material parameters of the developed constitutive model, it is necessary to derive relations be-

tween the axial stress σaxial and the axial stretch λ, see Eq. (4.3), as well as the radial stress σradial

and the axial stretch λ. The main relevant issue is the calculation of the radial stress σradial from

the measured radial expansion of the die. First of all, the determination of the axial stretch λ from

the measured axial displacement uaxial, which contains the compliance of the system (punches)

is addressed.
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Figure 4.6: Raw data obtained in the pure loading compaction experiments.

Correction of axial displacements for compliance of system

The measured axial displacement uaxial is the sum of the change in height of the powder upow
axial and

the change in length of the upper and the bottom punch usys

axial

uaxial = upow

axial + usys

axial ⇔ upow

axial = uaxial − usys

axial. (4.1)

The length change of the setup usys

axial depends on the applied pressure and can be calculated from

the measured axial stress assuming a linear elastic behavior of the punches,

usys
axial =

σaxial

E
L0, (4.2)

with the Young’s modulus E of the punches and the reference length L0 = 85 mm. L0 is

the sum of the undeformed length of the upper punch from the point, where the displacement

transducer’s rod is fixed to the upper punch down to the powder (66.5 mm) and an equivalent

undeformed length of the bottom punch (18.5 mm), which takes into account the pyramid like

shape of the bottom punch. The axial stretch λ is then given by

λ =
h0 − uaxial

h0
, (4.3)

where h0 is the initial height of the powder.

Since in most of the literature on powder materials the stresses and other quantities are related

to the relative density, the correlation between the stretch λ and the relative density is briefly

addressed, see also Subsection 3.2.1 for further details about the notion relative density. For this

purpose it is assumed that the radial expansion of the die can be neglected. Therefore, the relative

density is

ρrel =
ρR,rel

λ
(4.4)
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Figure 4.7: Raw data obtained in the pure loading compaction experiments at increased velocities of the

machines traverse (1x=̂0.05cm/min).

assuming a given initial relative density ρR,rel and detF = λ. For an arbitrary homogeneous

deformation described by the deformation gradient F, Eq. (4.4) must be replaced by

ρrel =
ρR,rel

detF
. (4.5)

In Fig. 4.9 the axial stress is plotted versus the measured axial displacement uaxial as well as the

axial displacement upow

axial corrected for the compliance of the system usys

axial as described above.

This gives an impression of the influence of this correction, which becomes visible, especially,

during the unloading and reloading.

The precise determination of the initial powder height h0 is practically not feasible. This is

partly due to the uncertainty in the amount of powder inside the die (10±0.05g). Another reason

is that the powder height inside the die cannot be measured directly; instead it is deduced from

the measured height of the whole setup (length of punches + powder height). Moreover, the

initial powder height may deviate from one experiment to another on account of the deviations

in the initial relative density after ”tapping” the powder within the die. For the calculation of

the stretch λ, the mean value of the determined initial powder heights from the three loading

experiments, which is h0 = 17.3 mm ±0.2 mm, is used. The uncertainty is estimated from the

variance of the three measured values. In order to take this uncertainty into account, an offset

to the measured axial displacements of each individual experiment is introduced in the initial

conditions. This offset is determined in such a way that all three curves of axial stress versus

axial displacement pass through the same point at a certain axial stress level. Here, a value of

460 MPa has been used. At that axial stress the mean value of the measured axial displacements

was 8.90 mm. This means that it has been assumed that the same amount of powder will have the

same height at a high axial pressure, while the initial height at approximately zero axial pressure

may vary due to differences in the density of the loose powder.



4.2 Description of the experiments 71

 0

 100

 200

 300

 400

 500

 0  2  4  6  8  10

axial displacement in mm

ax
ia

l
st

re
ss

(p
re

ss
u

re
)

in
M

P
a

(a) Axial stress vs. axial displacements

 0

 3

 6

 9

 12

 15

 0  2  4  6  8  10

axial displacement in mm

ra
d

ia
l

d
is

p
la

ce
m

en
t

in
µ

m
(b) Radial displacement vs. axial displacement

Figure 4.8: Raw data obtained in loading experiment with intermediate unloading and reloading cycles.
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Figure 4.9: Exemplary plot to show influence of the compliance of the system

REMARK 4.1

The upper punch is forced inside the die by hand until it cannot be pushed further. It seems

reasonable to assume that the initial density of the powder reached this way may vary much

more than the height obtained at the rather high axial pressure of 460 MPa, which is the reason

for the offsets that have been introduced. �
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Conversion of radial displacements to radial stresses

The radial stress inside the die is calculated from the measured radial displacement outside the

die. Under the assumption of a linear relation between the pressure (radial stress σradial) inside

the die and the radial expansion ∆d of the die at a fixed position and with the proportionality

factor q depending on the current powder height one obtains

σradial = q(h)∆d. (4.6)

The function q(h) can be found from several finite element simulations with different powder

heights h. In each FE-simulation a pressure of σradial = 1 MPa is applied to the inner die wall as

boundary condition over the height h of the powder, see Fig. 4.11. The result of the computation

is the radial displacement ∆d at the position of the sensor H . Therefore, the proportionality

factor is

q(h) =
∆d

σradial

=
∆d

1 MPa
. (4.7)

The proportionality factor q(h) is determined several times according to (4.7) for different pow-

der heights. These computations have been performed by Prof. Yosibash1. In Fig. 4.10 the

results for q(h) are plotted versus the powder height, together with a third order polynomial in

the powder height starting from an initial powder height of 14.6 mm. The fitted function for q(h)
is used to convert the measured radial expansion ∆d into radial stresses within the die, taking

the continously changing height of the powder during the compaction process into account. In

 0.056

 0.058

 0.06

 0.062

 0.064

 0.066

 0.068

 0  1  2  3  4  5  6

powder height h in mm

co
n
v
er

si
o

n
fa

ct
o

r
q(
h
)

FE simulation
interpolation

Figure 4.10: Proportionality factor q(h) versus powder height. Third order polynomial is used to represent

the data points obtained by Prof. Yosibash continously.

Fig. 4.11 the geometry and the mesh of the FE-simulation for the computation of the dies expan-

sion is given. To this end the Young’s modulus E and the Poisson ratio ν of the die’s material

1Radial stress measurements in a die during compaction, Internal report for GIF project, BGU, Computatinal

Mechanics Lab, Beer-Sheva, Israel, October 2004, by Idit Cohen and Zohar Yosibash
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have been determined from ultrasonic measurements to be 203.4 GPa and ν = 0.3. These ma-

terial parameters have been used in the calculations using the commercial p-finite element code

StressCheck, see ESRD [46]. The p-version of the finite element method applies higher order

ansatz-functions and can achieve precise solutions with a comparatively coarse mesh. Various

computations with increasing p-level (order) up to 8th order have been performed in order to see

convergence to the ”exact” solution. For a theoretical background of the high-order p-FE anal-

ysis, see SZABÓ AND BABUS̆KA [131]. The estimated error in energy norm is below 1 % for

all analyzed powder heights. This ”computational” approach of determining the proportionality

factor q(h) is preferred because of its simplicity over the ”experimental” alternatives, e.g. used

by CARNAVAS [23] or GEINDREAU ET AL. [50].
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Figure 4.11: Axisymmetric geometry of die and p-FE mesh with boundary conditions used to determine

the conversion factor q(h)

4.3 Parameter identification procedure

The material parameters contained in the constitutive model, which has been defined in Chapter

3.3 are gathered in Tab. 4.1. Since the available experimental data is not exhaustive with respect

to the determination of all parameters, some parameters are set a priori. The elasticity parameters

Λ and µ determine the behavior within the elastic domain. The parameters α0, bD, cD define the

evolution of the internal variable α, which is the squared ratio of the axis of the elliptical part

of the yield function. The size of the yield function, or, to be more precise, the dependence of

the size on the plastic volumetric deformations is described with the help of a1, a2, cK. They

determine the function ξ(rK), with ξ representing the center of the yield function lying on the

hydrostatic axis (actually the center of the elliptical part of the yield function). The parameters
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I0, r and c influence the shape of the yield function. Due to the lack of experimental data that

would provide reliable information about the shape of the yield function, the latter parameters

are specified a priori in such a way that a reasonable shape of the yield function is obtained. This

means that only the function ξ(rK), i.e. the parameters a1, a2, cK, are used to model the increase

in size of the yield surface during a compaction process.

The compaction experiments, which study the rate-dependence of the material behavior, give

no evidence of a rate dependence within the studied range of compaction velocities. This means

that an identification of the corresponding viscosity parameters is not necessary, since the exper-

imental data can be reproduced for η = 0 (elastoplasticity) very well. However, the introduction

of a small viscosity (η > 0) can reduce the numerical effort, without changing the stress results of

a finite element calculation significantly. Therefore we will consider in the numerical examples

(chapter 6) in addition to the choice η = 0 (elastoplasticity) the alternative choice η > 0, σ0 = 1,

rvp = 1 (viscoplasticity). The undetermined material parameters of the constitutive model have

been collected and grouped in Tab. 4.1. The parameters from the groups ”elasticity”, ”function

ξ(rK)” and ”evolution of α” are identified with the help of the available experimental data from

the pure loading and the experiments with intermediate unloading and reloading cycles. The

parameters in the groups ”yield surface” and ”viscosity” from Tab. 4.1 are not identified. For the

viscosity parameter η = 0 (no viscous effects) is assumed, leaving rvp = 1 and σ0 = 1 MPa

without influence.2 For the ”yield surface” parameters I0, r and c reasonable choices are made

a priori. These are I0 = 1 MPa, giving the powder a fixed small strength against hydrostatic

tensile loading and guaranteeing a uniaxial tensile strength which grows during densification but

remains small. The parameters r, c are chosen to be r = 0.3 and c = 0.01. This choice ensures a

drop like shape of the yield surface in the I1-
√
J2-plane being sufficiently smooth to be handled

numerically in an adequate way. For the parameter identification of the remaining free para-

meters, it is taken advantage of the fact that the behavior of the material during plastic loading is

hardly influenced by the elasticity parameters Λ and µ. Likewise, the behavior during unloading

and reloading in the elastic range is dominated by these two parameters. This gives reason to

apply an iterative two stage identification procedure. In the first step of this procedure the elastic

parameters Λ and µ are roughly estimated to be both equal to 20 GPa. This estimation corre-

sponds to an Young’s modulus of E = 50 GPa and a Poisson ratio of ν = 0.25. These values

have been reported by CARNAVAS AND PAGE [24] for another copper powder compacted to a

relative density of about 85 %. It will be shown that, although this initial guess for the elasticity

parameters is very rough, the identification procedure can be stopped after two iterative steps.

In this respect, it must be emphasized that, although Λ and µ correspond to the Lame constants

for small strains, we have to identify the elasticity parameters of the nonlinear elasticity relation

(3.87). In other words, the influence of the current plastic strains upon the unloading behavior

must be taken into account.

Stage I: Identification of inelastic parameters from loading curve

The hardening behavior of the material is modeled by the growth of the yield surface, which

is described by the dependence of ξ (with 3ξ being the center of the ellipse on the hydrostatic

axis) on the volumetric plastic strain, see Fig. 3.8. Relation (3.77) contains the parameters a1,

a2 and cK. The initial condition at t = 0 for Cp is Cp = I, which implies rK = 0 in the be-

ginning. Additionally, the initial condition α0 for the internal variable α and the two parameters

2The expansion of the model to viscosity will be used only in view of its influence on the numerical treatment of

the model.
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Table 4.1: Collection of material parameters

symbol group description of parameter

Λ elasticity elasticity parameter corresponding to the Lame constant for

small deformations, see Tab. 3.3

µ elasticity elasticity parameter corresponding to the Lame constant for

small deformations, see Tab. 3.3

a1 function ξ(rK) defines together with a2 the value of ξ for rK = 0 and to-

gether with cK the initial slope of ξ(rK), i.e. the start of com-

paction, see Eq.(3.77)

a2 function ξ(rK) defines together with a2 the value of ξ for rK = 0, i.e. start

of compaction and how fast ξ grows as rK approaches −∞,

see Eq.(3.77)

cK function ξ(rK) determines together with a1 the initial slope of ξ(rK), i.e.

the start of compaction, see Eq.(3.77)

α0 evolution of α initial value of α, see Eq.(3.83)

bD evolution of α parameter in evolution equation for α , see Eq.(3.83)

cD evolution of α parameter in evolution equation for α , see Eq.(3.83)

I0 yield surface defines intersection of the elliptical part of the yield function

with the hydrostatic axis (tensile) , see Fig. 3.8

r yield surface defines intersection of the elliptical part and the exponential

part of the yield function, see Fig. 3.8

c yield surface defines the smoothness of the transition between the ellip-

tical part and the exponential part of the yield function, see

Fig. 3.8

σ0 viscosity makes the expression in the Mccauley brackets dimension-

less and can normalize the yield function value, see Tab. 3.4

rvp viscosity parameter used to model rate dependence , see Tab. 3.4

η viscosity parameter used to model rate dependence , see Tab. 3.4

bD and cD defining its evolution need to be identified. For the identification of this whole set

of parameters (a1, a2, cK, bD, cD, α0) the die compaction experiment is idealized by assum-

ing a homogeneous deformation inside the die, which is described by the deformation gradient

F = ~er ⊗ ~er + ~eϑ ⊗ ~eϑ + λ~ez ⊗ ~ez. This means that friction between the powder and the die as

well as the influence of the die’s radial expansion are neglected. ~er ~eϑ, ~ez are the basis vectors

in cylindrical coordinates. For the assumed deformation gradient the constitutive equations, see

Tab. 3.3, are integrated numerically to reproduce the measured stress-stretch curves. With the

help of an optimization tool of SPELLUCCI [126], which is able to handle inequality constraints

of the parameters specified in Tab. 4.2, the numerical integration procedure is called with differ-
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ent values of the parameters repeatedly. The new values are generated by the optimization tool in

order to minimize the difference between the computed stress-stretch relation and the smoothed

representation of the measured data. In this procedure a weighting technique described by HART-

MANN ET AL. [66] is applied. The residuals from the axial and radial stresses are weighted in

the objective function of the optimization by the inverse of the maximal value occurring in the

data in order to achieve an equally well representation of axial and radial stresses.

objective function =
∑

all data points

(
σmod

axial − σexp

axial

max(σexp

axial)

)2

+

(
σmod

radial − σexp

radial

max(σexp

radial)

)2

→ min (4.8)

The fit results of the first iterative step using Λ = µ = 20 GPa are presented in column 3

(1st fit result) of Tab. 4.2. These parameters are used subsequently in the second stage of the

identification procedure to identify the elasticity parameters Λ and µ.

REMARK 4.2

In principle it would have been possible to identify all parameters using the optimization tool

of SPELLUCCI [126] by fitting the model response to the experimental data with intermediate

unloading and reloading cycles. However, there are two strong reasons against this procedure.

First, as mentioned before, we would not exploit the fact that the unloading and reloading phases

are majorly influenced by the elasticity parameters Λ, µ and that the plastic loading phase is pre-

dominantly influenced by the other parameters (a1, a2, cK, bD, cD, α0). Second the inclusion

of unloading and reloading phases would have led to a number of technical problems like the

definition of points where unloading should start, and the problem that the stretch would not in-

crease monotonically. So the decision has been made, giving favor to the two stage identification

procedure. �

Table 4.2: List of parameters, constraints and fit results

parameter constraint 1st fit result 2nd fit result

(Λ = µ = 20 GPa) (Λ = 5.3 GPa, µ = 8.3 GPa)

a1 ≥ 0 0.440 × 101 0.445 × 101

a2 ≥ 0 0.649 × 101 0.662 × 101

cK ≥ 0 0.433 × 102 0.427 × 102

bD ≥ 0 0.256 × 101 0.268 × 101

cD ≥ 0.1 × 10−3 0.1 × 10−3 0.1 × 10−3

α0 > 0 0.532 0.558

Stage II: Identification of elasticity parameters from unloading curves

For the identification of the elasticity parameters, the three experiments with inserted axial un-

loading and reloading, see Fig. 4.8, are analyzed. The two parameters in the elasticity relation,

Λ and µ, can be deduced from the slopes Baxial and Bradial of the unloading curves of the axial
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stress and the radial stress over the stretch λ. The equations, which connect the slopes with the

parameters, are derived in the following. From the elasticity relation, see Tab. 3.3, one finds the

Cauchy stress tensor T by inserting the information about the deformation

F =





1 0 0
0 1 0
0 0 λ



 , C =





1 0 0
0 1 0
0 0 λ2



 , Cp =





λpq 0 0
0 λpq 0
0 0 λ2

p



 (4.9)

and performing a push-forward of the 2. Piola-Kirchhoff stress tensor T̃ to the current configu-

ration

T =
1

detF
F

(

µC−1
p +

(
1

2
Λ ln

(
det
(
C−1

p C
))

− µ

)

C−1

)

FT . (4.10)

Therefore, the axial and the radial Cauchy stresses are written as

σaxial = σaxial (λ, λp, λpq,Λ, µ) =
µλ

λ2
p

− µ

λ
+

Λ

2λ
ln

(
λ2

λ2
pλ

4
pq

)

, (4.11)

σradial = σradial (λ, λp, λpq,Λ, µ) =
µ

λ2
pqλ

− µ

λ
+

Λ

2λ
ln

(
λ2

λ2
pλ

4
pq

)

. (4.12)

During unloading λp and λpq are constant (as long as the unloading leads to a stress state inside

the elastic domain). Thus, the initial slope of the unloading curve at a certain stretch λ0 can be

expressed in the following form:

Slope of σaxial during loading:

Baxial =
∂σaxial

∂λ

∣
∣
∣
∣
λ=λ0

= C1(λ0, λp, λpq)Λ + C2(λ0, λp, λpq)µ (4.13)

Slope of σradial during unloading:

Bradial =
∂σradial

∂λ

∣
∣
∣
∣
λ=λ0

= C3(λ0, λp, λpq)Λ + C4(λ0, λp, λpq)µ (4.14)

Inserting the slopes of the experimental unloading curves Baxial and Bradial, which are determined

by a simple linear regression fit to the experimental data (initial 50% of unloading curves) into

these equations, one obtains a system of linear equations for the unknown parameters µ and Λ.

The solution of this system of linear equations reads

Λ =
2λ2

0

(
Baxialλ

2
p

(
λ2

pq − 1
)
− Bradialλ

2
pq

(
λ2

p + λ2
0

))

(
λ2

p + λ2
pqλ

2
0

) (

ln
(

λ2
0

λ2
p
λ4

pq

)

− 2
) , (4.15)

µ =
(Baxial − Bradial)λ

2
0λ

2
pλ

2
pq

λp + λ2
pqλ

2
0

. (4.16)

In each of the nexp experiments with inserted unloading processes, there are nup = 7 points

λj
0, j = 1..., nup, at which unloading starts. This means that one finds nexp × nup individual

values µj
i and Λj

i corresponding to the j th unloading in the ith experiment, i = 1, ..., nexp. The

results for Λj
i and µj

i , which are calculated from (4.15) and (4.16), depend not only on the stretch

λj
0 at which the unloading starts, but also on the respective plastic stretches λj

p and λj
pq. The values

of λj
p and λj

pq are taken from the computation of the pure loading process with the parameters of
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Tab. 4.2, (column 3). The resulting mean values of the nexp experiments at j th unloading point

are

µj =
1

nexp

nexp∑

i=1

µj
i , Λ

j
=

1

nexp

nexp∑

i=1

Λj
i . (4.17)

The overall mean values after the first iteration are given by

µ =
1

nexpnup

nexp∑

i=1

nup∑

j=1

µj
i , Λ =

1

nexpnup

nexp∑

i=1

Λj
i (4.18)

and read µ = µ = 8.3 GPa and Λ = Λ = 5.3 GPa. Since the material parameters of the inelastic

part of the constitutive model are influenced by the choice µ and Λ, the two-stage procedure has

to be repeated. In Tab. 4.2 (column 4) the identified material parameters are compiled. Obvi-

ously, the parameters are not drastically influenced by the alteration of the elasticity parameters

µ and Λ. Computing µ and Λ once again by (4.17) and (4.18) yields µ = µ = 8.3 GPa and

Λ = Λ = 5.2 GPa, which is only a very small change and, consistently, no further iteration

is necessary. Fig. 4.12 shows the result of the identification for the monotonic loading process
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Figure 4.12: Stress-stretch behavior calculated with model after optimization of parameters together with

smooth representation of experimental data

using the parameters of Tab. 4.2 (column 4). The results of the identification of the elasticity pa-

rameters are depicted in Fig. 4.13. There, the displayed error bars in ordinate-direction represent

the standard deviation of the mean value Λ
j

and µj from the three unloading experiments at the

relative density ρrel, see Eq. (4.4) corresponding to the j th unloading. The displayed error bars

on the abscissa (uncertainty of the relative density) are estimated according to quadratic error

propagation from the uncertainties of the mass of the powder (±0.05 g), the initial powder height

(±0.2 mm), the diameter of the die (±0.02 mm) and the axial displacement (±0.03 mm). In ad-

dition to the values for µ and Λ derived from our experiments, Fig. 4.13 contains values for µ and

Λ which have been calculated from values of E and ν reported by CARNAVAS AND PAGE [24,
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THEIR FIGURES 6B, 6C AND 8] for two copper powders consisting of irregular (irr.) and den-

dritic (dend.) shaped particles. The data based on the experiments of Carnavas has been included

in Fig. 4.13 to demonstrate the plausibility of the identified values for the elasticity parameters µ
and Λ. Finally, the results of the model, using the identified set of parameters of Tab. 4.2 (column
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Figure 4.13: Elasticity parameters identified from all three experiments with inserted unloading and

reloading processes and calculated from values of E and ν reported in CARNAVAS AND PAGE [24].

4), are compared to an experiment with inserted unloading. In the computation, the unloading

continues until σaxial = 0 is reached. In Fig. 4.14 the output of the model for the axial as well as

the radial stress is presented together with the experimental data. The model captures the general

behavior during loading and unloading. In particular, the residual radial stress after unloading to

σaxial = 0 is reproduced remarkably well.
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Figure 4.14: Axial and radial stress from experiment with inserted unloading-reloading and results of

similar computation with the identified set of parameters.



Chapter 5

Numerical treatment using finite elements

This chapter deals with the numerical treatment of the initial boundary value problem (IBVP)

in the context of finite elements that is formed by the balance relations and the constitutive

equations together with given initial and boundary conditions. The applied solution strategy is

explained in Section 5.2 in a step by step manner starting with the formulation of the principle

of virtual displacements (Section 5.2.1). Afterwards the space discretization of this principle

(Section 5.2.2) leads to a system of differential-algebraic equations (DAE-system). This DAE-

system is integrated in time with the help of diagonally implicit Runge-Kutta (DIRK) methods1,

see Section 5.2.3, demanding the computation of nonlinear systems of equations at each stage

of the integration scheme. These nonlinear systems are solved with the help of the Multilevel-

Newton algorithm, which exploits the coupled structure of the equations. On the local level of the

Multilevel-Newton algorithm a nonlinear system of equations that results from the constitutive

model has to be solved. Furthermore, the consistent tangent matrix is calculated on the local

level. Frequently, the nonlinear system on local level is solved using the Newton method. The

analytical reduction of the number of equations resulting from the constitutive model proposed

in Section 3.3 and 3.4 to one equation as proposed by LÜHRS ET AL. [100] or HARTMANN

ET AL. [65] in the context of metal plasticity is not feasible. Furthermore, the application of the

standard Newton algorithm lead to convergence problems so that several globalization strategies

for Newton’s method are studied, see Section 5.2.4, leading to particular stress algorithms.

In order to make this chapter more comprehensible, some of the applied mathematical con-

cepts are introduced in Section 5.1 in some detail. This introduction is somewhat more general,

however, already suited for the later application discussed in Section 5.2.

1In the simplest case with the implicit Euler method.

81
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5.1 Mathematical basics

This section introduces some of the less well known mathematical concepts, which will be ap-

plied in the solution process of the IBVP. In Subsection 5.1.1 diagonally implicit Runge-Kutta

methods, which are applied for the solution of the DAE-system resulting from the space dis-

cretization within finite elements, are introduced. Subsequently, the Multilevel-Newton algo-

rithm, which is applied to solve the nonlinear systems in each stage of the Runge-Kutta scheme,

is introduced. Finally, in Section 5.1.3 a number of globalization strategies for the Newton

method, which are applied on local level to solve the nonlinear system of equations, are intro-

duced.

5.1.1 Solution of DAEs with DIRK methods

A system of explicit ordinary differential equations of first order can be written in the form

ẏ(t) = f(t, y(t)), f∈ R
m (5.1)

and a solution y(t) with t ∈ [t0, T ] can either be found analytically (if possible) or numerically

for given initial conditions y(t0) = y0. A more general class of problems are so-called implicit

ordinary differential equations of first order

F(t, y(t), ẏ(t)) = 0 (5.2)

where an algebraic transformation to the form (5.1) is not feasible. The space discretization of

the principle of virtual displacements (see Section 5.2.2) will lead to a system of differential

equations of first order possessing the special structure

F(t, y(t), ẏ(t)) ≡
{

g(t,u(t),q(t))
Aq̇ − r(t,u(t),q(t))

}

= 0 (5.3)

with

y(t) =

{
u(t)
q(t)

}

and y(t0) =

{
u(t0)
q(t0)

}

=

{
u0

q0

}

= y0. (5.4)

This structure is called a (semi-explicit) system of nonlinear differential algebraic equations of

first order, shortly denoted as a DAE-system. The part g = 0 is referred to as the algebraic part

of the DAE-system and the part Aq̇ − r = 0 as the differential part, where A can be singular,

which would make the differential part a DAE-system of its own (elastoplasticity). Later on a

special class of Runge-Kutta methods will be introduced in order to solve problems of the form

(5.3). However, we start the introduction of the method considering Eq. (5.1) and will generalize

it afterwards. We are interested in the solution y(t) of Eq. (5.1) in the time interval t ∈ [t0, T ]
which is subdivided into N subintervals t0 < t1 < . . . < tn < tn+1 < . . . < tN ≡ T with the

time stepsize ∆tn = tn+1 − tn from time tn to time tn+1. Assuming that we start with a point of

the exact solution (tn, y(tn)), we seek the solution at time tn+1 by integration of Eq. (5.1)

y(tn+1) = y(tn) +

∫ tn+1

tn

f(t, y(t))dt. (5.5)

With the help of a coordinate transformation (t = tn + τ∆tn) the integration can be conducted

over the unit interval [0, 1]

y(tn+1) = y(tn) + ∆tn

∫ 1

0

f(tn + τ∆tn, y(tn + τ∆tn))dτ. (5.6)
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Table 5.1: Butcher tableau for Runge-Kutta methods with s stages

c1 a11 a12 . . . a1s

c2 a21 a22 . . . a2s
...

...
...

. . .
...

cs a1s a2s . . . ass

b1 b2 . . . bs

The integral in Eq. (5.6) is now solved applying a quadrature formula

I =

∫ 1

0

f(τ)dτ ≈
s∑

i=1

bif(ci), i = 1, . . . , s (5.7)

with the weights bi and the stages ci leading to the discrete form of Eq. (5.6)

y(tn+1) ≈ yn+1 = y(tn) + ∆tn

s∑

i=1

bif(tn + ci∆tn, y(tn + ci∆tn)) (5.8)

The quantities y(tn+ci∆tn) are unknown. They are determined as well by applying a quadrature

rule using new weights aij but the same stages cj, j = 1, . . . , s, as before

y(tn + ci∆tn) ≈ Yni = y(tn) + ∆tn

s∑

j=1

aijf(tn + cj∆tn,Ynj). (5.9)

Eq. (5.9) is in general a system of s×m equations for the s×m unknowns Yni ∈ R
m, i = 1, . . . , s,

with s being the number of stages of the Runge-Kutta method and m being the dimension of the

system of differential equations, i.e. the dimension of y. The solution of this system is inserted

into Eq. (5.8) to compute the solution yn+1 looked for. The coefficients of the Runge-Kutta

scheme are usually compiled in Butcher arrays, see Tab. 5.1. According to their coefficients

Runge-Kutta methods can be subdivided into

• explicit (ERK), if aij = 0 ∀ j ≥ i,

• implicit (IRK), if at least one aij 6= 0 with j ≥ i.

A special kind of implicit Runge-Kutta methods is called diagonally-implicit (DIRK), if aij =
0 ∀ j > i. The term stiffly accurate is used if asj = bj . Individual RK-methods differ in the choice

of coefficients leading to different properties of the algorithm with respect to efficiency, stability

and accuracy, see for example HAIRER AND WANNER [58] for more details. In the following,

we demonstrate that the Runge-Kutta algorithm can be applied to solve the more general implicit

differential equation (5.2) as well, including also the case (5.3). At each stage of the RK-method

the stage values are given through

Yni = yn + ∆tn

s∑

j=1

aijẎnj, i = 1, . . . , s (5.10)



84 Numerical treatment using finite elements

Exploitation of the implicit differential equation (5.2) at each stage Tni = tn + ci∆tn with

i = 1, . . . , s, yields

F(Tni, yn + ∆tn

s∑

j=1

aijẎnj

︸ ︷︷ ︸

Yni

, Ẏni) = 0, i = 1, . . . , s. (5.11)

From this (usually) non-linear system the stage derivatives Ẏni, i = 1, . . . , s, can be computed.

With the help of the stage derivatives the sought solution at time tn+1 is obtained

yn+1 = yn + ∆tn

s∑

i=1

biẎni. (5.12)

The application of a fully implicit RK-method with at least one aij 6= 0 for j > i results in a

coupling of all the stage values, so that a system of s×m equations has to be solved. In the case of

explicit RK-methods the stage values can be calculated from already known values of the earlier

stages, so instead of the iterative solution of a nonlinear system only function evaluations are

necessary. However, the stability properties of the explicit scheme are of course much poorer.

For the class of stiffly accurate DIRK methods, which will be applied later on, the diagonally

implicit property aij = 0 for j > i implies that at each stage j the nonlinear system depends

only on the current stage derivatives Ẏnj and the previously calculated stage derivatives Ẏni with

i < j so that instead of s × m equations (fully implicit) only a system of m equations needs

to be solved at each of the s stages. The stiffly accurate property, aji = bi, has the additional

merit that the final stage value Yns is already the sought solution yn+1 and that in the case of

application to the DAE-system the algebraic equation is also satisfied at time tn+1. In the case of

stiffly accurate DIRK methods, Eq. (5.10) reduces to

Yni = yn + ∆tn

i∑

j=1

aijẎnj = Sni + ∆tnaiiẎni (5.13)

with the starting value

Sni = yn + ∆tn

i−1∑

j=1

aijẎnj (5.14)

which depends only on already calculated stage derivatives. This implies that the stage deriva-

tives can be computed in each stage from (5.13) giving

Ẏni =
Yni − Sni

∆tnaii
. (5.15)

Inserting this into (5.11) yields the non-linear system

Rni(Yni) ≡ F

(

Tni,Yni,
Yni − Sni

∆tnaii

)

= 0, i = 1, . . . , s (5.16)

which has to be solved in each stage, where the unknown stage values Yni can be computed and

allowing afterwards the computation of the stage derivatives Ẏni using Eq. (5.15).
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Application of a stiffly accurate DIRK-method to the DAE-system (5.3) implies the solution

of the following coupled nonlinear system

Rni(Yni) =

{
Gni(Uni,Qni)
Lni(Uni,Qni)

}

= 0 (5.17)

at each stage Tni of the time step from tn to tn+1, with

Gni(Uni,Qni) ≡ g(Tni,Uni,Qni) (5.18)

and

Lni(Uni,Qni) ≡ A

{
Qni − S q

ni

∆tnaii

}

− r(Tni,Uni,Qni). (5.19)

Where S
q
ni is given by, see Eq. (5.14),

S q
ni = Qn + ∆tn

i−1∑

j=1

aijQ̇nj. (5.20)

The partition of the quantities is

yn =

{
un

qn

}

, Yni =

{
Uni

Qni

}

, Sni =

{
S

u
ni

S q
ni

}

(5.21)

With this partition we obtain from Eq. (5.12) the solution in the form

un+1 = un + ∆tn

s∑

i=1

biU̇ni (5.22)

qn+1 = qn + ∆tn

s∑

i=1

biQ̇ni (5.23)

As mentioned before, the case of elastoplasticity with yield function leads to a singular matrix

A if the consistency condition is not used to compute the plastic multiplier analytically but is

added as an additional unknown and the yield function itself represents an additional algebraic

equation.

The coefficients of three Runge-Kutta methods, which will be applied later on, are sum-

marized in Tab. 5.2. The Backward Euler method is included as a special case with one stage

only in that class of methods, see Tab. 5.2(a). The second row of coefficients b̂i in the Butcher

tableaus (Tab. 5.2(b)(c)) is explained in the following paragraph, which explains how embedded

Runge-Kutta methods can be used to implement an efficient stepsize control.

Time-adaptivity

The choice of an appropriate time stepsize is one major issue in the business of solving ordinary

differential equations as well as differential-algebraic equations. One point is that, although the

algebraic part of equation (5.17) at time stage Tns = tn+1 is satisfied, the integration step (5.17)

can be an inaccurate approximation of the solution. Another common desire is the specification

of tolerances ensuring that the integration error keeps limited. Furthermore, a time adaptive

procedure can be very efficient, especially in problems with different time scales, since it adapts

to the underlying solution path. In order to minimize the computational effort of the time adaptive
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Table 5.2: Butcher tableaus of three of the applied Runge-Kutta methods

(a) Backward Euler (s = 1, p = 1)
1 1

1
(b) Ellsiepen’s coefficients [44, S.89] (s = 2, p = 2, p̂ = 1)

α α
1 1 − α α

1 − α α
1 − α̂ α̂

α = 1 − 1
2

√
2, α̂ = 2 − 5

4

√
2

(c) Cash’s coefficients [25] (s = 3, p = 3, p̂ = 2)

γ γ
δ τ − γ γ
1 α β γ

α β γ

α̂ β̂ 0

γ = 0.4358665215084580
τ − γ = 0.2820667392457705

α = 1.2084966491760101
β = −0.6443631706844691
δ = 0.7179332607542295
α̂ = 0.7726301276675511

β̂ = 0.2273698723324489

procedure, so-called embedded methods are applied. For these procedures a method to estimate a

suitable time step size is outlined below, for further details see HAIRER ET AL. [57] and HAIRER

AND WANNER [58]. The adaptation of the stepsize is done on the basis of the estimation of

the so-called local integration error. The current value y(tn) is assumed to be given (exactly).

The local integration error δ is the difference of the exact solution y(tn+1) (unknown) and the

numerical solution yn+1, which is known from the integration step with the applied Runge-Kutta

method:

δ(tn+1, y; ∆tn) = y(tn+1) − yn+1

= y(tn+1) − {y(tn) + ∆tnΦ(tn, y; ∆tn)}
︸ ︷︷ ︸

Runge-Kutta method

= ∆tp+1
n Ψ(tn, y)

︸ ︷︷ ︸

main part of local integration error

+O(∆tp+2
n ) (5.24)

In Eq. (5.24) Φ is the so-called increment function of the method, see HAIRER ET AL. [57]. This

function is only formally explicit and incorporates implicit algorithms. Equation (5.24) stems

from the Taylor expansion of the exact solution and the solution produced by the chosen Runge-

Kutta method, where p is the order of the applied Runge-Kutta method. The local integration

error can be separated into the main part and a part of the order ∆tp+2
n . The main part of the local

integration error is used to estimate the stepsize in order to control the integration error. To this

end, we assume that there are two numerical integration methods with different integration order,

yn+1 = y(tn) + ∆tnΦ(tn, y; ∆tn) (5.25)

ŷn+1 = y(tn) + ∆tnΦ̂(tn, ŷ; ∆tn) (5.26)

leading to the local integration errors

δ = y(tn+1) − yn+1 = ∆tp+1
n Ψ(tn, y) +O(∆tp+2

n ) (5.27)

δ̂ = y(tn+1) − ŷn+1 = ∆tp̂+1
n Ψ̂(tn, y) +O(∆tp̂+2

n ). (5.28)
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Here, we assume p̂ < p. From the difference of both errors, the error of the lower order method

p̂ can be estimated,

δ − δ̂ = ŷn+1 − yn+1 = ∆tp̂+1
n Ψ̂(tn, y) + o(∆tp̂+2

n ) ≈ ∆tp̂+1
n Ψ̂(tn, y). (5.29)

Now, we can demand that the absolute value of the error should be smaller than a chosen toler-

ance

‖∆tp̂+1
n Ψ̂(tn, y)‖ ≈ ‖ŷn+1 − yn+1‖ ≤ εr‖ŷn‖ + εa (5.30)

with εa and εr being user defined absolute and relative error tolerances. With the help of the

assumption that the error ‖Ψ̂(tn, y)‖ ≈ C shall be constant from one step to the next, Eq. (5.30)

gives

‖ŷn+1 − yn+1‖ ≈ C∆tp̂+1
n (5.31)

and can be used to compute the new stepsize ∆tnew from the prescribed error tolerances

C∆tp̂+1
new = εr‖ŷn‖ + εa (5.32)

and Eq. (5.31) by elimination of the constant C,

∆tnew = ∆tn

(
εr‖ŷn‖ + εa

‖ŷn+1 − yn+1

) 1
p̂+1

(5.33)

To stabilize the stepsize behavior, i.e. avoid oscillations of the stepsize or the rejection of step-

sizes small modifications to (5.33) should be made. Furthermore, the application of suitable

norms ‖ · ‖ for solution vectors containing quantities with different scales should be consid-

ered. For the application within finite elements for material models with internal variables the

decomposition of the local error yerr = ŷn+1 − yn+1 in

uerr = ûn+1 − un+1 and qerr = q̂n+1 − qn+1 (5.34)

for the displacements u and the internal variables q has been suggested by DIEBELS ET AL. [38]

and EHLERS AND ELLSIEPEN [43] and has been applied by HARTMANN [60] and ELLSIEPEN

AND HARTMANN [45]. Furthermore, they suggested weighted norms

eu :=

√
√
√
√

1

nu

nu∑

l=1

(
ul

err

ǫr|ul
n| + ǫla

)2

, eq := maxk

∣
∣
∣
∣

qk
err

ǫr|qk
n| + ǫka

∣
∣
∣
∣

(5.35)

The maximum em = max(eu, eq) of these partial error measures can now be used to determine

the new stepsize

∆tnew = ∆tn

{

max(fmin, fsafety, e
−1/(p̂+1)
m ) | em > 1

min(fmax, fsafety, e
−1/(p̂+1)
m ) | em ≤ 1.

(5.36)

The factor 0 < fsafety < 1 prohibits oscillations and the factors fmin and fmax prohibit too big

stepsize changes, see HAIRER ET AL. [57] and HAIRER AND WANNER [58]. Practical values

for fsafety, fmin, fmax are 0.8 ≤ fsafety ≤ 0.9, 0.2 ≤ fmin ≤ 0.5 and 2 ≤ fmax ≤ 3.

The main advantage of the choice of an embedded method for the computation of the solution

ŷn+1 with order p̂ is that it uses the same coefficients aij and ci as the higher order method (p)

with other coefficients b̂i, see Table 5.2. Thus, the solution is

ŷn+1 = yn + ∆tn

s∑

i+1

b̂iẎni. (5.37)
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The stage derivative Ẏni are already known from the method of order p. Accordingly, the error

yerr = ŷn+1 − yn+1 can be calculated from

yerr = ŷn+1 − yn+1 = ∆tn

s∑

i+1

(b̂i − bi)Ẏni (5.38)

without significant additional computational effort.

5.1.2 Multilevel-Newton algorithm

It has been demonstrated in Section 5.1.1 that the application of stiffly accurate DIRK methods

to DAE-systems leads to nonlinear systems of equations

F(y) = 0, F, y∈ R
nu+nQ (5.39)

with the structure

F(y) =

{
L(U,Q)
G(U,Q)

}

= 0,
G,U∈ R

nu

L,Q∈ R
nQ

(5.40)

and the unknowns

y =

{
U

Q

}

. (5.41)

This corresponds to (5.17), but for the sake of readability the indices ni, which mark the ith

stage in the nth time step have been dropped. In this section the Multilevel-Newton algorithm is

introduced, which is one way to solve the nonlinear equations, which arise from the application

of the nonlinear finite element method. This method has been introduced in order to solve DAE-

systems appearing for the computation of electric circuits, see RABBAT ET AL. [113]. In the field

of nonlinear finite elements it has been applied by HARTMANN [60] and is discussed in detail

in HARTMANN [61]. In view of the application of the method within nonlinear finite element

analysis, the used notation in the structured nonlinear system (5.40) becomes comprehensible. L

represents the ”local” level, i.e. equations which can be solved on element level, and G represents

the equations which have to be solved on the ”global” level. If Eq. (5.40) stems from a finite

element analysis U usually represents the unknown nodal displacements and Q the unknown

internal variables emerging from all Gauss points.

Instead of F(y) = 0, we start with the coupled nonlinear system of equations

L(U,Q) = 0 (5.42)

G(U,Q) = 0 (5.43)

and apply the implicit function theorem to Eq. (5.42). The implicit function theorem states that

a function Q(U) exists in the neighborhood of the solution of L(U,Q) = 0, presuming sufficient

continuity properties of L. Introducing this (unknown) function Q(U) into equation (5.43) yields

a nonlinear system of equations

G(U,Q(U)) = 0 (5.44)

in the unknowns U. Applying the classical Newton method to (5.44) means that in each iteration

step indicated by (m) the linear system

[
∂G

∂U
+
∂G

∂Q

dQ

dU

](m)

∆U = −G(U(m),Q(m)) (5.45)
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Table 5.3: Multilevel-Newton algorithm in stage i of the time step from tn to tn+1

Already known or given: U
(0)
ni = un, Q

(0)
ni = qn, ∆tn, Tni, aii, Sni

Repeat m = 0, 1, . . .

local level (abbreviation: z ≡ (U
(m)
ni ,Q

(m)
ni ), given: U

(m)
ni )

local integration step

L(U
(m)
ni ,Q

(m)
ni ) = 0 → Q

(m)
ni

consistent linearization
[
∂L
∂Q

∣
∣
∣
z

]
dQ
dU

= − ∂L
∂U

∣
∣
∣
z

→ dQ
dU

∣
∣
∣
z

global level

solve linear system of equations
[
∂G
∂U

∣
∣
∣
z
+ ∂G
∂Q

∣
∣
∣
z

dQ
dU

∣
∣
∣
z

]

∆Uni = −G(z) → ∆Uni

update global variables

U
(m+1)
ni = U

(m)
ni + ∆Uni → U

(m+1)
ni

Until Convergence criteria are fulfilled

has to be solved for the increment ∆U which is subsequently used to update the unknowns

U(m+1) = U(m) + ∆U. The quantities Q(m) = Q(U(m)) in (5.45) are obtained from the solution

of the nonlinear system

L(U(m),Q(m)) = 0 (5.46)

with given U(m). Furthermore, one needs on the left-hand side of (5.45) for the determination

of the Jacobi-matrix of the Newton algorithm the derivatives ∂G/∂U and ∂G/∂Q, which can be

computed from (5.43). In addition to this, the total derivative of the (unknown) function Q(U)
with respect to U is needed. Applying the chain rule to the function

L(U,Q(U)) = 0 (5.47)

yields
∂L

∂U
+
∂L

∂Q

dQ

dU
= 0 ⇒

[
∂L

∂Q

]
dQ

dU
= −∂L

∂U
. (5.48)

This is a system of linear equations with several right hand sides ∂L/∂U for the unknown total

derivative dQ/dU. Summarizing the Multilevel-Newton algorithm we can state that one has to

solve a linear system of equations on the global level in each iteration. In order to build the

right-hand side of this linear equation system, the quantity Q
(m)

must be computed on the local

level by solving the nonlinear system of equations (5.46). This is usually done with the classical

Newton method resulting in a local iteration. In the case of the constitutive model proposed in this

thesis the application of the classical Newton method to solve (5.46) leads to severe convergence

problems. To overcome these convergence problems a number of algorithms (globalization of

Newton method) are applied. These algorithms are presented in the subsequent section. In

addition to the solution of the nonlinear system a linear system with several right hand sides has

to be calculated for the determination of the total derivative dQ/dU. The Multilevel-Newton

algorithm is summarized in Tab.5.3.
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5.1.3 Globalization of Newton’s method

The treatment of the nonlinear system (5.46) for given U(m) on the local level with the classi-

cal Newton-method might lead to convergence problems, i.e. the algorithm often diverges. For

this reason some globalization strategies for the Newton-algorithm are applied. Although these

algorithms can mostly be found in textbooks like SCHWETLICK AND KRETZSCHMAR [120]

or ORTEGA AND RHEINBOLDT [106] they are explained in some detail here for the sake of

comprehensibility.

Classical Newton-algorithm

The reason why Newton’s method is one of the most favored methods for solving systems of

nonlinear equations is that it exhibits a quadratic rate of convergence. Of course, this is only

true for starting points, which are ”close” to the solution, otherwise the algorithm does not reach

a quadratic rate of convergence initially, or may even diverge. The classical Newton-algorithm

applied to the nonlinear system L(Q) = 0 is summarized in Tab. 5.4.

Table 5.4: Newton-algorithm to solve the nonlinear system of equations L(Q) = 0

Initialization: Q(0) = Qn, k = 0

Repeat k = 0, 1, . . .

Compute right-hand side

L(Q(k))

Compute Jacobian

J = L′(Q(k)) = Jij =
∂Li(Q

(k))
∂Qj

Compute the increment from

J
[

∆Q(k)
]

= −L(Q(k))

Update the unknowns

Q(k+1) = Q(k) + ∆Q(k)

k = k + 1

Until Convergence criteria are fulfilled

Newton with damping

Even a small modification of the Newton-method can enhance its stability significantly. The idea

of the damped Newton-method is to reduce the increment (of the Newton-method) as long as

one is not ”close” to the solution. The decision, whether one is ”close” to the solution or not,

can be made based upon the value of the right-hand side ‖L(Q(k))‖. Therefore, the norm of the

right-hand side is compared to an appropriate ”critical radius” rcrit in each iteration. As long

as the norm exceeds the critical radius rcrit only a fraction (e.g. 1/2) of the full increment is

added to the vector of unknowns. Otherwise the original full increment is used resulting again

in a quadratic rate of convergence. The described damping method for the Newton-algorithm is

summarized in Tab. 5.5. It has the merit that it is inexpensive from a computational point of view.
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Commonly one finds under the keyword “damped Newton-method” more elaborate algorithms,

which demand additional evaluations of L in each iteration. Therefore, these algorithms have

not been implemented. Instead other, more sophisticated and computationally more expensive

algorithms, have been studied, in order to increase the stability of Newton’s method.

Table 5.5: Newton algorithm with damping

Initialization: Q(0) = Qn, k = 0, choose critical distance rcrit

Repeat k = 0, 1, . . .

Compute right hand side

L(Q(k))

Compute Jacobian

J = L′(Q(k)) = Jij =
∂Li(Q

(k))
∂Qj

Compute the full increment from

J
[

∆Q(k)
]

= −L(Q(k))

Compute ”distance” from solution

‖L(Q(k))‖
if ‖L(Q(k))‖ < rcrit then

β = 1

else

β = 0.5

endif

Update the unknowns

Q(k+1) = Q(k) + β∆Q(k)

k = k + 1

Until Convergence criteria are fulfilled

Newton-algorithm with line-search

In this section another common expansion of Newton’s method by a so-called line-search algo-

rithm is introduced in order to achieve convergence for starting points, which are not close to the

solution. The unknowns of the nonlinear system, which has to be solved on the local level, have

to obey certain inequality constraints. This problem is addressed afterwards and it is explicitly

shown how these constraints can be incorporated in the algorithm. The idea of the line search ex-

pansion is similar to the idea of the damping. Again a reduction of the increment resulting in an

update of the unknowns of the form Q(k+1) = Q(k) + β∆Q(k)
is used. But now the para-meter β

is not fixed. Instead β is determined in each iteration from an appropriate minimization problem.

The line-search algorithm is described in the following and summarized in Tab. 5.6.

It is obvious that the solution of L(Q) = 0 is also the solution of the minimization problem

ϕ(Q) =
1

2
LT (Q)L(Q) → min (5.49)
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since ϕ(Q) = 0 is true for L(Q) = 0 and due to the quadratic structure of Eq.(5.49) ϕ(Q) ≥ 0

for all Q. Since the direction ∆Q
(k)

of Newton’s method applied to the nonlinear system L = 0

represents a descent direction for the minimization problem ϕ(Q) → min, the convergence of

the algorithm to a local minimum can be guaranteed by the application of a line-search scheme,

see, for example, LUENBERGER [99], BERTSEKAS [17] or DENNIS AND SCHNABEL [36]. To

this end the merit function

ϕ̂(β) = ϕ(Q(k) + β∆Q
(k)) (5.50)

is introduced. Now, the line-search parameter β is determined from the approximate minimiza-

tion of ϕ̂(β). The approximate minimizer of ϕ̂(β) is obtained as the minimizer of a quadratic fit

to the function ϕ̂(β). The fit is based on

ϕ̂(0) = ϕ(Q(k)) =
1

2
LT L, (5.51)

ϕ̂′(0) = −2ϕ(Q(k)), (5.52)

ϕ̂(1) = ϕ(Q(k) + ∆Q
(k)) (5.53)

with the minimum of the quadratic function defined by equations (5.51), (5.52) and (5.53) being

at

βmin =
−ϕ̂(0)

2 (ϕ̂(1) − ϕ̂′(0) − ϕ̂(0))
. (5.54)

The calculated line-search parameter β(k) in the kth iteration has to satisfy the so-called Goldstein

conditions

ϕ̂(β(k)) ≤ ϕ̂(0) + εϕ̂′(0)β(k) (5.55)

ϕ̂(β(k)) > ϕ̂(0) + (1 − ε)ϕ̂′(0)β(k) (5.56)

to guarantee convergence to the minimum of ϕ. Alternative conditions like Armijo’s rule or the

Wolfe test, see LUENBERGER [99] for details, may be used as well. Usually, the obtained mini-

mum of ϕ will coincide with the solution of the original nonlinear problem L(Q) = 0. However,

as stated by DENNIS AND SCHNABEL [36] in rare cases one might end up in a local minimum. If

this happens one may only try to restart the search from another starting point. The algorithm is

presented in Tab. 5.6, it is an adapted version of the ”primal closest point projection” algorithm

with line-search (unconstrained) described in PEREZ-FOGUET AND ARMERO [107]. In that

publication and the companion article ARMERO AND PEREZ-FOGUET [9] several algorithms

for elasto- and viscoplastic problems and the theoretical background, originating from the inter-

pretation as optimization problems, are discussed. Also the incorporation of the constraint that

the plastic multiplier needs to be positive is presented in PEREZ-FOGUET AND ARMERO [107].

The concepts in these very enlightening articles have been generalized to incorporate several in-

equality constraints to the unknowns, which becomes necessary for the equations resulting from

the numerical treatment of the previously proposed constitutive model.

It should be noted that the second Goldstein condition (5.56), which requires that the line-

search parameter β is not too small, is taken into account, by demanding β
(k)
(j+1) ≥ νβ

(k)
(j) . This

approach has been proposed by PEREZ-FOGUET AND ARMERO [107] and is based on the work

of SHULTZ ET AL. [124]. In the implementation the choices for ν = 0.1 and ε = 10−4 recom-

mended by PEREZ-FOGUET AND ARMERO [107] have been adopted.
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Table 5.6: Newton-algorithm with line-search

Initialization: Q(0) = Qn, k = 0, Set line-search parameters:

maximum number of curve fits jmax,

convergence tolerance ε,

ensure finite line-search parameter ν

Repeat k = 0, 1, . . .

Compute right-hand side

L(Q(k))

Compute Jacobian

J = L′(Q(k)) = Jij =
∂Li(Q

(k))
∂Qj

Compute the full increment from

J
[

∆Q(k)
]

= −L(Q(k))

Initialize line search: j = 0, β
(k)
(0) = 1, ϕ̂(k)(0) = 1

2L(k)T L(k), ϕ̂′(k) = −2ϕ̂(k)

Repeat j = 0, 1, . . .

Q
(k+1)
(j) = Q

(k)
(j) + β

(k)
(j) ∆Q(k)

L
(k+1)
(j) = L(Q

(k+1)
(j) )

ϕ̂
(k+1)
(j) = 1

2L
(k+1)T
(j) L

(k+1)
(j)

β
(k)
j+1 = max

(

νβ
(k)
(j) ,

−
“

β
(k)
(j)

”2
ϕ̂′(k)

2
“

ϕ̂
(k+1)
(j)

−ϕ̂(k)−β
(k)
(j)

ϕ̂′(k)
”

)

j = j + 1

Until ϕ̂
(k+1)
(j) ≤

(

1 − 2εβ
(k)
(j)

)

ϕ̂(k) or j = jmax

if j = jmax then post WARNING !

Update the unknowns

Q(k+1) = Q
(k+1)
(j)

k = k + 1

Until Convergence criteria are fulfilled

Line-search for constrained problems

The incorporation of inequality constraints in the Newton scheme with line-search has been

discussed with respect to the non-negativity of the plastic multiplier in the case of an elastoplastic

model by PEREZ-FOGUET AND ARMERO [107]. The approach presented there is based on the

treatment of simply constraint minimization problems, which is described in BERTSEKAS [17,

PP.76] in detail. In addition to solve the nonlinear system L(Q) = 0, which again minimizes the

function Eq.(5.49), we consider a set of constraints on some of the components of the vector of

unknowns,

Qi ≥ Qi,min, i ∈ Icon. (5.57)
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With Icon being the set of indices of the components of Q for which constraints are defined2. In

the problem of interest in this thesis the constraints which need to be considered are the non-

negativity of ζ and the non-negativity of the diagonal elements of Cp, see Eq.(5.115) - (5.117).

The algorithm described in the previous section without consideration of the constraints can be

generalized in order to take into account (5.57). To this end we introduce the vector function

〈Q〉Icon
: R

n → R
n−ncon × [Qn−ncon+1,min,∞) × . . .× [Qn,min,∞) (5.58)

defined in components by
[
〈Q〉Icon

]

i
= Qi ∀i 6∈ Icon and

[
〈Q〉Icon

]

i
= 〈Qi〉 ∀i ∈ Icon. (5.59)

With 〈·〉 denoting a modified version of the Macauley brackets defined as

〈Qi〉 : R → [Qi,min,∞) with 〈Qi〉 =

{

Qi if Qi > Qi,min

Qi,min if Qi ≤ Qi,min

(5.60)

When one of the constraints is active, i.e. if any
[

Q
(k)
]

i
= Qi,min for i ∈ Icon (5.61)

and
[

∇ϕ(Q(k))
]

i
=

[(

J(Q(k))
)T

L(Q(k))

]

i

> 0 for i ∈ Icon (5.62)

with J =
∂Li(Q

(k))
∂Qj

being the Jacobian. That means that if the ith component of Q is at the

bound Qi,min and the original update direction ∆Q would lead to a further decrease of the ith

component of Q. Accordingly, instead of the original update direction ∆Q (from the Newton

method) a modified update direction has to be found which does not lead to a further reduction

of the components having already reached their limit value. This direction is given by

∆Q
(k) = −D(k)∇ϕ(Q(k)) = −D(k)

(

J(Q(k))
)T

L(Q(k)) (5.63)

for ϕ defined in Eq.(5.49) and D defined in components by

[

D(k)
]

ij
=

[(

J(Q(k))
)−1 (

J(Q(k))
)−T

]

ij

∀ i, j < ncon or i = j ∈ Icon (5.64)

[

D(k)
]

ij
=

[

D(k)
]

ji
= 0 ∀i ∈ Icon and j 6= i (5.65)

This means that the original Newton update direction is used if none of the constraints is active,

otherwise the modified search direction is used. Accordingly, the previously described line search

scheme has to be adapted in order to take into account the constraints, i.e. instead of ϕ̂
(k)
(j) =

ϕ
(

Q
(k) + β

(k)
(j) ∆Q

(k)
)

with the classical Newton update direction ∆Q
(k)

we have to use

ϕ̂
(k)
(j) = ϕ

(〈

ϕQ
(k) + β

(k)
(j) ∆Q

(k)
〉

Icon

)

(5.66)

with ∆Q
(k)

from Eq.(5.63) and 〈·〉Icon
as defined in Eq.(5.60). The final algorithm, where also the

evaluation of the Goldstein condition has been adapted, is summarized in Tab. 5.7.

2Without loss of generality, in the following we will assume that there are constraints for the last ncon components

of Q while the first n − ncon components of Q are unconstrained. (This can always be achieved by reordering the

components of Q)
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Table 5.7: Newton-algorithm with line-search and constraints

Initialization: Q(0) = Qn, k = 0, Set line-search parameters: jmax, ε, ν, see Tab. 5.7

Repeat k = 0, 1, . . .

Compute right-hand side and Jacobian

L(Q(k)), J = L′(Q(k)) = Jij =
∂Li(Q

(k))
∂Qj

Detection of active constraints

if Qi = Qi,min then auxi = (grad ϕ̂)i =
(

JT L
)

i
i ∈ Icon

Determine update direction

if (auxi ≤ 0∀ i ∈ Ic) then

flag =true, ∆Q = −J−1L

else

flag =false

(

D(k)
)

lm
=







0 | l,m = iwith auxi ≥ 0,Qi = Qi,min, l 6= m
(

J−1J−T
)

lm
| otherwise

endif

Initialize line search:

j = 0, β
(k)
(0)

= 1, ϕ̂(k)(0) = 1
2L(k)T L(k), ϕ̂′(k) =

{

−2ϕ̂(k) | flag = true

L(k)T (J∆Q) | flag = false

Repeat j = 0, 1, . . .

Compute new values of unknowns and the merit function for current β

Q
(k+1)
(j) =

〈

Q
(k)
(j) + β

(k)
(j) ∆Q(k)

〉

L
(k+1)
(j) = L(Q

(k+1)
(j) )

ϕ̂
(k+1)
(j) = 1

2L
(k+1)T
(j) L

(k+1)
(j)

Check first Goldstein condition

bound =







(

1 − 2εβ
(k)
(j) ϕ̂

(k)
)

| flag = true ∧ no constraint active

ϕ̂(k) + ε
(

LT
(

J(k)
(

Q
(k+1)
(j) − Q(k)

)))

| otherwise

Compute new β as minimizer of quadratic fit

β
(k)
j+1 = max

(

νβ
(k)
(j) ,

−
“

β
(k)
(j)

”2
ϕ̂′(k)

2
“

ϕ̂
(k+1)
(j)

−ϕ̂(k)−β
(k)
(j)

ϕ̂′(k)
”

)

Next curve fit

j = j + 1

Until ϕ̂
(k+1)
(j) ≤ bound or j = jmax

if j = jmax then post WARNING !

Update the unknowns

Q(k+1) = Q
(k+1)
(j)

k = k + 1

Until Convergence criteria are fulfilled
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Embedded Newton-algorithm (homotopy)

An alternative approach for the globalization of Newton’s method is the so-called homotopy

Newton method, which is also known under the name embedded Newton method. In order to be

able to apply this kind of algorithm, one has to remember that the nonlinear system, which has

to be solved on local level, depends on the nodal displacements, or, to be more precise, on the

deformation represented in our case by the right Cauchy-Green tensor C. For this tensor we use,

in the numerical implementation, the 6x1 vector representation C,

L(C(U(m)),Q) = 0. (5.67)

We suppose that a solution at time tn is known

L(C(n),Q(n)) = 0. (5.68)

By introduction of the increment ∆C = C − C
(n)

the nonlinear system to be solved can be

rewritten

L(C(n) + λ∆C,Q) = 0 (5.69)

where the scalar ”load” parameter λ has been introduced. With λ = 0 Eq. (5.69) is fulfilled

for Q(n)
. For λ = 1 Eq. (5.69) represents again the nonlinear equation, for which a solution is

sought. The idea is now to increase λ in steps k from λ = 0 to λ = 1 solving in each step k the

nonlinear system (5.69) for which the solution of the previous step represents a ”good” starting

vector, at least for a sufficiently small stepsize. The nonlinear system of equations is solved with

the classical Newton algorithm in each step, which will converge quadratically for sufficiently

small steps. The algorithm is summarized in Tab. 5.8, for more details about this algorithm see,

for example, SCHWETLICK AND KRETZSCHMAR [120] or TÖRNIG AND SPELLUCCI [133].
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Table 5.8: Homotopy Newton algorithm

Initialization: Q(0) = Qn, choose τmax

Repeat k = 0, 1, . . .

if (λ(k) + τ (k) > 1) then τ (k) = 1 − λ(k)

jumplabel 1: Increase λ

λ(k+1) = λ(k) + τ (k), Q(k,0) = Q(k)

Repeat i = 0, 1, . . .

Compute right hand side

L(Q(k,i), λ(k+1))

Compute Jacobian

J = ∂L
∂Q

(Q(k,i))

Compute increment ∆Q(k,i) from

J[∆Q(k,i)] = −L(Q(k,i))

Update the unknowns

Q(k,i+1) = Q(k,i) + ∆Q(k,i)

Sufficient descent check

if (‖L(Q(k,i+1), λ(k+1))‖ ≤ µ‖L(Q(k,i), λ(k+1))‖) then

next Newton step i = i+ 1

else

reduce step size and retry τ (k) = ρτ (k) goto jumplabel 1

endif

Until Convergence ‖L(Q(k,i+1), λ(k+1))‖ < ε

New step size τ (k+1) = min(τ (k)/ρ, τmax)

Update the unknowns

Q(k+1) = Q(k,i+1), k = k + 1

Until λ(k) = 1
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5.2 Numerical solution of the initial boundary value problem

Analytical solutions for initial boundary value problems (IBVPs), which are formed by the bal-

ance relations in combination with the constitutive equations and problem-dependent initial and

boundary conditions, can only be found for very few, simple problems. In general a numerical

solution procedure is necessary. One method is the finite element method, which is applied and

described here. The constitutive equations are formulated, such that the balance of rotational

momentum is fulfilled (symmetric T). Furthermore, only isothermal, quasi-static problems are

discussed, i.e. only the balance of momentum Eq. (2.46) (without the inertia term) needs to be

considered:

div T(x, t) + ρk = 0 (5.70)

The constitutive model(s) considered in this work are of the form

T̃ = h̃(C(X, t),q(X, t)) (5.71)

Ãq̇ − r̃(C(X, t),q(X, t)) = 0 with q(x, t0) = q0 (5.72)

They consist of an elasticity relation, which depends, in addition to the deformation (displace-

ments), on a number of internal variables that evolve according to a set of differential equations

of 1st order with problem specific initial conditions. Furthermore, in the case of elastoplasticity,

we have to consider the algebraic constraint, namely the yield condition. In that case the matrix

Ã becomes singular. The treatment of the IBVP constituted by equations (5.70) - (5.72) with the

help of the finite element method is demonstrated in the following subsections. After the intro-

duction of the principle of virtual displacements, see Section 5.2.1, its spatial discretization is

discussed leading to a set of differential-algebraic equations (DAE), which is treated with DIRK-

methods, see Subsection 5.2.3. In each stage of the applied DIRK-method a nonlinear system of

equations has to be solved. Here, the Multilevel-Newton algorithm is applied to this end. This

solution procedure sustains the structure of current implicit finite element implementations, e.g.

ANSYS INC. [7], ABAQUS [1]. The treatment of the nonlinear system that is solved on the

local level needs special attention. Its solution with the help of globalized Newton methods is

discussed in Subsection 5.2.4. Afterwards, we address the computation of the consistent tangent

matrix, see Section 5.2.5, which is necessary within the Multilevel-Newton algorithm of Section

5.1.2, see Eq. (5.45).

5.2.1 The principle of virtual displacements

The principle of virtual displacements (weak form of the equilibrium equation) formulated with

quantities of the current configuration reads

π(t,u, δu, q) =

∫

v

T · 1

2

(
grad δu(x) + grad T δu(x)

)
dv −

∫

v

ρk · δudv −
∫

a

t · δuda

=

∫

v

T · symδhdv −
∫

v

ρk · δudv −
∫

a

t · δuda
︸ ︷︷ ︸

πext(δu,t)

=

∫

v

symδh · SdV − πext(δu, t) = 0 (5.73)

with the virtual spatial displacement gradient

δh = gradδu(x). (5.74)
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The weak form can be derived from the balance of momentum (2.46) without acceleration term

by multiplying the balance of momentum (scalar product) in its local form with arbitrary ”test

functions” (virtual displacements δu) and integrating the resulting equation over the volume of

the material body. With the help of the identity

div T · δu = div
(
TT δu

)
−TT · grad δu (5.75)

and the Gauss theorem ∫

v

(div v)dv =

∫

a

v · nda (5.76)

one obtains Eq. (5.73). The virtual displacements δu have to fulfill the geometrical boundary

conditions, i.e. they have to be zero at the part of the boundary of the material body, where geo-

metrical boundary conditions are given. On the other part of the boundary, where no geometrical

boundary conditions are given, the stress has to be given on the boundary. The stress tensor T

depends, via h̃(C(X, t),q(X, t)), on the displacements u due to the dependence of the right

Cauchy Green tensor C = C(u) on the displacements. The relation between the Cauchy stress

tensor T in the principle of virtual displacements (5.73) and the second Piola-Kirchhoff stress

tensor T̃ in the constitutive equation (5.71) can be taken from Tab.2.1, i.e. T = J−1FT̃FT .

5.2.2 Space discretization of the principle of virtual displacements

In order to solve the IBVP posed by (5.73) together with the constitutive equations for the evo-

lution of the internal variables (5.72), the following approach within the framework of the finite

element method is chosen. In the first step the space discretization is realized. This includes the

partition of the body into elements, the introduction of ansatz functions for the displacements and

the virtual displacements and the formulation of the coordinate transformation of the elements

into a reference element (i.e. introduction of local coordinates). Furthermore, this first step in-

cludes the (numerical) solution of the integrals within Eq. (5.73), for example, with the Gauss

quadrature. This procedure yields a system of nonlinear equations in the nodal displacements,

that still contains the dependence on the internal variables evolving according to differential

equations. All in all we have a system of differential-algebraic equations in the unknown internal

variables and the unknown nodal displacements. In the second step, i.e. the time discretization,

the DIRK-methods, already introduced in Section 5.1.1, are applied to solve this DAE-system,

preserving the structure of current implicit FE implementations. This approach of separating

space and time integration is known as ”method of lines” within the framework of methods for

solving partial differential equations. Conducting the space discretization first and subsequently

the time discretization is denoted as vertical method of lines.

The displacements u(x, t) and the virtual displacements δu(x) are expressed with the help

of the nodal displacements uj(t)∈ R
3, and the virtual nodal displacements δuj ∈ R

3 and the

ansatz-functions Nj(x) of the node j with j = 1, . . . , nnodes, and x ∈ Ω. The original domain

of the material body V is approximated by Ω and its surface A is approximated by Γ. The

brief description presented here is restricted to a displacement formulation for three-dimensional

continuum elements in the current configuration with

uh(x, t) =

nnodes∑

j=1

Nj(x)uj(t) = Na(x)ua(t) uh ∈ R
3 (5.77)

δuh(x) =

nnodes∑

j=1

Nj(x)δuj = Na(x)δua(t) δuh ∈ R
3. (5.78)
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In (5.77) we have introduced the vector ua(t)∈ R
ndof containing all nodal displacements and in

(5.78) the vector of all virtual displacements δua ∈ R
ndof as well as the matrix of ansatz functions

Na(x)∈ R
3×ndof . The index a is added in order to emphasize that the vectors ua(t) and δua con-

tain all nodal displacements. The vectors of all displacements and all virtual displacements are

subdivided (formally) into known and unknown components with u(t)∈ R
nu representing the

vector of unknown and u(t)∈ R
np representing the vector of known (prescribed) nodal displace-

ments, ndof = nu + np. For the nodes with prescribed displacements, the virtual displacements

have to vanish, i.e. δu = 0∈ R
np , while the other virtual nodal displacements δu∈ R

nu are arbi-

trary. Taking into account this subdivision of the nodal displacements for the ansatz (5.77) and

(5.78) leads to

uh(x, t) =
[
N(x) N(x)

]

︸ ︷︷ ︸

Na(x)

{
u(t)
u(t)

}

︸ ︷︷ ︸

ua(t)

= N(x)u(t) + N(x)u(t) (5.79)

δuh(x, t) =
[
N(x) N(x)

]

︸ ︷︷ ︸

Na(x)

{
δu

δu = 0

}

︸ ︷︷ ︸

δua(t)

= N(x)δu(t) (5.80)

with

ua(t) =

{
u(t)
u(t)

}

and δua(t) =

{
δu
δu

}

=

{
δu
0

}

. (5.81)

This ansatz for the displacements and virtual displacements depends on the spatial coordinates

x, which depend on the deformation through x = χR(X, t).
The coordinate transformation between the actual element and the reference element can be

performed, using the same ansatz functions as for the nodal displacements (isoparametric finite

element formulation). For the reference element considered here (3D - continuum element) the

local coordinates of the reference element ξ ∈ Ωref have the ranges, −1 ≤ ξ ≤ 1, −1 ≤ η ≤ 1,

−1 ≤ ζ ≤ 1. The coordinate transformation is given by

X = χe(ξ), ξ = ϕe(X) = χe−1(X) (5.82)

Furthermore, it is evident that the globally defined displacements uh(x, t) = Na(x)ua(t) have to

be equal to the locally defined displacements Neue(t) within each element. A formal allocation

between the nodal displacements ue(t) of element e and the vector of all displacements ua(t)
can be written in the form

ue = Z e
aua with Z e

a ∈ R
nen×ndof. (5.83)

The so-called coincidence Matrix Z e
a subdivides according to the subdivision of the nodal dis-

placements into one part Z
e

allocating the known nodal displacements and one part Z e allocating

the unknown nodal displacements

ue = Z eu + Z
e
u with Z e

a =
[

Z e Z
e
]

. (5.84)

Based on the ansatz for the displacements uh(x, t) and the virtual displacements δuh(x) the strain

tensor(s) needed in the constitutive equation (elasticity relation) within the principle of virtual

displacements as well as the virtual strain tensor appearing directly in the principle of virtual

displacements can be derived.
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Inserting the approximations (V → Ω, A → Γ, u → uh, δu → δuh) into the principle

of virtual displacements (5.73) formulated in the current configuration and splitting the integral

over the material body into integrals over the domains of the individual elements yields

g(t,u,q) =
ne∑

e=1

ZeT

∫

Ωe

BeT SedΩe − p(t) =
ne∑

e=1

ZeT

∫

Ωe

BeT Fe
23T̃

e
dΩe − p(t) = 0 (5.85)

with p(t)∈ R
nu being the total external load consisting of volume distributed, surface distributed

and nodal forces F(t)∈ R
nu

p(t) ≡
∫

Ω

NT (x)ρkdΩ

︸ ︷︷ ︸

volume distributed load

+

∫

Γ

NT (x)tdΓ

︸ ︷︷ ︸

surface distributed load

+ F(t)
︸︷︷︸

nodal forces

(5.86)

and with Be =
[
Be

1 . . .B
e
nen

]
and the strain displacement matrix for the ath node of element e

Be
a =











ne
a,x 0 0
0 ne

a,y 0
0 0 ne

a,z

ne
a,y ne

a,x 0
0 ne

a,z ne
a,y

ne
a,z ne

a,x 0











, a = 1, . . . , nen, (5.87)

which looks like the strain-displacement matrix in the case of small deformations. The matrix

Fe
23 reads

Fe
23 =











F e
11F

e
11 F e

12F
e
12 F e

13F
e
13 2F e

11F
e
12 2F e

12F
e
13 2F e

13F
e
11

F e
21F

e
21 F e

22F
e
22 F e

23F
e
23 2F e

21F
e
22 2F e

22F
e
23 2F e

23F
e
21

F e
31F

e
31 F e

32F
e
32 F e

33F
e
33 2F e

31F
e
32 2F e

32F
e
33 2F e

33F
e
31

F e
11F

e
21 F e

12F
e
22 F e

13F
e
23 F e

11F
e
22 + F e

12F
e
21 F e

12F
e
23 + F e

13F
e
22 F e

13F
e
21 + F e

11F
e
23

F e
21F

e
31 F e

22F
e
32 F e

23F
e
33 F e

21F
e
32 + F e

22F
e
31 F e

22F
e
33 + F e

23F
e
32 F e

23F
e
31 + F e

21F
e
33

F e
31F

e
11 F e

32F
e
12 F e

33F
e
13 F e

31F
e
12 + F e

32F
e
11 F e

32F
e
13 + F e

33F
e
12 F e

33F11 + F e
31F

e
13











(5.88)

and is the matrix representation (6x6 matrix) of the fourth order tensor, which maps the sec-

ond Piola-Kirchhoff tensor from the reference configuration upon the weighted Cauchy stress

tensor (Kirchhoff stress tensor) of the current configuration. Further details about the applied

matrix notation can be found in HARTMANN [60, APPENDIX A2]. In Eq. (5.85) the quantity

T̃
e

=
{

T̃ h
11, T̃

h
22, T̃

h
33, T̃

h
12, T̃

h
23, T̃

h
31

}T

is the 6x1 vector notation of the symmetric second Piola-

Kirchhoff tensor.

The numerical solution of the integrals over the domain of the individual elements by appli-

cation of a Gauss-quadrature after transformation of the element to the reference element can be

expressed by

g(t,u,q) =

ne∑

e=1

Z eT

{
nξ∑

j=1

nη∑

k=1

nζ∑

l=1

wjwkwlB
eT
(
ξjkl

)
h̃(Ce(ξjkl),q

e
jkl) det Je(ξjkl)

}

−p(t) = 0,

(5.89)

where we have introduced the Gauss-point coordinates and the weights wj, wk, wl of the Gauss

quadrature with nξ, nη, nζ being the number of Gauss-points in the ξ, η, ζ direction, respectively.
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Je is the Jacobian of the coordinate transformation X = χe(ξ). The internal variables q(t) have

to be evaluated at each integration (Gauss) point, i.e. the system of evolution equations (5.72)

reads

Aq̇(t) − r(t,u(t),q(t)) = 0, q(t0) = q0. (5.90)

Here q(t)∈ R
nQ is the vector of all internal variables at all Gauss points with nQ = ni × nq,

where ni is the (total) number of Gauss points and nq the number of internal variables of each

Gauss point. As in the case of the nodal displacements a coincidence matrix Z e(ijk)
q can be

introduced

qe
jkl(t) = Z e(jkl)

q q(t), qe
jkl ∈ R

nq . (5.91)

Unlike the nodal displacements the internal variables at each Gauss-point do only depend on

quantities of the same Gauss-point (uncoupled)

Aq̇
e
jkl(t) − r(Ce

jkl(t),q
e
jkl(t)) = 0, qe

jkl(t0) = qe
jkl,0. (5.92)

5.2.3 Solving the DAE-system with DIRK methods and the Multilevel-

Newton algorithm

The nonlinear system of equations obtained from the space discretization of the principle of

virtual displacements formulated with respect to the current configuration (5.89) form together

with the evolution equations for all internal variables of each integration point (5.90) a DAE-

system

F(t, y(t), ẏ(t)) =

{
g(t,u(t),q(t))

Aq̇(t) − r(t,u(t),q(t))

}

= 0, F∈ R
nu+nQ (5.93)

with

y(t) =

{
u(t)
q(t)

}

, y(t0) =

{
u(t0)
q(t0)

}

,=

{
u0

q0

}

= y0, y(t)∈ R
nu+nQ (5.94)

The unknowns of this DAE-system (5.93) are the nodal displacements u(t)∈ R
nu and all internal

variables q(t). The discretized principle of virtual displacements (5.89) represents the algebraic

part of the DAE-system, whereas the evolution equations (5.90) represent the differential part.

In Section 5.1.1 we have introduced diagonally implicit Runge-Kutta (DIRK) methods as a pos-

sible approach for the solution of DAE-systems. According to (5.17), with the short notation

introduced in (5.18) and (5.19), we have to solve the nonlinear system given by

Gni(Uni,Qni) =
ne∑

e=1

Z eT

{ nξ∑

j=1

nη∑

k=1

nζ∑

l=1

wjwkwlB
eT (ξjkl,U

e(jkl)
ni )

h̃(C
e(jkl)
ni (U

e(jkl)
ni ),Q

e(jkl)
ni ) det Je(ξjkl)

}

− p(Tni) = 0 (5.95)

Lni(Uni,Qni) = A

{
Qni − Sq

ni

∆tnaii

}

− r(Tni,Uni,Qni) = 0 (5.96)

in each stage Tni (ith stage of the nth time step). This implies that the discretized principle of

virtual displacements (equilibrium) represented by Gni = 0 is satisfied in each stage of the

DIRK-method. The nonlinear system resulting from the integration of the differential part of the

DAE-system decomposes into small nonlinear systems of equations at each Gauss-point. Since
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the evolution equations at distinct Gauss-points are not coupled with the evolution equations at

any other Gauss-point, each of the small systems

L
e(jkl)
ni

(

C
e(jkl)
ni (Ue

ni),Q
e(jkl)
ni

)

= A

{

Q
e(jkl)
ni − S

qe(jkl)
ni

∆tnaii

}

− r
(

C
e(jkl)
ni (U

e(jkl)
ni ),Q

e(jkl)
ni

)

= 0

(5.97)

has to be satisfied by itself. The combination of all systems of equations (5.97) can be achieved

by application of the coincidence matrices (5.91)

Lni(Uni,Qni) =

ne∑

e=1

{ nξ∑

j=1

nη∑

k=1

nζ∑

l=1

Z e(jkl)T
q L

e(jkl)
ni

(

C
e(jkl)
ni (U

e(jkl)
ni ),Q

e(jkl)
ni

)
}

= 0 (5.98)

leading to Eq. (5.96). We apply the Multilevel-Newton algorithm introduced in Subsection 5.1.2

to solve the nonlinear system of equations given by (5.95) and (5.96). This implies that on local

level (at each Gauss-point of each element) for the given displacements U
(m)
ni in each global

iteration m the nonlinear system (5.97)

L
e(jkl)
ni = 0 ⇒ Q

e(jkl)
ni (5.99)

has to be solved. The common solution procedure for this nonlinear system is the Newton-

algorithm, since the Newton-algorithm fails to converge already for moderate time (load) incre-

ments in the case of the constitutive model of Tab. 3.3 or Tab. 3.4, several globalization strategies

for Newton’s method have to be applied, see Section 5.1.3 and 5.2.4.

Within the Multilevel-Newton algorithm, we make use of the fact that a function Q(U) exists

in the neighborhood of the solution of F = 0. This (undetermined) function Q(U) is inserted

into G(U,Q) = 0 resulting in G(U,Q(U)) = 0. Solving this nonlinear system with Newton’s

method necessitates the linearization of G(U,Q(U)) = 0 with respect to U, see Tab. 5.3.

For the formulation on the current configuration the linearization of (5.85) with respect to the

displacements reads

Dug(t,u,q(u)[∆u] =

[
ne∑

e=1

Z eT

[∫

Ωe

JeBeT C
e
LBedΩe

+

∫

Ωe

BeT
NLMe

SBe
NLdΩ

e

]

Ze

]

∆u (5.100)

=

[
ne∑

e=1

Z eT keZ e

]

∆u (5.101)

where the element stiffness matrix ke = ke
C + ke

G decomposes additively into a constitutive part

ke
C =

∫

Ωe

JeBeT C
e
LBedΩe =

∫

ωe

BeT C
e
LBedωe (5.102)

with the spatial tangent operator

Ce
L =

1

Je
Fe

23C̃
e

LFeT
23 with C̃

e

L = 2

[

∂h̃

∂C
e +

∂h̃

∂qe

dqe

dC
e

]

(5.103)
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and the part emerging from the geometrical nonlinearity

ke
G =

∫

Ωe

BeT
NLMe

SBe
NLdΩ

e =

∫

ωe

1

Je
BeT

NLMe
SBe

NLdω
e (5.104)

with ωe representing the approximated volume in the current configuration. In (5.100) the matri-

ces

Be
NL =

















ne
1,x 0 0 ne

2,x 0 0 . . . ne
nen,x 0 0

0 ne
1,y 0 0 ne

2,y 0 . . . 0 ne
nen,y 0

0 0 ne
1,z 0 0 ne

2,z . . . 0 0 ne
nen,z

ne
1,y 0 0 ne

2,y 0 0 . . . ne
nen,y 0 0

0 ne
1,z 0 0 ne

2,z 0 . . . 0 ne
nen,z 0

0 0 ne
1,x 0 0 ne

2,x . . . 0 0 ne
nen,x

ne
1,z 0 0 ne

2,z 0 0 . . . ne
nen,z 0 0

0 ne
1,x 0 0 ne

2,x 0 . . . 0 ne
nen,x 0

0 0 ne
1,y 0 0 ne

2,y . . . 0 0 ne
nen,y

















, (5.105)

and

Me
S =

















Se
11 0 0 Se

12 0 0 Se
31 0 0

0 Se
22 0 0 Se

23 0 0 Se
12 0

0 0 Se
33 0 0 Se

31 0 0 Se
23

Se
12 0 0 Se

22 0 0 Se
23 0 0

0 Se
23 0 0 Se

33 0 0 Se
31 0

0 0 Se
31 0 0 Se

11 0 0 Se
12

Se
31 0 0 Se

23 0 0 Se
33 0 0

0 Se
12 0 0 Se

31 0 0 Se
11 0

0 0 Se
23 0 0 Se

12 0 0 Se
22

















. (5.106)

have been introduced. For a derivation of the linearization of the formulation in the current

configuration the reader is referred to HARTMANN [60, SECTION 5.1.4].

Within the specified linearizations of the principle of virtual displacements the linear system

which has to be solved in each iteration contains in the tangent matrix, see (5.104), the unknown

total derivative of the internal variables with respect to the displacements dQ/dU, see also Sec-

tion 5.1.2 ((5.45) - (5.48)). This means that at each Gauss-point a linear system with several

right-hand sides

∂L
e(jkl)
ni

∂Q
e(jkl)
ni

dQ
e(jkl)
ni

dC
e(jkl)
ni

= −∂L
e(jkl)
ni

∂C
e(jkl)
ni

(5.107)

has to be solved in order to receive the expression dQ
e(jkl)
ni /dC

e(jkl)
ni which is necessary to build

up the material matrix C̃
e

L.

5.2.4 Application of globalized Newton algorithms to solve the local non-

linear system (stress computation)

In this subsection the solution of the nonlinear system (5.99) with L defined in Eq. (5.97) resulting

from the implicit integration of the flow rule, the evolution equation for the internal variable α
and the auxiliary equation for λ̃ is described. Since the insertion of the resulting internal variables

Q
(n+1) = {C

(n+1)
p , α(n+1)} into the elasticity relation (5.108) yields the new state of stress, this
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procedure is therefore referred to as the stress computation or stress algorithm. The result of

this local computation, i.e. on Gauss-point level, is needed to build up the right-hand side on the

linear system on the global level of the Multilevel-Newton algorithm, see Tab. 5.3. Frequently,

the Newton method is the first choice to solve the non-linear system of equations (5.99). It

is shown, see Section 6.3, that the Newton method is not the best choice for the problem at

hand and leads frequently to a non-converging algorithm. In order to investigate the different

solution methods introduced in Subsection 5.1.3, i.e. globalization strategies for the Newton

method, a particular problem is studied. Before we start the discussion of this problem, let us

recapitulate the relevant constitutive equations from Tab. 3.4 formulated with quantities of the

reference configuration.

T̃ = h̃(C,Cp) =

(
Λ

2
ln

(
detC

det Cp

)

− µ

)

C−1 + µC−1
p (5.108)

Ċp = λ̃2

(

∂F̂

∂I1
I +

∂F̂

∂J2
(CT̃ − (I1/3)I)

)

Cp (5.109)

α̇ = λ̃

(

cD
α

(

(I1 − 3ξ)
∂F̂

∂I1
+
√

J2
∂F̂

∂
√

J2

)

− bDαχ

)

(5.110)

λ̃ =

〈

F̂

σ0

〉rvp

1

η
(5.111)

By means of the elasticity relation these equations can be reformulated into the abbreviated form

Ċp = λ̃h1 (C,Cp, α) , (5.112)

α̇ = λ̃h2 (C,Cp, α) , (5.113)

λ̃ =

〈

F̂

σ0

〉rvp

1

η
, (5.114)

where we have introduced the abbreviations h1 and h2, which are specified in Eq. (D.3) and

Eq. (D.4) of the Appendix D. In the time discretized equations (5.97) the quantity λ̃ is replaced

with the quantity ζ = λ̃∆tnaii leading to

0 = Cni
p −C(n)

p − ζh1

(
C,Cni

p , α
ni
)

(5.115)

0 = αni − α(n) − ζh2

(
C,Cni

p , α
ni
)

(5.116)

0 = F rvp − ζσ
rvp

0

η

∆tnaii

(5.117)

which corresponds to Eq. (5.99). Where aii represents the corresponding coefficients from the

applied DIRK method. Afterwards the stresses can be computed from the elasticity relation with

the updated internal variables Q
(n+1) = {C(n+1)

p , α(n+1)}. The system of equations (5.115) -

(5.117) for the 8 unknowns3 Cp, α, ζ is solved with the help of Newton’s method and the modified

Newton algorithms described in Section 5.1.3. In order to study and compare the algorithms a

fixed value of Cp, α and ζ is chosen to represent the values from the previous equilibrium. Now,

different deformations are prescribed by C and the number of iterations needed to converge (or

non-convergence) is determined. The prescribed deformations represented by C are inserted into

3Cp is symmetric, i.e. it contains only 6 independent components.
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the elasticity relation, together with the internal variables from the previous equilibrium (Cp from

the last equilibrium) leading to the so-called predictor stress, which is an intermediate state of

stress which may lay outside the elastic domain. The predictor stresses do not represent the final

stresses, since the integration step for the flow rule and the evolution equations has not yet been

performed. However, the predictor stresses represent the starting point for the iterative solution

of the nonlinear system (5.115)-(5.117) (or (5.99)) and it has been realized that the difficulty of

finding a solution, i.e. the number of iterations necessary to converge, is correlated to the relative

position of the predictor stresses and the yield function.4

To study the convergence behavior of Newton’s method and the modified Newton algo-

rithms of Subsection 5.1.3, the following test problem is set up. The initial conditions (previ-

ous equilibrium) for Cp and α are assumed to be resulting from a die compaction process with

C = diag(0.5, 1, 1) leading to Cp = diag(0.51, 1.001, 1.001) and α = 0.14. From the start-

ing conditions, the given Cp and the prescribed deformation C the invariants I1 and J2 can be

calculated by means of the elasticity relation (invariants of Cauchy predictor stress).5 The con-

vergence behavior is visualized graphically, and to this end the number of iterations needed to

converge is represented by a specific color (grey scale) at each studied starting point (I1,
√
J2).

All starting points are visualized as positions in the two-dimensional diagram of the first invari-

ant I1(T) of the Cauchy stress tensor and the square root of the second invariant of its deviator

J2(T), see definitions (3.2)1 and (3.3)2. In this diagram also the yield surface corresponding to

the assumed internal variables is depicted, see Fig. 5.1. For all algorithms it is obvious that the

number of necessary iterations depends strongly on the relative position of the predictor stress

invariants (starting point) and the yield surface. Similar graphically representations have been

used by PEREZ-FOGUET AND ARMERO [107] also for different starting points in the deviatoric

plane, where a yield surface with a dependence on the third invariant is studied. In Fig. 5.1(a)

the convergence performance of Newton’s method is depicted. The plot clearly shows wide re-

gions of non-convergence. Furthermore, the performance of the Newton-method with damping

(Fig. 5.1(b)), with line-search Fig. 5.1(c) and with constraint line-search Fig. 5.1(d) are depicted.

For the constraint line search algorithm the plastic multiplier as well as the diagonal elements of

Cp are demanded to be positive. It is obvious that the globalization strategies reduce the areas

of non-convergence significantly allowing bigger load steps and leading to a stress algorithm

with a significantly better stability. Where the studied line search algorithm with constraints

outperforms the other algorithms.

After solving the nonlinear system (5.115)-(5.117), i.e. Eq. (5.99), the internal variables have

to be inserted in the elasticity relation (5.108). In addition to the stresses the consistent tangent

within the Multilevel-Newton algorithm is needed, see Tab. 5.3, the computation of the consistent

tangent is treated in the following Subsection 5.2.5.

5.2.5 Computation of the consistent tangent matrix

Since the Multilevel-Newton algorithm, see Tab. 5.3 and Subsection 5.1.2, is based on the im-

plicit function theorem, the total derivative dh̃/dC is necessary for the global iteration. The

4When the stress tensor and the yield function are represented in a suitable invariant space, here the first invariant

of the Cauchy stress tensor and the second invariant of its deviator are applied.
5Actually I1 and

√
J2 are specified, and a corresponding C is determined under the assumption that C is of the

form diag(2, λ2
q , λ

2
q) (triaxial compression), resulting in non-linear equations for λ and λq which have to be solved.
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derivative of h̃(C,Cp) can be derived from the elasticity relation (5.108) applying the chain rule

dh̃

dC
=

∂h̃

∂C
︸︷︷︸

term I

+
∂h̃

∂Cp
︸︷︷︸

term II

dCp

dC
︸︷︷︸

term III

(5.118)

(for the case F > 0). Here and in the following, all indices characterizing the Gauss-point, the

time and the iteration are omitted for brevity. Both the term I and the term II are calculated from

the elasticity relation. In the case of F ≤ 0 (elasticity) the internal variables do not change and

term III does not occur implying that term I defines the consistent tangent C̃
e

L. In the case F > 0
(viscoplasticity) the internal variables are computed from the system of non-linear equations

(5.115) - (5.117). This system is also required for the computation of term III namely the deriva-

tive of the plastic right Cauchy-Green tensor Cp with respect to C. Therefore, Eqns. (5.115) -

(5.117) is written in the abbreviated form:

L(C; Q(C)) = 0 ⇔
Lp(C,Cp(C), α(C), ζ(C)) = 0

Lα(C,Cp(C), α(C), ζ(C)) = 0
LF (C,Cp(C), α(C), ζ(C)) = 0

(5.119)

By applying the implicit function theorem, see also Subsection 5.1.2 Eq. (5.48), term III can be

calculated by the chain rule

dL

dU
→ dL

dC
=

∂L

∂C
+
∂L

∂Q

dQ

dC
= 0 (5.120)

⇒
[
∂L

∂Q

]

︸ ︷︷ ︸

term A

(
dQ

dC

)

︸ ︷︷ ︸

includes term III

= −
(
∂L

∂C

)

︸ ︷︷ ︸

term B

(5.121)

which reads in more detail











∂Lp

∂Cp

∂Lp

∂α
∂Lp

∂ζ
{

∂Lα

∂Cp

}T
∂Lα
∂α

∂Lα
∂ζ

{

∂LF

∂Cp

}T
∂LF
∂α

∂LF
∂ζ



















dCp

dC{
dα
dC

}T

{
dζ
dC

}T









= −









∂Lp

∂C{
∂Lα

∂C

}T

{
∂F
∂C

}T









. (5.122)

In order to be able to compute term III, we need to solve a system of linear equations with sev-

eral right-hand sides (in the 3D-case these are 6). The coefficient matrix, called term A, is known

from the Newton method applied to the non-linear system (5.115) - (5.117). Additionally, the

right hand-side term B, i.e. the partial derivative of L with respect to C has to be computed.

The derivation of analytical expressions for this term is similar to the derivation of the analytical

expression for term A. The only difference is that the equations need to be differentiated with

respect to C instead of Cp. The solution of the linear system (5.122) yields term III needed for

the computation of the consistent tangent from (5.118). Analytical expressions for the proposed

model are supplied in the Appendix D. Alternatively, numerical differentiation techniques can

be applied to compute the necessary derivatives. The advantage of numerical differentiation is

that one can skip the cumbersome derivation and implementation of all the necessary derivatives.

On the other hand, one has to know that the numerical computation of the derivatives needs more
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computational time and are less accurate than analytical derivatives. Since in our case already

the function evaluation is quite expensive, only a simple forward difference scheme is applied to

compute the derivatives (Jacobi matrix of local nonlinear system, consistent tangent matrix). A

comparison for one example computation between numerical and analytical derivatives is pro-

vided in Section 6.3.
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Figure 5.1: Examples for convergence result
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Chapter 6

Numerical studies and examples

The constitutive model introduced in Sections 3.3 and 3.4 is implemented into the finite element

code TASA-FEM, see HARTMANN [62], which supports the application of higher order time

integration as discussed in Section 5.2.3 as well as time adaptive strategies aiming to keep the

accumulated error induced by the numerical time integration within reasonable tolerances while

allowing time steps as big as possible in order to keep the overall computation time reasonable.

The stress algorithm applies Newton’s method or alternatively one of the globalized versions of

Newton’s method for the solution of the nonlinear system of equations on local level. The Ja-

cobian of the local Newton iteration can be computed either analytically (analytical expressions

for the proposed constitutive model can be found in Appendix D) or numerically. Furthermore,

the computation of the consistent tangent matrix can also be done fully numerical or using the

derived analytical expressions, see Appendix D. For the numerical studies presented in this chap-

ter, three different structures with increasing complexity are considered. The simplest geometry

consisting of only two elements is used in Section 6.1 in order to investigate the influence of the

viscosity on the reached accuracy order of the applied Runge-Kutta methods. In Section 6.2 an

essentially two-dimensional problem (L-shaped profile) is used to study the spatial distribution of

the time integration error, when a time adaptive method is applied. The model geometry contains

a spatial singularity, which influences the time integration error. However, even in the vicinity

of the singularity the integration error can be kept small if a proper time adaptive algorithm is

applied. In Section 6.3 the geometry of the example problem described in Section 6.2 is extended

to a three-dimensional washer disc like part. The time step behavior for η = 0 (elastoplasticity)

and η = 1 (viscoplasticity) using two different time adaptive approaches is checked. Afterwards,

the merit, with respect to computational time, of the globalized Newton methods is demonstrated

using this three-dimensional example. Furthermore, the computation time using either numer-

ical or analytical consistent tangent operator and numerical or analytical Jacobian in the local

iteration is compared. This example indicates that the implementation of analytical expressions

is very beneficial in this respect.

Some of the results presented in this chapter have been shown in HARTMANN AND BIER

[64] and the results of additional numerical studies using the proposed constitutive model can

be found in SZANTO ET AL. [132] and HEISSERER ET AL. [71] using an implementation of the

constitutive model in the finite elements codes Abaqus and Adhoc respectively.

111
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6.1 Simple die compaction (order reduction phenomenon)

In order to study the higher order time integration methods described in Section 5.1.1 a very

simple test case (2 elements) is considered. We consider the configuration of two elements de-

picted in Figure 6.1. The boundary conditions are that all nodes are fixed in y and z-direction.

Furthermore, the nodes at the bottom are constrained in x-direction as well and the top nodes per-

form the prescribed motion down. The structure in whole is compressed to half of its initial size.

The whole compaction process is carried out within one second (in the rate-independent case

x

y
z

Figure 6.1: Boundary conditions of simple test structure

of elastoplasticity this has no influence). In order to check the accuracy obtained with the time

integration methods specified in Section 5.1.1, first, a reference solution is generated using the

diagonally implicit Runge Kutta method of 4th order proposed by HAIRER AND WANNER [58],

and the embedded 3rd order method is used to estimate the integration error and subsequently

control the step-size.

REMARK 6.1

The following settings have been used within the input file for TASA-FEM, see HARTMANN

[62], in order to generate the reference solution: nintv=7, i.e. DIRK method proposed by HAIRER

AND WANNER [58], iscon=3, i.e. the embedded DIRK method is used for step-size control,

istop=3, i.e. both toldu and tolphi are considered when convergence of global Newton-iteration

is checked, with toldu representing the convergence tolerance for the displacement increment

and tolphi the convergence tolerance for the residual, toldu = 0.1 × 10−10, tolphi =0.1 × 10−8.

The absolute error tolerances (tolabu, tolabe and tolabs) and the relative error tolerances (tol-

reu, tolree and tolres) for the step size control on the basis of the embedded DIRK method

are all set to 0.1 × 10−8 for the generation of the reference solution. The convergence crite-

rion for the local Newton-like iteration is set to 0.1 × 10−10 for the generation of the reference

solution. For the other computations discussed in subsection 6.1 no step-size control is consid-

ered (iscon=1) and the following convergence tolerances of the global Newton-iteration are used

toldu = 0.1 × 10−8, tolphi =0.1 × 10−6. The convergence criterion for the local Newton-like

iteration is set to 0.1 × 10−8.

REMARK 6.2

In view of the findings shown in this paragraph, it is questionable that the 4th order method really

does reach 4th order applied to the proposed constitutive model. However, due to the stricter
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convergence criterion enforcing a smaller step-size the produced solution can be considered to

be sufficiently accurate to be used as a reference solution.

For comparison of the different methods the total pressure, which needs to be exerted on

the top surface of the structure to produce the prescribed compaction, is used. First, the case of

elastoplasticity is studied, i.e. η = 0. In this case the index of the DAE-system, which arises after

the space discretization, is 2 due to the algebraic constraint (yield function) on the local level.

For the definition of the index of a DAE-system see, for example, HAIRER AND WANNER [58]

or ASCHER AND PETZOLD [12]. Roughly spoken the (differentiation) index of a DAE-system is

the minimum number of differentiations needed (together with algebraic operations) to transform

the DAE-system into a system of ordinary differential equations (ODE) in explicit form.

It can be observed from Figure 6.2(a) that the Backward-Euler method reaches as expected

order 1, i.e. the relative error is reduced by half if the time step-size is halfed. In the double

logarithmic plot of the relative error over the step-size Figure 6.2(a) the order of the method

is simply given by the slope of the curves for the different methods. The 2nd order method of

Ellsiepen (ELLSIEPEN [44]) reaches order 2 whereas the 3rd order method does only reach order

2. The order reduction in the case of a third order method applied to an elastoplasticity model

has also been reported in the case of von Mises plasticity without hardening by ELLSIEPEN [44],

see also ELLSIEPEN AND HARTMANN [45].

From Figure 6.2(b) it can be observed that the computational effort, here measured by the

number of global Newton iterations of the Multilevel-Newton algorithm, is significantly lower

for the methods of Ellsiepen (ELLSIEPEN [44]) or Alexander, see ALEXANDER [5], than for the

Backward-Euler method. The difference increases with increasing accuracy requirements and

there can easily be a factor of ten to one hundred between the number of iterations needed with

the methods of Ellsiepen or Alexander and the Backward-Euler method.
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Figure 6.2: Model of elastoplasticity (η=0)
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Since the viscoplasticity model introduced in Section 3.4 emerges from the elastoplasticity

model introduced in Section 3.3 a small viscosity will not create a significant difference between

the results of the elastoplasticity model and the viscoplasticity model and can be considered

as a regularization of the elastoplasticity problem. In Fig. 6.3 the influence of the introduced

viscosity parameter η on the axial pressure in a die-compaction simulation is depicted. As can

be seen there the behavior of the material is not changed significantly for η ≤ 1. The index
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Figure 6.3: Variation of viscosity η

of the resulting DAE-system is in the viscoplasticity case 1 and the equations are more smooth.

However, the differential part may be stiff so that the merit of this endeavor is not clear a priori,

since order reduction of higher order integration methods may also appear in the case of stiff

differential equations. Taking a look at Figure 6.4 one observes that now both the method of

Ellsiepen and the method of Alexander do not yield an order much higher than one. However,

the accuracy which they reach is significantly better than the accuracy reached by the Backward-

Euler method. Accordingly, we do not observe a positive effect of the regularization by choosing

a finite viscosity η, although the introduction of the viscosity does not change the calculated

results for the pressure needed on the top surface of the structure much. In the case of η =
0.1 the required pressure is calculated to be about 0.1% higher and for η = 1 the increase

is about 1% (in the studied case for the assumed velocity). In order to compare the different

methods also for significant viscosities (η = 1000) the relative error is again plotted over the

step-size in Fig. 6.5(a) and the number of global Newton iterations in Fig. 6.5(b). The plots show

that the method of Alexander does now indeed reach approximately 3rd order and the method

of Ellsiepen reaches 2nd order. If the accuracy demands are very strict the 3rd order method

can save a significant number of iterations in comparison with the 2nd order method. However,

for moderate accuracy requirements the 2nd order method seems to be favorable over the other

two, since it does not suffer severely from order reduction in any of the studied cases and is

surely superior in performance over the simple Backward-Euler method. The order reduction

phenomenon is not visible in the case of smooth problems, see HARTMANN [59] or HARTMANN

[63].
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Figure 6.4: Model of viscoplasticity (η = 0.1, η = 1.0), to mirror the elastoplasticity model.

6.2 L-shaped profile

In Figure 6.6 the geometry and boundary conditions for the second numerical example are

depicted. The two-dimensional L-shaped structure is modeled with a single layer of three-

dimensional hexahedral elements. The displacements in z-direction are locked for all nodes.

The total initial height of the structure is 12 mm, the displacements at the top are prescribed to

go 3 mm down (representing the movement of the rigid top punch uy). In order to induce an inho-

mogeneous deformation the prescribed displacements at the bottom of the L-profile at y = 0 are

assumed to be 0.8 × (−uy) = 2.4 mm up. The computations have been done with two different

time-adaptive strategies. The simpler time-adaptive strategy uses the number of global Newton

iterations to estimate the current nonlinearity of the equations. And increases or decreases the

time step-size of the Backward-Euler integration based on

∆tnew = ∆tn × fac

with fac =

{
0.75 if m > 12 (or if local procedure fails to find solution)

1.3 if m ≤ 6
. (6.1)

In the higher order Runge-Kutta methods the step-size control is based on an estimation of the

local integration error, see the paragraph on time-adaptivity within Section 5.1.1. The absolute

and relative error tolerances εa = εr = 10−4 are chosen. The global Newton-iteration of the

Multilevel-Newton algorithm requires a value of ‖∆U‖ ≤ tolu = 0.01 × εa. The stress compu-

tation, local nonlinear system, is assumed to be converged if ‖∆Q
(k)‖ ≤ 10−9. The second order

method of ELLSIEPEN [44] uses an embedded first order method and the third order method of

CASH [25] uses an embedded second order method for the step-size control. We compare all

three methods to a reference solution produced with a fourth order method with embedded third

order method for step-size control. For the reference solution the error tolerances εa = εr = 10−6

are chosen and the global Newton-iteration of the Multilevel-Newton algorithm requires a value



116 Numerical studies and examples

 1e-09

 1e-08

 1e-07

 1e-06

 1e-05

 0.0001

 0.001

 0.01

 0.1

 0.001  0.01  0.1  1

time step-size

re
la

ti
v
e

er
ro

r

Backward-Euler (1storder)
Ellsiepen (2ndorder)

Alexander (3rdorder)

(a) Relative error over time step-size

 1e-09

 1e-08

 1e-07

 1e-06

 1e-05

 0.0001

 0.001

 0.01

 0.1

 10  100  1000  10000

number of global iterations

re
la

ti
v
e

er
ro

r

Backward-Euler (1storder)
Ellsiepen (2ndorder)

Alexander (3rdorder)

(b) Rel. error over no. of global Newton iterations

Figure 6.5: Viscoplasticity (η=1000)
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Figure 6.6: Boundary conditions of simple test structure

of ‖∆U‖ ≤ tolu = 0.01 × εa. The stress computation, local nonlinear system, is assumed to

be converged if ‖∆Q
(k)‖ ≤ 10−11 in the case of the reference solution computation. For the

comparison of the spatial distribution of the integration error achieved by the three methods I

choose the scalar quantity rK of Eq. (3.77). Since rK depends on Cp, rK = ln(detCp)/2, which

results from the time integration of the flow-rule, it appears to be a reasonable quantity for this

comparison. In Figure 6.7 the spatial distribution of the error is depicted in contour plots. In

every case the integration error is higher in the vicinity of the spatial singularity at the corner of
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the L-shaped profile. Therefore, in Figure 6.9 the errors computed for each Gauss-point along the

cuts through the L-profile at x = 19.07 mm, z = 0.21 mm and at y = 7.05 mm, z = 0.21 mm,

see Figure 6.8, are depicted. The error-controlled step-size control keeps the integration error

significantly lower than the Backward-Euler method with step-size control technique (6.1). In

every case the error increases close to the spatial singularity but not dramatically. The third

order method does not seem to be superior to the second order method, in agreement with the

previously observed order reduction phenomenon. Consequently, in the next example only the

Backward-Euler method and the second order method of Ellsiepen will be considered.
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Figure 6.7: Spatial distribution of relative errors of the quantity rK for the L-shaped structure.
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Figure 6.8: The relative density achieved by the compaction process in the L shaped structure (reference

solution). The cutlines along which the relative errors are plotted in figure 6.9 are depicted.
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Figure 6.9: Error plotted along cuts vs. the free coordinate, see Figure 6.8 for definition of cuts.
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6.3 A flat washer-like problem

6

6
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30

uz(x, y, 0, t) = 0.8u(t)

uz(x, y, 12, t) = −u(t)

Figure 6.10: Geometry and deformed mesh of 3D-mesh of flat washer like problem (2394 nodes, 1836

eight-noded hexahedral elements)

The third studied geometry is a rectancular flat washer like structure, where only a quarter of

the washer is discretized (symmetry), see Figure 6.10. Again the displacements are prescribed

at the top and the bottom of the structure. At the bottom with uz(x, y, 0, t) = 0.8u(t) and at the

upper surface with uz(x, y, 12, t) = −u(t) with u(t) given by1

u(0) = 0mm, u(1) = 3mm, u(2) = 2.98mm. (6.2)

All other surfaces are fixed in out of plane direction, i.e. a rigid behavior of the die is assumed and

any influence of friction is neglected as well. The computations are done both for η = 0 and for

η = 1. In each case a simple Backward-Euler method combined with the load-control of Eq. (6.1)

is applied and compared to the error-controlled method of Ellsiepen (2nd order Runge-Kutta)

using an embedded first order method for step-size control as described in Section 5.1.1 based

on the proposals of ELLSIEPEN [44], DIEBELS ET AL. [38] and ELLSIEPEN AND HARTMANN

[45]. The step-size behavior is depicted in Figures 6.11(a) and 6.11(b) for η = 0 and η = 1
respectively. In the case of a small viscosity η the Backward-Euler method reaches higher step-

sizes since the problems nonlinearity is reduced. The method of Ellsiepen handles both cases

with nearly the same step-sizes to ensure that the integration error stays below the specified

tolerances. Both algorithms increase the step-size significantly in the region where unloading

takes place. There the behavior of the material is (at least in most Gauss-points) elastic leading

to a less nonlinear set of equations. The achieved relative density distribution in the flat washer

after unloading is depicted in Figure 6.12.

The same geometry has been chosen to demonstrate the increase in numerical efficiency

gained by the numerical procedures discussed in Section 5.1.3. Table 6.1 compares the rela-

tive computation times needed to compute the washer compaction problem with η = 1 using

again the second order error-controlled method of Ellsiepen and analytical consistent tangent

1The prescribed displacement u(t) is piecewise linear between the breakpoints at t = 0, 1, 2 provided in Eq.(6.2).

The final value of the displacement at t = 2 is selected in such a manner that the resulting axial load at the end of

the process is approximately zero.
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Figure 6.11: Step-size behavior of different integration methods
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Figure 6.12: Relative density distribution in the flat washer like structure

with the original Newton-method, see Tab. 5.4, to solve the local nonlinear system compared to

the Newton-method with damping, see Tab. 5.5 and the fully constrained Newton method from

Tab. 5.7. The more stable Newton-algorithm with line-search and constraints leads to signifi-

cantly reduced computation time since it converges for significantly greater step-sizes.

The fully constrained line-search algorithm, see Table 5.7, which is considered to be the most

stable and efficient in most cases, is used for the final study testing the influence of numerical

vs. analytical tangents. The reference computation is the compaction of the three-dimensional

washer example using the Backward-Euler method with the simple step-size control using fully

analytical expressions for the Jacobian of the local iterations as well as for the consistent tan-

gent. One semi-analytical computation is done using a numerical version of the local Jacobian
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Table 6.1: Comparison of computation time for different Newton-like algorithms applied to solve the

local nonlinear system of equations within the Multilevel-Newton algorithm.

local solution algorithm relative computation time in %

Newton method (Table 5.4) 100%

damped Newton (Table 5.5) 94%

fully constrained line-search (Table 5.7) 58%

but still an analytical consistent tangent and the other semi-analytical computation is done using

an analytical Jacobian on local level but a numerical consistent tangent. Finally, a fully numer-

ical version is computed. The results with respect to computation time are given in Table 6.2

below. The numerical differentiations are computed using forward differences (1st order). The

tremendous increase in computation time for the fully numerical version is caused by the fact

that the step-size control based on the number global iterations does not incease the step-size,

since the algorithm almost never converges within 6 iterations probably, because of the lack of

accuracy reached by the two subsequent numerical differentiations.

Table 6.2: Comparison of computation time using analytical and numerical tangents within the local

Newton-like iterations and in the Multilevel-Newton algorithm.

computation relative computation time in %

fully analytical 100%

analytical local Jacobian, numerical consistent tangent 282%

numerical local Jacobian, analytical consistent tangent 110%

fully numerical 5737%



Chapter 7

Conclusions

This thesis presents the development, implementation and application of a constitutive model for

metal powders. Following the continuum mechanical principles described in Chapter 2 a consti-

tutive model falling into the class of finite strain elastoplasticity is formulated on the plastic inter-

mediate configuration. Furthermore, the straightforward expansion of the elastoplasticity model

to viscoplasticity is proposed and studied with respect to the numerical implications. The heart

of the established constitutive model is a new pressure dependent yield function (compressible

elastoplasticity). It is demonstrated that the new yield function can reproduce the yield behavior

of a metal powder under compressive loads and that it exhibits a number of desirable properties,

like uniqueness in principal stress space, shape flexibility1, smoothness and convexity. Beyond

the new yield surface a certain emphasis is placed on a thermo-mechanical motivation of the evo-

lution equations ensuring, together with the associative flow-rule, an a priori thermo-mechanical

consistent constitutive model in the sense that the Clausius-Duhem inequality is fulfilled for all

processes.

With respect to the material parameter identification uniaxial die-compaction experiments

with monotonic loading and with intermediate un- and reloading cycles are analyzed. The exper-

imental setups were developed by the partner group of Prof. Frage, receiving input from our side

with respect to the required experimental data for a reasonable parameter identification. Since

the experimental data is not exhaustive, a few parameters are chosen beforehand in a reason-

able manner. It is demonstrated that the constitutive model is able to represent the available

experimental data very well once the material parameters are identified.

Several variants of a stress algorithm for the proposed constitutive model are developed and

implemented into the implicit finite elements code TASA-FEM (HARTMANN [62]). Since the

application of the classical Newton algorithm to the non-linear system of equations on the local

(Gauss-point) level of the Multilevel-Newton algorithm, which is applied at each stage of the

utilized DIRK-method to the DAE-system resulting from the space discretization of the prin-

ciple of virtual displacements, leads to a frequently non-converging stress algorithm, several

globalization strategies for the Newton method like damping, line-search and line search with

constraints are implemented. The stress algorithm utilizing line search with constraints is shown

to be significantly more robust and efficient than the simple Newton algorithm. Since it is re-

alized that a system of differential algebraic equations (DAE-system) emerges for the proposed

constitutive model from the space discretization of the principle of virtual displacements using

finite elements, the above mentioned DIRK methods become applicable. The differential part of

1In BIER AND HARTMANN [19] it has previously been shown that the shape flexibility of the new yield function

is appropriate to reproduce the yield behavior of many compressible materials.
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the DAE-system stems from the ordinary differential equations of first order (evolution equation,

flow-rule) of the constitutive model. Compared to the classical Backward-Euler scheme the ap-

plied DIRK methods offer a higher integration order resulting in a higher accuracy of the time

integration, while the structure of the classical implicit finite element implementation of the time

integration (Backward-Euler) is maintained.

The applicability of the stress algorithm for the proposed constitutive model is demonstrated

in some academic example computations. It is observed that an order reduction phenomenon

occurs, i.e. the order of the higher order DIRK method can not be reached. This leads to the

conclusion that a second order method is showing the best performance.

With respect to the constitutive model presented in this thesis several directions for expan-

sions and generalizations of the model are thinkable. One interesting point could be the inclusion

of temperature effects aiming beyond the simulation of compaction processes at ambient temper-

ature like uniaxial die compaction and cold isostatic pressing (CIP) towards warm compaction

and hot isostatic pressing (HIP). Changes in the same direction would be necessary to allow the

simulation of the sintering process usually following the pressing process. Minor changes of

the model increasing its complexity but also its range of applicability would be to consider the

dependence of the yield function on the third invariant of the stress tensor, a more elaborate elas-

ticity relation or a non-associative flow-rule. On the other hand the increase in model complexity

would imply additional material parameters demanding an equally higher experimental effort for

their determination. A further direction for the generalization of the constitutive model could be

the combination of the elastoplasticity model with a damage model enhancing the possibilities

to describe the behavior of powder compacts under non-compressive loading conditions.

With respect to the numerical treatment efficient methods for the time integration are applied,

i.e. time integration with embedded error estimation for an error controlled time step-size. An-

other direction to increase the efficiency could be to consider an adaptive space-integration and

a combination of time and space integration adaptivity. Furthermore, the implementation of the

constitutive model into a commercial finite element program would offer the possibility to treat

more realistic initial boundary value problems. In this respect especially the consideration of

friction between the powder and the mould (die) has to be mentioned.



Appendix A

Limit cases of the interpolated yield

function

In the following, it is shown how to define the parameters of f(I1) from Eq. (3.45) in order to

approximate the Drucker-Prager yield function, the ellipse, either centered, as proposed by many

authors (see, for example, SHIMA AND OYANE [122] or KUHN AND DOWNEY [89]), or shifted

along the hydrostatic axis, as suggested by ABOU-CHEDID [3], as well as the von Mises yield

function applied in metal plasticity.

Approximating the Drucker-Prager yield function The Drucker-Prager yield function de-

fines a linear function in Fig. 3.8 starting, for example, at the point (I1,
√
J2) = (I0, 0) and

having a negative slope. Since the proposed yield function is represented by the interpolation

of the ellipse and the exponential function, use has to be made of the exponential part in order

to approximate the linear function in a user-defined region. To this end, the following two steps

must be considered. Firstly, since the exponential function f2(I1) is utilized for representing the

Drucker-Prager line, it is necessary to show when f2(I1) is indeed smaller than the ellipse f1(I1)
for all I1 in the relevant region Iis ≤ I1 ≤ I0, where Iis = 3ξ + r(3ξ − I0) defines the intersec-

tion point in the compression range. It will be shown that this can be guaranteed by choosing

r greater than a certain limit value. Secondly, on the basis of the investigation before, it will

be investigated under which conditions the deviation of the interpolated function f(I1) and the

Drucker-Prager function are sufficiently small.

First of all, Eqns.(3.42) and (3.43) are reformulated

f1(I1) = k

√

1 − (I1 − 3ξ)2

(I0 − 3ξ)2
, (A.1)

f2(I1) = k

[

1 −
(

1 −
√

1 − r2
)[(I1−I0)/((3ξ−I0)(1+r))]

]

(A.2)

and it must be shown that f1(I1) − f2(I1) ≥ 0 holds for Iis ≤ I1 ≤ I0, which is the interval of

the intersections of the two functions at I0 and Iis. In other words,

0 ≤ f1(I1) − f2(I1)

k
=

√

1 − (I1 − 3ξ)2

(I0 − 3ξ)2

︸ ︷︷ ︸

γ1(I1)

−1 +
(

1 −
√

1 − r2
)[(I1−I0)/((3ξ−I0)(1+r))]

︸ ︷︷ ︸

γ2(I1)

(A.3)
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has to be satisfied, where two functions γ1(I1) and γ2(I1) are introduced. This condition is

fulfilled for the case

γ1(I1) + γ2(I1) ≥ 1 ∀ I1 ∈ [Iis, I0]. (A.4)

At the intersection points Iis and I0 the two terms add up exactly to one, γ1(Iis) + γ2(Iis) = 1
and γ1(I0) + γ2(I0) = 1. Since both functions γ1(I1) and γ2(I1) increase within the region Iis ≤
I1 < 3ξ, condition (A.4) is fulfilled. Thus, we only need to discuss the interval 3ξ ≤ I1 ≤ I0
where γ1(I1) decreases. In order to show under which conditions inequality (A.4) is satisfied

in this interval, the two functions γ1(I1) and γ2(I1) are replaced by two properly chosen linear

functions which are below the two functions throughout the interval. Accordingly, it must be

proven that for a sufficiently large value of r the sum of these linear functions is greater than 1.

In Fig. A.1 the two terms together with the linear functions h1(I1) and h2(I1) are plotted.

The linear function h1(I1) is constructed to be always smaller than γ1(I1) defined by

3ξ I0

1

6ξ − I0

I1

Iis

γ1(I1) h1(I1)

(a) h1, lower bound for γ1(I1)

3ξ I0

1

6ξ − I0

I1

Iis

h2(I1)

γ2(I1)

(b) h2, lower bound for γ2(I1)

Figure A.1: Graphical representation of the linear functions h1(I1) and h2(I1) acting as lower bounds for

γ1(I1) and γ2(I1)

h1(I1) =
1

3ξ − I0
I1 −

I0
3ξ − I0

. (A.5)

In the case of the exponential part γ2(I1), every tangent lies under the function for all values of

I1. In order to make sure that condition (A.4) is satisfied, use is made of the tangent at the point

I0 denoted by

h2(I1) =
ln
(
1 −

√
1 − r2

)

1 + r
︸ ︷︷ ︸

=:T (r)

1

3ξ − I0
I1 + 1 − ln

(
1 −

√
1 − r2

)

1 + r

I0
3ξ − I0

. (A.6)

If the tangent is constructed in such a way that h1(I1) + h2(I1) = 1 holds, which guarantees

condition (A.4) as well, then h2(3ξ) = 0 has to be satisfied. Consequently, expression T (r),
defined in Eq.(A.6), leads to the non-linear equation

ln
(

1 −
√

1 − r2
)

= −(1 + r) (A.7)
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possessing the solution r∗ ≈ 0.602, i.e. if r > r∗ is defined, condition (A.4) is surely satisfied.

So far, it has only been shown that for r > r∗ the function f2(I1) is the smaller one of the two

functions in the interval of interest. This means that there are no further intersection points in

this interval. In order to approximate a straight line within the user-defined interval I∗ ≤ I1 ≤ I0
by means of the exponential function, the relative difference of the tangents’ slopes at I0 and a

user-defined hydrostatic pressure I∗ should be less than a prescribed tolerance ε
∣
∣
∣
∣

f ′
2(I

∗) − f ′
2(I0)

f ′
2(I0)

∣
∣
∣
∣
< ε (A.8)

If a value r0 > r∗ is defined, inequality (A.8) yields the upper limit

ξ ≤ I∗ − I0
3(1 + r0)

ln
(

1 −
√

1 − r2
0

)

ln(1 − ε)
+
I0
3

(A.9)

of the ellipse’ center.

The Drucker-Prager model, fDP(I1) = M I1 + c, M defines the slope and c is a constant, is

chosen to have the derivative of f2(I1) at the zero hydrostatic stress state

M = f ′
2(0) = −A2A3. (A.10)

This is done for the convenience of the resulting analytical expressions. If a center ξ0 is pre-

scribed, satisfying inequality (A.9), the axes ratio of the ellipse is obtained,

α =
M2(1 + r0)

2
(

1 −
√

1 − r2
0

)[2I0/((3ξ0−I0)(1+r0))]

(

ln
(

1 −
√

1 − r2
0

))2 , (A.11)

where use is made of definitions (3.44). In other words, for given tolerance ε of the slope, the

slope of the Drucker-Prager yield functionM , the intersection point of a non-negative hydrostatic

pressure I0, the expected range of interest I∗ (where the model should reproduce the Drucker-

Prager yield function, and a defined r0 ≥ r∗ = 0.602, the proposed model approximates up to the

desired precision the Drucker-Prager model. Additionally, if the parameter c of the interpolation

is small enough, the function f comes arbitrarily close to the function f2.

Retrieving the ellipse yield function The retrieval of the ellipse from the interpolated yield

function (3.37), either with ξ = 0 (centered ellipse) or for ξ < 0 (shifted ellipse), is less laborious.

Here, r is sent towards zero so that the exponential function is always larger than the ellipse.

Since the ellipse f1(I1) does not depend on r, one has only to look at the limit behavior of f2(I1)
defined in Eq.(A.2). In order to find the limit of f2(I1), two cases have to be distinguished. For

I1 < I0 and I1 = I0 and the condition 3ξ < I0, we arrive at

I1 < I0 : lim
r→0

f2(I1) = k, (A.12)

I1 = I0 : lim
r→0

f2(I1) = 0. (A.13)

In other words, under the condition r = 0, the exponential function obtains the values f2(I1) = k
for all I1 < I0. Since k is obviously the maximum of f1(I1), it has been shown that f1(I1) is the

smaller one of the two functions and this implies that the difference between f and f1 is always

less than c ln 2, which could be made arbitrarily small by choosing c sufficiently small.
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Approximating the von Mises yield function In order to approximate the von Mises yield

function, the arguments of the last paragraph are followed, i.e. r = 0 is required. Additionally,

f1 is specialized to the case of the centered ellipse, ξ = 0. This leads to the cases

f2(I1) =

{
k | I1 < I0
0 | I1 = I0

(A.14)

f1(I1) =
√

k2 − α(I1)2 with k =
√

αI2
0 . (A.15)

The von Mises yield surface is defined by a single parameter which corresponds to k. The basic

idea is to utilize an ellipse with a high aspect ratio (small α) which approximates the horizontal

line f(I1) = k with a prescribed tolerance. To this end, the relative difference of f1 and k is

required to be smaller than an arbitrary but fixed value ε for all I1 within the interval (−If,+If).

If defines the borders of the relevant interval. Thus, the relative difference has to fulfill the

condition

k − f1(If)

k
= 1 −

√

1 − I2
f

I2
0

< ε (A.16)

using Eq.(A.15). In other words, we have to satisfy the condition

I2
0 >

I2
f

1 − (1 − ε)2
, (A.17)

i.e. If and ε have to be prescribed and one obtains the value of I0 needed.



Appendix B

Proof of convexity

The proof of convexity for the yield function has already been published in BIER AND HART-

MANN [19] but is repeated here for the sake of completeness. In order to show convexity of the

yield function (3.49), use is made of the Gateaux-derivative

Dx F (x)[H] =
d

dλ
F (x + λH)

∣
∣
∣
∣
λ=0

. (B.1)

Accordingly, the second derivative, or more precisely, the second differential of a scalar function

F (x) : R
2 → R has to be derived. This implies the convexity proof of the composition because

G(g1(x), g2(x)) depends on two scalar functions gk(x) : R
2 → R. In our formulation x∈ R

2 is

assembled by xT = {I1,
√
J2}, i.e. x1 = I1 and x2 =

√
J2. The differential (B.1) of F (x) reads

Dx F (x)[H] =

{
dG(g(x))

dg

}T [
dg(x)

dx

]

H =

2∑

i=1

G,i {gi,x }TH (B.2)

with

G,i (g(x)) =
∂G(g1, g2)

∂gi

(B.3)

and

gi,x =
dgi(x)

dx
=







∂gi

∂x1
∂gi

∂x2







. (B.4)

The second differential

Dx {Dx F (x)[H]}[H] = Dx

{
2∑

i=1

G,i (g(x)){gi,x }TH

}

[H] =

=
2∑

j=1

2∑

i=1

G,ij
(
{gj,x }TH

) (
{gi,x }TH

)
+

2∑

i=1

G,i

{
d2gi

dx dx
H

}T

H =

= HT
[
G,11 g1,x {g1,x }T + 2G,12 g1,x {g2,x }T +G,22 g2,x {g2,x }T

]
H+

+ HT [G,1 g1,xx +G,2 g2,xx ]H ≥ 0 (B.5)
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has to be non-negative if the yield function is convex. If the first expression of inequality (B.5)

is reordered, (B.5) results in

Dx

{
2∑

i=1

G,i (g(x)){gi,x }TH

}

[H] =

=
{
(HTg1,x ) (HTg2,x )

}

[

G,11 G,12

G,21 G,22

]{
(HTg1,x )
(HTg2,x )

}

+HT [G,1 g1,xx +G,2 g2,xx ]H ≥ 0

(B.6)

In other words, F (x) is convex if

• G(g) is non-decreasing in each argument (G,1 ≥ 0, G,2 ≥ 0),

• G(g) is convex,

• and, gi(x), i = 1, 2, are convex.

This proposition is stated by BOYD AND VANDENBERGHE [21], where the proof is left to the

reader. In order to complete the proof in view of Eq. (3.49), we have to show the fulfillment of

the statements mentioned above.

Monotonicity of G(g1, g2) The first condition of a non-decreasing function

G(g1, g2) = ck ln

(
eg1/(ck) + eg2/(ck)

2

)

(B.7)

is apparently given by the first derivatives

G,1 =
eg1/(ck)

eg1/(ck) + eg2/(ck)
> 0, G,2 =

eg2/(ck)

eg1/(ck) + eg2/(ck)
> 0. (B.8)

Convexity of G(g1, g2) In order to show the convexity of G(g1, g2), the Hessian matrix G,gg

has to be positive semi-definite implying the non-negativity of the diagonal elements G,11 ≥ 0
and G,22 ≥ 0 and the non-negativity of the determinant, G,11 G,22 −G,212 ≥ 0. The components

of the Hessian read:

G,11 = G,22 = −G,12 =
e(g1+g2)/(ck)

ck (eg1/(ck) + eg2/(ck))
2 > 0 (B.9)

The determinant of the Hessian matrix is obviously zero and the diagonal terms are positive for

c > 0 and k > 0.

Convexity of g1(x) The convexity of the ellipsoid g1(x1, x2) defined in Eq.(3.46) implies again

the coefficients of the Hessian matrix:

∂2g1

∂x1
2 =

x2
2α

(x2
2 + α(x1 − 3ξ)2)

3/2
(B.10)

∂2g1

∂x2
2 =

α(x1 − 3ξ)2

(x2
2 + α(x1 − 3ξ)2)

3/2
(B.11)

∂2g1

∂x1∂x2

= − x2α(x1 − 3ξ)

(x2
2 + α(x1 − 3ξ)2)

3/2
(B.12)
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Even in this case the determinant of the Hessian is zero, det[g1,xx ] = 0, and the diagonal terms

are non-negative for α > 0 and x2 =
√
J2 ≥ 0, which is given in view of its physical (geometri-

cal) meaning.

Convexity of g2(x) A similar behavior stems from the exponential function (3.47) yielding

∂2g2

∂x1
2 = A2A

2
3e

A3x1 > 0,
∂2g2

∂x2
2 =

∂2g2

∂x1∂x2
= 0. (B.13)

This leads again to the determinant det[g2,xx ] = 0. In view of the definitions (3.44), A2 > 0
apparently holds.

In conclusion, in the case of a combination of the two convex yield functions g1 and g2 the

resulting interpolated yield function is also convex.
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Appendix C

Study of a specific ODE

In Eq.(3.83) we have an ordinary differential equation of the type

α′(s) = Ω/α(s) − bDα(s), initial conditions α(0) = α0 > 0. (C.1)

Although Ω > 0 is in the original expression process-dependent, we assume that Ω is constant

(i.e. it is assumed that the resulting ODE behaves similar). s defines the plastic arc-length (see

definition (3.72)). The analytical solution of this ODE reads

α(s) =

√

Ω − (Ω − bDα
2
0)e

−2bDs

βD
, (C.2)

i.e. the equilibrium state of the ODE, α′(s) = 0, achieves the value

α∗ = lim
s→∞

α(s) =
√

Ω/bD. (C.3)

In Fig. C.1 a parameter study is shown for α0 = 1. In other words, for positive initial conditions

 0.5

 1

 1.5

 0  5  10

plastic arc-length s

α
(s

)

Ω = 1, bD = 1
Ω = 2, bD = 1
Ω = 1, bD = 2

Figure C.1: Study of the ODE in (C.1)

the quantity α can not become negative. This study of the ODE (3.83) has already been published

in BIER AND HARTMANN [19] but is repeated here for the sake of completeness.
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Appendix D

Analytical consistent tangent

In view of the proposed stress algorithms, which are based on Newton-like procedures on local

Gauss-point level, and the related consistent tangent operator various derivatives are necessary.

These expressions are summarized in the following. We start with the derivatives denoted term I

and term II of the elasticity relation with respect to C and Cp appearing in (5.118) which defines

the consistent tangent matrix dh̃
dC

term I :
∂h̃

∂C
=

1

2
Λ
[
C−1 ⊗ C−1

]
−
(

1

2
Λ ln det(C−1

p C) − µ

)
[
C−1 ⊗C−1

]T23
(D.1)

term II :
∂h̃

∂Cp

= −µ
[
C−1

p ⊗C−1
p

]T23 − 1

2
Λ
[
C−1 ⊗ C−1

p

]
. (D.2)

The term III in equation (5.118) results from the solution of the linear system of equations

(5.122). The functional matrix on the left hand side of equation (5.122) is composed of the

partial derivatives of Lp, Lα and LF with respect to Cp, α and ζ where Lp, Lα and LF are the

Eqns. (5.115)-(5.117) recapped here for the sake of comprehensibility

Lp = Cni
p − C(n)

p − ζh1

(
C,Cni

p , α
ni
)

= 0 (D.3)

Lα = αni − α(n) − ζh2

(
C,Cni

p , α
ni
)

= 0 (D.4)

LF = F rvp − ζσ
rvp

0

η

∆tnaii

= 0 (D.5)

with the abbreviations

h1 = 2

[{(
∂F

∂I1

)

−
(
∂F

∂J2

)
1

3
µtr (CC−1

p )

}

Cp +

{(
∂F

∂J2

)

µ

}

C

]

(D.6)

h2 =

[
cd

α

{(
∂F

∂I1

)

(I1 − 3ξ) + 2J2

(
∂F

∂J2

)}

− αbdχ

]

(D.7)

χ =

√

3

(
∂F

∂I1

)2

+ 2J2

(
∂F

∂J2

)2

. (D.8)

All the derivatives will be given below after recapitulating the yield function and its derivatives

with respect to the invariants I1 and J2 of the Mandel stress tensor which are expressed as func-
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tions of Cp and C:

I1 = µtr (CC−1
p ) + 3

(
1

2
Λ ln det(C−1

p C) − µ

)

(D.9)

J2 =
1

2
µ2

(

CC−1
p · C−1

p C − 1

3

(
tr (CC−1

p )
)2
)

(D.10)

The yield function reads, as specified Eqns. (3.46)-(3.48),

F (I1,
√

J2) = ck ln




e

g1(I1,
√

J2)

ck + e
g2(I1,

√
J2)

ck

2



 (D.11)

with the two partial yield function expressions

g1(I1,
√

J2) =

√

J2 + α (I1 − 3ξ)2 − k, g2(I1,
√

J2) =
√

J2 + δ − k + A2e
A3I1 (D.12)

using furthermore the abbreviations

k =

√

α (I0 − 3ξ)2, A2 =
k

(
1 −

√
1 − r2

)
“

I0
3ξ−(rk/

√
α)−I0

” , A3 =
ln
(

k
A2

)

I0
(D.13)

and the hardening variable

ξ = −a1

a2
e−a2rK + cKrK, rK = ln

(√

det Cp

)

. (D.14)

Additionally, the derivatives of the yield function with respect to the first and second invariant I1
and J2 are required in Eq. (D.6)-(D.8), these read

∂F

∂I1
= w1

∂g1

∂I1
+ w2

∂g2

∂I1
,

∂F

∂J2

= w1
∂g1

∂J2

+ w2
∂g2

∂J2

(D.15)

with

w1 =
e

g1
ck

e
g1
ck + e

g2
ck

, w2 =
e

g2
ck

e
g1
ck + e

g2
ck

(D.16)

and

∂g1

∂I1
=

α (I1 − 3ξ)
√

J2 + α (I1 − 3ξ)2
,

∂g1

∂J2
=

1

2
√

J2 + α (I1 − 3ξ)2
(D.17)

∂g2

∂I1
= A2e

A3I1A3,
∂g2

∂J2
=

1

2
√

J2 + δ
. (D.18)

D.1 Derivatives appearing in the functional matrix

The derivatives which appear in the functional matrix of a Newton-like stress algorithm as well

as in the coefficient matrix of the linear system (5.122) read:

∂Lp

∂Cp

= 1 − ζ
∂h1

∂Cp

,
∂Lp

∂α
= −ζ ∂h1

∂α
,

∂Lp

∂ζ
= −h1 (D.19)

∂Lα

∂Cp

= −ζ
(
∂h2

∂Cp

)T

,
∂Lα

∂α
= 1 − ζ

∂h2

∂α
,

∂Lα

∂ζ
= −h2 (D.20)

∂LF

∂Cp

= rvpF
(rvp−1)

(
∂F

∂Cp

)T

,
∂LF

∂α
= rvpF

(rvp−1)∂F

∂α
,

∂LF

∂ζ
= −σrvp

0

η

∆taii

(D.21)
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D.1.1 Derivatives with respect to Cp

The expressions (D.19)-(D.21) contain derivatives with respect to Cp, which read

∂h1

∂Cp

= 2

([

Cp ⊗
∂A

∂Cp

]

+ A
4

1 +

[

C ⊗ ∂B

∂Cp

])

, (D.22)

∂h2

∂Cp

=
cd

α

∂D

∂Cp

− αbd

∂χ

∂Cp

, (D.23)

∂F

∂Cp

= −3
√
αc ln

(
eg1/(ck) + eg2/(ck)

2

)
∂ξ

∂Cp

+ w1
∂g1

∂Cp

+ w2
∂g2

∂Cp

+ w1
3
√
αg1

k

∂ξ

∂Cp

+ w2
3
√
αg2

k

∂ξ

∂Cp

. (D.24)

Here the abbreviations

A =
{

F,I1 − F,J2

µ

3
tr
(
CC−1

p

)}

, (D.25)

B = {µF,J2} , (D.26)

D = {(I1 − 3ξ)F,I1 + 2J2F,J2} (D.27)

(D.28)

are introduced implying the derivatives

∂A

∂Cp

=
∂F,I1

∂Cp

− µ

3

[

(
trCC−1

p

) ∂F,J2

∂Cp

+ F,J2

∂
(
tr
(
CC−1

p

))

∂Cp

]

, (D.29)

∂B

∂Cp

= µ
∂F,J2

∂Cp

, (D.30)

∂D

∂Cp

= F,I1

(
∂I1

∂Cp

− 3
∂ξ

∂Cp

)

+ (I1 − 3ξ)
∂F,I1

∂Cp

+ 2F,J2

∂J2

∂Cp

+ 2J2
∂F,J2

∂Cp

. (D.31)

(D.32)

In the aforementioned derivatives the expressions

∂
(
trCC−1

p

)

∂Cp

=
∂

∂Cp

(
C · C−1

p

)
= −C−1

p CC−1
p , (D.33)

∂Cp

∂Cp

=
4

1, (D.34)

∂I1

∂Cp

=

(

−µC−1
p CC−1

p − 3

2
ΛC−1

p

)

, (D.35)

∂J2

∂Cp

= −µ2

(

C−1
p CC−1

p CC−1
p − 1

3
tr
(
CC−1

p

)
C−1

p CC−1
p

)

, (D.36)

∂ξ

∂Cp

=
∂ξ

∂rK

∂rK

∂Cp

=
(
a1e

−a2rK + cK

) 1

2
C−1

p (D.37)
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are introduced. In Eqns. (D.22)-(D.23) and (D.29) - (D.31) several derivatives with respect to Cp

appear. These are in particular

∂F,I1

∂Cp

=
∂w1

∂Cp

(g1,I1 − g2,I1) + w1
∂g1,I1

∂Cp

+ w2
∂g2,I1

∂Cp

, (D.38)

∂F,J2

∂Cp

=
∂w1

∂Cp

(g1,J2 − g2,J2) + w1
∂g1,J2

∂Cp

+ w2
∂g2,J2

∂Cp

, (D.39)

∂χ

∂Cp

=
1

2

(
3F 2

,I1 + 2J2F
2
,J2

)−1/2
[

6F,I1

∂F,I1

∂Cp

+ 4J2F,J2

∂F,J2

∂Cp

+ 2F 2
,J2

∂J2

∂Cp

]

(D.40)

(D.41)

implying the derivatives:

∂w1

∂Cp

= w1w2

[
1

ck

(
∂g1

∂Cp

− ∂g2

∂Cp

)

− 1

ck2
(g1 − g2)

∂k

∂Cp

]

, (D.42)

∂w2

∂Cp

= −∂w1

∂Cp

(D.43)

(D.44)

Furthermore, the chain-rule is applied to get

∂g1,I1

∂Cp

=
∂g1,I1

∂I1

∂I1

∂Cp

+
∂g1,I1

∂J2

∂J2

∂Cp

+
∂g1,I1

∂ξ

∂ξ

∂Cp

(D.45)

in Eq. (D.38), i.e. the derivative of the ellipsoidal part. The right-hand sides of the summands in

(D.45) are already given in Eqns. (D.35)-(D.37), whereas the left-hand sides read:

∂g1,I1

∂I1
=

α
(
J2 + α (I1 − 3ξ)2)1/2

− α2(I1 − 3ξ)2

(
J2 + α (I1 − 3ξ)2

)3/2
, (D.46)

∂g1,I1

∂J2
= − α (I1 − 3ξ)

2
(
J2 + α (I1 − 3ξ)2

)3/2
, (D.47)

∂g1,I1

∂ξ
= − 3α

(
J2 + α (I1 − 3ξ)2

)1/2
+

3α2 (I1 − 3ξ)2

(
J2 + α (I1 − 3ξ)2

)3/2
. (D.48)

Furthermore, in Eq. (D.38)

∂g2,I1

∂Cp

= A2A
2
3e

A3I1
∂I1

∂Cp

+

[

A3e
A3I1

∂A2

∂ξ
+ A2e

A3I1
∂A3

∂ξ
+ A2A3I1e

A3I1
∂A3

∂ξ

]
∂ξ

∂Cp

(D.49)

is required implying the derivatives of the abbreviation A2 and A3 defined in Eq. (D.13):

∂A2

∂ξ
= −3

(
1 −

√
1 − r2

) I0
(1+r)(I0−3ξ)

√
α
(
(1 + r) (I0 − 3ξ) − I0 ln

(
1 −

√
1 − r2

))

(1 + r) (I0 − 3ξ)
(D.50)

∂A3

∂ξ
= −3 ln

(
1 −

√
1 − r2

)

(1 + r) (3ξ − I0)
2 . (D.51)
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Eq. (D.39) necessitates the derivatives

∂g1,J2

∂Cp

=
(
J2 + α (I1 − 3ξ)2

)−3/2
[
3α (I1 − 3ξ)

2

∂ξ

∂Cp

− α (I1 − 3ξ)

2

∂I1

∂Cp

− 1

4

∂J2

∂Cp

]

, (D.52)

∂g2,J2

∂Cp

= −1

4
(J2)

−3/2 ∂J2

∂Cp

. (D.53)

Lastly, Eq. (D.42) implies both the derivative

∂g1

∂Cp

= g1,I1

∂I1

∂Cp

+ g1,J2

∂J2

∂Cp

+
∂g1

∂ξ

∂ξ

∂Cp

(D.54)

which requires
∂g1

∂ξ
= − 3α (I1 − 3ξ)

√

J2 + α (I1 − 3ξ)2
+

3α (I0 − 3ξ)
√

α (I0 − 3ξ)2
, (D.55)

and the derivative

∂g2

∂Cp

= g2,I1

∂I1

∂Cp

+ g2,J2

∂J2

∂Cp

+
∂g2

∂k

∂k

∂Cp

+
∂g2

∂A2

∂A2

∂Cp

+
∂g2

∂A3

∂A3

∂Cp

(D.56)

with

∂g2

∂k
= −1,

∂g2

∂A2
= eA3I1,

∂g2

∂A3
= A2I1e

A3I1 , (D.57)

∂k

∂Cp

= −3
√
α
∂ξ

∂Cp

,
∂A2

∂Cp

=
∂A2

∂ξ

∂ξ

∂Cp

,
∂A3

∂Cp

=
∂A3

∂ξ

∂ξ

∂Cp

(D.58)

using the derivatives (D.50) and (D.51).

D.1.2 Derivatives with respect to α

In the functional matrix of (5.118) some derivatives with respect toα are required, see Eqns. (D.19)-

(D.21). Here we start with the derivatives of the functions h1, h2 and F defined in Eqns.(D.6),

(D.7) and (D.11):

∂h1

∂α
= 2

[(
∂F,I1

∂α
− µ

3
tr
(
CC−1

p

) ∂F,J2

∂α

)

Cp + µ
∂F,J2

∂α
C

]

(D.59)

∂h2

∂α
= − cD

α2
D +

cD

α

∂D

∂α
− bD

(

χ+ α
∂χ

∂α

)

(D.60)

∂F

∂α
= c ln

(
eg1/(ck) + eg2/(ck)

2

)
∂k

∂α
+ w1

∂g1

∂α
+ w2

∂g2

∂α
− w1

g1

k

∂k

∂α
− w2

g2

k

∂k

∂α
(D.61)

In Eq. (D.59) additional derivatives with respect to α occur reading

∂F,I1

∂α
=
∂w1

∂α
(g1,I1 − g2,I1) + w1

∂g1,I1

∂α
+ w2

∂g2,I1

∂α
, (D.62)

∂F,J2

∂α
=
∂w1

∂α
(g1,J2 − g2,J2) + w1

∂g1,J2

∂α
+ w2

∂g2,J2

∂α
(D.63)
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with the further derivatives

∂w1

∂α
=
w1w2

ck2

[

k

(
∂g1

∂α
− ∂g2

∂α

)

+
∂k

∂α
(g2 − g1)

]

= −∂w2

∂α
(D.64)

∂g1,I1

∂α
=

(I1 − 3ξ)
√

J2 + α (I1 − 3ξ)2 − α (I1 − 3ξ)3 1
2

(
J2 + α (I1 − 3ξ)2

)−1/2

J2 + α (I1 − 3ξ)2
(D.65)

∂g2,I1

∂α
= A3e

A3I1
∂A2

∂α
(D.66)

∂g1,J2

∂α
= −1

4

(
J2 + α (I1 − 3ξ)2

)−3/2
(I1 − 3ξ)2 (D.67)

(D.68)

exploiting the properties ∂g2,J2/∂α = 0 and ∂A3/∂α = 0. Eqns. (D.64) and (D.66), however,

require

∂g1

∂α
=

1

2

(
J2 + α (I1 − 3ξ)2

)−1/2
(I1 − 3ξ)2 − ∂k

∂α
(D.69)

∂g2

∂α
= −∂k

∂α
+
∂A2

∂α
eA3I1 (D.70)

∂A2

∂α
=

(I0 − 3ξ)
(
1 −

√
1 − r2

) I0
(1+r)(3ξ−I0)

1

2
√
α

(D.71)

∂k

∂α
=

(I0 − 3ξ)

2
√
α

(D.72)

(D.73)

and, finally, Eq. (D.60) contains the derivatives

∂D

∂α
= (I1 − 3ξ)

∂F,I1

∂α
+ 2J2

∂F,J2

∂α
, (D.74)

∂χ

∂α
=
(
3F 2

,I1 + 2J2F
2
,J2

)−1/2
(

3F,I1

∂F,I1

∂α
+ 2J2F,J2

∂F,J2

∂α

)

(D.75)

D.2 Derivatives with respect to C

The derivatives in the right-hand side of Eq. (5.122) read

∂Lp

∂C
= −ζ ∂h1

∂C
,

∂Lα

∂C
= −ζ ∂h2

∂C
,

∂LF

∂C
= rvpF

rvp−1 ∂F

∂C
. (D.76)

These contain the following derivatives with respect to the right Cauchy-Green tensor C:

∂h1

∂C
= 2

{[

Cp ⊗
∂F,I1

∂C

]

− 1

3
µtr (CC−1

p )

[

Cp ⊗
∂F,J2

∂C

]

−1

3
µF,J2

[
Cp ⊗C−1

p

]
+ µ

[

C ⊗ ∂F,J2

∂C

]

+ µF,J2

4

1

}

(D.77)

∂h2

∂C
=
cD

α

(

F,I1

∂I1

∂C
+ (I1 − 3ξ)

∂F,I1

∂C
+ 2F,J2

∂J2

∂C
+ 2J2

∂F,J2

∂C

)

− αbD

∂χ

∂C
(D.78)

∂F

∂C
= w1

∂g1

∂C
+ w2

∂g2

∂C
(D.79)

(D.80)



D.2 Derivatives with respect to C 141

Here, use has been made of
∂
(
trCC−1

p

)

∂C
= C−1

p (D.81)

and the property (R · S)T = [T ⊗ R]S, where R, S and T are second order tensors and the dot

symbolizes the inner product of two second order tensors. In Eq. (D.77) the derivatives

∂F,I1

∂C
=
∂w1

∂C
(g1,I1 − g2,I1) + w1

∂g1,I1

∂C
+ w2

∂g2,I1

∂C
, (D.82)

∂F,J2

∂C
=
∂w1

∂C
(g1,J2 − g2,J2) + w1

∂g1,J2

∂C
+ w2

∂g2,J2

∂C
(D.83)

with

∂w1

∂C
= w1w2

[
1

ck

(
∂g1

∂C
− ∂g2

∂C

)]

, (D.84)

∂g1,I1

∂C
=
∂g1,I1

∂I1

∂I1

∂C
+
∂g1,I1

∂J2

∂J2

∂C
, (D.85)

∂g1,J2

∂C
=
∂g1,J2

∂I1

∂I1

∂C
+
∂g1,J2

∂J2

∂J2

∂C
(D.86)

and

∂g2,I1

∂C
=
∂g2,I1

∂I1

∂I1

∂C
+
∂g2,I1

∂J2
︸ ︷︷ ︸

=0

∂J2

∂C
=
∂g2,I1

∂I1
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are required implying the additional derivatives
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with

∂I1
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= µC−1

p +
3

2
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Finally, Eq. (D.78) needs
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Appendix F

List of symbols

In this Section almost all symbols appearing in the thesis are collected. Only some symbols

which appaer only once or in a very small part of the thesis or in the citation of the work of

others have been excluded from this collection. The enumeration of the symbols starts with

scalar quantities then vector valued quantities after that tensor valued quantities and then matrices

and column matrices after that miscellaneous quantities and mathematical operators. In each

subsection the symbols are listed in alphabetical order starting with greek letters, then latin letters

and finally caligraphic letters.

F.1 Scalar quantities

α, α0 internal variable and its initial value

β parameter of Drucker-Prager surface

β damping or line search parameter

γ entropy production density

δ smoothing parameter in yield function

εr, εa realtive and absolute error tolerances

ε parameter of line search algorithm

ζ abbreviation in equations after time discretization

η parameter for expansion of model to viscoplasticity

θ Haigh-Westergaard coordinate, see also π, ̺
κ yield strength (parameter of von Mises yield function)

λ plastic multiplier

λ̃ constitutive function in expansion to viscoplasticity

λ axial stretch

λ continuation parameter in embedded Newton algorithm

λp plastic stretch axial

λpq plastic stretch radial

λ0 axial stretch where unloading starts

µ elasticity parameter

µ mean value of elasticity parameter from experiments

ν elasticity parameter, Poisson ratio

ν parameter of line search algorithm

ξ parameter of new yield surface (centre of ellipsoid)

π Haigh-Westergaard coordinate, see also θ, ̺
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̺ Haigh-Westergaard coordinate, see also π, θ
ρ(x, t) spatial density distribution

ρR(X) density distribution in reference configuration

ρrel relative density

ρparticle material density of particle material

ρR,rel relative density in the reference configuration

σ0 parameter for expansion of model to viscoplasticity

σ volume distributed entropy supply to material body

σk, k = 1, 2, 3 principal stresses of T

σY uniaxial yield strength of base material in micromechanical models

σY uniaxial yield strength of die material

σaxial axial Cauchy stress measured in die compaction

σradial radial Cauchy stress measured in die compaction

τ time parameter of unit time interval

τmax, τ
(k) (maximum) step size of homotopy Newton method

ϕ̂(β) merit function in line search algorithm

ϕ(Q) minimization problem in line search algorithm

ψ̂ free energy

ψ̂e, ψ̂p elastic, plastic part of free energy

Γ entropy production within material body

∆d = 2∆r radial expansion of die

Θ invariant of stress tensor (alternative to invariant θ)

Λ elasticity parameter

Λ mean value of elasticity parameter from experiments

Σ entropy flux

Σm mean stress (micromechanical model)

Σe deviatoric stress measure (micromechanical model)

aij , bi, ci coefficients of Runge-Kutta method

a1, a2 parameters in constitutive equation ξ(rK)
bD, cD parameters in evolution equation for α
cK parameters in constitutive equation ξ(rK)
c interpolation parameter (log-interpolation)

dV, dv volume element in reference and in current configuration

e internal energy density

eu error norm for nodal displacements

eq error norm for internal variables

em maximum of eu and eq

fmin, fmax, fsafety factors in step size control algorithm

g1, g2 parts of reformulated yield function

h, h0 height of powder in die, initial height of powder

k abbreviation in new yield surface

m(B, t) mass of material body B
n porosity n = 1 − ρrel

nnodes number of finite elements nodes

ndof number of degrees of freedom

nu number of unknown nodal displacements

np number of prescribed nodal displacements
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ni number of all integration (Gauss) points

nq number of internal variables at each Gauss-point

nQ number of all internal variables from all Gauss-points

pY macroscopic yield strength

p hydrostatic pressure p = −1
3
I1

pc parameter of Cam-clay model (isostatic yield strength)

p, p̂ order of Runge-Kutta method

q deviatoric stress measure q =
√

3J2

q1, q2 parameters in modified Gurson model

q heat flux density

q(h) factor between σradial and ∆d as a function of the powder height h
r volume distributed heat supply

r parameters of new yield surface

rcrit parameter in Newton algorithm with damping

rvp parameter for expansion of model to viscoplasticity

rD, rK strain like internal variables

s entropy density of material body

s stage of Runge-Kutta method

ṡ rate of plastic arc-length

t time

t0 start time

uaxial axial displacement of punch

upow

axial axial displacement of punch due to powder compaction

usys
axial axial displacement of punch due to system compliance

wj , wk, wl weights of Gauss integration

x1, x2, x3 components of x

x0 intersection point (new yield function)

A1, A2, A3 abbreviations (parameters) of new yield surface

Ac average contact area between particles (micro-mechanical models)

A,B,C coefficients in ellipsoidal yield function

Baxial slope of unloading curve (σaxial)

Bradial slope of unloading curve (σradial)

D0, D (initial) relative density of particle assemblage (micro-mechanical model)

E internal energy content of material body

E elasticity parameter, Young’s modulus

F i
j components of F

F, F̂ yield function

Fh part of yield function defining shape in hydrostatic plane

Fd part of yield function defining shape in deviatoric plane

G(g1, g2) reformulated yield function

H total entropy exchange of material body with surroundings

H position of axial expansion sensor

I1, I2, I3 invariants of T

I1 first invariant of Mandel stress tensor

I0 parameters of new yield surface, intersection with hydrostatic axis

Iis intersection point of ellipse and exponential part of yield surface

J determinant of F
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Je determinant of F̂e

J2, J3 invariants of the deviator TD of T

J2 second invariant of deviator of Mandels stress tensor

K kinetic energy content of material body

M parameter of Cam-clay model (slope)

Pa power of external forces acting on material body

Q heat flux into material body

Qi component of Q

Qi,min constraint for ith component of Q

S entropy content of material body

T end time of time interval

T temperature of material body

TC tension cut off parameter of multi surface cap yield function

X1, X2, X3 components of X

Y yield strength cut off parameter of multi surface cap yield function

Z average number of contacts of individual particle (micro-mechanical model)

Dp plastic dissipation

DK ,DD parts of plastic dissipation

F.2 Vector valued quantities

δu virtual displacements

δh virtual spatial displacement gradient

δu virtual nodal displacements

Σ entropy flux vector

c(t) time dependent translation

dX, dx tangent vector of material line in reference and current configuration

dA, da surface element in reference configuration, in current configuration

df current force vector

~er, ~eϑ, ~ez basis vectors of cylindrical coordinate system

g1, g2, g3 basis system of the current configuration

g spatial temperature gradient

k volume distributed external force (ususally gravitational forces)

n, nR surface normal

~nk, k = 1, 2, 3 principal directions of T

q, qR Cauchy heat flux vector, heat flux vector of reference configuration

q internal variables

t Cauchy stress vector

tR Piola stress vector

u displacement vector

v(x, t) spatial velocity field

x spatial position vector of material point

G1, G2, G3 basis system of the reference configuration

X position of material point in reference configuration
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F.3 Second and higher order tensor quantities

ǫ general strain measure

ǫp general plastic strain measure

σ general stress measure

Γ̂ strain tensor of plastic intermediate configuration

Γ̂e elastic part of strain tensor Γ̂

Γ̂p plastic part of strain tensor Γ̂

Λ velocity gradient based on Fa

Π transformed strain tensor
△
Π transformed strain rate tensor

Σ transformed stress tensor
▽
Σ transformed stress rate tensor

a Finger tensor

b left Cauchy Green tensor

e Piola tensor

h̃ elasticity relation

A Almansi strain tensor

Ae elastic part of Almansi tensor A

Ap plastic part of Almansi tensor A

C right Cauchy Green tensor

Ĉe elastic right Cauchy Green tensor

Cp plastic right Cauchy Green tensor

D strain rate tensor

Dp symmetric part of plastic velocity gradient, plastic strain rate tensor

E Green strain tensor

F deformation gradient

F̂e elastic part of F = F̂eFp

Fp plastic part of F = F̂eFp

Fa part of deformation gradient F = (FF−1
a )Fa (multiplicative decomposition)

I second order unity tensor

L spatial velocity gradient

Lp velocity gradient based on Fp

P̂ Mandel stress tensor

R orthogonal part of F = RU = VR

S weighted Cauchy stress tensor

T Cauchy stress tensor

TR first Piola-Kirchhoff stress tensor

T̃ second Piola-Kirchhoff stress tensor

T̂ stress tensor of intermediate configuration

U right stretch tensor

Ue elastic right stretch tensor

V left stretch tensor

W spin or vorticity tensor
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F.4 Matrices and column matrices

δ, δ̂ local integration error

ξjkl coordinates of Gauss-point j,k,l

∆U increment of vector of nodal displacements (from Newton iteration)

∆Q increment of Q in local iteration

∆C total increment of LV C in homotopy Newton algorithm

Φ, Φ̂ increment function of Runge-Kutta method

Ψ(tn, y) function to compute local integration error

f vector valued function (explicit ODE)

g algebraic equation system

p(t) prescribed external forces

qerr vector of local integration error in internal variables

q,q0 (initial) vector of internal variables

qe
jkl internal variables of Gauss-point j, k, l in the element e

r right hand side of differential part of equations system

r̃ right-hand side of differential part of DAE-system

uerr vector of local integration error in nodal displacements

u,u0 (initial) vector of nodal displacements

uh finite elments approximation of displacements

uj displacement vector of node j
ua vector of all nodal displacements

ue vector of nodal displacements of element e
y vector of unknowns

y0 vector of initial values

yn vector of unknowns at time tn
yn+1 vector of unknowns at time tn+1

yerr vector of local integration error

A, Ã coefficient matrix of differential part of DAE-system

Be strain displacement matrix of element e
Be

NL nonlinear part of strain displacement matrix in element e
C(U) vector representation of right Cauchy Green tensor

Ce
vector representation of right Cauchy-Green tensor

F vector valued function (implicit ODE)

Fe
23 matrix representation of push-forward operator

G global nonlinear system of equations

Gni part of nonlinear system resulting from algebraic part of DAE-system

in stage ni of Runge-Kutta method

J jacobian of local nonlinear system

Je Jacobian of coordinate transformation to reference element

L local nonlinear system of equations

Lni part of nonlinear system resulting from differential part of DAE-system

in stage ni of Runge-Kutta method

L local system of non-linear equations

L
e(jkl)
ni non-linear system at Gauss-point jkl in element e in stage i

of nth time step of DIRK-method

Me
S matrix in tangent from geometrical non-linearity
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Na matrix of ansatz functions

N matrix of ansatz functions for free nodal displacements

N matrix of ansatz functions for prescribed nodal displacements

Ne matrix of ansatz functions of element e
Q vector of internal variables

Qni Unknown internal variables in stage ni of Runge-Kutta method

Q local vector of internal variables

Q
e(jkl)
ni internal variables at Gauss-point jkl in element e

in stage i of nth time step of DIRK-method

Rni(Yni) resulting nonlinear system in each stage ni of the Runge-Kutta method

Sni start values of stage ni of Runge-Kutta method

S
q
ni Internal variables part of Sni

U vector of nodal displacements

Uni Unknown nodal displacements in stage ni of Runge-Kutta method

U
e(jkl)
ni displacements at Gauss-point jkl in element e in

stage i of nth time step of DIRK-method

Yni stage values of Runge-Kutta method

Ẏni stage derivatives of Runge-Kutta method

Ze,Z
e
,Ze

a coincidence marices

Ze(jkl)
q coincidence matrix for internal variables

F.5 Miscellaneous

ϕe = χe−1 mapping from reference configuration to reference element

ϕ(x, t), ϕR(X, t) production density of physical quantity

χ, χt, χt0 configuration, current configuration

χe mapping from reference element to reference configuration

π(t,u, δu, q) energy functional (principle of virtual displacements)

Γ surface of finite elements approximation of material body

Φ, ΦR flux of physical quantity in current and reference configuration

Φt0 motion of material body

Ψ, ΨR physical quantity in current and reference configuration

Ω volume of finite elements approximation of material body

Ωref domain of reference element

Ωe, dΩe domain of element e and infinitesimal volume element of element e
p(x, t), pR(X, t) production density of physical quantity

B, Bt0 Bt material body, in initial configuration, in current configuration

P material point

K set of configurations

R reference configuration
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F.6 Mathematical operators

∂x
∂y

partial derivative of x with respect to y

dx
dy

total derivative of x with respect to y

f ′(x) derivative of f with respect to x
Grad gradient (with respect to material coordinates)

grad gradient (with respect to spatial coordinates)

Div divergence (with respect to material coordinates)

div divergence (with respect to spatial coordinates)

Ȧ, ˙expr. material time derivative of A or expression expr.
△
A lower convected Oldroyd rate of A
▽
A upper convected Oldroyd rate of A

detA determinant of A

AT transposition of A

A−1 inversion of A

AD deviator of A

trA = Aii trace of A
∫

V
,
∫

v
integral over volume of material body in reference (current) configuration

∫

A
,
∫

a
integral over surface of material body in reference (current) configuration

ln natural logarithm

⊗ dyadic product

A · B inner product of two second order tensors

‖expr.‖ norm of expr.
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