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Deutschsprachige Zusammenfassung der Dissertation

»A Constitutive Model for Metal Powder and its
Numerical Treatment using Finite Elements‘

»Ein Konstitutives Modell fiir Metallpulver und
dessen Numerische Behandlung mittels Finiter Elemente*

Die Zuwachsraten bei der Herstellung mechanischer Werkstiicke auf pulvermetallurgischem
Weg sind seit Jahren hoch. Darum wird es immer wichtiger in der Designphase neuer Teile kost-
spielige und zeitraubende “trial and error”’-Experimente zur Auffindung optimaler Bedingungen
fiir das Pressen der Teile, durch numerische Simulation des Pressprozesses zu ersetzen. Die
Qualitdt der Simulationsergebnisse hingt von der Qualitidt der verwendeten Konstitutivgleich-
ungen (Materialmodell) ab. Es muss in der Lage sein, das mechanische Verhalten des Metall-
pulvers wihrend des Pressens hinreichend genau zu beschreiben. Von gleicher Bedeutung fiir
die Anwendbarkeit der numerischen Simulation ist die robuste und effiziente Implementation
der Modellgleichungen. Dariiber hinaus ist der Einsatz effizienter Losungsverfahren fiir das
Anfangsrandwertproblem (ARWP), welches aus den Gleichgewichtsbedingungen, den Konsti-
tutivgleichungen und den Anfangs- und Randbedingungen eines Pressprozesses gebildet wird,
notwendig.

Nach einer Einfiihrung und Abgrenzung des Themas der Arbeit in der Einleitung werden im
zweiten Kapitel die benotigten kontinuumsmechanischen Grundlagen fiir die Beschreibung des
Metallpulverpressens bereitgestellt. Hierzu gehort eine fiir grole Deformationen geeignete kine-
matische Formulierung. Weiterhin werden die Bilanzgleichungen, aus denen sich das Prinzip der
virtuellen Verschiebungen ableiten lédsst, welches ein moglicher Startpunkt fiir die numerische
Losung der Anfangsrandwertprobleme der Festkorpermechanik ist, angegeben. Anschlie3end
werden einige der spiter angewandten Regeln und Konzepte zur Formulierung von Konstitutiv-
gleichungen eingefiihrt, wie zum Beispiel das von HAUPT und TSAKMAKIS entwickelte Konzept
der dualen Variablen, welches auf die multiplikative Zerlegung des Deformationsgradienten
angewendet wird.

Auf der Basis dieser fundamentalen Konzepte wird im dritten Kapitel die Entwicklung des
Konstitutivmodells beschrieben. Hierbei steht zunédchst die neu entwickelte FlieBfldche als zen-
trales Element des entwickelten Elastoplastizitdtsmodells im Vordergrund. Sie kann als glatte
Verbindung eines in der Literatur vorgeschlagenen Ellipsoids sowie einer ebenfalls etablierten
exponentialen Versagenslinie aufgefasst werden. Die beiden Teile werden mit Hilfe einer log-
arithmischen Interpolation zu einer einzigen FlieBflache verschmolzen. Weiterhin wird fiir den
entwickelten Satz an Konstitutivgleichungen, welche ein Modell der finiten druckabhéngigen
Elastoplastizitédt darstellen, explizit gezeigt, dass sie in Einklang mit der Clausius-Duhem Un-
gleichung stehen und in diesem Sinne thermodynamisch konsistent sind. Die nachfolgend be-
schriebene Verallgemeinerung des Materialmodells auf ein Modell der Viskoplastizitidt im Sinne
einer Perzyna-Typ Verallgemeinerung wird vorrangig betrieben, um die Auswirkungen dieses
Schrittes auf die numerische Losbarkeit zu studieren. In der Tat werden positive Effekte bei der
Stabilitidt der durchgefiihrten Testrechnungen durch die eingefiihrte Viskositit erzielt.

Das vierte Kapitel behandelt die Identifikation der in den Konstitutivgleichungen auftretenden
Materialparameter fiir ein Kupferpulver. Zu diesem Zweck werden zunéchst die an der Univer-
sitdt in Beer Sheva (Israel) durchgefiihrten Experimente und deren Aufbau beschrieben. An-
schlieBend erfolgt die Auswertung der Daten und die Identifikation der Materialparameter.



Das fiinfte Kapitel stellt die numerische Behandlung des Kompaktierens von Metallpulver im
Rahmen impliziter finiter Elemente Formulierungen dar. Die hierfiir benotigten mathematischen
Algorithmen werden im ersten Teil des fiinften Kapitels erortert. Zunichst werden diagonal im-
plizite Runge-Kutta Verfahren zur Losung von Algebro-Differentialgleichungssystemen erlidutert
und anschlieBend wird das Multilevel-Newton Verfahren (MLNA) zur Losung des in jeder Stufe
der DIRK-Verfahren auftretenden nichtlinearen Gleichungssystems vorgestellt. Dies stellt eine
moderne Betrachtung impliziter Finite-Elemente Verfahren auf der Basis von Materialmodellen
vom Evolutionsgleichungstyp dar. Diese Vorgehensweise offeriert zudem die Moglichkeit einer
fehlerkontrollierten Zeitintegration der gesamten Problemstellung. Innerhalb des Multilevel-
Newton Verfahrens ist die Losung eines nichtlinearen Gleichungssystems auf Gauss-Punkt Ebene
erforderlich, welches iiblicherweise mit dem klassischen Newton-Verfahren gelost wird. Da je-
doch dies aufgrund der extremen Nichtlinearititen des zugrunde liegenden Materialmodells zu
einer nicht zufriedenstellenden schlechten Konvergenz fiihrt, werden Globalisierungsstrategien
fiir das Newton-Verfahren auf Gauss-Punkt Ebene eingefiihrt. Der zweite Teil des flinften Kapi-
tels zeigt, wie die im ersten Teil besprochenen Methoden bei der numerischen Losung des zu
losenden ARWP eingesetzt werden. Nach der Raumdiskretisierung wird das sich ergebende
Algebro-Differentialgleichungssystem mit geeigneten DIRK Verfahren integriert, was in jeder
Stufe des DIRK Verfahrens die Losung eines nichtlinearen Gleichungssystems notwendig macht.
Hierbei kommt das genannte Multilevel-Newton Verfahren zum Einsatz, welches die Berech-
nung der in der Literatur bekannten konsistenten Tangente beinhaltet. Diese kann sowohl nu-
merisch als auch analytisch berechnet werden. In dieser Arbeit werden fiir das vorgestellte
Materialmodell die aufwendigen analytischen Ausdriicke (Ableitungen) hergeleitet und im An-
hang zusammengestellt.

Im sechsten Kapitel wird die Anwendbarkeit des entwickelten konstitutiven Modells sowie
der dargestellten Verfahren anhand einiger Finite-Elemente Berechnungen fiir einfache Geome-
trien dargestellt. Die Berechnungen sind mit Hilfe des FE-Programms TASA-FEM durchgefiihrt
worden, wobei die Konstitutivgleichungen in entsprechende Materialroutinen implementiert sind.

Die im Rahmen der Arbeit gewonnen Erkenntnisse werden im siebten Kapitel zusammenge-
tragen. Hierzu zihlt ein Vergleich der Spannungsalgorithmen mit den stabilisierten Newton Ver-
fahren. Hier erweist sich ein Newton-Verfahren mit "line search”-Algorithmus unter Beachtung
von Nebenbedingungen als am robustesten. Beim Vergleich der getesteten DIRK Verfahren mit
dem klassischen Backward-Euler Verfahren schneidet das Verfahren zweiter Ordnung allgemein
am besten ab, da Verfahren hoherer Zeitintegrationsgenauigkeit aufgrund eines Ordnungsre-
duktionsphinomens keine Vorteile liefern. Hiermit wurden erstmals Zeitintegrationsverfahren
hoherer Ordnung zur Losung der auftretenden Algebro-Differentialgleichungssysteme auf ein
Modell der finiten kompressiblen Elastoplastizitit sowie Viskoplastizitiit angewendet.
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Chapter 1

Introduction

1.1 Scope of the thesis

The production of mechanical parts through powder metallurgical routes is rapidly increasing.
Numerical simulation of the necessary pressing process during the design phase of new parts
can reduce or even replace costly trial and error experiments to find suitable pressing conditions,
see for example KRAFT [86], KRAFT AND YAZICI [87]. The quality of the numerical simu-
lations strongly depends on the applied constitutive model, which has to be able to capture the
mechanical behavior of the metal powder during the pressing process. Of equal importance to
the applicability of numerical simulations in the field of powder metallurgy is the robustness
and efficiency of the implementation of the constitutive model. For the simulation of realistic
compaction processes, defining initial boundary value problems (IBVP), the efficiency of the
numerical treatment of these IBVP is of equal importance.

In order to enhance the current treatment of metal powder compaction processes a collabora-
tion between five groups of scientists has been funded by the GIF! under the project title "p-FEM
for a class of pressure dependent plasticity models with application to cold isostatic pressing
(CIP)”. Besides the group in Kassel led by Dr. Hartmann, there are two groups at the Ben Gurion
University of the Negev in Beer Sheva (Israel) and two groups in Munich. The group in Beer
Sheva led by Prof. Frage provides the experimental capabilities to facilitate the development of a
constitutive model and the necessary parameter identification. The second group in Beer Sheva
led by Prof. Yosibash offers expertise in the field of numerics and explicit finite element simu-
lations. The focus of the group of Prof. Rank at the TU Miinchen lies on the application of the
p-version finite element method, which is supposed to be beneficial for the numerical treatment
of the highly non-linear powder compaction processes. The concern of Prof. Holzers group at the
Universitidt der Bundeswehr Miinchen is the shape and process conditions optimization. Further
details about the GIF project can be found in the final scientific report FRAGE ET AL. [49] and
the publications originating from the project, see Appendix E for a list of references.

As a central part of the GIF project this thesis, stemming from the work done in Kassel,
treats the development of a suitable constitutive model describing metal powder compaction pro-
cesses. This is done within the framework of continuum mechanics and implicit finite element
methods. With respect to the constitutive modeling a certain emphasis is placed on the devel-
opment of a new flexible yield function and a thermo-mechanically consistent formulation of
the material model. In order to determine the material parameters contained in the constitutive
equations several experiments are analyzed which have been set up and conducted by the part-

!German Israeli Foundation for scientific research and development
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14 Introduction

ner group of Prof. Frage in close cooperation. The second major task examined in this thesis is
the efficient numerical treatment of powder compaction processes. To this end the constitutive
model (stress algorithm) is implemented in the in-house implicit finite elements code TASA-
FEM, HARTMANN [62]. The system of equations, originating from the space discretization of
the principle of virtual displacements, can be interpreted as a coupled system of differential al-
gebraic equations (DAE) in the case of the developed constitutive model. This interpretation
gives rise to the application of, for example, diagonally implicit Runge-Kutta methods (DIRK)
methods. Furthermore, TASA-FEM features the application of efficient time adaptive integra-
tion by embedded error estimation also based on DIRK methods. The application of these higher
order time integration methods is compared to the usual Backward-Euler method in scientific
examples of compaction processes. The systems of nonlinear equations are solved with the
Multilevel-Newton algorithm at each stage of the applied DIRK methods, see HARTMANN [61],
HARTMANN [60] for a clarification of the notion Multilevel-Newton method. At each spatial
integration (Gauss) point, 1.e. on the local level of the Multilevel-Newton algorithm, a system
of nonlinear equations, containing only the internal variables of the same integration point as
unknowns, has to be solved. Often this local nonlinear system can be efficiently solved with
the Newton algorithm. Due to convergence problems of the classical Newton method several
globalization strategies for the Newton algorithm are studied in order to obtain an efficient and
robust stress algorithm. Although the application of numerical derivatives on the local as well
as on the global level (consistent tangent operator) of the Multilevel-Newton method is possible,
analytical tangents have been derived reducing the computational cost significantly.

1.2 Review of related research

The constitutive modeling and numerical treatment of powder metallurgical production processes
is much too vast a field to be treated exhaustively within a single thesis. The main focus of the
GIF project is placed on the cold isostatic pressing but due to the major importance of (uni-
axial) die compaction at ambient temperature and in view of the necessary material parameter
identification this process is considered as well. Other powder metallurgical production routes
like powder rolling, metal injection molding or hot isostatic pressing are not discussed. De-
tailed information on powder metallurgy can, for example, be found in ASM [13]. Furthermore,
the attention of this work is restricted to the pressing process. The necessary sintering process,
which is subsequently applied, has been treated by, for example, LIPPMANN AND IANKOV [98],
SVOBODA ET AL. [130]. An overview over the usual modeling of the compaction and sintering
process can be found in COCKS [31]. For warm compaction or hot isostatic pressing the consti-
tutive models have to include temperature, this has been addressed among others by LARSSON
ET AL. [92], MAHLER ET AL. [101], WIKMAN ET AL. [140], SVOBODA ET AL. [129] and
ARIFFIN ET AL. [8]. For the processes at ambient temperature like cold isostatic pressing and
die compaction, the influence of temperature can be ignored. The development of constitutive
models for metal powder compaction started about thirty years ago, extensions of the famous von
Mises yield criterion have been suggested by GREEN [52], KUHN AND DOWNEY [89], SHIMA
AND OYANE [122] to include a dependence of the yield strength on the hydrostatic component
of stress. These models have initially been developed to describe the constitutive behavior of
already sintered parts with different relative densities. Based on the works of ARZT [11] and
HELLE ET AL. [72] Fleck and coworkers proposed a micro-mechanically motivated constitutive
model to describe the compaction behavior of metal powders, FLECK ET AL. [48]. This model
has been extended afterwards among others by FLECK [47] and OGBONNA AND FLECK [104].
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Furthermore, it has been studied experimentally, for example by AKISANYA ET AL. [4]. The
micro-mechanically motivated models assume an assembly of spherical powder particles which
deform plastically. From this assumption macroscopic yield functions are derived. In STORAK-
ERS ET AL. [127] further extensions to include the effect of two different populations of spheres
with different properties are discussed and the spheres are assumed to behave viscoplastic. Since
the micro-mechanically motivated model proposed by FLECK ET AL. [48] can be considered
to be valid only at low relative densities, it has been combined with the famous Gurson model
for voided metals, see GURSON [55], for simulating compaction processes up to high relative
densities, see for details REDANZ [114], REDANZ [115], REDANZ [116] and REDANZ AND
FLECK [117]. Beside the micro-mechanically motivated models a large number of authors have
proposed and applied phenomenological plasticity models to describe the compaction behavior
of metal powders. Constitutive models originating from the field of geomechanics have been
adopted, taking into account the initially granular behavior of the metal powder and leading
to so-called cap models. These models combine a Drucker-Prager failure cone, or exponential
failure line (DIMAGGIO AND SANDLER [39]) or a Mohr-Coulomb surface with an usually el-
lipsoidal cap, which closes the surface in the direction of hydrostatic pressure, see for example
CORAPCIOGLU AND Uz [32], WATSON AND WERT [139] or COUBE [33]. The experimental
works of ABOU-CHEDID [3] and CARNAVAS [23] support the use of two part yield surfaces,
which incorporate an asymmetry of the yield envelope with respect to the first invariant of the
stress tensor. Yield function free, endo-chronic plasticity models, have been proposed and ap-
plied by BAKHSHIANI ET AL. [15], KHOEI ET AL. [81] and KHOEI ET AL. [78]. In addition
to the differences in the constitutive approaches found in the literature on metal powder com-
paction, there are also different approaches and focuses with respect to the numerical treatment.
While some authors propose and apply explicit time integration schemes, e.g. HAGGBLAD AND
ODENBURG [56], XIN ET AL. [141] or COUBE AND RIEDEL [34], others rely on implicit time
integration, e.g. MAHLER ET AL. [101], PEREZ-FOGUET ET AL. [109]. In order to handle the
large deformations undergone by the powder, KHOEI AND LEWIS [80] discuss the application
of re-meshing to avoid distorted meshes. Huerta and coworkers utilize an Arbitrary Lagrangian
Eulerian (ALE) formulation to cope with the large deformations in powder forming processes,
see HUERTA ET AL. [74], PEREZ-FOGUET AND HUERTA [108], RODRIGUEZ-FERRAN ET AL.
[118] or PEREZ-FOGUET ET AL. [110] for details.

In this thesis a new yield function is proposed, which can be conceived as a smooth combi-
nation of the shifted ellipsoid proposed by ABOU-CHEDID [3] and the failure line introduced
by DIMAGGIO AND SANDLER [39]. They are merged into a single surface yield function us-
ing a logarithmic interpolation previously applied in different contexts by KREISSELMEIER AND
STEINHAUSER [88] and ARNOLD AND FRISCHMUTH [10]. For the developed constitutive
model falling into the class of elastoplasticity models it is explicitly demonstrated that the pro-
posed (evolution) equations fulfill the second law of thermodynamics in the form of the Clausius-
Duhem inequality, i.e. the model is thermo-mechanically consistent. For the solution of the initial
boundary value problem formed by the balance equations together with the constitutive equations
and initial and boundary conditions an implicit finite elements approach is chosen. The system of
equations resulting from the space discretization is identified as a coupled system of differential
algebraic equations (DAE). For the time integration diagonally implicit Runge-Kutta methods
are applied. The system of non-linear equations, occurring in each stage of the DIRK method is
solved using a Multilevel-Newton algorithm, see HARTMANN [61], HARTMANN [60]. For the
treatment of the non-linear system of equations on the local level enhanced versions of the New-
ton algorithm are applied since the classical Newton method frequently leads to convergence
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problems. Such convergence problems have been reported for a similar constitutive model in
ARMERO AND PEREZ-FOGUET [9] and PEREZ-FOGUET AND ARMERO [107] together with
strategies to improve the convergence behavior.

1.3 Structure of the thesis

Chapter 2 establishes the necessary preliminaries for the continuum mechanical description of
metal powder compaction processes. A kinematic description capable of handling the large de-
formations, which the powder material undergoes during compaction, is introduced. After that
the universal balance relations are recapped. Out of these the principle of virtual displacements
can be derived, which is one starting point for the numerical calculation of initial boundary value
problems in solid mechanics. A few of the “rules” and concepts for the proper formulation of a
constitutive model are stated in the third section of Chapter 2. Among these concepts we con-
sider the concept of dual variables, which is due to HAUPT AND TSAKMAKIS [69] as well as
the multiplicative decomposition of the deformation gradient, going back to LEE [93] and LEE
AND LIU [94]. On the basis of these fundamental ideas a constitutive model to describe the
compaction behavior of metal powder is developed in Chapter 3. The attention is focused on
the yield function, which is a major part of the constitutive model for the pressure dependent
material behavior. After a review of pressure dependent yield functions the formulation of a
suitable new yield function on the basis of earlier proposals from the literature is discussed. Af-
terwards, the entire rate-independent (elastoplastic) version of the model is summarized and its
thermo-mechanical consistency is established. The expansion of the model to viscoplasticity is
considered mainly to study the influence of the introduced viscosity on the numerical treatment.
The numerical treatment is supposed to benefit from this, since the viscoplastic model leads to
smoother equations. Chapter 4 deals with the identification of the material parameters of the
constitutive model. The experimental setup and the obtained experimental data as well as its
treatment are discussed. It is shown that a reasonable set of material parameters can be obtained
from the uniaxial die compaction experiments on cylindrical specimens with intermediate un-
loading and reloading cycles. The subsequent fifth Chapter deals with the numerical treatment of
the metal powder compaction within the framework of implicit finite element formulations. To
this end, some of the applied mathematical algorithms are introduced in the first section starting
with diagonally implicit Runge-Kutta (DIRK) methods applied to solve systems of differential
algebraic equations (DAE). A short discussion of efficient embedded time adaptive algorithms is
included. The second topic of Chapter 5 is the introduction of the Multilevel-Newton algorithm
utilized to solve a coupled system of nonlinear equations. Since a two level Newton algorithm is
applied afterwards, the discussion is restricted to two levels. Usually a simple Newton algorithm
is applied to solve the system of nonlinear equations on the local level of the Multilevel-Newton
algorithm. Since the classical Newton algorithm leads to convergence problems, a number of
generalized, i.e. globalized Newton-like iteration algorithms are discussed as well at the end of
the first section of Chapter 5. The second section of Chapter 5 discusses the numerical solution of
the initial boundary value problem formed by the constitutive equations together with the balance
relations and the boundary conditions. The previously introduced mathematical concepts are ap-
plied. After the space discretization the resulting DAE is solved with suitable DIRK methods and
the resulting nonlinear system of equations is computed with the help of the Multilevel-Newton
algorithm. The Multilevel-Newton algorithm demands the computation of the consistent tangent
matrix which can be done either numerically or analytically. The analytical expressions for the
proposed constitutive model can be found in the Appendix D. Before the thesis closes with a
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summary in Chapter 7, addressing also major open questions and possible future directions for
further developments and improvements, some numerical examples with rather simple geome-
tries are presented in Chapter 6. The numerical examples in Chapter 6 have been computed using
the in house finite element code TASA-FEM featuring the application of several DIRK methods
as well as time adaptive computation.
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Introduction




Chapter 2

Continuum mechanical foundations

The scope of continuum mechanics is the mathematical description of the motion and deforma-
tion of so called material bodies under thermomechanical loads. A material body is a continuous
assembly of material points. All physical quantities are represented by continuous fields which
can be related to either the material points (material representation) or the place in space (spatial
representation). These fields can be scalar fields like the spatial density distribution p(x,t) or
tensor fields of any order like the spatial velocity field v(x, t) (first order) or the field of Cauchy
stresses T'(x, t) (second order), where & denotes the place of a material point at time ¢.

The theory of continuum mechanics rests upon three cornerstones. The first one is the kine-
matical description of the motion and deformation a material body can undergo. The second
one is the formulation of kinetical laws in form of balance relations. These first two fields state
fundamental assumptions on the structure of space and time and the principles of mechanics.
They represent a generalization of a great variety of observations and are considered to be valid
for all materials. The third field of continuum mechanics, the theory of materials, deals with the
modeling of individual material behavior by the introduction of so called constitutive equations.
These constitutive equations are not valid in general, they are merely meant to represent the spe-
cific behavior of a certain material under consideration. Material theory gives certain guidelines
for the formulation of constitutive models in order to guarantee that the constitutive equations
do not contradict any fundamental physical principles. According to HAUPT [67] the material
behavior of solids can be subdivided into four groups namely elasticity, viscoelasticity, plasticity
and viscoplasticity. Here, the considered continua are restricted to so called simple materials of
first degree, see ALTENBACH AND ALTENBACH [6, P.154], i.e. the constitutive equations relate
only quantities which belong to the same material point and its infinitesimal neighborhood.

19
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2.1 Kinematics

The purpose of kinematics is the mathematical description of the motion of material points, i.e.
the deformation of material bodies. To this end the term motion and the concept of configuration
will be specified. The deformation will be characterized locally by the deformation gradient from
which several strain tensors can be derived. The time rates of deformations can be measured by
the spatial velocity gradient, which will in turn be used to define appropriate strain rates.

2.1.1 Motion and configuration

In continuum mechanics the notion material body B is introduced, see HAUPT [67]. A material
body B is a set of material points P for which a set IC of one-to-one mappings
x:B — x[B]CR?
P — x(P)=(z' 2% ") (2.1)

exists. Due to the bijectivity of y, P = x!(x!, 22 2%) holds. The mapping Y is called a

configuration (of the material body). Furthermore, it is demanded that any composition of two
configurations x1, x2 € K given by

x20 X1 xalB] — x2[B] 2.2)

is continuously differentiable.
The motion of the material body is defined as a sequence of configurations parameterized by
the time ¢

xe:B — x[B]CR’
P — xi(P) = (z'(t), 2%(t), 2°(1)). (2.3)

The configuration at time ¢ is named current configuration. In order to identify each material
point P, a reference configuration R € K is introduced

R:B — R[BCR?
P — R(P)=(X'X?X?). (2.4)

Any configuration of the set IC can be chosen as reference configuration. Often the initial con-
figuration x4, 1s chosen as reference configuration

R=xw:B — xu/[B CR?

P o x4(P) = (XlquaXS)' (2.5)
The motion of the material body is accordingly characterized by the mapping
x=®,(X,t) with &, =y, 0x," (2.6)

In the reference configuration as well as in the current configuration a frame of reference (co-
ordinate system) is introduced by the three basis vectors G, G2, G5 for the reference config-
uration and the three basis vectors g, g,, g; for the current configuration. The three numbers
(X!, X2 X3) are called the material coordinates and the three numbers (z!, 22, 23) are the spa-
tial coordinates. By using the same frame of reference in the initial and current configuration the
motion can be described alternatively by the displacement vector

wX,t)=x— X =, (X,1)— X. 2.7)
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Figure 2.1: Configurations

2.1.2 Deformation gradient

According to Eq. (2.6) the motion of a material body is defined by the family of vector func-
tions ®,, (X, t) with the family parameter ¢ representing the time. The difference in motion of
neighboring material points is measured by the (material) deformation gradient

ox ox’ y ; y
F:Grad@to(X,t):a—XzanginG =Fi9,@ G. (2.8)
The coefficients FZJ of F are the coefficients of the Jacobi matrix of the coordinate transformation
induced by the vector mapping x = ®,,(X, ¢). Since one of the basis vectors of F belongs to the
reference configuration (G”) and one belongs to the current configuration (g,) the deformation
gradient is sometimes called a two-field tensor. However, for the description in one Cartesian
coordinate system, where the co- and contravariant base systems coincide, one may write
o' iy
F = Wei (059 €; = F”ei X €;. (29)
Far more important is the geometrical meaning of the deformation gradient F'. The deformation
gradient maps material line elements d X (tangent vector of a material line in the reference
configuration) into material line elements dx (tangent vector of a material line in the current
configuration). In order to demonstrate this, a material line in the reference configuration shall
be defined by

X = C(a), (2.10)

where « is the curve parameter. The same material line in the current configuration is than given
by

x =c(a) =P, (C(a),t). (2.11)
The tangent vectors of the material line are
dX =C'(a)da and dx = d(a)da (2.12)

in the reference and current configuration, respectively. Insertion of (2.11) into (2.12), and ap-
plication of the chain rule yields

/ d /
dz = ¢(a)da = —@,,(C(a),t)da = (Grad &, (X, t)|X:C(a)> C'(a)da  (2.13)

N J/

F dX
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The essential property of the deformation gradient
dxr =FdX (2.14)

to map tangents of material lines from the reference to the current configuration contains all the
information about the local deformation, which will subsequently be used to introduce appropri-
ate strain tensors. From the property (2.14) of the deformation gradient F' the equations

da = (detF)FTdA (2.15)
dv = detF dV (2.16)

can be derived, which describe the deformation of a material surface (volume) element dA (dV)
from the reference into the current configuration. The deformation gradient F' is non-symmetric
in general and due to its invertibility and the continuity of the motion det F > 0 holds. Although
F contains all the necessary information about the deformation, it is usually not used directly
in constitutive equations, since F' itself is not independent of rigid body motions. To be more
precise, F' is independent of rigid body translations but not independent of rigid body rotations.

(51

Figure 2.2: Transformation of a material line

Polar decomposition

As a non-singular (det F # 0) tensor of second order, the deformation gradient F' can be decom-
posed multiplicatively into an orthogonal tensor R (R” = R}, det R = +1) and a symmetric,
positive definite tensor U (or V),

F =RU = VR. (2.17)

This decomposition is denoted as the polar decomposition of F. The orthogonal tensor R de-
scribes a pure rotation of a material line element d X, whereas U (or V) describes a pure elon-
gation of the line element dX (or RdX). The tensors U, called right stretch tensor, and V,
denoted as left stretch tensor, are related via the similarity relation

V = RUR ™}, (2.18)
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which means that V and U have the same eigenvalues. The polar decomposition is unique. With
U and V two tensors have been found which characterize the deformation and do not dependent
on rigid body motions. In order to avoid the non-rational calculation of roots, which is necessary
to calculate U and V from F, the right Cauchy Green tensor

C = FI'F = U? (2.19)
and the left Cauchy Green tensor
b =FFT =V? (2.20)

are introduced. The tensor C operates on the reference configuration! and the tensor b operates
on the current configuration.> With the help of the introduced kinematical quantities a number of
strain tensors can be defined, which vanish in the case of pure rigid body motions and characterize
the state of strain.

2.1.3 Strain tensors

The Green strain tensor

L B N S 7C S A
E_2(FF 1)_2(0 1)_2(U 1) (2.21)

operating in the reference configuration and the Almansi strain tensor

A=-(1-F'F7')=-(1-b)=-(1-V7?) (2.22)

NN
NN
N | —

operating in the current configuration are connected by the covariant push forward F~7(-)F~!
A=FTEF! (2.23)

and pull back FT(-)F
E =FTAF (2.24)

operations.® The tensors E and A are embedded in a general class of strain tensors defined with
the help of the stretch tensors U and V, see for example HAUPT AND TSAKMAKIS [70],

1 m
m _ ) mUT=1) | m#0
E = { ty | m= (2.25)
1 m
m) _ ) m(V"=1) | m#0
A = { v | m= (2.26)
For m = 2 the Green strain tensor is retrieved from (2.25) and for m = —2 the Almansi tensor

is obtained from Eq. (2.26). The tensor E® = InU is known as the Hencky strain tensor
(logarithmic strain tensor). Alternative strain tensors, for example, the Piola tensor

e = % (C'-1) (2.27)

!Actually C operates on the tangent space of the reference configuration.

2 Actually b operates on the tangent space of the current configuration.

3The tensors E and A are termed covariant because they operate on the tangent spaces of the reference and
the current configuration, see HAUPT [67]. Alternative strain tensors operating on the cotangent spaces can be
introduced as well, for their transformation contravariant push forward and pull back operations must be used.
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and the Finger tensor
1
a=g (1-b), (2.28)
operating in the cotangent spaces of the reference and current configurations respectively, can
be defined. They are connected through contravariant push forward F(-)FT and pull back

F~!(-)F T operations, details can be found in HAUPT [67].

2.1.4 Deformation velocities

The fundamental tensor describing the rate of change of material line, area and volume elements
is the (spatial) velocity gradient

L = gradv(z,t) = FF ! (2.29)

and is calculated from the velocity field v(x, t). The dot denotes the material time derivative, i.e.
the total derivative of a function f(X,t) with respect to time ¢. Material line, area and volume
elements change in time according to

dr = Ldzx, (2.30)
da = ((trL)1 —L7)da, (2.31)
dv = (trL)dv, (2.32)

where tr denotes the trace operator tr A = A;;. The spatial velocity gradient decomposes addi-
tively in a symmetric part D and a skew symmetric part W,

L = D+W (2.33)
1

with D = 5(L+LT) (2.34)
1

and W = 5(L—LT). (2.35)

The symmetric part D is denoted as strain rate tensor and the skew symmetric part is known as
spin or vorticity tensor.
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2.2 Balance relations and stress tensors

The balance relations of continuum (thermo)mechanics are formulations of fundamental phys-
ical principles, in particular, the conservation of momentum, angular momentum and energy.
Furthermore, the conservation of mass is valid for the processes considered in continuum me-
chanics and a balance relation for the entropy will be given. The balance of entropy has to be
accompanied by an appropriate formulation of the second law of thermodynamics, which states
that the entropy of a closed system never decreases. The balance relations can be formulated
either in the current (spatial) or in the reference (material) configuration. They have the general
form

%/p(m,t)\Ildv = /@(m,t)nda+/p(m,t)(gp(m,t) + p(x, t))dv (2.36)
d

(2

S p(X )T RdV = /

B (X, tyrupdA + / pr(X, ) (pr(X, 1) + pr(X,0)dV (237)
dt 1% A 1%

where p, pg represent the mass density of the material body in the current and reference configu-
ration respectively. The physical quantity, which is balanced, is represented by W (¥ ), the flux
of the physical quantity through the surface of the material body is denoted as ® (® ), whereas
the volume distributed exchange of ¥ (W) with the outside world is represented by ¢ (¢g) and
the production density of ¥ (W) is given by p (pg) in the current (reference) configuration. For
the representation of conservation laws by means of a balance relation the right hand side of
Eqns. (2.36) and (2.37) is zero. The physical quantity ¥ under consideration may be scalar or
vector valued. If the physical quantity W is a tensor field of order n, the flux accordingly is a
tensor of order (n + 1). Under sufficient conditions regarding the continuity and differentiability
of the fields one can derive local forms of the balance relations with the help of the divergence-
theorem. In the following, the balance of mass, momentum, angular momentum and energy as
well as entropy will be stated.

2.2.1 Balance of mass

The mass m(B5,t) of a material body B is a scalar quantity which measures the resistance of the
material body against accelerations (inertia) as well as the strength of its gravitational interactions
with other masses. Each material point P is attributed a mass density p. Accordingly, the mass
of the material body is given by

m(t) :/pR(X,t)dV:/p(a:,t)dv. (2.38)
174 v
The conservation of mass states that
d d d
—m((t) = — X, t)dV = — t)dv = 0. 2.39
0 =5 [ nXo0av = 5 [ st 2.39)

The local form in the reference configuration can be derived immediately, since the volume
integral over the material body in the reference configuration is time-independent

8pR(X, t)
ot

In order to obtain the local form in the current configuration, the integral has to be transferred to
the reference configuration whereupon the differentiation with respect to time can be exchanged

=0 & pr(X,t) = pr(X). (2.40)
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with the volume integral. Afterwards, the resulting expression is stated in spatial coordinates
again using the relation (2.16) between the infinitesimal volume element in the current and the
reference configuration

d d d
O—Em(t) = 5 vp(a:,t)dv—&/vpdethV

d .
= —(pdet F)dV = ydet F + pdet FFT-F | dV
| gtoae®) /V<pe+pew_/)

divo=trL
= / (p+ pdivv) dv. (2.41)
Alternatively, the local balance of mass can be written as
. . o | .
p+plive=0 & yn + div (pv) = 0. (2.42)

And due to prdV = pdv and Eq. (2.16) we can also state
pr = (det F) p. (2.43)

2.2.2 Balance of momentum

The momentum of a material body is the product of mass density and velocity integrated over
the domain of the body. The derivative of the momentum with respect to time is equal to the sum
of the external forces exerted on the material body

d
T p(x, t)v(x, t)dv = /t(a:, t)da + /p(m, t)k(x,t)dv. (2.44)
The right hand side of (2.44) represents the external forces acting on the material body and the
left hand side is the rate of its momentum. In Eq. (2.44) t(x,t) denotes the stress vector acting
on the surface of the material body. According to Cauchy’s theorem the stress vector ¢(x, t) is
related to the stress tensor T'(x, t) (Cauchy stress tensor) via

t(x,t,n) =Tn. (2.45)

The volume distributed force density acting on the material body is p(x,t)k(x,t) in (2.44).
Often p(x,t)k(x,t) = p(x,t)k are gravitational forces where the acceleration is (in good ap-
proximation) constant in space and time. With the help of the divergence-theorem the surface
integral can be transformed into a volume integral. With the help of the mass balance in the form
pdv = prdV the local form of the balance of momentum reads,

plx, )o(x, t) = div T (x,t) + p(x, t) k(x,t). (2.46)

In the reference configuration the global form of the balance of momentum reads

%/VpR(X)cbto(X,t)dvz/

tr(X,t)dA + / pr(Xkr(X,)dV — (2.47)
A 1%

where the stress vector £z has been introduced representing the force per area of the reference
configuration. In analogy to (2.45) the stress vector t is related to the stress tensor T by

tr(X, 1) = Tr(X, t)ng, (2.48)
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which is known as the first Piola-Kirchhoff stress tensor. The local form of the balance of mo-
mentum in the reference configuration is given by

pr(X) @, (X, t) = Div TR(X, 1) + pr(X)k(X ). (2.49)

In Section 2.2.6 a summary of commonly applied stress tensors and their interconnection is
compiled.

2.2.3 Balance of angular momentum

The balance of angular momentum (moment of momentum) states that the temporal change of
rotational momentum with respect to any fixed point in space c¢ is equal to the sum of external
angular momentum due to forces acting on the material body. The spatial form of the balance of
angular momentum is

d

1 v((il? —c) X pv)dv = /((:B —¢) x t)da + /((m —¢) x pk)dv. (2.50)

a v

The local form of the balance relation (2.50) together with the balance of mass and momentum
implies the symmetry of the Cauchy stress tensor

T = T. (2.51)

2.2.4 Balance of energy

In order to establish the balance of energy, the notion internal energy of the material body is
introduced

E = /epdv, (2.52)

where e is the (mass) specific internal energy. F represents the total energy content of the material
body except for the kinetical energy K given by

K= / gv2dv. (2.53)

The sum of internal energy F and kinetical energy K represent the total energy content of the
material body. The temporal change of this energy content is due to the power of the external
forces

P, = /'v - (Tn)da + /pk: - vdv (2.54)

acting on the material body and also due to the non-mechanical energy exchange, i.e. the heat
flux ) given by

Q= /qda+/rpdv, (2.55)

with ¢ denoting the heat flux density and r representing a volume distributed heat supply (ana-
logue to the volume distributed acceleration k). The balance of energy for the material body now
reads

% (K+E) =P+ 0. (2.56)
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With the help of ¢ = —q - n, where q is the Cauchy heat flux vector, the global form of the
energy balance in spatial representation is given by

1 .
/ (5'02 + e) pdv = / (T") -n—q-n)da+ /(k: -V + 1) pdv. (2.57)
Application of the divergence-theorem to the surface integral in (2.57) and using the symmetry
T = T7 together with the product rule in the form div (T?v) = (divT) - v + T - gradv =
(divT) v+ T - D yields

/[(pv —divT + pk) - v + pé + divg — pr — T - D] dv = 0. (2.58)
This can be simplified with the help of the balance of momentum giving the local form of the
energy balance in spatial representation

1 1
¢=—=divg+r+-T-D. (2.59)
p p

Alternatively the balance of energy can be formulated on the reference configuration and reads
in local form

1 1 .
¢ =——Divgp +r+ —T - E. (2.60)
PR PR

2.2.5 Balance of entropy and dissipation inequality

In continuum mechanics the entropy content S of a material body is defined as the volume inte-
gral of the entropy density s over the realm of the material body

S = /s,odv. (2.61)

Every heat exchange of the material body with its surroundings is likewise an exchange of en-
tropy. The total exchange of entropy H is the sum of the entropy exchange through the surface
Y’ of the material body and a volume distributed entropy exchange o,

H = /Eda+/apdv. (2.62)

In addition to the exchange of entropy with the surroundings a volume distributed entropy pro-
duction within the material body is introduced via

I'= /’ypdfu. (2.63)

The entropy flux X through the surface in (2.62) is > = —3 - n with the entropy flux vector X2,

given by
q
¥ == 2.64
= (2.64)

where 7" denotes the absolute temperature. Accordingly the volume distributed entropy supply

is
(2.65)

g =

r
T
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The entropy balance states that .
S=H+T (2.66)

and the second law of thermodynamics demands that
'=S—H2>0. (2.67)

This means that the entropy production within a material body during all processes is always
positive. The entropy production represents a measure for the irreversibility of the considered
process. Under idealized assumptions the entropy production during a process may at most be
zero, which is equivalent to the statement that the process is reversible. With the assumptions
on the entropy exchange of the material body with its surroundings in Eqns. (2.64) and (2.65),
Eq. (2.67) can be written in the form

d q-n r
r=— — [ = > 2.
i Uspdv+/a T da /vadv_O (2.68)

which is known as the Clausius-Duhem inequality in continuum mechanics, see HAUPT [67].
The local form in spatial representation reads

., Lo 1
7=s+p—T(d1VQ—PT)—Wq'9 (2.69)
with the spatial temperature gradient g = grad 7. Using the energy balance in local form (2.59),
we can rewrite Eq. (2.69) and obtain

Tfy:—é+TS+lT~D—Lq'gz(). (2.70)
p pT
The term 7'y on the left-hand side of (2.70) is called dissipation. We will use the Clausius-Duhem
inequality later to define a constitutive model which is a priori thermodynamically consistent, i.e.
it fulfills the second law of thermodynamics in all processes. Instead of the internal energy e, the
(Helmholtz) free energy ¢ = e — sT will be used; introducing this into Eq. (2.70) yields

. | 1
—p—sT+-T-D——q-g>0. 2.71)
p pT

For isothermal processes (T = () and a uniform temperature distribution (g = 0), to which we
will restrict our considerations, Eq. (2.71) simply becomes

T-D— pp > 0. (2.72)

2.2.6 Stress tensors

In (2.45) we have already introduced the Cauchy stress tensor T through t(x,¢,n) = Tn, with
t being the stress vector in the current configuration. The stress vector ¢ is also called true
stress vector. The current force df, acting on a cutting plane with the surface da(= da - n)
and the surface normal n through the point x, is divided by the surface element in the current
configuration da,

_df _

t—
da

Tn. (2.73)
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If the actual force df is divided by the surface element in the reference configuration dA, we
obtain the stress vector
_ 9

=34
which has already been introduced in (2.48). In contrast to the true stress tensor T, the stress
tensor Tx is denoted as a nominal stress tensor, sese ALTENBACH AND ALTENBACH [6]. A
pseudo stress tensor T is gained, as soon as the force vector df is transferred to the reference
configuration in the same manner as a material line element dx and then divided by the surface
in the reference configuration,

= TRnR, (274)

t=F'12X =Tny. (2.75)

The stress tensor T is called the second Piola-Kirchhoff tensor and is used in constitutive models
more frequently than the first Piola-Kirchhoff stress tensor since T is symmetric. Table 2.1
summarizes the introduced stress tensors and gives the transformation formulas to calculate them
from each other. In addition to the stress tensors T, Ty and T introduced so far, Table 2.1
contains the weighted Cauchy stress tensor S (Kirchhoff stress tensor), which is frequently used
in constitutive models. Furthermore, Table 2.1 shows the stress tensor T and the Mandel stress
tensor P, which operate on the plastic intermediate configuration. They will be introduced in
Section 2.3.3 and are applied later on to formulate the constitutive model.

Table 2.1: Stress tensors

1. Piola- 2. Piola- weighted
Kirchhoff Kirchhoff Cauchy Cauchy Mandel
Tr T S T T P
T FT SF-7 JTF* | F.TF,” | F,PF,T
T | F'Tg F'SF7 | JF'TF T | F'TF,” | F'F,7PF,”
S TzF” FTF” JT F. TFT F;TPFT
T | 1TRF” | LFTF” 1S IF.TFT | IF,"PF7
T | F,'TzF' | F,TF |F,!SF,” | JF,'TF,” C.'P
P | FITF? | FTFTF! | FISF,7 | JFITF,” C.T
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2.3 Fundamental issues of constitutive modeling

The third cornerstone of continuum mechanics is the theory of material behavior (material the-
ory). It is obvious that the system of equations formed by the balance of mass, momentum
angular momentum and energy together with the entropy inequality is not sufficient to determine
the unknown fields velocity v, temperature 7', density p, Cauchy stress T, internal energy e, heat
flux vector g and the entropy s. The entropy inequality (2.69) can not be used directly to deter-
mine these fields, it rather acts as a constraint, which needs to be fulfilled by all solutions of the
basic equations. Taking into account the balance of angular momentum in the form T = T7, 5
scalar equations* remain for the 16 unknown fields v[3], T'[1], p[1], T[6], e[1], q[3] and s[1]. If
pure mechanical processes are considered, the situation is slightly better, since there are 4 scalar
equations’ for 10 unknown fields®. In order to close the system of equations, additional relations
between the unknowns must be established. These additional equations are called constitutive
equations. At least 11 additional equations in the thermomechanical case and at least 6 additional
equations in the pure mechanical case are required. In many cases the constitutive equations in-
troduce additional unknowns (internal variables), increasing thereby the number of unknowns
and, consequently, the number of required equations as well.

In contrast to the kinematical description of the motion of a material body in Section 2.1
and the balance relations described in Section 2.2 the constitutive equations are not valid for all
material bodies. They rather define the behavior of the individual material under consideration.
Material theory provides a number of essential rules, which should be obeyed by the constitutive
equations in order to ensure that the constructed mathematical model is consistent with observa-
tions. Obviously, the constitutive equations are not allowed to contradict the balance relations.
Additionally, the constitutive equations should not produce a contradiction to the second law of
thermodynamics for any solution under any initial and boundary conditions. This can either be
checked after a constitutive equation has been stated, which might become rather difficult. Al-
ternatively, the second law of thermodynamics in the form of the Clausius-Duhem inequality can
be used to construct constitutive equations, which are a priori thermodynamically consistent, i.e.
fulfill the second law in any thermomechanical process.

Moreover, a constitutive theory should follow further principles like the principle of deter-
minism, local action and frame-indifference (material objectivity), see HAUPT [67, P.257]. The
principle of determinism states that the current state at each point of the material body may de-
pend on the current state of strain and the complete strain history in each and every material point
of the material body. In essence, this principle excludes a dependence of the current state of the
material on future strains. The principle of local action states that the current state of stress at
a material point is influenced only by the strain history of this material point. Further assump-
tions, which promote the development of constitutive theories, are for example the principles of
equipresence and fading memory, see for details ALTENBACH AND ALTENBACH [6]. The prin-
ciple of frame-indifference (material objectivity) will be discussed in some detail in the following
subsection. Afterwards the concept of dual variables introduced by HAUPT AND TSAKMAKIS
[69] is discussed and subsequently the multiplicative decomposition of the deformation gradient
F due to LEE [93] and LEE AND LIU [94], which is a fundamental assumption for the formula-
tion of finite strain plasticity, is introduced. Besides the rules for the formulation of constitutive
equations, two major concerns of material theory are the utilization of symmetries of the material

“balance of mass [1], balance of momentum [3] and balance of energy [1]
Spalance of mass [1], balance of momentum [3]
6namely the velocity field v[3], the density p[1] and the Cauchy stress T[6]
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as well as the inclusion of kinematical constraints, e.g. incompressibility, in the formulation of
the constitutive models. These subjects will not be addressed here, but details can be found in
ALTENBACH AND ALTENBACH [6], HAUPT [67], GREVE [53], HUTTER AND JOHNK [76].

2.3.1 Objectivity

The principle of material objectivity (material frame-indifference) states that the constitutive
equations should be indifferent under so called Euclidean transformations (2.76), which represent
a general change of frame of reference

"= Q(t)x + c(t), t"=t—a. (2.76)

In the Euclidean transformation (2.76) the time ¢ and spatial coordinates & of an arbitrary event
in the unstarred coordinate system are transferred into a second frame of reference (the starred
system). The functions Q(¢) and ¢(¢) define a rigid body motion of the reference frame consisting
of a time dependent rotation Q(¢) and a time-dependent translation of the origin described by
c(t).

In order to make the verification of the material objectivity of a constitutive equation pos-
sible, it is useful to analyze the transformation behavior of physical quantities under Euclidean
transformations. Furthermore, the transformation behavior under Euclidean transformations is
used to subdivide the quantities into objective and non-objective quantities. A scalar a, vector
a or second order tensor A valued quantity is called objective if it transforms under Euclidean
transformations according to

a* = a, (2.77)
a* = Q(t)a, (2.78)
A* = Q@)AQT(t). (2.79)

This definition of objectivity agrees with the definitions used, for example, in TRUESDELL AND
NoLL [134], ALTENBACH AND ALTENBACH [6], HAUPT [67], BETTEN [18]. According to
this definition the deformation gradient F', which transforms like F* = Q(¢)F and the right
Cauchy Green tensor C which transforms like C* = C, are called non-objective. It should be
mentioned that several authors, e.g. MALVERN [102], DOGHRI [40], GREVE [53], HUTTER
AND JOHNK [76], would also refer to F and C as objective quantities, since F' transforms like
3 objective vectors and C transforms like 9 objective scalars. A definition yielding this kind of
separation in objective and non-objective quantities can be found in DOGHRI [40] and is there
traced back to HUGHES [75] and reads

“A tensor Ajj rap..c transforms objectively if under the transformation (14.116) it trans-
forms according to the following rule: A;;._.kAB__.C = Qilem---kaAlm...nAB...C”8

In this thesis a scalar, vector or tensor is called objective only if it fulfills the transformation
behavior stated in (2.78)-(2.79). As stated by HAUPT [67, P.168] one possibility is to establish
the objectivity of a physical quantity individually, a priori by virtue of its definition, like in the

7A well-known subset of the Euclidean transformations are the Galilei transformations, which are characterized
by a time independent rotation Q(¢) = Qg and a translation with a constant velocity c(t) = ¢o + ¢it.

8The transformation in 14.116 to which DOGHRI [40] refers is the euclidean transformation Eq.(2.76), the lower
case indices are for the current and the upper case indices are for the reference configuration.
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case of mass, force, internal energy, heat, entropy, temperature and entropy flux. This definition
also implies the objectivity of the corresponding density functions mass density, Cauchy stress
vector, Cauchy stress tensor, volume force density, specific internal energy, specific entropy and
heat flux vector. The other possibility is to confirm the objectivity by calculation based on ear-
lier definitions. Without proof a list of important objective quantities is given in the following
itemization:

e dx, da, dv: Line, surface and volume element

e V. b: Left stretch tensor, left Cauchy Green tensor
e A: Almansi strain tensor

e D: Deformation velocity tensor

Furthermore, a list of non-objective quantities is presented with the transformation behavior of
the considered quantity:

e F* = QF, R* = QR: Deformation gradient and rotational tensor

e U* = U, C* = C: Right stretch tensor and right Cauchy Green tensor

e E*=E, L* = QLQ" + QQT': Green strain tensor and velocity gradient

e W*=QWQT + QQ7, % = Q: Vorticity tensor and first Piola-Kichhoff stress tensor
e T* = T: Second Piola-Kichhoff stress tensor

Additionally, it can be shown, see HAUPT [67] for a proof, that the set of objective quantities
is closed with respect to algebraic operations, e.g. if @ and b are objective vectors, a - b is an
objective scalar. With these prerequisites the material objectivity of a constitutive equation is
guaranteed, if all quantities within it are objective and are combined only by operations which
preserve objectivity. Although the principle of material frame indifference seems perfectly plau-
sible, especially for mechanical processes, some criticism can be found in the literature, see e.g.
JOU ET AL. [77] and the literature cited therein. These authors state that there are indications in
some fields that frame dependence of constitutive equations may be necessary and should not be
ruled out a priori.

Objective vector, tensor rates

Unfortunately, the material time derivative of an objective vector or tensor is not objective. We
consider the Cauchy stress tensor for example, which is objective and transforms accordingly as

T = QTQ’, (2.80)
whereas the material time derivative of T* reads
T = QTQ" + QTQ" + QTQ", (2.81)

which is not objective due to the additional terms QTQT and QTQT. In order to overcome
the problem that material time derivatives of objective tensors are not objective several tensor
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rates can be introduced, which are objective, see for example HAUPT [67] or ALTENBACH AND
ALTENBACH [6]. In this work so called Oldroyd rates are applied, which are defined by

A .
T = T+L'T+TL, (2.82)
Y4 .
T = T—-LT+TL”. (2.83)

The concept of dual variables, which is due to HAUPT AND TSAKMAKIS [69], provides further
insights about which tensors and which tensor rates should be chosen and connected to each
other in constitutive equations. These aspects are discussed in the next section.

2.3.2 Dual variables

The concept of dual variables introduced by HAUPT AND TSAKMAKIS [69] can be considered as
a guideline for the choice of stress and strain measures as well as their objective rates especially
for the formulation of constitutive equations of evolutionary type. The starting point for the
concept of dual variables is the observation that products of the quantities T (second Piola-

Kirchhoff stress tensor) and E (Green strain tensor) and their material time derivatives T and
E appear in the formulation of physical principles on the reference configuration. The balance
of energy (2.60) formulated on the reference configuration contains the specific stress power
piRT . E. Furthermore, the product T - 0E emerges in the principle of d’Alembert and the

principle of virtual displacements and the term T - §E (incremental virtual stress power) appears
in the incremental form of d’Alemberts principle (principle of virtual velocities). The fact that
the product T -E yields the stress power is usually described by denoting the pair T and E
as conjugated variables. HAUPT AND TSAKMAKIS [69] introduce the term dual variables for
T and E in the sense that they (and their material time derivatives) emerge in the physically
significant scalar products

T E stress power (2.84)
’i‘ -E  complementary stress power (2.85)
’i‘ ‘B incremental stress power (2.86)
T-E  accumulated work (2.87)

Stress and strain tensors operating on other than the reference configuration are called dual to
each other if they, together with suitable tensor rates, preserve all four products introduced in
(2.84) - (2.87). In the following it is demonstrated how a pair of dual variables (dual derivatives)
can be constructed for a given (intermediate) configuration, which arises from a multiplicative
decomposition of the deformation gradient F

F = F,F, = (FF,)F,. (2.88)

Dual stress and strain tensors on the intermediate configuration induced by F, as well as their
rates are then gained from the transformations

I = F,7EF;! (2.89)
A . .

I = F,EF,' =11+ A"TI + TIA (2.90)
> = F,TF! (2.91)
\Y4 2 .

¥ = F,IF! =11 - AX + ZA” (2.92)



2.3 Fundamental issues of constitutive modeling 35

with the tensor A defined by .
A=F,F;". (2.93)

With the choice F, = F the dual quantities of the current configuration are retrieved

A . .
A = FTEF!'!, A=FTEF'=A+L"A+AL (2.94)
~ V4 2 .
S = FTF', S=FTF' =S—-LS-SL” (2.95)

with A = L. In Section 2.3.3 the concept of dual variables is applied to introduce stress and
strain measures (and appropriate rates) operating on the so-called plastic intermediate configu-
ration, which arises from the multiplicative decomposition F = ﬁ‘er and will later be used for
the formulation of the constitutive model. It should be mentioned that the transformations intro-
duced here belong to the first family of dual variables. A second family of dual variables can be
introduced based on the Piola tensor e and the convected stress tensor t = F7'SF. Since they are
not used in this work, the reader is referred to HAUPT AND TSAKMAKIS [69] or HAUPT [67]
for further details.

2.3.3 The multiplicative decomposition F' = f‘er

One fundamental concept for the modeling of elastoplastic material behavior is the subdivision
of the model in two parts. One part is the formulation of an elasticity relation, which operates on
a stress-free intermediate configuration and the other part is the representation of the evolution
of this intermediate configuration. In order to obtain the stress free intermediate configuration
the multiplicative decomposition of F is introduced,

F=FF, with detF.>0, detF, > 0. (2.96)

This decomposition is not of mere kinematical nature, since the evolution of F,, is defined through
constitutive equations. The decomposition established in (2.96) defines the plastic intermediate
configuration, see Figure 2.3. The stresses are defined by a constitutive equation, which depends
on f‘e like

T =f(F.) with f(1)=0, (2.97)
to ensure that the intermediate configuration is stress free. One can imagine the intermediate
configuration to arise from a local unloading process, see HAUPT [67, P.432]. After a given
deformation the material body is assumed to be separated in (small) volume elements with ex-
ternal forces applied to their surfaces according to the free-body principle. Reduction of these
surface forces (stresses) to zero (local unloading) gives rise to a deformation which is related to
the local state of stress whereas the remaining deformation relative to the reference configuration
is assumed to be given by F,. Since this assumed unloading happens locally in each individual
volume the resulting volume elements of the material body will in general no longer fit together,
because they change their shape independent of each other. This is described with the notion
that the plastic intermediate configuration is (in general) incompatible. Following the concept of
dual variables and identifying F, = F,,, we introduce the following set of dual stress and strain
tensors operating on the intermediate configuration and their associated dual rates. The quantity
FaFg1 becomes FPF; ! and is denoted as the plastic velocity gradient

L, =F,F,". (2.98)
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Figure 2.3: Multiplicative decomposition and intermediate configuration

A v
The rates I'' and T represent Oldroyd derivatives formed with Ly:

A .
f _ TRl P _p-TRp-l T TH P
' = F, 'EF,", I'=F 'EF =TI'+LTI+TIL, (2.99)

~

v . .
T = F,TITF], T=FTF =T-LT—-TL] (2.100)

In Figure 2.5 the strain tensors and rates operating on the intermediate configuration and the rela-
tions with strain tensors (and their rates) of the reference and current configuration are depicted.
The stress tensors of the three configurations, their rates and transformations are presented in
Figure 2.4. The strain tensor I decomposes in the intermediate configuration additively in a

T F(-)FT S
. > v .
T S=S-LS-SL”
By, A B
FP( )Fg Fe(')ﬁ‘z
\J
T
s | Y L
B | T=7-L,T-TL!

Figure 2.4: Stress tensor in the reference, intermediate and current configuration
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pure elastic part (depending only on F.)and a pure plastic part (depending only on F)).

r = I.+T, (2.101)

~ 1 /ama

P, = 5(FGTFCJF1> (2.102)

- 1 —T—1

L, = 5(1-F'F") (2.103)
A

Furthermore, the plastic deformation rate f‘p is also purely plastic (depends only on F}) and is
identical with the symmetric part of the plastic velocity gradient

A

A

~ A 1 /- A
I, =D, with Dy=3 (L, +L7). (2.104)



38 Continuum mechanical foundations

E=;(FF-1) A=L(1-FTF)

E,=1 (FgFp —-1) A, =1 (Fe—Tﬁ\e—l _ F—TF—1>

E. =3 (F'F - F[F)) A =1 (1 _ F;TF;l)

E=E. +E, A=A+ A,

E =30 A—A+LTA+AL=D

E, = %Cp ﬁp = A, +L"A, + AL

B.=3(C- Cp) FT(')FL A — A L LTAL 4 AL

Aok,

By, B
F;T( )Fp_1 ﬁwe—T( )F;1

Figure 2.5: Strain tensors and strain tensor rates in the reference, intermediate and current configuration



Chapter 3

Constitutive modeling of metal powder

At first the constitutive model is developed within the framework of elastoplasticity for finite
strains and is subsequently generalized to viscoplasticity. The elastic behavior is modeled using
an elasticity relation derived from a free energy function (hyperelasticity). The model is yield
function based and the developed pressure-dependent yield function is adapted to reproduce the
behavior of metal powders, see BIER AND HARTMANN [19]. Section 3.1 provides a motivation
for the application of a finite strains elastoplasticity model based on available experimental data.
Furthermore, the structure of an elastoplasticity model is introduced. Subsequently, the backbone
of the three-dimensional constitutive model, which is the pressure-dependent yield function is
described. There, we start with a review of existing formulations and their application in the
constitutive modeling of metal powder compaction (Section 3.2). Afterwards, in Section 3.3
the other ingredients of the elastoplasticity model are introduced. Finally, in Section 3.4 the
expansion of the model to viscoplasticity is discussed.

3.1 Motivation

Taking a look at experimental data in Fig. 4.8 from a uniaxial constrained compression exper-
iment with intermediate unloading and reloading cycles, we notice that during unloading and
reloading the material deforms elastically. The boundaries of this elastic domain in stress space
increase with the amount of preloading the material has undergone. Such a behavior can be de-
scribed by a model of elastoplasticity. One of the special things to consider is that initially the
elastic domain is essentially non-existent. However, it grows subsequently under compressive
loading.

The main ingredients of an elastoplasticity constitutive model are summarized in Tab. 3.1.
The yield function defines the border of the elastic domain and determines through the loading
condition the onset of plastic deformations and an evolution of the internal variables. The elas-
ticity relation is valid during elastic as well as plastic loading. The flow rule defines the evolution
of the plastic strains during plastic loading. Often the flow rule is connected to the yield function
such that the direction of the plastic strain rate is perpendicular to the yield function (associa-
tive flow rule). The evolution equations determine how the internal variables besides the plastic
strains evolve during plastic loading. They are ordinary differential equations of first order.

39
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Table 3.1: General structure of elastoplasticity constitutive model (for brevity a small strain-state is con-
sidered) formulated with the stress measure o, the strain measure € and the internal variables g which
contain the plastic strain measure €,. The proportionality factor A is denoted as plastic multiplier.

yield function flo,q) =0
loading condition || f <0 V f=0 A f|qﬁxed <0|f=0A f\qﬁxed >0
elastic elastoplastic
elasticity relation o =h(e q)
flow rule € =0 € = Ary(€,q)
evolution equations qg=0 q = Ary(€,q)

3.2 Yield functions for pressure dependent material behavior

The yield function is one of the most important ingredients of an elastoplasticity model. It defines
the size and shape of the elastic domain in stress space, i.e. whether a given state of stress leads
to plastic deformations or not. The state of stress in each material point is defined by the stress
tensor T, which is symmetric, i.e. T has six independent components. As a symmetric tensor of
second order T can be represented (diagonalization) by the three principal stresses o4, 05 and o3,

3
T = Zakﬁkébﬁk. (3.1)

k=1

With respect to the principal directions 77y, the state of stress is given by the three coordinates oy,
0y and o3, which define a point in the three-dimensional principal stress space. In this principal
stress space the yield function defines a surface which encloses the elastic domain. It is possible
to use the principal stresses 01, 02 and o3 for the mathematical definition of the yield surface,
but usually the yield surface is defined using the invariants /;, I> and I3 of the stress tensor
or a combination of one invariant /; of the stress tensor and invariants of the deviator of the
stress tensor .J5, J3 or quantities which can be derived from these invariants (Haigh-Westergaard
coordinates, octahedral stresses). We define the invariants of the stress tensor

L=tT, L= %T'T, I3 =detT (3.2)

as well as the invariants of the deviator
Ji=trTP =0, J,= %TD TP, J;=detTP = %TD -(TPTP) (3.3)

with the deviator being defined through
TP =T — % (trT) 1. (3.4)

Alternatively, Haigh-Westergaard coordinates can be introduced via the definitions, see CHEN
AND HAN [28],

1 1 V21 .
= ﬁh’ 0=1/2Js, 0= 5 Arceos <—T3/2> . (3.5)
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The Haigh-Westergaard representation corresponds to the introduction of a cylindrical coordi-
nates like coordinate system in principal stress space. The coordinate m measures the hydrostatic
component of the state of stress and is connected to the hydrostatic pressure via 7 = —+/3p
with p being the hydrostatic pressure —p = % (01 + 09+ 03) = %] 1. The coordinate p measures
the distance from the hydrostatic axis and 6 is an angle between 0° and 60°, which defines the
position of the stress state relative to the projections of the axis of the principal stresses upon
the deviatoric plane. The deviatoric plane may be any plane in the principal stress space per-
pendicular to the hydrostatic axis, i.e. all stresses in the plane have the same hydrostatic stress
component. Instead of 6 in Eq. (3.5) the angle

0= %aresin ((\/ﬁ/z)(Jg/JS/Q)) —30° <O <30° (3.6)

may be used. In this thesis the yield surface is defined, using the first invariant of the stress
tensor /; and the second and third invariant of its deviator .J5, .J3, where the dependence on
the third invariant is usually neglected, i.e. a circular shape of the yield surface in the deviator
plane is assumed and the discussion of the shape of the yield surface is restricted mostly to the
I,-\/Jo-plane.

The famous von Mises yield function (3.7) for metals defines a cylinder around the hydro-
static axis, i.e. in the I;-v/.J,-plane it is represented by a straight line parallel to the hydrostatic
axis and in the deviator plane it is represented by a circle with its center on the hydrostatic axis,
see Figure 3.1(b),

F=+/J,—rk=0. 3.7

The simplest expansion of the von Mises yield function to incorporate a pressure dependence is
due to Drucker and Prager
F=+/J,—pL—Kk=0, (3.8)

which is represented by a circle in the deviatoric plane, where the radius of the circle depends
on I, which can be seen from the representation in the I;-v/Js-plane. There, the Drucker-
Prager yield function defines a straight line with the slope 3 and the intersection —r /3 with the
hydrostatic axis, see Figure 3.1(b). The following discussion of yield functions from the literature
and the subsequent introduction of a new yield function will be restricted to the I;-v/.J,-plane,
i.e. it is assumed that the yield function is independent of the third invariant of the deviator J3.
Other authors have discussed and introduced yield functions with a rounded triangular like shape
in the deviatoric plane, e.g. EHLERS [42] or BIGONT AND PICCOLROAZ [20]. It can be shown
that the new yield function can be expanded to incorporate a dependence on the third invariant
following, for example, the suggestion of EHLERS [42]. Due to lack of experimental data to
identify the shape in the deviatoric plane a dependence on the third invariant will actually not be
included in the proposed constitutive model.

3.2.1 A review of existing pressure dependent yield functions

With respect to the modeling of metal powder compaction processes, it is very common to intro-
duce the notion of relative density,

prel<w7 t) = p(iB, t)/pparticle material 3.9

where p is the bulk density in the current configuration. The density of the particle material
Pparticle material 18 assumed to be a constant and represents the density of the (pore free) base mate-
rial. In our experiments, see Section 4, we made use of copper With pparicie materiar = 8.96 g/ cm?.
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Figure 3.1: Von Mises and Drucker-Prager yield surface as well as Mohr-Coulomb yield function

From the balance of mass in the form of the continuity equation (2.43) we obtain in view of
Eq. (3.9) the relations

P (detF)= —"E o pudetF = pr. (3.10)
Pparticle material Pparticle material
Where pr . denotes the initial relative density of the bulk powder. Accordingly, the material
time derivative reads

d d
<E'Orel> detF + prela detF =0 (3.11)

because the density pr(X) and, hence pg. are independent of time ¢. Using the property
d(detF)/dt = (detF)trL = (detF)tr D, with L being the spatial velocity gradient, see
Eq. (2.29), and D its symmetric part, see Eq. (2.34), we obtain the result of the balance of

] E € ple tI D . 3. 1 2

Sometimes Eq. (3.12) is written in terms of plastic variables. This can be obtained apply-
ing the multiplicative decomposition of the deformation gradient, see Eq. (2.96), which im-
plies det F = (det F,.)(det F,). The polar decomposition, see Eq. (2.17), of the elastic part
F. = R.U,, detR. = 1, RT = R, yields, together with the assumption of small elastic

strains, U, ~ 1
det F ~ det F,,. (3.13)

Consequently, we obtain from (3.11)

d

Eprel = —rel (tI‘ Dp) (3.14)
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using the relation

d

T det F, = (det F}))(trL,) = (det F},)(tr D,) (3.15)
with L, and D, from Eqns. (2.98) and (2.104). Equation (3.14) is, for example, proposed in
GOVINDARAJAN AND ARAVAS [51]. Of course, this holds in the case of rigid plasticity, D =
D,, as well. After these introductory remarks about the notion relative density we actually start
the review of existing pressure dependent yield functions with ellipsoidal shaped yield functions.

Ellipsoidal shaped yield functions

The earliest proposals to describe the compaction behavior of metal powders using yield func-
tions are due to KUHN AND DOWNEY [89] as well as GREEN [52]. They proposed independent
of each other yield functions of the form

F=AJy,+ BI} — Ox*> =0, (3.16)

which can be conceived as modifications of the von Mises surface introducing a dependence
upon the first invariant of the stress tensor (hydrostatic pressure). KUHN AND DOWNEY [89]
were interested in the description of the constitutive behavior of already sintered powder com-
pacts during forging and repressing, while GREEN [52] developed the model for a metal with
isotropically distributed voids or cracks. The parameters A, B and C' in (3.16) are usually as-
sumed to be density dependent in such a way, that for a fully dense material (p, = 1) the von
Mises yield function (3.7) is retrieved from (3.16) and accordingly « represents the von Mises
yield strength of the base material.

Several authors like SHIMA AND OYANE [122], CORAPCIOGLU AND Uz [32] as well as
KUHN AND DOWNEY [89] and GREEN [52] themselves have proposed specific dependencies
of the given parameters on the relative density. A compilation of the proposed dependencies can
be found in DORAIVELU ET AL. [41], where DORAIVELU ET AL. [41] propose an additional
one, based on their experimental observations. The proposals of KUHN AND DOWNEY [89],
GREEN [52] and SHIMA AND OYANE [122] are visualized in Figures 3.2(a) - 3.2(c) showing
that the yield surface grows with increasing relative density in different manners towards the
von Mises yield function. These elliptical shaped yield functions are still applied in more recent
publications on powder compaction problems, for example by PEREZ-FOGUET ET AL. [110],
OLIVER ET AL. [105] and RODRIGUEZ-FERRAN ET AL. [118].

Based upon numerous experiments ABOU-CHEDID [3] proposed a simple modification of
the elliptical yield function as depicted in Figure 3.3. ABOU-CHEDID [3] suggested shifting the
ellipse along the hydrostatic axis in order to take the limited strength under tensile and shear
conditions of the metal powder into account. This idea has been adopted for the proposal of a
constitutive model for metal powders by TSZENG AND WU [136].

Gurson model

A pressure-dependent yield function for porous ductile media, quite similar to the ellipse, has
been developed by GURSON [55]. The yield function is given in (3.17) and has been derived
from micro-mechanical considerations,

I

2v/3kK

Jo g2y ) 2
F = —< +2gyncosh —(1+ (gn)*) = 0. 3.18
K2 1 (2\/3% ( (Ch ) ) ( )

J.
F = —§+2ncosh( )—(1+n2)20, (3.17)
KR
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Figure 3.2: Dependence of ellipsoidal yield function on relative density according to KUHN AND
DOWNEY [89], GREEN [52] and SHIMA AND OYANE [122].
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Figure 3.3: Suggested modification of elliptical yield function due to ABOU-CHEDID [3]

The quantity n in (3.17) and (3.18) represents the porosity. The assumptions entering the micro-
mechanical derivation of the yield function (3.17) are only valid for high relative densities (void
ratio < 15 %). For this reason the yield function of GURSON [55] is sometimes applied in
combination with micro-mechanically motivated models for low relative densities due to FLECK
ET AL. [48], for example, by REDANZ [115, 116], REDANZ AND FLECK [117], CEDERGREN
ET AL. [26] and CEDERGREN ET AL. [27]. Actually, a modified version of the yield function
of GURSON [55] is applied in these publications. The modifications are due to TVERGAARD
[137, 138] and introduce two adjustable parameters q;, g2 to the yield function proposed by
GURSON [55], see (3.18).

Cap models

The most widespread kind of yield functions applied to metal powder compaction problems are
so-called cap-models. Cap-models form a yield function by combination of two (or more) yield
functions. Usually the Drucker-Prager yield function (3.8) (DPC) is used in combination with
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a cap, which is part of an ellipse, see for example WATSON AND WERT [139], ABAQUS [1],
COUBE [33] and COUBE AND RIEDEL [34]. Instead of the Drucker-Prager cone some authors
use the exponential yield (failure) function tracing back to DIMAGGIO AND SANDLER [39], see
for example CHTOUROU ET AL. [30], SHAMLOO ET AL. [121] or KHOEI AND AZizI [83],
which has been proposed originally for granular materials like soil, sand or rock. The combi-
nation of the Mohr-Coulomb yield function', which gives a non-smooth shape in the deviatoric
plane with a usually elliptical cap (MCEC), has been considered in LEWIS AND KHOEI [96],
KHOEI AND LEWIS [79], KHOEI AND LEWIS [80], LEWIS AND KHOEI [97] and GU ET AL.
[54]. Instead of a cap, which is part of an ellipse, KIM ET AL. [84], KIM ET AL. [85] and LEE
AND KIM [95] applied a hyperbolic cap of the form

1
Fhyperbolic cap = C' — Acosh(Bp) —q =0, with ¢=+/3Jo, p= _§]1 (3.19)

with A, B, C being parameters depending on the relative density. In addition to the failure surface
(Drucker-Prager, Mohr-Coulomb or exponential) and the cap, some authors, e.g. CHTOUROU
ET AL. [30], COUBE AND RIEDEL [34] and KHOEI AND AZAMI [82] introduce an additional
tension cut-off of the form

Eension cut off — TC - [1 =0 (320)

to limit the hydrostatic tensile stresses. Furthermore, COUBE AND RIEDEL [34] introduce a von
Mises cut off to the applied DPC function of the form

Fvon Mises cut off — Y — Jo = 0. (321)

The non-smooth intersection between the yield surfaces that are combined, lead to difficulties
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Figure 3.4: Drucker-Prager-Cap yield function with tension and von Mises cut off.

when associative flow rules are applied, which is very common, since the normal is not defined
uniquely at the intersection points. These difficulties can be addressed either by local smooth-
ing techniques, see, for example, BEJARANO ET AL. [16], or by special considerations (corner
modes) in the numerical treatment of the equations, see, for example, CHTOUROU ET AL. [29].

I sin  cos . .
'The Mohr-Coulomb yield function reads F' = /.J5 — j(;;(@% = 0, c and ¢ being material parameters
sO)-—-"5

usually referred to as cohesion and friction angle respectively.
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In addition to the corners associated with the intersections of the yield functions, there is a singu-
larity also at the intersection of the Drucker-Prager or Mohr-Coulomb cone with the hydrostatic
axis for which ABBO AND SLOAN [2] have proposed a suitable smoothing procedure.

Cam-clay models

The yield functions proposed as parts of the so-called “Cam-clay” and “modified Cam-clay”
models are not frequently applied to metal powder compaction processes. Therefore, they are
addressed only briefly. On the other hand, SUN ET AL. [128] reports good agreement with exper-
imental data for the application of a modified Cam-clay model to a uniaxial powder compaction
problem. The Cam-clay models go back to the 1960s and have been suggested to describe the
constitutive behavior of granular media like soils, clay or rock. According to CALLARI ET AL.
[22] the yield function of the original Cam-clay model can be written in the form

F:q+Mpm(£)=0 (3.22)

c

whereas the modified Cam-clay model reads

q2

F=3p

+p(p—p) =0 (3.23)
with ¢ = /3J; and p = —%I 1 and M representing the slope of the so called critical state line
in the p — g¢-plane. This critical state line is the line through the origin of the p — ¢-plane and
the maximum of the yield function plotted in the p — g-plane. The parameter p. usually called
preconsolidation pressure represents the intersection of the yield function with the hydrostatic (p)
axis, see 3.5(a) and 3.5(b). The yield function of the modified Cam-clay model, see Eq. (3.23),
is going back to ROSCOE AND BURLAND [119]. It is just an ellipse in the p — g-plane (or
likewise the I; — v/J,-plane) going through the origin of the p — g-plane and its center lies on
the hydrostatic axis. This means that the yield function of the modified Cam-clay model can be
considered as a special case of the generalized elliptical model proposed by ABOU-CHEDID [3]
discussed earlier.

Micro-mechanically motivated models

There is a significant number of publications on the derivation of macroscopic constitutive mod-
els (with an emphasis on the formulation of yield surfaces) motivated from micro-mechanical
models of the powder material. One common starting point for such a derivation can be the
model assumption that the powder consists of equal-sized spherical particles which behave per-
fectly plastic with a uniaxial yield stress oy. Of course, modifications of these assumptions
regarding the constitutive behavior, shape and contact laws of and between the particles have
been studied leading to a variety of macroscopic yield surfaces. In an arrangement of densely
packed spherical powder particles an external macroscopic load is transferred within the powder
through the contacts between the powder particles. If the local load at the contact between two
particles exceeds the yield strength oy of the material, then the particles start to deform plasti-
cally. In case of an compressive external load the centers of the spherical particles come closer to
each other and the number of contacts Z (coordination number) and the size of the contact area
A, increases. This change of A. and Z leads to a macroscopic hardening. ARZT [11] proposed
relations for the dependencies of A. and Z on the achieved relative density during an isostatic
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Figure 3.5: Cam-clay and modified Cam-clay yield function.

compaction and HELLE ET AL. [72] derived a relation for the macroscopic yield stress under
isostatic external load (3.24), which is also the starting point for the derivation of a macroscopic
yield surface presented in the very influential publication of FLECK ET AL. [48].

D — D,

py = 2.97D? o
Y 1— Dy Y

(3.24)
In Eq. (3.24) D denotes the relative density of the particle assemblage and Dy is the initial relative
density which is Dy = 0.64 for a dense packing of spherical particles. A detailed discussion of
the development of micro-mechanical based yield surfaces for powder materials can be found in
ASM [13]. An overview can also be found in the thesis of MEYER [103] or COUBE [33] and
a brief summary is given in COCKS [31]. FLECK ET AL. [48] derives expressions for the yield
function under axisymmetric loading conditions formulated in the deviatoric stress > and the
means stress 2, (F'(X,%,,) = 0) and derives afterwards approximations to these expressions
formulated in second deviatoric invariant ¥, = 1/3.J; and the mean stress X,, = %I 1 which are

2. Ym
(linear approx.) FF = —— 4 — —1= | by <Y < py (3.25)
3py  py 3
2%, Ym
(linear approx.) ' = —— — — — 1= | —py <%, < _by (3.26)
3py  py 3
2
5% m 5%, 2)°
(quadratic approx.) F' = V5 + +-]1 —1=0 (3.27)
3py 18py 3

(3.28)

for more general loading conditions. The shape of the quadratic approximation is depicted in
Figure 3.6. The micro-mechanically motivated models based on the assumption of spheres in
contact with each other by isolated (non-overlapping) contact areas can only be considered to
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Figure 3.6: Quadratic approximation to the micro-mechanical motivated yield surface proposed by
FLECK ET AL. [48].

be valid at comparatively low relative densities. For higher relative densities D > 0.9 FLECK
ET AL. [48] recommends the use of the likewise micro-mechanically motivated Gurson model,
see GURSON [55]. For intermediate relative densities between D = 0.75 and D = 0.9 he
suggests defining a transition from his yield function to the Gurson model. This combination
of the model of FLECK ET AL. [48], actually the more advanced model incorporating limited
tensile strength of the contacts due to FLECK [47], and the model of GURSON [55] have been
applied successfully for example by REDANZ [115], REDANZ [116] and REDANZ AND FLECK
[117] to simulate metal powder compaction problems.

MEYER [103] discusses in his thesis the influence of friction between the particles as well
as the influence of the contact assumption between the particles (from full cohesive contact to
cohesionless contact). Furthermore, he demonstrates that the micro-mechanical model also pre-
dicts a dependence of the yield surface on the third invariant of stress. A common feature of the
micro-mechanical motivated yield surfaces is the existence of vertices, which make their applica-
tion in numerical simulations more difficult since the normal to the yield surface is not uniquely
defined in the vertices. There is a growing number of publications dealing with the derivation
of yield surfaces using discrete or finite element simulations of particle arrangements (often
two-dimensional) to compute macroscopic yield surfaces from the simulation of compaction of
these particle assemblages, see, for example, XIN ET AL. [141], HEYLIGER AND MCMEEK-
ING [73] and PROCOPIO AND ZAVALIANGOS [112]. LARSSON ET AL. [92] and STORAKERS
ET AL. [127] considered more realistic constitutive models for the particles and SHRIDHAR
AND FLECK [123] considered the compaction of composite powders to mention only a few of
the many publications dealing with the extension of the ideas introduced in the original works on
the micro-mechanical modeling of the powder behavior.

Single surface models

Another way to circumvent the problems related to corners in the yield function is the application
of single surface yield functions, which resemble the shape of cone-cap yield functions. These
kind of single surface yield functions are predominantly applied in constitutive models for gran-
ular materials like soils, sand and rock, see among others DESAI [37], LADE AND KiM [90],
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DE BOER AND DRESENKAMP [35]. The three yield functions which will be discussed in Sec-
tion 3.2.2 in some detail fall also in this kind of yield function. They exhibit the special feature
of being very flexible with respect to shape due to 7 (5) parameters that determine their shape.
Up to 5 parameters define their shape in the I;-v/Jo-plane and up to 2 parameters modify the
shape in the deviatoric plane from circular to almost triangular. Recently, in KHOEI AND AZAMI
[82] a single surface yield function for powder materials (metals) was proposed and adapted to
experimental data of the literature.

3.2.2 General 7(5) parameter yield functions

For the purpose of replacing multi-surface cone-cap yield functions by a smooth single surface
yield function, less than five parameters are sufficient for reproducing a teardrop-like shape in the
I,-v/J5-plane, see, for example, DE BOER AND DRESENKAMP [35], KHOEI AND AZAMI [82].
The following discussion deals with the general, very shape flexible yield functions proposed by
EHLERS [42], BIGONI AND PICCOLROAZ [20], and AUBERTIN AND LI [14]. All these authors
provide (among other representations) one representation of their yield function of the form?

=/ Jy— F(1)Fy(©) or =/ Jy — Fp (1) Fy(0 (3.29)
with 6 and © defined in Eq. (3.5); and Eq. (3.6):
EHLERS [42]

1/2
F(L) = [(52 — I} + 28l + (52 —a — 2%) I} —28kL + K } (3.30)

—m/2
2

Fy(0) = |14+ —~sin(30 3.31
parameters : {«,[,7,d,e,m, K}

BIGONI AND PICCOLROAZ [20]

_ | Mpe /(2 —02)2(1 - )@ +a] P€0,]]
Fy(h) = { o ¢ [0,1] (3.32)
1
Fy(0) = 3.33
a(6) cos [ — 1 arccos(y cos(36))] (3.33)
C — lll
t : Mo cy by Gy 1Ly | ) ¢ = —3-
parameters {M, p.,c,a,m, 3,7} Y
AUBERTIN AND LI [14]
Fu(l) = [02(12 = 2ay]y) + a2 — as (I — I)*]"” (3.34)
b 14
Fy(0) = (3.35)
( [0 + (1 — 1?) sin(45° — 1.5@)}1/2>
parameters :  {aj,ay, a3, o, I, b,v}?

Here, F;(O) determines the shape in the deviatoric plane and F},(1;) defines the shape in the
I,-\/Jo-plane. These models have in common that they use up to 7 parameters to specify the

2Actually BIGONI AND PICCOLROAZ [20] does use p = 7%11 and ¢ = /3Js instead of I; and /J5 to
formulate the yield function, the expressions have been transformed.
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shape of the yield function. Up to 5 of these parameters are used for establishing the shape
in the I;-v/J,-plane. The large shape flexibility, which is achieved by using 5(7) parameters
for the definition of the yield function has the potential to cause several difficulties. Since we
are currently not interested in the dependence on ©, © is assumed to be constant. This allows
to simplify Eq. (3.29) into J, = Fj,(I;) for representing the yield surface. In the proposal
of EHLERS [42] as well as in some other single surface yield functions, e.g. DE BOER AND
DRESENKAMP [35], KHOEI AND AZAMI [82], Fj,(I;) takes the special form

Fu(h) = | Y adt. (3.36)
k=0

The polynomials under the root can have more than 2 solutions depending on their degree n and
the choice of parameters. This means that solutions to /' = 0 can exist outside the elastic domain,
see, for example, Figure 3.7 where the situation is depicted for the yield function of EHLERS
[42]. The yield surface proposed by AUBERTIN AND LI [14] shares this problem. In their
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Figure 3.7: Yield surface in stress space with solutions to F' = 0 away from the elastic domain.

proposal the sum of a second order polynomial and another second order polynomial in Macauley
brackets is applied leading to up to three roots of F},(/;). The existence of further solutions to
F' = 0 for points in principal stress space beyond the elastic domain causes difficulties using
these yield functions in finite elements in view of predictor-corrector schemes usually applied.
BIGONI AND PICCOLROAZ [20] avoid this problem by a special case distinction in their yield
function formulation setting F' = oo for points with /; beyond the /; range of the elastic domain.
On the other hand, their yield function can no longer be used as a flow potential, since the gradient
is not defined in the aforementioned regions in stress space.

The second difficulty encountered in the case of the yield function of EHLERS [42] and also
with the yield function proposed by KHOEI AND AZAMI [82] is that convexity of the yield
surface is not guaranteed for all admissible choices of parameters. If the shape of the yield
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function depends on internal variables, evolving according to differential equations to describe
the hardening behavior of the material, additional effort is necessary to ensure the convexity
throughout the process.

3.2.3 A new pressure dependent yield function based on log-interpolation

In order to circumvent difficulties like non-convexity throughout the process, corner edges, non-
uniqueness in stress-space, a new yield function concept is proposed. The new yield function is
constructed with the aim to be comparably shape flexible as the functions proposed by EHLERS
[42], BIGONI AND PICCOLROAZ [20] and AUBERTIN AND LI [14] circumventing the prob-
lems of guaranteeing convexity by simple constraints on the parameters. Furthermore, it avoids
solutions to the yield function beyond the elastic domain, which would make the application of
predictor-corrector schemes in the numerical treatment essentially impossible. The basic idea
for the new yield function concept is founded on the cap-models described earlier. The two
simple yield functions constituting the cap-model are combined by a so-called log-interpolation
introducing two additional parameters resulting in a smooth, convex single surface yield func-
tion without the difficulty of solutions beyond the elastic domain. The first simple yield function
constituent of the new proposal is the generalized ellipse due to ABOU-CHEDID [3] with its
center shifted along the hydrostatic axis. The second is the exponential function due to DIMAG-
GIO AND SANDLER [39] also frequently applied in cap models. After an introduction of the
log-interpolation concept, it will be applied directly to the yield function formulation in the form
V/Jo = F,(I,). For the application in the constitutive model a modified approach is chosen,
which will be discussed subsequently, leading to a more suitable formulation for the numerical
treatment. Furthermore, an expansion of the model to viscoplasticity, where also stress states
with F' > 0 become admissible, is discussed. In BIER AND HARTMANN [19] the application
of the elastoplastic constitutive model to describe data from a compaction experiment of a metal
powder taken from CARNAVAS AND PAGE [24] has been presented. Additionally, in BIER AND
HARTMANN [19] the shape flexibility of the new yield function is demonstrated by adapting it to
a variety of materials including sand, soil and metal powders, for which experimental data could
be found in the literature.

Log-interpolation

In KREISSELMEIER AND STEINHAUSER [88] and ARNOLD AND FRISCHMUTH [10] the in-
terpolation formula (weighted mean) of two scalar functions y; = fi(z) and yo = fo(z) was
proposed, defined by

Ch@e o o)/
€ te ) . e>0. (3.37)

= —cl
) = et (5
The following properties hold for this function:

e f(zo) = fi(xg) = fa(xo) holds at the intersection point x, of both functions.

e In a certain distance from the intersection point, the resulting function f(x) tends towards
the function with the smaller values. In order to see this, the interpolation function (3.37)
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is written in the form

1
f(z) = —cln (56—1‘1(%)/C (1 + 6—(f2($)—f1($))/0)) —
= fi(z) + cIn2 — cln (1 4 e~ 2@=hE)/e) (3.38)

If we assume that fo(x) > fi(x) and monotonicity of fi(z) and f5(z) is given, then, the
difference of the second and third term converges towards zero and the function f(x) tends
towards f;(z). Even without monotonicity the difference between f(x) and the smaller
function (here f;(z)) is always less than ¢ In 2.

o If fo(z) > fi(z) holds, lim. .o f(z) = fi(x) is obviously satisfied in Eq. (3.38), i.e. the
weighting factor ¢ enforces the rate of approximation towards the smaller one of the two
functions f;(z) and f>(x). Actually, the difference between f(z) and the smaller one of
the two functions can always be reduced below an arbitrary limit by choosing c sufficiently
small.

e The value of the interpolated function f(z) is enclosed between the two function values
fi(x) and fo(z) for all z.

e If one changes the sign of ¢, f(z) tends towards the function with larger values.

e If the functions fi(z) and f(z) are convex (f'(z) < 0 and fY(z) < 0), the resulting
function f(x) is also convex (f”(z) < 0). In order to see this, we calculate

Gl arkcalle (3.39)
efi/c 4 efz/c 7 )

(] — f)? eRIf 4 ehefy
C(ef1/0+ef2/0)2 efl/c—|—ef2/c

) =

f(z) = (3.40)

<0
Obviously, the convexity of fi(z) and fo(z) implies the convexity of f(z). The prime

indicates the derivative with respect to the arguments. One can also see that f’(z) is smooth
and does not show any jumps if f](x) and f}(z) are continuous.

e In the case of ¢ — oo one obtains the mean value of the two functions

i (o) = B0 le)

(3.41)

Direct application of the log-interpolation

In the following, the main objective is to deal with the application of the interpolation concept to
a combination of two yield functions. In the first step, there is no interest in a curved triangular
shaped yield function in the deviatoric plane, which is related to the third invariant (3.3);. If we
assume that the yield function F'(Iy, v/J5, Js) is independent of the third invariant .Js, it describes
a circular form in the deviatoric plane. Thus, one can confine one’s considerations to the I;-/J5-
plane. According to a proposal of ABOU-CHEDID [3], an ellipsoidal shaped yield function is
assumed, which is described by its center 3§ in [; direction, the intersection point /o > 0 with
the hydrostatic axis, as well as the ratio y/a of the two principal axes of the ellipse in v/.J; and
I, direction. In Fig. 3.8 the functions are depicted. The ellipse has the representation
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Figure 3.8: Interpolation of ellipse and exponential function and its intersections

filly) =VE2—a(l, =362 with k= +/a(l, — 3¢)2 (3.42)

In order to obtain a drop-like form, which is more suitable for representing the shear failure
region, use is made of an exponential function

foI) = Ap — Age™h, (3.43)

Such a function is fully specified by three (positive) parameters. Here A; symbolizes the limit
value A; = limy, . fo(I1). A, defines (together with A;) the intersection with the \/J5-axis,
f2(0) = Ay — Ay . Aj specifies (together with As) the slope of f; at the intersection with the
v/ Je-axis, f4(0) = — Ay As. If we demand that f, and f; intersect the hydrostatic axis at I, and if
we fix the limit value A; = k as well as specifying the second intersection point with the ellipse
f1 using the parameter r, see Fig. 3.8, then the coefficients of the exponential function have the
representation
k
A1 = k’, AQ = (1 _ m)fo/(@ﬁffo)(lJrT))’ Ag = h’l(k/AQ)/[O (344)

According to the interpolation (3.37), Fig. 3.8 shows the resulting function f(/;) as well as the
ellipse f1(/;) and the exponential function fo(1).
A yield function is built, if we subtract the interpolated function (3.37) from the ordinate

V',

F(I1,\/Jo) =/ T2 — f(I1) =

=fi(lh)/ec —f2(I1)/c
:\AQ+CM(6 — ). (3.45)

This function is a convex single surface because the ellipse and the exponential function are
convex.
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The parameters contained in the yield function f(/;) of Eq.(3.37) can be chosen in such a way
that f mirrors some of the well known yield functions, at least in the physically relevant region of
stress space, which may be defined as large as needed. In other words, the yield function concept
is able to approximate other known yield functions, such as

o the Drucker-Prager yield function,
o the ellipse, either centered or shifted in the stress space, as well as
e the von Mises yield function.

This is shown in Appendix A. These approximations are shown in order to demonstrate the
flexibility of the concept.

Modified yield function formulation based on log interpolation

Principally, one could finish the presentation of the previous sections using the yield function
(3.45). However, an essential drawback arises in view of the application of an elastic predictor
and plastic corrector scheme usually applied in the finite element method. If an elastic predictor
computes a stress state outside the range of I;, where the ellipse function f(/;) is not defined,
f(Iy) is not defined either. Thus, a modified approach has to be taken into account. The functions
(3.42) and (3.43) are reformulated into the form

91(11,\/72) = \/J2+C(<[1 —3€>2—l€ (346)
G2 (11, Jo) = \/Jy — Ay + Agetsh (3.47)

(from +/J; — fr(I1) = 0, k = 1,2, one obtains (3.46) and (3.47) by reordering). The extension
of the interpolation (3.37) to a function in two variables leads to the final yield function

1 (TR (ek) o ogn(Ti/T2)(ck)
¢ te ) , (3.48)

F(I;,\/Jy) = ckIn ( :

where the interpolation weight c is replaced by ck. This is done for two reasons: first, it normal-
izes the value range of g; and g, for the points inside the yield surface to the interval (0, 1), and,
accordingly, reduces a process dependence of the interpolation. Second, the value of the argu-
ment is reduced which is favorable in view of evaluating the exponential function. Apparently,
the factor ck in front of the In in Eq.(3.48) could be omitted in the case of F' = (. However, for
didactic reasons it is preserved in the following. Fig. 3.9(a) shows the modified yield function for
F(I,,+/J3) > 0, where for F' = 0 the intersection of both surfaces represents the curve depicted
in Fig. 3.8. Here, it must be emphasized that the interpolation formula (3.48) tends towards the
larger of the two functions. In the following, it is required that /, > 0 and £ < 0 in order to
guarantee that the origin of stress space lies within the yield surface. Furthermore, the conditions
0<r<1,0< a< oo, and ¢ > 0 are assumed. In Fig. 3.9(b) the yield surface F' = 0 is
depicted in principal stress space showing its drop-like form.

Since the resulting single surface yield function (3.48) is a function of I; and /.Js, it obvi-
ously differs from Eq. (3.37). Thus, a proof of convexity has to be adapted. In other words, it

must be shown that
F(I1, /1) = G(g1(Ii, /' 12), g2 (I, / T2)) (3.49)
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Figure 3.9: Proposed yield function in various representations

is a convex function in /; and +/.J,. This is shown in Appendix B.

The reformulation of the yield function produces one difficulty. Although F(I;,+/J;) in
its original form (3.45) is smooth everywhere, this does not hold for the formulation given in
Eq. (3.48). The new form exhibits one corner at the intersection of the yield envelope with the
hydrostatic axis at [y = Iy. Since such a corner might lead to numerical difficulties a rounding
off of the yield function following a proposal of ABBO AND SLOAN [2] can be considered. This
can be done by changing g-(1;, /J3) from Eq. (3.47) in the following way,

Go(It,\/J2) = / Jo + 0 — Ay + Age s, §>0. (3.50)

Replacing Eq. (3.47) by (3.50) still guarantees the convexity of the yield function. The constant &
should be chosen small enough in order to ensure that the elastic domain still includes the origin
of principal stress space and big enough to remove the corner efficiently.

3.3 Rate-independent constitutive model

On the basis of the proposed yield function in the previous section, a new constitutive model for
metal powder compaction is developed. The finite strain constitutive model is derived in such
a way that it cannot produce contradictions to the Clausius-Duhem inequality, see Section 2.2.5
(thermo-mechanically consistent).

Since the yield function represents an interpolation between an ellipsoid and an exponential
function, £ controls the hardening in the direction of the hydrostatic stress state and « influences
the form of the drop-like yield function. I; = tr PandJ, =1 /2 PP . pP symbolize invariants
of the concerned stress tensor P. In the constitutive model proposed later, P defines the Mandel
stress tensor, see definition (3.68). Within the proposed constitutive model the yield function
given in Eq.(3.48) is applied. In contrast to the general formulation given in Eq.(3.48), where
only the dependence on the invariants of the stress tensor (and its deviator) is considered the
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dependence on the internal variable o and the accumulated plastic strain through the variable &
are explicitly assumed in the following. Furthermore, we replace \/J, by J,. This reads in detail

2

R g1(11,V'J2)/(ck) g2(11,V/'J2)/(ck)
P, Ts,6,0) = F(li, /T, €, a) = ckIn (e e ) 3.51)

where the dependence on « and £ is contained in g; and g, given by Eq.(3.46) and Eq.(3.47)
which is omitted in the representation for brevity. The associative flow rule

A A A A
A OF OF . OF
I'=)\—=\|—I+—P7? 32

P oP (all * 0l ) (9-52)

is assumed with A defining the plastic multiplier. Here, the derivatives

OF OF OF 9y | OF 04

- R 3.53
811 811 891 811 892 811 ’ ( )
OF 1 9F 1 (OF 94 | OF 94, (3,54
0l 21y 8\/J; 2\/J; o 8\/5 092 8\/5 '
occur due to the application of the chain rule, which requires the derivatives
OF g1/(ck) OF 92/(ck)
i , i , (3.55)
891 691/(0k) + 692/(Ck) 892 691/(Ck) + 692/(0k)
g L -3 g
99 oh =39 992 _ A, Agetolt, (3.56)
o I+ a(ly — 3¢)? oL
g J a4
9 vl 21 (3.57)

0Vl Vhral—362 oL

In order to motivate a constitutive model in a thermo-mechanically consistent framework,
use is made of the concept of dual variables of Section 2.3.2, particularly, family 1 variables
(HAUPT AND TSAKMAKIS [69], HAUPT AND TSAKMAKIS [70]). Furthermore, the approach
proposed by TSAKMAKIS [135] and LAMMER AND TSAKMAKIS [91] is extended to the case
of the pressure-dependent yield function (3.48). Accordingly, an additive split of the specific
free-energy into an elastic and a plastic part is assumed,

O(Te, 7, 7D) = 1he(Te) + Up(ric, rp). (3.58)

Furthermore, the plastic part is assumed to decompose into two parts, where Q/A}K results from
kinematic and vp from distortional hardening processes

bp(ric,mp) = V(1K) + (7). (3.59)
rp defines a strain-like scalar-valued internal variable and
rk =g (Cp) = In(det C,)/2 = In(det F)) (3.60)

is related to the plastic volume change,

n(detC,) 1. 2
Fre = w — 5cp .Gl =trT,. (3.61)
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Under the assumption of isothermal processes, the Clausius-Duhem inequality (2.72) reads

. . A .
T-E—prtp=S-D—pgtp =T-T — prtp > 0. (3.62)

with the stress tensor operating on the plastic intermediate configuration
T =F,'SF," =F,TF], (3.63)

see Section 2.2.6 and Tab. 2.1. If the specific free-energy (3.58) is inserted into the dissipation
inequality (3.62), one obtains

T d'@e é - é d'@e - T I- dz/;e A
T — - ITe+T-I'y+pp—T L, +prl'e— - L, — >0, 3.64
( PR dI‘e> p T PR ar PR ar p PRYp ( )

(3.65)

with the property of isotropy is assumed, as is customary. This implies the commutativity of

podve _ dden

e Tm — T Le 3.66
drr. dr. (3:60)

leading to the remaining dissipation inequality

A .
D, =P T, — pribp >0, (3.67)
where the Mandel stress tensor
P=(1+2I)T=C.T=TC, (3.68)

has been introduced. Secondly, a hydrostatic stress part is separated introducing the stress-like
variable £

A A )
D,=(P—-&I)- Ty +&1-T, — prtpp > 0. (3.69)
If the flow rule (3.52) is inserted into the first term and if the definitions
d) d)
€ :=pr Vi and o= pRﬂ (3.70)
dT’K d?”D
are taken into account, the remaining inequality
§ - oF 2
D,=—(P—-¢&I) — +&tr'y) — &rg —arp > 0 (3.71)
p X( 5 ) 8P 5 p 5 K D

arises. Here, the plastic multiplier ) is replaced by the rate of the plastic arc-length

.
I
ﬁ
o]
>
o]

T = Ax (3.72)
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with

AN\ 2 AN\ 2
oF oF
= v I = —_— 2 —_— .
X X( 1,]2,5,&) 3 <811> + J2 <8J2> ) (3 73)

where use is made of the flow rule (3.52).
In view of the definitions (3.70) the partial specific free-energies

ai CK o

prUK (1)) = —5e 4 4 L2, (3.74)
as 2
A c
prYD (D) = 7[)7”123 (3.75)

are assumed, leading to the internal variable « and its evolution equation
O = CpTp e o= CDf’D (376)

as well as to the hardening variable

£= —Meors 4 crorpe. (3.77)
asz
¢ describes the kinematic hardening behavior in the sense that the center of the yield function
moves in the direction of the hydostatic axis, and 7 is related to the plastic volume change, see
Eq. (3.60).
We consider again the remaining inequality (3.71) of the form

D, =Dk +Dp > 0. (3.78)
The term
&
Dy = (tr r',— Ti) >0 (3.79)

holds due to definition (3.60) and the time derivative (3.61). Additionally,

$ oF
Dr="2(P—=¢I) - — — arp = 3.80
D X( f)aP arp ( )
S - oF s
= —P-€1)-———1]12>0 3.81
a(aX( &0 OP CD)_ ( )

must hold, where use is made of (3.76). This inequality can be satisfied for

Spoen. o oy (3.82)

with bp > 0, cp > 0. In other words, inequality (3.81) is fulfilled, owing to the evolution

equation
. CD & or .
a = (a)((P ¢l) - oD cvbD) 5. (3.83)
Since « has always to be positive, this ordinary differential equation, which is briefly studied
in Appendix C, has to be investigated. Only in the case of non-negative first term, i.e. (lA3 —
&) - OF/ OP > 0,a > 0is guaranteed. This inequality is related to the convexity of the yield
function. Shortly spoken, a function is convex if and only if f(y) > f(X)+{df(x)/0x}" {y—x}
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is satisfied (see, for example, LUENBERGER [99]). For the stress state x=P satisfying the yield
condition F'(P) = 0, and the center of the ellipsoid y=¢I, this condition reads

F(1 .

P30 60) > PUVInEa) (o p) (3849
oP

In view of Eq.(3.51) one obtains F'(3¢,0, &, a) < 0 so that

(3.85)

F(1
17 \/727 57 P 5]:) ( + \/7 >
811 \/7
is satisfied. Whether « increases or decreases is mainly controlled by the material parameters cp
and bp and depends also on the initial condition a(0) = ay.
The elastic deformations are very small in comparison to the inelastic strains. Thus, use is

made of a rather simple strain-energy function in Eq. (3.58), see also (3.65), proposed by SIMO
AND PISTER [125],

N[ >

pr0,(Ce) = = (In(J,))* — plnJ, + =(tr C, — 3) (3.86)

with J, = (det C.)"/2. In view of the potential relation (3.65) we obtain
= (AlnJ, — pu)Ct + uI (3.87)

1.e.

P=CT=(AlnJ, — )+ puCe, (3.88)

(PP = uCD).

In conclusion, the constitutive model, which is recapped in Tab. 3.2, is thermo-mechanically
consistent in the sense of fulfilling the Clausius-Duhem inequality. Beside the flow rule, one
evolution equation for «, see Eq.(3.83), describes the distortional hardening behavior and the
kinematical hardening variable ¢ is described by Eq.(3.77). The variables control the hardening
behavior and are connected to the geometrical idea of the center and the axes-ratio of ellipsoidal
part of the yield function. The proposed model, formulated with quantities relative to the refer-
ence configuration, is collected in Tab. 3.3.

3.4 Expansion to viscoplasticity

Despite the fact that the rate-dependent effects at ambient temperature might be negligible for
metal powders, it has been decided to generalize the original elastoplasticity model to viscoplas-
ticity. This has the further merit of easing the numerical solution of the constitutive equations of
evolutionary type. The expansion of the model from elastoplasticity to viscoplasticity is straight-
forward. The elasticity relation remains unchanged. The loading condition, see Tab. 3.3, is
simplified in such a way that for F' < 0 the behavior is assumed to be elastic and for ' > 0 the
behavior is viscoplastic. The yield function still represents the border of the elastic domain, how-
ever it does no longer serve as an additional constraint from which the plastic multiplier could
be calculated. Accordingly, the plastic multiplier in the flow rule and the evolution equation,
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elasticity ‘ elastoplasticity
loading F<0or F:O/\F‘; >0
condition =
F=0AF|, <0
4=0
free ZZ)(Fe,TK,TD) Ye(Te) + ¥ (ri) +1p(rp)
energy Ye(Te) = = (5 (In(Je))* — pln J, + ptr T )
Vr(ri) = 5 Zle*w + k. dorp) = 1 %rh
elasticity =(AlnJ, — pu)I+ pCe
relation
P oF IF ¢
oo r D
flow rule r',=0 I‘ )\(ahl—l— 8J2P )
distortional a=0 o= <FD < I — 35) oL + VT2 oF > — bDax>
hardening \/_
abbrev. I =trP,J, = (PP - PP)/2, J, = (det C,)/?
rg = In(det C/det Ce)/2, £ = —aleT K 4 e

Table 3.2: Constitutive model expressed with quantities relative to the intermediate configuration (with

q= {5) Fpa a})
elasticity ‘ elastoplasticity
loading F <0or F>0or
condition
F=0AF|, <0 F=0AF| >0
=0 =0
elasticity =(AlnJ, — p)C™ + uC;l
relation
: : oF oF
flow rule C,=0 C,=X2 (81 I+ o, (CT — (11/3)I)> C,
. . . . D 6F
distortional ad=0 a=X (I -3 +/Ts — bpay
. a oL 8\/7
hardening
abbrev. I; = tr (TC),Js = (CT - TC —12/3) /2, J. = ((det C)/(det C,))*/2
rg = In(det Cp)/2, & = —aleT K 4 e

Table 3.3: Constitutive model expressed with quantities relative to the reference configuration

see Tab. 3.3, is replaced by the additional variable ), which is calculated from the additional
constitutive equation, see PERZYNA [111],

. F
A:<_
0o

Here, the three parameters 7, oy and r,, have been introduced. It is worthwhile mentioning that
for n = 0 the original equations of elastoplasticity are retrieved, see HAUPT ET AL. [68]. Thus,
the implementation of the model of viscoplasticity includes the limit case of elastoplasticity in a
very simple manner. The parameter o is needed to make the expression in the Macauley brackets
() dimensionless. The viscoplasticity model is summarized in Tab. 3.4 expressed in quantities
relative to the reference configuration.

(3.89)
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‘ elasticity ‘ viscoplasticity
loading F<0 F>0
condition
elasticity T=(AlnJ. — p)C~! + uC, !
relation
: N _ 5o (OF . OF (i
flow rule C,=0 Cp =2 (8—111 + 8—J2(CT — (11/3)I)> C,
distortional | a =0 a=\ <%’ ((11 — 35)‘3TF +Ja oL > — bDax>
hardening ! 8\/5
abbrev. I; = tr (TC),Js = (CT - TC —13/3) /2, J. = ((det C)/(det C,))'/?
ric = In(det Cp)/2, € = ~e™ a2 4 epery, A= (L)

Table 3.4: Constitutive model (viscoplasticity) expressed with quantities relative to the reference config-

uration
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Chapter 4

Material parameter identification

This chapter deals with the material parameter identification of the constitutive model. First, a
survey of the literature available on the topic of material parameter identification from experi-
ments on metal powders is provided. Afterwards, the experiments that have been developed and
conducted in close cooperation with Prof. Frage at the Ben Gurion University of the Negev in
Beer Sheva, Israel are described. This includes the description of the experimental setup as well
as the characterization of the treatment of the raw data. Subsequently, the material parameter
identification itself is discussed and the results are provided.

4.1 Experimental-based parameter determination

All constitutive models contain a number of material parameters. While the general behavior
of a material is already defined by the structure of the constitutive equations, the material para-
meters provide the possibility to adapt quantitatively the model behavior to experimental results.
Usually, the material parameters are determined from simple experiments (leading to a homoge-
neous deformation), which are only or at least dominantly influenced by one or a subset of the
material parameters. With respect to the material parameter identification of the metal powder
compaction models, various authors have proposed different approaches which invoke different
levels of experimental effort.

Among the publications which suggest an elaborate experimental program for the parameter
identification, are, for example, the thesis of COUBE [33] and the article of CHTOUROU ET AL.
[30]. In CHTOUROU ET AL. [30] the material parameter identification for a cap model (elasto-
plasticity) is discussed in some detail. They apply resonant frequency tests on pre-compacted
specimen of various relative densities, which were machined into rectangular bars, in order to de-
termine the elastic properties of the material. For identifying the hardening properties (growth of
cap surface due to densification) they apply hydrostatic compression experiments. Additionally,
they use a triaxial apparatus to superimpose an increasing axial stress on a number of hydrostatic
pre-compaction stress states in order to determine the shape of the cap yield surface. Further-
more, they perform free uniaxial compression tests on pre-compacted specimen for the determi-
nation of the shear failure surface. A somewhat similar approach, which does also rest mainly
upon testing of pre-compacted samples, is presented by COUBE [33] for his Drucker-Prager cap
model. He uses data from free compression and “Brazilian disc” tests on pre-compacted spec-
imens of various densities for the identification of the failure line (Drucker-Prager cone) and
applies ultrasonic tests on machined pre-compacts to determine the elasticity parameters. Fur-
thermore, results from triaxial and die compaction testing (iso-density points) are used for the
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identification of the cap surface and its evolution. Tests to determine the tensile cut-off value are
described, which are conducted with the help of a special two-part die, tearing the compacted
specimen apart with rather small tensile stresses of about 1-2 MPa (increasing with density). On
the one hand, a detailed experimental analysis of a given powder material is of course desir-
able for the material parameter identification. On the other hand, such experimental effort may
not always be feasible and some of the experiments mentioned above, especially the ones con-
ducted with pre-compacted and machined specimens are questionable in view of their reliability
in respect to material parameter identification of a metal powder model.

One of the earliest publications suggesting the application of a Drucker-Prager cap model for
metal powder compaction problems is due to WATSON AND WERT [139]. They also suggest
and use the application of ultrasonic wave speed measurements to determine the elasticity pa-
rameters of pre-compacts (aluminum powder). Furthermore, they determine the yield function
and its evolution from hydrostatic compression, constrained compression (die compaction), free
compression and unconstrained tension tests. Since the die used is not fully instrumented, they
have to calculate the radial stress state inside the die from the elasticity parameters identified
previously and the measured axial stress.

In the thesis of CARNAVAS [23] experimental data on several metal powders is proposed,
obtained in uniaxial constrained compression and triaxial experiments. In addition to the pure
loading experiments, he reports loading experiments with intermediate unloading and reloading
cycles. Since the apparatus is fully instrumented, the radial stress as well as the axial stress are
known during loading and unloading and can be used to determine the elasticity parameters as
presented in CARNAVAS AND PAGE [24]. This way of determining the elastic properties has
the merit that the experiments are not conducted on machined pre-compacts. The unloading and
reloading behavior of the compacted powder is studied directly, so that there is no intermediate
process (machining) which might have undesired influence on the results. On the other hand, this
procedure demands the determination of the radial stress inside the die, which is a non-trivial
task. CARNAVAS [23] solves this problem by measuring the hoop strains (with strain gauges)
on the outer surface of the die calibrating the apparatus by pressurizing castor oil (hydrostatic
pressure) inside the die. A similar procedure to determine the radial stress during die compaction
is used by GEINDREAU ET AL. [50], who also measure the circumferential strains at the outer
die surface and calibrate their apparatus using an unspecified incompressible material.

In BIER AND HARTMANN [19] the experimental data from die compaction experiments
reported by CARNAVAS [23] has been used to identify the material parameters of the constitutive
model defined in the previous chapter. Additionally, it is shown that the model response, adapted
to die compaction data only, does also represent the triaxial data reported by CARNAVAS [23] for
the same powder fairly well, see Fig. 4.1 taken from BIER AND HARTMANN [19]. The positive
experience with the parameter identification from (fully instrumented) die compaction data gives
reason to rely mainly on this kind of experiment for the parameter identification for the powder
under consideration, which is discussed in the following section.

4.2 Description of the experiments

The investigated material, within this project is a fine grained copper powder with irregular mor-
phology as shown in the SEM image of the loose powder (Fig. 4.2). The copper powder has been
purchased from Alfa under Stock number 13990. The density of the particle base material (Cu)
is 8.96 g/cm?. The average particle size of the powder particles, as stated by the supplier, is 8-11
pm with less than 10% of the powder particles greater than 44 pim (+325 mesh).
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Figure 4.1: Response of parameter identification applied to data of CARNAVAS [23], see BIER AND
HARTMANN [19].

A number of uniaxial constrained compression experiments in a cylindrical die are performed
with the experimental setup described in Subsection 4.2.1. In addition to the axial displacement
(axial stretch) and the axial stress (compaction pressure), the setup allows the determination of
the radial stress (radial pressure) inside the die through the measurement of the radial expansion
of the die. Details about the processing of the measured data and the calibration are provided
in Subsection 4.2.2. The rate-dependence of the material is checked in three compaction experi-
ments at different velocities of the upper punch. In addition to pure loading experiments, which
are predominantly used to identify the material parameters in the evolution equation, the yield
function and the flow rule, a number of experiments with intermediate unloading and reload-
ing cycles are performed and used to identify the elasticity parameters from the initial part of
the unloading curve, which is assumed to be elastic. Details about the parameter identification
procedure are provided in Section 4.3.

4.2.1 Experimental setup

The loose powder is compacted in a cylindrical die, with an internal and external diameter of
14 mm and 22 mm, respectively. Two true scale drawings of the setup are provided in Fig. 4.4
and Fig. 4.5 containing all the relevant dimensions of the setup. Pictures of the setup as well as
pictures of the disjointed setup are shown in Fig. 4.3 providing a better impression. The pressure
is applied by an "Instron 1186” testing machine and measured by the load cell below the depicted
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Figure 4.2: SEM image of the loose powder

(a) Setup in action (b) Disjointed setup

Figure 4.3: Images of the setup and of the disjointed setup

setup. The axial load (axial stress) is transferred from the testing machine to the powder inside
the die via the upper and bottom punches. The axial displacement of the upper punch is measured
with a ”Solartron dc miniature” displacement transducer. The rod of the displacement transducer
is attached to the top punch, see Fig. 4.4, and the displacement transducer’s body is fixed to
the outermost cylinder of the setup. The small radial expansion of the die, caused by the radial
pressure exerted by the powder onto the inner die wall, is measured at one fixed position. The
radial expansion of the die at this position is amplified mechanically by a newly developed device
and measured at the end of its arm with the help of a Hall effect sensor allowing the determination
of the radial expansion of the die. Assuming a linear elastic behavior of the die, the radial pressure
inside the die can be calculated from the measured deflection, see Subsection 4.2.2. In order to
reduce the friction between the powder particles and the die wall, the punches and the die are
mechanically cleaned (in acetone and alcohol environment) and are lubricated with “’silicon mold
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Figure 4.4: Drawing of the setup showing the instrumentation for the determination of the axial displace-
ments (all dimensions are in mm)

release”. The die and the punches are fabricated from 4340 steel, with Young’s modulus £ = 200
GPa, Poisson ratio v = 0.3 and a yield strength of oy = 1300 MPa.

4.2.2 Treatment of experimental data

A limited number of compaction experiments are conducted and analyzed with the setup de-
scribed above. In each compaction experiment an amount of 10 g copper powder is poured in the
die and compacted up to a final axial stress of approximately 500 MPa. Except for the experi-
ments to check the rate dependence of the material, which were conducted at higher velocities of
the machines traverse, the velocity is kept constant at 0.05 cm/min during the compaction phase.
The axial stress, the axial displacement of the upper punch and the radial expansion of the die
are recorded every 1.5 seconds. In Fig. 4.6 the measured axial stress and the measured radial
displacement (expansion of the die) are each plotted versus the axial displacement of the upper
punch. Since the stresses are always negative (pressure), the sign is omitted throughout this sec-
tion and compressive stresses are counted with positive sign. The observed reproducibility in
the three depicted runs is satisfactory. In order to check the rate-dependence of the material, the
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Figure 4.5: Drawing of the setup showing the instrumentation for the determination of the radial expan-
sion of the die (all dimensions are in mm)

same experiment is repeated with different displacement velocities (1x = 0.05cm/min, 4x ,10x)
of the machine’s traverse. The raw data obtained in these experiments are depicted in Fig. 4.7.
For the studied velocities no significant rate-dependence is observed. At higher velocities a rate-
dependent behavior may of course be present, but will be ignored due to the lack of experimental
data. In addition to the pure loading tests, experiments with intermediate unloading (0.xja = 0)
and reloading cycles are conducted. The measured data of one of the three conducted experi-
ments is shown in Fig. 4.8. In order to be able to use the obtained experimental results to identify
the material parameters of the developed constitutive model, it is necessary to derive relations be-
tween the axial stress 0,, and the axial stretch A, see Eq. (4.3), as well as the radial stress o,gia
and the axial stretch A\. The main relevant issue is the calculation of the radial stress o ,q;aq from
the measured radial expansion of the die. First of all, the determination of the axial stretch A from
the measured axial displacement w,,;, Which contains the compliance of the system (punches)
is addressed.
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Figure 4.6: Raw data obtained in the pure loading compaction experiments.

Correction of axial displacements for compliance of system

The measured axial displacement iy is the sum of the change in height of the powder "’ and
the change in length of the upper and the bottom punch u.>;

axial

., Ppow sys pow S
Uaxial = uaxial + uaxial And uaxial = Uaxial uaxial’ (41)

The length change of the setup u,.,; depends on the applied pressure and can be calculated from

the measured axial stress assuming a linear elastic behavior of the punches,

sys UaxieﬂL

axial E 05 (42)

u
with the Young’s modulus £ of the punches and the reference length L, = 85 mm. L is
the sum of the undeformed length of the upper punch from the point, where the displacement
transducer’s rod is fixed to the upper punch down to the powder (66.5 mm) and an equivalent
undeformed length of the bottom punch (18.5 mm), which takes into account the pyramid like
shape of the bottom punch. The axial stretch A is then given by
hO — Uaxial
A= ——— 4.3

e (4.3)
where hy is the initial height of the powder.

Since in most of the literature on powder materials the stresses and other quantities are related
to the relative density, the correlation between the stretch A and the relative density is briefly
addressed, see also Subsection 3.2.1 for further details about the notion relative density. For this
purpose it is assumed that the radial expansion of the die can be neglected. Therefore, the relative
density is

prt = 2 . (4.4)
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Figure 4.7: Raw data obtained in the pure loading compaction experiments at increased velocities of the
machines traverse (1x=0.05cm/min).

assuming a given initial relative density pr . and det F = A. For an arbitrary homogeneous
deformation described by the deformation gradient F, Eq. (4.4) must be replaced by

Pret = C’f;Fl (4.5)

In Fig. 4.9 the axial stress is plotted versus the measured axial displacement i as well as the
axial displacement ul corrected for the compliance of the system u;.., as described above.
This gives an impression of the influence of this correction, which becomes visible, especially,
during the unloading and reloading.

The precise determination of the initial powder height h is practically not feasible. This is
partly due to the uncertainty in the amount of powder inside the die (10 £ 0.05g). Another reason
is that the powder height inside the die cannot be measured directly; instead it is deduced from
the measured height of the whole setup (length of punches + powder height). Moreover, the
initial powder height may deviate from one experiment to another on account of the deviations
in the initial relative density after “tapping” the powder within the die. For the calculation of
the stretch )\, the mean value of the determined initial powder heights from the three loading
experiments, which is hg = 17.3 mm £0.2 mm, is used. The uncertainty is estimated from the
variance of the three measured values. In order to take this uncertainty into account, an offset
to the measured axial displacements of each individual experiment is introduced in the initial
conditions. This offset is determined in such a way that all three curves of axial stress versus
axial displacement pass through the same point at a certain axial stress level. Here, a value of
460 MPa has been used. At that axial stress the mean value of the measured axial displacements
was 8.90 mm. This means that it has been assumed that the same amount of powder will have the
same height at a high axial pressure, while the initial height at approximately zero axial pressure
may vary due to differences in the density of the loose powder.
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Figure 4.8: Raw data obtained in loading experiment with intermediate unloading and reloading cycles.
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Figure 4.9: Exemplary plot to show influence of the compliance of the system

REMARK 4.1

The upper punch is forced inside the die by hand until it cannot be pushed further. It seems
reasonable to assume that the initial density of the powder reached this way may vary much
more than the height obtained at the rather high axial pressure of 460 MPa, which is the reason
for the offsets that have been introduced. U
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Conversion of radial displacements to radial stresses

The radial stress inside the die is calculated from the measured radial displacement outside the
die. Under the assumption of a linear relation between the pressure (radial stress o,qia) inside
the die and the radial expansion Ad of the die at a fixed position and with the proportionality
factor ¢ depending on the current powder height one obtains

Oradial = q(h)Ad' (4.6)

The function ¢(h) can be found from several finite element simulations with different powder
heights h. In each FE-simulation a pressure of 0,,4.q = 1 MPa is applied to the inner die wall as
boundary condition over the height / of the powder, see Fig. 4.11. The result of the computation
is the radial displacement Ad at the position of the sensor H. Therefore, the proportionality

factor is
Ad Ad

q(h) n O radial n 1MPa
The proportionality factor ¢(h) is determined several times according to (4.7) for different pow-
der heights. These computations have been performed by Prof. Yosibash!. In Fig. 4.10 the
results for ¢(h) are plotted versus the powder height, together with a third order polynomial in
the powder height starting from an initial powder height of 14.6 mm. The fitted function for ¢(h)
is used to convert the measured radial expansion Ad into radial stresses within the die, taking
the continously changing height of the powder during the compaction process into account. In
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Figure 4.10: Proportionality factor ¢(h) versus powder height. Third order polynomial is used to represent

the data points obtained by Prof. Yosibash continously.

Fig. 4.11 the geometry and the mesh of the FE-simulation for the computation of the dies expan-
sion is given. To this end the Young’s modulus £ and the Poisson ratio v of the die’s material

IRadial stress measurements in a die during compaction, Internal report for GIF project, BGU, Computatinal
Mechanics Lab, Beer-Sheva, Israel, October 2004, by Idit Cohen and Zohar Yosibash
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have been determined from ultrasonic measurements to be 203.4 GPa and v = 0.3. These ma-
terial parameters have been used in the calculations using the commercial p-finite element code
StressCheck, see ESRD [46]. The p-version of the finite element method applies higher order
ansatz-functions and can achieve precise solutions with a comparatively coarse mesh. Various
computations with increasing p-level (order) up to 8 order have been performed in order to see
convergence to the “exact” solution. For a theoretical background of the high-order p-FE anal-
ysis, see SZABO AND BABUSKA [131]. The estimated error in energy norm is below 1 % for
all analyzed powder heights. This computational” approach of determining the proportionality
factor g(h) is preferred because of its simplicity over the “experimental” alternatives, e.g. used
by CARNAVAS [23] or GEINDREAU ET AL. [50].
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Figure 4.11: Axisymmetric geometry of die and p-FE mesh with boundary conditions used to determine
the conversion factor g(h)

4.3 Parameter identification procedure

The material parameters contained in the constitutive model, which has been defined in Chapter
3.3 are gathered in Tab. 4.1. Since the available experimental data is not exhaustive with respect
to the determination of all parameters, some parameters are set a priori. The elasticity parameters
A and p determine the behavior within the elastic domain. The parameters oy, bp, cp define the
evolution of the internal variable «, which is the squared ratio of the axis of the elliptical part
of the yield function. The size of the yield function, or, to be more precise, the dependence of
the size on the plastic volumetric deformations is described with the help of a, as, ck. They
determine the function &(rk), with £ representing the center of the yield function lying on the
hydrostatic axis (actually the center of the elliptical part of the yield function). The parameters
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Iy, r and c influence the shape of the yield function. Due to the lack of experimental data that
would provide reliable information about the shape of the yield function, the latter parameters
are specified a priori in such a way that a reasonable shape of the yield function is obtained. This
means that only the function £(rg), i.e. the parameters a, as, ck, are used to model the increase
in size of the yield surface during a compaction process.

The compaction experiments, which study the rate-dependence of the material behavior, give
no evidence of a rate dependence within the studied range of compaction velocities. This means
that an identification of the corresponding viscosity parameters is not necessary, since the exper-
imental data can be reproduced for = 0 (elastoplasticity) very well. However, the introduction
of a small viscosity (n > 0) can reduce the numerical effort, without changing the stress results of
a finite element calculation significantly. Therefore we will consider in the numerical examples
(chapter 6) in addition to the choice = 0 (elastoplasticity) the alternative choice n > 0, g = 1,
ryp = 1 (viscoplasticity). The undetermined material parameters of the constitutive model have
been collected and grouped in Tab. 4.1. The parameters from the groups “elasticity”, “function
&(rk)” and “evolution of o are identified with the help of the available experimental data from
the pure loading and the experiments with intermediate unloading and reloading cycles. The
parameters in the groups “yield surface” and "viscosity” from Tab. 4.1 are not identified. For the
viscosity parameter 7 = 0 (no viscous effects) is assumed, leaving r,, = 1 and 0y = 1 MPa
without influence.? For the “yield surface” parameters I, r and ¢ reasonable choices are made
a priori. These are I, = 1 MPa, giving the powder a fixed small strength against hydrostatic
tensile loading and guaranteeing a uniaxial tensile strength which grows during densification but
remains small. The parameters 7, ¢ are chosen to be » = 0.3 and ¢ = 0.01. This choice ensures a
drop like shape of the yield surface in the I;-+/.J>-plane being sufficiently smooth to be handled
numerically in an adequate way. For the parameter identification of the remaining free para-
meters, it is taken advantage of the fact that the behavior of the material during plastic loading is
hardly influenced by the elasticity parameters A and . Likewise, the behavior during unloading
and reloading in the elastic range is dominated by these two parameters. This gives reason to
apply an iterative two stage identification procedure. In the first step of this procedure the elastic
parameters A and y are roughly estimated to be both equal to 20 GPa. This estimation corre-
sponds to an Young’s modulus of £ = 50 GPa and a Poisson ratio of v = 0.25. These values
have been reported by CARNAVAS AND PAGE [24] for another copper powder compacted to a
relative density of about 85 %. It will be shown that, although this initial guess for the elasticity
parameters is very rough, the identification procedure can be stopped after two iterative steps.
In this respect, it must be emphasized that, although A and p correspond to the Lame constants
for small strains, we have to identify the elasticity parameters of the nonlinear elasticity relation
(3.87). In other words, the influence of the current plastic strains upon the unloading behavior
must be taken into account.

Stage I: Identification of inelastic parameters from loading curve

The hardening behavior of the material is modeled by the growth of the yield surface, which
is described by the dependence of £ (with 3¢ being the center of the ellipse on the hydrostatic
axis) on the volumetric plastic strain, see Fig. 3.8. Relation (3.77) contains the parameters a,
as and cg. The initial condition at ¢ = 0 for C, is C, = I, which implies rx = 0 in the be-
ginning. Additionally, the initial condition o for the internal variable o and the two parameters

2The expansion of the model to viscosity will be used only in view of its influence on the numerical treatment of
the model.
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Table 4.1: Collection of material parameters

symbol | group description of parameter
A elasticity elasticity parameter corresponding to the Lame constant for
small deformations, see Tab. 3.3
W elasticity elasticity parameter corresponding to the Lame constant for
small deformations, see Tab. 3.3
ay function £(rk) | defines together with a, the value of £ for rx = 0 and to-
gether with ¢k the initial slope of £(rk), i.e. the start of com-
paction, see Eq.(3.77)
as function £(rk) | defines together with ay the value of £ for ¢ = 0, i.e. start
of compaction and how fast ¢ grows as rx approaches —oo,
see Eq.(3.77)
K function £(rk) | determines together with a; the initial slope of £(rk), i.e.
the start of compaction, see Eq.(3.77)
g evolution of o | initial value of «, see Eq.(3.83)
bp evolution of o | parameter in evolution equation for « , see Eq.(3.83)
cp evolution of o | parameter in evolution equation for « , see Eq.(3.83)
Iy yield surface | defines intersection of the elliptical part of the yield function
with the hydrostatic axis (tensile) , see Fig. 3.8
r yield surface | defines intersection of the elliptical part and the exponential
part of the yield function, see Fig. 3.8
c yield surface | defines the smoothness of the transition between the ellip-
tical part and the exponential part of the yield function, see
Fig. 3.8
0o viscosity makes the expression in the Mccauley brackets dimension-
less and can normalize the yield function value, see Tab. 3.4
Top viscosity parameter used to model rate dependence , see Tab. 3.4
i viscosity parameter used to model rate dependence , see Tab. 3.4

bp and cp defining its evolution need to be identified. For the identification of this whole set
of parameters (ai, as, cx, bp, cp, ap) the die compaction experiment is idealized by assum-
ing a homogeneous deformation inside the die, which is described by the deformation gradient
F=¢ ®¢é +¢éy®ey+ A, ® e,. This means that friction between the powder and the die as
well as the influence of the die’s radial expansion are neglected. €, €y, €, are the basis vectors
in cylindrical coordinates. For the assumed deformation gradient the constitutive equations, see
Tab. 3.3, are integrated numerically to reproduce the measured stress-stretch curves. With the
help of an optimization tool of SPELLUCCI [126], which is able to handle inequality constraints
of the parameters specified in Tab. 4.2, the numerical integration procedure is called with differ-
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ent values of the parameters repeatedly. The new values are generated by the optimization tool in
order to minimize the difference between the computed stress-stretch relation and the smoothed
representation of the measured data. In this procedure a weighting technique described by HART-
MANN ET AL. [66] is applied. The residuals from the axial and radial stresses are weighted in
the objective function of the optimization by the inverse of the maximal value occurring in the
data in order to achieve an equally well representation of axial and radial stresses.

mod exp 2 mod exp 2

. . omed — oo b gmod - 5P ,
objective function = E (73’“&‘] ex;,‘XI‘ﬂ) + (—radlal exg‘ld“ﬂ) — min  (4.8)
all data points max <UaXial) max(aradial)

The fit results of the first iterative step using A = p = 20 GPa are presented in column 3
(1% fit result) of Tab. 4.2. These parameters are used subsequently in the second stage of the
identification procedure to identify the elasticity parameters A and p.

REMARK 4.2

In principle it would have been possible to identify all parameters using the optimization tool
of SPELLUCCI [126] by fitting the model response to the experimental data with intermediate
unloading and reloading cycles. However, there are two strong reasons against this procedure.
First, as mentioned before, we would not exploit the fact that the unloading and reloading phases
are majorly influenced by the elasticity parameters A\, ;. and that the plastic loading phase is pre-
dominantly influenced by the other parameters (ay, a2, ck, bp, cp, ). Second the inclusion
of unloading and reloading phases would have led to a number of technical problems like the
definition of points where unloading should start, and the problem that the stretch would not in-
crease monotonically. So the decision has been made, giving favor to the two stage identification
procedure. U

Table 4.2: List of parameters, constraints and fit results

parameter constraint 1% fit result 2" fit result
(A =p =20GPa) | (A =5.3GPa, u = 8.3 GPa)
aq >0 0.440 x 10* 0.445 x 10*
as >0 0.649 x 10* 0.662 x 10*
CK >0 0.433 x 102 0.427 x 102
bp >0 0.256 x 10 0.268 x 10!
cp >0.1x1073 0.1 x 1073 0.1 x 1073
o >0 0.532 0.558

Stage I1: Identification of elasticity parameters from unloading curves

For the identification of the elasticity parameters, the three experiments with inserted axial un-
loading and reloading, see Fig. 4.8, are analyzed. The two parameters in the elasticity relation,
A and p, can be deduced from the slopes By and Biagia of the unloading curves of the axial
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stress and the radial stress over the stretch A. The equations, which connect the slopes with the
parameters, are derived in the following. From the elasticity relation, see Tab. 3.3, one finds the
Cauchy stress tensor T by inserting the information about the deformation

100 10 0 Mg 00
F=[010], c=(01 0], C=|[ 0 X 0 (4.9)
00 X 0 0 A2 0 0 X

and performing a push-forward of the 2. Piola-Kirchhoff stress tensor T to the current configu-
ration

]_ 1 1 -1 —1 T
T=_—=F (ucp + <§Aln (det (C,'C)) — u) C ) F'. (4.10)
Therefore, the axial and the radial Cauchy stresses are written as
px o A A2
pooop A A2
radial — radia )\7/\7/\ ,A, = -y —1 . 4.12
o = o O d ) =g =S (g) e

During unloading A, and A, are constant (as long as the unloading leads to a stress state inside
the elastic domain). Thus, the initial slope of the unloading curve at a certain stretch \q can be
expressed in the following form:

Slope of 0,yia during loading:

aO-axi'
Buial = W‘ﬂ = C1 (N> Aps Apg) A 4 Co( Ao, Ap, Apg )1t (4.13)
=A0
Slope of agia1 during unloading:
By = 07w — Cs( Mo, Aoy M)A 4 Ca (Do, Ag, A 4.14
radial — )\ s - 3( 0y \p» pq) + 4( 0y \py pq):u ( )
=A0

Inserting the slopes of the experimental unloading curves By, and Bi,gi., Which are determined
by a simple linear regression fit to the experimental data (initial 50% of unloading curves) into
these equations, one obtains a system of linear equations for the unknown parameters ;. and A.
The solution of this system of linear equations reads

_ 2)\3 (Baxial)\g ()‘gq - 1) - Bradial)\gq ()\g + )\%)) (415)

A2
(3 +228) (i (3n) - 2)
(Baxial - Bradial) )\3)\2)\2

. Ly 4.1
a A - AZ 2 (4.16)

In each of the n, experiments with inserted unloading processes, there are n,, = 7 points
/\6, J = 1...,nyp, at which unloading starts. This means that one finds ney, X nyp individual
values ,u{ and Ag corresponding to the j™ unloading in the i™ experiment, i = 1, ..., nexp. The
results for A{ and ,ug , which are calculated from (4.15) and (4.16), depend not only on the stretch
/\6 at which the unloading starts, but also on the respective plastic stretches )\g and )\gq. The values
of A\J and A}, are taken from the computation of the pure loading process with the parameters of
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Tab. 4.2, (column 3). The resulting mean values of the n.y, experiments at j™ unloading point
are

Tlexp Tlexp

Z“w N = ZA{. (4.17)

n n
exp i=1 exp i=1

The overall mean values after the first iteration are given by

Mexp Mup Texp

DD ol A= > N (4.18)

nexpnup i=1 j=1 TexpTlup i—1

andread ;1 = i = 8.3 GPaand A = A = 5.3 GPa. Since the material parameters of the inelastic
part of the constitutive model are influenced by the choice ;o and A, the two-stage procedure has
to be repeated. In Tab. 4.2 (column 4) the identified material parameters are compiled. Obvi-
ously, the parameters are not drastically influenced by the alteration of the elasticity parameters
1 and A. Computing 1 and A once again by (4.17) and (4.18) yields p = 7= = 8.3 GPa and
A = A = 5.2 GPa, which is only a very small change and, consistently, no further iteration
is necessary. Fig. 4.12 shows the result of the identification for the monotonic loading process
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Figure 4.12: Stress-stretch behavior calculated with model after optimization of parameters together with
smooth representation of experimental data

using the parameters of Tab. 4.2 (column 4). The results of the identification of the elasticity pa-
rameters are depicted in Fig. 4.13. There, the displayed error bars in ordinate-direction represent

the standard deviation of the mean value A’ and [/ from the three unloading experiments at the
relative density p, see Eq. (4.4) corresponding to the j™ unloading. The displayed error bars
on the abscissa (uncertainty of the relative density) are estimated according to quadratic error
propagation from the uncertainties of the mass of the powder (£0.05 g), the initial powder height
(£0.2 mm), the diameter of the die (+-0.02 mm) and the axial displacement (£0.03 mm). In ad-
dition to the values for x and A derived from our experiments, Fig. 4.13 contains values for ; and
A which have been calculated from values of E and v reported by CARNAVAS AND PAGE [24,
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THEIR FIGURES 6B, 6C AND 8] for two copper powders consisting of irregular (irr.) and den-
dritic (dend.) shaped particles. The data based on the experiments of Carnavas has been included
in Fig. 4.13 to demonstrate the plausibility of the identified values for the elasticity parameters p
and A. Finally, the results of the model, using the identified set of parameters of Tab. 4.2 (column
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overall mean A =w=--=---- o overall mean pi =---=-----
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(a) elasticity parameter A (b) elasticity parameter p

Figure 4.13: Elasticity parameters identified from all three experiments with inserted unloading and
reloading processes and calculated from values of F and v reported in CARNAVAS AND PAGE [24].

4), are compared to an experiment with inserted unloading. In the computation, the unloading
continues until o,y = 0 is reached. In Fig. 4.14 the output of the model for the axial as well as
the radial stress is presented together with the experimental data. The model captures the general
behavior during loading and unloading. In particular, the residual radial stress after unloading to
Oaxiat = 0 is reproduced remarkably well.
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Figure 4.14: Axial and radial stress from experiment with inserted unloading-reloading and results of
similar computation with the identified set of parameters.



Chapter 5

Numerical treatment using finite elements

This chapter deals with the numerical treatment of the initial boundary value problem (IBVP)
in the context of finite elements that is formed by the balance relations and the constitutive
equations together with given initial and boundary conditions. The applied solution strategy is
explained in Section 5.2 in a step by step manner starting with the formulation of the principle
of virtual displacements (Section 5.2.1). Afterwards the space discretization of this principle
(Section 5.2.2) leads to a system of differential-algebraic equations (DAE-system). This DAE-
system is integrated in time with the help of diagonally implicit Runge-Kutta (DIRK) methods',
see Section 5.2.3, demanding the computation of nonlinear systems of equations at each stage
of the integration scheme. These nonlinear systems are solved with the help of the Multilevel-
Newton algorithm, which exploits the coupled structure of the equations. On the local level of the
Multilevel-Newton algorithm a nonlinear system of equations that results from the constitutive
model has to be solved. Furthermore, the consistent tangent matrix is calculated on the local
level. Frequently, the nonlinear system on local level is solved using the Newton method. The
analytical reduction of the number of equations resulting from the constitutive model proposed
in Section 3.3 and 3.4 to one equation as proposed by LUHRS ET AL. [100] or HARTMANN
ET AL. [65] in the context of metal plasticity is not feasible. Furthermore, the application of the
standard Newton algorithm lead to convergence problems so that several globalization strategies
for Newton’s method are studied, see Section 5.2.4, leading to particular stress algorithms.

In order to make this chapter more comprehensible, some of the applied mathematical con-
cepts are introduced in Section 5.1 in some detail. This introduction is somewhat more general,
however, already suited for the later application discussed in Section 5.2.

'In the simplest case with the implicit Euler method.

81
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5.1 Mathematical basics

This section introduces some of the less well known mathematical concepts, which will be ap-
plied in the solution process of the IBVP. In Subsection 5.1.1 diagonally implicit Runge-Kutta
methods, which are applied for the solution of the DAE-system resulting from the space dis-
cretization within finite elements, are introduced. Subsequently, the Multilevel-Newton algo-
rithm, which is applied to solve the nonlinear systems in each stage of the Runge-Kutta scheme,
is introduced. Finally, in Section 5.1.3 a number of globalization strategies for the Newton
method, which are applied on local level to solve the nonlinear system of equations, are intro-
duced.

5.1.1 Solution of DAEs with DIRK methods

A system of explicit ordinary differential equations of first order can be written in the form
yit) = fit,y(t)), feR" (5.1

and a solution y(¢) with ¢ € [to, T can either be found analytically (if possible) or numerically
for given initial conditions Y(to) = ¥,. A more general class of problems are so-called implicit
ordinary differential equations of first order

F(t, (1), y(t)) = 0 (5.2)

where an algebraic transformation to the form (5.1) is not feasible. The space discretization of
the principle of virtual displacements (see Section 5.2.2) will lead to a system of differential
equations of first order possessing the special structure

2y g(t, u(t), q(t)) _
Py 0500 = { a1y =0 63
with
_Jou) CJoue) | w |
y(t) —{ g } and  y(to) —{ qlto) }—{ a }—yo- (5:4)

This structure is called a (semi-explicit) system of nonlinear differential algebraic equations of
first order, shortly denoted as a DAE-system. The part g = 0 is referred to as the algebraic part
of the DAE-system and the part Aq — r = 0 as the differential part, where A can be singular,
which would make the differential part a DAE-system of its own (elastoplasticity). Later on a
special class of Runge-Kutta methods will be introduced in order to solve problems of the form
(5.3). However, we start the introduction of the method considering Eq. (5.1) and will generalize
it afterwards. We are interested in the solution y(¢) of Eq. (5.1) in the time interval ¢ € [to, T
which is subdivided into /V subintervals tg < t; < ... < t, < tp41 < ... < ty = T with the
time stepsize At,, = t,,.1 — t,, from time ¢,, to time ¢,, ;. Assuming that we start with a point of
the exact solution (¢, ¥(t,)), we seek the solution at time ¢, by integration of Eq. (5.1)

Vitw) =yt + " e,y 55)

n

With the help of a coordinate transformation (¢ = t,, + 7At,) the integration can be conducted
over the unit interval [0, 1]

1
Y(tnir) = Y(t) + At,, / f(t, + TAby, Y(t, + TAL,))dT. (5.6)
0
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Table 5.1: Butcher tableau for Runge-Kutta methods with s stages

1| a1 a2 ... Qis
Ca | Q21 Q22 ... Q3
Cs | A1g A2g ... Qgg

by by ... b,

The integral in Eq. (5.6) is now solved applying a quadrature formula

1 S
I:/ frydr =Y bif(e), i=1,...s (5.7)
0 i=1

with the weights b; and the stages c; leading to the discrete form of Eq. (5.6)

Y(tni1) = Y, = Y(tn) + Aty Z bif(t, + c;Aty,, Y(t, + c;Aty,)) (5.8)
i=1
The quantities y(t,, + c¢;At,,) are unknown. They are determined as well by applying a quadrature
rule using new weights a;; but the same stages ¢;, j = 1,..., s, as before
Y(t, + c;At,) = Y, = Y(t,) + At, i a;;f(t, + cjAty,, Yoj). (5.9
j=1
Eq. (5.9) is in general a system of s xm equations for the s xm unknowns Y,; € R™ i=1,... s,

with s being the number of stages of the Runge-Kutta method and m being the dimension of the
system of differential equations, i.e. the dimension of y. The solution of this system is inserted
into Eq. (5.8) to compute the solution , ., looked for. The coefficients of the Runge-Kutta
scheme are usually compiled in Butcher arrays, see Tab. 5.1. According to their coefficients
Runge-Kutta methods can be subdivided into

e explicit (ERK), if a;; =0V j >4,
e implicit (IRK), if at least one a;; # 0 with j > <.

A special kind of implicit Runge-Kutta methods is called diagonally-implicit (DIRK), if a;; =
0V j > . The term stiffly accurate is used if a,; = ;. Individual RK-methods differ in the choice
of coefficients leading to different properties of the algorithm with respect to efficiency, stability
and accuracy, see for example HAIRER AND WANNER [58] for more details. In the following,
we demonstrate that the Runge-Kutta algorithm can be applied to solve the more general implicit
differential equation (5.2) as well, including also the case (5.3). At each stage of the RK-method
the stage values are given through

J=1
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Exploitation of the implicit differential equation (5.2) at each stage 7,; = t, + ¢;At, with
1=1,...,s, yields

j=1
From this (usually) non-linear system the stage derivatives Y, i=1,...,s, canbe computed.

With the help of the stage derivatives the sought solution at time ¢,,; is obtained
Vi1 = Yo+ Aty Y b Yo (5.12)
i=1

The application of a fully implicit RK-method with at least one a;; # 0 for j > 7 results in a
coupling of all the stage values, so that a system of s xm equations has to be solved. In the case of
explicit RK-methods the stage values can be calculated from already known values of the earlier
stages, so instead of the iterative solution of a nonlinear system only function evaluations are
necessary. However, the stability properties of the explicit scheme are of course much poorer.
For the class of stiffly accurate DIRK methods, which will be applied later on, the diagonally
implicit property a;; = 0 for j > ¢ implies that at each stage j the nonlinear system depends
only on the current stage derivatives Ynj and the previously calculated stage derivatives Y, with
1 < j so that instead of s X m equations (fully implicit) only a system of m equations needs
to be solved at each of the s stages. The stiffly accurate property, a;; = b;, has the additional
merit that the final stage value Y, is already the sought solution y,, ., and that in the case of
application to the DAE-system the algebraic equation is also satisfied at time ¢,,, ;. In the case of
stiffly accurate DIRK methods, Eq. (5.10) reduces to

Yo=Yy, +At, > a; Ynj =S, + Atyai Vi (5.13)
j=1
with the starting value
i—1

Sui=VY,+ At Y a;Yy, (5.14)
j=1

which depends only on already calculated stage derivatives. This implies that the stage deriva-
tives can be computed in each stage from (5.13) giving

. Y. _S.
Aty a4 ( )

Inserting this into (5.11) yields the non-linear system
Y. —S.
Rni Ynz =F Tnia Yn“u :07 ) = 1,..., 5.16
V)= F(T ¥ 520 —0 i= s 5.16

which has to be solved in each stage, where the unknown stage values Y,,; can be computed and
allowing afterwards the computation of the stage derivatives Y,,; using Eq. (5.15).
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Application of a stiffly accurate DIRK-method to the DAE-system (5.3) implies the solution
of the following coupled nonlinear system

R..(Y.) = { LU Qo) } =0 (5.17)

at each stage 7),; of the time step from ¢,, to ¢,,1, with

and Q .
Where S/, is given by, see Eq. (5.14),
-1
SL=Q,+ Aty > a;; Q. (5.20)
j=1

The partition of the quantities is

With this partition we obtain from Eq. (5.12) the solution in the form

Uyt = Uy + ALY bU, (5.22)

i=1

G = G, +A0L D bhQy (5.23)

i=1

As mentioned before, the case of elastoplasticity with yield function leads to a singular matrix
A if the consistency condition is not used to compute the plastic multiplier analytically but is
added as an additional unknown and the yield function itself represents an additional algebraic
equation.

The coefficients of three Runge-Kutta methods, which will be applied later on, are sum-
marized in Tab. 5.2. The Backward Euler method is included as a special case with one stage
only in that class of methods, see Tab. 5.2(a). The second row of coefficients zBi in the Butcher
tableaus (Tab. 5.2(b)(c)) is explained in the following paragraph, which explains how embedded
Runge-Kutta methods can be used to implement an efficient stepsize control.

Time-adaptivity

The choice of an appropriate time stepsize is one major issue in the business of solving ordinary
differential equations as well as differential-algebraic equations. One point is that, although the
algebraic part of equation (5.17) at time stage 1,5 = t,,+1 1s satisfied, the integration step (5.17)
can be an inaccurate approximation of the solution. Another common desire is the specification
of tolerances ensuring that the integration error keeps limited. Furthermore, a time adaptive
procedure can be very efficient, especially in problems with different time scales, since it adapts
to the underlying solution path. In order to minimize the computational effort of the time adaptive
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Table 5.2: Butcher tableaus of three of the applied Runge-Kutta methods

(a) Backward Euler (s =1,p=1)

1]1
1
(b) Ellsiepen’s coefficients [44, S.89] (s = 2,p=2,p = 1)
al| «
ll-—a « 1 A 5
a=1-12, a=2-22
l-a « 2 4
l—a «a

(c) Cash’s coefficients [25] (s = 3,p = 3,p = 2)

= 0.4358665215084580
= 0.2820667392457705
= 1.2084966491760101
—0.6443631706844691
= 0.7179332607542295
= 0.7726301276675511
= 0.2273698723324489

Y Y T —
o|T=7 7
1 o'

o
@™
o o

o)

)
o QL2
I

procedure, so-called embedded methods are applied. For these procedures a method to estimate a
suitable time step size is outlined below, for further details see HAIRER ET AL. [57] and HAIRER
AND WANNER [58]. The adaptation of the stepsize is done on the basis of the estimation of
the so-called local integration error. The current value y(¢,) is assumed to be given (exactly).
The local integration error § is the difference of the exact solution y(¢,1) (unknown) and the
numerical solution ,, . ;, which is known from the integration step with the applied Runge-Kutta
method:

5(tn+1a Y Atn) = y(tn-i-l) — Yo
Vi) — (V1) 4 ALB(, v ALY

Runge—K;t?a method
= AT (L, ) +O(AET?) (5.24)
N——————

main part of local integration error

In Eq. (5.24) ® is the so-called increment function of the method, see HAIRER ET AL. [57]. This
function is only formally explicit and incorporates implicit algorithms. Equation (5.24) stems
from the Taylor expansion of the exact solution and the solution produced by the chosen Runge-
Kutta method, where p is the order of the applied Runge-Kutta method. The local integration
error can be separated into the main part and a part of the order At?*2. The main part of the local
integration error is used to estimate the stepsize in order to control the integration error. To this
end, we assume that there are two numerical integration methods with different integration order,

Voii = Yt,) +At,®(t,, Y, At,) (5.25)
Vor1 = Y(ta)+ A, ®(t,, ¥, Aty,) (5.26)
leading to the local integration errors
0 = Yltns1) = Yo = AGT V(L y) + O(ALT) (5.27)
0 = Y(tat1) — Voyy = AET(L,, y) + O(AET2). (5.28)
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Here, we assume p < p. From the difference of both errors, the error of the lower order method
P can be estimated,

§ =0 =Y~ Your = AETU(t, y) + o( AEY?) = AT (1, ). (5.29)

Now, we can demand that the absolute value of the error should be smaller than a chosen toler-
ance

ALY (o, VI 2 | Yis = Vil < erll¥ll + 0 (5.30)
with €, and ¢, being user defined absolute and relative error tolerances. With the help of the

assumption that the error || ¥(t,, y)|| &~ C shall be constant from one step to the next, Eq. (5.30)
gives

1¥oi1 = Vol = CAL (5.31)
and can be used to compute the new stepsize At,., from the prescribed error tolerances
CALS =&l + (5.32)
and Eq. (5.31) by elimination of the constant C,
. 1
1
Atney = Al (M) (5.33)
Y1 = Yoia

To stabilize the stepsize behavior, i.e. avoid oscillations of the stepsize or the rejection of step-
sizes small modifications to (5.33) should be made. Furthermore, the application of suitable
norms || - || for solution vectors containing quantities with different scales should be consid-
ered. For the application within finite elements for material models with internal variables the
decomposition of the local error Y., = ¥,,.; — ¥,,.1 in

~

Uerr = Upt1 — Upiy and 9. = Qn-i-l - qn+1 (5.34)

for the displacements U and the internal variables q has been suggested by DIEBELS ET AL. [38]
and EHLERS AND ELLSIEPEN [43] and has been applied by HARTMANN [60] and ELLSIEPEN
AND HARTMANN [45]. Furthermore, they suggested weighted norms

1 ul ?
€y = ,| — E ($) €, := maxy
I 1) “a
Ty =1 eT‘un‘ _'_ 6a

k
Qerr

PP 4-33)

The maximum e,,, = max(e,, e,) of these partial error measures can now be used to determine
the new stepsize

—1/(p+1
Aty = Aty 4 T8 mins Sy ele(( AH)) ) | en>1 (5.36)
mln(fmax> fsafety;em P ) | €m S 1.

The factor 0 < fqry < 1 prohibits oscillations and the factors fii, and fi.x prohibit too big
stepsize changes, see HAIRER ET AL. [57] and HAIRER AND WANNER [58]. Practical values
for fsafetya fmina fmax are 0.8 S fsafety S 09, 0.2 S fmin S 0.5 and 2 S fmax S 3.

The main advantage of the choice of an embedded method for the computation of the solution
vy, 41 With order p is that it uses the same coefficients a;; and ¢; as the higher order method (p)

with other coefficients Bi, see Table 5.2. Thus, the solution is

i+1
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The stage derivative Y, are already known from the method of order p. Accordingly, the error
Yo = Y11 — V.1 can be calculated from

s

Ve = Vo1 = Yorr = Aty > (b — ;) Vo (5.38)

i+1

without significant additional computational effort.

5.1.2 Multilevel-Newton algorithm

It has been demonstrated in Section 5.1.1 that the application of stiffly accurate DIRK methods
to DAE-systems leads to nonlinear systems of equations

Flyy =0 FycR™™me (5.39)
with the structure LU.Q G.U
, - ,Ue R™
R”:{qum}—a L Qe R™ (5.40)
and the unknowns U
y= { Q } ) (5.41)

This corresponds to (5.17), but for the sake of readability the indices ni, which mark the i
stage in the n' time step have been dropped. In this section the Multilevel-Newton algorithm is
introduced, which is one way to solve the nonlinear equations, which arise from the application
of the nonlinear finite element method. This method has been introduced in order to solve DAE-
systems appearing for the computation of electric circuits, see RABBAT ET AL. [113]. In the field
of nonlinear finite elements it has been applied by HARTMANN [60] and is discussed in detail
in HARTMANN [61]. In view of the application of the method within nonlinear finite element
analysis, the used notation in the structured nonlinear system (5.40) becomes comprehensible. L
represents the ”local” level, i.e. equations which can be solved on element level, and G represents
the equations which have to be solved on the ”global” level. If Eq. (5.40) stems from a finite
element analysis U usually represents the unknown nodal displacements and Q the unknown
internal variables emerging from all Gauss points.
Instead of F(y) = 0, we start with the coupled nonlinear system of equations

LU Q=0 (5.42)

GWU.Q =0 (5.43)

and apply the implicit function theorem to Eq. (5.42). The implicit function theorem states that
a function Q(U) exists in the neighborhood of the solution of L(U, Q) = 0, presuming sufficient
continuity properties of L. Introducing this (unknown) function Q(U) into equation (5.43) yields
a nonlinear system of equations

G(U.QU) =0 (5.44)

in the unknowns U. Applying the classical Newton method to (5.44) means that in each iteration
step indicated by (™) the linear system

[86 0GdQ

(m)
it e - _ m) )m)
8U+8QdQ] AU=-GU™, Q™) (5.45)
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Table 5.3: Multilevel-Newton algorithm in stage ¢ of the time step from ¢,, to £, 1

Already known or given: Ug)i) =u,, Qg? =q,, Atn, Thi, aii, Sni

Repeat m =0,1,...
local level ~ (abbreviation: z = (U<m) 07(;{1))’ given: Ug;n))

ni

local integration step

LY, al) =0 - qy
consistent linearization
oL 149 oL . da
aQ y 4 dU a V4 dU V4
global level

solve linear system of equations

0G| , 0G| dQ = — :
[auﬁ aozduz] AU,; = —G(2) AU,
update global variables

Ut = U+ AU, - U

Until Convergence criteria are fulfilled

has to be solved for the increment AU which is subsequently used to update the unknowns
U™t — U™ 4 AU. The quantities Q™ = Q(U™) in (5.45) are obtained from the solution
of the nonlinear system

LU™ Q™) =0 (5.46)
with given um. Furthermore, one needs on the left-hand side of (5.45) for the determination
of the Jacobi-matrix of the Newton algorithm the derivatives 0G/0U and 0G/0Q, which can be
computed from (5.43). In addition to this, the total derivative of the (unknown) function Q(U)
with respect to Uis needed. Applying the chain rule to the function

L(U,QU) =0 (5.47)
yields

oL oLdQ _, {8L} iQ oL (5.48)

oU " 9QaU ~ 9Q| dU ~ ~oU
This is a system of linear equations with several right hand sides 0L/OU for the unknown total
derivative dQ/dU. Summarizing the Multilevel-Newton algorithm we can state that one has to
solve a linear system of equations on the global level in each iteration. In order to build the
right-hand side of this linear equation system, the quantity Q"™ must be computed on the local
level by solving the nonlinear system of equations (5.46). This is usually done with the classical
Newton method resulting in a local iteration. In the case of the constitutive model proposed in this
thesis the application of the classical Newton method to solve (5.46) leads to severe convergence
problems. To overcome these convergence problems a number of algorithms (globalization of
Newton method) are applied. These algorithms are presented in the subsequent section. In
addition to the solution of the nonlinear system a linear system with several right hand sides has
to be calculated for the determination of the total derivative dQ/dU. The Multilevel-Newton
algorithm is summarized in Tab.5.3.
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5.1.3 Globalization of Newton’s method

The treatment of the nonlinear system (5.46) for given U™ on the local level with the classi-
cal Newton-method might lead to convergence problems, i.e. the algorithm often diverges. For
this reason some globalization strategies for the Newton-algorithm are applied. Although these
algorithms can mostly be found in textbooks like SCHWETLICK AND KRETZSCHMAR [120]
or ORTEGA AND RHEINBOLDT [106] they are explained in some detail here for the sake of
comprehensibility.

Classical Newton-algorithm

The reason why Newton’s method is one of the most favored methods for solving systems of
nonlinear equations is that it exhibits a quadratic rate of convergence. Of course, this is only
true for starting points, which are ’close” to the solution, otherwise the algorithm does not reach
a quadratic rate of convergence initially, or may even diverge. The classical Newton-algorithm
applied to the nonlinear system L(Q) = 0 is summarized in Tab. 5.4.

Table 5.4: Newton-algorithm to solve the nonlinear system of equations L(Q) = 0

Initialization: Q) =Q,, k=0

Repeat k£ =0,1,...
Compute right-hand side
L(Q(k))

Compute Jacobian

J=L@Q%) =y;

oL @™
T 0Q;

Compute the increment from
J[aa®] = —L@")
Update the unknowns
Qb — k) + AQ®)
k=k+1

Until Convergence criteria are fulfilled

Newton with damping

Even a small modification of the Newton-method can enhance its stability significantly. The idea
of the damped Newton-method is to reduce the increment (of the Newton-method) as long as
one is not ’close” to the solution. The decision, whether one is close” to the solution or not,
can be made based upon the value of the right-hand side |[L(Q™))||. Therefore, the norm of the
right-hand side is compared to an appropriate critical radius” 74 in each iteration. As long
as the norm exceeds the critical radius 7. only a fraction (e.g. 1/2) of the full increment is
added to the vector of unknowns. Otherwise the original full increment is used resulting again
in a quadratic rate of convergence. The described damping method for the Newton-algorithm is

summarized in Tab. 5.5. It has the merit that it is inexpensive from a computational point of view.
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Commonly one finds under the keyword “damped Newton-method” more elaborate algorithms,
which demand additional evaluations of L in each iteration. Therefore, these algorithms have
not been implemented. Instead other, more sophisticated and computationally more expensive
algorithms, have been studied, in order to increase the stability of Newton’s method.

Table 5.5: Newton algorithm with damping

Initialization: Q) = Q,, k=0, choose critical distance 7;

Repeat k£ =0,1,...
Compute right hand side

L(Q(k))

Compute Jacobian
_L@®y — g, — oL@
J=r@") =y, = F5-

Compute the full increment from
J[aa®] = —L@®)

Compute “distance” from solution

IL@®)]|
if ||L(Q™))|| < Feri¢ then
g=1
else
8=05
endif

Update the unknowns
Q) = @™ 4+ gaQ®)
kE=k+1

Until Convergence criteria are fulfilled

Newton-algorithm with line-search

In this section another common expansion of Newton’s method by a so-called line-search algo-
rithm is introduced in order to achieve convergence for starting points, which are not close to the
solution. The unknowns of the nonlinear system, which has to be solved on the local level, have
to obey certain inequality constraints. This problem is addressed afterwards and it is explicitly
shown how these constraints can be incorporated in the algorithm. The idea of the line search ex-
pansion is similar to the idea of the damping. Again a reduction of the increment resulting in an
update of the unknowns of the form Q"™ = Q™ + SAQ™ is used. But now the para-meter 3
is not fixed. Instead /3 is determined in each iteration from an appropriate minimization problem.
The line-search algorithm is described in the following and summarized in Tab. 5.6.
It is obvious that the solution of L(Q) = 0 is also the solution of the minimization problem

0(Q) = %LT(Q)L(Q) — min (5.49)
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since p(Q) = 0 is true for L(Q) = 0 and due to the quadratic structure of Eq.(5.49) »(Q) > 0
for all Q. Since the direction AQ™ of Newton’s method applied to the nonlinear system L = 0
represents a descent direction for the minimization problem ¢(Q) — min, the convergence of
the algorithm to a local minimum can be guaranteed by the application of a line-search scheme,
see, for example, LUENBERGER [99], BERTSEKAS [17] or DENNIS AND SCHNABEL [36]. To
this end the merit function

o(3) = (@™ + paQ™) (5.50)

is introduced. Now, the line-search parameter (3 is determined from the approximate minimiza-
tion of H(3). The approximate minimizer of ¢([3) is obtained as the minimizer of a quadratic fit
to the function ¢(3). The fit is based on

p0) = (@)= LTL (551
P'0) = —20(Q"), (5.52)
o(1) = o@Q% +AQ™) (5.53)

with the minimum of the quadratic function defined by equations (5.51), (5.52) and (5.53) being
at

—¢(0)

Bimin = 5= - TR (5.54)
2(¢(1) = ¢'(0) — ¢(0))

The calculated line-search parameter 3*) in the k™ iteration has to satisfy the so-called Goldstein

conditions

(0) +e¢'(0) 8" (5.55)

(B%) <
> (0) + (1 —2)¢'(0)8% (5.56)

@
@

to guarantee convergence to the minimum of (. Alternative conditions like Armijo’s rule or the
Wolfe test, see LUENBERGER [99] for details, may be used as well. Usually, the obtained mini-
mum of ¢ will coincide with the solution of the original nonlinear problem L(Q) = 0. However,
as stated by DENNIS AND SCHNABEL [36] in rare cases one might end up in a local minimum. If
this happens one may only try to restart the search from another starting point. The algorithm is
presented in Tab. 5.6, it is an adapted version of the “’primal closest point projection” algorithm
with line-search (unconstrained) described in PEREZ-FOGUET AND ARMERO [107]. In that
publication and the companion article ARMERO AND PEREZ-FOGUET [9] several algorithms
for elasto- and viscoplastic problems and the theoretical background, originating from the inter-
pretation as optimization problems, are discussed. Also the incorporation of the constraint that
the plastic multiplier needs to be positive is presented in PEREZ-FOGUET AND ARMERO [107].
The concepts in these very enlightening articles have been generalized to incorporate several in-
equality constraints to the unknowns, which becomes necessary for the equations resulting from
the numerical treatment of the previously proposed constitutive model.

It should be noted that the second Goldstein condition (5.56), which requires that the line-
search parameter (J is not too small, is taken into account, by demanding 6821) > yﬁ((f)). This
approach has been proposed by PEREZ-FOGUET AND ARMERO [107] and is based on the work
of SHULTZ ET AL. [124]. In the implementation the choices for » = 0.1 and £ = 10~ recom-
mended by PEREZ-FOGUET AND ARMERO [107] have been adopted.
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Table 5.6: Newton-algorithm with line-search

Initialization: Q(O) =Q,, k=0, Setline-search parameters:
maximum number of curve fits jiax,
convergence tolerance ¢,

ensure finite line-search parameter v

Repeat k£ =0,1,...
Compute right-hand side
L@")

Compute Jacobian

Q)
J=r@®) =y, = Q)
1

Compute the full increment from
J[aa¥] = -L@")
Initialize line search: j = 0, Bég)) =1, " (0) = %L(k)TL(k), @'k = —95(k)

Repeat ;=0,1,...

S RPN (SRR (BN
Q((}g)+ - 0@(;5@) AQ
L )
~ 1
PGy =aby LG

~( <(f>)>z‘f"(k) )

5(k) = max yﬁ(k)
J+1 7))’ A(k4+1) Ak a(k) 5k
(4) 2(%_) P — ) r( ))

Jj=7+1
Until  pfY < (1 _ 2558.“))> %) or j = jmm
if j = jmax then post WARNING !
Update the unknowns
(k+1) _ Ak+1)
Q™ =Qg,

k=k+1

Until Convergence criteria are fulfilled

Line-search for constrained problems

The incorporation of inequality constraints in the Newton scheme with line-search has been
discussed with respect to the non-negativity of the plastic multiplier in the case of an elastoplastic
model by PEREZ-FOGUET AND ARMERO [107]. The approach presented there is based on the
treatment of simply constraint minimization problems, which is described in BERTSEKAS [17,
PP.76] in detail. In addition to solve the nonlinear system L(Q) = 0, which again minimizes the
function Eq.(5.49), we consider a set of constraints on some of the components of the vector of
unknowns,

Qi Z Qi,mim (NS Icon' (557)
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With I, being the set of indices of the components of Q for which constraints are defined?. In
the problem of interest in this thesis the constraints which need to be considered are the non-
negativity of ¢ and the non-negativity of the diagonal elements of C,, see Eq.(5.115) - (5.117).
The algorithm described in the previous section without consideration of the constraints can be
generalized in order to take into account (5.57). To this end we introduce the vector function

Q)+ R = R 5 [Q 1 miny 00) X -+ X [Quminy 00) (5.58)
defined in components by
(Q),,], =QiVi¢lon and [(Q) ] = (Qi) Vi€ Lon. (5.59)
With () denoting a modified version of the Macauley brackets defined as

Qi if Qz > Qz min
i) - R i,min; ith i) = ' 5.60
<Q > -~ [Q 7 OO) W <Q > {Qi,min if Qz S CQi,min ( )
When one of the constraints is active, i.e. if any
QY] = Qi for i€ Ly (5.61)
and .
[w(o“ﬂ)} = [(J(Q““’)) L(Q(’“))] >0 for i€ Lo (5.62)
. oL, (Q™y . . . " .
with J = —0q. being the Jacobian. That means that if the /™ component of Q is at the
J

bound Q; min and the original update direction AQ would lead to a further decrease of the it
component of Q. Accordingly, instead of the original update direction AQ (from the Newton
method) a modified update direction has to be found which does not lead to a further reduction
of the components having already reached their limit value. This direction is given by

T
aQ® = -p"ve(@®) = -b® (@¥)) L@"¥) (5.63)
for o defined in Eq.(5.49) and D defined in components by

[D(M]U _ [(J(Qw))‘l (J(Q(k))>_TL Vi, j < ey ori=j €Ly  (5.64)

D®] = [DP] —0 Vi€ lyandjA£i (5.65)
i ji

This means that the original Newton update direction is used if none of the constraints is active,
otherwise the modified search direction is used. Accordingly, the previously described line search
scheme has to be adapted in order to take into account the constraints, i.e. instead of @Ef)) =

® (Q(k) + B((f))AQ(k)) with the classical Newton update direction AQ*) we have to use

A(k) (k) (k) (k)
Py =¥ (<g00 +6;AQ >1) (5.66)

with AQ™ from Eq.(5.63) and (-), as defined in Eq.(5.60). The final algorithm, where also the
evaluation of the Goldstein condition has been adapted, is summarized in Tab. 5.7.

ZWithout loss of generality, in the following we will assume that there are constraints for the last n¢o, components
of Q while the first n — n¢,, components of Q are unconstrained. (This can always be achieved by reordering the
components of Q)
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Table 5.7: Newton-algorithm with line-search and constraints

Initialization: Q© = Q,,, k=0, Setline-search parameters: jmax, &, v, see Tab. 5.7

Repeat

Until

k=0,1,...
Compute right-hand side and Jacobian
Q)
L@"). J-L@¥)—J; = e
]

Detection of active constraints
if Q; = Qi then auz; = (grad @); = (JTL) i € Leon

i

Determine update direction
if (auz; < 0Vi € 1) then

flag =true, AQ=—J7'L

else

flag =false
<D(k)) 0|l,m=iwithauz; > 0,Q; = Q;min, | #m
m <J71J7T>l | otherwise

endif

Initialize line search:
—2¢0) | flag = true

. (k) _ o _ k)Ty (k) -+ —
j=0, 5(0)) =1, M (0) = LLWTLH) (k) = { LOT(JAQ) | flag = false

Repeat ;=0,1,...

Compute new values of unknowns and the merit function for current 3
(k+1) _ /) (k) A 3(K)
Qg))—<0%—TqﬂAQ )
+1) +1
D e e
5 _1
26y =2tm Lo

Check first Goldstein condition
<1 — 2568?&“) | flag = true A no constraint active
o) 4 ¢ (LT (J(k) (ng;rl) — Q(k))>> | otherwise

bound =

Compute new (3 as minimizer of quadratic fit

O
k k By ) @
53(-+)1 = max <Vﬁ((j))a 2( ( m) )

D 6) a0k
el —eW-Blle ™)

Next curve fit

j=j+1

Until ¢8Tl)§lwund0rj::jmm

if j = jmax then post WARNING !

Update the unknowns

(k+1) (k+1)
Q Q)

k=k+1

Convergence criteria are fulfilled
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Embedded Newton-algorithm (homotopy)

An alternative approach for the globalization of Newton’s method is the so-called homotopy
Newton method, which is also known under the name embedded Newton method. In order to be
able to apply this kind of algorithm, one has to remember that the nonlinear system, which has
to be solved on local level, depends on the nodal displacements, or, to be more precise, on the
deformation represented in our case by the right Cauchy-Green tensor C. For this tensor we use,
in the numerical implementation, the 6x1 vector representation C,

L(C(U™),Q) = 0. (5.67)
We suppose that a solution at time ¢,, is known
Lc™. Q™) =o. (5.68)

By introduction of the increment AC = C — C™ the nonlinear system to be solved can be
rewritten

L(C™ + AAC,Q) =0 (5.69)

where the scalar ”load” parameter A\ has been introduced. With A = 0 Eq. (5.69) is fulfilled
for Q™. For A = 1 Eq. (5.69) represents again the nonlinear equation, for which a solution is
sought. The idea is now to increase A in steps k£ from A = 0 to A = 1 solving in each step £ the
nonlinear system (5.69) for which the solution of the previous step represents a "good” starting
vector, at least for a sufficiently small stepsize. The nonlinear system of equations is solved with
the classical Newton algorithm in each step, which will converge quadratically for sufficiently
small steps. The algorithm is summarized in Tab. 5.8, for more details about this algorithm see,
for example, SCHWETLICK AND KRETZSCHMAR [120] or TORNIG AND SPELLUCCI [133].
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Table 5.8: Homotopy Newton algorithm

Until

Initialization: Q) =Q,, choose Tiax
Repeat k£ =0,1,...
if A®) 4 7(8) > 1) then 7(8) = 1 — \(¥)

jumplabel 1: Increase A

A = 20 ) QD) = W)

Repeat ¢ =0,1,...

Until

Compute right hand side

L(Q(k,z) ’ )\(k—i—l))

Compute Jacobian

J = Z&(@*)

Compute increment AQ¥D from

JaQ*I] = —L@*7y

Update the unknowns

Q(k,i+1) _ Q(k,z) + AQ(k,Z)

Sufficient descent check

if (IL@PTV AT || < wlIL(@*D AKHD) | then

| next Newton step ¢ = ¢ + 1

else

reduce step size and retry (%) = p7(¥) goto jumplabel 1

endif

Convergence ||L(QF+D AE+DY|| < ¢

New step size 7FTD = min(7*) /p, 714¢)

Update the unknowns

Q(kJrl) _ Q(k,’iJrl)’ k=k+1

AE) =1
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5.2 Numerical solution of the initial boundary value problem

Analytical solutions for initial boundary value problems (IBVPs), which are formed by the bal-
ance relations in combination with the constitutive equations and problem-dependent initial and
boundary conditions, can only be found for very few, simple problems. In general a numerical
solution procedure is necessary. One method is the finite element method, which is applied and
described here. The constitutive equations are formulated, such that the balance of rotational
momentum is fulfilled (symmetric T). Furthermore, only isothermal, quasi-static problems are
discussed, i.e. only the balance of momentum Eq. (2.46) (without the inertia term) needs to be
considered:

divT(z,t) + pk =0 (5.70)

The constitutive model(s) considered in this work are of the form
T = h(C(X,1),q(X,1)) (5.71)
Aq—-F(C(X,t),q(X,t) =0 with q(x,t) = q, (5.72)

They consist of an elasticity relation, which depends, in addition to the deformation (displace-
ments), on a number of internal variables that evolve according to a set of differential equations
of 1% order with problem specific initial conditions. Furthermore, in the case of elastoplasticity,
we have to consider the algebraic constraint, namely the yield condition. In that case the matrix
A becomes singular. The treatment of the IBVP constituted by equations (5.70) - (5.72) with the
help of the finite element method is demonstrated in the following subsections. After the intro-
duction of the principle of virtual displacements, see Section 5.2.1, its spatial discretization is
discussed leading to a set of differential-algebraic equations (DAE), which is treated with DIRK-
methods, see Subsection 5.2.3. In each stage of the applied DIRK-method a nonlinear system of
equations has to be solved. Here, the Multilevel-Newton algorithm is applied to this end. This
solution procedure sustains the structure of current implicit finite element implementations, e.g.
ANSYS INC. [7], ABAQUS [1]. The treatment of the nonlinear system that is solved on the
local level needs special attention. Its solution with the help of globalized Newton methods is
discussed in Subsection 5.2.4. Afterwards, we address the computation of the consistent tangent
matrix, see Section 5.2.5, which is necessary within the Multilevel-Newton algorithm of Section
5.1.2, see Eq. (5.45).

5.2.1 The principle of virtual displacements

The principle of virtual displacements (weak form of the equilibrium equation) formulated with
quantities of the current configuration reads

7(t,u,du,q) = /T : % (grad du(zx) + grad " du(x)) dv — /pk: dudv — /t - duda

= /T-syméhdv—/,ok:-5udv—/t-5uda
Text (dw,t)
= /syméh - SdV — Tex (0w, t) =0 (5.73)

with the virtual spatial displacement gradient

oh = graddu(x). (5.74)
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The weak form can be derived from the balance of momentum (2.46) without acceleration term
by multiplying the balance of momentum (scalar product) in its local form with arbitrary “test
functions” (virtual displacements du) and integrating the resulting equation over the volume of
the material body. With the help of the identity

divT - du = div (T"0u) — T" - grad du (5.75)

and the Gauss theorem
/(div v)dv = /v -nda (5.76)

one obtains Eq. (5.73). The virtual displacements du have to fulfill the geometrical boundary
conditions, i.e. they have to be zero at the part of the boundary of the material body, where geo-
metrical boundary conditions are given. On the other part of the boundary, where no geometrical
boundary conditions are given, the stress has to be given on the boundary. The stress tensor T
depends, via h(C(X,t),q(X,t)), on the displacements u due to the dependence of the right
Cauchy Green tensor C = C(u) on the displacements. The relation between the Cauchy stress
tensor T in the principle of virtual displacements (5.73) and the second Piola-Kirchhoff stress
tensor T in the constitutive equation (5.71) can be taken from Tab.2.1,i.e. T = J 'FTFT.

5.2.2 Space discretization of the principle of virtual displacements

In order to solve the IBVP posed by (5.73) together with the constitutive equations for the evo-
lution of the internal variables (5.72), the following approach within the framework of the finite
element method is chosen. In the first step the space discretization is realized. This includes the
partition of the body into elements, the introduction of ansatz functions for the displacements and
the virtual displacements and the formulation of the coordinate transformation of the elements
into a reference element (i.e. introduction of local coordinates). Furthermore, this first step in-
cludes the (numerical) solution of the integrals within Eq. (5.73), for example, with the Gauss
quadrature. This procedure yields a system of nonlinear equations in the nodal displacements,
that still contains the dependence on the internal variables evolving according to differential
equations. All in all we have a system of differential-algebraic equations in the unknown internal
variables and the unknown nodal displacements. In the second step, i.e. the time discretization,
the DIRK-methods, already introduced in Section 5.1.1, are applied to solve this DAE-system,
preserving the structure of current implicit FE implementations. This approach of separating
space and time integration is known as “method of lines” within the framework of methods for
solving partial differential equations. Conducting the space discretization first and subsequently
the time discretization is denoted as vertical method of lines.

The displacements u(x, t) and the virtual displacements du(x) are expressed with the help
of the nodal displacements u;(t) € R?, and the virtual nodal displacements du; € R® and the
ansatz-functions V;(x) of the node j with j = 1,..., Npoqges, and & € (2. The original domain
of the material body V' is approximated by €2 and its surface A is approximated by I'. The
brief description presented here is restricted to a displacement formulation for three-dimensional
continuum elements in the current configuration with

Mnodes
uh(x,t) = > N;(Xu;(t) = Nu(X)U,(t) u"€R® (5.77)
j=1
Mnodes

ZN )ou; = N,(X)du,(t) ou' e R®. (5.78)
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In (5.77) we have introduced the vector U, (t) € R™ containing all nodal displacements and in
(5.78) the vector of all virtual displacements dU, € R"*' as well as the matrix of ansatz functions
N,(x) € R**" The index a is added in order to emphasize that the vectors U, (t) and du, con-
tain all nodal displacements. The vectors of all displacements and all virtual displacements are
subdivided (formally) into known and unknown components with u(t) € R™ representing the
vector of unknown and U(t) € R™ representing the vector of known (prescribed) nodal displace-
ments, ngor = Ny + np. For the nodes with prescribed displacements, the virtual displacements
have to vanish, i.e. dU = 0€ R"™, while the other virtual nodal displacements U € R™ are arbi-
trary. Taking into account this subdivision of the nodal displacements for the ansatz (5.77) and
(5.78) leads to
u(t)

u'(x,t) = [N(X) N(x)] { &) } = N(x)u(t) + N(X)T(t) (5.79)
—

N. (x) e

su'(x, £) = [N(x) N(x)] { v } — N(X)su(t) (5.80)

Na () U (t)

u,(t) = { ;Eg } and  ou,(t) :{ gg } :{ 55' } (5.81)

This ansatz for the displacements and virtual displacements depends on the spatial coordinates
X, which depend on the deformation through X = x (X, t).

The coordinate transformation between the actual element and the reference element can be
performed, using the same ansatz functions as for the nodal displacements (isoparametric finite
element formulation). For the reference element considered here (3D - continuum element) the
local coordinates of the reference element § € () have the ranges, —1 < ¢ <1, -1 <n <1,
—1 < ¢ < 1. The coordinate transformation is given by

X=x€), &=¢°(X)=x""(X) (5.82)

Furthermore, it is evident that the globally defined displacements U (x,¢) = N,(X)u,(t) have to
be equal to the locally defined displacements N“u®(¢) within each element. A formal allocation
between the nodal displacements U°(¢) of element e and the vector of all displacements u,(t)
can be written in the form

with

u=2u, with Z; € R"=*"or, (5.83)

The so-called coincidence Matrix Z; subdivides according to the subdivision of the nodal dis-
placements into one part Z ‘ allocating the known nodal displacements and one part Z° allocating
the unknown nodal displacements

U =Zu+ 20 with Z°= [ze 26] . (5.84)

Based on the ansatz for the displacements U (X, t) and the virtual displacements Ju” (X) the strain
tensor(s) needed in the constitutive equation (elasticity relation) within the principle of virtual
displacements as well as the virtual strain tensor appearing directly in the principle of virtual
displacements can be derived.
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Inserting the approximations (V — Q, A — I, u — ", du — éu") into the principle
of virtual displacements (5.73) formulated in the current configuration and splitting the integral
over the material body into integrals over the domains of the individual elements yields

Te

gt,uq =Yz /

e=1

Ne

BS 0 —p(t) = > Z7 / BF,T d —p(t) =0 (5.85)

e e

e=1

with p(t) € R™ being the total external load consisting of volume distributed, surface distributed
and nodal forces F(t) € R™

p(t) = / N (x)pkdS + / N (x)tal' + F(t) (5.86)
JO P JTr ~~~

- nodal forces

v v
volume distributed load surface distributed load

and with B = [B} ... B;_ | and the strain displacement matrix for the a™ node of clement e

e
Ngr 0O 0
[&
0 ng, O
(&
Be— | O 7 a=1,....n 5.87
(& e bl bl ) eny
n n 0
a,y a,r
e e
0 N MNay
€ €
_nG,,Z a,r O .

which looks like the strain-displacement matrix in the case of small deformations. The matrix
F3, reads

FRIn Pl FiI 21 Iy 2E 1 2I3F
Fnly Iyl Fils 255 Iy 255553 285315
Pyl Fyplyp Foly 285 Iy 2F55 ks, 2F53 k5,

Fe, =
23 FhLFy FLFy FLFy FLEFS + FLFS Pl + Fislyy Fisby) + FiFog

Pl Pl Pyl Pyl + Pyl Fulyy + Foly, Fynly + 15 P
P Fh Fpbty Fgliy F5Ih + Folhy Foliy + Fpbly Fgln + F g
(5.88)
and is the matrix representation (6x6 matrix) of the fourth order tensor, which maps the sec-
ond Piola-Kirchhoff tensor from the reference configuration upon the weighted Cauchy stress
tensor (Kirchhoff stress tensor) of the current configuration. Further details about the applied
matrix notation can be found in HARTMANN [60, APPENDIX A2]. In Eq. (5.85) the quantity

T = {Tlhl, Th, Th, T Th, T?ﬁ}T is the 6x1 vector notation of the symmetric second Piola-
Kirchhoff tensor.

The numerical solution of the integrals over the domain of the individual elements by appli-
cation of a Gauss-quadrature after transformation of the element to the reference element can be
expressed by

Te ng np  Ng
9, u,q) = Z z {Z Z ijwkwlBeT (&rr) D(C (&), A5y et Je(sjkl)}_l_)(t) =0,
1

j=1 k=1 I=1

(5.89)
where we have introduced the Gauss-point coordinates and the weights w;, wy, w; of the Gauss
quadrature with n¢, n,), n¢ being the number of Gauss-points in the &, 1, ¢ direction, respectively.

e=
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J¢ is the Jacobian of the coordinate transformation X = x¢(£). The internal variables g(t) have
to be evaluated at each integration (Gauss) point, i.e. the system of evolution equations (5.72)
reads

Aq(t) — r(t, u(t), q(t)) = 0, q(to) = qp. (5.90)

Here q(t) € R"? is the vector of all internal variables at all Gauss points with ng = n; x ng,
where n; is the (total) number of Gauss points and n, the number of internal variables of each
Gauss point. As in the case of the nodal displacements a coincidence matrix Z;(ijk) can be
introduced

Q(t) = Z;9q(t), g5, € R™. (5.91)

Unlike the nodal displacements the internal variables at each Gauss-point do only depend on
quantities of the same Gauss-point (uncoupled)

qukl(t) —1(Cu(1), A5 (1) =0, a5y (to) = A5pio- (5.92)

5.2.3 Solving the DAE-system with DIRK methods and the Multilevel-
Newton algorithm

The nonlinear system of equations obtained from the space discretization of the principle of
virtual displacements formulated with respect to the current configuration (5.89) form together
with the evolution equations for all internal variables of each integration point (5.90) a DAE-
system

Ft, y(t), y(#)) = { .9, "(t%q(;))q( o) } _ 0, FeRmtme (5.93)
with

vio={ o boove={ g L={ w0 b on ywerere so

The unknowns of this DAE-system (5.93) are the nodal displacements u(¢) € R™* and all internal
variables q(t). The discretized principle of virtual displacements (5.89) represents the algebraic
part of the DAE-system, whereas the evolution equations (5.90) represent the differential part.
In Section 5.1.1 we have introduced diagonally implicit Runge-Kutta (DIRK) methods as a pos-
sible approach for the solution of DAE-systems. According to (5.17), with the short notation
introduced in (5.18) and (5.19), we have to solve the nonlinear system given by

73 Ny n¢

an(umy Qm Z zeT {Z Z Z ijkwlB _]kl7 Ui(ijkl))

j=1 k=1 [=1

B(CI (UVM), @) det J° (€,0) } — P(Tui) = 0 (5.95)
Q.- S
LU, @) = A{ % =5

in each stage T,; (i" stage of the n™ time step). This implies that the discretized principle of
virtual displacements (equilibrium) represented by G,; = 0 is satisfied in each stage of the
DIRK-method. The nonlinear system resulting from the integration of the differential part of the
DAE-system decomposes into small nonlinear systems of equations at each Gauss-point. Since

} (Tma Um; Qm) = (5.96)
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the evolution equations at distinct Gauss-points are not coupled with the evolution equations at
any other Gauss-point, each of the small systems

(kD) _ gae(i)

Le(-jkl) <C€(]kl (Ue ) Q ]k‘l)) _ A { an - ni } r <C€(Jkl)(U€(Jkl))7Qe(Jkl)> — 0

n Atna” n n n

(5.97)
has to be satisfied by itself. The combination of all systems of equations (5.97) can be achieved
by application of the coincidence matrices (5.91)

n¢

L.(U,, Q)= Z {Z i Zz;(jkl)TLz(ijkl) <Cz(ijkl)<uz(ijkl))’ fog’kl))} =0 (598)

j=1 k=1 i=1

leading to Eq. (5.96). We apply the Multilevel-Newton algorithm introduced in Subsection 5.1.2
to solve the nonlinear system of equations given by (5.95) and (5.96). This implies that on local
level (at each Gauss-point of each element) for the given displacements Ufff) in each global
iteration m the nonlinear system (5.97)

LU —g = QM (5.99)
has to be solved. The common solution procedure for this nonlinear system is the Newton-
algorithm, since the Newton-algorithm fails to converge already for moderate time (load) incre-
ments in the case of the constitutive model of Tab. 3.3 or Tab. 3.4, several globalization strategies
for Newton’s method have to be applied, see Section 5.1.3 and 5.2.4.

Within the Multilevel-Newton algorithm, we make use of the fact that a function Q(U) exists
in the neighborhood of the solution of F = 0. This (undetermined) function Q(U) is inserted
into G(U, Q) = O resulting in G(U, Q(U)) = 0. Solving this nonlinear system with Newton’s
method necessitates the linearization of G(U, Q(U)) = 0 with respect to U, see Tab. 5.3.

For the formulation on the current configuration the linearization of (5.85) with respect to the
displacements reads

D.g(t, u, g(u) ZZeT [/ JB“TC; BdN*
+ / B;TLMgB{;LdQe} Z°| Au (5.100)
Qe
= |) z7kz| Au (5.101)
e=1

where the element stiffness matrix K® = K¢ + K¢ decomposes additively into a constitutive part
ke = / JBTCIBedN° = / B“'C{B“dw* (5.102)

with the spatial tangent operator

(5.103)

1 e . h h dg°
Ci = -F5,CiFy;  with CL:Z[a 0 q]

oC° " aq° dC°
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and the part emerging from the geometrical nonlinearity
e el npe pe e 1 el npe Re e
Qe we

with w, representing the approximated volume in the current configuration. In (5.100) the matri-
ces

ni, 0 0 n5, 0 0 nez 0 0
0 ni, O 0 n5, 0 0 n,., O
0 0 nf. 0 0 ns. 0 0 .
ni, 0 0 n5, 0 0 reny 0 0
Be=10 =nf, 0 0 n3, O 0 SO U I (5.105)
0 0 n5, 0 0 s, 00 n,
ni, 0 0 n3, O 0 ez U 0
0 nf, O 0 ng, O 0 np.. O
| 0 0 ni, O 0 ns, 0 0 N

and _ )
S, 00 S, 0 0 S5 000
0o S, 0 0 S5 0 0 S7 0
0 0 S 0 0 S5 0 0 S5
Sty 0 0 S5, 0 0 S5 0 0
Mg=1]0 S5, 0 0 S5 0 0 S5 0. (5.106)
o 0 S 0 0 Sy 0 0 Sy
S 0 0 S5 0 0 S5 000
0o S, 0 0 S5 0 0 S; 0
0 0 S5 0 0 S, 0 0 S55]

have been introduced. For a derivation of the linearization of the formulation in the current
configuration the reader is referred to HARTMANN [60, SECTION 5.1.4].

Within the specified linearizations of the principle of virtual displacements the linear system
which has to be solved in each iteration contains in the tangent matrix, see (5.104), the unknown
total derivative of the internal variables with respect to the displacements dQ/dU, see also Sec-
tion 5.1.2 ((5.45) - (5.48)). This means that at each Gauss-point a linear system with several
right-hand sides

AL A oL
0Qi 7 aci oe

(5.107)

has to be solved in order to receive the expression dQ; Z-j ) / dC°UM) which is necessary to build

n nt
. . ~€
up the material matrix C, .

5.2.4 Application of globalized Newton algorithms to solve the local non-
linear system (stress computation)

In this subsection the solution of the nonlinear system (5.99) with L defined in Eq. (5.97) resulting
from the implicit integration of the flow rule, the evolution equation for the internal variable «
and the auxiliary equation for X is described. Since the insertion of the resulting internal variables
Q" — {Cl(,"ﬂ), a1} into the elasticity relation (5.108) yields the new state of stress, this
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procedure is therefore referred to as the stress computation or stress algorithm. The result of
this local computation, i.e. on Gauss-point level, is needed to build up the right-hand side on the
linear system on the global level of the Multilevel-Newton algorithm, see Tab. 5.3. Frequently,
the Newton method is the first choice to solve the non-linear system of equations (5.99). It
is shown, see Section 6.3, that the Newton method is not the best choice for the problem at
hand and leads frequently to a non-converging algorithm. In order to investigate the different
solution methods introduced in Subsection 5.1.3, i.e. globalization strategies for the Newton
method, a particular problem is studied. Before we start the discussion of this problem, let us
recapitulate the relevant constitutive equations from Tab. 3.4 formulated with quantities of the
reference configuration.

- = B A det C 1 1
T =h(C,C,) = (2 In <det cp> u) C™ +uC, (5.108)
C, = \2 o, 8—F(CT —(,/3)1) | C, (5.109)
L al,

. s [c¢cp oF OF
Qa=\ (E ((11 — 35)6—Il + \/J;a—\/g> — bDax> (5.110)

- P\
A= <—> — (5.111)
o) n

By means of the elasticity relation these equations can be reformulated into the abbreviated form

C, = \h, (C,C,,qa), (5.112)
& = Ahy (C,Cp, ), (5.113)

- JE\"1
= <_> - (5.114)
0o n

where we have introduced the abbreviations h; and h,, which are specified in Eq. (D.3) and
Eq. (D.4) of the Appendix D. In the time discretized equations (5.97) the quantity A is replaced
with the quantity ( = \At,a;; leading to

0=Cp'—C{™ —¢hy (C,C, ™) (5.115)

0=a"—a™ —(hy (C,CY,a™) (5.116)
Ty 77

0= F"" — (og™ 5.117

CUO AL a; ( )

which corresponds to Eq. (5.99). Where a;; represents the corresponding coefficients from the
applied DIRK method. Afterwards the stresses can be computed from the elasticity relation with
the updated internal variables Q"+l = {Cf,”“’, "1 The system of equations (5.115) -
(5.117) for the 8 unknowns® C,, , ( is solved with the help of Newton’s method and the modified
Newton algorithms described in Section 5.1.3. In order to study and compare the algorithms a
fixed value of C,, o and ( is chosen to represent the values from the previous equilibrium. Now,
different deformations are prescribed by C and the number of iterations needed to converge (or
non-convergence) is determined. The prescribed deformations represented by C are inserted into

3Cp is symmetric, i.e. it contains only 6 independent components.
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the elasticity relation, together with the internal variables from the previous equilibrium (C, from
the last equilibrium) leading to the so-called predictor stress, which is an intermediate state of
stress which may lay outside the elastic domain. The predictor stresses do not represent the final
stresses, since the integration step for the flow rule and the evolution equations has not yet been
performed. However, the predictor stresses represent the starting point for the iterative solution
of the nonlinear system (5.115)-(5.117) (or (5.99)) and it has been realized that the difficulty of
finding a solution, i.e. the number of iterations necessary to converge, is correlated to the relative
position of the predictor stresses and the yield function.*

To study the convergence behavior of Newton’s method and the modified Newton algo-
rithms of Subsection 5.1.3, the following test problem is set up. The initial conditions (previ-
ous equilibrium) for C,, and « are assumed to be resulting from a die compaction process with
C = diag(0.5,1,1) leading to C, = diag(0.51,1.001,1.001) and o = 0.14. From the start-
ing conditions, the given C,, and the prescribed deformation C the invariants I; and J> can be
calculated by means of the elasticity relation (invariants of Cauchy predictor stress).> The con-
vergence behavior is visualized graphically, and to this end the number of iterations needed to
converge is represented by a specific color (grey scale) at each studied starting point (1;,/.J5).
All starting points are visualized as positions in the two-dimensional diagram of the first invari-
ant I, (T) of the Cauchy stress tensor and the square root of the second invariant of its deviator
J2(T), see definitions (3.2); and (3.3). In this diagram also the yield surface corresponding to
the assumed internal variables is depicted, see Fig. 5.1. For all algorithms it is obvious that the
number of necessary iterations depends strongly on the relative position of the predictor stress
invariants (starting point) and the yield surface. Similar graphically representations have been
used by PEREZ-FOGUET AND ARMERO [107] also for different starting points in the deviatoric
plane, where a yield surface with a dependence on the third invariant is studied. In Fig. 5.1(a)
the convergence performance of Newton’s method is depicted. The plot clearly shows wide re-
gions of non-convergence. Furthermore, the performance of the Newton-method with damping
(Fig. 5.1(b)), with line-search Fig. 5.1(c) and with constraint line-search Fig. 5.1(d) are depicted.
For the constraint line search algorithm the plastic multiplier as well as the diagonal elements of
C, are demanded to be positive. It is obvious that the globalization strategies reduce the areas
of non-convergence significantly allowing bigger load steps and leading to a stress algorithm
with a significantly better stability. Where the studied line search algorithm with constraints
outperforms the other algorithms.

After solving the nonlinear system (5.115)-(5.117), i.e. Eq. (5.99), the internal variables have
to be inserted in the elasticity relation (5.108). In addition to the stresses the consistent tangent
within the Multilevel-Newton algorithm is needed, see Tab. 5.3, the computation of the consistent
tangent is treated in the following Subsection 5.2.5.

5.2.5 Computation of the consistent tangent matrix

Since the Multilevel-Newton algorithm, see Tz}b. 5.3 and Subsection 5.1.2, is based on the im-
plicit function theorem, the total derivative dh/dC is necessary for the global iteration. The

“When the stress tensor and the yield function are represented in a suitable invariant space, here the first invariant
of the Cauchy stress tensor and the second invariant of its deviator are applied.
SActually I; and \/.J; are specified, and a corresponding C is determined under the assumption that C is of the

form diag(?, )\3, )\3) (triaxial compression), resulting in non-linear equations for A and A\, which have to be solved.
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derivative of fl(C, C,) can be derived from the elasticity relation (5.108) applying the chain rule

dh oh  Oh dC,

— = o — 5.118
ic ~ ac, T ac, ac C-118)
~~~ ~~
term I term 11 term I

(for the case F' > 0). Here and in the following, all indices characterizing the Gauss-point, the
time and the iteration are omitted for brevity. Both the term I and the term II are calculated from
the elasticity relation. In the case of [' < 0 (elasticity) the internal variables do not change and
term IIT does not occur implying that term I defines the consistent tangent éi In the case /' > 0
(viscoplasticity) the internal variables are computed from the system of non-linear equations
(5.115) - (5.117). This system is also required for the computation of term III namely the deriva-
tive of the plastic right Cauchy-Green tensor C,, with respect to C. Therefore, Eqns. (5.115) -
(5.117) 1s written in the abbreviated form:

L,(C,C,(C),a(C),(C)) = 0
L(C:Q(C)) =0 & L.(C,C,(C).a(C),C(C) = 0 (5.119)
Lr(C,C,(C),a(C),¢(C)) = 0

By applying the implicit function theorem, see also Subsection 5.1.2 Eq. (5.48), term III can be
calculated by the chain rule

dL dL oL o0LdQ
U "ac ~ oc taaac ° G120
oL dQ oL
[%} (@) o (%) 12D
term A includes term IIT term B
which reads in more detail
[ aLp 8Lp 8Lp T
ac, =~ o W i_cp %_%,
O, L Lo Ol {d_oz}T _ {3_La}T (5.122)
oC, Jda OC dc . Gl ., :
T d¢ OF
oL oL oL - L.
_{801;:} a(f EKF | {dC} {8C}

In order to be able to compute term III, we need to solve a system of linear equations with sev-
eral right-hand sides (in the 3D-case these are 6). The coefficient matrix, called term A, is known
from the Newton method applied to the non-linear system (5.115) - (5.117). Additionally, the
right hand-side term B, i.e. the partial derivative of L with respect to C has to be computed.
The derivation of analytical expressions for this term is similar to the derivation of the analytical
expression for term A. The only difference is that the equations need to be differentiated with
respect to C instead of C,,. The solution of the linear system (5.122) yields term III needed for
the computation of the consistent tangent from (5.118). Analytical expressions for the proposed
model are supplied in the Appendix D. Alternatively, numerical differentiation techniques can
be applied to compute the necessary derivatives. The advantage of numerical differentiation is
that one can skip the cumbersome derivation and implementation of all the necessary derivatives.
On the other hand, one has to know that the numerical computation of the derivatives needs more



108 Numerical treatment using finite elements

computational time and are less accurate than analytical derivatives. Since in our case already
the function evaluation is quite expensive, only a simple forward difference scheme is applied to
compute the derivatives (Jacobi matrix of local nonlinear system, consistent tangent matrix). A
comparison for one example computation between numerical and analytical derivatives is pro-
vided in Section 6.3.
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Figure 5.1: Examples for convergence result
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Chapter 6

Numerical studies and examples

The constitutive model introduced in Sections 3.3 and 3.4 is implemented into the finite element
code TASA-FEM, see HARTMANN [62], which supports the application of higher order time
integration as discussed in Section 5.2.3 as well as time adaptive strategies aiming to keep the
accumulated error induced by the numerical time integration within reasonable tolerances while
allowing time steps as big as possible in order to keep the overall computation time reasonable.
The stress algorithm applies Newton’s method or alternatively one of the globalized versions of
Newton’s method for the solution of the nonlinear system of equations on local level. The Ja-
cobian of the local Newton iteration can be computed either analytically (analytical expressions
for the proposed constitutive model can be found in Appendix D) or numerically. Furthermore,
the computation of the consistent tangent matrix can also be done fully numerical or using the
derived analytical expressions, see Appendix D. For the numerical studies presented in this chap-
ter, three different structures with increasing complexity are considered. The simplest geometry
consisting of only two elements is used in Section 6.1 in order to investigate the influence of the
viscosity on the reached accuracy order of the applied Runge-Kutta methods. In Section 6.2 an
essentially two-dimensional problem (L-shaped profile) is used to study the spatial distribution of
the time integration error, when a time adaptive method is applied. The model geometry contains
a spatial singularity, which influences the time integration error. However, even in the vicinity
of the singularity the integration error can be kept small if a proper time adaptive algorithm is
applied. In Section 6.3 the geometry of the example problem described in Section 6.2 is extended
to a three-dimensional washer disc like part. The time step behavior for n = 0 (elastoplasticity)
and ) = 1 (viscoplasticity) using two different time adaptive approaches is checked. Afterwards,
the merit, with respect to computational time, of the globalized Newton methods is demonstrated
using this three-dimensional example. Furthermore, the computation time using either numer-
ical or analytical consistent tangent operator and numerical or analytical Jacobian in the local
iteration is compared. This example indicates that the implementation of analytical expressions
is very beneficial in this respect.

Some of the results presented in this chapter have been shown in HARTMANN AND BIER
[64] and the results of additional numerical studies using the proposed constitutive model can
be found in SZANTO ET AL. [132] and HEISSERER ET AL. [71] using an implementation of the
constitutive model in the finite elements codes Abaqus and Adhoc respectively.

111
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6.1 Simple die compaction (order reduction phenomenon)

In order to study the higher order time integration methods described in Section 5.1.1 a very
simple test case (2 elements) is considered. We consider the configuration of two elements de-
picted in Figure 6.1. The boundary conditions are that all nodes are fixed in y and z-direction.
Furthermore, the nodes at the bottom are constrained in z-direction as well and the top nodes per-
form the prescribed motion down. The structure in whole is compressed to half of its initial size.
The whole compaction process is carried out within one second (in the rate-independent case

Av{

v Y 4

Y

Figure 6.1: Boundary conditions of simple test structure

of elastoplasticity this has no influence). In order to check the accuracy obtained with the time
integration methods specified in Section 5.1.1, first, a reference solution is generated using the
diagonally implicit Runge Kutta method of 4™ order proposed by HAIRER AND WANNER [58],
and the embedded 3™ order method is used to estimate the integration error and subsequently
control the step-size.

REMARK 6.1

The following settings have been used within the input file for TASA-FEM, see HARTMANN
[62], in order to generate the reference solution: nintv=7, i.e. DIRK method proposed by HAIRER
AND WANNER [58], iscon=3, i.e. the embedded DIRK method is used for step-size control,
istop=3, i.e. both toldu and tolphi are considered when convergence of global Newton-iteration
is checked, with toldu representing the convergence tolerance for the displacement increment
and tolphi the convergence tolerance for the residual, toldu= 0.1 x 1071°, tolphi=0.1 x 1078.
The absolute error tolerances (tolabu, tolabe and tolabs) and the relative error tolerances (tol-
reu, tolree and tolres) for the step size control on the basis of the embedded DIRK method
are all set to 0.1 x 10~® for the generation of the reference solution. The convergence crite-
rion for the local Newton-like iteration is set to 0.1 x 107'° for the generation of the reference
solution. For the other computations discussed in subsection 6.1 no step-size control is consid-
ered (iscon=1) and the following convergence tolerances of the global Newton-iteration are used
toldu= 0.1 x 1078, tolphi=0.1 x 1075. The convergence criterion for the local Newton-like
iteration is set to 0.1 x 1078,

REMARK 6.2
In view of the findings shown in this paragraph, it is questionable that the 4™ order method really
does reach 4" order applied to the proposed constitutive model. However, due to the stricter
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convergence criterion enforcing a smaller step-size the produced solution can be considered to
be sufficiently accurate to be used as a reference solution.

For comparison of the different methods the total pressure, which needs to be exerted on
the top surface of the structure to produce the prescribed compaction, is used. First, the case of
elastoplasticity is studied, i.e. 7 = 0. In this case the index of the DAE-system, which arises after
the space discretization, is 2 due to the algebraic constraint (yield function) on the local level.
For the definition of the index of a DAE-system see, for example, HAIRER AND WANNER [58]
or ASCHER AND PETZOLD [12]. Roughly spoken the (differentiation) index of a DAE-system is
the minimum number of differentiations needed (together with algebraic operations) to transform
the DAE-system into a system of ordinary differential equations (ODE) in explicit form.

It can be observed from Figure 6.2(a) that the Backward-Euler method reaches as expected
order 1, i.e. the relative error is reduced by half if the time step-size is halfed. In the double
logarithmic plot of the relative error over the step-size Figure 6.2(a) the order of the method
is simply given by the slope of the curves for the different methods. The 2" order method of
Ellsiepen (ELLSIEPEN [44]) reaches order 2 whereas the 3™ order method does only reach order
2. The order reduction in the case of a third order method applied to an elastoplasticity model
has also been reported in the case of von Mises plasticity without hardening by ELLSIEPEN [44],
see also ELLSIEPEN AND HARTMANN [45].

From Figure 6.2(b) it can be observed that the computational effort, here measured by the
number of global Newton iterations of the Multilevel-Newton algorithm, is significantly lower
for the methods of Ellsiepen (ELLSIEPEN [44]) or Alexander, see ALEXANDER [5], than for the
Backward-Euler method. The difference increases with increasing accuracy requirements and
there can easily be a factor of ten to one hundred between the number of iterations needed with
the methods of Ellsiepen or Alexander and the Backward-Euler method.
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(a) Relative error over time step-size (b) Rel. error over no. of global Newton iterations

Figure 6.2: Model of elastoplasticity (n=0)
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Since the viscoplasticity model introduced in Section 3.4 emerges from the elastoplasticity
model introduced in Section 3.3 a small viscosity will not create a significant difference between
the results of the elastoplasticity model and the viscoplasticity model and can be considered
as a regularization of the elastoplasticity problem. In Fig. 6.3 the influence of the introduced
viscosity parameter 7 on the axial pressure in a die-compaction simulation is depicted. As can
be seen there the behavior of the material is not changed significantly for n < 1. The index

500 w

400

T

300

200

axial pressure MPa

1 09 0.8 0.7 0.6 0.5
detF

Figure 6.3: Variation of viscosity 7,

of the resulting DAE-system is in the viscoplasticity case 1 and the equations are more smooth.
However, the differential part may be stiff so that the merit of this endeavor is not clear a priori,
since order reduction of higher order integration methods may also appear in the case of stiff
differential equations. Taking a look at Figure 6.4 one observes that now both the method of
Ellsiepen and the method of Alexander do not yield an order much higher than one. However,
the accuracy which they reach is significantly better than the accuracy reached by the Backward-
Euler method. Accordingly, we do not observe a positive effect of the regularization by choosing
a finite viscosity 7, although the introduction of the viscosity does not change the calculated
results for the pressure needed on the top surface of the structure much. In the case of n =
0.1 the required pressure is calculated to be about 0.1% higher and for = 1 the increase
is about 1% (in the studied case for the assumed velocity). In order to compare the different
methods also for significant viscosities (7 = 1000) the relative error is again plotted over the
step-size in Fig. 6.5(a) and the number of global Newton iterations in Fig. 6.5(b). The plots show
that the method of Alexander does now indeed reach approximately 3™ order and the method
of Ellsiepen reaches 2" order. If the accuracy demands are very strict the 3 order method
can save a significant number of iterations in comparison with the 2™ order method. However,
for moderate accuracy requirements the 2" order method seems to be favorable over the other
two, since it does not suffer severely from order reduction in any of the studied cases and is
surely superior in performance over the simple Backward-Euler method. The order reduction
phenomenon is not visible in the case of smooth problems, see HARTMANN [59] or HARTMANN
[63].
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Figure 6.4: Model of viscoplasticity (n = 0.1, n = 1.0), to mirror the elastoplasticity model.

6.2 L-shaped profile

In Figure 6.6 the geometry and boundary conditions for the second numerical example are
depicted. The two-dimensional L-shaped structure is modeled with a single layer of three-
dimensional hexahedral elements. The displacements in z-direction are locked for all nodes.
The total initial height of the structure is 12 mm, the displacements at the top are prescribed to
go 3 mm down (representing the movement of the rigid top punch u,). In order to induce an inho-
mogeneous deformation the prescribed displacements at the bottom of the L-profile at y = 0 are
assumed to be 0.8 x (—u,) = 2.4 mm up. The computations have been done with two different
time-adaptive strategies. The simpler time-adaptive strategy uses the number of global Newton
iterations to estimate the current nonlinearity of the equations. And increases or decreases the
time step-size of the Backward-Euler integration based on
Atpew = AL, X fac
. { 0.75 1if m > 12 (or if local procedure fails to find solution)
with fac =

1.3 ifm <6 6.1)

In the higher order Runge-Kutta methods the step-size control is based on an estimation of the
local integration error, see the paragraph on time-adaptivity within Section 5.1.1. The absolute
and relative error tolerances ¢, = ¢, = 10~* are chosen. The global Newton-iteration of the
Multilevel-Newton algorithm requires a value of ||AU|| < tol, = 0.01 x &,. The stress compu-
tation, local nonlinear system, is assumed to be converged if ||AQ(k) | < 107°. The second order
method of ELLSIEPEN [44] uses an embedded first order method and the third order method of
CASH [25] uses an embedded second order method for the step-size control. We compare all
three methods to a reference solution produced with a fourth order method with embedded third
order method for step-size control. For the reference solution the error tolerances ¢, = ¢, = 107°
are chosen and the global Newton-iteration of the Multilevel-Newton algorithm requires a value
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Figure 6.6: Boundary conditions of simple test structure

of ||AU|| < tol, = 0.01 x ¢,. The stress computation, local nonlinear system, is assumed to
be converged if ||AQ(k) | < 107! in the case of the reference solution computation. For the
comparison of the spatial distribution of the integration error achieved by the three methods I
choose the scalar quantity rx of Eq. (3.77). Since rx depends on C,, rx = In(det C,)/2, which
results from the time integration of the flow-rule, it appears to be a reasonable quantity for this
comparison. In Figure 6.7 the spatial distribution of the error is depicted in contour plots. In
every case the integration error is higher in the vicinity of the spatial singularity at the corner of
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the L-shaped profile. Therefore, in Figure 6.9 the errors computed for each Gauss-point along the
cuts through the L-profile at x = 19.07mm, z = 0.21 mm and at y = 7.05mm, z = 0.21 mm,
see Figure 6.8, are depicted. The error-controlled step-size control keeps the integration error
significantly lower than the Backward-Euler method with step-size control technique (6.1). In
every case the error increases close to the spatial singularity but not dramatically. The third
order method does not seem to be superior to the second order method, in agreement with the
previously observed order reduction phenomenon. Consequently, in the next example only the
Backward-Euler method and the second order method of Ellsiepen will be considered.
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Figure 6.7: Spatial distribution of relative errors of the quantity rk for the L-shaped structure.
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Figure 6.8: The relative density achieved by the compaction process in the L shaped structure (reference
solution). The cutlines along which the relative errors are plotted in figure 6.9 are depicted.
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Figure 6.9: Error plotted along cuts vs. the free coordinate, see Figure 6.8 for definition of cuts.
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6.3 A flat washer-like problem

Figure 6.10: Geometry and deformed mesh of 3D-mesh of flat washer like problem (2394 nodes, 1836
eight-noded hexahedral elements)

The third studied geometry is a rectancular flat washer like structure, where only a quarter of
the washer is discretized (symmetry), see Figure 6.10. Again the displacements are prescribed
at the top and the bottom of the structure. At the bottom with u.(x,y,0,t) = 0.8u(t) and at the
upper surface with u_(z,y, 12,t) = —u(t) with u(t) given by'

u(0) = 0mm, w(l)=3mm, wu(2)=2.98mm. (6.2)

All other surfaces are fixed in out of plane direction, i.e. a rigid behavior of the die is assumed and
any influence of friction is neglected as well. The computations are done both for = 0 and for
1 = 1. In each case a simple Backward-Euler method combined with the load-control of Eq. (6.1)
is applied and compared to the error-controlled method of Ellsiepen (2" order Runge-Kutta)
using an embedded first order method for step-size control as described in Section 5.1.1 based
on the proposals of ELLSIEPEN [44], DIEBELS ET AL. [38] and ELLSIEPEN AND HARTMANN
[45]. The step-size behavior is depicted in Figures 6.11(a) and 6.11(b) forn = Oand n = 1
respectively. In the case of a small viscosity 1 the Backward-Euler method reaches higher step-
sizes since the problems nonlinearity is reduced. The method of Ellsiepen handles both cases
with nearly the same step-sizes to ensure that the integration error stays below the specified
tolerances. Both algorithms increase the step-size significantly in the region where unloading
takes place. There the behavior of the material is (at least in most Gauss-points) elastic leading
to a less nonlinear set of equations. The achieved relative density distribution in the flat washer
after unloading is depicted in Figure 6.12.

The same geometry has been chosen to demonstrate the increase in numerical efficiency
gained by the numerical procedures discussed in Section 5.1.3. Table 6.1 compares the rela-
tive computation times needed to compute the washer compaction problem with = 1 using
again the second order error-controlled method of Ellsiepen and analytical consistent tangent

I'The prescribed displacement %(t) is piecewise linear between the breakpoints at t = 0, 1, 2 provided in Eq.(6.2).
The final value of the displacement at ¢ = 2 is selected in such a manner that the resulting axial load at the end of
the process is approximately zero.



6.3 A flat washer-like problem 121

1 T T T 1 T T T
Backward Euler —+— Backward Euler —<—
Ellsiepen 2(1) - B Ellsiepen 2(1) - B
Z ' =z 7
o 0.1 o 0.1
+~ -~
< . 4
?ﬂ) m’F g
¢ ,n" ¢
= 0.01 ¥ - i & 0.01 =
@ re @ :l"‘ [l
of -
e g
0.001 0.001
0.001 0.01 0.1 1 10 0.001 0.01 0.1 1 10
time ¢ [s] time ¢ [s]
(@n=0 bn=1

Figure 6.11: Step-size behavior of different integration methods
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Figure 6.12: Relative density distribution in the flat washer like structure

with the original Newton-method, see Tab. 5.4, to solve the local nonlinear system compared to
the Newton-method with damping, see Tab. 5.5 and the fully constrained Newton method from
Tab. 5.7. The more stable Newton-algorithm with line-search and constraints leads to signifi-
cantly reduced computation time since it converges for significantly greater step-sizes.

The fully constrained line-search algorithm, see Table 5.7, which is considered to be the most
stable and efficient in most cases, is used for the final study testing the influence of numerical
vs. analytical tangents. The reference computation is the compaction of the three-dimensional
washer example using the Backward-Euler method with the simple step-size control using fully
analytical expressions for the Jacobian of the local iterations as well as for the consistent tan-
gent. One semi-analytical computation is done using a numerical version of the local Jacobian
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Table 6.1: Comparison of computation time for different Newton-like algorithms applied to solve the
local nonlinear system of equations within the Multilevel-Newton algorithm.

local solution algorithm relative computation time in %
Newton method (Table 5.4) 100%
damped Newton (Table 5.5) 94%
fully constrained line-search (Table 5.7) 58%

but still an analytical consistent tangent and the other semi-analytical computation is done using
an analytical Jacobian on local level but a numerical consistent tangent. Finally, a fully numer-
ical version is computed. The results with respect to computation time are given in Table 6.2
below. The numerical differentiations are computed using forward differences (1** order). The
tremendous increase in computation time for the fully numerical version is caused by the fact
that the step-size control based on the number global iterations does not incease the step-size,
since the algorithm almost never converges within 6 iterations probably, because of the lack of
accuracy reached by the two subsequent numerical differentiations.

Table 6.2: Comparison of computation time using analytical and numerical tangents within the local
Newton-like iterations and in the Multilevel-Newton algorithm.

computation relative computation time in %
fully analytical 100%
analytical local Jacobian, numerical consistent tangent 282%
numerical local Jacobian, analytical consistent tangent 110%
fully numerical 5737%




Chapter 7

Conclusions

This thesis presents the development, implementation and application of a constitutive model for
metal powders. Following the continuum mechanical principles described in Chapter 2 a consti-
tutive model falling into the class of finite strain elastoplasticity is formulated on the plastic inter-
mediate configuration. Furthermore, the straightforward expansion of the elastoplasticity model
to viscoplasticity is proposed and studied with respect to the numerical implications. The heart
of the established constitutive model is a new pressure dependent yield function (compressible
elastoplasticity). It is demonstrated that the new yield function can reproduce the yield behavior
of a metal powder under compressive loads and that it exhibits a number of desirable properties,
like uniqueness in principal stress space, shape flexibility!, smoothness and convexity. Beyond
the new yield surface a certain emphasis is placed on a thermo-mechanical motivation of the evo-
lution equations ensuring, together with the associative flow-rule, an a priori thermo-mechanical
consistent constitutive model in the sense that the Clausius-Duhem inequality is fulfilled for all
processes.

With respect to the material parameter identification uniaxial die-compaction experiments
with monotonic loading and with intermediate un- and reloading cycles are analyzed. The exper-
imental setups were developed by the partner group of Prof. Frage, receiving input from our side
with respect to the required experimental data for a reasonable parameter identification. Since
the experimental data is not exhaustive, a few parameters are chosen beforehand in a reason-
able manner. It is demonstrated that the constitutive model is able to represent the available
experimental data very well once the material parameters are identified.

Several variants of a stress algorithm for the proposed constitutive model are developed and
implemented into the implicit finite elements code TASA-FEM (HARTMANN [62]). Since the
application of the classical Newton algorithm to the non-linear system of equations on the local
(Gauss-point) level of the Multilevel-Newton algorithm, which is applied at each stage of the
utilized DIRK-method to the DAE-system resulting from the space discretization of the prin-
ciple of virtual displacements, leads to a frequently non-converging stress algorithm, several
globalization strategies for the Newton method like damping, line-search and line search with
constraints are implemented. The stress algorithm utilizing line search with constraints is shown
to be significantly more robust and efficient than the simple Newton algorithm. Since it is re-
alized that a system of differential algebraic equations (DAE-system) emerges for the proposed
constitutive model from the space discretization of the principle of virtual displacements using
finite elements, the above mentioned DIRK methods become applicable. The differential part of

'In BIER AND HARTMANN [19] it has previously been shown that the shape flexibility of the new yield function
is appropriate to reproduce the yield behavior of many compressible materials.

123



124 Conclusions

the DAE-system stems from the ordinary differential equations of first order (evolution equation,
flow-rule) of the constitutive model. Compared to the classical Backward-Euler scheme the ap-
plied DIRK methods offer a higher integration order resulting in a higher accuracy of the time
integration, while the structure of the classical implicit finite element implementation of the time
integration (Backward-Euler) is maintained.

The applicability of the stress algorithm for the proposed constitutive model is demonstrated
in some academic example computations. It is observed that an order reduction phenomenon
occurs, i.e. the order of the higher order DIRK method can not be reached. This leads to the
conclusion that a second order method is showing the best performance.

With respect to the constitutive model presented in this thesis several directions for expan-
sions and generalizations of the model are thinkable. One interesting point could be the inclusion
of temperature effects aiming beyond the simulation of compaction processes at ambient temper-
ature like uniaxial die compaction and cold isostatic pressing (CIP) towards warm compaction
and hot isostatic pressing (HIP). Changes in the same direction would be necessary to allow the
simulation of the sintering process usually following the pressing process. Minor changes of
the model increasing its complexity but also its range of applicability would be to consider the
dependence of the yield function on the third invariant of the stress tensor, a more elaborate elas-
ticity relation or a non-associative flow-rule. On the other hand the increase in model complexity
would imply additional material parameters demanding an equally higher experimental effort for
their determination. A further direction for the generalization of the constitutive model could be
the combination of the elastoplasticity model with a damage model enhancing the possibilities
to describe the behavior of powder compacts under non-compressive loading conditions.

With respect to the numerical treatment efficient methods for the time integration are applied,
i.e. time integration with embedded error estimation for an error controlled time step-size. An-
other direction to increase the efficiency could be to consider an adaptive space-integration and
a combination of time and space integration adaptivity. Furthermore, the implementation of the
constitutive model into a commercial finite element program would offer the possibility to treat
more realistic initial boundary value problems. In this respect especially the consideration of
friction between the powder and the mould (die) has to be mentioned.



Appendix A

Limit cases of the interpolated yield
function

In the following, it is shown how to define the parameters of f(/;) from Eq. (3.45) in order to
approximate the Drucker-Prager yield function, the ellipse, either centered, as proposed by many
authors (see, for example, SHIMA AND OYANE [122] or KUHN AND DOWNEY [89]), or shifted
along the hydrostatic axis, as suggested by ABOU-CHEDID [3], as well as the von Mises yield
function applied in metal plasticity.

Approximating the Drucker-Prager yield function The Drucker-Prager yield function de-
fines a linear function in Fig. 3.8 starting, for example, at the point (I1,v/J5) = (Ip,0) and
having a negative slope. Since the proposed yield function is represented by the interpolation
of the ellipse and the exponential function, use has to be made of the exponential part in order
to approximate the linear function in a user-defined region. To this end, the following two steps
must be considered. Firstly, since the exponential function f5(/;) is utilized for representing the
Drucker-Prager line, it is necessary to show when f>(/;) is indeed smaller than the ellipse f;(/;)
for all I; in the relevant region [;; < I; < Iy, where [;; = 3¢ + (3§ — I) defines the intersec-
tion point in the compression range. It will be shown that this can be guaranteed by choosing
r greater than a certain limit value. Secondly, on the basis of the investigation before, it will
be investigated under which conditions the deviation of the interpolated function f(/;) and the
Drucker-Prager function are sufficiently small.
First of all, Eqns.(3.42) and (3.43) are reformulated

(I, — 3¢)?
k\/l -G (A.1)

fo(l) =k {1— <1_m

fi(ly)
(I —T0)/(86—To) (1))
) ] (A.2)

and it must be shown that fi(1;) — fo(I;) > 0 holds for I;; < I; < I, which is the interval of
the intersections of the two functions at I, and ;. In other words,

fl(Il) - fg(ll) . _ (]1 - 35)2 _ _ — [(11—=10)/((36—I0)(1+7))]
0< - — \/1 T3 ! +\(1 Vi=r?) G

7161 ) v2(11)

(.
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has to be satisfied, where two functions 7 (/;) and ~2([;) are introduced. This condition is
fulfilled for the case
’}/1(]1) + ’}/Q(Il) Z 1 \V/ ]1 c [Iisa ]0] (A4)

At the intersection points [ and [ the two terms add up exactly to one, v, (fis) + Y2(fis) = 1
and 71 (1y) + 72(1p) = 1. Since both functions ~; (1;) and 2(/; ) increase within the region [;; <
I; < 3¢, condition (A.4) is fulfilled. Thus, we only need to discuss the interval 3¢ < [; < I
where ~y; (/1) decreases. In order to show under which conditions inequality (A.4) is satisfied
in this interval, the two functions ~; (/1) and 75(/;) are replaced by two properly chosen linear
functions which are below the two functions throughout the interval. Accordingly, it must be
proven that for a sufficiently large value of r the sum of these linear functions is greater than 1.

In Fig. A.1 the two terms together with the linear functions h(/;) and ho([;) are plotted.
The linear function h, (/) is constructed to be always smaller than ~; (/;) defined by

A A
Y1 (1)
I
—
6 — I 3¢ Iy 6& — I 3¢ Iy
(a) hy, lower bound for 1 (I) (b) ha, lower bound for 7o (1)

Figure A.1: Graphical representation of the linear functions h; (/) and ha(I;) acting as lower bounds for
(1) and 75(1h)

1 Iy

M) =5 ey

(A.5)

In the case of the exponential part 5 (/;), every tangent lies under the function for all values of
I;. In order to make sure that condition (A.4) is satisfied, use is made of the tangent at the point
Iy denoted by

h([)_ln(l—\/l—TQ) 1 [+1_ln(1—\/1—7"2) I A6)
e T T 147 3¢ -1y '
—T(r)

If the tangent is constructed in such a way that hy (/1) + ho(/1) = 1 holds, which guarantees
condition (A.4) as well, then hy(3£) = 0 has to be satisfied. Consequently, expression T'(r),
defined in Eq.(A.6), leads to the non-linear equation

In (1 - m) = —(1+7) (A7)
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possessing the solution r* ~ 0.602, i.e. if » > r* is defined, condition (A.4) is surely satisfied.

So far, it has only been shown that for » > r* the function f5(/;) is the smaller one of the two
functions in the interval of interest. This means that there are no further intersection points in
this interval. In order to approximate a straight line within the user-defined interval [* < I} < [
by means of the exponential function, the relative difference of the tangents’ slopes at /y and a
user-defined hydrostatic pressure /* should be less than a prescribed tolerance

fo(I7) = f5(1o)
f3(1o)
If a value ry > r* is defined, inequality (A.8) yields the upper limit

[*_[0 1]?1(1—\/1—7"8) [O

3(1+r)  W(l—2) 3

<e (A.8)

£ <

(A9)

of the ellipse’ center.
The Drucker-Prager model, fpp(/;) = M I; 4+ ¢, M defines the slope and c is a constant, is
chosen to have the derivative of fy(/;) at the zero hydrostatic stress state

M = f}(0) = —AyAs. (A.10)

This is done for the convenience of the resulting analytical expressions. If a center &, is pre-
scribed, satisfying inequality (A.9), the axes ratio of the ellipse is obtained,

(1) (1-vi-73
(1 (1= vT=70))

where use is made of definitions (3.44). In other words, for given tolerance ¢ of the slope, the
slope of the Drucker-Prager yield function M, the intersection point of a non-negative hydrostatic
pressure [y, the expected range of interest /* (where the model should reproduce the Drucker-
Prager yield function, and a defined ry > r* = 0.602, the proposed model approximates up to the
desired precision the Drucker-Prager model. Additionally, if the parameter c of the interpolation
is small enough, the function f comes arbitrarily close to the function f5.

) [210/((3¢0—10)(1470))]

: (A.11)

Retrieving the ellipse yield function The retrieval of the ellipse from the interpolated yield
function (3.37), either with £ = 0 (centered ellipse) or for £ < 0 (shifted ellipse), is less laborious.
Here, r is sent towards zero so that the exponential function is always larger than the ellipse.
Since the ellipse f;(;) does not depend on r, one has only to look at the limit behavior of f (1)
defined in Eq.(A.2). In order to find the limit of f5(1;), two cases have to be distinguished. For
I, < Iy and I; = I and the condition 3¢ < [y, we arrive at

I <1y llr%fg(]l) = k’, (A.12)
[1 = [O : hH(l)fz([l) 0.

(A.13)

In other words, under the condition r = 0, the exponential function obtains the values f>(1;) = k
for all I; < Iy. Since k is obviously the maximum of f; (1), it has been shown that f; (/) is the
smaller one of the two functions and this implies that the difference between f and f; is always
less than c1n 2, which could be made arbitrarily small by choosing ¢ sufficiently small.
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Approximating the von Mises yield function In order to approximate the von Mises yield
function, the arguments of the last paragraph are followed, i.e. » = 0 is required. Additionally,
f1 1s specialized to the case of the centered ellipse, £ = 0. This leads to the cases

. k | I < I()
folh) = { 0| L=1I (A.14)
AL =k —a(l)? with  k=/al?. (A.15)

The von Mises yield surface is defined by a single parameter which corresponds to k. The basic
idea is to utilize an ellipse with a high aspect ratio (small o) which approximates the horizontal
line f(I;) = k with a prescribed tolerance. To this end, the relative difference of f; and k is
required to be smaller than an arbitrary but fixed value ¢ for all /; within the interval (—I, +I¢).
I; defines the borders of the relevant interval. Thus, the relative difference has to fulfill the

condition
k— f1(1 12
e C/ i W QR (A.16)

using Eq.(A.15). In other words, we have to satisfy the condition

12 > If2

0 1— (1 _ 6)27 (A17)

i.e. It and € have to be prescribed and one obtains the value of I needed.



Appendix B

Proof of convexity

The proof of convexity for the yield function has already been published in BIER AND HART-
MANN [19] but is repeated here for the sake of completeness. In order to show convexity of the
yield function (3.49), use is made of the Gateaux-derivative

Dy F(x)[H] = %F(XHH) | B.1)
A=0

Accordingly, the second derivative, or more precisely, the second differential of a scalar function
F(x) : R? — R has to be derived. This implies the convexity proof of the composition because
G(g1(x), gg(x)) depends on two scalar functions gj(x) : R? — R. In our formulation x € R? is
assembled by x* = {I,v/J5},i.e. z; = I| and 3 = \/.J5. The differential (B.1) of F'(x) reads

4G 14 2
Dy F(x)[H] = { gggx))} { iﬁﬂ H=Y G, {g.x}"H (B.2)
i=1
with
‘ _ 8G(91;92)
Gi(gx)) = s (B.3)
and
d9;
dgi(x) )
Giyx = F = 323 . (B.4)
al'g

The second differential
D, {Dx F(x)[H] {Z G (2(3) {ginm }TH} [H] =

2 2 d?g; ’
=YD G ({97 }"H) ({:x }'H) +ZG”{dx deH} ne

7j=1 =1

HT [Gﬂl 91,x {91,x } + 2G,12 J1,x {927x } + G722 g2,x {927x }T] H+
+ HT [Gal J1,xx +Ga2 927xx] H Z 0 (BS)
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has to be non-negative if the yield function is convex. If the first expression of inequality (B.5)
is reordered, (B.5) results in

Dx {Z Gvi (g(x>){giax }TH} [H] =

G>11 Gal?

={(H"g1x) (H g2,5)
{ ! ? } G)Ql Ga22

(HTg27X )

H g«
{ ( It ) }+HT [Galglaxx—l_GanQ)xx]HZO

(B.6)
In other words, F'(x) is convex if
e ((g) is non-decreasing in each argument (G,; > 0, G,5 > 0),
e (G(g) is convex,
e and, g;(x), 7 = 1, 2, are convex.

This proposition is stated by BOYD AND VANDENBERGHE [21], where the proof is left to the
reader. In order to complete the proof in view of Eq. (3.49), we have to show the fulfillment of
the statements mentioned above.

Monotonicity of G(g;,¢g2) The first condition of a non-decreasing function

e91/(ck) 4 cg2/(ck)
G(g1,92) = ckln < 5 ) (B.7)
is apparently given by the first derivatives
691/(Ck) 692/(Ck)
G,l = > 0, G,Q = > 0. (B.8)

eg1/(ck) 1 eg2/(ck) e91/(ck) 1 eg2/(ck)

Convexity of G(g1,92) In order to show the convexity of G(g1, g2), the Hessian matrix G, gg
has to be positive semi-definite implying the non-negativity of the diagonal elements G,;; > 0
and (.5, > 0 and the non-negativity of the determinant, G,;; G20 —G,3, > 0. The components
of the Hessian read:

elg1+g2)/(ck)

G1=Go=—G,19= >0 B.9
11 22 12 ok (e91/ (k) 4 692/(Ck))2 (B.9)

The determinant of the Hessian matrix is obviously zero and the diagonal terms are positive for
c>0and k> 0.

Convexity of g;(x) The convexity of the ellipsoid g; (z1, x2) defined in Eq.(3.46) implies again
the coefficients of the Hessian matrix:

Por _ T30 (B.10)
0r:1® (a3 + ala — 3€)2)"? '
Pa a(z; — 3€)? B.11)
02> (a3 + alz; — 3€)2)" '
2 —

P xoa(wy — 3E) (B.12)

011012 (23 + afx, — 3¢)2)*?
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Even in this case the determinant of the Hessian is zero, det[g;,xx | = 0, and the diagonal terms

are non-negative for &« > 0 and x5 = +/.Jo > 0, which is given in view of its physical (geometri-
cal) meaning.

Convexity of g»(x) A similar behavior stems from the exponential function (3.47) yielding

82g2 a292 82g2
_ A A2 Asxq — =0. Bl
—8:1:12 9 Aze > 0, FYSCI s 0 (B.13)

This leads again to the determinant det[g2,xx | = 0. In view of the definitions (3.44), A; > 0
apparently holds.

In conclusion, in the case of a combination of the two convex yield functions g; and g5 the
resulting interpolated yield function is also convex.
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Appendix C
Study of a specific ODE

In Eq.(3.83) we have an ordinary differential equation of the type
a'(s) =Q/a(s) — bpa(s), initial conditions «(0) = ag > 0. (C.1)

Although €2 > 0 is in the original expression process-dependent, we assume that {2 is constant
(i.e. it is assumed that the resulting ODE behaves similar). s defines the plastic arc-length (see
definition (3.72)). The analytical solution of this ODE reads

Q— (Q—bpad)e—2ps
afs) = (@ = bpag)e™o (C.2)
Bp
i.e. the equilibrium state of the ODE, «/(s) = 0, achieves the value
o = lim a(s) = 1/Q/bp. (C.3)

§—00

In Fig. C.1 a parameter study is shown for oy = 1. In other words, for positive initial conditions

1.5 T
Q

plastic arc-length s

Figure C.1: Study of the ODE in (C.1)

the quantity o can not become negative. This study of the ODE (3.83) has already been published
in BIER AND HARTMANN [19] but is repeated here for the sake of completeness.
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Appendix D

Analytical consistent tangent

In view of the proposed stress algorithms, which are based on Newton-like procedures on local
Gauss-point level, and the related consistent tangent operator various derivatives are necessary.
These expressions are summarized in the following. We start with the derivatives denoted term I
and term II of the elasticity relation with respect to C and C,, appearing in (5.118) which defines

the consistent tangent matrix ((1%

oh 1 _ _ 1 _ _ T
term [ o5 = oA [C'oC™] - <§Alndet(0plc) —u) [C'eC']™* (D)
. oh -1 —1712 1 -1 -1

The term III in equation (5.118) results from the solution of the linear system of equations
(5.122). The functional matrix on the left hand side of equation (5.122) is composed of the
partial derivatives of L, L, and Ly with respect to C,,, a and ¢ where L,, L, and Ly are the
Eqns. (5.115)-(5.117) recapped here for the sake of comprehensibility

L,=Cp' — C" — (hy (C,C),a™) =0 (D.3)
Lo =a" —a™ — (hy (C,CY,a™) =0 (D.4)
Jy At"a” =0 (D.5)

with the abbreviations
B oF oF 1 oF
mo H (Tl) - (ab) ey (g)efe] o
8F
OF OF\?

All the derivatives will be given below after recapitulating the yield function and its derivatives
with respect to the invariants I; and J, of the Mandel stress tensor which are expressed as func-
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Analytical consistent tangent

tions of C,, and C:

1
I, = ptr(CC,")+3 (éAln det(C,'C) — u) (D.9)
1 _ _ 1 12
Iy = —p (ccpl.cplc—g (tr(CC, M) ) (D.10)
The yield function reads, as specified Eqns. (3.46)-(3.48),
91 (11,\/72) 92 (11,4/72)
(& ck € ck
F(1,,1/1,) = ckn : (D.11)
with the two partial yield function expressions
gl(Ilu \/J2+Oé I —35) —k, o 11,\/7 VIg+0 —k+ Aye™  (D.12)
using furthermore the abbreviations
k
k=1Ja(ly— 36?2 A= : A= 1 (D.13)
(1-vVT—7?) (3&—(%/@—%) Io
and the hardening variable
E=——e "X 4 cxrg, Tk =1In <\/det Cp> ) (D.14)
GQ

Additionally, the derivatives of the yield function with respect to the first and second invariant I;
and J, are required in Eq. (D.6)-(D.8), these read

8_F 3g1 892
oL 811 811
with
ek
w1y 92
eck + eck
and
991 a(li =3¢
811 \/J2+Oé 1—35)
892 Asl
— A 3 1A
811

8F 8g1 8g2

or _ D.1
a1, ar, T e, (D-15)
Wy e (D.16)

eck 4 eck
1
gﬁh - (D.17)
2 2\/]2 —+ C( 1 - 35)

8g2 1

992 _ __ - D.18
s 2V, +0 (D.18)

D.1 Derivatives appearing in the functional matrix

The derivatives which appear in the functional matrix of a Newton-like stress algorithm as well
as in the coefficient matrix of the linear system (5.122) read:

oL, O o,
aC, dC,’ da
OL, Ohy \ " 0L,
aC, ¢ <a—cp> ’ da
OLr _ . pirep- (8_F) OLr _
dC, dC, da

_ _Cahl _88129 ~ n (D.19)
oh OLg
=1- ga—Z, 3 = —hy (D.20)
OF oL
(7‘1;17—1)_ —F _ T"Up 77
vk 90’ o0 = 0 i (D.21)
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D.1.1 Derivatives with respect to C,

The expressions (D.19)-(D.21) contain derivatives with respect to C,, which read

%:2([01,@68—(1]%—14%—%[0@5—&}), (D.22)
g—éi = %g—g) - abd;—ép, (D.23)
aa—g; _ 3 Jacln (691/(ck) _5 692/(ck)) a@ép
+w1§—é +wgggp +w13‘/]§gl ;Ci +w23‘/§g2aa—é). (D.24)
Here the abbreviations
A={Fy - Fi5t (CC) (D.25)
B ={uFy,}, (D.26)
D = {1, — 38 Fy, + 21, F,} (D.27)
(D.28)
are introduced implying the derivatives
;—é = 2@; -5 |(wogy) %?: G égf"_l)) , (D.29)
g—é = Maa]g:, (D.30)
g—gp = F, <§—a) - 35—&) + (I — 3¢) gg‘; +2F), ggp + 2], 85@:. (D.31)
(D.32)
In the aforementioned derivatives the expressions
8<t;(é?51) = agp (C-C;Y) = —C;lec;, (D.33)
g—gi = i, (D.34)
g—élp = (—ucplccp1 — ;Acpl) : (D.35)
g—gp = —u° (CplCCplCCp1 — %tr (cc,t) Cplccpl) : (D.36)
aaép — ; i gg; = (are™"™ + ox) %C;l (D.37)
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are introduced. In Eqns. (D.22)-(D.23) and (D.29) - (D.31) several derivatives with respect to C,
appear. These are in particular

90 = o0, tnn — am) + G e o3
3G = 0, (- > 39
;%p = % (3F}1 + o), F2 ) [6Fh ?9 C“ +4I,Fy, % C” +2F2 gg ] (D.40)
(D.41)
implying the derivatives:

g_gi _ _g_g; (D.43)
(D.44)

Furthermore, the chain-rule is applied to get
0911, B 0g11, 0L 0g11, 0Js N Og11, O (D.45)

oc, oI, 0C, 9J, 9C,  9¢ 0C,

in Eq. (D.38), i.e. the derivative of the ellipsoidal part. The right-hand sides of the summands in
(D.45) are already given in Eqns. (D.35)-(D.37), whereas the left-hand sides read:

8g1,h (6] &2(11 — 35)2
T T i Tl (D.46)
L o+ ol —3)Y) (Jo+a (I — 3¢)%)
Iy _ a (I —3¢) (DA7)
Nz 9y +a —30)H)""
Ogin 3a 302 (I, — 3¢)°
o N 2\3/2" (D.48)
(+a@=30)7)"  (R+al-3¢)°)
Furthermore, in Eq. (D.38)
9921 2A181 AIaA AIaAC’» AIaA3 8§
= Ay Aze™ Age™H + Age™t Ag Aglye™sH D.49
ac, ac, © o o o€ (D.49)
is required implying the derivatives of the abbreviation A, and A3 defined in Eq. (D.13):
04; 3 (1-v1- )<1+T><'o B a((T+r)Io—38) —Ihln (1 — 1 —1r2)) D.50)
73 (147) (Lo = 3¢)
8A3 __3ln \/1—T2) (DS])

o (1+7)(3¢ —1p)
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Eq. (D.39) necessitates the derivatives

9913, —3/2 [3a(Iy — 3¢) O B a(ly =3¢ ol 1 0J,

2
— _ — = D.52
ac, — U2t alli=30)) > ac, > ac, aac,|t PP
092 Jo 1 —3/2 AP
Jo 2 72 D.53
aC, 102 aC, (-33)
Lastly, Eq. (D.42) implies both the derivative
391 811 an 891 85
PG = pe T Onge o aa (D-54)
ac, “thac, " 7t"ac, T o ac,
which requires
88_5?:_ 3a(I; — 3¢) n 3a (Iy — 3¢) ’ (D.55)
Vi tal =398 (ol -3¢
and the derivative
892 811 an 892 81{: 892 8142 892 8A3
— = — — 4+ == D.56
ac, e, T9Rac, T ok oc, T 94,0C, T 94, 0C, (D-36)
with
992 992 Azl 992 Asl
o = = = sh D.57
Ok 3 0As  0A; O 0As  0As O
—_ = — _ = = D.58
0C, 3\/5801,’ 0C, o0& 0C,’ 0C, o¢ 0C, ( )

using the derivatives (D.50) and (D.51).

D.1.2 Derivatives with respect to o

In the functional matrix of (5.118) some derivatives with respect to « are required, see Eqns. (D.19)-
(D.21). Here we start with the derivatives of the functions hy, hy and F' defined in Eqns.(D.6),
(D.7) and (D.11):

8h1 th 12 _1 8FJ2 8FJ2

— i _ 9 9 D.
oo 2 [( oo 3tr (CCP ) oo Cp + oo (D-59)
Ohy Cp cp 0D aX
T _Dp 207 ox D.60
O a? * a oo (X+a8a) ( )
oF e/ (k) 4 092/ (k)N 0g1 092 g1 0k g2 Ok
a—a—“n< > )a—a o0 T 00 T 00 e POV

In Eq. (D.59) additional derivatives with respect to a occur reading

oF ow 0 0
Ta  ga (O gu) T g D62
OF ow 01, 092

30?2 - a—ozl (910, = g202) + w1 8@2 Wy 6(12 (D-63)
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with the further derivatives

Ow,_wws [y (Do Do) | Ok ] 0w
oa — ck? {k (3(1 8@) + 0 (92 91)} =~ (D.64)
ogr, (1 =39yhtali=30"—ali-39"} (2 +ai-39°) " (D.65)
do- Iy + a1, — 36)° :
892,11 Azly 8142
o0 M B (D.66)
0911, 1 _3/2
S = (et a (i =39°) " (L —3¢)° .
(D.68)

exploiting the properties 0gs5,/0a = 0 and 0A3/0a = 0. Eqns. (D.64) and (D.66), however,
require

agl 1 o\ —1/2 2 ok
8—a = 5 (JQ + o (Il - 35) ) (Il - 35) - 8_a (D.69)
8g2 ok 8A2 Ash
hal D.7
da — da o [oJe! D.70)
A — 1
04 _ L~ 3) - (D.71)
da (1 _ \/1 _ 7’2) (1+7)(3¢-1p) 2\/a
Ok _ (o —3¢) (D.72)
Oa 2/«
(D.73)
and, finally, Eq. (D.60) contains the derivatives
aD th aFJQ
— = (I — +2 D.74
90 = (L = 3¢) + 25—, (D.74)
ox 1/2 OFy, OF},
5o = (3F% + 2J2F§2) / (3&1 S 2L F, ) (D.75)
D.2 Derivatives with respect to C
The derivatives in the right-hand side of Eq. (5.122) read
8Lp oh, 0L, Ohy  OLp _,OF
— = (=, —= =Tyl —. D.7
oc ~ ‘act ac ~ ‘act ac ~ P ac (B-76)
These contain the following derivatives with respect to the right Cauchy-Green tensor C:
ahl 8F1 1 _ aF1J
— = 2 D O 1 »2
50 {{Cp@) 50 } 3,utr(CCp ) {Cp@) 39C
1 _ Fy,
—g wFy, [Co@ Cll +p 5 c + MFJQ (D.77)
8h2 811 Fh an 8F12 8)(
F + (L — 2F +2 : ab D.7
ac ~ ( npe T =30 56 + 2 gE + 250 voc (D78
F
OF _ 0,99 4,22 (D.79)

ac ~ "ac T "2ac
(D.80)



D.2 Derivatives with respect to C 141

Here, use has been made of
0 (tr CCp_ 1)
oC

and the property (R - S)T = [T ® R]S, where R, S and T are second order tensors and the dot
symbolizes the inner product of two second order tensors. In Eq. (D.77) the derivatives

=C,! (D.81)

aEll 611}1 agl,h 892,11
5C — g0 Win ~ gan) T wi— S wa—paE (D.82)
aEJQ Jw; 9915, 0923,
5C = 50 i~ 920) T w15 A Fwa o (D.83)
with
owy 1 [(0g1 0Ogo
a—c_w”‘“[ (a—c—a—c)] (D8
011, g1, O 0911, 032
L= T =2 D.
oC o, 0C 0], oC’ (D.83)
891 s 891 s 811 891 T 8]2
= = —=— == D.86
oC o1, oC o1, OC (D-86)
and

a92 I 392 I oL a92 I 0Js 392 I oL
Y — 9 I Y " — 9 I D. 7
oC ~ o, C a1, aC ~ oL aC’ (D87
——

=0

a92 o 392 o oL a92 o AP a92 o 0J5
y — ki R y _ - — y _ e D.
oC ~ oL, aC " o1, oC ~ o1, oC (D-88)
——

=0

are required implying the additional derivatives

agl 811 8J2
D.
ac ~Ithpe Tpe (D-89)
0 ol 0J
3%2 Gon 56 T 02050 (D.90)
with
ol 3
a_é = uC," + 5Ac—l, (D.91)
2P 2 -1 -1 1 1\ (-1

Finally, Eq. (D.78) needs

8)( 1 8F11 8F12 2 aJ2
S a—Ta + 4L, F +2F D.93
aC 2y ( U ac e T ac) D93)
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Appendix F

List of symbols

In this Section almost all symbols appearing in the thesis are collected. Only some symbols
which appaer only once or in a very small part of the thesis or in the citation of the work of
others have been excluded from this collection. The enumeration of the symbols starts with
scalar quantities then vector valued quantities after that tensor valued quantities and then matrices
and column matrices after that miscellaneous quantities and mathematical operators. In each
subsection the symbols are listed in alphabetical order starting with greek letters, then latin letters

and finally caligraphic letters.

F.1 Scalar quantities

, Qo

2 XL

€ry€a

=
<

> > > > > >R DI O

[e=]

M T R TIE

internal variable and its initial value

parameter of Drucker-Prager surface

damping or line search parameter

entropy production density

smoothing parameter in yield function

realtive and absolute error tolerances

parameter of line search algorithm

abbreviation in equations after time discretization
parameter for expansion of model to viscoplasticity
Haigh-Westergaard coordinate, see also 7, o

yield strength (parameter of von Mises yield function)
plastic multiplier

constitutive function in expansion to viscoplasticity
axial stretch

continuation parameter in embedded Newton algorithm
plastic stretch axial

plastic stretch radial

axial stretch where unloading starts

elasticity parameter

mean value of elasticity parameter from experiments
elasticity parameter, Poisson ratio

parameter of line search algorithm

parameter of new yield surface (centre of ellipsoid)
Haigh-Westergaard coordinate, see also 6, o
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0 Haigh-Westergaard coordinate, see also , 6

plx,t) spatial density distribution

pr(X) density distribution in reference configuration

Prel relative density

Pparticle material
pR,rel

0o

g

Ok, k= 1, 2, 3
Oy

Oy

O axial

Oradial

T

k
Tonax, T

?(5)

(Q)
v

wea ¢p
r

Ad = 2Ar

m

MMM ==0

e

g5, b, ¢
ay, a2
bp,cp
Cx

c

dV, dv

e

€u

€q

61’1’1

fIIlirU fIn’dX7 fsafety
g1, 92
h, ho

k
m(B,t)
n

Tinodes
Ndof

Ny

Tp

density of particle material

relative density in the reference configuration
parameter for expansion of model to viscoplasticity
volume distributed entropy supply to material body
principal stresses of T

uniaxial yield strength of base material in micromechanical models
uniaxial yield strength of die material

axial Cauchy stress measured in die compaction
radial Cauchy stress measured in die compaction
time parameter of unit time interval

(maximum) step size of homotopy Newton method
merit function in line search algorithm
minimization problem in line search algorithm

free energy

elastic, plastic part of free energy

entropy production within material body

radial expansion of die

invariant of stress tensor (alternative to invariant 0)
elasticity parameter

mean value of elasticity parameter from experiments
entropy flux

mean stress (micromechanical model)

deviatoric stress measure (micromechanical model)
coefficients of Runge-Kutta method

parameters in constitutive equation (7 )
parameters in evolution equation for «

parameters in constitutive equation (7 )
interpolation parameter (log-interpolation)

volume element in reference and in current configuration
internal energy density

error norm for nodal displacements

error norm for internal variables

maximum of e, and ¢4

factors in step size control algorithm

parts of reformulated yield function

height of powder in die, initial height of powder
abbreviation in new yield surface

mass of material body B

porosity n = 1 — py

number of finite elements nodes

number of degrees of freedom

number of unknown nodal displacements

number of prescribed nodal displacements
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7 number of all integration (Gauss) points

ng number of internal variables at each Gauss-point

ngQ number of all internal variables from all Gauss-points

Dy macroscopic yield strength

P hydrostatic pressure p = —£1;

De parameter of Cam-clay model (isostatic yield strength)

D, P order of Runge-Kutta method

q deviatoric stress measure ¢ = \/3J,

q1, qo parameters in modified Gurson model

q heat flux density

q(h) factor between o,qi1 and Ad as a function of the powder height h
r volume distributed heat supply

r parameters of new yield surface

Terit parameter in Newton algorithm with damping

Tup parameter for expansion of model to viscoplasticity

rD,TK strain like internal variables

5 entropy density of material body

5 stage of Runge-Kutta method

5 rate of plastic arc-length

t time

to start time

Uaxial axial displacement of punch

ubo axial displacement of punch due to powder compaction

U axial displacement of punch due to system compliance

Wy, W, Wy weights of Gauss integration

b 2? a? components of x

To intersection point (new yield function)

Aq, As, A abbreviations (parameters) of new yield surface

A, average contact area between particles (micro-mechanical models)
A B,C coefficients in ellipsoidal yield function

Biaial slope of unloading curve (0xja)

Bradial slope of unloading curve (0yagial)

Dy, D (initial) relative density of particle assemblage (micro-mechanical model)
E internal energy content of material body

E elasticity parameter, Young’s modulus

F components of F

F F yield function

Fy part of yield function defining shape in hydrostatic plane

Ey part of yield function defining shape in deviatoric plane
G(g1,92) reformulated yield function

H total entropy exchange of material body with surroundings

H position of axial expansion sensor

I, 15, I3 invariants of T

I first invariant of Mandel stress tensor

Iy parameters of new yield surface, intersection with hydrostatic axis
I intersection point of ellipse and exponential part of yield surface

J determinant of F
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Je determinant of Fe

Ja, J5 invariants of the deviator T” of T

I second invariant of deviator of Mandels stress tensor

K kinetic energy content of material body

M parameter of Cam-clay model (slope)

P, power of external forces acting on material body

Q heat flux into material body

Q; component of Q

Qi min constraint for i component of Q

S entropy content of material body

T end time of time interval

T temperature of material body

Te tension cut off parameter of multi surface cap yield function

X! X2 X3 components of X

Y yield strength cut off parameter of multi surface cap yield function

Z average number of contacts of individual particle (micro-mechanical model)
D, plastic dissipation

Dk,Dp parts of plastic dissipation

F.2 Vector valued quantities

ou

oh

ou

h

c(t)

dX, dx
dA, da
df

€, €9, €,
g1, 92, g3

G17 G27 G3

virtual displacements

virtual spatial displacement gradient

virtual nodal displacements

entropy flux vector

time dependent translation

tangent vector of material line in reference and current configuration
surface element in reference configuration, in current configuration
current force vector

basis vectors of cylindrical coordinate system

basis system of the current configuration

spatial temperature gradient

volume distributed external force (ususally gravitational forces)
surface normal

principal directions of T

Cauchy heat flux vector, heat flux vector of reference configuration
internal variables

Cauchy stress vector

Piola stress vector

displacement vector

spatial velocity field

spatial position vector of material point

basis system of the reference configuration

position of material point in reference configuration
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F.3 Second and higher order tensor quantities

general strain measure

general plastic strain measure

general stress measure

strain tensor of plastic intermediate configuration
elastic part of strain tensor I

plastic part of strain tensor r

velocity gradient based on F,

transformed strain tensor

a M
e

= F> = Q

S

transformed strain rate tensor
transformed stress tensor

transformed stress rate tensor
Finger tensor

left Cauchy Green tensor

Piola tensor

elasticity relation

Almansi strain tensor

elastic part of Almansi tensor A
plastic part of Almansi tensor A
right Cauchy Green tensor

elastic right Cauchy Green tensor
plastic right Cauchy Green tensor
strain rate tensor

symmetric part of plastic velocity gradient, plastic strain rate tensor
Green strain tensor

deformation gradient

elastic part of F' = Fer

plastic part of F = Fer

part of deformation gradient F = (FF,!)F, (multiplicative decomposition)
second order unity tensor

spatial velocity gradient

velocity gradient based on F,
Mandel stress tensor

orthogonal part of F = RU = VR
weighted Cauchy stress tensor
Cauchy stress tensor

first Piola-Kirchhoff stress tensor
second Piola-Kirchhoff stress tensor
stress tensor of intermediate configuration
right stretch tensor

elastic right stretch tensor

left stretch tensor

spin or vorticity tensor

(‘b

=

QTP MIMOrOe

a

=A=Jeo

bS]

H=m "
T o

ol nETE o=

a

=<
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List of symbols

F.4 Matrices and column matrices

5,0
'3 jkl
AU
AQ
AC
& P
Uty y)
f

g
p(t)
qerr
qv qO
a5

local integration error

coordinates of Gauss-point j,k,I

increment of vector of nodal displacements (from Newton iteration)
increment of Q in local iteration

total increment of LV C' in homotopy Newton algorithm
increment function of Runge-Kutta method

function to compute local integration error

vector valued function (explicit ODE)

algebraic equation system

prescribed external forces

vector of local integration error in internal variables
(initial) vector of internal variables

internal variables of Gauss-point j, k, [ in the element e
right hand side of differential part of equations system
right-hand side of differential part of DAE-system
vector of local integration error in nodal displacements
(initial) vector of nodal displacements

finite elments approximation of displacements
displacement vector of node j

vector of all nodal displacements

vector of nodal displacements of element e

vector of unknowns

vector of initial values

vector of unknowns at time ¢,

vector of unknowns at time ¢,,

vector of local integration error

coefficient matrix of differential part of DAE-system
strain displacement matrix of element e

nonlinear part of strain displacement matrix in element e
vector representation of right Cauchy Green tensor
vector representation of right Cauchy-Green tensor
vector valued function (implicit ODE)

matrix representation of push-forward operator

global nonlinear system of equations

part of nonlinear system resulting from algebraic part of DAE-system
in stage n: of Runge-Kutta method

jacobian of local nonlinear system

Jacobian of coordinate transformation to reference element
local nonlinear system of equations

part of nonlinear system resulting from differential part of DAE-system
in stage n: of Runge-Kutta method

local system of non-linear equations

non-linear system at Gauss-point jk/ in element e in stage ¢
of n' time step of DIRK-method
matrix in tangent from geometrical non-linearity



F.5 Miscellaneous

151

Qe(jkl)

nt

sni

ni

Uni
Ue(jk:l)

Ym'

yAN 4
e(jkl)
zZ’

? a

matrix of ansatz functions

matrix of ansatz functions for free nodal displacements

matrix of ansatz functions for prescribed nodal displacements
matrix of ansatz functions of element e

vector of internal variables

Unknown internal variables in stage ni of Runge-Kutta method
local vector of internal variables

internal variables at Gauss-point jk/ in element e

in stage i of n'" time step of DIRK-method

resulting nonlinear system in each stage n: of the Runge-Kutta method
start values of stage ni of Runge-Kutta method

Internal variables part of S,;

vector of nodal displacements

Unknown nodal displacements in stage n: of Runge-Kutta method
displacements at Gauss-point j&/ in element e in

stage i of n'" time step of DIRK-method

stage values of Runge-Kutta method

stage derivatives of Runge-Kutta method

coincidence marices

coincidence matrix for internal variables

F.5 Miscellaneous

Qref

0°. dOe

p(ma t)),pR(X)t)
B) Bto Bt

P

K
R

mapping from reference configuration to reference element
production density of physical quantity

configuration, current configuration

mapping from reference element to reference configuration
energy functional (principle of virtual displacements)

surface of finite elements approximation of material body

flux of physical quantity in current and reference configuration
motion of material body

physical quantity in current and reference configuration
volume of finite elements approximation of material body
domain of reference element

domain of element e and infinitesimal volume element of element e
production density of physical quantity

material body, in initial configuration, in current configuration
material point

set of configurations

reference configuration
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List of symbols

F.6 Mathematical operators

fA’ a
In
®
A-B

lexpr. |

partial derivative of x with respect to y

total derivative of x with respect to y

derivative of f with respect to x

gradient (with respect to material coordinates)
gradient (with respect to spatial coordinates)
divergence (with respect to material coordinates)
divergence (with respect to spatial coordinates)
material time derivative of A or expression expr.

lower convected Oldroyd rate of A

upper convected Oldroyd rate of A

determinant of A

transposition of A

inversion of A

deviator of A

trace of A

integral over volume of material body in reference (current) configuration
integral over surface of material body in reference (current) configuration
natural logarithm

dyadic product

inner product of two second order tensors

norm of expr.
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