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Results of relativistic multiconfiguration Dirac-Fock calculations with an extended nucleus are
used to analyze the volume isotope shifts of the resonance transitions in the group-IIg and -IIb ele-
ments as well as in Yb. This is done together with a review of the isotope shift theory, including a
critical evaluation and comparison of the semiempirical calculation of volume isotope shifts com-
monly used today. Electronic factors F;, proportional to differences of electronic densities over the
nuclear volume, are discussed within various approximations and compared with experimental re-

sults.

I. INTRODUCTION

For many elements systematic measurements of optical
isotope shifts (IS) and hyperfine-structure splittings (hfs)
in spectral lines for series of stable as well as radioactive
isotopes have been carried out for a long time.!™* During
the last years many of these old investigations have been
extended considerably’~® due to the access to good
narrow-band tunable-laser radiation in broad wavelength
regions. In particular alkali-metal, alkaline-earth (group-
Ila), and alkaline-earth-like atoms (group-II5) have been
studied with use of different laser spectroscopic tech-
niques with ever-increasing accuracy.

Parallel to these experimental developments, theoretical
methods and computer programs for treatment of atomic
systems within the self-consistent-field (SCF), Hartree-
Fock (HF),”!® Dirac-Fock (DF),'"!? multiconfiguration
Hartree-Fock (MCHF), and multiconfiguration Dirac-
Fock (MCDF)*!3~1¢ approaches have been developed. In
addition many-body perturbation theory (MBPT) ap-
proaches'”!® have been developed further, nonrelativisti-
cally as well as relativistically. This type of ab initio
atomic calculation opens the possibility to test semiempir-
ical methods!*!°=22 for the derivation of electronic prop-
erties such as breakdown of LS coupling, perturbation
from different configurations, and different expectation
values.

Examples of areas where semiempirical approaches
have been used for a long time is the analysis of experi-
mental hfs and IS data. The possibility of doing ab initio
calculations eliminates the need of the semiempirical ap-
proach. As the semiempirical approach has been used
very frequently with relatively good success the ab initio
calculations can be used to test the validity of that ap-
proach. Further, detailed evaluations of the electronic
part of the hfs and the volume IS will give accurate values
for nuclear properties like nuclear radial moments and
change of charge radii between isotopes, respectively.
These calculated nuclear quantities can then be compared
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with results of other fields like the study of muonic and
electronic x-rays or electron scattering®>~2° as a check of
the evaluation procedure. To summarize, hfs and IS are
excellent properties for testing of and linking together
ab initio semiempirical methods and electronic-nuclear
properties.

Recently the electronic factors of the volume isotope
shift were calculated in an ab initio way with the DF and
the MCDF method for states in Bal, Ba11,%® and Au1?’
In this paper we extend those calculations to all other ele-
ments in group IIa and group IIb of the periodic table as
well as Yb. Usually IS for these elements have been mea-
sured in the resonance lines of the ionized system. Calcu-
lations have, therefore, been done for some low-lying
states of the second spectrum as well.

The paper is organized as follows. Section II gives a
short review of the MCDF method and isotope shift
theory including a review of the semiempirical ap-
proaches. A presentation of the results of the calculations
and comparison of experimental data is presented in Sec.
I11, with the conclusions in Sec. IV.

II. THEORETICAL APPROACH

A. Multiconfiguration Dirac-Fock method

The MCDF method is well known.'>!® Two computer
programs by Desclaux'® and by Grant et al.'* now exist
so that a brief description should be sufficient here.

In its most commonly used form the MCDF method
starts from the following zeroth-order Hamiltonian

H=3Hpi)+ 3 r;',
H .l,j.
1<
i.e, a sum of one-electron Dirac operators Hj plus the
classical Coulomb repulsion between the electrons. The
Dirac equation which has to be solved is

H|V)=E|¥).
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The total wave function |¥) for a given atom is ex-
pressed as a linear combination of configuration state
functions (CSF) |¢;),

|W)=3W:lé:), (1)

where each of the CSF is a simultaneous eigenstate of the
total angular momentum J2, its projection J,, and the
parity operator. This is achieved by a linear combination
of Slater determinants |a; ):

[6:)=238;a;) . ) (2)
j

The Slater determinants |a) are constructed from N
one-particle wave functions ¢ which in the relativistic
case are spinors of rank four,

P,,K(r) ij
’ ) (3)

¢=
i ch(r) X'_n.j

r K

P, (r)/rand Q,,(r)/r are the large and small components
of the radial wave functions. The angular part is a linear
combination of spherical harmonics Y;” and the spin

function S"° which is a spinor of rank 2:

X:lfzzYImj_aS”(l,mj—o,%,a |jsm;) .
a

Using the variational principle to achieve the minimum in
the total energy of the whole atom both the mixing coeffi-
cients W, and the radial components P(r) and Q(r) of
the Dirac spinors are optimized in a self-consistent pro-
cess. Since this variation is performed usually with
respect to the radial part of the wave function only, this is
a restricted Dirac-Fock procedure. This means that the
radial wave functions are the same for all values of m; for
a given j.

In more sophisticated calculations, concerning especial-
ly good total energies, additional contributions like spin-
spin, spin-other-orbit, and retardation are added in pertur-
bation theory via the expectation value of the Breit opera-
tor.28=32 The same is done with the contribution of the
lowest-order vacuum polarization potential as well. The
influence of vacuum fluctuation, which is the main part
of the quantum electrodynamic (QED) correction in elec-
tronic atoms®>3* up to now, is included in a heuristic
manner only.>"*? This approach implies that the SCF
wave functions do not include the effect of the Breit and
QED operators.

Of course, by far the largest influence on the wave
function at the origin, r =0, comes from the extended nu-
cleus. We use a Fermi-type charge distribution of the nu-
clear charge with the best-known half-density radii R¢
and skin thickness .%°
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B. Isotope shift theory

The measured isotope shift in optical spectral lines or in
electronic and muonic x rays is given as the sum of the
volume (field) isotope shift and mass shift where the latter
is composed of the normal mass shift (NMS) and specific
mass shift (SMS),! =% i.e.,

A A A A A A
v ' =8vpg +8vvs

where A; and A4, denote the mass number of two iso-
topes. For a certain transition the NMS can be evaluated
exactly"* while usually some semiempirical procedure is
used in the estimation of the SMS.* Some ab initio calcu-
lations of the SMS have been done using the HF*? and
MCHF methods®®* as well as many-body calculations
for light atoms.*®*! Correcting the measured IS for the
NMS and SMS gives the remaining part, i.e., the volume
isotope shift or field shift.

Generally, the volume isotope shift 8vgg can be written
as a sum of the four integrals

8VFS=—er fdrdr’—'iyl-

X [P, (Fpe,(F)—p 4, (e (1)

—pAz(r)pel(r’)+pA2(r)pe2(r')] ,

4)
where p 4 is the nuclear charge distribution of the two iso-
topes 4, and 4,, and p, the electronic charge distribu-
tion of two electronic states e¢; and e,. Usually a spheri-
cal nucleus is assumed which changes the denominator
from |[r—1'| to r,, which means the larger of the two
values |r| and |r'| during the integration. The electron
density within the nucleus, i, r <R, normally is ex-
pressed as a polynominal

p=ao+a2r2+a4r4+ R (5)

Each of the above integrals in Eq. (4) can be expressed
with this ansatz as '

—%T—Zezao(rz)A+%Ze2az(r4>A+%29204“6)'4“*' e

and if we take the difference of the four integrals in Eq.
(4) we get

SVFs=—Z3ZZe2(Aa0 A(rZ)A‘A2+1—3(,Aa2 A(rty
+LAa A8 2y ©)

with Aa the difference of the electronic densities in the
two configurations at r =0, usually written as A | W(0) | %,
and A(r®)“1*? the difference of the expectation values of
r% over the nuclear charge distribution of the two nuclei.
Expression (6) can be written in various ways:*—4
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—FA(#2)""2 g

with A the so-called nuclear parameter. F is the electronic
factor which is proportional to the electron density differ-
ence in the two configurations at » =0,

F=ZT’TZeZA |W(0) |2 . (8)
The values C,/C; and C;/C), etc. can be expressed in
terms of Aa,/Aag and Aa,/Aay. The change of electron
density at the nucleus between two configurations can be
attributed nearly totally to the direct and indirect change
of the s and p,,, densities, which all more or less have a
parabolic behavior at r =0. Thus the quotient Aa,/Aaq
is very much independent of the specific configuration as
long as the neutral atoms are concerned, so that it is equal
to a, /ay (and analogous the other quotients); then

and

C1 - 7 Aao o
This fact allows us to calculate the expression in the large
parentheses on the second line of Eq. (7)—defined there as
K—as a function of the atomic system and thus as func-
tion of Z if we use an estimation of the term
AGH /A ()12 ete. Using the liquid drop model
with the nuclear radius R =ryA4'/3 (usually r is taken as
1.2 fm) we arrive at the expression

Ci10p:, Cis

R4 9
c, 7 c, 3~ T ©)

K=K(4)=1+
In the earlier analysis of the x-ray isotope shift by
Seltzer¥ he calculated the C,/C; and C;/C; factors
from the 1s wave functions only. The relatively small
differences between his values and ours (given in Sec. III),
which are calculated from neutral atoms, show that
indeed the main contribution comes from the 152 shell.
To summarize the expression for the volume isotope
shift we get

SVFSZ‘FA("Z)A[AZK . (10)

The electronic factor F for the volume isotope shift as
well as the correcting factor K are known if one has cal-
culated the charge density at the nucleus plus the expan-
sion of the charge density over the nuclear volume accord-
ing to Eq. (5) using the ab initio wave functions. Howev-
er, evaluations of the electronic factor are performed
mostly in a semiempirical way"2** as reviewed in Sec.
IIC.

C. Semiempirical estimate of F;

In the semiempirical approach the change of the densi-
ty at the nucleus A |W(0)|? in Eq. (8) is obtained from
various experimental quantities containing |¥(0) |2 The
first step in this approach is to factorize A | W(0)|? into
the product of the difference of the total nonrelativistic
charge density for a point nucleus and a function f(Z),
which takes care of the relativistic corrections to F; for a
certain type of nuclear charge distribution, i.e.,

3
,.=2T’T2e2A | W(0) ] 2=%A | WO |2 f(2)

=E;f(Z), (11)

where we have followed the convention used by Heilig and
Steudel.*

Normally f(Z) is taken from a paper by Babushkin*®
in which he calculates the quantity Ca4;, which is the
main part of f(Z), for a uniform and, trapezoidal nuclear
charge distribution. (Recently Zimmermann*’ has pointed
out that there is an error in the formulas of Babushkin*®
and that an additional normalization constant should be
added.) In this way the problem is reduced to the esti-
mate of the difference of the total nonrelativistic (nr)
charge density for a point nucleus at r=0, i.e.,
AW | (0) | %, which will now be related to the charge densi-
ty of the ns valence electron.

If we consider a transition for an alkali-metal atom, the
difference of the total charge density between the two
electronic states ns—np can be expressed as

A|W(O0) | Ryanp = WIO) | Zpret | Wy (0) ] 2
- I w(0) | gore’_ | \I’np(o) | 2

~B| ¥, (0)]? (12)
with
g MO toret+ | Wns(0) | 2— | W(0) | &
| W,5(0) |2 ’

where in the last relation the contribution from the np
electron is neglected. The screening factor 3, which takes
into account the screening of the core electrons when the
valence electron is excited, normally is taken from HF or
DF calculations. If no isotope-shift measurements in
alkali-metal-like transitions are available Blaise and Steu-
del*® (quoted by Heilig and Steudel) have given the fol-
lowing empirical screening ratio to be used with n =6 or
7.
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F,((core+ns?)—(core+nsnp))
Fj((core+ns)—(core+np))

~0.65 (13)

with an uncertainty of 10%.

Finally, in the evaluation procedure of F; the nonrela-
tivistic value of | ¥,,(0) |2, for the outermost electron has
to be estimated. This usually is done in an empirical way
by the following schemes.

As described by Kopfermann! the fine-structure level
scheme can be used to calculate |W,(0)| 2 by the
Goudsmit-Fermi-Segré formula

1 ZZ} do
W, (0) |2 =— —— 14)
[ ¥ns (0 7Ta(3) na3 dn (

with Z,=2 for the alkaline-earth ions, n, the effective
quantum number, o the quantum defect, and a, the Bohr
radius. Although Kopfermann' claims that the charge
density calculated with Eq. (14) is a nonrelativistic charge
density this is probably not too correct, as the whole equa-
tion is a very rough approximation only.

Further, if the magnetic dipole interaction constant a,;
is know in the ground state, the following relation has
been given:!?

ex 167 Ko Hr
am"‘=—31mea | Was(0)| 5= Flns1 2)(1-8)1—e) ,

(15)

where up is the Bohr magneton, I the nuclear spin, and
17 the nuclear magnetic dipole moment. F(ns;,) is a rel-
ativistic correction factor for the magnetic dipole interac-
tion.?%12 The factors (1—8) and (1 —e) represent the
Breit-Rosenthal®® and Bohr-Weisskopf factors,’® respec-
tively. These take into account the effect of an extended
nuclear charge distribution and the extended distribution
of the magnetic moment. The nonrelativistic charge den-
sity thus is given by

2 aph
l \I/m'(o) I ar— 167 L 1 .
T”I;—p,, — Flns1)(1-8)(1~e)

(16)

The F; values are then obtained by introducing the
| W,,(0) |2, values of Egs. (14) and (16) into Eq. (12) and
then (11).

Instead of using an ab initio value for A|W(0)|? in
both approaches a mixture of experimental, pure theoreti-
cal and semiempirical values is used. Here it is interesting
to note that in a nonrelativistic treatment, both the mag-
netic dipole interaction and the volume isotope expression
pression are assumed to be proportional to the nonrela-
tivistic value of | W,,(0)| 2.

However, this does not hold in a relativistic treatment
due to the different tensorial structure of the two interac-
tions as discussed for example by Bauche.’! This question
is also discussed in a recent paper by Blundell et al.>

A relativistic treatment gives the following contribution
to the magnetic dipole interaction from the outermost ns
electron in an alkali-metal atom:

2041
o 2 2 w Ppo(P)Que(r)+ P (F)Q,(7)
4| Wl (0) [fa= o IR = dr
=F(nsy ,(1—8)4m | W,,(0) | 2, (17

while the contribution from the outermost ns electron in
the volume isotope shift analysis is

P (FP 40, (r)? ]

r2

41 | W ,,(0) | 2 =1lim
r—0

L ) =R, 47 | ¥, (0) |2, . (18)

It should be noted that we have included the Breit-
Rosenthal correction in Eq. (17) because our calculations
of P and Q have been done for an extended nucleus.

III. RESULTS AND DISCUSSIONS

A. Electronic structure

The group-Ila and -IIb elements are characterized by
an outermost closed ns? shell configuration in the ground
state. Excitation of one of these electrons results in sim-
ple two-electron systems with quite different wave func-
tions for the singlet 'P and triplet 3P states, already no-
ticed by Hartree et al.> a long time ago in LS-dependent
HF calculations. Some recent calculations for these sys-
tems can be found in Refs. 9 and 54. Schematic experi-
mental level energy diagrams of the lowest states®>>® for
the first spectra of those elements are presented in Figs.
1{a) and 1(b) for the group-Ila and -IIb elements, respec-
tively. In Fig. 1(b) we include the element Yb as well,
which has an analogous ground state 41 46s2.

As a general trend, the levels for the even as well as the
odd configurations of the Ila elements in Fig. 1(a) move
together closer in heavier elements. For the very heavy
element Ra the trend is reversed again, due to the influ-
ence of strong relativistic effects. This demonstrates that
it is absolutely necessary to include relativity and configu-
ration interaction on an equal basis and to evaluate wave
functions with one-electron angular momenta j, coupled
to good total J within the particular configurations. In
our MCDF calculations those levels of positive and nega-
tive parity as well as good J were taken into account,
which can be constructed from the nsy,, np, ., nps .,
(n —1)ds /3, and (n — 1)ds ,, one-electron wave functions.

The permitted resonance line corresponds to the transi-
tions ns?'Sy—nsnp'P, in the single LS-configuration
description. Due to the breakdown of LS coupling a mix-
ture will take place between the 3P and 'P, states, which
means that measurements in  the transition
ns?'Sy—nsnp P, may be done. The other P, and P,
states are metastable and can be populated in a plasma
discharge oven or in a radio frequency discharge.’’~%
Furthermore, populations in these metastable states open
up the possibility of doing measurements in spectral lines
connected with these states. This was done, for example,
in Ca (Ref. 57) and Cd (Ref. 59) in transitions connected
with the ns(n+1)s3S, state. As can be seen in Fig. 1(a)
the 'D and *D states originating from the ns(n —1)d con-
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FIG. 1. (a) Schematic energy-level diagram of the lowest configurations of the neutral group-Ila elements. (b) Schematic energy-
level diagram of the lowest configurations of the neutral group-II5 elements and Yb.

figuration are bound even stronger than the P and 3P
states, which originate from the nsnp configuration, in
heavier elements, e.g., Ba. This implies that these states
are metastable for heavier elements and may act as a plat-
form for investigations of transitions to the np(n —1)d
configuration. Extensive measurements of this kind have
been performed recently in Ba,®%¢!

The energy-level diagrams for the group-IIb elements,
shown in Fig. 1(b), are quite different. The configuration
nsnd is located for all elements at higher energy than the
states in the nsnp configuration. The nsnd 'D and 3D
states are close in energy and reversed. The npnd, np?,
and nd? configurations have not been observed to be
bound for these elements. The reason for this difference
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in term structure of the group-Ila and -IIb elements is
probably the presence of the occupied shell of (n—1)d
electrons just below the two valence electrons in the
group-IIb elements. The level scheme for Yb, however,
reminds one more of the Ila elements.

The results for the single-configuration and multicon-
figuration Dirac-Fock calculations for the group-Ila and
-IIb elements are shown in Tables I and II. Table I sum-
marizes the results for the ground-state calculations.
Columns 1 and 2 give the element as well as the half-
charge radius R and skin-thickness parameter ¢ in the
two-parameter Fermi charge distribution, which was used
to describe the extended nucleus. In the remaining
columns we present the contributions of the various con-
figurations, in percent, which were taken into account to
calculate the ground state. In addition, the electronic
charge density at the nucleus (at » =0) is shown in the last
column.

For the Ila elements the configuration ns? contributes
between 90% and 93% to the mixing in the wave func-
tions, whereas the np? configuration takes over 6—8 %.
The higher (n — 1)d? configurations (only possible for the
element Ca and heavier) contribute very little. As only
the s and (much less) the p,,, wave functions contribute
to the charge density at » =0 it is easy to understand that
this quantity is larger for the single ns? configuration cal-
culations than in multiconfiguration calculations where
the weight of the ns? configuration is reduced. The addi-
tional configurations contribute very little or nothing with
their np and (n —1)d electron wave functions. For the
115 elements the np* and nd? configurations are not even
bound, so we present the single-configuration results only,
although they could contribute nonnegligibly in the
MCDF procedure. Analogous relativistic calculations
have been published for the even-parity state of Bal by
Rosén et al.,®? and for nonrelativistic ones by McCavert
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and Trefftz.%® Their results are very comparable to ours.

Table II contains the analogous results for the *P; and
1P, states of the Ila and IIb elements. For each state we
present up to four rows denoted a—d. Under a we give
the results of those calculations where only the nsnp,,,
and nsnp;,, configuration state functions are taken into
account. As the calculations are done in a jj basis the per-
centage mixing of the nsnp,,, and nsnp;,, configurations
are given. For pure LS coupling the mixing of these two
states for the P, state is 66.7% and 33.3%, respectively,
and vice versa for the !P| state. In b we present the re-
sults for those MCDF calculations taking into account all
five odd configurations with J =1, which can be con-
structed from the ns, np, and (n —1)d single-electron
states. We see that pd states contribute quite consider-
ably, although we notice that their influence is much
larger on the P, states than on the °P, states. For an
easy comparison with the experimental analysis in d we
state under ¢ the weights of the two configurations
nsnp,, and nsnp, ,, from the calculation b, renormalized,
however, to 100%.

Analysis of the mixing between different states is per-
formed normally by a least-squares fit of parametrized en-
ergy expressions, including electrostatic and magnetic in-
teractions to the experimental energy levels as, for exam-
ple, described by Condon and Shortley.!® Usually, this
type of analysis is performed in terms of pure LS states
with total J as the good quantum number. The
configuration-interaction contribution and the breakdown
of LS coupling for heavier elements will then appear in
the change of the mixing parameters as compared with
the results for pure LS states. The intermediate wave
functions are in this way expressed as linear combination
| SLJ ) states within the investigated configuration.

In our case—the coupling of 'P; and °P, states—one
may write

TABLE 1. DF and MCDF results for the 'S ground state of the IIa and 115 elements and Yb.

Nuclear parameters Electron
R, t state Configuration contributions (%) 417 | W(0) | E
Element  (fm) (fm) ns*|SLJ) ns? wpin  mpin  (n=0dis  (n—=1di, [a.u)~’]
100 447.8675
21
4Be 1.97 2.34 25750 903 32 6.5 447.1048
100 14541.152
21 .
Mg 2.85 2.6 357 S0 925 25 5.0 14.539.628
100 77301.282
21
xCa 3.6 2.31 4s%'So 918 2.7 5.2 0.1 0.2 77297.680
100 765 147.49
21
wSr o 48 2.3 35750 922 26 4.7 0.2 0.3 765 138.27
100 4052630.1
21
ssBa  5.83 179 6s%'So 91.8 2.8 44 0.3 0.6 4052 608.5
100 56397338
21
wRa 67 2.3 75750 933 238 2.8 0.3 0.7 56397202
s0Zn 4,24 2.3 4stls, 100 315037.27
Cd 5.24 2.3 55218, 100 2006 489.1
oHg 644 23 652'S, 100 29341769
100 12866018
21
nYb 637 23 6s°So 928 29 42 12865956
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TABLE I1. Results for nsnp *P, and nsnp 'P, states of Ila and 11 elements. (a) MCDF calculation with two configurations, (b)
MCDF calculation with five configurations, (c) normalization of the mixing contribution of (b) to only mixing of nsnp;,; and nsnp;
configurations, (d) mixing of nsnp,,, and nsnp;,, configurations as derived from the experimental energy-level scheme.

Configurations contributions (%)

Electron state ns ns npis2 npss np3 47 | W(0) | 2
Element nsnp ISLJ) +npin +npin +(n —])d3/2 +(n —1)d3/2 +(n —1)d5/2 (a.u.)‘3
Be 2s2p 3p, a 66.6 33.4 441.086
d 67.04 32.96
p, a 336 66.4 443.25
d 3296 67.04
Mg 3s3p 3p, a 66.8 33.2 14 525.549
d 6703 32.97
p, a 332 66.8 14 531.822
b 31.7 63.6 1.6 0.3 2.9 14 528.561
¢ 333 66.7 (npnd configurations)
d 3297 67.03
2Ca 4s4p p, a 67.0 33.0 77279.146
b 657 31.3 0.5 1.7 0.9 77277.843
c 617 32.3
d 674 326
P, a 330 67.0 77288.244
b 26.6 54.7 6.3 1.2 11.2 77277.332
c 327 67.3
d 32.6 67.4
3851 5s5p 3Py a 678 322 765091.35
b 67.0 29.5 0.7 1.9 0.8 765087.65
c 694 30.6
d 695 30.5
p, a 32.1 67.9 765114.34
b 245 55.2 7.0 1.3 12.0 765086.32
¢ 307 69.3
d 305 69.5
s¢Ba 6s6p 3p, a 692 30.8 4052503.9
b 69.1 26.0 1.3 2.8 0.9 40524924
¢ 727 27.3
d 750 250
p, a 306 69.4 4052 556.1
b 17.7 51.8 11.5 1.7 17.4 40524719
c 255 74.5
d 250 75.0
gsRa 7s7p p, a 74.1 25.9 56396456
b 7713 18.8 1.6 2.0 0.2 56396 397
c 804 19.6
d 845 15.5
p, a 253 74.7 56396782
b 134 67.1 8.6 0.9 10.0 56396 386
¢ 16.6 83.4
d 155 84.5
30Zn 4s54p P, a 675 32.5 314953.23
d 68.0 320
p a 326 67.4 314975.61
: d 320 68.0
4Cd 5s5p P, a 69.1 30.9 2006267.7
b 710 29.0
'p, a 309 69.1 20063219
d 29.0 71.0
soHg 6s6p 3p, a 75.7 24.3 29 340002
d 807 19.3
a 242 75.8
p, d 193 80.7 29340302
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TABLE I1. (Continued).

* Configurations contributions (%)

Electron state ns ns np1, npss npsp 47 | W(0) | L
Element nsnp |SLJ> +np1/2 +np3/2 +(n—1)d3/2 +(Yl—1)d3/2 +(n—l)d5/2 (a.u.)'3
70Yb 65 6p P, a 710 29.0 12865675
b 125 249 0.8 1.5 0.4 12 865 657
c 744 25.6
d 77.6 22.4
'p, a 28.7 71.3 12 865 800
b 213 65.0 5.3 0.8 7.7 12865679
c 247 75.3
d 224 77.6

|3P1)'=(1—'}/2)1/2|3P1)+}’I1P1> ,
(19)
|1P1>I=_,}/|3P1>+(1_,}/2)1/2'1P1> ,

where the states to the right are pure LS states. This
evaluation procedure normally includes the electrostatic
and spin-orbit interaction, although recently some refined
analysis has been performed with different spin-orbit pa-
rameters for the diagonal and off-diagonal matrix ele-
ments as well as the inclusion of the spin-spin interac-
tion.%® The parameters evaluated by the least-squares
fit should be considered as effective ones within the
analyzed nsnp configuration.

With the experimental energy levels given by Moore™
and the formulas by Olsson and Salomonson,® one ob-
tains the mixing parameter values given in row d for the
3P, and 'P, states in Table II. As a comparison we
transformed these LS-coupled wave functions into jj-
coupled ones. The values for ¥ [according to Eq. (19)]
range from —0.004 for ,Be and ;Mg up to —0.008 for
zoca, —0.014 for 30Zn, —0.031 for 3BSr, —0.047 for 48Cd,
—0.092 for soBa, —0.122 for ,,Yb, —0.16 for gHg, and
—0.21 for ggRa. It can be seen that in this semiempirical
analysis the mixing is rather close to the pure LS coupling
for elements up to Sr, while a significant breakdown of
LS coupling takes place in the heavier elements like 5¢Ba,
gsRa, goHg, and oYDb.

A comparison of the mixing obtained from the analysis
in row d with the renormalized ab initio values in row ¢
shows that the inclusion of the mixing with the
np{n —1)d configuration in the calculations leads to a
much better agreement than what is achieved with the cal-
culations in row a. This semiempirical analysis was done
only within the nsnp 3P, and 'P; |SLJ) states. A better
approach would be a new analysis with the inclusion of
the configurations used in row b.

Concluding, one may say that the agreement of the
MCDF calculations with the semiempirical analysis is
very promising.

B. Electronic charge density at the nucleus

The single-configuration DF and MCDF results
presented in Tables I and II also include the electronic
charge density at the nucleus (at » =0). The last columns
of these tables give the value ao=4m|W(0)|%, for the

180, 3Py, and 'P; states of the neutral systems. a, is the
first of the expansion coefficients of the charge density
defined in Eq. (5). ‘

As mentioned in the Introduction, the analysis of opti-
cal IS for the neutral systems is performed normally with
reference to the ionized atom. We have, therefore, done
single-configuration HF and DF calculations for the
ground state ns2S,,, and first excited np’P,, and
np *P;,, states in the ions as well. The resulting total
charge densities at the nucleus (at r =0) are presented in
Table III, columns 3 and 4, with the same nuclear param-
eters as for the neutral systems. The comparison of the
nonrelativistic and relativistic results shows the dramatic
increase of the charge density at the nucleus for higher Z,
which usually is called the direct relativistic effect, and
which is for Ra, e.g., already a factor of 9.3.

In an ab initio evaluation of the electronic part of the
volume isotope shift it is not sufficient just to give the
" difference of the electronic charge density at r =0. The
influence of the variation of the electronic charge over the
nuclear volume must be discussed as well. As shown in
formulas (6) and (7), this leads to additional contributions
to the isotope shifts which are dependent on the change of
the higher moments of the nuclear charge distribution as
well as on the change of the expansion coefficients of the
electronic charge distribution within the two configura-
tions. The correction factor K, defined in Eq. (7), sum-
marizes all these contributions. As nearly 90% of the
charge density at the nucleus originates from the two 1s
electrons, and the main part of the remaining 10% comes
from the other s electrons, the change of the electron
charge density has an s-wave-function behavior and is al-
most independent of the specific configuration. The coef-
ficients C,/C, and C;/C, [defined in Eqs. (6) and (7),
which were first introduced by Seltzer*?] were calculated
by us for many elements and transitions. Table IV
presents these values together with those of Ref. 42,
which include the contribution from only the 1s? elec-
trons. In Fig. 2 a visual presentation of these coefficients
is given as a function of the atomic number Z. The coef-
ficients C,/C, appear to be very linear, while C;/C;

show a somewhat structured behavior.

If the values for A(r4)A‘A2, A(r6)A1A2, etc., in Eq. (7)
were known, the total correction factor K would be
known as well. There is the possibility of getting realistic



TABLE III. Dirac-Fock results for the singly ionized ions of the group-Ila and -I1b elements. In addition, semiempirical charge densities as well as a comparison of relativistic and
nonrelativistic parameters for the volume isotope shift and the magnetic dipole interaction are given.

4| W(0)|? @u)~?

90T

ab initio F(nSl/z)(l—S) Rtot Rn.r B
Config. 47 W(0) |} (@u)™? Rel. Semiempirical ab initio ab initio Hydrogenic Nonrel. Rel.
Ion state Nonrel. Rel. Nonrel. Eq. (18) Eq. (17) Eq. (14) Eq. (16)* Eq. (17) Hydrogenic® Egq. (200 Egq. (21) Eqg. (22) Eq. (12)

Bet 2538, 440.612 443907 10155 10235 10.170 125 12.5° 1.001 1.002 1.007 1.008 1.008 1.042  1.043
2p %P1y 433.231 1,007
2p 2P3/2 430.019 433.214 )

Mgt 3538y, 13716.19 14531.58  21.341 22735 21.677 287 27.0° 1.02 1.0t 1.059 1.065 1.064 1.097  1.097
3p 2P, 14 506.64 1,059
p2p,, 36277 14 506.64 :

wCat 4528, 66669.02 77287.49  24.186  28.532 25318 339 1.05 1.03 1.159 1.180 1.170 1.116 1.114
4p 2P\/2 77 25570 1.159
4p P, 66642.02 77255.67

wStT 55328y,  475265.14 765111.50  41.220  71.298 49256  55.5 56.8° 1.20 1.14 1.610 1.730 1.657 1.110  1.101
5p 2P1/2 765033.02
5p P, 475219.38 765032.52 1.610

sBa*t  652S,,, 1546317.7 4052 548.3 50.861 157.695 77.007  77.0 74.49 1.51 1.37 2.621 3.100 2.780 1.111  1.087
6p 2Py, 40523769
60 2Prr 1546261.2 4052 373.8 2.621

wRat 7528, 6058540.6 56396722 74561 1102.00 24696  124.7 3.31 2.35 9309  14.780 10.837 1.106  1.039
TP 56395577
Tp*Psp 60584581 56395504 9.309

wZnt  4s2S;,  230816.17 31497292  75.286 109.209  85.398 983 1.13 1.08 1.365 1.451 1.389 1.099  1.095
4p?P,, 314853.37
4p°Psp 230733.43 314852.97 1.365

#Cd* 5528, 96789525 20063134 111281 274330 157.720 1476 158.3¢ 1.42 1.25 2.073 2.465 2.166 1.096 1.082
5p 2Pl/z 2006016.5
5p Py 96771327 5 06013.0 2.073

woHgt 6s2S), 45452789 29340140 189.338 207996 57274  303.0" 3290 3.03 1.99 6.455  10.985 7.290 1.088 1.038
6p Py 29337980
6p Py 45430728 19337879 6.455

0Ybt 65 iS‘ 5 30359438 12865772 79.59  449.416 160.30  128.1 123.8) 2.01 1.66 4238 5.647 4.693 1.099 1.050
6p°Pip 12865300
6p °Py) 30358563 15865284 4238

*Reference 66 (nuclear moments and spins).
®According to Eqs. (26.18) and Fig. 71 in Ref. 1.

‘Reference 67.
9Reference 68.
‘Reference 69.
fReference 70.
8Reference 71.
'Reference 72.
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TABLE IV. Electronic coefficients in the parameter A in Eq. (7) from MCDF calculations and Ref.

44,
Element Source C,/C; (107* fm™? C3/Cy (107% fm™?) K [Eq. (9]

4Be Ref. 42

MCDF 0.26 0.41 0.999 87
12Mg Ref. 42

MCDF 1.12 1.02 0.998 85
zoca Ref. 42

" MCDF 2.14 1.37 0.996 4

3pZn Ref. 42 3.40 1.39

MCDF 3.70 1.87 0.9915
391 Ref. 42 4.45 1.56

MCDF 4.75 1.97 0.9860
43Cd Ref. 42 5.96 1.88

MCDF 6.42 2.37 0.978
5(,Ba Ref. 42 7.03 2.04

MCDF 7.47 2.38 0.968
70Yb Ref. 42 9.29 2.54

MCDF 9.46 2.75 0.952
soHg Ref. 42 10.9 2.90

MCDF 12.0 3.66 0.938
ssRa Ref. 42 12.1 3.16

MCDF 13.5 4.06 0.926

values for K by use of changes of the nuclear moments
from other experiments, like electron scattering.?> Howev-
er, this is probably too much of an effort as K is only a
small correction factor. Most likely it is quite sufficient
to use the nuclear droplet model with a nuclear radius R
proportional to 4!73. The resulting equation for K is

then Eq. (9). The values for K calculated in this way are
given in Table IV. Figure 3 shows the function 1—K as
function of Z which presumably is correct within +10%

or better.
Having this in mind we are able to calculate the elec-

tronic factors F; according to the definition of Eq. (8),

T oo
x
£ .
-] x x
2 2 . x
vy x
- x
A
x
1 i | - 1 1 1 — "
«
& onf "
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A od x
< L
(=] 8 x X
st xx
-— x
o 4f x
< x
J - x
2 X 1 1 o A " - i i . I
10 20 30 40 S0 60 70 80 90

Atomic Number Z

FIG. 2. Theoretical values of the factors C,/Cy and C;/C; which describe the change of the electron density over the nuclear ra-

dius as function of the atomic number Z.
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where only the change of the electron charge density at
r =0 is needed. Before we discuss these results from the
ab initio calculations in Tables V and VI we will first
analyze in Table III the semiempirical calculation of the
charge density |W,,(0)|? for the ions as well as the vari-
ous correction factors which are needed in this evaluation.

In order to check and discuss the semiempirical ap-
proach reviewed in Sec. II C, we present in Table III the
relativistic charge densities 47 | ¥,,(0)|? for the outer-
most ns electron as well, using our ab initio ns wave
functions. The first method is the evaluation of the value
according to Eq. (18) in column 6, and the second is the
magnetic dipole interaction integral according to Eq. (17)
in column 7. In addition, analogous nonrelativistic calcu-
lations were done, which we present in column 5. We no-
tice that the magnetic dipole integral and the relativistic
ns charge density at r =0 are almost the same for ele-
ments up to Ca.* For heavier elements like Hg* and Ra*
the volume isotope-shift values are bigger than the mag-
netic ones by approximately a factor of up to 5. We
present the ab initio values of | ¥,,(0)|?in Table III only
to give a comparison with the semiempirical approxima-
tion as we use only the results of A |W(0)| Z to calculate
the F; factors.

As reviewed in Sec. IIC, essentially two types of
semiempirical approaches are used to calculate the elec-
tronic charge density at the nucleus. The most straight-
forward one is to estimate | ¥,(0) | 2 from the atomic en-
ergy levels for the alkali-metal-like systems according to
the Goudsmit-Fermi-Segré formula [Eq. (14)]. In the cal-
culation the quantity (1 —do/dn) is evaluated from the
energy levels given by Moore.”® The resulting values are
given in the eigth column. It was found that the value of
(1—do/dn) for Hg* of 1.248 given by Kopfermann' is
not correct, it should be 1.17 instead.
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Unfortunately the experimental magnetic dipole in-
teraction constants are only known for some isotopes of
the elements (quoted in Table III) and a complete compar-
ison is therefore not possible. The resulting values ac-
cording to this second semiempirical procedure are given
in column 9.

It is astonishing that the semiempirical values of
| W,,(0)| 2, in columns 8 and 9 are so similar while they
are evaluated in such different ways. The difference to
the ab initio nonrelativistic values in column 5 makes
clear that there are contributions beyond Hartree-Fock.
As these semiempirical values contain experimental infor-
mation they include part of higher polarization and corre-
lation effects which for the ionic transitions are not con-
tained in our ab initio values. On the other hand, the
semiempirical values also include theoretical values like,
e.g., F(ns{,), from rather simple calculations, whereas
the ab initio calculations do not contain any correction
factors [like, e.g., (1—38)] as they are automatically in-
cluded. The semiempirical evaluation of F; in addition
needs the value for §in Eq. (12) and f(Z) in Eq. (11).

In addition, in order to give a complete comparison
with the semiempirical approach, we present in Table III
values of the various correction factors like F(ns;,,), R,
and B which we do not need in our ab initio evaluation of
the electronic factors.

The correction factors F(ns,)(1—38), as defined in Eq.
(17), are given in column 10 from DF results in columns 5
and 7, whereas column 11 presents analogous values cal-
culated with hydrogenic wave functions according to
Kopfermann.!

In columns 12 and 13 we present the relativistic correc-
tion factors R from our ab initio calculation which are
defined as follows:

_ WO

The other approach is to use the experimental magnetic or = > (20)
dipole interaction constants an’" for the ground state of | W(0) | o, nr
the 2S;,, state of the ion according to Eq. (15). As the and
Bohr-Weisskopf correction factor (1—8) and the Breit-
Rosenthal correction (1—e) are taken from Kopfermann! |9, (0) |2
we have to use the hydrogenic factor F(ns;,,) discussed ns ='“%—'2-ei . 1)
below to be consistent. [ Wps(0) | 5
1-K
008+ 2
006 - /?‘/
004} /
x"/x
0021 —
x/ !
X'/,x(/l It 2 1 i L i
10 20 30 40 50 60 70 80 90

Atomic Number Z

FIG. 3. The correction factor X as defined in Eq. (9), presented here as 1 — K.



TABLE V. A summary of ab initio charge density differences and F; values for transitions in neutral atoms and singly ionized group-Ila elements. In addition, semiempirical and
experimental F; values are presented.

4rA | W(0)|? (@u)? F; (GHz/fm?
Wave- ab initio ab initio Expt.
length Nonrel. Rel. Rel. Rel. Rel. Semiempirical Muonic
Spectra Transition (nm) HF DF MCDF DF MCDF GFS Egq. (14) hfs X rays
Bell 25281,,—2p %Py 313.2 10.593 10.676 —0.01672
—2p*Py) 313.1 10.593 10.693 —0.01675
Bel 25%18,—252p P, 235 4.618 3.855 —0.00723 —0.006 04
—252p 3P, 455 6.782 6.019 —0.0106 —0.00943
Mgl 3528,,,—3p P 280.4 23.42 24.94 —-0.1172
—3p 2P, 279.6 23.42 24.94 —0.1172
Mgl 3521S,—3s3p 'P, 285 9.33 11.067 —0.0438 —0.05201
—3s3p’P, - 457 15.60 14.079 —0.0733 —0.066 16
Call 452S,,—4p P\ 397.0 27.0 31.79 —0.2490
—4p Py, 393.5 27.0 31.82 —0.2492
Cal 4521S,—4s54p P, 423.7 13.038 20.348 -0.1021 —0.1594 —0.176(10)*
—4s4p 3P, 657.3 22.136 19.837 —0.1734 —0.1554 —0.182(5)°
Srin Ss 2S|/2 —5p 2P1/2 421.6 45.76 78.48 —1.168 —1.49
—5p 2P, 407.8 45.76 78.90 —1.174
Srl1 55218,—5s5p 'P; 460.7 33.15 51.95 —0.4933 —0.773 1
—35s5p 3P, 689.4 56.14 50.62 —0.8354 —0.7533
Ball 652S,,,—6p P, 493.4 56.5 171.4 —3.759 —4.98° —4.81 —3.80(33)°
—6p 2Py 455.5 56.5 174.5 —3.827
Bal 65%'Sy—6s6p P, 553.5 74.0 136.6 —1.623 —2.996 —3.93¢ —3.04026)f
—656p °P, 791.1 126.2 116.1 —2.768 —2.546 —2.59(22)¢4
Rali 7528,,—Tp P, 463.4 82.5 1145 —39.460
—Tp *P3p 381.6 82.5 1218 —41.976
Ral 75%1S4—7s7p P, 482.7 556 816.0 —19.160 —28.122
—7s7p P, 714.3 882 805.0 —30.394 —27.743

*Reference 74.
"Reference 75.
“Reference 76.
dReference 26.
“Reference 77.
fReference 78.

* =MOT 4O SLJIHS Hd0.LOSI HNNTOA INFANAIId-d1VLS
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TABLE VI. A summary of ab initio charge density differences and F; values for transitions in neutral atoms and singly ionized group-11b elements. In addition, semiempirical and

experimental F; values are presented.

47A | W(0)[* (au)™?

F; (GHz/fm?

Wave- ab initio ab initio Experimental
length Nonrel. Rel. Rel. Rel. Rel. Semiempirical Electronic Muonic
Spectra Transition (nm) HF DF MCDF DF MCDF GFS Eq. (14) hfs X rays X rays

Znil 4s 2S1/2 —>4p 2P1/2 206.3 82.74 119.55 —1.405

—4p *Py 203.6 82.74 119.95 —1.409
Znl 45¥4S,—4s4p P, 2139 61.66 —0.724

—4s4p *P, 307.7 84.04 —0.987
Ccdir 55281 ,,—5p P12 226.5 121.98 296.9 —5.581 —6.39 —6.67

—5p2P;, 214.4 121.98 300.4 —5.647
Cd1 55218,—5s5p ' P, 228.8 167.2 —3.143

—5s5p P, 326.1 2214 —4.162
Hgl 6528,,,—6p P, 194.2 206.1 2160 —67.67 —67.6 —73.4

—6p 2Py, 165.0 206.1 2261 —70.84
Hgl 6521S;—6s56p P, 184.9 1467 —45.96

6p P 253. 1767 —44.9°
—6s6p P, 7 —55.36 445 —53.9(5.3° —57.42.9)
—48.8
Ybl 652S,,,—6p *P1 87.5 472 —12.94 —16.8 —16.2
- —6p°Pyp 87.5 488 —13.38

Ybi 6s*'Sy—6s6p P 398.8 218 277 —5.98 -7.59

—6s6p P, 555.65 343 299 —9.40 —8.20 —11.4¢ —10.9¢

2Reference 72.
Reference 25.
‘Reference 79.
YReference 80.

0s0T
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In the literature there exists another factor RYY which is
obtained with the hydrogenic wave functions®' presented
in column 14. As the relativistic ns wave function for a
point nucleus diverges are r=0, the value at the nuclear
radius ry is used—thus it is defined at

hyd 2
hyd_ | Wns (rn) | el

= T = (22)
TR0 | %

with ry=1.2 43 fm. The comparison between the three
columns shows that there are quite significant differences,
especially for the high-Z elements. The quantities R,
and R are relatively close to each other. There are two

reasons for this. First, the choice to use the charge densi-
ty at the distance ry from the point-nucleus calculations
is a good approximation for the total charge density at
r =0 from an extended-nucleus calculation. Second, the
quantity R,}:,yd, as defined in Eq. (22), is independent of n
and as the total charge density is determined by the 1s
contribution—which in every type of calculation also is
hydrogeniclike—both quantities are very comparable.

In columns 15 and 16 in Table III we present the
screening constant S, defined in Eq. (12), as calculated
from our ab initio HF and DF calculations, respectively.
Similar calculations have been carried out earlier by Wil-
son®>® and Rajnak and Fred® which are in rather good
agreement with our nonrelativistic results. A small differ-
ence exists between the relativistic and nonrelativistic
values. The relativistic value is smaller because the rela-
tivistic ns wave function has a much higher probability in
the vicinity of the nucleus and thus is screened less by the
other electrons.

C. Electronic factors in volume isotope shifts

Finally, the electronic factors F; for the resonance tran-
sitions of ions, and neutral atoms of the Ila and IIb ele-
ments are presented in Tables V and V], respectively. The
experimental wavelengths for these transitions are given
in column 3, the changes of the charge densities
47A | W(0) | % are presented in columns 4—6. They have
been calculated from the total charge densities at the nu-
cleus (at r =0) for the particular states with our ab initio
HF, DF, and MCDF methods.

The comparison of nonrelativistic and relativistic
single-configuration calculations of A |W(0)|? shows an
even larger increase of the charge densities at the nucleus
for higher Z compared to the increase of the total charge
density; for Ra it is a factor of 13 already. The electronic
factors F; from the relativistic DF and MCDF results cal-
culated according to Eq. (8) are presented in columns 7
and 8. The MCDF calculations, which include the con-
figurations discussed in Tables I and II, change the F;
factors quite drastically for all elements presented here.
The difference between the F; values for the 1§,— 1P,
and 'S,—°>P, transitions, which can be seen for the DF
results in column 7, becomes much smaller and is even in-
verted in the MCDF calculations in column 8. The

reason for this behavior is the strong contribution of the
np(n —1)d configuration in the 'P; state which can be
seen in Table II and which is not present very strongly in

the MCDF calculations of the 3P, level.

These ab initio results of the F; values will now be
compared with the semiempirical estimates. To do this
the semiempirical values | ¥,(0) |2 obtained in Table III,
columns 8 and 9, have to be introduced in Eq. (12) and
then in Eq. (11) to calculate the F; factors. This means
that the values for 8 and f(Z) have to be known as well.
To be consistent we use the nonrelativistic B values in
Table III, column 15, and f(Z) is taken from Babush-
kin.*6 The resulting F; values for the transitions dis-
cussed are presented in columns 9 and 10 of Tables V and
VI. We present in these tables only a few semiempirical
F; values because Babushkin has given his f(Z) values
for only a small number of elements. Of course, one
could use the values R from Eq. (22) instead. To be
consistent we leave it to the reader to calculate the F;
values in this different way from the values given in Table
III. The F; values of transitions in the neutral systems
are usually connected to the F; values of the ions by
slopes in King plots. If such experimental data are not
available the F; values of the neutral systems can be con-
nected to the F; values of the ionized systems by use of
Eq. (13).

As an overall trend it can be seen that the semiempiri-
cal F; values are larger in nearly all cases than the
ab initio ones. In most cases the difference amounts to
about 30%. The only exception from this trend is Hg. It
is impossible to comment these findings in a physical way.
The ab initio calculation is a straightforward consistent
method only dependent on the quality of the MCDF
method to describe the charge density at the nucleus in
two different fully self-consistent calculations. On the
other hand, the semiempirical calculations, which we have
discussed in detail, are a mixture of expérimental, sem-
iempirical, and partially simple theoretical results. It is
astonishing that these semiempirical methods are at all
good enough that the agreement with a purely theoretical
method is within 30% or better. Of course, we do not
want to claim that the MCDF method leads to exact re-
sults, but a careful analysis of the configurations used in
the multiconfiguration calculations allows us to claim
that most of the relevant configurations are taken into ac-
count. A bit of evidence that this statement may be
correct comes from the comparison with the results of
columns 12 and 13 where we present the experimental
values of the electronic factors F; derived from a com-
bination of optical isotope-shift data and 8(r2)#4" ob-
tained in electronic and muonic x rays. The few values
which are available show better agreement with our
ab initio results than with the semiempirical results.

IV. CONCLUSIONS AND OUTLOOK

Although Ila and 115 elements in first approximation
are relatively simple two-electron systems, they are still
not understood in great detail; the theoretical description
is not yet very satisfying. On the other hand, from the ex-
perimental point of view we have a very good knowledge
of the various different quantities like atomic energy lev-
els, fine-structure splittings, hyperfine-structure constants,
lifetimes, etc., for low-lying states as well as different



2052 G. TORBOHM, B. FRICKE, AND A. ROSEN k]|

Rydberg series.

In the analysis of the experimental data it is essential to
do the analysis on an ab initio basis and to try to explain
as many experimental quantities as possible with the
available theory. Isotope-shift and hyperfine-structure
data are, in this respect, of special interest as they are
especially sensitive to that part of the wave functions in
the vicinity of the nucleus where the inclusion of relativity
is especially important. This also means that results from
other experimental areas like electronic and muonic x rays
can be used as a test for the calculations.

The MCDF method used here is the most general
ab initio relativistic method nowadays applicable to all
elements of the Periodic Table. Of course, e.g., perturba-
tion expansion methods or the random-phase approxima-
tion are even more accurate, but can be used only either in
certain parts of the periodic system or in certain configu-
rations. The practical problem and the disadvantage of
the MCDF method is that additional configurations,
which are used together with the main configuration, have
to be picked from an infinite possible number of configu-
rations. The hope is that the few configurations which
are included in the calculations contribute dominantly.

The calculations presented here show that this pro-
cedure is possible more or less as far as the volume isotope
shift is concerned. The F; values of the resonance transi-
tions of the Ila and I1b elements, discussed in this paper,
are described fairly well, which definitely shows that the
multiconfiguration contributions have to be included.
Thus part of the correlation as well as the full effect of
the extended nucleus and relativity is included fully self-
consistently in such calculations. On the other hand, the

semiempirical method used to describe the F; values
shows that in this method a large number of approxima-
tions, experimental values, and semiempirical formulas
are mixed together. It is astonishing that so many groups
still use these semiempirical approaches which include
such a large number of corrections, although it is possible
today to use standard theoretical methods like DF or
MCDF to obtain ab initio values of good accuracy.

With this review for all Ila and I1b elements we would
like to urge the experimentalists to try to reanalyze their
IS data in a consistent way with this complete set of F;
values for all these elements.

As an outlook one may say that the MCDF method is a
very valid method to calculate electronic factors with rela-
tively good success for a large number of configurations
in the whole region of elements of the Periodic Table. A
lot of work is needed to refine and ease this method as
there are still practical problems with the picking of the
configurations, its inclusion in all general cases, and its
numerical convergence.
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