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Ifwe insert this into eq. (1), the DFS equations reduce to the
matrix eigenvalue problem

then the symmetry orbitals are expanded in atomic basis
functions qJk' which are Dirac-spinors

(6)

(5)

(7)

(4)

(1)

(3)

(8)

(9)

XA(r, a) = L qJk(r, s) • dkl ·
k

hc = SCE

(
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Vex(r) = - 3a 8n e(r) ,
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With h the Fock, S the overlap, and C the coefficient-matrix.
The eigenvalue matrix E is diagonal.

As already mentioned above, we use numerical atomic
DFS wave functions as basis functions. The disadvantage of
this is that all matrix elements have to be calculated numeri­
cally. The advantage, on the other hand, is that only a small
number of basis functions is sufficient, and that the contribu­
tions of the negative continuum will probably be small [9]. In
addition, since we are using separated atom as weIl as united

The solution of the coupled differential equations (1) has to
be found by SCF-iterations. To actually solve the equations
for the two-dimensional case we expanded the molecular
wave functions in atomic basis functions. The wave functions
t/J v are expanded first in symmetry orbitals Xl

V~ C ( ) fd I Q(r
/)

r = r Ir _ r/l'

and the exchange potential part by

vone = _ e2 L Z K •

K Ir - RKI

The direct potential part is given by

description of the basis-set errors are given:
The one-particle Dirac-Fock-Slater (DFS) equation

reads:

with the electron density

Q(r) = e2 L t/J: (r, s)t/Jv(r, s).

The effective one-particle DFS-operator is given by

h1JFS = ca,· p + Bmc' + Vnuc + 0 + Vex
, (2)

with a, and ß the usual Dirac matrices. The operator Vnuc

represents the electron-nucleus interaction potential

* Paper presented at the Adriatico conference "Relativistic Many-Body
Problems", Triests, June 3Q-July 4, 1986.

Abstract

2. The Dirac-Fock-Slater method and numerical procedure

The general method of a relativistic DFS-calculation in mol­
ecules has been described in various papers [4-8], for details
see Ref. [4]. Therefore, only those formulas needed for the

A fully relativistic four-component Dirac-Fock-Slater program for dia­
tomies, with numerically given AO's as basis functions is presented. We
discuss the problem of the errors due to the finite basis-set, and due to the
influence of the negative energy solutions of the Dirac Hamiltonian. The
negative continuum contributions are found to be very small.

1. Introduction

The development of ab initio relativistic molecular codes is
necessary in order to understand essential areas of molecular
and atomic scattering physics in a more quantitative way.
The first area is the influence of relativity on the chemistry of
molecules which contain one or more heavy atoms. The
second area is the physics of nearly adiabatic ion-atom col­
lisions where - when inner shells are involved - even for
small Z nuclei the effectof relativity becomes important. So far
various approximations have been used to include relativity
in molecular calculations. A list of references is given in
Ref. [1].

Because we are mainly interested in the ion-atom scatter­
ing problem, we restricted ourselves to the development of a
two-dimensional program which allows to calculate diatomic
or linear molecules at all interatomic distances.

One ofthe major problems was the selection ofthe type of
basis functions. The experience of quantum-chemistry in the
choice of optimized basis-sets (Slater- or Gauss-type func­
tions) is primarily restricted to distances close to or larger
than the equilibrium distance, and to non-relativistic systems.
Only recently optimized Gaussian basis-sets for relativistic
calculations have been presented [2, 3]. But for the scattering
process we need a solution of the problem for internuclear
distances between zero and chemical distances. We, therefore,
have chosen numerical atomic DFS-functions, which allow a
more physical adaptation to the various distances.

In the first part of the paper we describe the Dirac-Fock­
Slater method as weIl as the choice of our basis and the
pre-orthogonalization procedure. In the main part of this
paper we discuss a measure for the errors of the energy
eigenvalues due to the incompleteness of the basis-set
(truncation errors), and due to the contribution of the nega­
tive energy continuum (variational collapse errors).
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atom DFS atomic wave functions, the basis-set already
includes the exact eigenfunctions of eq. (1) at the internuclear
distance zero as weIl as infinity. Moreover, the kinetic energy
matrix elements can be calculated by a simple integration,
thus avoiding numerical differentiation [5, 10]. The numeri­
cal procedure to actually calculate the overlap- and Fock­
matrix elements is either a transformed Gauss-Laguerre
integration in elliptic hyperbolic coordinates or a multi­
center integration. The number of points needed in the two­
dimensional grid is about 30 x 40 in order to obtain an accu­
racy of 10-5-10- 6

• The direct part V C ofthe electron-electron
potential is calculated from the electron density (]by numeri­
cal solution of the Poisson equation [4, 11].

Table I. Energy eigenvalues and variance of inner shell elec­
trons 0/ Ar+-Ar+ at R = 0.7 a.u.

State ev[eV] bev[eV]

1(lj2)g 3207.1 8.9
I(l j2)u 3206.3 11.6
2(lj2)g 553.4 125.6
2(lj2)u 372.2 41.7
1(3j2)u 370.9 38.0
3(lj2)g 326.5 20.4
3(lj2)u 325.4 61.3
4(lj2)g 276.0 15.3
I (3j2)g 274.0 9.2
4(lj2)u 132.5 49.2

We now decompose the total correction (16) into the con­
tributions from states t/J~+ with 8~+ > 8vand from states t/J~­

with e~_ < ev :

above we calculated the variance <5ev of the effective one­
particle Hamiltonian h = fiDFS in all states t/Jv

c5ev = «vlJl2lv) - <vlhlv)2)1 /2. (10)

A vanishing <5ev would mean that the state t/J v is an exact
eigenstate of h. For the occupied states of our calculations on
the system Ar" -Ar+ for internuclear distances above 0.5 a.u.
this variance was always smaller than or in the order of
100 eV with a typical value of 30 eV. As an example the results
of a calculation at R = 0.7 a.u. for core electrons are given in
Table I. To interprete the calculated non-zero value of the
variance c5ev let us consider the following [17]: Let P. be the
projector onto the subspace Yfp of the total Hilbert space Yf,
spanned by the finite number of atomic basis functions used.
The projector onto the complementary space JtQ is given by
Q = 1 - P. In actual calculations one then constructs the
eigenvalues and eigenstates of the Hamiltonian

Using the standard Feshbach formalism the eigenvalue
equation in the subspace Jtp with the exact ev is given by

( hpp + hpQ Qh hQp) l/Iv = evl/l v, l/Iv E Yfp. (13)
8v - QQ

Using first order perturbation theory the second term of
eq. (13) leads to the correction ~8v of the eigenvalue 8e.

~Gv = (",elhPQ G
v

_Qh
QQ

hQpl",e). (14)

Inserting a complete set of eigenstates t/J~ of hQQ in Q-space

hQQt/J~ = 8~ t/J~, t/J~ E YfQ (15)

into eq. (14) we get

~G = L <",elhl"'~) <"'~Ihl",e) . (16)
v J-lEQ 8v - 8~

3. Choice of specific basis functions and
pre-orthogonalization

In non-relativistic quantum calculations the parameters for
optimized sets of basis functions were derived in the past.
Such a knowledge is not yet generally available for relativistic
calculations. This is even more true for our case due to three
reasons: First, we do not use Slater or Gauss-type orbitals,
second, we need a good basis for all internuclear distances,
third, we also describe molecules with very heavy atoms.

As usual, of course, the first step is a minimal basis-set
consisting of fully or partially occupied atomic levels of
the separated atoms or - in the case of small internuclear
distances - the levels of the united system. Large improve­
ments are obtained by adding basis functions which are
approximately 20% larger or smaller in size than the minimal
basis functions. The most substantial improvement of the
basis-set especially at small and intermediate internuclear
distances is the addition of so-called monopole basis func­
tions, which are a solution of the atomic problem in the
monopole part of the molecular nuclear potential [4].

Because the non-orthogonal basis functions are of limited
accuracy it is important to pre-orthogonalize them and to
remove the linear-dependent part of the basis-set. We incor­
porated various methods, like the canonical or the Gram­
Schmidt orthogonalization procedure [12], where one still has
the possibility to define in which order the basis functions
shall be orthogonalized.

The reason to struggle very hard for a physically adequate
basis is threefold: First, the use of any finite basis leads to a
truncation error which one must try to minimize. Second, the
10ss of numerical accuracy due to non-orthogonality must be
kept small. Third, spurious contributions of the positron
continuum to the calculated (occupied) electron eigenfunc­
tions of h1JFS have to be kept small. The latter error is known
as "variational collapse" [13]. Its connection with the Brown­
Ravenhall desease [14], and the reason why our method
includes an implicit projection operator, which excludes the
negative energy states of the Dirac operator, is given in
Ref. [9]. The basic theoretical papers which deal with the
projection operators on the negative energy states are given
in Refs. [14] and [15]. The results of actual DFS molecular
calculations may be found in Refs. [4], [11], and [16].

h~p = PhP

in the subspace ~:

hppt/Je = eet/Je, t/Je E Jtp.

(11)

(12)

(17)

4. Error bounds for the eigenvalues and variance of the
Hamiltonian

In order to get information on the three errors discussed

with

L <",e 'hl"'~± ) <~~± Ih,,,,e) .
J-lEQ± ev - 8J-l±

(18)
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(23)

Now the summation can be further extended to all states of
Hilbert space because

These partial errors are upper and lower bounds for the error
of the energy eigenvalues

Acknowledgements

One problem remains: The errors due to the numerical
calculations ofthe matrix representations ofthe Hamiltonian
h are not explicitly discussed in this chapter. Nevertheless,
they contribute to the calculatd value of bev since eqs. (10) and
(23) are not equivalent. This non-equivalence arises because
we calculate the matrix elements of hand ofhL independently.
So except for accidental cancellation of errors the calculated
value of the variance is also a measure for the numerical
integration errors.

5. Conclusions

The DFS program for diatomic molecules presented here is
able to perform quite accurate fully relativistic ab initio
calculations in reasonable time. Without using any projection
operators onto the positive energy states we are able to
demonstrate that:

(a) the basis is sufficiently complete to calculate the inner
shellieveis with an accuracy of about 1eV. and

(b) the basis does not contain any observable contribu­
tions of the negative energy eigenspace of h.

This gives us the confidence that this type of calculation is
a tool to perform accurate fully relativistic ab initio calcu­
lations at the Hartree-Fock-Slater level in molecules or in
quasi-molecules, where the inner levels are affected by rela­
tivistic effects even for atoms with small Z.

We would like to thank Prof. W. H. E. Schwarz for a number ofvery helpful
discussions in the course of this work.

(19)

(22)

(21)

(20)

V, VI E P

~e~(ev - e~±) ~ L 1<t/Jvlhlt/J~>12.
JIEQ

since the numerators in eq. (18) are positive definite. We now
introduce the mean excitation energies e~± of the Q ±-spaces
which changes eq. (18) to

+ I" 0'" 0 2Ae;- = 0 c: I<t/Jv Ihlt/JJI± >I .
ev - eQ± JIEQ±

Extending the summation to the whole Q-space yields bounds
for the corrections ~e~

Equation (21) then reads

~e~ (s, - e~±) ~ (bev)2. (24)

Of course, the mean excitation energies e~± are not known,
but we can get even larger bounds for ~e~ if we replace the
differences lev - e~± I by

[s, - 8~+ I == Min [s, - e~± I ~ [s, - e~± I. (25)
- JIEQ±

(t/Jelhlt/Je, > = 0 for v i= VI;

and we get

L I(t/Je Ihlt/J~ >12= L I(t/Jelhlt/J~ >12- I(t/Je Ihlt/Je >12= (bev )2.
JIEQ JI

The energy difference ev - 8~_ for excitations to the nega­
tive continuum is (at least) of the order of Zmc", With the
values of3ü-100eV for bev in the example Ar t-vAr" as dis­
cussed at the beginning of the chapter we find that the error
~e; is less than 10 meV even if the whole variance bev should
turn out to be due to contributions ofthe negative energy part
of the basis-set; however, we expect that the main part of bev

is due to the imcompleteness of the basis-set in the positive
energy part. An indication of this supposition is the fact that
in all tested cases an increase of the basis set leads to a small
decrease of the energy eigenvalues.

An estimate for the error ~e: is more difficult as there is
no gap between the calculated eigenvalues e~ and the eigen­
values e~+ in ~Q+ . The lower bound of e~+ in general will be
even lower than the upper bound of the calculated eigen­
values e~. However, all eigenvalues e~+ must be higher than
those calculated eigenvalues e~ which are sufficiently close to
the exact eigenvalues. At least this is assured for all the
occupied levels as indicated by their relatively low values of
the variance bev • A crude measure for 8~+ is, therefore, the
energy of the last occupied level. Using this bound for the
mean excitation energy 88+ we find that the error, due to the
truncation of the basis-set, for instance for K-shell electrons
in the scattering system Ar " -Ar", is less than 1eV. Of
course, no useful bounds for the truncation error for the
valence electrons can be given [18] since the energy denomi­
nator in eq. (26) is too small.

So we have finally

ße; ~ (&v~:.
s, - eQ±

(26)
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