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Zusammenfassung

Software De�ned Radio (SDR) bezeichnet eine neue Art, drahtlose Kommunikations-
geräte zu entwickeln. Zentral ist hierbei die Nutzung von Softwaremodulen zur Steuerung
der Radio-Funktionalitäten wie Modulation und Demodulation, Signalerzeugung, Kodi-
erung sowie Generierung der Verbindungsschicht. Im Gegensatz zur herkömmlichen
Bauweise drahtloser Geräte, welche die Radio-Funktionalitäten hauptsächlich als Hard-
ware realisiert, stützt sich SDR auf die Programmierbarkeit und Kon�gurierbarkeit
der zugrundeliegenden Hardwaremodule. Dies erlaubt beispielsweise die Anpassung
eines bestehenden Gerätes an ein neues Kommunikationsprotokoll wie z.B. IEEE 802.11
WLAN durch einfaches Softwareupdate.

Ein Kommunikationsprotokoll umfasst typischerweise eine physikalische Übertra-
gungsschicht und eine Kontrollschicht (media access control, MAC). Die physikalische
Schicht führt dabei Signalverarbeitungsoperationen (z.B. Modulation und Demodula-
tion) durch, um Bitströme in MAC-Pakete zu wandeln (empfängerseitig) bzw. MAC-
Pakete in Bitströme (senderseitig). Die MAC-Schicht erledigt die zur Kommunikation
zwischen verschiedenen Netzwerkknoten notwendigen Adressierungs- und Zugri�skon-
trollfunktionen.

Im Allgemeinen unterliegen Kommunikationsprotokolle bestimmten Echtzeit Bedin-
gungen, beispielsweise muÿ das IEEE 802.11aWLAN-Protokoll Daten mit einer Geschwi-
ndigkeit von 54 Mbit/s verarbeiten. Zusätzlich sind die benutzten Algorithmen der
physikalischen Schicht (z.B. Viterbi-Algorithmus) sehr rechenintensiv. Daher ist eine
hohe Verarbeitungsgeschwindigkeit eine der Hauptanforderungen für SDR-Hardware-
plattformen. Weil batteriegetriebene SDR-Hardware strengen Stromverbrauchsgrenzen
unterliegt, kann diese erforderliche Verarbeitungsgeschwindigkeit nicht durch Erhöhung
der internen Taktrate erreicht werden. Stattdessen setzen diese Architekturen auf Par-
allelisierung, wenden also mehrere Arithmetik- und Signalverarbeitungseinheiten gleich-
zeitig an.

Die Entwicklung von Programmen für parallele Architekturen ist schwieriger als die
Entwicklung von serieller Software, da Entwickler hierbei mit zusätzlichen Aufgaben
konfrontiert sind: Identi�zierung paralleler Vorgänge (Tasks), Berechnung von Mapping
(Zuweisung von Tasks auf die verfügbaren Verarbeitungseinheiten) und Scheduling (Er-
stellung der Ausführungsreihenfolge der Tasks) sowie Einbau von Synchonisierungen, um
die gewünschte Ausführungsreihenfolge über die verschiedenen Verarbeitungseinheiten
hinweg zu gewährleisten.

Sowohl Mapping als auch Scheduling sind hardwarespezi�sch. Als Beispiel kann
eine Applikation angenommen werden, die aus vier parallelisierbaren Tasks besteht.
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Diese Applikation soll auf zwei unterschiedlichen Hardwareplattformen ausgeführt wer-
den; eine Plattform erlaubt die parallele Ausführung aller vier Tasks, die andere Plat-
tform erlaubt lediglich zwei gleichzeitige Tasks. Zusätzlich können die Funktionen
der Applikation hardwarespezi�sch sein. Während z.B. die SDR-Plattform SB3010
POSIX-Funktionen zur Tasksynchronisierung nutzt, kommen auf der Hardware Ade-
lante VD3204x EVP-spezi�sche Funktionen zum Einsatz.

Derzeit �ndet die Entwicklung von SDR-Applikationen mit plattformspezi�schen
Toolchains statt. Jede Hardwareplattform bestimmt also ihre jeweilige Entwicklung-
sumgebung. SB3010 beispielsweise wird mit der Sandblaster-Entwicklungsumgebung
(Sandblaster IDE) ausgeliefert. Diese nutzt POSIX-C als Applikations-Beschreibungs-
sprache. Hinzu kommt ein optimierender POSIX-C Compiler, Debugger und Pro�ler.
Durch Kenntnis der Zielhardware kann dieser Compiler e�ziente Executables erzeugen.

Das aktuelle Vorgehen bei der Entwicklung von SDR-Applikationen ist hardware-
abhängig, d.h. Entwickler beschreiben eine Applikation (ein Kommunikationsprotokoll)
in einer plattformspezi�schen Sprache wie z.B. POSIX-C, einschlieÿlich des Mappings,
Schedulings und der Synchonisierungen. Folglich ist die Programmierung komplex, er-
fordert vorherige Kenntnis der Zielhardware und kann nicht parallel mit der Hardwa-
reentwicklung durchgeführt werden, darüberhinaus sind die Applikationsbeschreibungen
nicht portabel.

Um diese Komplexität zu mindern, ist ein Programmierkonzept wünschenswert,
welches die Beschreibung einer Applikation von ihrer Implementierung auf einer spezi�s-
chen Hardware trennt, also ein Konzept, das es dem Entwickler erlaubt, die Applikation
hardwareunabhängig zu beschreiben und dann mithilfe eines Compilers in ausführbaren
Code umzusetzen. Leider wird ein solches Programmierkonzept bislang von keiner heuti-
gen Programmierumgebung unterstützt.

Diese Arbeit führt ein derartiges Programmierkonzept unter dem Namen Virtual
Radio Engine (VRE) ein und beschreibt den Prototyp einer Programmierumgebung, die
vom Autor zur Überprüfung des Konzepts implementiert wurde. Es ist zu beachten, daÿ
der Schwerpunkt auf der Entwicklung von VRE zur Auslegung und Implementatierung
der physikalischen Schichten von SDR-Applikationen liegt.

Bei VRE besteht die Entwicklung einer Applikation aus zwei Schritten. Zunächst
wird die Applikation in hardwareunabhängiger Form spezi�ziert. Im zweiten Schritt
erfolgt die hardwarespezi�sche Implementierung (gröÿtenteils) automatisch durch eine
Toolchain. VRE de�niert eine eigene Sprache, die die Beschreibung von Applikationen
(z.B. für WLAN) in plattformunabhängiger Weise erlaubt. Eine derartige Beschreibung
wird bei VRE als plattformunabhängiges Modell (PIM) bezeichnet.

Ferner de�niert VRE einen Compiler, bestehend aus einem Compiler-Kern und einem
Code-Generator. Der Compiler-Kern transformiert ein PIM in eine weitere Ebene der
Programmbeschreibung namens PSM = plattformspezi�sches Modell. Wie das PIM
wird das PSM in der VRE-eigenen Sprache dargestellt. Im Unterschied zum PIM en-
thält das PSM aber das hardwarespezi�sche Mapping und Scheduling sowie die Syn-
chonisierungen. Dies wird vom Compiler aus dem PIM sowie aus weiteren notwendigen
Dateien erzeugt, welche die hardwarebezogenen Informationen enthalten.

Aus dem PSM erzeugt der Code-Generator ein plattformspezi�sches Quellcode-Prog-



ramm (PSSP). Dieser Quellcode liegt in der plattformspezi�schen Sprache (z.B. POSIX-
C) vor, zur weiteren Verarbeitung durch den plattformspezi�schen Compiler (z.B. POSIX-
C-Compiler). Die hieraus hervorgehenden Executables sind nun auf der Zielhardware
lau�ähig.

Die VRE-Toolchain läuft halbautomatisch ab. Dies bedeutet, daÿ Entwickler die
Executables aus einem PIM Schritt für Schritt automatisch erzeugen, den Code nach
jedem Schritt aber auch manuell optimieren können.

Diese Arbeit trägt mit fünf Schwerpunkten zur Entwicklung von VRE bei: Zu
allererst wurde die VRE-Sprache entwickelt mit dem Ziel, sowohl PIM als auch PSM
zu genügen. In einem PIM beschreiben Entwickler keine Hardwarespezi�ka, sondern
Einschränkungen des Schedulings, d.h. Abhängigkeiten zwischen Tasks. Produziert ein
Task T1 Daten, die von einem anderen Task T2 konsumiert werden, muss T1 vor T2
ausgeführt werden. Im Detail existieren drei Abhängigkeitstypen: Nachrichtengekop-
pelte, speichergekoppelte und kontrollgekoppelte Abhängigkeiten. Nachrichtengekop-
pelte Abhängigkeiten entsprechend einem direkten Daten�uÿ zwischen Blocks; ein Task
ist ausführbereit, wartet aber auf Input aus einem anderen Task. Speichergekoppelte
Abhängigkeiten entstehen bei mehreren Tasks, die auf den gleichen Speicherbereich zu-
greifen, sobald mindestens ein Zugri� davon schreibend ist. In Schleifen und bei Verzwei-
gungen entstehen kontrollgekoppelte Abhängigkeiten. Diese bestimmen das Ablaufver-
halten, z.B. eine Schleife die iterative Ausführung von Tasks.

Das PSM-Format erlaubt es Entwicklern, ein Programm mit weniger Aufwand zu
verstehen und zu optimieren, als dies in einer plattformspezi�schen Sprache der Fall
wäre.

Als zweiter Schwerpunkt wurde Mathwork's Simulink-Tool in die VRE-Toolchain
integriert, um PIMs beschreiben zu können. Im Rahmen dieser Arbeit wurden ver-
schiedene Workarounds aufgezeigt, die es erlauben, ein PIM mit Simulink abzubilden,
obwohl sich das Beschreibungskonzept für Applikationen bei Simulink von dem von
VRE unterscheidet. Simulink wurde gewählt, da derzeit noch keine spezi�sche Umge-
bung zur Beschreibung von VRE-Applikationen existiert. Desweiteren ist Simulink in
der Kommunikationsindustrie weit verbreitet und wird daher das intuitive Verstehen der
Applikationen und die Eingewöhnung für neue Entwickler erleichtern.

Dritter Schwerpunkt war die Identi�zierung der hardwarespezi�schen Informationen,
die für den VRE Compiler-Kern notwendig sind. Dies umfaÿt beispielsweise die Anzahl
der Verarbeitungsmodule, die unterstützten Typen von SIMD-Befehlen etc. Es wurde
zusätzlich ein geeignetes Format für diese Dateien gewählt.

Die Entwicklung des Prototyps des VRE Compiler-Kerns für die SDR-Hardwareplatt-
form SB3010 war der vierte Schwerpunkt. Es handelt sich um einen parallelisieren-
den Compiler; dieser identi�ziert automatisch mögliche Tasks, bereinigt bestimmte Ab-
hängigkeiten, berechnet Mapping und Scheduling und fügt Synchonisierungen ein.

Im fünften Schwerpunkt wurde experimentell ein PIM entworfen und erfolgreich
für den IEEE 802.11b-Empfänger übersetzt. Das Experiment zeigt, daÿ Simulink zur
Beschreibung von PIMs genutzt werden kann und VRE die Programmierung von Tasks
erleichtert. Beispielsweise benötigt der Entwickler weniger Zeit, eine Applikation als
PIM in Simulink zu formulieren, als diese Applikation in einer plattformspezi�schen



Sprache wie POSIX-C zu schreiben.
Einschlieÿlich der Einführung umfasst diese Dissertation neun Kapitel. Kapitel 2

beschreibt das Konzept und die Vorteile von SDR, stellt einige aktuelle SDR-Hardware-
plattformen vor und gibt einen Überblick über SDR-Applikationen.

Kapitel 3 diskutiert die aktuellen Entwicklungskonzepte für SDR-Applikationen und
ihre Nachteile. Es werden zusätzlich Entwicklungsumgebungen für signalverarbeitende
Applikationen vorgestellt, die zur Entwicklung von SDR-Applikationen in Frage kommen
und ihre Beschränkungen aufgezeigt. Ferner beschreibt das Kapitel die existierenden
Herangehensweisen zur Programmierung paralleler Maschinen jenseits von SDR und
stellt ihre Unterschiede zu VRE dar.

Kapitel 4 führt die VRE-Sprache ein. Zunächst werden die Entwicklungsziele darge-
legt und die Gründe für die Wahl einer visuellen Sprache genannt. Im Anschluss werden
Syntax und Semantik der Sprache dargestellt und die Repräsentation von PIMs und
PSMs erläutert.

Kapitel 5 beschreibt das Simulink-Tool und die Gründe, dieses Werkzeug in die VRE-
Toolchain zu integrieren. Ferner enthält das Kapitel Richtlinien zur Repräsentation von
PIMs mit Simulink.

Kapitel 6 gibt einen Überblick von IEE 802.11b WLAN und beschreibt das durchge-
führte Experiment, einen IEEE 802.11b WLAN-Empfänger als PIM mit Simulink abzu-
bilden.

Kapitel 7 stellt Inhalte und Formate der Hardware-Beschreibungsdateien vor. Es
erklärt, warum diese Inhalte vom Compiler benötigt werden.

Kapitel 8 befasst sich mit dem Compiler-Kern. Vornehmlich wird an Beispielen
gezeigt, wie der Compiler-Kern Tasks erkennt, Abhängigkeiten zwischen Tasks bewertet
und einige von diesen au�ösen kann, Mapping und Scheduling berechnet sowie benötigte
Synchonisierungen einfügt.

Das abschlieÿende Kapitel 9 zieht das Fazit der Arbeit und diskutiert mögliche
zukünftige Arbeiten im Hinblick auf eine Weiterentwicklung von VRE.



Abstract

Software De�ned Radio (SDR) hardware platforms use parallel architectures. Current
concepts of developing applications (such as WLAN) for these platforms are complex,
because developers describe an application with hardware-speci�cs that are relevant
to parallelism such as mapping and scheduling. To reduce this complexity, we have
developed a new programming approach for SDR applications, called Virtual Radio
Engine (VRE). VRE de�nes a language for describing applications, and a tool chain
that consists of a compiler kernel and other tools (such as a code generator) to gen-
erate executables. The thesis presents this concept, as well as describes the language
and the compiler kernel that have been developed by the author. The language is
hardware-independent, i.e., developers describe tasks and dependencies between them.
The compiler kernel performs automatic parallelization, i.e., it is capable of transforming
a hardware-independent program into a hardware-speci�c program by solving hardware-
speci�cs, in particular mapping, scheduling and synchronizations. Thus, VRE simpli�es
programming tasks as developers do not solve hardware-speci�cs manually.
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Chapter 1

Introduction

1.1 Motivation

Software De�ned Radio (SDR) is a recent approach for building wireless communication
devices, which is characterized by the use of software modules to control radio function-
alities such as modulation and demodulation, signal generation, coding, and link layer
generation [26]. In contrast to the traditional way of building wireless devices, where
radio functionalities are mainly implemented in hardware, it builds on the fact that the
underlying hardware modules for digital radio systems are both reprogrammable and
recon�gurable, i.e., a device can be easily adapted to a new communication protocol
such as WLAN by simply replacing the software.

A communication protocol typically includes a physical layer and a medium access
control (MAC) layer. The physical layer performs signal processing operations (such
as modulation and demodulation) to convert streams of bits into MAC packets (on the
receiver path) and MAC packets into streams of bits (on the transmitter path). The
MAC layer performs addressing and channel access control operations that are required
to communicate between network nodes. See [57] for further details.

In general, communication protocols have real-time requirements, e.g., the IEEE
802.11a WLAN protocol must process data at a rate of 54 Mbit/s. On the other hand,
their physical layer algorithms (such as the Viterbi algorithm) are computationally com-
plex. Therefore, one of the key requirements for SDR hardware platforms is high pro-
cessing speed. As the battery-driven SDR hardware has a strict low power consumption
budget, the required processing speed cannot be obtained through increasing the inter-
nal clock frequency. Instead, the architectures use parallelism, i.e., they deploy multiple
arithmetic and signal processing units simultaneously.

Developing a program for a parallel platform is harder than developing a program
for a serial platform, since developers have to deal with additional programming tasks:
identi�cation of parallel activities (tasks), computation of mapping (assigning tasks to
processing modules) and scheduling (de�ning execution order of tasks), and insertion
of synchronizations that ensure a desired execution order of tasks running on di�erent
processing modules.

Both mapping and scheduling are hardware-speci�c. Assume, for instance, that we
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1.2 New Programming Concept for SDR

are developing an application that consists of four tasks with potential to run in parallel.
Further assume that the application shall run on two di�erent hardware platforms, one
consisting of four and the other of two processing modules. Therefore, on the �rst
platform, all four tasks can be run simultaneously, but on the second platform at most
two tasks can be run at a time. Moreover, the functions themselves are hardware-
speci�c. For example, SB3010 [48] uses POSIX functions [5, 28] to synchronize tasks,
whereas Adelante VD3204x [51] uses EVP-speci�c functions [12].

At present, software development for SDR is performed with platform-speci�c tool
chains, i.e., every platform de�nes its own application development environment. SB3010,
for instance, comes with the Sandblaster Integrated Development Environment (Sand-
blaster IDE), which uses POSIX-C as its application description language, along with
an optimizing POSIX-C compiler, debugger, simulator and pro�ler. From its knowledge
of the target hardware, the compiler generates e�cient executables.

The current programming concept for SDR applications is hardware-dependent, i.e.,
developers describe an application (communication protocol) in a platform-speci�c lan-
guage such as POSIX-C including mapping, scheduling, and synchronizations. Hence,
programming is complex:

• Developers need prior knowledge about the target hardware.

• Software development cannot be started in parallel with hardware development.

• Application descriptions are not portable.

To reduce this complexity, a programming concept is desirable that separates the
description of an application from its implementation on a speci�c hardware, i.e., that
allows developers to describe an application in a hardware-independent way and then
deploys a compiler to produce executable code. Unfortunately, such a programming
concept is not yet supported by any programming environment available today.

This thesis introduces a corresponding programming concept and describes a pro-
totype of a programming environment that the author has implemented to verify the
concept. The concept is described in the next section.

It is important to mention here that, there are concepts available that enable us to
describe a program in a platform-independent way and de�ne an interpreter to run the
program on a platform. Java [49], for instance, de�nes a language to describe platform-
independent programs and an interpreter, called Java Virtual Machine (JVM), to run
Java programs on platforms for which JVM is available. However, such concepts are
not quite suitable for developing real-time applications, as a program running on an
interpreter is relatively slow as compared to a compiled, e.g., C program.

1.2 New Programming Concept for SDR

The research work presented in this thesis has been performed as part of the Virtual
Radio Engine (VRE) project at Siemens AG in co-operation with the Department of
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1.2 New Programming Concept for SDR

Electrical Engineering and Computer Science of the University of Kassel, and the De-
partment of Computer Engineering of the University of Duisburg. The goal of the
project has been development of a new and e�cient programming concept (called VRE)
for SDR applications. This thesis concentrates on the development of VRE for designing
and implementing physical layers of SDR applications∗. Some results of this thesis have
already been published in [17, 18, 19, 20]. The VRE concept for MAC layers is presented
in [22, 23].

Fig. 1.1 presents an overview of the VRE concept. In VRE, the development of an
application is performed in two steps. First, the application is speci�ed in a hardware-
independent way and then, in a separate step, the hardware-speci�c implementation is
done (to a great part) automatically by a tool chain.

Figure 1.1: VRE tool chain.

VRE de�nes a language (called the VRE language) to describe an application (e.g.
for WLAN) in a platform-independent way. In VRE, such a description is called
Platform-Independent Model (PIM). Additionally, VRE de�nes a compiler (called the

∗In the remaining thesis paper, the term 'application' refers to the physical layer of an SDR appli-
cation unless explicitly mentioned otherwise.
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VRE compiler) to generate executables. The compiler consists of a compiler kernel and
a code generator. The compiler kernel transforms a PIM into another level of program
description, called Platform-Speci�c Model (PSM). Like a PIM, a PSM is represented
in the VRE language. Unlike a PIM, a PSM is hardware-speci�c in that it includes
mapping, scheduling, and synchronizations.

Note that, in addition to the PIM, the compiler kernel takes as input hardware-
description �les that contain hardware-related information. It needs this information to
compute mapping, scheduling, and synchronizations.

From a PSM, the code generator produces a Platform-Speci�c Source Program
(PSSP). A PSSP is described in a platform-speci�c language (such as POSIX-C) and
hence can be processed further by the platform-speci�c compiler (such as the POSIX-C
compiler). Note that, in addition to the PSM, the code generator takes as input libraries
of base functions that are available in the platform-speci�c language.

Finally, executables are generated from a PSSP by a platform-speci�c compiler, and
can be run on the target hardware.

The VRE tool chain is semi-automatic, i.e., developers may automatically produce
executables from a PIM step by step, but are additionally allowed to manually improve
the performance of the code after each step.

VRE simpli�es the application development process for the reasons given in Sec-
tion 1.1. In particular, developers are neither responsible for mapping and scheduling,
and nor for synchronizations. As will be discussed in the Chapter 4, use of the VRE
language simpli�es the program analysis by the compiler as compared to languages such
as POSIX-C, and thus is the basis for automatizing mapping, scheduling, and synchro-
nizations.

1.3 Scope

The thesis has made the following contributions to the development of VRE:

Development of VRE language: We decided for a visual language since it is more
appropriate to SDR application development than a textual language such as C,
as will be discussed in Section 4.1. The VRE language has been designed to be
appropriate for both PIM and PSM descriptions. In a PIM, developers describe
tasks, as well as mapping and scheduling restrictions, i.e., dependencies between
tasks, e.g., as task T1 produces data for task T2, T1 has be executed before T2. In
particular, they describe three types of dependencies: message-coupled, memory-
coupled, and control-coupled dependencies. See Section 4.4 for further details.
The PSM format allows developers to analyze and improve a program with less
e�ort than if it would have been written in a platform-speci�c language.

Use of Simulink to represent PIM: Simulink is a software package developed by
Mathworks [42], which enables developers to describe and simulate a signal pro-
cessing chain. However, it has been developed to describe an application for a
serial platform and therefore, as will be discussed in Section 5.2, its program de-
scription concept substantially di�ers from that of VRE. Several workarounds have
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been discovered within the scope of this thesis to represent a PIM in Simulink. We
integrate Simulink in the VRE tool chain, because we currently do not have any
dedicated program description environment for representing a PIM. Other reasons
for incorporating Simulink in the VRE tool chain will be discussed in Section 5.1.

Experiments: We have successfully designed and compiled a PIM for the IEEE 802.11b
receiver.

Identi�cation of hardware-speci�c information: The hardware-speci�c informa-
tion that is relevant for the VRE compiler kernel has been identi�ed and includes,
e.g., number of processing modules, supported types of SIMD operations, etc.
Additionally, an appropriate format for these �les has been chosen.

Development of VRE compiler kernel: To provide an example, we have developed
a compiler kernel for the SDR hardware platform SB3010. It is a parallelizing
compiler, i.e., it automatically identi�es tasks and dependencies between tasks,
eliminates some dependencies, computes mapping and scheduling, and inserts syn-
chronizations.

1.4 Outline

This dissertation comprises nine chapters, including this introduction.
Chapter 2 describes the conceptual model and advantages of SDR, presents some

contemporary SDR hardware platforms, and gives an overview about SDR applications.
Chapter 3 discusses current concepts for developing SDR applications and their dis-

advantages. It also presents some signal processing application development environ-
ments that can potentially be used for developing SDR applications, and shows their
limitations. Additionally, it describes existing approaches for programming parallel ma-
chines (beyond SDR) and how they di�er from VRE.

Chapter 4 introduces the VRE language. First, it outlines the objectives in devel-
oping the language, as well as reasons for choosing a visual language. Then, it presents
syntax and semantics of the language, and �nally explains how PIM and PSM are rep-
resented.

Chapter 5 states reasons for integrating Simulink in the VRE tool chain and describes
this tool. Then, it provides guidelines for representing a PIM in Simulink.

Chapter 6 gives an overview of the IEEE 802.11b WLAN and describes the experi-
ment that has been conducted to represent the IEEE 802.11b WLAN receiver as a PIM
in Simulink.

Chapter 7 presents contents and formats of hardware description �les. Additionally,
it explains why these contents are needed by the compiler.

Chapter 8 is devoted to the compiler kernel. In particular, it shows with exam-
ples how the compiler kernel identi�es tasks, evaluates dependencies between tasks,
eliminates some of them, computes a mapping and scheduling, and inserts required
synchronizations.
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Finally, chapter 9 provides conclusions and discusses potential future work towards
further development of VRE.
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Chapter 2

Software De�ned Radio

This chapter describes the concept and bene�ts of Software De�ned Radio (SDR). Ad-
ditionally, it presents the hardware architectures of some contemporary SDR platforms.
Considering the subject area of this dissertation, it does not provide a detailed descrip-
tion of the architectures, instead the architectural features that in�uence the develop-
ment of software. Moreover, it provides a general overview of SDR applications.

2.1 Introduction to SDR

The Software De�ned Radio forum [39] de�nes SDR technology as "radios that provide
software control of a variety of modulation techniques, wide-band or narrow-band oper-
ation, communications security functions (such as hopping), and waveform requirements
of current and evolving standards over a broad frequency range". In other words, SDR
is a kind of radio device whose physical layer functionalities are implemented in software
and the functionalities can be signi�cantly altered through changes in software. It con-
sists of a hardware that is both reprogrammable, i.e., the hardware can be reprogrammed
to run di�erent applications at di�erent times, and recon�gurable, i.e., the functionality
of the hardware can be customized at run time by recon�guring the functionalities of the
logic gates. In contrast to an SDR, a conventional radio consists of dedicated hardware
modules to perform various radio operations such as modulation. Thus, it is usually de-
termined primarily by hardware with minimal con�gurability through software. As the
hardware dominates the design, upgrading a conventional radio design basically means
completely abandoning the old design and thereby starting over again.

Je�rey H. Reed presented a well accepted practical model of SDR in his book [38],
which is shown in Fig. 2.1. The radio begins with a Radio Frequency (RF) front-end
that consists of a smart antenna and the �exible RF hardware. The RF front-end is
responsible for receiving and transmitting radio frequency signals. The �exible RF hard-
ware performs RF ampli�cation and analog down-conversion from RF to intermediate
frequency∗ on the receiver path, and analog up-conversion and RF power ampli�cation
on the transmitter path.

∗Intermediate Frequency (IF) is a frequency to which a carrier frequency is shifted as an intermediate
step in transmission or reception.
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The Analog-to-Digital Converter (ADC) and Digital-to-Analog Converter (DAC)
convert the signals from analog to digital on the receiver path and digital to analog on
the transmitter path, respectively. They form the interfaces between the analog and
digital sections of the radio system. One of the important characteristics of SDR is
that, in contrast to conventional radios, it converts the incoming signals from analog to
digital on the receiver path as early as possible, and the outgoing signals from digital to
analog on the transmitter path as late as possible.

Figure 2.1: Model of SDR.

The next block in the model provides an interface between the ADC/DAC blocks
and the baseband processing unit. It performs the digital �ltering (channelization)
and sample rate conversions. These operations are required both on the receiver and
transmitter paths (see [38]).

SDR includes a reprogrammable piece of hardware, called baseband processing unit,
to perform baseband processing operations. The unit consists of programmable mod-
ules such as Digital Signal Processors (DSPs) and Field Programmable Gate Arrays
(FPGAs). The software running on these modules performs various signal processing
algorithms such as modulation and demodulation.

Developers select an SDR platform chie�y based on the performance of the baseband
processing unit. The performance is evaluated on the basis of metrics [10] such as
processing speed, power consumption budget, die size, and recon�gurability.

2.2 Bene�ts

SDR has generated tremendous interest in the wireless communication industries for its
wide-ranging bene�ts:

1. Multi-functionality: As already mentioned, SDR enables development of a mo-
bile device that can operate di�erent communication protocols such as both GSM
and CDMA at di�erent times, since it includes a reprogrammable and recon�g-
urable piece of hardware.

2. Design �exibility: Radio frequency components are di�cult to design as their
performance characteristics may vary due to unpredictable reasons and optimiza-
tion in the analog domain takes long. SDR, on the other hand, digitizes the signals

8
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as early as possible on the receiver path and transforms to analog domain as late
as possible on the transmitter path, and thus simpli�es product development since
analyzing digital signals is easier than analog signals.

3. Ease of upgrading and �xing: Repairing system defects is an important issue
for radio manufacturers. A small bug in the radio functionality may cause the
return of thousands of mobile sets to device manufacturers. With SDR-enabled
handsets, bugs can be repaired by simply upgrading the software. That means,
users do not need to return their handsets, but can simply download software
updates and install them.

2.3 Contemporary SDR Hardware Platforms

From programming point of view, an SDR hardware platform corresponds to the base-
band processing unit shown in Fig. 2.1. There are some SDR hardware platforms already
available in the market. These platforms have one point in common, i.e., their architec-
tures use parallelism. However, they architecturally di�er from one another and support
di�erent types of parallelism. For an overview, this section present four contemporary
SDR platforms: Sand-Blaster 3010 (SB3010), Adelante VD3204x, MuSIC, and Recon-
�gurable Compute Fabric (RCF).

2.3.1 SB3010

SB3010 is developed by Sandbridge Technologies [48]. As depicted in Fig. 2.2, it consists
of four architecturally identical DSP cores connected in a ring topology. It supports:

Figure 2.2: The SB3010 platform architecture.
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Multithreading: Each core can run up to 8 concurrent hardware contexts (threads),
and thus the four cores support up to 32 concurrent hardware threads.

Vector Processing: Each core contains a vector processing unit that performs vector
operations on two vectors of four 16-bit elements each.

SB3010 de�nes its own programming environment, called the Sandblaster Integrated
Development Environment (Sandblaster IDE), that uses POSIX-C as its application de-
scription language and includes a tool chain to support the implementation process. The
tool chain consists of an optimizing POSIX-C compiler along with a linker, debugger,
emulator and pro�ler. See [9, 14, 15, 16, 40] for more information on the hardware and
software development environment.

2.3.2 Adelante VD3204x

The Adelante VD3204x [51] is an Embedded Vector Processor (EVP) DSP subsystem
developed by NXP (former Philips Semiconductor) [32]. As depicted in Fig. 2.3, it con-
sists of several functional units: A Program Control Unit (PCU), assisted by an Address
Computation Unit (ACU), controls the functionality of a Scalar Data Computation Unit
(SDCU) and a Vector Data Computation Unit (VDCU). SDCU and VDCU perform
arithmetic and logic operations on scalar and vector data, respectively. In EVP, the
length of a vector is limited to 256 bits, which may correspond to 32 elements of 8 bits,
16 elements of 16 bits, or 8 elements of 32 bits.

Figure 2.3: The Adelante VD3204x architecture.

Like SB3010, EVP de�nes its own programming environment, called the EVP Stan-
dard Development Kit (EVP-SDK), that uses EVP-C as its application description
language and includes a tool chain to support the implementation process. The tool
chain consists of an EVP-C compiler along with a linker, debugger, simulator, emulator,
and pro�ler. See [12] for more information on the hardware and software development
environment.

2.3.3 MuSIC

MuSIC is a product of In�neon Technologies [33]. As shown in Fig. 2.4, its architecture
contains four Single Instruction Multiple Data (SIMD) cores connected by a bus. Each

10



2.3 Contemporary SDR Hardware Platforms

core, on the other hand, consists of four Processing Elements (PEs), where each PE can
perform SIMD operations on two vectors of four 16-bit elements each. Additionally, the
architecture includes specialized processors (i.e., hardware accelerators) to perform FIR
and Viterbi operations.

Figure 2.4: The MuSIC architecture.

Like the SB3010 and EVP platforms, MuSIC de�nes its own programming environ-
ment that uses the Data Parallel C Extension (DPCE) [31] as application description
language and the DPCE compiler to generate executables. See [1, 3, 4, 37] for more
information on the hardware and software development environment.

2.3.4 RCF

RCF is developed by Morpho Technologies [47]. Fig. 2.5 presents the architecture of
RCF. In RCF, computations are mainly performed in a recon�gurable cell (RC) array
that is composed of two rows of 8 RCs, where each RC is a 16-bit processing element.
The RC array enables SIMD operations, i.e., 16 separate computations by 16 (8 * 2) RCs
in one clock cycle. In additions, RCF comprises a hardware accelerator ("Interleaver")
to perform various kinds of interleaving and deinterleaving operations.

Figure 2.5: The RCF architecture.

11



2.3 Contemporary SDR Hardware Platforms

Like the other platforms, RCF de�nes its own programming environment that uses
RCF-C as application description language and the RCF-C compiler along with a linker
to generate executables.

2.3.5 Comparative Analysis

As shown in Table 2.1, the architectures of di�erent SDR hardware platforms di�er from
one another to a great extent. For instance, some architectures (e.g., MuSIC) contain
hardware accelerators to perform computationally complex time-critical operations (e.g.,
the Viterbi operation), whereas others (e.g., SB3010) do not.

Table 2.1: Comparison among di�erent SDR platform architectures.

No. of Cores

SB3010 4
Adelante VD3204x 1
MuSIC 4
RFC 1

HW-Threads/Core

SB3010 8
Adelante VD3204x 1
MuSIC 4
RFC 1

SIMD Length

SB3010 4*16 (64 bits)
Adelante VD3204x 8*32,16*16,32*8(256 bits)
MuSIC 4*16 (64 bits)
RFC 2 rows of 16*8 or 128bits

HW Accelerator

SB3010 -No-
Adelante VD3204x -No-
MuSIC FIR/Viterbi
RFC Interleaver

Supported Data Widths

SB3010 16, 32 (bit)
Adelante VD3204x 8, 16, 32, 40 (bit)
MuSIC 16, 40 (bit)
RFC 16, 32 (bit)

Instruction Type

SB3010 Compound (3 operations)
Adelante VD3204x VLIW
MuSIC LIW
RFC RISC

Although the architectures use parallelism, they substantially di�er from one another
with respect to their supported parallelism. For instance, SB3010 allows concurrent
execution of hardware threads, whereas Adelante VD3204x is mainly a vector processor
and does not support multithreading. Some architectures even support similar types of
parallelism (e.g. SIMD operations), but do not support these in the same way. Both
SB3010 and Adelante VD3204x, for instance, support SIMD operations, but SB3010
works on 64-bit vector data and Adelante VD3204x on 256-bit vector data.
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2.4 Overview of SDR Applications

This section provides an overview of SDR applications and discusses brie�y the issues
that in�uence the software development of SDR applications.

In general, SDR applications convert data from one format to another, e.g., as shown
in Fig. 2.6, the IEEE 802.11b WLAN transforms MAC packets into streams of bits
on the transmitter path, and streams of bits into MAC packets on the receiver path.
These applications include operations that often correspond to computations applied to
a vector of values such as FFT and Viterbi.

To develop software for an SDR application, developers �rst determine which op-
erations are to be performed by the application and in which order. Then, they write
source code for the application, and later employ a compiler to produce executables.

The standard speci�cation document of an SDR application provides a description of
the application, which is similar to the block diagram shown in Fig. 2.6. The description
in particular describes which operations are to be performed and in which order, but
not how the operations are to be realized.

Figure 2.6: The IEEE 802.11b WLAN signal processing chain.

As a result, developers themselves do not have to invent which operations are to be
performed, instead they mainly concentrate on how to perform an e�cient implemen-
tation, i.e., how to deploy the program to a target hardware in such a way that the
real-time requirements of the application are ful�lled.

In contrast to SDR applications, developers of other types of applications such as
computer games and word processors usually spend a lot of time in determining appli-
cation logics. For instance, while developing a compute game, they typically spend a lot
of time to determine graphical components, user interfaces, database techniques, etc.

2.5 Summary

This chapter has given an introduction to SDR. To provide an overview of SDR hardware
architectures, it has presented four contemporary SDR hardware platforms: SB3010,
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Adelante VD3204x, MuSIC, and RCF. Additionally, it has discussed about SDR ap-
plications and the issues that in�uence the software development of SDR applications.
The next chapter describes the current programming concepts for SDR applications with
more details and shows their limitations.
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Chapter 3

Programming SDR Application

This chapter shows that the current concept for developing SDR applications is com-
plex as developers describe an application with hardware-speci�cs such as mapping
and scheduling. Additionally, it describes various signal processing application devel-
opment environments that can potentially be used for developing SDR applications,
and discusses their limitations. Moreover, it presents existing approaches of parallel
programming (beyond and including SDR) and compares them with VRE.

3.1 The Current Programming Concept for SDR

As already mentioned in Chapter 1, at present, developers use platform-speci�c tool
chains such as Sandblaster IDE to develop software for SDR. Programming is com-
plex, because developers describe an application in a platform-speci�c language such as
POSIX-C with hardware-speci�c details: vector operations, mapping, scheduling, and
synchronizations. This section describes why vector operations, mapping and schedul-
ing, and synchronizations are hardware-speci�c.

Vector Operations:

Vector instructions usually take operands of length 2n, as speci�ed by the size of the
vector registers of the corresponding platform. Therefore, original vector operations
must be divided into strips of this length, which is called stripmining. For instance, as
shown in Fig. 3.1, the vector operation on two vectors with 64 elements of 16-bit has to
be broken down into strips of 256 bits in length in the case of EVP and 64 bits in case
of MuSIC. See [46, 55] for further details about stripmining.

Figure 3.1: Vector operations in EVP and MuSIC.
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Scheduling and Mapping:

In the context of this thesis, mapping means assignment of tasks to processing modules
for execution, and scheduling means de�nition of tasks' execution order on processing
modules. To show that both mapping and scheduling are hardware-speci�c, an example
in depicted in Fig. 3.2. Here, the functional description shows two data paths of a
signal that correspond to the real and imaginary parts, respectively. Each path includes
two di�erent �lter modules with the same functionality (noise elimination) but di�erent
parameters (Coef_rx1 and Coef_rx2) to specify di�erent coe�cient lengths. Then,
in case of the hardware platform A that contains a dedicated processing module to
perform these noise �ltering operations, all four logical �lters must be mapped to that
processing module, for instance using time-multiplexing. To avoid a huge number of
recon�gurations of this hardware module (regarding coe�cient loading and number of
taps), an optimal schedule will apply the �rst �lter of each path �rst, and then the
second. On the other hand, the hardware platform B has a speci�c module for each
of these noise �ltering functionalities (i.e., the processing modules named "FIR A"
and "FIR B" respectively), because they require high performance. For hardware B,
as depicted in Fig. 3.2, the mapping and scheduling described for platform A is not
possible at all, because data can not be bu�ered after the �rst �lter.

Figure 3.2: Mapping and scheduling a functional description in di�erent platforms.

Synchronization:

Tasks are synchronized on di�erent hardware platforms employing di�erent synchro-
nization mechanisms. On the SB3010, for instance, they are synchronized with POSIX
functions using mutexes and condition variables (see [5, 28]). On the EVP, in contrast,
they are synchronized with EVP-speci�c functions using semaphores [12].

16



3.2 Other Development Environments

3.2 Other Development Environments

In addition to the platform-speci�c tool chains, there are environments available in the
market for modeling and simulating signal processing applications. These environments
typically o�er their own application description language. Some of them also include
compiler and have the potential to be used for developing SDR applications, but are
unable to provide an e�cient solution.

An example of such an environment is Simulink [42]. It o�ers a graphical language to
describe signal processing applications and can be used together with Real Time Work-
shop [56] and target language compiler to perform the implementation. The tool chain
works �ne as long as there is a simple DSP-like hardware architecture, i.e., application
development for parallel hardware platforms is not possible. Furthermore, Simulink
requires the schedule to be �xed, which restricts portability.

Van der Wolf et al. [50] describe an approach for multiprocessor-based embedded
software development and implementation. Their goal is to automate the generation
of source code according to guidelines provided by developers, but they do not give
consideration to e�ciency of the source code, e.g., the automatically generated code is
not as e�cient as hand written-code.

Examples of other development environments that support multi-processing include
Gedae [13, 45], Ptolemy [34], MLDesigner [27], and Waveform Description Language
(WDL) [54]. Gedae de�nes its own application description language, called Primitive
and Graph language, and transforms an application description into a program on a vir-
tual machine. Its concept of virtual machine seems to not support the high throughput
and good latency that are required for high-performance SDR applications. Ptolemy is
an environment for simulation and designing application for multiprocessor platforms.
The industrial successor of Ptolemy is MLDesigner. The problem with Ptolemy and
MLDesigner is that they require the scheduling to be �xed, i.e., the description of an
application can only be realized on one particular hardware platform. Like Ptolemy and
MLDesigner, WDL includes the same problem, i.e., it requires scheduling to be �xed.

Another example is SynDEx [2, 35]. It supports application development for parallel
machines. The system resembles VRE, i.e., it separates the description of an appli-
cation from its implementation on a speci�c hardware and contains a compiler that
generates executables. Unfortunately, its Directed Acyclic Graph (DAG) based applica-
tion description language is not quite suitable for specifying the complete behavior of an
application, e.g., it is not possible to describe switch or branch operations. Moreover,
in Syndex, mapping and scheduling are restricted to multiprocessor-based architectures,
but some issues related to parallelism, such as vectorization, are not considered.

3.3 Existing Parallel Programming Concepts vs VRE

In general, beyond and including SDR, there are three concepts available for developing
programs for parallel machines with shared memory architecture∗:

∗We only concentrate on shared memory architecture as SDR hardware uses that.
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1. Writing a serial program and compiling it with a parallelizing compiler.

2. Writing a program placing compiler speci�c directives at appropriate points to
describe parallelism and then compiling it with a compiler to produce a parallelized
executable code.

3. Writing a program expressing parallel activities explicitly.

Option 1 is obviously the easiest for a developer as it is easier to write a serial
program than it is to write a parallel program. It relies on a compiler that is capable of
analyzing the source code written as a serial program and identifying the opportunities
for parallelism. From its knowledge of the hardware, as discussed in [8], the compiler
generates parallelized executable code. Unfortunately, there is no parallelizing compiler
available in the market that is capable of generating e�cient executables for parallel
machines from serial programs.

Option 2 is easy for developers as well, because developers can leave many program-
ming tasks to be solved by a compiler such as creation of threads. The programming
approach that has been developed based on this option is OpenMP [21] that supports
multithreaded programming in C/C++ and Fortran. OpenMP includes a set of compiler
directives and an OpenMP program is just a serial program with OpenMP directives
placed at appropriate points. A serial compiler will ignore the directives and produce
usual serial executable code. An OpenMP-enabled compiler will recognize the directives
and produce parallelized executable code. Unfortunately, OpenMP has some limita-
tions, e.g., reliable error handling is missing, lacks �ne-grained mechanisms to control
thread-processor mapping, etc. On the other hand, OpenMP is not available for SDR
hardware platforms. Therefore, it is unable to provide an e�cient programming solution
for developing SDR applications.

Option 3 corresponds to the current practice of developing SDR applications (i.e., de-
veloping an application with a platform-speci�c tool chain). Thus, as already discussed
in Chapter 1, it is complex.

On contrary to these options, as already noted in Chapter 1, in VRE, developers
�rst describe a program in a platform-independent way, i.e., they describe tasks and
dependencies between tasks, but not hardware-speci�cs such as mapping and scheduling.
Then, they employ a compiler to generate e�cient parallelized executable code from the
described program.

Moreover, as already stated in Chapter 1, VRE enables developers to produce exe-
cutables from described programs semi-automatically, i.e., developers may automatically
produce executables from a PIM step by step, but are additionally allowed to manually
improve the performance of the code after each step. Thus, in VRE, developers are
allowed to in�uence the implementation of an application, but not have to totally rely
on the performance of the tool chain. For instance, developers employ the compiler
kernel to produce a PSM from a PIM, and then other tools (the code generator and the
platform-speci�c compiler) to perform an implementation. Additionally, they can man-
ually modify the PSM and thus can perform a di�erent implementation of the program.
It is important to mention here that a PSM is described in a well-de�ned format that
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enables developers to analyze and modify mapping, scheduling, and synchronizations
with less e�ort (see Section 4.5).

For clarity, an example is presented in Fig. 3.3. It shows an application that con-
sists of �ve blocks, where the block "RxBuf" reads samples and others blocks perform
signal processing processing operations on the samples. Note that each block performs
operations on a vector of 80 elements. Now assume that the application description
corresponds to a PIM, and we employ the VRE compiler and thus produce a PSM that
corresponds to the implementation A. Then, we can analyze the PSM, and thus can im-
prove the PSM, i.e., the signal processing operations can be started immediately after
receiving 20 samples instead of 80 samples. Hence, we can perform another implemen-
tation that corresponds to the implementation B, as the overall execution time of the
signal processing chain in the implementation B is lower than the implementation A.

Figure 3.3: An example that shows how VRE's semi-automatic implementation process
enables developers to perform an e�cient implementation.

3.4 Summary

This chapter has shown that the current programming concept of developing SDR ap-
plications is hardware-speci�c. It has also presented some signal processing application
development environments that have the potential to be used for developing SDR appli-
cations, and discussed their limitations. Additionally, it has presented existing concepts
of parallel programming, compared them with VRE. The next chapter presents the VRE
language.
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Chapter 4

The VRE Language

The chapter is devoted to the VRE language. It discusses factors that are considered
for the language development, explains reasons for choosing a visual language, describes
syntax and semantics of the language, and presents PIM and PSM description concepts.

4.1 Introduction to the VRE Language

The VRE language has been developed to be appropriate for SDR applications. As
discussed in Section 2.4, SDR applications correspond to signal processing chains, i.e.,
they consist of a sequence of signal processing operations such as FFT and Viterbi.
These applications can be represented by a block diagram that is a way to represent an
application using two major classes of elements: blocks and arrows. Blocks are used to
represent operations and arrows to represent transfers of signals (data) between blocks,
where directions of arrows denote directions of signal �ows.

A block diagram in particular describes the order in which di�erent operations of an
application are to be performed, as well as inputs and outputs of these opertaions. For
clarity, an example signal processing chain (as a block diagram) is presented in Fig. 4.1.
It consists of four signal processing operations ("Filter", "Demodulator", "Descrambler",
and "CRC") and describes in which logical sequence the operations are to be performed,
i.e., �rst the "Filter" block then the "Demodulator" block, and so on. Note that it also
describes the inputs and outputs of the blocks.

Figure 4.1: Description of a signal processing chain as a block diagram.

The concept of representing an application as a block diagram is easy, especially
when required blocks are available to developers as libraries. For instance, as shown in
Fig. 4.2, we can simply describe an application by adding library blocks to a graphical
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editor, and then connecting them with arrows. This concept of describing an application
is easier than to describe an application textually (e.g., in C), as we can avoid a lot
of programming tasks, e.g., de�ning and initializing variables, allocating and freeing
memory locations, writing code for algorithms, etc. Additionally, a program described
as a block diagram is easy to analyze if appropriate tools are available. For instance,
Simulink enables us to describe a program as a block diagram and simulate the program,
as well as provides some special library blocks such as "Scope" to visualize outputs of
blocks and thus to check whether any block produces an incorrect output (see [42]).

Figure 4.2: Describing a block diagram using library blocks.

Due to the advantages discussed above, the VRE language has been developed as a
visual language, i.e., it de�nes a set of description components and enables developers to
represent an application graphically similar to a block diagram using these description
components. The next sections introduces these description components.

4.2 Description Components of the VRE Language

VRE de�nes the following description components to represent an application:

4.2.1 System

A system corresponds to an application description, i.e., either a PIM or a PSM. It is
described as a block diagram, and is composed hierarchically, i.e., it consists of blocks
(not yet introduced) that may internally contain other blocks.

4.2.2 Parameter

A parameter is a compile-time constant and, as shown in Fig. 4.3, has four attributes:

1. Name - name of the parameter.
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2. Type - data type of the parameter such as T_Uint8 (8-bit unsigned integer). See
Section 4.3 for more information about VRE-speci�c data types.

3. Size - size of the parameter, e.g., a parameter with size = 4 corresponds to a vector
of 4 elements.

4. Value - value of the parameter.

Figure 4.3: Parameter description in the VRE language.

In VRE, some description components have their own parameters, e.g., a "primitive"
(not yet introduced) may have its own parameter. These parameters are discussed along
with their corresponding description components.

4.2.3 Memory

A memory corresponds to a variable, i.e., its value may change at run-time. As shown
in Fig. 4.4, like a parameter, a memory has four attributes.

Figure 4.4: Memory description in the VRE language.

4.2.4 Flag

VRE separates boolean variables from other variables that we do not have to describe
data types and sizes of boolean variables explicitly. In VRE, a �ag corresponds to a

23



4.2 Description Components of the VRE Language

boolean variable, i.e., its value can be either 0 or 1. As shown in Fig. 4.5, a �ag has two
attributes: name and value.

Figure 4.5: Flag description in the VRE language.

4.2.5 Primitive

In VRE, primitives are considered as software modules (such as FFT and Viterbi) and an
application program is built up from them. They are available to application developers
as libraries and considered as black boxes: only the interfaces, e.g., memory and �ag
accesses, are known to application developers. Their implementations are provided by
hardware manufacturers, and may di�er between platforms.

An example of a primitive is shown in Fig. 4.6. Each primitive has a name ("FIR"),
and may have input and output data or control �ow (trigger) interfaces. An input
interface is described by an input port ("X"), and an output interface is described
output port ("Z"). Every port has a unique name such as "X" , as well as data type
and size (not shown in the �gure).

Figure 4.6: Primitive representation in the VRE language.

A primitive may have parameters to customize functionalities, e.g., the same �lter
primitive can be instantiated in di�erent parts of a system to work with di�erent �lter
coe�cients by means of setting the �lter coe�cient parameter ("P") to di�erent values.

A primitive may internally access memories and �ags during execution, which are
speci�ed through memory links (i.e., pointers to memories) and �ag links (i.e., pointers
to �ags), respectively. Both memory and �ag links have the following attributes:
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• Name - name of the memory/�ag link.

• Link - name of the memory/�ag that the memory/�ag link points to.

• Type - data type of the memory/�ag that the memory/�ag link points to.

• Access - type of access to the memory/�ag such as ReadOnly (will be discussed
later).

Additionally, a memory link have another attribute, called Count, which will be
discussed in the next section.

4.2.6 Block

A block is an instantiated primitive or a module (not yet introduced) in a system. In
VRE, these two types of blocks are called primitive block and modular block, respec-
tively. Each block has a unique name. Unlike modular blocks, each primitive block has
an attribute (called class) that de�nes which primitive the block refers to. For instance,
assume a block with attributes: name = "FIR1" and class = "FIR". Then, it means
the block's name is "FIR1" and the block is an instance of a primitive named "FIR".

4.2.7 Signal

A signal represents an exchange of information between blocks. As shown in Fig. 4.7,
it connects ports and is represented by an arrow. It describes either a data �ow or a
trigger (will be discussed later). Note: A signal itself does not describe the type, size
or other properties of the information exchanged, instead these can be seen from the
corresponding ports' properties.

Figure 4.7: Description of signal in VRE.

4.2.8 Module

A module is a hierarchical description and composed of blocks. Internally, it describes
a signal processing chain, i.e., a set of blocks exchanging information through signals,
accessing memory to read or write data, etc. Externally, its interface corresponds to
that of a primitive, i.e., it includes parameters, input/output ports, memory as well as
�ag accesses. An example is depicted in Fig. 4.8 that shows both the top level view and
the internal description.

As shown in the �gure, each module has a name ("HeaderModule"). It may internally
contain memories ("M2") and �ags ("F2") in addition to those that are visible as its
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Figure 4.8: Representation of a module in the VRE language.

interfaces such as the memory link ("M") and the �ag link ("F"). Likewise, it may
internally contain additional parameters ("P2"). The external interfaces such as ("M")
and ("F") are not explicitly described within the internal structure since they are part of
the module de�nition and thus visible to the internal blocks such as Block1. For clarity,
assume a function that is shown in Fig. 4.9 and written in C, where the argument p
of the function (function1) is a part of the function de�nition and thus is not declared
again within the body of the function. However, another variable k whose scope is local
to the function is declared within the body of the function.

Figure 4.9: An example function written in C.

Like primitives, modules can be available to developers as libraries, i.e., developers
describe modules independent of a system and store them as libraries.

4.2.9 Task

In VRE, a task corresponds to a primitive or a set of primitives that is mapped to a
processing module for execution. It is a building block of a PSM and can be hierarchically
composed, i.e., it may internally contain other tasks which are called subtasks. A task
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that internally contains subtasks is called the supertask of these tasks. See Section 4.5
for further details.

4.3 Important Rules and Type Information

This section contains additional rules on the use of the components from Section 4.2.

Naming

Within a system, description components of the same type are distinguished from one
anther by their names, i.e., two blocks within a system must have di�erent names.

Scope

In a system, memories, �ags and parameters are visible only within their scopes, i.e., if
they are described at system level then they are visible throughout the application, and
if they are described within a module then they are only visible to the blocks within the
module. For clarity, an example is depicted in Fig. 4.10. Here, the system comprises
two memories: M1 and M2. As M1 is described at the system level, it is accessible by
all the blocks, i.e., B1 and B2, as well as B11, B12, B21, and B22. On the other hand,
as "M2" is described within the modular blocks B1, it is visible to B11 and B12 only.

Figure 4.10: Scopes of memories in a system.

Accessing Memories

Two blocks that access the same memory to read data may run in parallel, but if at
least one of the accesses is a write then the blocks must not run in parallel. Assume,
for instance, that a block B1 writes data to a memory and another block B2 reads from
the same memory. If the write has be done before the read then B1 has to be executed
before B2, otherwise B2 would read incorrect data.

To enable the VRE compiler to evaluate whether or not blocks that access shared
memories have the potential to run in parallel, it must be explicitly described in a
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program whether accesses are reads or writes. Thus, VRE distinguishes three types of
memory accesses:

1. ReadOnly - a block accesses a memory only to read data.

2. ReadWrite - a block accesses a memory either to write or both to read and write
data.

3. Counter - a block accesses a memory to increment or decrement the value of the
memory with a compile-time constant.

Note that both "ReadWrite" and "Counter" correspond to write operations. How-
ever, they carry di�erent types of information for the VRE compiler. For clarity, an
example is depicted in Fig. 4.11. Here, the signal processing chain consists of two
blocks: B1 and B2. Upon execution, both of these blocks �rst read N data elements
from array M starting from o�set C, where N is the value of the parameter P1, M is the
data stored in the memory M1, and C is the data stored in the memory C1. Next, they
perform two di�erent types of interpolation operations using the read data, respectively.
Then, they store the interpolation results to the memories S1 and S2, respectively. Fi-
nally, they increment the value of C1 by N and thus have a data dependency, i.e., B1
should �rst increments the value of C1 and then B2. However, this dependency can
be eliminated as it is possible to determine at compile-time how each of these blocks
increments the value of C1 (C = C +N). Therefore, eliminating the dependency, it is
possible to run these blocks in parallel. In VRE, such a write (e.g., the write to C1 by
the block B1), which creates an avoidable data dependency between blocks, is described
as a "Counter" access. In contrast to this, when a block accesses a memory and then
changes the value of the memory in a way that cannot be determined at compile-time,
it is described as a "ReadWrite" access.

Figure 4.11: An example to show di�erence between 'Counter' and 'ReadWrite' accesses.

If a block has a "Counter" type access to a memory then the "Count" attribute of the
corresponding memory link de�nes how the block increments or decrements the value
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of the memory, e.g., "Count += 10" means the block increments the memory value by
10 and "Count -= 10" means the block decrements the memory value by 10.

Accessing Flags

In VRE, it is explicitly described in a program why a block accesses a �ag, i.e., to toggle
or check the value. The reason is analogous to the reason for distinguishing di�erent
types of memory accesses. VRE distinguishes two types of accesses:

1. ActiveAccess - an access that may change the value of a �ag.

2. PassiveAccess - an access to check the value of a �ag.

Representation of Controls

The VRE language supports two classes of control descriptions: loops and branches.
See Section 4.4 for details.

Data Types

Table 4.2 presents the supported data types of VRE. In addition to the data types shown
in the table, ports can be of type "T_Trigger". A signal that describes a connection
between an input and output port of type "T_Trigger" represents a trigger �ow, see
Section 4.4.2.

Table 4.1: VRE-speci�c data types.
Type Description
T_UInt8 8-bit unsigned integer.
T_UInt16 16-bit unsigned integer.
T_UInt32 32-bit unsigned integer.
T_SInt8 8-bit signed integer.
T_SInt16 16-bit signed integer.
T_SInt32 32-bit signed integer.
T_Bit Boolean value, i.e., either 0 or 1.
T_String Array of characters.

4.4 PIM Description Concept

As PIM is hardware independent, it does not include hardware-speci�c information
such as mapping and scheduling. Instead, it describes restrictions of scheduling, i.e.,
dependencies between blocks, e.g., block "A" produces data that block "B" consumes
then "A" has to be executed before "B". In particular, it describes three types of
dependencies: message-coupled, memory-coupled, and control-coupled dependencies.
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4.4.1 Message-Coupled Dependencies

Message-coupled dependencies refer to direct data �ow between blocks, i.e., a block is
ready to execute but waiting for input data that is produced by another block. VRE
describes these dependencies by simply connecting an output port to one or several input
ports. The dependencies are directed, i.e., if an output port of block "A" is connected
to an input port of block "B", then the execution of block "B" is dependent on the
execution of block "A". In VRE, if a message-coupled dependency exists between two
blocks then the block that produces the data is called the producer block and the block
that consumes the data is called the consumer block.

Figure 4.12: Example of message-coupled dependency.

Message-coupled dependencies describe the following scheduling restriction: the con-
sumer and producer blocks can execute in any order as long as their executions do not
violate the data dependency between them. For clarity, an example is depicted in Fig.
4.12. There are two blocks, "Mult" and "Add", which are connected through message
exchange. The input and output ports of each block correspond to a data vector of
64 values. Thus, each block has to perform 64 operations: ( b[k] = a[k] * a[k] and
c[k] = b[k] + b[k] ), for k = 0..63. Note that the description does not de�ne how the
blocks have to be executed. For instance, the blocks do not necessarily have to execute
sequentially, but can run in parallel with one restriction: T(b[k] = a[k]*a[k]) < T(c[k]
= b[k]+b[k]) for each k. That means, the kth "Add" operation can be performed any
time after the kth "Mult" operation, but not necessarily after all 64 "Mult" operations.

4.4.2 Memory-Coupled Dependencies

If two blocks access the same memory, we speak of a memory-coupled dependency. In
this case, the order of memory accesses de�ne the order in which the corresponding
blocks are data-dependent. To represent memory-coupled dependencies between blocks,
the developer needs to introduce trigger �ows (i.e., connecting input and output ports
of type "T_Trigger" through signals) between the blocks to indicate the order of mem-
ory accesses. Trigger �ows may connect the blocks directly or go through other blocks
in-between. An example is depicted in Fig. 4.13. Here, both "Block1" and "Block2"
access the memory "M", where the access in "Block1" is a "ReadWrite" and the ac-
cess in "Block2" is a "ReadOnly". As the "ReadWrite" must be performed before the
"ReadOnly", the trigger is directed from "Block1" to "Block2".

Blocks accessing the same memory do not necessarily describe a memory-coupled
dependency. There is a memory-coupled dependency only if at least one of the accesses
is a "ReadWrite" or "Counter". A memory-coupled dependency describes the following
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Figure 4.13: Example of memory-coupled dependency.

scheduling restriction: two blocks that have a memory-coupled dependency must not
run in parallel, but sequentially in the order speci�ed by the corresponding trigger �ow
(e.g., "Block1" before "Block2"). Note: the VRE compiler eliminates message-coupled
dependencies that result for "Counter" type accesses, see Section 8.5.3.

4.4.3 Control-Coupled Dependencies

Control-coupled dependencies occur in loops and branches and describe prede�ned
scheduling behaviors, e.g., a loop describes the iterative execution of blocks. VRE-
speci�c loops and branches are discussed below.

Loops:

In general, loops can be categorized into three types depending on how their iteration
limits (i.e., total number of iteration steps) are de�ned:

1. The iteration limit corresponds to a compile-time constant.

2. The iteration limit depends on a run-time value that is not set in the body of the
loop and thus known prior to entering the loop.

3. The iteration limit depends on a run-time value that is set in the body of the loop.

For a compiler, these three types of loops carry three types of information. Type
1 enables the compiler to compute mapping and scheduling e�ciently. For instance,
assume that there is a loop whose iteration limit is de�ned by a compile-time constant
and iteration steps are independent from one another, i.e., there is no data dependency
between the iteration steps. Then, the compiler can decide at compile-time how many
threads are needed to run the iteration steps in parallel. Type 2, in contrast, does not
enable the compiler to take such a decision at compile-time. However, the compiler
can insert additional code into the program, which can decide that at run-time right
before executing the loop. The OpenMP compiler [6], for instance, uses this technique
to parallelize some loops.

Correspondingly, VRE distinguishes three types of loops: constant for loop, dynamic
for loop, and do-while loop. It is important to mention here that each loop in the VRE
language is represented by a module.
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The constant for loop is a loop whose iteration limit is known at compile-time. The
VRE representation of such a loop is depicted in Fig. 4.14(a). Here, the loop is described
by a composed module and the iteration limit is speci�ed through a parameter named
("VRE_CONST_FOR"). In VRE, this parameter name is reserved to specify constant
for loops, i.e., a module that has a parameter named "VRE_CONST_FOR" represents
a constant for loop.

The dynamic for loop is a loop whose iteration limit is not known at compile-time but
prior to entering the loop at run-time. The VRE representation of such a loop is depicted
in Fig. 4.14(b). Here, the loop is described by a composed module and the iteration
limit is speci�ed through a memory link ("VRE_DYNAMIC_FOR"). Since a memory
value cannot be predicted at compile-time, the iteration limit of a dynamic for loop is
not known at compile-time. In VRE, the memory link name "VRE_DYNAMIC_FOR"
is reserved to specify dynamic for loops, i.e., a module that has a memory link named
"VRE_DYNAMIC_FOR" represents a dynamic for loop.

Figure 4.14: VRE representations of loops.
.

The do-while loop is a loop whose iteration limit depends on a run-time value that is
produced from the body of the loop. The VRE representation of such a loop is depicted
in Fig. 4.14(c). Here, block2 checks the condition by means of consuming data through
its input port. If the condition becomes false, it sets the �ag "VRE_DO_WHILE", and
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thereby stops the loop. In VRE, the �ag link name "VRE_DO_WHILE" is reserved
to specify do-while loops, i.e., a module that has a primitive block which has a �ag link
named "VRE_DO_WHILE" represents a dynamic do-while loop.

Branches:

As shown in Fig. 4.15, branches in VRE may have three di�erent forms: "CaseStatic",
"CaseDynamicMemory", and "CaseDynamicMessage". For brevity, the �gure contains
only two branches, but more branches are allowed. For all types of branches, the required
control (selection of the branch to be executed) is performed by a special block (called
"Select"), and another special block (called "EndSelect") marks the end of the branch
construct, i.e., connects the selected branch output to the input of another block if
required.

Figure 4.15: Di�erent types of branch descriptions in VRE: (a) CaseStatic, (b) Case-
DynamicMemory and (c) CaseDynamicMessage

.

For "CaseStatic", the branch is selected by a parameter that can be determined at
compile-time. Thus, there is no real choice at run-time, but this case simpli�es the
description with more �exible blocks. During compile-time, this case is replaced with
the selected branch. The execution of "CaseDynamicMemory" and "CaseDynamicMes-

33



4.5 PSM Description Concept

sage", in contrast, depends on either a memory value or a message, which is not possible
to determine at compile time.

4.5 PSM Description Concept

A PSM is a hardware-speci�c representation of an application. It describes scheduling,
mapping and synchronizations. It builds up from tasks that may internally contain
subtasks, and thus is a hierarchical description. An example is depicted in Fig. 4.16,
which consists of four tasks, where "task3" internally contains two subtasks. Note that
a task in a PSM looks similar to a block in a PIM, i.e., it describes interfaces such as
input and output ports.

Figure 4.16: The description of scheduling and mapping of tasks in a PSM.

Every task in a PSM has three parameters: "VRE_TASK_ID", "VRE_SCHED_ID",
and "VRE_MAP_ID". The parameter "VRE_TASK_ID" de�nes an ID. In a PSM,
tasks are distinguished by their IDs, see Fig. 4.16 for instance. Note that the IDs of
the subtasks ("subtask1" and "subtask2") are unique with respect to their supertask
("task3") only. The other two parameters specify scheduling and mapping. For instance,
in Fig. 4.16, the values of parameter "VRE_MAP_ID" of task1, task2 and task4 are
1. This means, these tasks are mapped to a processing module with ID 1. Note that
processing modules are also distinguished by their IDs, see Chapter 7. The values of
parameter "VRE_SCHED_ID" of task1, task2 and task4 are 1, 2, and 3 respectively.
This means, the processing module with ID 1 has to execute �rst task1, next task2, and
then task3. Note that the PSM describes scheduling and mapping for both the tasks
and subtasks.

Additionally, a task may have two more parameters named "VRE_EXEC_TIME"
and "VRE_IMP_ID", which will be discussed in Chapter 7.
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Loops and branches are represented both in a PSM and a PIM similarly, except they
are represented in a PIM with blocks and in a PSM with tasks. For instance, a loop
in a PIM is described by a modular block, and a loop in a PSM is described by a task
that comprises subtasks. Another exception is that "CaseStatic" can only be described
in a PIM but not in a PSM because there is no branch selection at run time, as already
discussed in Section 4.4.3.

A PSM may include tasks for synchronizations, which are called synchronization
tasks and inserted by the VRE compiler. For instance, assume that two tasks (T1
and T2) are mapped to two di�erent processing modules (PM1 and PM2), but have
dependency, i.e., T1 must be executed before T2. Then, some synchronization tasks
need to be inserted in the program to ensure the execution of T1 before T2.

VRE de�nes a prede�ned set of primitives, called synchronization primitives, and
the VRE compiler inserts synchronization tasks as instances of these primitives. It is
important to restate here that each SDR platform de�nes its own set of functions for
describing required synchronizations (see Section 3.1). Again, as already said, the
dissertation concentrates on the hardware platform SB3010, i.e., a prototype version
of the VRE compiler has been developed within the scope of the thesis for the SDR
hardware platform SB3010. Thus, the synchronization primitives that are discussed
next are speci�c to SB3010.

Within the scope of this thesis, four synchronization primitives have been de�ned
and developed for SB3010:

vreInCounter: This primitive has a parameter ("P") and accesses a memory ("M").
Upon execution, it increments the value of "M" by the value of "P".

vreWaitOnCounter: This primitive has a parameter "P" and accesses a memory "M".
Upon execution, it waits as long as the value of "M" does not become equal to the
value of "P".

vreCondWait: This primitive has two parameters "InitialValue" and "Interval". It
accesses a memory ("M"). Upon execution, it checks the following conditions: (1)
m = i and (2) (m - i) MOD v = 0, where m = the value of "M", i = the value
of "InitialValue", v = the value of "Interval", and, for any value x and y, x mod
y = the reminder of x/y such as 5 MOD 2 = 1. The primitive returns if at least
one of the conditions is true. Otherwise, it waits for a wakeup signal, where the
wakeup signal is sent by a "vreCondSignal" primitive block (which is discussed
next). Upon receiving a wakeup signal, it checks the conditions again. It returns
if any of the conditions is true, otherwise waits again.

vreCondSignal: This primitive has two parameters, "Interval" and "Type". Upon ex-
ecution, it accesses a memory ("M") to either increment or decrement the value of
"M" by the value of "Interval" depending on the value of "Type", i.e., it increments
if "Type" = 1 and decrements if "Type" = -1.

Additionally, each synchronization primitive accesses a �ag. A common rule for
synchronization primitives is that "several synchronization primitives that access the
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same �ag do not internally access any shared data (memory) simultaneously". For
instance, if two synchronization tasks access the same �ag and the same memory ("M")
then they do not internally access "M" at the same time. Actually, the synchronization
primitives ensure this with the help of the hardware-level supports of synchronization
mechanism, see the next paragraph.

The SB3010 hardware supports two types of synchronization objects (i.e., means of
performing synchronizations): mutexes allow multiple threads to share the same resource
(such as a shared memory value) but not simultaneously, and condition variables enable
multiple threads to wait until a particular condition occurs, see [5, 28] for details. The
synchronization primitives internally call the hardware-speci�c functions, and perform
required synchronizations using mutexes and condition variables. In particular, each
synchronization primitive internally accesses a mutex and a condition variable. In VRE,
this is described with the access to a �ag by the synchronization primitive. In other
words, a synchronization primitive accesses a �ag means it internally accesses a mutex
and a condition variable. Note that we exclude synchronization-speci�cs of the target
hardware (such as mutexes and condition variables) from the primitives' de�nitions and
thus from a PSM description.

Figure 4.17: Synchronizing using the primitives vreInCounter & vreWaitOnCounter.

Fig. 4.17 presents an example that shows how the compiler ensures a desired execu-
tion order of tasks using the synchronization primitives "vreInCounter" and "vreWait-
OnCounter". Here, as shown in the dependency graph, the task t4 depends on the tasks
t1, t2 and t3. Since t1 and t3 are not mapped to the processing module PM2 along with
t4, one cannot guarantee the execution of t4 after t1 and t3 without proper synchro-
nization. Therefore, two synchronization tasks (SF1 and SF3) of type "vreInCounter"
and another synchronization task (SF2) of type "vreWaitOnCounter" are inserted. For
clarity, assume that:

• SF1, SF2, and SF13 access the same �ag named "F".

• "M" is a memory whose initial value is 0.

• Both SF1 and SF3 access and thus increment the value of "M" by 1.
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• SF2 checks the value of "M" and returns when the value of "M" is 2 (i.e., the
value "P")

Thus, SF2 does not let PM2 to execute t4 as long as the value of "M" is not 2.
Whereas, the value of "M" will only be "2" after the executions of SF1 and SF3. Thus,
SF3 ensures the execution of t4 after SF1 and SF2, and hence after t1 and t3.

Figure 4.18: Synchronizing using the primitives vreCondWait and vreCondSignal.

Fig. 4.18 presents another example that shows how the compiler kernel ensures a
desired execution order of tasks using the synchronization primitives "vreCondWait"
and "vreCondSignal". Here, the loop that consists of four iterations (N = 4) has been
broken down into two tasks∗: t1 corresponds to the 1st and 3rd, and t2 corresponds to the
2nd and 4th iteration steps, where t1 and t2 are mapped to the processing modules PM1
and PM2, respectively. As b2 has "ReadWrite" access to the memory "M", it must be
executed sequentially in di�erent iteration steps. Therefore, two synchronization tasks
have been inserted in t1, i.e., vreCondWait1 before b2 and vreCondSignal1 after b2".
Likewise, two synchronization tasks (vreCondWait2 and vreCondSignal2) have been
inserted in t2. These synchronization tasks access a memory named "M" and a �ag
named "F". Additionally, they are initialized as below:

• vreCondWait1's parameters "InitalValue" and "Interval" are initialized as 0 and
2, respectively.

• vreCondSignal1 increments the value of "M" by 1.

• vreCondWait2's parameters "InitalValue" and "Interval" are initialized as 1 and
2, respectively.

• vreCondSingal2 increments the value of "M" by 1.

∗See Section 8.5 to know how the VRE compiler creates tasks from loops.
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Therefore, as shown in Table 4.2, PM1 and PM2 execute the instances of b2 of
di�erent steps sequentially in the desired order, i.e., PM1 executes b2 of the 1st iteration
step before PM2 executes b2 of the 2nd iteration step, and PM1 executes b2 of the 3rd

iteration step before PM2 executes b2 of the 4th iteration step. For further clarity, the
activities of the processing modules at time stamps 1 to 6 are discussed below with more
details:

Table 4.2: The executions of the tasks in di�erent processing modules.
Time PM1 PM2
1 b1 (iteration 1) b1 (iteration 2)
2 vreCondWait1 vreCondWait2
3 b2 (iteration 1) vreCondWait2
4 vreCondSignal1 vreCondWait2
5 b1 (iteration 3) vreCondWait2
6 vreCondWait1 b2 (iteration 2)
7 vreCondWait1 vreCondSignal2
8 vreCondWait1 b1 (iteration 4)
9 b2 (iteration 3) vreCondWait2
10 vreCondSignal1 vreCondWait2
11 - vreCondWait2
12 - b2 (iteration 4)
13 - vreCondSignal2

Time 1 PM1 executes the instance of b1 of the 1st iteration step and PM2 executes
the instance of b1 of the 2nd iteration step, respectively.

Time 2 PM1 executes "vreCondWait1" and PM2 executes "vreCondWait2". As the
value of "M" is equal to "0", the 1st condition is true for "vreCondWait1".
Whereas, neither of the conditions is true for "vreCondWait2".

Time 3 PM1 executes the instance of b2 of the 1st iteration step and PM2 still executes
"vreCondWait2" that is waiting for a wakeup signal.

Time 4 PM1 executes "vreCondSignal1" that increments the value of "M" from "0"
to "1" and sends a wake up signal. On the other hand, PM2 still executes "vre-
CondWait2". At this time stamp, PM1 �nishes the execution of the 1st iteration
step.

Time 5 PM1 executes the instance of b1 of 3rd iteration step. The "vreCondWait2"
running on PM2 at this point receives the wakeup signal and evaluates the condi-
tions. Here, the 1st condition is true for "vreCondWait2" since the value of "M"
is "1".

Time 6 PM1 executes vreCondWait1, where none of the conditions for that is true.
PM2 executes the instance of b2 of the 2nd iteration step.
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4.6 Storing VRE Programs

VRE programs, both PIM and PSM, are textually stored in Extensible Markup Lan-
guage (XML) format, because XML's tag-based program representation concept is
suitable to store information that consists of elements that may consist of other ele-
ments and have attributes. VRE programs are composed of elements, such as blocks
and signals. Some of these elements may consist of other elements, e.g., modular blocks
consist of primitives and/or other modular blocks, and have attributes, e.g., �ags have
attributes called name and value. As an example, Fig. 4.19 presents a PIM in both
graphical and XML format.

Figure 4.19: An example PIM and its corresponding XML representation.
.

Additionally, storing programs in XML format provides some bene�ts:

1. Information coded in XML is easy to read and understand, plus it can be processed
and parsed easily by computers.
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2. Information formatted in XML can be exchanged across platforms, languages, and
applications, and can be used with a wide range of development tools and utilities.

3. Information expressed in XML can be visualized conveniently in browsers using
the Extensible Stylesheet Language (XSL) (see [52]).

Like VRE, several signal processing application development environments store
programs in XML such as MLDesigned [27]. XML is also widely used in various
other �elds of SDR, e.g., for the management of hardware recon�guration data. See
[11, 30, 41, 43, 44] for more information about various uses of XML in the SDR domain.

4.7 Summary

The chapter has introduced the VRE language. In particular, it has discussed reasons
for choosing a visual language, described syntax and semantics of the language, and
presented PIM and PSM description concepts. The next chapter provides guidelines to
use Simulink for representing a PIM.
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Chapter 5

VRE Program in Simulink

This chapter �rst discusses reasons for integrating Simulink in the VRE tool chain, then
presents Simulink, and �nally describes guidelines for using Simulink to represent a PIM.

5.1 Why Simulink

Within the scope of this thesis, we have developed the VRE language, but not a dedi-
cated application description environment for VRE due to time limitation. Instead we
use Mathworks' software package Simulink [42] to describe a PIM as:

• Simulink provides an interactive graphical environment to design, simulate, im-
plement, and test signal processing applications.

• Simulink o�ers tight integration with the Matlab environment [24], i.e., it can
either be scripted from or drive Matlab. This has some bene�ts that will be
discussed later in this chapter.

• Simulink is widely used by the communication industries, and thus the incorpora-
tion of Simulink in the VRE tool chain will increase the intuitive understanding
of applications and simplify familiarization for new developers.

5.2 Introduction to Simulink

This section presents Simulink, and discusses how applications are described in Simulink.
It only includes Simulink-speci�cs that are required to understand guidelines for describ-
ing a PIM in Simulink, which will be discussed after this section.

Simulink o�ers its own application description language and includes a graphical
editor to describe applications. The language di�ers from VRE as it is not hardware-
independent, i.e., developers describe an application with scheduling. It de�nes two
major classes of elements to describe an application:

• Blocks that correspond to operations (such as �lter) and are available to applica-
tion developers as libraries. They are considered as black boxes, i.e., their function-
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alities are unknown to application developers, but interfaces such as parameters
and ports are known.

• Signals that correspond to exchanges of information between blocks.

In Simulink, an application description is called a model. To describe a model,
developers �rst add required blocks from the block libraries to the graphical editor (also
called the model editor) and then connect them with signals. See Fig. 5.1 for clarity.
Here, the model consists of four blocks ("Signal Generator", "Sine Wave", "Product",
and "Power Spectral Density") and three signals (shown as arrows).

Figure 5.1: Application description in Simulink.
.

Simulink includes a simulator that executes (simulates) a model as a time-varying
system. Prior to simulating a model, one has to set a start time, e.g., T1, and an end
time, e.g., T2. The simulator then executes the model for the period of T2-T1 in such
a way that it executes every block of the model in each simulation time steps, i.e., T1,
T1+1, ...., T1+N where T1+N <= T2. However, some blocks may execute iteratively
or may not execute in a simulation time step, such as conditionally executed subsystem
blocks, which will be discussed later.

Each block in Simulink has a parameter pane, i.e., a dialog window for de�ning
parameters of a block. We can open the parameter pane of a block by clicking onto the
block. Fig. 5.2(d), for instance, shows the parameter pane of an S-Function block that
will be discussed in the next paragraph.

Simulink's block libraries include a set of built-in blocks (such as �lter) that are
commonly used to represent signal processing applications. Additionally, it is possible
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to add a custom-de�ned block to a model. Simulink provides a special library block
called S-Function block for this, i.e. an S-Function block is capable of running an S-
Function that is a user de�ned function written in: C, C++, Matlab and Fortran. To
add an S-Function block to a model, as shown in Fig. 5.2, we have to �rst describe an
S-Function and next add an S-Function library block to a model. Then, to associate
the S-Function to the S-Function block, we have to open the parameter pane of the
S-Function block and de�ne two parameters: the parameter "S-function name" with
the name (reactor_sfcn) of the S-Function, and the parameter "S-function parameters"
with the arguments (0, 1, 40) of the S-Function, e.g., if f(int p1, int p2) is an S-Function
then p1 and p2 are the arguments of the S-Function.

Figure 5.2: Adding S-Function to a model.

Simulink also provides a special block called subsystem to establish a hierarchical
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block diagram, i.e., a subsystem block is one layer and the blocks that lie within the
subsystem block are another. We insert a subsystem block to a model to establish a
hierarchical block diagram as follows:

• First, we have to add a subsystem block from the block library to our model editor.

• Next, we have to click onto the subsystem, which in turn opens a di�erent model
editor window.

• Then, we have to add required blocks for the subsystem blocks to the new model
editor window.

• Finally, we have to connect those blocks with signals and thus can describe the
internal block diagram of the subsystem.

As shown in Fig. 5.3, Simulink provides a library block named Inport ("In") to
realize an input data port and another library block named Outport ("Out") to realize
an output data port of a subsystem block ("Subsystem"). Note that the "Trigger" block
also realizes an input port that is not connected by signal with any other internal block
of the subsystem block (see Fig. 5.3(b)). This block actually determines whether or not
the other internal blocks of the subsystem block may execute in a simulation time step,
as will be discussed next.

Figure 5.3: A subsystem block in a model.

In Simulink, a subsystem block can be executed unconditionally or conditionally.
An unconditionally executed subsystem block always executes. A conditionally executed
subsystem block internally contains a control block that evaluates a condition and, based
on the condition, determines whether or not other internal blocks of the subsystem
block may execute. For instance, the "Trigger" block in Fig. 5.3 is a control block, and
therefore the subsystem block is a conditionally executed subsystem block. Here, in
each simulation time step, the trigger block consumes an input signal, and let the other
internal blocks of the subsystem block to execute if the input signal changes (either
increments or decrements).

44



5.3 Guidelines for Representing PIM

Simulink also provides library blocks to describe memories. It provides a library
block named "Data Store Memory" to de�ne a memory, and two other library blocks,
named "Data Store Read" and "Data Store Write", to read from and write to the
memory, respectively. See Fig. 5.4 for instance. Here, the block "Data Store Memory"
represents a memory ("M1"), where the block "B1" reads from and the block "B2"
writes to the memory.

It is possible in Simulink to create our own block libraries. For instance, we can
design various subsystem blocks and develop our own S-Function blocks, and then can
store them as libraries.

Simulink o�ers tight integration with Matlab, i.e., Matlab o�ers a command shell
and de�nes a set of commands, where one can execute a command in the command shell
to access or set the functionalities of a model. We can, for instance, execute a command
to obtain the properties of a block. Section 5.4 discusses further details.

Figure 5.4: Memory blocks in Simulink.

Simulink supports the concept of callback functions. A callback function is a scrip �le
(or M-�le) that is written in the Matlab language. Developers can associate a callback
function with a model, where the model executes the callback function based upon a
speci�c action on the model, e.g., during simulation but before any other block. A use
of callback function is discussed later in this chapter.

5.3 Guidelines for Representing PIM

There is a similarity between Simulink and VRE, i.e., we describe an application as a
block digram in both Simulink and VRE. To describe a PIM in Simulink, we have to
consider the following:

• A model in Simulink corresponds to a system in VRE, and blocks and signals have
similar meaning in both VRE and Simulink.

• A library block in Simulink, which is not a subsystem block, corresponds to a
primitive in VRE.

• A library block in Simulink, which is a subsystem block, corresponds to a module
in VRE, and can be said as a modular block with respect to VRE.
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As already stated, we describe a PIM in terms of di�erent types of dependencies
between blocks, i.e., message-coupled, memory-coupled, and control-coupled dependen-
cies. Thus, to represent a PIM in Simulink, we have to add required blocks to Simulink's
model editor window and then describe di�erent types of dependencies between them.
We can for instance connect two blocks with a signal that corresponds to an exchange
of data to describe a message-coupled dependency. Unfortunately, Simulink does not
enable us to describe some VRE-speci�cs directly, e.g, it does not support VRE-like
�ags. However, some workarounds have been devised within the scope of this thesis so
that we can describe a PIM in Simulink, which are discussed below.

Describing Parameters at System Level

In Simulink, there is no direct way to specify a global parameter for a model. Fortunately,
it is indirectly possible using a callback function named "PreLoadFnc" that is executed
by a model before its blocks (during simulation). To add parameters to a model, we
have to �rst describe required parameters in a script �le that is written in the Matlab
language and then execute the following command in the Matlab command shell:

set_param('modelname','PreloadFcn', 'loadvar')

This command (set_param) ensures that a model named "modelname" will execute
a script �le named "loadvar" as a callback function named "PreLoadFnc" during simu-
lation prior to any other blocks. Thus, during simulation. the model �rst executes the
callback function and thereby loads the parameters that are global with respect of the
model and can be accessed by blocks.

Specifying Memories and �ags

As shown in Fig. 5.4, Simulink's concept of memory di�ers from that of VRE, i.e., a
memory in Simulink is described by a "Data Store Memory" block and can only be
accessed by a "Data Store Read" block for reading and a "Data Store Write" block for
writing, whereas a memory in VRE is not described as a block, instead as a memory com-
ponent that is accessed by a block through a memory link. On the other hand, Simulink
does not support �ags. Therefore, a new concept for realizing VRE-like memories and
�ags in Simulink has been developed: An S-Function named "mem" has been written
that de�nes a run time variable for a model to be accessed by other S-Function blocks,
and takes the name, data type, size and initial value of a corresponding memory as
arguments. If its type argument is speci�ed as boolean then it corresponds to a �ag else
a memory. A block can access such a memory or �ag by calling some Simulink-speci�c
Dynamic Library Link (DLL) functions with the memory or �ag name as argument. For
instance, assume we describe a memory named "M1" as an S-Function block that as-
sociates the S-Function "mem". Then, another block can access the memory by calling
a DLL function with "M1" as argument. See [53] to know about these DLL functions
and other details. It is important to mention here that, in Simulink, blocks that access
memories and �ags take the names of the memories and �ags as parameters, as Simulink
supports parameters for blocks but not memory and �ag links. Therefore, we have to
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properly mask parameter panes of blocks to distinguish parameters, memory links and
�ag links from one another, as will be described next.

Masking Parameter Panes

We have to mask (i.e., customizing a user interface) parameter panes of blocks as shown
in Fig. 5.5, because they do not contain su�cient information for developers. For in-
stance, they describe names of parameters but not other properties such as data types
and sizes. Furthermore, as discussed earlier, they do not distinguish parameters, mem-
ory links and �ag links from one another. See "Mask Editor" Section in the Simulink
documentation (available at [42]) for further details about how to mask parameter panes
of blocks.

Figure 5.5: An S-Function primitive block and its parameter pane.

Realizing Trigger Flows

As already discussed in Section 4.4, in VRE, one block triggers another may describe a
memory-coupled dependency. However, Simulink does not enable us to describe output
trigger ports for subsystem blocks, as well as input and output trigger ports for S-
Function blocks. Therefore, it is not directly possible to represent VRE-like trigger �ows
in Simulink. Nevertheless, we can use triggered subsystem blocks (already introduced
in Section 5.2) to represent VRE-like trigger �ows as shown in Fig. 5.6. Note that a
Trigger block (already introduced in Section 5.2) realizes an input trigger port, and an
Outport block (also introduced in Section 5.2) named "Z" realizes an output port. As
the Outport block itself does not produce any output trigger, a library block named
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"Constant" that generates an impulse upon execution and hence produces a trigger
output is connected with the Outport block.

Figure 5.6: Representation of trigger �ows in Simulink.

Representing VRE-Like Loops

Simulink provides two control blocks for describing loops as conditionally executed sys-
tems, i.e. a control block named "For Iterator" and another control block named "While
Iterator". A subsystem block that contains a "For Iterator" block is called a for iterator
subsystem block and a "While Iterator" block is called a while iterator subsystem block.
In a simulation time step, both for and while iterator subsystem blocks execute their
internal contents iteratively, and their iteration limits (i.e., total number of iterations)
are determined by their "For Iterator" and "While Iterator" blocks, respectively.

We can use a for iterator subsystem block to describe VRE's constant and dynamic
for loops. A "For Iterator" block can be parameterized to enable us to specify a corre-
sponding iteration limit in two ways, either as a parameter value or as a data that is
produced by another block and read through an input port. We use the �rst option to
describe a VRE-like constant for loop and the second to describe a VRE-like dynamic
for loop. See Fig. 5.7 for clarity. Here, in case of dynamic for loop, the block named
"M_Val" reads a memory and thus produces the value of the memory as output that
de�nes the iteration limit.

We can, on the other hand, use a while iterator subsystem block to describe a VRE-
like do-while loop, where its "While Iterator" block determines its iteration limit, i.e.,
this block consumes an input through port in each simulation time step and may stop
the loop as soon as the input corresponds to zero. See Fig. 5.7 for clarity. In VRE, as
discussed in Section 4.4.3, a block that is within a do-while loop accesses a �ag named
"VRE_DO_WHILE" and thus stops the loop. In Fig. 5.7, it is the "condCheck" block
that accesses the �ag (not shown in the �gure).
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As shown in Fig. 5.7, descriptions of loops in Simulink comprise two levels of hierar-
chies: one by a triggered subsystem that is to describe input/output trigger ports, and
another by either a for or a while iterator subsystem block that describes the body of a
loop, as Simulink does not permit to coexist two control blocks (such as "Trigger" and
"For Iterator") at a same hierarchical level.

Figure 5.7: Representations of VRE-like loops in Simulink.

Representing VRE-Like Branches

To specify di�erent types of VRE-like branches, six S-Function primitive blocks have
been developed, i.e., three "Select" and three "EndSelect" primitives, where each combi-
nation of "Select" and "EndSelect" primitives is used to describe one of the three types
of VRE-like branches, as already discussed in Section 4.4.3.

In Simulink, VRE-like branches are described within a triggered subsystem, where
the S-Function block that performs the "Select" operation activates one of the triggered
subsystems and the S-Function block that performs "EndSelect" operation determines
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Figure 5.8: Representation of VRE-like CaseStatic branch in Simulink.

the end of the branch. For example, Fig. 5.8 shows a VRE-like "CaseStatic" branch
representation in Simulink, where the blocks "CaseSS" and "EndCaseSS" represent
"Select" and "EndSelect" primitive operations, respectively. Note that "Branch1" and
"Branch2" are subsystem blocks, and the bodies of the branches are described internally
within these subsystems.

5.4 XML Representation of PIM

As already discussed in Section 4.6, VRE programs (both PIM and PSM) are stored in
XML format to be input to the VRE compiler. Within the scope of this thesis, a Matlab
program has been developed that is capable of generating a PIM in XML format from a
model representing the PIM. It has to be executed from the Matlab command shell and
takes a model name as an argument. Upon execution, it �rst gathers information about
the model and then generates a corresponding XML �le. It is composed of Matlab-
speci�c commands, i.e., Matlab provides a set of commands that can be used to gather
information about a model. In particular, it uses two such commands: "�nd_system"
and "get_param". The "�nd_system" expression returns the handle of an object (i.e.,
blocks, lines, etc.) of the model. The syntax of this expression is:

find_system(s,′ c1′,′ c2′, ..., v1, v2, ...)

This searches the model ( or a subsystem) named "s" using the constraints speci�ed by
"c1", "c2", etc., and returns handles of the objects (such as blocks) having the speci�ed
parameter values "v1", "v2", etc. For example, assuming a model contains a block
named "GainBlock" that has a parameter named "Gain" whose value is "1", we can
obtain the handle of the "GainBlock" block using the following expression:

blk = find_system(gcs,′BlockType′,′GainBlock′,′Gain′,′ 1′)

Here, "gcs" is a prede�ned Matlab variable that speci�es the path of the current model.
After obtaining the handle of an object, we can use the "get_param" command to

gather information about the object. For instance, we can use the following expression
to obtain information about the parameter pane of the "GainBlock" block:

50



5.5 Summary

rval = get_param(blk,′DialogParameters′)

Here, the valiable "blk" that contains the return value of the previously mentioned
"�nd_system" expression refers to the object handle of the "GainBlock" block. The
variable "rval" is a cell array that is a Matlab-speci�c data structure capable of preserv-
ing the information (see [24]).

Thus, the program gathers information about a model using Matlab command ex-
pressions. Then, it writes this information to an XML �le that corresponds to a PIM.
Matlab provides two functions called "xmlread" and "xmlwrite" to read and write an
XML �le. Using the "xmlwrite", the program writes the gathered information.

5.5 Summary

This chapter has presented Simulink and the guidelines for representing a PIM in
Simulink. The next chapter describes an experiment that has been conducted to repre-
sent the IEEE 802.11b WLAN receiver as a PIM in Simulink.
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Chapter 6

WLAN Experiment

This chapter gives an overview of the IEEE 802.11b WLAN and describes an experiment
that has been performed to represent a PIM for the physical layer of the IEEE 802.11b
WLAN receiver in Simulink.

6.1 Overview of WLAN Physical Layer

The IEEE 802.11 standard [7] de�nes three di�erent types of Physical Layer (PHY)
implementations: (1) infrared (IR) baseband, (2) Frequency Hopping Spread Spectrum
(FHSS) PHY, and (3) Direct Sequence Spread Spectrum (DSSS) PHY [7]. The PHY
that is discussed in this chapter is the DSSS PHY, also known as 802.11b.

PHY resides at the bottom of the OSI model. It acts as an interface between the
Medium Access Control (MAC) layer and the wireless media. As shown in Fig. 6.1, it
consists of a Physical Layer Convergence Procedure (PLCP) sublayer and a Physical
Medium Dependent (PMD) sublayer.

Figure 6.1: Di�erent functional layers of WLAN protocol.

The PLCP sublayer exchanges packets with the MAC layer. On the transmitter
path, it receives packets from the MAC layer in the format of MAC Protocol Data
Unit (MPDU) and forwards them to the PMD sublayer in the format of PLCP Protocol
Data Unit (PPDU). On the receiver path, it receives packets from the PMD sublayer
in the format of PPDU and forwards them to the MAC Layer in the format of MPDU.
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The PMD sublayer on the other hand transmits and receives bits over the wireless
medium. On the transmitter path, it takes binary bits of information in the format of
PPDU from the PLCP sublayer and transforms that into RF signals to be transmitted
through the wireless media. On the receiver path, it takes the received data and converts
that to PPDU to be forwarded to the PLCP layer.

Thus, PHY has the following functionalities: (1) it provides a frame exchange be-
tween the MAC and PHY under the control of the PLCP sublayer, (2) it uses signal
carriers and spread spectrum modulation to transmit data frames over the media under
the control of the PMD sublayer, and (3) it provides a carrier sense indication back to
the MAC to verify activity on the media [29].

6.2 Overview of WLAN Receiver

The WLAN receiver transforms incoming RF signals into PPDUs. The PPDU frame
format is presented in Fig. 6.2. It consists of a PLCP preamble, a PLCP header and an
MPDU.

Figure 6.2: The PPDU frame format.

The PLCP preamble consists of the followings:

SYNC: This �eld is 128 bits (symbols) in length and contains a string of 1s which
are scrambled prior to transmission. The receiver uses this �eld to acquire the
incoming signal and synchronize the receiver's carrier tracking and timing prior to
receiving the start of frame delimiter (SFD).

Start of Frame Delimiter (SFD): This �eld contains information marking the start
of a PPDU frame. The SFD speci�ed is common for all IEEE 802.11 DSSS radios
and uses the following hexadecimal word: F3A0.

The PLCP header consists of the followings:

Signal: The signal �eld de�nes which type of modulation must be used to receive
the incoming MPDU. The binary values in this �eld are equal to the data rate
multiplied by 100kbit/s. For instance, in the June 1997 version of IEEE 802.11
[29], two rates are supported. They are: 0A hex for 1 Mbps DBPSK and 14 hex
for 2 Mbps DQPSK.
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Service: The service �eld is reserved for future use. However, the default value is 00
hex.

Length: The length �eld is assigned an unsigned 16-bit integer that indicates the num-
ber of microseconds necessary to transmit the MPDU. The MAC layer uses this
�eld to determine the end of a PPDU frame.

CRC: The CRC �eld contains the result of a calculated frame check sequence from
the sending station. The calculation is performed prior to data scrambling. The
CCITT CRC- 16 error detection algorithm is used to protect the signal, service
and length �elds. The CRC-16 is represent by the following polynomial: G(x) =
x16 + x12 + x5 + 1. The receiver performs the calculation on the incoming signal,
service, and length �elds and compares the results against the transmitted values.
If an error is detected, the receiver's MAC makes the decision if the incoming
PPDU should be transmitted.

The MPDU consists of a header and a payload, which is understandable by the MAC
layer. This frame format is unknown to PHY.

In the signal processing chain, the receiver �rst acquires samples that represent
incoming signals. Then, it looks for the preamble SYNC pattern that is scrambled 1s.
As soon as it detects the preamble SYNC pattern, it looks for the the start of the frame
delimiter (SFD) pattern that marks the start of the PPDU frame. Once the SFD pattern
is found, it decodes the header, i.e., it �rst parses the header bytes to obtain the data
rate de�ned in the signal �eld and the packet length de�ned in the length �eld, and
then determines the CRC information, and thus performs error checking. It discards
the packet if it detects an error in the packet, otherwise it demodulates the incoming
signal and thereby determines the payload using the known values of the data rate and
length (these are given in the packet header).

In addition to the functionalities discussed above, the receiver performs channel
estimation and equalization to compensate the Inter-Symbol Interferences (ISI) (see
[25]). ISI means a form of distortion of a signal that causes the previously transmitted
symbols to have an e�ect on the currently received symbol. This is usually an unwanted
phenomenon as the previous symbols have a similar e�ect as noise, and thus making the
communication less reliable. It is usually caused when signals su�er from fading, reach
the receiving antenna in various paths obstructed by atmospheric ducting, ionospheric
re�ection and refraction, and re�ection from objects like buildings. If ISI occurs then
the receiver may demodulate the signal incorrectly and thus result in error.

6.3 Experiment

As an experiment, we have described a PIM for the IEEE 802.11 WLAN receiver in
Simulink. The experiment has been conducted to evaluate whether it is possible to
describe an SDR application in the VRE language and to use Simulink to represent a
PIM, as well as to evaluate whether it is easier to describe an application in the VRE
language than in platform-speci�c languages such as POSIX-C.
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The IEEE 802.11 WLAN has been chosen for this experiment, as its signal process-
ing algorithms are computationally complex and it has a strict real-time requirement
(i.e., it has a high data rate), and thus developers experience similar level of program-
ming complexity to describe an application for the IEEE 802.11 WLAN and other SDR
applications such as GSM and Bluetooth.

In this experiment, in addition to describe the PIM, we have also simulated the
PIM using Simulink's simulation environment, as well as compiled the PIM employing
the VRE compiler. This section describes the experiment, except remarks about the
compilation, which will be discussed in Section 8.6. In particular, it �rst describes
the PIM representation, then presents the simulation result, and �nally discusses the
experiences that have been gathered from the experiment and explains why it is easier
to describe an application in the VRE language than in platform-speci�c languages.

6.3.1 WLAN Receiver Description in Simulink

To describe the PIM for the IEEE 802.11b WLAN receiver in Simulink, we have �rst
recognized signal processing algorithms (such as �lter and FFT) required to describe
the application, and next described S-Functions for these algorithms and thus developed
primitives as S-Function blocks. Then, we have represented the PIM according to the
guidelines discussed in the last chapter.

Fig. 6.3 sketches the PIM representation of the IEEE 802.11b WLAN receiver in
Simulink. For brevity, it only shows the receiver's signal processing chain, i.e., blocks
exchanging information, but not other details such as memories and �ags. The receiver
description consists of ten blocks. The blocks "vreSyncIn1" and "stop" are added to
the receiver description for simulation purpose, i.e., the former generates an impulse
and thus triggers (activates) the block "subsystem1", and the later is an instance of a
Simulink library block "Stop" that terminates the simulation upon receiving a signal.
The other blocks perform the signal processing operations of the receiver. In particular,
they do the following:

1. The block "subsystem1" acquires the samples and looks for the SYNC bits. Upon
receiving the SYNC bits, it triggers the block "subsystem2".

2. The block "subsystem2" does channel estimation and equalization, and then trig-
gers the block "subsystem3".

3. The block "subsystem3" detects the SFD, and then triggers the block "subsys-
tem4".

4. The block "subsystem4" processes the header, i.e., it determines the type of mod-
ulation to be used by the receiver (1Mbps DBPSK or 2Mbps DQPSK) and packet
length. Then, it triggers the block "caseSS".

5. The block "caseSS" is a VRE-de�ned "Select" block (see 4.4.3), which reads a
memory and then triggers either the block "subsystem5" or the block "subsys-
tem6" based on the memory value that is set by the block "subsystem4", i.e.,

56



6.3 Experiment

"subsystem4" determines the type of modulation to be used by the receiver and
thus sets the memory value to 1 if the modulation type is 1Mbps DBPSK or to 2
if the modulation type if 2Mbps DQPSK.

6. The block "subsystem5" processes the PPDU payload using 1Mbps DBPSK mod-
ulation scheme. Then, it triggers the block "endCaseSS".

7. The block "subsystem6" processes the PPDU payload using 2Mbps DQPSK mod-
ulation scheme. Then, it triggers the block "endCaseSS".

8. The block "endCaseSS" is a VRE-de�ned "EndSelect" block (see 4.4.3), which
marks the end of the branches and triggers the "Stop" block.

Figure 6.3: The IEEE 802.11b WLAN receiver in Simulink.

Note that Fig. 6.3 shows blocks exchange triggers and thus describes possible memory-
coupled dependencies, e.g., "subsystem4" writes a value to a memory (not shown in the
�gure) after determining the type of modulation to be used by the receiver, where
"caseSS" evaluates the value from the memory for activating one of the associated
branches. Here, the blocks "caseSS" and "endCaseSS" are added to describe the Case-
DynamicBranch (see 4.4.3) representation. The other blocks perform receiver oper-
ations, i.e., they process di�erent sections of PPDU, e.g., "subsystem1" processes the
�rst 128 bits and "subsystem3" processes the next 16 bits (the PPDU packet format
is already presented in Fig. 6.2). These blocks are modular block, and thus internally
contain other blocks and describe the restrictions of scheduling of their internal blocks.
For example, Fig. 6.4 presents the internal construct of the block "subsystem1". It in-
ternally contains a "While Iterator Subsystem" (coarsSyncSS) block and thus describes
a "do-while" loop. The block "coarsSyncSS" consists of several primitive blocks such as
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Figure 6.4: Internal construct of "subsystem1" (coarse synchronization module) block
of the WLAN receiver.

"read" and "�lter", and describes message-coupled dependencies between these primi-
tive blocks, e.g., the block "read" produces data that the block "�lter" consumes.

Thus, the WLAN receiver is represented in the VRE language, i.e. it describes
message-coupled, memory-coupled, and control-coupled dependencies between the blocks.

6.3.2 Simulation

Before simulating the PIM discussed above, we added two more blocks ("vreSyncIn"
and "readSamplesSS") to the PIM for loading input samples for the receiver, i.e.,
"VreSyncIn" (that generates an impulse) triggers "readSampleSS" that then loads sam-
ples from a �le to the model. The receiver processes these samples during simulation
and thus generates PPDU. It is important to mention here that the blocks "vreSyncIn"
and "vreSyncIn1" have been parameterized to generate an impulse in the �rst and sec-
ond simulation time steps, respectively. Thus, to simulate the PIM, we have to set the
simulation start time to 0 and the simulation end time to 1. This means there are two
simulation time steps: the time step 0 to execute the blocks "VreSyncIn" and "read-
SamplesSS", and the time step 1 to execute the receiver chain. Setting other simulation
options are not important for simulating the PIM, however one is free to do that. See the
Simulink documentation (available at [42]) to know about the other simulation options.

Simulink's simulation environment computes a schedule that corresponds to a serial
program and thus executes a program during simulation. For instance, in case of the
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PIM that does not describe a schedule, it executes �rst the block "vreSyncIn1", next
the block "subsystem1", then the block "subsystem2", and so on.

Figure 6.5: Identical transmitted and received payloads.

Fig. 6.5 depicts the transmitted signal. The result of the simulation showed that the
received signal was identical to the transmitted signal. Therefore, we can consider the
WLAN receiver description in Simulink as correct. Thus, it can be concluded that one
can use Simulink as a graphical editor for describing a PIM.

6.3.3 Remarks

The experiences gathered from this experiment have shown that, for an application
developer who has a detailed knowledge of both Simulink and the IEEE 802.11b WLAN
protocol, it has taken one working week (approx.) to determine which primitives need to
be developed for describing the protocol, plus four working weeks (approx.) to develop
the required primitives as S-Functions, plus one working week (approx.) to describe
the protocol and bug �xing. That means, it has taken altogether six weeks (approx.).
Assuming that the required primitives are available to the developer as libraries, it has
taken two weeks. The experiences from other environments such as Sandblaster IDE, in
contrast, have shown that it has taken more than twelve working weeks for a developer
to describe the protocol, assuming the similar preconditions, i.e., the developer has a
detailed knowledge of Sandblaster IDE and the IEEE 802.11b WLAN protocol.

6.4 Summary

This chapter has given an overview of the IEEE 802.11b WLAN and described the
experiment that has been conducted to represent the IEEE 802.11b WLAN receiver as
a PIM in Simulink.
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Chapter 7

Hardware Description Files

As already stated in Chapter 1, in VRE, we describe hardware-speci�c information
that is needed by the VRE compiler in hardware description �les. There are two such
�les, called hardware model description �le and hardware implementation library �le,
respectively. This section presents contents and formats of these �les, as well as discusses
why these contents are needed by the VRE compiler.

7.1 Hardware Model Description File

The hardware model description �le contains information about processing modules of
the target hardware. In particular, it contains two pieces of information about each
processing module:

1. The maximum number of threads that are supported.

2. The types of vector operations that are supported.

The former enables the compiler to determine how many tasks can be run in parallel.
The later enables the compiler to determine strip sizes for vector data and hence to
realize vector operations, as discussed in Section 3.1. As an example, a hardware model
description �le is shown in Fig. 7.1. Note that it is described in XML format. It shows
that the hardware has four processing modules that are distinguished by an ID. These
processing modules correspond to the DSP cores of the hardware and therefore are of
class "DSP". It is important to mention here that an SDR hardware may consist of
processing modules of di�erent classes. MuSIC, for instance, consists of four processing
modules of class SIMD, one processing module of class �lter, i.e., a hardware accelerator
dedicated for the �lter operation, and another of class viterbi, i.e., a hardware accelerator
dedicated for the viterbi operation (see Section 2.3). To determine whether or not a
processing module is capable of executing a primitive, the VRE compiler needs to know
what the class of the processing module is, as will be discussed in the next section.

Note that the �le contains two pieces of information about each processing module,
"Thread" and "VectorOp", as discussed earlier. Further note that the "VectorOp" is
described with two attributes: (1) "vector_length" is equal to the size of the vector
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register and (2) "element_length" is equal to the length of vector elements, both in
terms of number of bits. For instance, "vector_length = 64" and "element_length =
16" mean that the corresponding processing module can perform operations on two
vectors, where each vector consists of four (i.e., "vector_length/element_length" =
64/16 = 4) 16-bit (i.e., "element_length") elements.

Figure 7.1: Hardware model description �le.

7.2 Hardware Implementation Library File

The hardware implementation library �le contains hardware-speci�c information about
primitives. In particular, it contains two pieces of information about each primitive:

1. The type of processing module that is capable of executing it.

2. The time the processing module takes to execute it.

These two pieces of information enables the VRE compiler to compute mapping and
scheduling. Assume, for instance, that we describe a PIM that includes a FIR block
and a CRC block, where the FIR block produces data for the CRC block and thus
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has to be executed before the CRC block. Further assume that we want to perform
an implementation of the PIM on a hardware platform that consists of two processing
modules: a processing module named P1 that is capable of executing the FIR block in
4ms and the CRC block in 8ms, and another processing module P2 that is capable of
executing the FIR in 6ms and the CRC block in 4ms, where these processing modules can
exchange information via shared memory without much delay. From this information,
the compiler can compute an e�cient mapping and scheduling, i.e., assign FIR to P1
and CRC to P2 for execution.

An implementation library �le contains these two pieces information also about syn-
chronization primitives such as "vreCondWait" and "vreCondSignal" (already intro-
duced in Section 4.5). The later piece of information about a synchronization primitive
corresponds to the minimum execution time of the primitive, as execution times of syn-
chronization primitives may vary depending on synchronization scenarios. For instance,
in case of the synchronization primitive "vreCondWait", it corresponds to the time
that requires to execute the primitive when the primitive �nishes its operation without
waiting for a wake up signal, as either of the primitive condition is true. Additionally,
an implementation library �le contains information about di�erent possible implemen-
tations of primitives, e.g., two di�erent implementations of one primitive, each for a
processing module of a di�erent class.

Figure 7.2: Hardware implementation library �le.

For clarity, an example hardware implementation library �le is presented in Fig.
7.2. Note that it is also speci�ed in XML. It contains information about two di�erent

63



7.3 Summary

implementations of a "�lter" primitive (where the implementations are distinguished
by a unique ID), as well as one implementation of an "adder" primitive. It shows that
both the "�lter" and the "adder" primitives can be mapped to the processing module
whose ID is "1" ("VRE_PM_CLASS"), and the "adder" primitive can also be mapped
to the processing module whose ID is "2". Moreover, it contains information about
the execution times ("VRE_EXEC_TIME") of the primitives (in microsecond) on the
processing modules.

Note that the parameter "VRE_EXEC_TIME" of the "adder" primitive is de-
scribed by an expression ($pSize*16), which means a DSP type processing module needs
16 times "pSize" micro seconds to execute the primitive, where "pSize" is a parameter
of the "adder" primitive. For clarity, see Fig. 7.3. Here, the parameter "pSize" de�nes
the width of the input and output ports of the primitive and thus eventually speci�es
how many addition operations to be performed by the primitive. For instance, if "pSize"
is 16 then the "adder" primitive performs 16 addition operations, i.e., it consumes two
vectors ("a" and "b") of 16 elements each and produces another vector ("c") of 16 ele-
ments. Thus, if the value of "pSize" increases or decreases then the execution time of
the adder primitive also increases or decreases.

Figure 7.3: Representation of "adder" Primitive.

7.3 Summary

This section has described the contents and formats of the hardware description �les
�les, as well as discussed why these contents are needed by the VRE compiler. The next
chapter presents the VRE compiler kernel.
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Chapter 8

The Compiler Kernel

This chapter �rst presents an overview of the VRE compiler kernel. Then, it describes in
detail how the compiler kernel transforms a PIM into a PSM, i.e., how it identi�es tasks,
evaluates dependencies between tasks, eliminates some dependencies, and computes a
mapping and scheduling as well as inserts required synchronizations. Finally, it makes
some remarks based on some experiments that have been conducted to evaluate the
compiler kernel.

8.1 De�nition of Terms

This section describes some terms that have speci�c meaning in VRE and have been
used in this chapter.

Task, subtask and supertask:

As already described in Section 4.2, a task is a building block of a PSM and corresponds
to either a primitive or a set of primitives. A task may internally contain other tasks
that are called subtasks and a task that internally contains subtasks is called the su-
pertask of these tasks. During compilation, the VRE compiler kernel transforms blocks
into tasks and thus assigns scheduling and mapping. See Fig. 8.1 for an example. Here,
the "Adder" block that performs 512 addition operations is mapped to two di�erent
processing modules (PM1 and PM2): one task that performs the �rst 256 addition op-
erations is mapped to PM1, and another task that performs the remaining 256 addition
operations is mapped PM2. In this chapter, the term task is used to refer to a prim-
itive or a set of primitives that are (or are to be) assigned to a processing module for
execution.

Dependent, independent and partially dependent tasks:

A set of tasks that have data dependencies and therefore cannot be run in parallel is
said to be dependent or non-parallel tasks, and a set of tasks that do not have data
dependencies and therefore can be run in parallel is said to be independent or parallel
tasks. Tasks that internally contain subtasks can also be partially dependent (partially
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Figure 8.1: Creation of tasks from blocks.

parallel), i.e., some subtask of one task can be run in parallel with some subtask of
another but not all subtasks of one task can be run in parallel with all subtasks of
another. See Fig. 8.2 for an example. Here, a loop of three iterations is broken down
into three di�erent tasks, each corresponding to one iteration. These tasks are not
fully parallel as data dependencies exist among them: the CRC block is writing data
to a global memory (CRC_REG), and therefore the instances of this block for di�erent
iteration steps must be executed sequentially. Albeit, as shown in Fig. 8.2, it is possible
to run these tasks in parallel by means of synchronizing the executions of the instances
of the CRC block and hence these tasks are said to be partially dependent.

Figure 8.2: Partially dependent or partially parallel tasks.

8.2 Overview of the Compiler Kernel

The heart of the VRE compiler is the compiler kernel that takes the PIM and hardware
description �les as inputs, and generates a corresponding PSM as output. The compiler
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kernel solves hardware-speci�c issues, i.e., it computes mapping and scheduling, as well
as inserts synchronizations. Within the scope of this thesis, a prototype of the compiler
kernel has been developed for the SDR hardware platform SB3010.

Fig. 8.3 presents an overview of the compiler kernel. It shows that the compilation
process of the compiler kernel includes three phases, called preprocessing phase, program
analysis phase, and transformation phase, respectively. In the preprocessing phase, the
compiler kernel prepares a PIM to be transformed into a PSM. In the analysis phase,
it performs program analysis, i.e., it evaluates dependencies between blocks. In the
transformation phase, it computes mapping and scheduling and inserts synchronizations,
and hence transforms a PIM into a PSM. The next sections describe these phases in
more detail.

Figure 8.3: The compiler kernel.

8.3 Preprocessing Phase

In the preprocessing phase, the compiler kernel performs error checking, i.e., it stops
compilation indicating an error if, for instance, the value of a parameter does not cor-
respond to the data type of the parameter. Additionally, it resolves parameters values,
memory links, and �ag links, as well as eliminates irrelevant hierarchies and branches,
which are discussed below.
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Resolving Parameter Values:

It is often the case that the value of a parameter is not directly speci�ed. Consider, for
instance, the example depicted in Fig. 8.4, which shows a modular block that internally
contains two primitive blocks. Here, the values of the parameters "P1" and "P2" are
indirectly speci�ed, i.e., "P1" refers to "P2" ("P1" = "$P2") and "P2" refers to "P3"
(P1 = "$P3"). In the preprocessing phase, the compiler kernel resolves such indirect
references, i.e., it substitutes the values of "P1" and "P2" by the value of "P3", which
means both "P1" and "P2" contains "2" (not "$P3") after the preprocessing step.

Figure 8.4: Indirect references of parameters.

Resolving Memory and Flag Links:

Like parameters, memory links may point to memories indirectly. Consider, for instance,
the example shown in Fig. 8.5. Here, the memory link "MB" of the block "B" refers to
"MA" that is the memory link of block "A" and refers to memory "M". Thus, "MB"
actually refers to "M". In the preprocessing step, the compiler kernel resolves such
indirect references, i.e., "MB" will refer to "M" instead of "MA" after the preprocessing
step. Similarly, it resolves �ag links.

Figure 8.5: Hierarchical references of memory links.

Flattening PIM:

After resolving parameter values as well as memory and �ag links, the compiler kernel
�attens the representation of a PIM, i.e., it eliminates the composed modules and re-

68



8.4 Program Analysis Phase:

places them with their internal contents. However, it does not eliminate the modules
that represent loops in order to keep them separate from the rest of the algorithm. Thus,
after the preprocessing phase, a PIM comprises no other modular blocks than loops.

Eliminating Irrelevant Branches:

For "CaseStatic" type branches, the compiler kernel recognizes the actual branch to be
executed, and then eliminates the irrelevant branches from the PIM, because there is
no real branch selection at runtime, as already discussed in Section 4.4.3.

8.4 Program Analysis Phase:

In this step, the compiler kernel gathers information about dependencies. It checks
whether a block produces data that another consumes and hence identi�es message-
coupled dependencies, and it checks whether a block writes data to a memory that
another reads and hence identi�es memory-coupled dependencies. Control-coupled de-
pendencies, on the other hand, are identi�ed from representations of loops and branches.
The compiler kernel preserves information about dependencies in the format of following
tables:

• One system table per PIM holds information about primitive blocks.

• One loop table per loop holds information about the loop.

• One branch table per set of branches whose executions depend on the same branch
condition holds information about the branches.

Fig. 8.6 presents a PIM and a corresponding system table. This table consists of �ve
columns and nine rows, where the �rst column entry of each row contains the name of
a primitive block and the other column entries of that row contain information about
the primitive block:

Column 2: The names of the other primitives with which the primitive has message-
coupled dependency, e.g, the column 2 of row 3 contains "B1" which means the
primitive "B1" produces a data that the primitive block "B2" consumes thus "B2"
has a message-coupled dependency with "B1".

Column 3: The names of the other primitives with which the primitive has memory-
coupled dependency, e.g., the column 3 of row 2 contains "A" which means the
primitive block "B1" has a memory-coupled dependency with the primitive block
"A".

Column 4: If the primitive block is part of a loop then this entry contains the name
of the loop table that contains information about the loop, e.g., the column 4 of
row 2 contains "B" which means the primitive block "B1" is part of a loop and
the information about this loop is available in the loop table named "B".
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Figure 8.6: An example PIM and the corresponding system table.

Column 5: If the primitive block belongs to a conditional branch then this entry con-
tains the name of the branch table that contains the information about the condi-
tional branch, e.g., the column 5 of row 6 contains "Sel" which means the primitive
block "D" belongs to a conditional branch and the branch table named "Sel" con-
tains relevant information about the conditional branch.

As shown in Fig. 8.7(a), the loop table consists of one row and two columns, where
the �rst column contains information about the type of the loop such as "constant for
loop" and the second column contains the names of the blocks that belong to the loop.
The format of a branch table is simple, see Fig. 8.7(b) for an example. The branch
consists of one row and several columns. The �rst column contains information about
the type branch representation (CaseStatic), and other columns contains information
about branches: the column 2 contains the names of the blocks (D) that are part of
branch 1, and the column 3 contains the names of the blocks (E) that are part of branch
2, and so on. It is important to mention here that each loop and branch table has a
unique name.
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Figure 8.7: An example loop table.

8.5 Transformation Phase

In the transformation phase, the compiler kernel �rst identi�es tasks, and then computes
mapping and scheduling as well as inserts synchronizations, as discussed below.

8.5.1 Identi�cation of Tasks

The compiler kernel creates tasks from primitive and modular blocks. To reduce the
overall execution time of a program, it creates as many tasks as possible so that a
maximum number of tasks can be run in parallel at a given time. It creates one task per
primitive for primitives that do not consume (or produce) as input (or output) a vector
of values, or part of a loop (as will be discussed). Otherwise, it may create several tasks.
In this case, it �rst recognizes the part of the signal processing chain that comprises
the primitive block and is described in terms of message-coupled dependencies. Then,
it creates tasks on the basis of which particular mapping and scheduling provides a
minimum execution time of that part of the signal processing chain. For clarity, an
example signal processing chain is depicted in Fig. 8.8, which consists of two primitive
blocks, "Mult" and "Add". These blocks are connected through message exchange. The
input and output ports of each block correspond to a data vector of 512 values, and thus
each block has to perform 512 operations: (b[k] = a[k] * a[k] and c[k] = b[k] + b[k]), for
k = 0..512. The �gure also provides the implementation-speci�c information about the
primitives, which shows both the primitives can perform every 128 operations in 4ns.
Using this information, the compiler kernel evaluates di�erent possible implementations
of the signal processing chain and thus determines which particular implementation
results in a minimum execution time. As shown in the �gure, the minimum execution
time for this signal processing chain is 8ns, which is obtained by creating four tasks out
of each primitive block and then mapping them to four di�erent processing modules
to run in parallel. It is important to mention here that the compiler kernel de�nes an
unique ID for each task to distinguish the task from others.

The compiler kernel creates one task per loop for loops whose iteration steps must not
be run in parallel, as one iteration step produces data that the next iteration step uses.
It creates several tasks from a loop with independent iterations, i.e, one iteration step
can be run in parallel with the others. In particular, from a loop with m independent
iteration steps, it creates m ∗ k tasks, where k is the number of blocks that are to
be executed per iteration steps. However, such as a loop is not often seen in SDR
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Figure 8.8: Two primitive blocks that are interconnected in terms of message-coupled
dependencies and exchanging vectors or values.

applications. Most loops in SDR applications are partially parallel, i.e., some blocks of
one iteration step can be run in parallel with some blocks of another, but not all blocks
of one iteration step can be run in parallel with all blocks of another iteration step.

To illustrate how the compile kernel creates tasks from a partially parallel loop, let's
�rst start with an example and then discuss the actual techniques. Fig. 8.9 depicts a
partially parallel loop that is a "constant for loop" with 64 iteration steps, where each
iteration includes the following primitive operations in a sequential order.

Here, the blocks "Read-Bu�er", "Filter-Despreader" and "Demodulator" do not
change any memory value and thus do not create any dependency between di�erent
iteration steps. Thus, their instances of one iteration step can run in parallel with their
instances of another. The block "Descrambler" and "CRC" write data to the mem-
ories "Scrmbl_ Reg" and "CRC_Reg" respectively. Therefore, their instances of one
iteration step must not run in parallel with their instances of another.

Albeit the dependencies exist among the iteration steps, it is possible to run one
iteration step of the loop in parallel with another. Fig. 8.9 shows a possible multi-
threaded mapping and scheduling. Here, at a time, four di�erent iteration steps of the
loop are run in parallel. Note that the desired execution order of the instances of both
"Descrambler" and "CRC" blocks in di�erent iteration steps are ensured through the
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Figure 8.9: Creating tasks from a partially parallel loop.

insertion of the required synchronizations.
The compiler kernel creates several tasks out of a partially parallel loop depending

on how many iteration steps of the loop can potentially be run in parallel. For instance,
in the example shown in Fig. 8.9, four di�erent iteration steps can potentially be run in
parallel. This is because, the 1st thread for instance is capable of executing the indepen-
dent part ("Read-Bu�er", "Filter-Despreader", "Demodulator") of the 5th iteration step
while the 4th thread is still executing the dependent part ("Descrambler" and "CRC")
of the 4th iteration step. Thus, it can execute the dependent part of the 5th iteration
step without any delay just after the 4th thread �nishes the dependent part of the 4th

iteration step. In this case, running the 5th iteration step in a 5th thread will just result
in wastage of an additional resource.

The compiler kernel creates n number of tasks from a partial parallel loops if the
nth iteration step is run in parallel with the 1st to (n − 1)th iteration steps and then is
�nished earlier than if it would have been run sequentially with the 1st iteration step.
Thus, the compiler kernel computes how many tasks can be created from a partially
parallel loop solving the following equation:

i+ (n ∗ d) + s <= 2(i+ d)

Here, i = execution time of the independent part of each iteration step,
s = synchronization overhead (will be discussed),
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d = execution time of the dependent part of each iteration step,
and n = total number of tasks that can be created from a partially parallel loop.

Thus, we get

n <= 2 + (i− s)/d

From hardware-speci�c implementation library �le, the compiler kernel gathers in-
formation about the execution times of di�erent primitive blocks and hence computes
the value of i and d. It determines which synchronization tasks need to be inserted and
thus computes the synchronization overhead s that corresponds to the minimum execu-
tion time of these synchronization tasks. As discussed in Section 4.5, in each partially
parallel task (like shown in Fig. 8.9), it inserts a synchronization task that corresponds
to the synchronization primitive "vreCondWait" and another synchronization task that
corresponds to the synchronization primitive "vreCondSignal" before and after the de-
pendent part, respectively. Then, the value of the synchronization overhead is that of the
value of the total minimum execution time of these two synchronization primitives. As
already discussed in Section 7.2, the hardware-speci�c implementation library �le also
contains information about the minimum execution times of synchronization primitives.

For clarity, let's compute the value of n for the partial loop shown in Fig. 8.9 assuming
that the approximate execution times of the primitive blocks are as follow: "Read-
Bu�er" = 4µs, "Filter-Despreader" = 5µs, "Demodulator" = 5µs, "Descrambler" =
2µs, and "CRC" = 2µs. Thus, we can compute the value of i and d, i.e., i = 14µs
and d = 4µs. Further assume that the minimum execution times of the synchronization
primitives "vreCondWait" and "vreCondWait" are 1µs and 3µs, respectively, and thus
s = 1µs + 3µs = 4µs. Then, we get

n <= 2 + (i− s)/d = 2 ∗ (14− 4)/4 <= 4.5

The value of n <= 4.5 means we can create 4 partially parallel tasks from the loop
shown in Fig. 8.9.

The compiler kernel creates several tasks from a loop in a way that any task Ti will
execute the ith iteration step and every nth successive iteration steps starting from ith

iteration step. For example, task T1 will execute iteration steps 1, (1+n), (1+2n) and
so on.

It is important to mention here that if the compiler kernel creates a task that cor-
responds to a loop (or one to several iteration steps of a loop) then the task internally
contains subtasks (body of the loop). In VRE, like tasks, subtasks are also distinguished
with unique ID.

8.5.2 Mapping and Scheduling Tasks

As already mentioned, the current version of the compiler is developed for the SB3010
hardware platform. This hardware enables simultaneous execution of parallel tasks in
terms of multithreading, i.e., it supports a maximum of 8 threads per DSP core and
thus up to 8*4 = 32 threads by all four DSP cores (see Section 2.3). The SB3010
hardware platform has been developed to run multiple applications simultaneously, i.e.,
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one application per DSP core. Therefore, the compiler kernel performs mapping and
scheduling tasks considering that the hardware consists of one DSP core that has 8
processing modules (hardware threads), where each processing module is capable of
executing any task.

As already discussed in Section 8.4, the compiler kernel evaluates dependencies be-
tween primitives during program analysis phase and stores this information in various
tables such as the system table. Using this information, it determines dependencies be-
tween tasks, e.g., assuming task T1 corresponds to primitive P1 and task T2 corresponds
to primitive T2, T1 depends on T2 if P1 depends on P2. The compiler kernel stores this
information about dependencies between tasks in a table, let's call it TaskTable-1, which
keeps information about dependencies that exist among the tasks on the basis of one
column per task, i.e., each column contains information about an individual task. For
clarity, an example TaskTable-1 is depicted in Fig. 8.10. It consists of twelve columns,
where the 1st column contains information about the task "t1", the 2nd column contains
information about the task "t2", and so on. In particular, each column that corresponds
to a task states which other tasks are immediate predecessor of the task. For instance,
the 4th column states that "t4" is to be executed after "t2", but not explicitly states
that "t1" is to be executed before "t4", as the execution of "t1" before "t2" and then
"t2" before "t4" guarantees the execution of "t1" before "t4".

Figure 8.10: Example of TaskTable-1.

Using information from TaskTable-1, the compiler kernel determines in which order
tasks are to be executed. Hence, it creates another table, let's call it TaskTable-2, where
any column n contains the names of the tasks that can be executed simultaneously and
have to be executed after that of the column (n-1). For clarity, an example TaskTable-2
is depicted in Fig. 8.11, which is created using the information from TaskTable-1 shown
in Fig. 8.10. It describes the order in which tasks can be executed, e.g., �rst "t1", then

75



8.5 Transformation Phase

both "t2" and "t3" simultaneously, and so on.

Figure 8.11: Example of TaskTable-2.

Using information from TaskTable-2, the compiler kernel computes a mapping and
scheduling using the algorithm discussed below:

1. Let N = 1 and T = 0.

2. If N > M then go to step 7. Otherwise, go to step 3. Here, M = total number of
columns in TaskTable-2.

3. Assuming RN is a set of tasks whose names are there in the N th column and RN+1

is a set of tasks whose names are there in the (N + 1)th column of TaskTable-2, if
(N+1) <= M then compute which particular mapping and scheduling of RN and
RN+1 results in a minimum value of TR(N), else compute which particular mapping
and scheduling of RN results in a minimum value of TR(N), where TR(N) = T +
TN , TN = overall execution time RN .

4. Based on the particular mapping and scheduling that is determined in step 3, spec-
ify a schedule and the corresponding mapping to RN and also insert the required
synchronizations.

5. Compute new value of T , i.e., T = TR(N).

6. Increment the value of N, i.e., N = N + 1, and then go to step2.

7. End of algorithm.
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The compiler kernel computes all possible mapping and scheduling of RN and RN+1

(or only RN if (N+1) > M), and hence determines which particular mapping and
scheduling results in a minimum value of TR(N). It computes TR(N) considering syn-
chronization overhead. For clarity, an example is depicted in Fig. 8.12, which shows
both t2 and t3 can run in parallel but must be executed after t1, and two di�erent
scheduling and mapping of RN : (1) RN is mapped to PM1, and (2) RN is mapped to
both PM1 and PM2, i.e., t2 of RN is mapped to PM2 and t3 of RN to PM1. Note that
the former results in a lower value of TR(N) than the later due to the synchronization
overhead, which is required to ensure the execution of t2 after t1. Then, the compiler
kernel considers a mapping and scheduling for RN that corresponds to the former. Thus,
its mapping and scheduling concept di�ers from other parallelizing compilers such as
the OpenMP compiler [6], as it evaluates di�erent possible mappings and schedulings
and hence selects an e�cient one.

The compiler kernel computes a mapping and scheduling of RN considering the
dependency relation between RN−1 and RN (where N > 1), i.e., tasks of RN must be
executed after tasks of RN−1.

Figure 8.12: An example that shows two di�erent scheduling and mapping.

After computing the mapping and scheduling that result in the minimum value
of TR(N), the compiler kernel speci�es the corresponding mapping and scheduling to
RN . Hence, as introduced in Section 4.5, it associates two parameters to each task of
RN : VRE_MAP_ID and VRE_SCHED_ID. The former speci�es in which processing
module the task is to be mapped for execution, and the later speci�es at what time the
task is to be executed on the corresponding processing module.

Additionally, the compiler kernel inserts required synchronizations to ensure a desired
execution order of dependent tasks. It inserts synchronization tasks that correspond to
the synchronization primitives "vreCondSignal" and "vreCondWait" to enable parallel
execution of di�erent iteration steps of a partial parallel loop, as shown in Fig. 8.9. In
other cases, to ensure required synchronizations, it inserts synchronization tasks that
correspond to the synchronization primitives "vreInCounter" and "vreWaitInCounter".
Some examples are already discussed in Section 4.5.

For the application description shown in Fig. 8.11, a possible mapping and scheduling
along with inserted synchronization tasks are presented in Fig. 8.13. It shows in which or-
der tasks are to be executed in di�erent processing modules, e.g., the processing module
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Figure 8.13: A mapping and the corresponding scheduling of tasks.

1 executes the tasks in the following order: "t1"->"SF1"->"t2"->"t4"->"SF4"->"t5"-
>"t6"->"SF5"->"t7"->"t10"->"SF10"->"t12", where "SF1" and "SF5" are synchro-
nization tasks that correspond to the synchronization primitive "vreInCounter", and
"SF4" and "SF10" are synchronization tasks that correspond to the synchronization
primitives "vreWaitInCounter" (see Section 4.5).

It is important to mention here that the compiler kernel not only computes mapping
and scheduling for tasks but also for subtasks. After computing where a task is to
be mapped to and at what time is to be executed, it computes at what sequence the
subtasks of the task are to be executed. For instance, a task that corresponds to a loop
(or an iteration step of a loop) internally contains subtasks. While creating tasks, the
compiler kernel determines and hence keeps information about which tasks internally
contain which subtasks.

8.5.3 Eliminating Avoidable Dependencies

A loop expresses less parallelism when one iteration step of the loop has to wait for
another to produce needed data. In some cases, it is possible to eliminate this kind of
dependency. See the loop shown in Fig. 8.14 for example. Here, the data dependencies
between the iteration steps are due to the presence of the variable "p" within the body
of the loop. Since the value of "p" for di�erent iteration steps can be predicted, it is
possible to eliminate the variable from the loop body, and thus run the di�erent iteration
steps in parallel.

Similarly, the VRE compiler kernel eliminates avoidable dependencies that are re-
sulted for "Counter" type accesses to the same memory by di�erent blocks. For clarity,
a signal processing chain is depicted in Fig. 8.15, which represents a loop that includes
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Figure 8.14: An example that shows how to eliminate avoidable dependencies between
di�erent iteration steps of a loop.

Figure 8.15: An example of avoidable dependencies in PIM.

three blocks: "ReadBu�er", "Filter", and "Scrambler". Here, the "ReadBu�er" block
has a parameter ("P"), "ReadOnly" type access to the memory "M", and "Counter"
type of access to the memory "C". In each iteration step, it reads m number of data
elements from the memory "M" starting from the o�set as speci�ed by the value of "C",
thus makes those data elements available for the "Filter" block, and then increments
the value of "C" by the value of "P", i.e. c = c + m, c = the value of "C" and m =
the value of "P". Thus, it creates data dependencies between di�erent iteration steps
as every time it executes it increments the value of "C". However, as the access to "C"
by the "ReadBu�er" block is of type "Counter", it is possible to determine at compile
time how the "ReadBu�er" block increments the value of "C" in each iteration step,
i.e., c = c+m ∗ i (where i = the iteration number, 0 < i <= N). Thus, it is possible to
eliminate the data dependencies.

Fig. 8.16 presents, as an example, how the compiler kernel creates parallel tasks by
means of eliminating the avoidable dependencies from the PIM depicted in Fig. 8.15.
Here, four tasks have been created out of that loop on the basis of one task per iteration
step. Unlike PIM, where the "ReadBu�er" block accesses the global memory "C", the
"ReadBu�er" block in each task accesses the memory "C1" whose scope is local within
the corresponding task, e.g., "C1" in the task "1" is visible to the "ReadBu�er" block
within the task "1" but not to any other blocks of any other tasks. That means, the
instances of the "ReadBu�er" block in di�erent iteration steps no more write data to
any global memory upon execution. Thus, they can run in parallel. It is important to
note that the value of "C1" in each task is initialized by the known value of "C" with
respect to the corresponding iteration step, i.e., the value of "C1" in the 1st iteration
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Figure 8.16: Parallelizing tasks by eliminating avoidable dependencies.

step is c, in the 2nd iteration step is c + m, and so on. Thus, the instances of the
"ReadBu�er" block in di�erent tasks (each of which corresponds to a di�erent iteration
step) read data from the memory "M" starting from di�erent o�sets, i.e., c in case of
the �rst iteration step (task 1), c+m in case of the second iteration step (task 2), and
so on.

8.5.4 Keeping Program Consistency

Creating parallel tasks as discussed in the last section may make a program inconsistent.
For instance, consider the example depicted in Fig. 8.16. Here, the value of "C" is
incremented by m in each iteration step, and thus by 4 ∗ m (where, 4 = the total
number of iteration steps of the loop) by the complete loop. On the other hand, "C"
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is not incremented by the tasks that are created from the loop as shown in Fig. 8.16.
Now assume that another task accesses the memory "C" after the loop. Then, that task
would not get the desired value of "C". To avoid such inconsistency, the compiler kernel
inserts an additional task that corresponds to the following primitive:

VreInCntParam This primitive has a parameter named "P" and a memory link named
"M". Upon execution, it increments the value of a memory that is pointed by the
memory link "M" by the value of "P", i.e., M

′
= M

′
+ P

′
, where M

′
is the

value of a memory that is pointed by memory link "M" and P
′
is the value of the

parameter "P".

The compiler kernel inserts the primitive "VreInCntParam" initializing as follows:
the value of the parameter "P" = 4 ∗ m and the memory link "M" refers to "C".
This makes the program consistent, because the task that corresponds to the inserted
"VreInCntParam" primitive increments the content of "C" by the desired value (i.e., by
4 ∗m) before another task accesses "C" after the loop.

Likewise, the compiler kernel inserts tasks that correspond to the following prim-
itives upon creating parallel tasks from a "dynamic for loop" and a "do while loop",
respectively:

VreInCntMem This primitive has a parameter named "P" and two memory links
named "M1" and "M2". Upon execution, it performs the following computation:
M1

′
= M1

′
+ (M2

′
* P

′
), where M1

′
is the value of a memory that is pointed

by the memory link "M1", M2
′
is the value of a memory that is pointed by the

memory link "M2", and P
′
is the value of "P".

VreInCntFlag This primitive has two memory links named "M1" and "M2" and a �ag
link named "F". Upon execution, it performs the following computation: if F

′
=

1 then M1
′
= M1

′
+ M2

′
, where F

′
is the value of a �ag that is pointed by the

�ag link "F", M1
′
is the value of a memory that is pointed by the memory link

"M1", and M2
′
is the value of a memory that is pointed the memory link "M2".

It is important to mention here that the compiler kernel inserts these primitives
initializing their parameters, memory links and �ag links in a way that they increment
contents of desired memories by proper values.

8.6 Remarks

The current version of the VRE compiler consists of the compiler kernel that has been
presented in this chapter, and a code generator that has been developed outside this
thesis in [36]. Like the compiler kernel, the code generator has also been developed for
the SDR hardware platform SB3010. To evaluate, we successfully employed the compiler
kernel to transform several PIMs into PSMs including the IEEE 802.11b WLAN receiver
presented in Section 6.3.1. Unfortunately, along with other limitations, the current
version of the code generator is not capable of generating code from a PSM that includes
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nested loops, and thus unable to generate platform-speci�c C code for the IEEE 802.11b
WLAN receiver.

To evaluate the VRE compiler (both the compiler kernel and the code generator),
we carried out a number of experiments. First, we described several simple PIMs that
are composed of 10 to 20 primitives, and 1 to 4 modules that correspond to loops (but
not nested loops) and branches. Then, we employed the compiler kernel to generate
corresponding PSMs, and later the code generator to produce platform-speci�c C codes.
The experiments showed that the compiler kernel is capable of generating a PSM from
a PIM for SB3010, i.e., it is capable of mapping tasks to threads in a way so that
independent tasks can be run in parallel, scheduling them according to their order of
dependencies, e.g., if a task "T2" depends on another task "T1" then "T1" is to be
executed before "T2", and also inserting required synchronizations. As an example, the
compiler kernel is capable of computing mapping and scheduling as well as inserting
required synchronization as shown in Fig. 8.16.

Figure 8.17: Description of potential parallelism in PIM.

The experiments also showed that the performance of the compiler kernel to a great
extent depends on how a PIM is described, i.e., a PIM must express potential paral-
lelism explicitly in order to enable the compiler kernel to generate a corresponding PSM
more e�ciently. For example, developers should carefully describe within a PIM which
blocks have "ReadWrite" type access and which blocks have "Counter" type access.
Otherwise, the compiler kernel cannot generate more parallel tasks, for instance, from
a loop as discussed in the last section. Another example is shown in Fig. 8.17. Here,
both the PIMs ("PIM1" and "PIM2") correspond to one application, i.e., they both
include two di�erent data paths of a signal that correspond to real ("Re_Path") and
imaginary ("Im_path") parts, respectively, where in each path two �ltering ("FIR")
operations and one down-sampling ("Down") operation are performed. However, con-
trary to "PIM1", "PIM2" is represented with more blocks, i.e., it explicitly separates the
operations of di�erent data paths from one another. From this description, the compiler
kernel can easily determine potential parallelism, i.e., the operations relevant to di�erent
data paths can be run in parallel. Whereas, "PIM1" does not explicitly separate the
operations of the independent data paths. From this description, the compiler kernel
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cannot automatically determine whether or not it is possible to run the operations of
di�erent data paths in parallel.

8.7 Summary

This chapter has described how the VRE compiler kernel transforms a PIM into a
PSM, i.e., it has shown with examples how the compiler kernel identi�es tasks, evalu-
ates dependencies between tasks, eliminates some dependencies, computes mapping and
scheduling, and inserts required synchronizations.
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Chapter 9

Conclusions and Future Works

9.1 Conclusions

The dissertation has presented a new programming concept for SDR applications, called
VRE, which has been developed with the goal to provide a complete and e�cient devel-
opment environment for SDR applications. The concept separates the description of an
application from its implementation on a speci�c hardware. Thus, it allows developers
to describe an application without any prior knowledge about target hardware, and re-
duces dependencies between software and hardware developments, i.e., application and
hardware developments can take place in parallel.

The dissertation has also discussed current approaches for developing SDR applica-
tions and presented several contemporary SDR hardware platforms. It has shown that
there are some points in common in these platforms, i.e., they are battery driven and
thus have a low power consumption budget, and therefore use parallel architectures to
achieve required performance. Then, it has described that the current programming
approaches are complex, i.e, developers describe an application with hardware speci�c
details that are relevant to parallelism such as mapping and scheduling.

Comparing VRE with other programming concepts for SDR applications, the dis-
sertation has described how VRE di�ers from others and simpli�es programming. For
instance, unlike other approaches, VRE enables us to describe an application without
hardware-speci�c details. Then, it has presented a detailed description of the VRE
language as that has been developed within the scope of this thesis. It has described
the syntax and semantics of the language, as well as explained how programs (both
PIM and PSM) are represented. It has shown that VRE's concept of describing ap-
plications as a block diagram is suitable for representing SDR applications both in a
platform-independent and a platform-speci�c ways, i.e, PIM and PSM, respectively. For
instance, it has discussed why it is easier to represent an application in VRE than textual
languages such as POSIX-C.

Additionally, the dissertation has shown how to incorporate Simulink into the VRE
tool chain for describing PIMs, i.e., it has given guidelines to represent a PIM in
Simulink. It has also discussed the advantages of incorporating Simulink to the VRE
tool chain, e.g., Simulink includes a powerful simulation environment that can be used
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to simulate SDR applications.
To evaluate VRE's concept of describing SDR applications, an experiment has been

carried out, in which a PIM has been designed for the IEEE 802.11b WLAN receiver in
Simulink using VRE-speci�c guidelines. The dissertation has presented the experiment
as well as discussed the experiences that have been gathered from it. Thus, it has shown
that it is easier to describe an application as a PIM in Simulink than to describe the
application in platform-speci�c languages such as POSIX-C.

The dissertation has shown how VRE's concept of parallel programming di�ers from
others as VRE de�nes a complete tool chain that enables developers to generate exe-
cutables from described programs semi-automatically, i.e., developers may automatically
produce executables from a PIM step by step, but are additionally allowed to manually
improve the performance of the code after each step.

The dissertation has presented detailed description of the compiler kernel that has
been developed by the author. It has shown that, in contrast to other parallelizing com-
pilers, the compiler kernel itself does not possess any prior knowledge about the target
hardware, instead it takes required hardware-speci�c information as input (i.e., hard-
ware description �les). Additionally, it has described how the compiler kernel generates
a PSM from a PIM by solving complex programming tasks, i.e., mapping, scheduling,
and synchronizations.

VRE is still under development, i.e., a complete dedicated tool chain for VRE is yet
to evolve. Therefore, a reasonable amount of work still needs to be carried out in this
�eld, which will be discussed next.

9.2 Future Works

The success of VRE to a great extent depends on the e�ciency of its tool chain, e.g.,
the performance of a program would be low if the compiler kernel is not capable of
computing an e�cient mapping and scheduling. On the other hand, the present version
of the VRE tool chain is still in its infancy, and therefore needs to be developed further.
In particular, the VRE compiler has to be developed for various SDR hardware plat-
forms and its algorithms for computing mapping and scheduling as well as for inserting
synchronizations have to be improved.

Additionally, we have to develop a dedicated application description environment
for VRE. However, one may ask why we need another environment when it is possible
to use Simulink. Brie�y stating, it is not possible to visualize a PSM in Simulink, and
not so convenient to describe a PIM in Simulink, e.g., it is di�cult to describe memory-
coupled dependencies. Moreover, we can focus on developing some complementary tools
for VRE, e.g. a simulator that will be capable of simulating a PSM.
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