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Abstract. We have studied the transport properties of disordered one-dimensional two-band 
systems. The model includes a narrow d band hybridised with an s band. The Landauer 
formula was used in the case of a very narrow d band or in the case of short chains. The 
results were compared with the localisation length of the wavefunctions calculated by the 
transfer matrix method, which allows the use of very long chains, and an excellent agreement 
was obtained. 

1. Introduction 

We are interested in the study of the transport properties of disordered transition metal 
systems. It is with this aim that we make a first approximation to them by proposing a 
very simple disordered s - d  model, with a narrow d band embedded in an s band and 
hybridised as in transition metals. The model is a tight-binding one-dimensional one, 

The first theoretical works on these materials assumed that d electrons did not 
contribute to the conductivity of these systems because they were too localised (Ziman 
1961, Mott 1972). However, ten Bosch and Benemann (1975) took them into account 
in the study of three-dimensional liquid metals and concluded that their contribution is 
important. This is because the scattering due to disorder mostly affects the conductivity 
of s electrons and makes it of the same order as that of the more localised and less 
affected d electrons. They used linear response theory and considered the s electrons 
free. Aoki (1981) performed calculations of localisation for small two-dimensional tight- 
binding systems and also concluded that d electrons and hybridisation are important. 

In our case we use the Landauer formula for the resistance (Landauer 1970) of some 
simplified models and the transfer matrix method (MacKinnon and Kramer 1983) to 
calculate the localisation of the wavefunctions. Both results agree very well qualitatively 
and show the importance of the d contribution to the transport properties and the relative 
effects of disorder and hybridisation. 

The effect of hybridisation is to produce an effective d band with an increasing 
maximum in the resistance with increasing hybridisation. 
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2. Model 

We have used for this calculation a disordered one-dimensional first-neighbour tight- 
binding Hamiltonian, with two orbitals per site. Both orbitals were assumed to be of s 
type, as a first approximation, and hybridisation was considered only between orbitals 
on the same site. To remind us of transition metals we have named Ins) the orbitals with 
a wider band and Ind) the ones with a smaller bandwidth. Therefore, 

H = ( E T ,  lns)(nsl + E!  Ind)(ndl + tslns)(n + 1, S I  + tSln + 1, s)(ns( 
n 

+ tdlnd)(n + 1, d /  + tdln + 1, d)(ndl + h(ns)(ndl + hlnd)(nsl) (1) 
where the E, indicate the self-energies corresponding to the nth atom, t the corresponding 
integrals between first neighbours and h the hybridisation. Disorder was introduced 
mainly in the diagonal elements E,, and with a uniform distribution of width W. 

To study the resistance of a finite system of Nsites we have embedded it in an ordered 
chain of only one orbital per site. Therefore the following conditions had to be fulfilled: 
E: = E ,  E: = 0, td = Oand h = Oforn < 1 andn > N .  

In what follows we take E = 0 and tS = 1 as our energy scale. Figure 1 shows these 
interactions for N = 4 schematically. 
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Figure 1. Schematic representation of an N = 4 disordered two-band model embedded in a 
perfect linear chain. ---, h;  - t s ;  = td;  0 E"; 8 E * .  

If the wavefunctions are written as: 

+ = (a, Ins) + b,lnd)) 
n 

the tight-binding Hamiltonian leads to the recurrence relations 

.+a, + t s ( a n + l  + a,-l) + hb, = Ea, 

E:b, + td(b,+l + b,-.l) + ha, = Eb, 

which are equivalent, in matrix notation, to 

0 0  

0 ( E -  &d,)/td -1 I [ b 

(3) 

(4) 
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The Landauer formula (Landauer 1970) for the dimensionless resistance is p = R/T 
where R and Ta re  the total reflection and transmission coefficients of the disordered 
region. p is related to PN,  the 2 x 2 transfer matrix leading 

a N + 2  

a N + l  
from vector (1:) to vector ( ) . 

Its calculation involves the product of ( N  - 2) 4 x 4 matrices such as that of equation 
(4) and taking care of the boundary conditions. Once PN is known, the dimensionless 
resistance is easily obtained with the expression given by Stone et a1 (1981): 

[(Pfyl)2 + (P!)2 + ( P $ ) 2  + (P2”)2 + E ( P y  - P2”)(PW - PW) 1 
= (4 - E 2 )  

In fact, the dimensionless resistance of the system we study is always different from zero 
for all values of E ,  even in the absence of disorder. The reason for this is that the d 
orbitals exist only in one region of the whole chain. Anyway, the residual resistivity is 
very small for all values of E and can be therefore disregarded. 

3. Calculation of the resistance with the Landauer formula 

Numerical calculations of the matrix PN for chains of different lengths, hybridisations 
and degrees of disorder were attempted. For each set of parameters an ensemble 
average had to be performed among different realisations of the disordered chain. The 
appropriate quantity to be averaged for each energy E is ln(1 + p) (Abrahams et a1 
1979). 

However, for energies that are not well inside the d band the product of 4 x 4matrices 
blows up. This problem is not new for it also appeared in the calculation of the resistance 
for finite two-dimensional disordered systems (Anderek 1984). 

Because of the difficulty mentioned above we studied some possible simpler cases: 

3.1. Very narrow d band, t d  = 0 

In this case equations (4) give b, = ha,/(E - E ! )  and therefore 

[ E  - E ;  - h 2 / ( E  - E ! ) ]  a, = u,,~ + a,,-l. ( 6 )  

This equation corresponds to a single chain with only one orbital per site but having an 
energy dependent diagonal element, 

Numerical calculations for this case are shown in figure 2, averaged over 70 chains for 
N = 200, Wd = 0.4 and W s  = 0. Due to the fact that the s band is ordered, if the 
hybridisation is small the resistance is appreciable only for energies inside the d range 
of disorder. When the hybridisation is increased its effect is equivalent to a larger 
disorder, according to equation ( 7 ) ,  and a finite resistance is seen for E > 0.2. For 
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Figure 2. (In(1 + p ) )  calculated by means of the Landauer formula for the cases f, = 1 ,  td = 
0 ,  W,  = 0 ,  W ,  = 0.4 and ( a )  h = 0.1; ( b ) ,  h = 0.5; (c), h = 1. In each of the examples the 
average was made over 70 samples of 200 atoms. 

example, figure 2 shows h = 0.1,0.5 and 1.0. The effect of the hybridisation is that the 
d states participate in the resistance for a wider range of energies than that given by E ~ .  

The effect of introducing disorder in the s band also is seen mostly at the largest 
energies, where the resistance increases due to the localisation of states at the band 
limits. We have also introduced off-diagonal disorder in some cases but it produced no 
qualitative differences. 

Chains of different lengths follow the well known scaling law (Abrahams et a1 1979) 
(ln(1 + p ) )  cc N for E = 0 and values of N > 50. 
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3.2. Direct diagonalisation of short chains N - 50 

The embedded group of N sites was diagonalised separately and a new basis set for the 
complete Hamiltonian was defined using the eigen-functions obtained, I U) 

14 = Ins) v < 1  

Iv> = (a; Ins) + p; lnd)) 1 6 v S 2 N  (8) 
A: 

n = l  

iv) = /II + N ,  S )  v > 2N. 

In this basis the complete Hamiltonian has a diagonal part of 2N x 2N and the only new 
elements are those of the surrounding part, the interaction or boundary terms: 

(9) 
(01 H Iv) = ay 

(2N + 11 H iv) = ah 1 6 v 6 2N. 

This example corresponds to a simple chain with one impurity having 2N levels, 
Some simple algebra leads to the expression for the transfer matrix PN relating 

PN = 

where 

1 

2N 

G,, = ai”aY/(E - E , )  for E # E ,  
U =  1 

This expression was evaluated giving E a small imaginary part and averaged over 
different samples. There is a considerable noise in the results for small hybridisation in 
the region of energies where the d electrons are important. Figure 3 shows the results 
obtained for 40 chains with N = 50, Wd = 0.2, W’ = 0.8, t d  = 0.25 and h = 0.5 and 0.9. 
The interesting difference with the previous case, td  = 0, is that the maximum of the 
curve is not at E = 0 but possibly at the edge of the effective d band. We define the 
effective d band as the energy region comprised between the inner two peaks of the 
density of states of the ordered system. These two peaks are present for h < 2 (tdts)1’2, 
For larger values of the hybridisation the density of states has two bands separated by a 
gap and we can speak no more of an effective d band. 

4. Localisation of the wavefunctions 

A magnitude directly related to the transport properties of the system, for large N ,  is 
the localisation length of the wavefunctions. The case of two orbitals per site is, for these 
calculations, similar to that of two coupled chains. Pichard (1984) has generalised the 
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Figure 3. (In(1 + p ) )  calculated by means of the Landauer formula for fs = 1, t d  = 0.25, W,  = 
0.8, Wd = 0.2 and ( a )  h = 0.5; ( b )  h = 0.9. 

Landauer formula for a system of acoupled chains and found for large disorder that the 
conductance is given by 

where g,(N) are the localisation lengths in each channel (Pichard 1984). If all g,e N ,  
they are the inverses of the apositive Lyapunov exponents of the system, y,(N). 

The smallest Lyapunov coefficient will dominate the summation for large N so that 

G(N) - 2 exp[ - 2 w ,  091. (12) 
In the limit, the following relation is exact: 

The calculation of y1 involves the product of transfer matrices Ti of the type of equation 
(4), which presents numerical difficulties. However, Osledec's theorem proves that the 
limit matrix 

where M N  = niTi,  exists and its eigenvalues Ai and eigenvectors should be well deter- 
mined (Osledec 1968). The Lyapunov coefficients are yi = log Ai. 

To overcome the divergencies in the matrix product Kramer and MacKinnon sug- 
gested a renormalisation procedure from which one can extract the growth rate of the 
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eigenvectors (MacKinnon et a1 1983). It consists in orthogonalising each column of the 
product, Bi, to the previous ones: 

B ; @ )  = B Y )  - (B!c") . Bp))B!(n)/bp) 
I I 

j C i  

at every step of the calculation ( n )  or whenever one element of the matrix product at 
that step is larger than a certain prefixed constant. In that case the first column converges 
to the eigenvector corresponding to the largest eigenvalue, the second to the second 
largest and so on. For large N ,  we have 

y r  = c r / N  c y  = In b r  + cr- l  CO = 0. (16) 
This calculation could be done for chains as large as 60000 sites, and gives the limiting 
value of y l ( E )  with significant accuracy. The results are shown in figure 4 together with 
the corresponding density of states histogram obtained with the negative eigenvalue 
counting method (Dean 1972). 

The effect of increasing hybridisation is that the peak in y l ( E )  increases and moves 
towards the centre of the band. Comparison with figure 3 shows very similar results for 
large hybridisation and is more difficult for smaller hybridisation due to the large 
fluctuations. The numerical value of 1/N (log (1 + p ) )  should be compared with the 
calculated 2y,. Figure 4 also shows that the peak in y l ( E )  is at the position of the limit 
of the effective d band, by comparing it with the density of states. To confirm this result, 
the participation ratio of s orbitals in the eigenvectors was calculated for one matrix of 
N = 100. In that case the parameters were W s  = 0.8, Wd = 0.2, h = 0.9 and the direct 
diagonalisation of the 200 X 200 matrix gave the results shown in figure 5 .  The wavefunc- 
tion plotted was one of the more localised for that particular example and corresponds 
to the eigenvalue E = 0.03244. The contribution of d orbitals was certainly much larger 
than that of s orbitals. If E > 0.1 the s contribution increased abruptly but for E < 0.1 it 
remained almost constant. 

5. Conclusions 

We have studied the transport properties and the localisation of the wavefunctions of a 
disordered two-band one-dimensional system. The results can be summarised as follows. 

(i) In the narrow d band limit ( t d  -e Wd) the conduction is due only to the s electrons. 
However, the resistance is very sensitive to the Fermi level, EF. It shows a maximum for 
EF = 0, i.e. the centre of gravity of the distribution of d levels. For EF > Wd the transport 
properties are dominated by the disorder in the s orbitals. 

(ii) For td  > Wd the resistance shows a relative minimum for EF = 0, and a pro- 
nounced maximum near the edge of the effective d band. 

(iii) Our calculation shows that the coefficient y l (E)  describescorrectly the resistance 
as a function of EF (position of the Fermi level). An excellent agreement has been 
obtained for y l (E)  and (ln(1 + p(E) )  calculated by direct diagonalisation of the chain. 

(iv) The relative maximum in y,(E)  (or the resistance) coincides with a maximum in 
the density of states and moves towards the origin as the hybridisation h increases. 

(v) The analysis of the wavefunctions shows that the participation ratio of the d 
orbitals is much larger than that of the s ones for EF near the centre of the band. For 
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Figure 5 .  Squares of the coefficients of the tight-binding wavefunction for one sample of the 
case I ,  = 1, td = 0.25, W,  = 0.8, W,, = 0.2 and h = 0.9 plotted against the site in the chain. 
The coefficients plotted correspond to the eigen-energy E = 0.03244 and were obtained by 
direct diagonalisation of a 200 X 200 matrix. The heavy line corresponds to the s orbitals and 
the light one to the d orbitals. 

energies, EF, near the maximum of the density of states the d participation ratio decreases 
abruptly. These allows us to conclude that: 

(vi) When the Fermi level is inside the effective d band, conduction is small and due 
mostly to the d electrons. When the Fermi level is outside the d band the conduction 
increases and is due mostly to the s electrons. 

(vii) In all the cases studied here the centre of gravity of both bands were taken equal 
to zero. We expect the same effects if the d band is shifted. 

(viii) Our results agree qualitatively with those obtained by ten Bosch and Benemann 
for three-dimensional systems (ten Bosch and Benemann 1975). They also obtained a 
relative minimum and a maximum in the resistivity when EF is at the centre and the edge 
of the d band respectively. In our case the maximum is more pronounced probably due 
to the one-dimensionality of the system. 
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