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Relativistic Dirac-Fock-Slater program to calculate potential-energy curves
for diatomic moleeules
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A LeAO-MO (linear combination of atomic orbitals-molecular orbitals) relativistic Dirac-Fock­
Slater program is presented, which allows one to calculate aceurate total energies for diatomic mole­
cules. Numerical atomic Dirac-Fock-Slater wave functions are used as basis functions. All integra­
tions as weIl as the solution of the Poisson equation are done fully numerical, with a relative accura­
cy of 10-5-10-6

• The details of the method as weIl as first results are presented here.

I. INTRODUC'fION

The fast development of computers during the last 30
years made it possible to calculate more and more com­
plex atomic and molecular systems with increasingly
better methods and accuracy. All types of atomic
Hartree-Fock,I,2 and random-phase approximation (RPA)
programs'' have been developed as nonrelativistic codes,
whereas analogue Oirac-Fock4

-
6 (OF) and relativistic

random-phase approximation (RRPA) programs7 are in
use as relativistic codes. All these atomic codes [with the
exception of that by Kim, Ref. 5(c)] use the direct integra­
tion of the Schrödinger or Dirac equation with finite
difference methods.

The current available quantum-chemical codes for mol­
ecules use basis-set expansion methods with (in principle)
Slater- or Gauss-type basis functions. A large variety of
such quantum-chemical codes are established and lead to
very accurate results, but all these codes for moleeules
have in common that they are nonrelativistic. A nearly
complete list of references, which covers the whole field
of quantum-chemical calculations, is given in the book by
Schaefer." This book also includes the principal refer­
ences for pseudopotential calculations," as weIl as the be­
ginning of seminumerical, two-dimensional calculations
by McCuIlough10 and their extension to diatomic mul­
ticonfiguration self-consistent-field (MCSCF) wave func­
tions.!' More recent extensions to fully numerical two­
dimensional Hartree-Fock-Slater (HFS) calculations are
given by Becke'f as weIl as Laaksonen et al. 13

Several groups persevere in trying to establish analogue
relativistic quantum-chemical calculations. Reference 14
summarizes this whole field up to 1982. The paper by
Kutzelnigg f reviews the problems which arise in the rela­
tivistic formulation. Actual relativistic OF calculations
are presented in Ref. 16. First attempts to solve the rela­
tivistic two-dimensional problem numerically are given in
Ref. 17 and 18. Up until now, it has been practically im­
possible to calculate small moleeules containing very
heavy atoms on a Dirac-Fock level, with the exception of
heavy hydrides such as PbH4, which were caleulated with
a one-center expansion method.i" For this reason approx­
imative methods such as the relativistic pseudopotential

approaches.i" a perturbation treatment of relativistic ef­
fects on top of HFS calculations," relativistic scattered­
wave calculations.V or relativistic Dirac-Fock-Slater
(DFS) caleulations, are essential to provide useful infor­
mation in a region of elements where more accurate ealcu­
lations are not feasible.

We present here a relativistie DFS program for diatom­
ie molecules, which uses numerical atomie DFS wave
functions as basis functions. The development of this
program originates from the work of Rosen and EIlis23

who first developed a relativistie self-consistent-eharge
(SCC) code, which itself followed the ideas of the nonrela­
tivistie SCC method with numerieal basis functions.i"
The drawback with these calculations was the inherent
noise existing in the discrete variational method.P which
was used to calculate the matrix elements. Beeause of the
relative accuracy of these calculations in the order of per­
cent, it was possible to diseuss only level schemes for mol­
ecules at ehemieal distances." and one-electron eorrela­
tion diagrams in heavy-ion scattering for distances down
to the united atom limit.27

The new approach is threefold: First, we solve the
two-dimensional Poisson equation numerically with a rel­
ative accuracy of 10-5-10-6

• (An alternative approach
would be a multicenter expansion as used by Delley and
Ellis28 in nonrelativistic caleulations.) Second, the numer­
ically caleulated matrix elements are improved in accura­
cy by 3 to 4 orders of magnitude. Third, the next im­
provement is the possibility of including atomic wave
funetions as basis functions, whieh are generated in the
monopole part of the molecular potential. This last im­
provement is essential for the calculation of quasi­
moleeules at small internuclear distances. In addition,
various further basis sets at various sites can be intro­
dueed.

This program is thus accurate enough to obtain physi­
eally useful, self-consistent-field (SCF) results for the
potential-energy eurve, energy eigenvalues, and wave
functions for diatomic moleeules and quasimolecules at
internuclear distances between zero and chemieal dis­
tances.

This paper is organized as folIows. In Sec. 11 the rela­
tivistic OFS method is discussed, and in Sec. 111 the nu-
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(2)

(3)

ADFS
h tPv(r,s)= EvtPv(r,s) (5)

with hDFS the effective one-particle DFS operator

'iiDFS=t+ Vnuc+Vc+Vex , (6)

where the kinetic operator t, and the electron-nucleus
operator VDUC have the same form as above [Eqs. (2) and
(3)].

The direct potential part is given by

(7)

(8)

(9)

with the electron density

p(r)=e2 ~ tP;(r,s)tPv(r,s).
vEocc

VA C( )= fd' p(r')
r r I ' I 'r-r

and the exchange potential part by

[ ]

1/ 3

yex(r)= -3Xa 8~p(r)

The solution _of the N-coupled differential equations (5)
has to be found by SCF iteration. To actually solve these
equations for the two-dimensional case several methods
are possible. The first is the direct numerical integration
of the differential equation. This method is not available
in updated form except for very first trials l7, 18 for the sys­
tem H2+.

The second method is to use a multipole expansion of
the wave functions in -the angular variables; this leads to
an even larger set of coupled equations, that are however,
one dimensional. This method was used first in the rela­
tivistic case for a pure two-center point-Coulomb poten­
tial by Betz.'!

The third method is the expansion of the molecular
wave functions into basis functions, usually called MO­
LCAO (molecular orbitals-linear combination of atomic
orbitals). The wave functions 1/Jv are expanded in symme­
try orbitals XÄ

tPv(r)= ~cvÄXÄ , (10)
Ä

and the symmetry orbitals are expanded into atomic basis
functions CfJk

The general method of a relativistic DFS calculation in
moleeules has been described in various papers.23,24,28,29

Therefore, we only wish to summarize the method briefly.
The relativistic many-electron configuration-space Dirac­
Hamiltonian of a molecular system is usually written as

A N A N A
Hcs = ~hj+ ~ v«. (1)

j=1 i,j=1
i>j

where hi is the single-particle Hamiltonian
A 2 A

hj=cajpj+ßjmc +VjUC

with the Dirac matrices

ßj= [~ ~IjI
where o and I are the three standard 2X2 Pauli matrices,
and the 2 X 2 unit matrix, respectively. The operator VjUC
represents the electron-nucleus interaction energy

A ZK
VI?-Uc=_e2~--.--

J K Irj-RK I

and Vij is the electron-electron Coulomb interaction ener­
gy

11. THE RELATIVISTIC DFS METHOD

and

merical Gauss-Laguerre integration method as well as the
two-dimensional solution of the Poisson equation are dis­
cussed. In Sees. IV and V the choice of our basis func­
tions, respectively, the preorthogonalization is presented.
Section VI contains the first results of the DFS calcula­
tions for the case of N2 as a chemically bound system, and
Ne-Ne as a case where elastic scattering data are available
for comparison. The advantages and disadvantages of the
method as well as future developments will be presented
in Sec. VIII.

(11)(4)

N is the number of the electrons. Not included in the
Hamiltonian (1) is, of course, the Breit interaction, be­
cause uncertainties of the Slater approximation are al­
ready larger than the effect of the Breit term would be
and it would also complicate the whole calculation much
more. Not included as well are projection operators first
proposed by Brown and Ravenhall.l" Although it is not
yet understood in detail, we think that spurious positron
contributions should be small in our calculations.

The DFS method uses two approximations: At first the
wave function is taken to be a single Slater determinant,
and then the electron-exchange term is approximated by
the X a method (in all our calculations we use X a =0.7).

The DFS equation then reads

XÄ= ~dÄkCfJk .
k

If we insert this in Eq. (5), the DFS equations reduce to
the matrix eigenvalue problem

hc T =ESC T (12)

with the Fock matrix

11 =(h ÄJL) with h ÄJL = (XÄ Ih IXJL) ,

the overlap matrix

5.~(SÄJL) with SÄJL=(XÄ IXJL) ,

the coefficient matrix

s. with cVÄ=(cT)Äv,

and the eigenvalue matrix
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(14)
rl-r2

cosO=-R--' 0SO<1T

with R the internuclear distance and r, the distance from
the nuclei. The new "radial" coordinate coshn is then
focused by the transformation

(16)

(18)

a2 a a2 a
- +coth77- + - +cotO-

fj = _ a'TJ2 a'TJ ao2 ao (17)

41Ta 2(sinh2TJ +sin20 )

and a =R /2. To avoid the singularities for TJ~O and
O~O, we use the variables coshn and cos(J. For the
discretization of (20) we transformed the variables [analo­
gue to Eq. (15)] to

coshTJ= -Exe-Fx + 1 ,

cosO=G [ ~ - 1+:Y1H I·

[Eq. (7)] is calculated from the electron density P by nu­
merical solution of Poisson's equation in elliptic-
hyperbolic coordinates

The choice of the basis functions used in the calcula­
tions is not straightforward. The first approximation to
this problem is the choice of the minimal basis set, con­
sisting of fully or partially occupied atomic levels of the
separated atoms. '

A number of optimized Slater and Gauss-orbitals,
respectively, which are dependent on the system and the
type of binding of the system, are usually added in the
nonrelativistic quantum-chemical calculations. Optim­
ized sets of basis functions are not yet available in the rel­
ativistic case. To learn more about the choice of basis
functions we selected the simplest system H2+. Table I
shows the convergence of the ground-state eigenvalues at
the internuclear distance R = 1.0 a.u. as function of the
number of additional basis functions given on the left. In
the last "row" we added a basis function called "mono-

IV. CHOICE OF THE BASIS FUNCTIONS

The parameters E,F,G,H are adjusted in such a way that
the density pir) and the potential VC(r) are smoothly
varying functions over the whole range of the (x,y) plane.
In this grid we solve the discreticized Poisson equation us­
ing a third-order finite difference method of
Schwarztrauber and Sweet,32 which reduces the problem
to solving a band-structured matrix equation.

A large improvement in accuracy is obtained by apply­
ing this method iteratively: The numerical solution of
Poisson's equation for a given p leads to the potential
VC=D -lp. Using a higher-order differentiation D'", we
calculate back p'=D mVC, which differs slightly from p
due to the more accurate numerical treatment. The
difference density Bp=p-p' gives a correction to the po­
tential by numerical solution of the new Poisson equation
BVc=D -IBp. With the new potential V;= VC+BVc,

this procedure can be repeated until BVC becomes insigni­
ficant. Empirically, with a sixth-order differentiation, the
convergence point is reached already after two corrective
iterations, and the resulting potential has an overall rela­
tive accuracy better than 10-5-10-6 for an (x,y) grid of
100X 100 points for a diatomic system.

(13)

(15)

~=(EVA) and EVA=BvAEv .

The charge density can then be written

p(r)=e2~XtXJL~citqiciJL=e2~PAJLqAJL '
A,JL i<F A,JL

III. NUMERICAL INTEGRATION AND SOLUTION
OF THE POISSON EQUATION

The overlap- and Fock-matrix elements <Xi 10 IXj ) in
Eq. (12) with o=I,h are calculated numerically in real­
space coordinates. As the integrands of the two-center
problem are cylindrically symmetric, it is possible to
separate the angular integration around the internuclear
axis. The remaining two-dimensional integration is done
in elliptic- hyperbolic coordinates

rl +r2
coshn =---, 0 5 1] < 00

R

with PAJL(r) the local-density matrix and qAJL the charge
matrix. Again we can distinguish between two possibili­
ties. The first possibility is the expansion of the atomic
orbitals into some kind of Slater- or Gauss-type function,
which is used with great success in nearly all nonrelativis­
tic as weIl as relativistic molecular calculations. The ad­
vantage of this method is that all matrix elements used in
the calculation can be calculated analytically with very
high accuracy, so that the nonorthogonality of the basis
does not cause any problems. The disadvantage is that
the basis functions are relatively ill-adapted to the physi­
cal problem, so that a large number has to be used. The
second possibility, which we are using here, is the choice
of numerical atomic DFS wave functions as the basis.
The disadvantage of this choice is that all matrix elements
have to be calculated numerically, but the advantage is
that the relatively small basis set is sufficient, and the
contributions of the negative continuum will probably be
small. In addition, the kinetic energy matrix elements can
be calculated in this special numerical basis by a simple
integration (thus avoiding numerical differentiationl.v'v''

to achieve that .for a given Gauss-Laguerre integration
grid for w the inner TJ values lie densely enough to in­
tegrate the inner-shell contributions, and the outermost
points are put into the region where the outer-shell wave
functions decrease exponentially. The "radial" Gauss­
Laguerre integration scheme over w uses about 35 points,
which is optimal for the integration of exponentially de­
creasing functions from zero to infinity. The "angular"
integration over cosO is done with a Gauss-Legendre
method with about 40 points. Within this grid we get the
overlap- and Fock-matrix elements with a relative error of
10-5 to 10-6•

The direct part VC of the electron-electron potential
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TABLE I. Energy eigenvalues in a.u. of the H2+ ground state at R = 1 a.u. as function of various
sets of basis functions. The superscript mon means that these wave functions have been calculated in an
atomic DFS calculation with the monopole part of the molecule as nuclear potential.

Basis states

2-center basis
2(Hts)

2(Hts,2s,2p)

3-center basis
2(H ts,2s,2p )+He~on

2(H Is -3d)+He~~fp,3d

4-center basis
2(H ls +Hets)
2(H ls + He2s )

2(H ls +Hets,2s )

6-center basis
2(H ls +Hels,2s,2p+Li2s,2p,3p )

l l-center basis
2(H ls + Hels,2s,2p + Li2s,2p,3p

+Be3p + B3d )+ He~~fp,3s,3p

33

Exact value from the analytic
nonrelativistic solution

pole function," as it is the solution of the DFS problem of
an atom with the monopole part of the potential of the
two nuclei. This last row also shows that the exact energy
eigenvalue can be reproduced already within less than
0.5.%. Table 11 gives the energy eigenvalues and total en­
ergies of the same system H2+, with the basis from the
last row of Table I as function of the internuclear dis­
tance. Table 11 shows an agreement always within the or­
der of 10-4

, although we certainly did not fully optimize
the basis set. The choice of the basis functions for the
calculations presented in Sec. VII was done in an analogue

1.45179

way. Of course, there is still a lot of work to be put into
this question in the near future.

V. PREORTHONORMALIZATION

As one sees from the basis sets used here, the basis
functions are not orthogonal. It is weIl known that such
nonorthogonal basis sets usually produce a large error
enhancement. As our numerical accuracy is only in the
order of 10-6

, we have to preothonormalize the basis be­
fore solving the eigenvalue problem. Orthonormalization

TABLE 11. Energy eigenvalues and total energies of the H 2+ ground state for the 11 center basis for
various intemuclear distances.

-Elug - Elug (a.u.) -ET (eV)
R (a.u.) exact a(o/oo ) -ET (eV) exact

1.0 1.45113 1.45179 <0.46 12.276 12.294
1.5 1.24863 1.24899 <0.29 15.836 15.846
2.0 1.10235 1.10263 <0.26 16.391 16.399
2.5 0.99368 0.99382 <0.15 16.155 16.159
3.0 0.91079 0.91090 <0.12 15.714 15.717
4.0 0.79588 0.79609 <0.26 14.854 14.860
6.0 0.67848 0.67864 <0.24 13.928 13.932
8.0 0.62752 0.62757 <0.1 13.675 13.676
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procedures have been reviewed by Löwdin.P In adapting
these orthonormalization proeedures to our problem, one
readily notiees that within our limited aeeuraey of
10-5-10-6 one has to generalize the definition of linear­
dependent states to numerieal (or practical) linear­
dependent states: We ea11 a set of basis states numerieally
linear dependent if the measure of linear dependenee (see,
e.g., Courant-Hilberr'") is sma11er than the numerieal ae­
euraey of the overlap matrix.

In the preorthonormalization procedures used by the
authors, we always removed a11 numeriea11y linear­
dependent basis states. This guarantees that a11 Fock­
matrix elements in the orthonormalized basis are at least
not tota11y in error. But one has to keep in mind that ma­
trix elements involving states just above the threshold of
linear dependenee may have relatively large errors (well
above our original aeeuraey of about 10-5). So we have
to make sure that only "accurate" states eontribute sub­
stantia11y to the total energy, otherwise we spoil its aeeu­
raey. This requirement is usually fulfilled, however, not
guaranteed, espeeially not for optimized atomie orbitals
(AO's) where signifieant losses of aeeuracy have been ob­
served.

As this preorthonormalization is very important, we
used a11 three prineipal methods deseribed by Löwdin33 in
his review artiele. The first method is the eanonieal
orthonormalization where all symmetry orbitals are
orthogonalized at onee by diagonalization of the overlap
matrix. As the eanonieal orthonormalization treats all
symmetry orbitals on an equal footing, it is best suited if
one has no additional information on the relative impor­
tanee and aeeuraey of these basis states for the molecular
orbitals.

On the other hand, we want to ealeulate the total ener­
gy of the system with best aeeuraey. As inner-shell orbi­
tals eontribute most to the total energy, and as these orbi­
tals are less affeeted by the finite nuelear separation, one
ean argue that these symmetry states should be kept un­
ehanged in the orthonormalization procedure.

The seeond method used is the Gram-Sehmidt ortho­
normalization, where the symmetry orbitals are orthogo­
nalized in a predefined sequenee by a step-by-step pro­
eedure. We noted the symmetry orbitals aeeording to
their expeetation values E~ with some single-partiele Ham­
iltonian h(0) (e.g., the potential eonstrueted from atomie
orbitals using Mulliken oeeupation numbers)

E~=(XÄlh(O)IXÄ). (19)

Starting with the lowest E?, the eorresponding symme­
try orbital IXl) is taken to be the first orthogonalized
symmetry orbital Iu 1 ). Then Iu2) is eonstrueted by
orthogonalizing IX2) onto IXl) via a Gram-Sehmidt
procedure, and so on. To ensure not picking up very inae­
curate states at every step, the overlap matrix
S = (XÄ IXJl) A,,u = 1, ... ,k (k being the kth step) is di­
agonalized. If an almost linear-dependent state IXÄ) has
been pieked up we will eliminate that IXÄ) and try the
next IXÄ+ 1). In this way a reasonable set of preorthogo­
nalized states is eonstrueted again.

It may, however, happen that a physiea11y important
state is rejected because other, less good, basis states have

already been picked up in the course of the repeated
Gram-Schmidt procedure. This drawback ean be
remedied by a mixed selection where some IXÄ) are kept
at hand. However, this may be unsatisfaetory from the
point of view of an automatie proeedure.

The third alternative is a bloekwise orthogonalization.
This method was chosen mainly to allow for amixed
selection, and to ensure no loss of important physieal
states, as less-adapted states may eause enhanced spurious
contributions. Theblockwise orthogonalization eauses all
symmetry orbitals to split up into Mgroups, consisting of
one or more symmetry orbitals. Each group is made
orthogonal on each other. If states have to be rejeeted
they are taken from the states of the last group. This pro­
cedure guarantees that a basis can be developed, and new
states can be added to a number of states used before,
without any ehanges to the old basis.

The reason to struggle very hard for a physical basis is
twofold. First, the loss of accuracy due to nonorthogonal­
ity must be kept small, because all Foek- and overlap­
matrix elements are basically caleulated within the AO's.
There the errors in aeeuraey enter differently in the Fock
and overlap matrix, leading to inconsistent Fock-matrix
elements in the orthogonalized basis Iu Ä ), Le., they no
longer belong to the Hamiltonian h, but to a modified
(unphysical) one. If the amount of modification is too
large, the solutions are no longer quite meaningful; there­
fore, we ca11 them spurious contributions. This could be
cured by eomputing the Fock-matrix elements in the
orthogonalized states by direet integration. However, we
do not yet know how to get the kinetic energy numerica11y
with sufficient aecuraey.

The seeond reason is-and this is just something we
have leamed by experience-that spurious contributions
of the positron continuum are not picked up significantly
in electronic states when the molecular states are suffi­
ciently close to atomie states centered around the nuclei or
the common charge center. If the orthogonalization pro­
cedure constructs completely different states, espeeia11y
for the low-Iying ones, this property is crucial, and we
pick up spurious positron contributions in the eleetronic
states.

Several authors35- 43 have experienced large influences
of the negative continuum in relativistie molecular ealeu­
lations, using basis-set expansion techniques. The various
attempts to avoid these problems have been reviewed by
Kutzelnigg.P It is not quite elear why the caleulations
presented here do not have (at least no large) spurious
eontributions from the negative eontinuum. A first at­
tempt to explain this ean be found in Ref. 44. Interesting
in this connection is also the paper by Stanton and Havri­
liak.45 The basic theoretieal papers, which deal with the
general formulation of a relativistie many-partiele Dirae­
Fock-Hamiltonian, are those of Mittleman,46,47 Sueh­
er,48-51 and Grant.52

VI. RESULTS

The DFS program under discussion here uses the loeal
Slater approximation for the exchange term, and ean,
therefore, not be used generally to predict the ehemieal
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1.5 2.0 2.5 3D
R (atomic units)

FIG. 1. Relativistic and nonrelativistic potential-energy
curves for N2 as function of the internuclear distance.

behavior of diatomic molecules such as accurate bond dis­
tances or binding energies, although part of the correla­
tion is included in Slater's exchange approximation. On
the other hand, however, this program has the big advan­
tage of taking relativity fully into aecount. Therefore, it
will be superior to accurate nonrelativistie ealeulations
when the influence of relativity becomes strong. This is
the ease either at ehemical distanee, when very heavy
atoms are involved, or already for small-Z systems, when
the intemuclear distances are smalI, and inner-shell elec­
trons influenee the potential-energy eurve. As an example
for small intemuclear distances we chose, therefore, the
problem of elastie scattering of Ne on Ne. As an example
for ehemieal distanees we did not ehoose a very heavy sys­
tem but N2• This was done because we wanted an almost
fully nonrelativistie system for eomparison with an analo­
gue nonrelativistic HFS calculation.P In addition it is in­
teresting to see how small the relativistic influences on
such a system really are.

In ease of the N2 calculationsr' we added the 2p, 3s,
and 3p wave funetions from F, the 2s and 3d wave func­
tions of Na, the 3d and 4d wave functions of Ar, and the
2s and 4p wave functions of Ti to the minimum basis set
around each center, and we used the Gram-Schmidt
preorthogonalization. With this basis set we ealculated
the relativistic and nonrelativistic (c~ 00) total energy in
the vicinity of the molecular bond distance as shown in
Fig. 1. The minimum values at R =2.08 a.u. are
-108.387 a.u. for the relativistic, and -108.324 a.u, for
the nonrelativistie ealeulation. This ean be eompared to a
fully numerical nonrelativistic HFS ealculation of Laak­
sonen et al." who obtained -108.3466 a.u. at R =2.07
a.u, Although our basis set is not optimized for
quantum-chemical calculations, our result exceeds the
more exaet ealeulations of Laaksonen'r' by 0.6 eV, only.

+

State E( Nonrel. )3 et Nonrel. )b E(Rel. )b

Nonrel. Re!. Ref. 13 This work This work

lag -13.98107 -14.00757
1(1/2)g -14.01627

lau -13.97966 -14.00621
1(1/2)u -14.01493

2ag -1.00721 -1.03245
2{ 1/2)g -1.033 13

2au -0.46072 -0.47902
2(1/2)u -0.47969

I1Tu -0.40423 -0.42236
-0.41753

3(1/2)u -0.42231
1(3/2)u -0.41705

3ag -0.35006 -0.36840
3(1/2)g -0.36827

3Re =2.07 a.u,
bRe= 2.0Ba.u.

TABLE 111. Energy eigenvalues of the N2 moleeule in a.u, at
the intemuclear distance R =2.08 a.u. The spin-orbit splitting
between the 3( 1/2)u and 1(3/2)u levels in the relativistic calcu­
lation contains a spurious contribution. It can be corrected for
by the spurious contribution which appears in the nonrelativistic
limit of the same calculation.

The relativistic effect can be seen by comparing the two
potential-energy curves. It results in a general decrease of
1.71 eV, and as the decrease in the total energy is 1.72 eV
in the separate atom limit, the effect on the potential ener­
gy surfaee is very small. Considering our numerieal aeeu­
racy, we can state that relativity influences the dissocia­
tion energy by 0±0.03, and the bond distance by 0±0.01
a.u. The energy eigenvalues resulting frorn our molecular
calculations are shown in Table 111 in comparison with
the results of Laaksonen et al. 13 Although our nonrela­
tivistic values differ generally by about 0.02 a.u. from
those of Ref. 13, due to our incornplete basis set the influ­
ence of relativity ean be seen by comparison with our non­
relativistic calculations. The relativistic lowering of the
Io eigenvalue is 0.0087 a.u.,which is very reasonable as
this number ean be compared with analogous atomie cal­
eulations.

The limits of our basis set also show up when we look
at the spin-orbit splitting of the I1Tu -level into the relativ­
istic 3(1/2)u and 1(3/2)u levels. Even in our nonrela­
tivistie caleulations these levels are not degenerate.
Nevertheless, such a ealeulation is very worthwhile as it
allows a good guess as to the net effect when we correct
the relativistic results by subtracting the spurious nonrela­
tivistic results. This procedure leads to a spin-orbit split­
ting of the N2 1T level of 96 cm:', which is in the correct
order of magnitude.

For the system Ne-Ne we calculated" the total energies
and electron eigenvalues in the whole quasimolecular
range of intemuelear distances, obtaining the one-electron
correlation diagram shown in Fig. 2. In these calculations

---nonrel.
--rel.

+ Laaksonen
et ct. tref. 13)

N - N\

\
\
\
\
\
\
\
\ /
\ /
\ /

/
\ /

"""'---""

2940

2935

295

2945
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SCF

20FS

0.1 1.0

Rtotornic unitsl

Ne- Ne

FIG. 3. Differenee of the 2DFS, respeetively, SCF and the
averaged Lenz-Jensen (see Ref. 53) potential-energy curves.
2DFS is the statistical energy calculation using relativistic atom­
ie densities, and SCF is the result of the relativistie quasimolec­
ular ealeulation.

VII. SUMMARY AND FURTHER DEVELOPMENTS

tager and Kristensen.i" For this reason we have calculat­
ed the differential elastic scattering cross section for our
quasimolecular potential-energy surface V(R) at various
impact energies, and small scattering angles. The results
are plotted together with the experimental values in Fig .
4. In this plot the scattering cross sections are relative to
the Lenz-Jensen" potential. The abscissa s is a similarity
quantity established by Lindhard, Nielsen, and Scharff
(LNS theory),58 which is correlated with the distance of
closest approach Ra, scaled at the top of Fig. 4. The
theoretical curve fits the experimental data quite weIl, and
even the deviations for Ra> 0.6 a.u. can be understood
qualitatively. The data for 15-keV impact energy lie sys­
tematically nearer to our adiabatic curve than the 25-keV
experimental values. The observed minimum also shifts
to a larger Ra value for smaller impact energy. So in this
region the experimental cross sections are obviously influ­
enced by inelastic effects not included in our calculation.

We discussed here only the two systems N2 and Ne-Ne
to show the quality of these calculations. Of course, it
will be very worthwhile now to proceed to really heavy
systems to study the influence of relativity in chemical
binding. Such results will be discussed in a subsequent
paper.

In this paper we presented a fully self-consistent numer­
ical relativistic DFS code to calculate diatomic molecules
at all internuclear distances. The numerical accuracy has
been improved by many orders of magnitude, so that not
only energy eigenvalues but also potential-energy curves
emerge, allowing a quantitative interpretation. Thus the
influence of relativistic effects can now be studied not
only at small but also at chemical distances. This is one
of the direct applications of this code probably forthcom­
ing.

Of course, the disadvantage still is the use of the local
Slater-exchange approximation. The development to­
wards a full DF code, with exact exchange, probably is
the main objective of the development in the long run, al-

Ne
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Ne - Ne
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we used the following basis sets: For large internuclear
distances (R >0.7 a.u.l we added 2s,3s,3p wave functions
of Mg, 3s,3d wave functions of Si, 3d,4p wave functions
of Ar, and 3s,4d wave functions of Ni to the minimum
basis set; for R ~ O. 7 we chose the minimum basis set, and
additional wave functions (1s to 4s) from atomic calcula­
tions in the monopole potential of the two nuclei at the
center of gravity of the two nuclear charges. In Fig. 3 the
potential energy V(R) is plotted relative to the average
Lenz-Jensen potential VaLJ(R), as suggested by Loftager
et al., 55 to visualize the detailed structure in the range of
intemuclear distances, where the atomic inner shells rear­
range to form molecular orbitals. These quasimolecular
potential structures can be interpreted in terms of level
structures of the correlation diagram in Fig. 2. At least
three internuclear distances can be found, where isolated
minima in different molecular levels appear. The 2(1/2)g
level, e.g., has a relative minimum around R =0.85 a.u,
with a depth of about 15 eV. The 30-eV binding-energy
contribution of this doubly occupied level leads to a rela­
tive minimum in the scaled potential at the same internu­
clear distance with a comparable depth. Similar argu­
ments apply to the minimum of the 1(1/2)u and 3(1/2)u
levels near R =0.3 a.u., and the flat minima around 0.06
a.u, in the levels which originate from the 2p3/2 united
atom levels. (The minima are assigned in Fig. 2.)

The quality of our quasimolecular potential calculations
can be tested by comparison with experimental scattering
cross sections for the system Ne+ -Ne, carried out by Lof-

1.;..,,(1/_2)~u_---= ------- -1s
-1000 b

0.5 1.0
R Iut om.c units )

FIG. 2. Relativistie DFS eorrelation diagram for Ne-Ne.
The minima in the lowest MO levels are assigned by 1-3.
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FIG.4. Differential elastic scattering cross sections for Ne-Ne. Experimental values are taken from Refs. 54 and 57.

though it is known that results of calculations with a local
exchange term are often better because part of the correla­
tion is included. In addition, a full DF code would be too
time consuming for heavy systems with the computers
available at present. Therefore, in a11 likelihood the re­
sults of such a DFS code will be the only ones available in
the region of high-Z elements in the near future.

In addition to the above, several improvements have to
bemade to this code. One is the development of more op­
timized basis functions in the relativistic case. That this
is of great importance has been known since the analogous
nonrelativistic development many years ago. Another one
is a numerical improvement to the solution of the Poisson
equation. Here we hope to use the same Gauss-Laguerre
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