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 Springer-Verlag Berlin{Heidelberg 1999Abstract. Conceptual Graphs and Formal Concept Analysis have incommon basic concerns: the focus on conceptual structures, the use of di-agrams for supporting communication, the orientation by Peirce`s Prag-matism, and the aim of representing and processing knowledge. Theseconcerns open rich possibilities of interplay and integration. We dis-cuss the philosophical foundations of both disciplines, and analyze theirspeci�c qualities. Based on this analysis, we discuss some possible ap-proaches of interplay and integration.1 Conceptual Structures in Knowledge RepresentationConceptual structures in knowledge representation are models (or artifacts) rep-resenting a perceived reality. With computer applications, these models supportand delimit the kind of processing that a knowledge system will be able to carryout. Hence, the semantics they carry is of the outmost importance to the sound-ness and completeness of the applications that use them. With Arti�cial Intelli-gence related applications, these models represent human knowledge in a formatavailable to an inference engine. To describe knowledge, a multitude of knowl-edge representation formalisms were devised. Among them, semantic networksaim at bringing together knowledge representation and graphical formalisms,hoping to alleviate the knowledge modeling and transfer problems pertaining toknowledge acquisition.Through the years, di�erent semantic network based formalisms were intro-duced, each having a di�erent scope. Some dealt with linguistic knowledge, usingthe assumption that knowledge is necessarily expressible using natural language(cf. [33]). One of the underlying reasons for using this assumption was to fa-cilitate the interfacing between the knowledge system and both the knowledgeengineer and the end-user, since both could use a natural language based in-terface to communicate with the system. Furthermore, this would improve theinterpretability of the achievements of the system at any given time.Some other formalisms had preoccupations pertaining to complexity, as theirapplicability was often challenged by complexity results which discarded them



from the spectrum of formalisms usable for the development of large-size appli-cations (cf. [9], [23]). Applicability considerations must often restrict the kindof knowledge that can be represented by the formalism; it is referred to as thecompleteness/tractability trade-o�. For instance, modal quanti�cation, thoughvery useful for many applications such as planning, is often omitted in order tosimplify inference mechanisms.Further formalisms put their emphasis on some logical aspects such as quan-ti�cation and scope in order to address problems that require them (see [59]).The motivation behind this approach is to allow simple modeling of complexinterrelations between sets of individuals. In brief, the nature of the knowl-edge captured by these formalisms varies greatly depending on the scope of theformalism: the same knowledge could be represented di�erently using di�erentformalisms.Twenty years ago, Ron Brachman surveyed the most popular semantic net-work based formalisms and identi�ed �ve levels pertaining to knowledge repre-sentation [7]:{ Implementational Level: The primitives are nodes and links where links aremerely pointers and nodes are simply destinations for links. On this levelthere are only data structures out of which to build logical forms.{ Logical Level: The primitives are logical predicates, operators, and proposi-tions together with a structured index over those primitives. On this levellogical adequacy is responsible for meaningfully factoring knowledge.{ Epistemological Level: The primitives are conceptual units, conceptual sub-pieces, inheritance and structuring relations. On this level conceptual unitsare determined in their inherent structure and their interrelationships.{ Conceptual Level: The primitives are word-senses and case relations, object-and action-types. On this level small sets of language-independent conceptualelements and relationships are �xed from which all expressible concepts canbe constructed.{ Linguistic Level: The primitives are arbitrary concepts, words, and expres-sions. On this level the primitives are language-dependent, and are expectedto change in meaning as the network grows.Brachman discusses general criteria for judging the utility and formality of agiven network language with respect to the described levels, namely neutrality,adequacy, and semantics. In a network, each level should be neutral (i.e.: notforcing any choice), and adequate in its support, to the level above it, and shouldhave as de�nite as possible a well-de�ned semantics.More recently, Randall Davis, Howard Schrobe, and Peter Szolovits stated�ve basic principles about knowledge representation in their critical review andanalysis of the state of the art in knowledge representation [10]: A knowledgerepresentation is (1) a surrogate, (2) a set of ontological commitments, (3) afragmentary theory of intelligent reasoning, (4) a medium for e�cient compu-tation, and (5) a medium of human expression. These principles together withBrachman's level description and criteria for semantic networks shall be used as2



a framework for discussing the role of conceptual structures in knowledge repre-sentation performed by Conceptual Graphs and Formal Concept Analysis. Themain aim of this paper is to investigate possibilities of interplay and integrationof Conceptual Graphs and Formal Concept Analysis. For preparing this, we �rstgive a brief introduction to both disciplines via illustrating examples in Section2. Then their philosophical foundations are outlined in Section 3. In Section4, methods of knowledge representation are described and evaluated, so that,�nally in Section 5, possibilities of interplay and integration can be discussed.2 Conceptual Graphs and Formal Concept Analysis:Illustrating ExamplesTo make this paper as much as possible self-contained, we give in this sectionbrief introductions to Conceptual Graphs and Formal Concept Analysis via someillustrating examples. The reader who is familiar with those disciplines is rec-ommended to skip the corresponding subsections, respectively.2.1 Conceptual GraphsConceptual Graphs are a knowledge representation mechanism together witha reasoning mechanism. A conceptual graph is a labeled graph that representsthe literal meaning of a sentence or even a longer text. It shows the concepts(represented by boxes) and the relations between them (represented by circles)(cf. [38]). As illustrating example, we show how the following text of instructionsfor decalcifying a co�ee machine [1, p. 32] may be represented by a conceptualgraph:In order to decalcify a co�ee machine in an environment friendly way,one must �ll it up with water and put in two teaspoons of citric acid(from the drugstore). Then one must turn it on and let the mixture gothrough the machine. Then, one must �ll it up with clear water and letit go through the machine, twice.Figure 1 shows a conceptual graph that represents the text and makes the textwith its instructions tractable by a computer. For instance, it could be part ofa document retrieval system for technical instructions. All concepts representedin the graph are generic concepts, because the text does not describe a speci�csituation, but instructions which are applicable to all kinds of co�ee machines.The concept types (e. g., WATER) of conceptual graphs are usually organized ina type hierarchy. In this example, the concept types are all incomparable (withthe exception ACTION<PROCESS). For a document retrieval system with manytexts, however, the resulting type hierarchy will become larger and, as the textstreat similar topics, there will also arise comparable concept types. For keepingour introduction short, we consider all concept types as primitive types, i. e., wedo not use type de�nitions. 3
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Fig. 1. A conceptual graph describing how to decalcify a co�ee machineIn the conceptual graph, the process of decalcifying a co�ee machine is split-ted into succeeding actions. These actions are represented by larger boxes, calledcontexts, linked by the (SUCC)-relation. The sequel of all these actions is groupedtogether to a process which is stated as a method for decalcifying a co�ee-machine in an environmentally-friendly way. Observe how the identity of theuser and the co�ee-machine is maintained throughout the whole process by dot-ted lines, called coreference links.The conceptual graph in Figure 1 represents only the literal meaning of theinstructions. It does not include background knowledge of a domain expert whichis not provided by the text. For a document retrieval system, this approachis su�cient, because we assume that the end-user is familiar with the basic4



Fig. 2. Part of a test report about co�ee machines with integrated thermos 
asks.concepts of the domain. If there is the need of additional explanations, the setof documents must be extended.This example shows that the decision to which extent domain knowledgeshould be formalized depends on the purpose. For a system with a human end-user one can rely on his background and common sense knowledge, while, fora knowledge base for a robot system which automatically decalci�es co�ee ma-chines, much more of the background knowledge has to be made explicit. Forinstance, we must let the system know that no co�ee machine can be clean anddirty at the same time.2.2 Formal Concept AnalysisFormal Concept Analysis is mainly used for analyzing data tables. We demon-strate this by a typical example: an investigation of co�ee machines with inte-grated thermos 
asks. Figure 2 shows part of a test report ([48]). This data tablerepresents a so-called many-valued context in the sense of Formal Concept Anal-ysis. 1 In order to obtain a concept lattice for investigating the data, we have toderive a one-valued context. Therefore we must decide which of the attributesare important, and how they shall be translated into one-valued attributes. Theresult of this so-called (plain) conceptual scaling is the formal context in Fig-ure 3. The �rst four machines in Figure 2 are constructively indentical, so theyare all represented by `Otto Hanseatic' in the formal context. We emphasize thatthe choice of the conceptual scales depend on the purpose of the analysis. Forinstance, other attributes may be suitable for market analysis than for decisionsupport. The attributes in Fig. 3 have been chosen in order to support a buyerin choosing a co�ee machine.1 For the basic de�nitions of Formal Concept Analysis, see for instance [14] or [53].5



Otto Hanseatic
Severin KA 4050
Tschibo Aroma Garant
Ismet KM 582
Bosch TKA 2930
Braun KF 170
Krups 205 A
Melitta 40001-89
Moulinex AR 4
Petra-electric KM 97.90
Philips HD 7612
Quelle Privileg
Severin KA 5723
Rowenta FT 774

<
 1

00
 D

M
<

 1
25

 D
M

<
 1

50
 D

M
<

 2
00

 D
M

ve
ry

 h
ig

h 
co

ffe
e 

qu
al

ity
hi

gh
 c

of
fe

e 
qu

al
ity

su
ffi

ci
en

t c
of

fe
e 

qu
al

ity
de

fic
ie

nt
 c

of
fe

e 
qu

al
ity

ve
ry

 h
ig

h 
te

ch
ni

ca
l q

ua
lit

y
hi

gh
 te

ch
ni

ca
l q

ua
lit

y
su

ffi
ci

en
t t

ec
hn

ic
al

 q
ua

lit
y

de
fic

ie
nt

 te
ch

ni
ca

l q
ua

lit
y

ve
ry

 h
ig

h 
se

cu
rit

y
hi

gh
 s

ec
ur

ity
su

ffi
ci

en
t s

ec
ur

ity
de

fic
ie

nt
 s

ec
ur

ity
ve

ry
 g

oo
d 

ha
nd

lin
g

go
od

 h
an

dl
in

g 
su

ffi
ci

en
t h

an
dl

in
g

de
fic

ie
nt

 h
an

dl
in

g

Fig. 3. Formal context derived from the table in Figure 2
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Melitta 40001-89Ismet KM 582Fig. 4. The concept lattice derived from the formal context in Fig. 3From the formal context, the concept lattice is computed, and visualized bya line diagram (cf. Fig. 4). We recall that each circle in the diagram representsa formal concept, i. e., a pair (A;B) where A is a subset of the set of objects, B6



a subset of the set of attributes, and both are maximal such that each objecthas each attribute and vice versa. The extent A of a concept contains all objectswhose labels are attached at concepts which are lower in the diagram, and theintent B contains all attributes whose labels are attached at concepts whichare higher in the hierarchy. For instance, the rightmost concept has the objects`Philips HD 7612', Bosch TKA 2930', `Braun KF 170', and `Moulinex AR 4' inits extent, and the attributes `very high technical quality', `high co�ee quality',su�cient co�ee quality', `su�cient handling', : : : , `< 200 DM' in its intent.In the diagram,we can see that all machines have at least `su�cient handling',`high technical quality', `high security', and cost `< 200 DM'. There is only onemachine producing de�cient co�ee quality, `Rowenta FT 774', and it does noteven belong to the cheaper machines. On the other hand, `Ismet KM 582', `BraunKF 170', and `Moulinex AR 4' have most of the positive attributes. Here, onehas to decide between `very high security' and `< 100 DM' on one side and `veryhigh technical quality' on the other. The fact that the label `very high technicalquality' is below the label `high co�ee quality' indicates that for all tested co�eemachines the implication `very high technical quality' ! `high co�ee quality'holds.In many applications, it is an advantage to limit the represented knowledge.Then the whole information can be visualized by one line diagram, which sup-ports communication between knowledge engineers, experts, and novices. Forinstance, line diagrams of concept lattices have been used to a large extent forvisualizing repertory grids tests in the treatment of patients su�ering from bu-limia ([41]). The diagrams were small enough to be understood by the patients,and at the same time they provided all information provided by the repertorygrid. A similar application was the visualization of the water pollution of LakeOntario for decision support ([42]).For larger data, the attributes of the derived context are grouped to concep-tual scales and, for each scale, its concept lattice is determined. By combiningthe concept lattices in nested line diagrams, information about the interplay ofattributes is provided. Such applications are supported by the management sys-tem TOSCANA for Conceptual Information Systems. Examples of ConceptualInformation Systems have been presented at ICCS '96 and ICCS '98 ([44], [15]).Other applications are, for instance, a conceptual information system about themedical nomenclature system SNOMED ([32]), a system for investigating inter-national cooperations ([19]), and a retrieval system for a library ([20], [31]). Thelargest implemented system has 600,000 objects, and a system with 20,000,000objects is planned for a basket analysis of a credit card company.3 Philosophical FoundationsConceptual Graphs and Formal Concept Analysis are each based on an elabo-rated philosophical understanding leading its development and application. Forinvestigating the possibilities of their interplay and integration, it is necessaryto bring the philosophical bases of both disciplines to mind. At �rst glance the7



philosophical foundations of Conceptual Graphs and Formal Concept Analysisseem to widely coincide: They both have conceptual structures as central themeof inquiry, both emphasize graphical representations for activating human think-ing, both rely on Peirce's Pragmatism, and both aim to represent and processknowledge. But, since they were grown out of di�erent roots and purposes indi�erent scienti�c communities, each of the philosophical foundations has itsspecial quality. This shall be outlined in this section to understand better howConceptual Graphs and Formal Concept Analysis may be successfully combined.According to [34], conceptual graphs arose in the Arti�cial Intelligence com-munity when John Sowa started in 1968 to combine semantic networks andlinguistic dependency graphs for forming a semantic representation of naturallanguage. The used box and circle notation was in
uenced by the plastic tem-plates used for computer 
ow charts. A systematic presentation of conceptualgraphs which adapted also ideas of relational database theory was �rst publishedin [36]. Conceptual Graphs matured to a precise system of logic when John Sowaaccommodated a new foundation based on Peirce's Logic of Existential Graphs in1983. With this foundation, Sowa could present Conceptual Graphs as a rich andmatured discipline in his book \Conceptual Structures: Information Processingin Mind and Machine" [37].In this book Sowa views Conceptual Graphs as a knowledge representationlanguage based on Linguistics, Psychology, and Philosophy, and in his \Concep-tual Graphs Summary" [38] as a system of logic based on the existential graphsof Charles Sanders Peirce and the semantic networks of Arti�cial Intelligence.The key words \knowledge" and \logic" refer to a philosophical tradition of overtwo and a half millennia. Sowa extensively discusses this tradition in his newbook \Knowledge Representation: Logical, Philosophical, and ComputationalFoundations" [39] to clarify the ontological basis of conceptual graphs. Startingwith Heraclitus and Plato, he explains the systems of categories proposed byAristotle, Kant, Peirce, Husserl, Whitehead, and Heidegger for deriving a newsystem of twelve categories which are obtained by associating the three majordistinctions: Thing - Relation - Mediation; Physical - Abstract; Continuant -Occurrant. The categories provide a framework for classifying everything thatexists, and can therefore be considered as a philosophical basis for hierarchies ofconcept types that are assumed for conceptual graphs.In [39], the philosophical tradition for understanding the logical characterof conceptual graphs is presented too. In sketching the history of logic, Sowadiscusses Aristotle's syllogisms and their scholastic classi�cation, �rst attemptstoward automated reasoning by Lull and Leibniz, and the �rst major contribu-tions to modern mathematical logic by Boole, Frege, Peirce, Schr�oder, Peano,Russell, and Whitehead. In the same way logic became more mathematical, theconnections to common sense and natural language got weaker. Against thistrend, conceptual graphs were designed as a logic with a human readable nota-tion and a semantic basis of natural language for representing models of the realworld or other possible worlds. In [37], Sowa describes this as follows:{ Rules of syntax map the graph to and from sentences in natural languages.8



{ Arcs of the graphs correspond to the function words and case relations ofnatural language.{ Nodes of the graphs are intensional concepts of individuals that may existin the real world or some hypothetical world.{ Exact reasoning is based on Peirce's existential graphs [...]. The graphs area complete notation for �rst-order logic with direct extensions to modal andhigher-order logic.{ Plausible reasoning is based on schemata and prototypes, which codify thedefaults and family resemblances that accommodate the variability of thereal world.{ Model theory uses the same kinds of graph structures for both formal modelsand propositions about models.Conceptual graphs have the ontological status of a model: they simulatesigni�cant structures and events in a possible world; a set of axioms, called\laws of the world", must at all times be true of the graphs; and certain graphs,called \schemata" and \prototypes", serve as patterns or frames that are joinedto form the model. Understanding the knowledge of something as the ability toform a mental model that accurately represent the thing as well as the actionsthat can be performed by it and on it, it becomes clear why conceptual graphsas mental models are successful in knowledge representation, acquisition, andprocessing.Formal Concept Analysis arose in the Fachbereich Mathematik of the THDarmstadt out of e�orts toward a better understanding of the relationshipsof mathematics to the world. These e�orts led to the program of restructur-ing mathematics, an activity of reworking mathematical developments in orderto integrate and to rationalize origins, connections, interpretations, and appli-cations (cf. [54]). Besides several other attempts to restructure mathematicaldisciplines, the restructuring of mathematical order theory and lattice theorywas successfully approached (see [49], [25]). The most fruitful result of this re-structuring was the interpretation of complete lattices as concept lattices, whichincreasingly opened connections to new �elds of applications. In this way, For-mal Concept Analysis became established as a discipline of applied mathematics,based on a mathematizationof concept and conceptual hierarchy, which activatesmathematical thinking for conceptual data analysis and knowledge processing(see [14]).Formal Concept Analysis is grounded on the philosophical understanding of aconcept as a unit of thought constituted by its extension and its intension. Thisconcept understanding has grown during centuries from Greek philosophy tolate Scholastic and has �nally found its modern formulation in the 17th centuryby the Logic of Port Royal (cf. [3], [16], [52]). Its actual use is exempli�ed bythe German Standards DIN 2330 \Begri�e und Benennungen" [11]. Logically,Formal Concept Analysis �ts in the tradition of the classical philosophical logicwith its elementary doctrines of concepts, judgments, and conclusions (cf. [18],[54], [27]).The mathematical notions of formal context, formal concept, and concept9



lattice - resulting from the mathematization of context, concept, and concep-tual hierarchy - are not understood as realistic models, but as artifacts whichmay support human thinking, communication, and argumentation. Why sucha support is possible, may be explained on the ground of Heidegger's charac-terization of Modern Science as guided by \das Mathematische" [17]. MartinHeidegger understands \das Mathematische" as the formal conception in whichwe take note of realities and acquire their use. Mathematics is then viewed asa speci�c culture of thinking in which \das Mathematische" is elaborated andconventionalized, caused by a complex process of communication within the re-spective communityof mathematicians (cf. [58]). This explains that mathematicsmay support human thinking in general because mathematics is arising out of\das Mathematische" in human thought. The mathematizations used in FormalConcept Analysis are therefore understood as purpose-oriented constructionsshaping \das Mathematische" in the thoughts which are mathematized.As mathematical discipline, Formal Concept Analysis is semantically basedon set theory as used in today's mathematics. On this basis, all its theoreticalnotions and results are of mathematical nature and have �rst of all to satisfymathematical standards of adequacy and correctness. But as part of appliedmathematics, Formal Concept Analysis also activates systematically connectionsof the mathematical theory to reality. Concerning such connections, human com-munication and argumentation must be considered since mathematical methodscannot grasp realities without an eventually serious loss of content. Thereforemathematizations have always to keep connections to their origins so that theconsequences of mathematical treatments may be rationally analysed and inter-preted in human communication. One way of establishing ties between mathe-matical theory and reality is to insert pieces of natural language into mathemati-cal structures and their graphical representations. Formal Concept Analysis doesthis, for instance, by keeping the namings of objects and attributes and by usingthem in lattice diagrams to give conceptual meaning to structural relationships.According to Peirce's Pragmatism, human knowledge is always incompleteand continuously requires intersubjective communication and argumentation forits formation. This understanding of knowledge is basic for Formal ConceptAnalysis (cf. [51]). Therefore its formalizations for the structural and compu-tational treatment of data and knowledge are performed in such a way thatthey may support human communication and argumentation for establishingintersubjectively assured knowledge. For connecting all aspects of contents andformal settings, there is the vision of formally developing \conceptual landscapesof knowledge" which allow humans to commonly explore and acquire knowledgesatisfying their speci�c requests (see [56]).Although the above description shows quite di�erent philosophical founda-tions, Conceptual Graphs and Formal Concept Analysis could join their speci�cqualities for obtaining a broader spectrum of methods of representing and pro-cessing conceptual structures. For instance, the world semantics of conceptualgraphs and the set semantics of concept lattices could complement each other toincrease the meaningfulness of representations and the mathematical tractability10



of structures; this would include an appropriate use of linguistic contexts and for-mal contexts for speci�c purposes in knowledge representation. More generally,Conceptual Graphs and Formal Concept Analysis could join to merge di�erentdevelopments of logics such as philosophical logics, mathematical logics, descrip-tion logics, situational logics and others.4 Conceptual Graphs and Formal Concept Analysis:Methods of RepresentationThe �ve levels of Brachman provide a framework for discussing the role of Con-ceptual Graphs and Formal Concept Analysis in knowledge representation. Inthe disussion, we also refer to the �ve principles of Davis, Schrobe, and Szolovits.Implementational Level. The basic data structures of Conceptual Graphsare graphs in the usual mathematical understanding, as Sowa points out in[38]: \The dyadic relation LINK is the only primitive in the formal theory. Allother conceptual relations may be de�ned in terms of it." However, virtually,all research in the Conceptual Graph community is done on the higher levels ofrepresentation. In Formal Concept Analysis, the basic data structures are formal(dyadic) contexts formed by a binary relation and many-valued (triadic) contextsformed by a ternary relation. The simplicity of these data structures makes clearthat they are not understood as models imaging reality, but as surrogates orartifacts. On the implementational level, \there is nothing inherently `semantic'"[7]; indeed, graphs and formal contexts are abstract mathematical structureswithout any content. Implementational issues of Formal Concept Analysis arediscussed in [47].Logical Level. In Conceptual Graphs and in Formal Concept Analysis, thelogical level is activated in processing of the basic data structures. For Concep-tual Graphs the logical primitives are the (abstract) concept and relation typesand the connectives representing conjunctions, references, coreferences, contexts,actors, and type de�nitions. Reasoning is a major activity in processing Concep-tual Graphs. Graph transformation rules (like projections) provide a fragmentarytheory of intelligent reasoning which is inherent to Conceptual Graphs. Also thePeircing rules of deduction based on the context mechanism is also typical ofthe system of logic that the conceptual graph theory is. By mapping ConceptualGraphs to First Order Logic by the �-operator, other reasoning mechanisms canbe activated for e�cient computation as well. In Formal Concept Analysis, the(formal) object, attribute, and concept names are logical primitives which al-low the composition of further predicates by logical connectives and quanti�ers(cf. [5], [28]). Then the means for logical reasoning are taken from PredicateLogic. As logical operators, the numerous context constructions for one- andmany-valued contexts may be considered; the mostly used context constructionis the semiproduct which is basic for `plain conceptual scaling' (described inSection 2.2). 11



Epistemological Level. The epistemological level addresses \the possibility oforganizations of conceptual knowledge into units more structured than simplenodes and links or predicates and propositions, and the possibility of processingover larger units than single network links. The predominant use of concepts asintensional descriptions of objects hints that there is a class of relationship thatis not accounted for by the [other] four levels [: : : ]. This kind of relationshiprelates the parts of an intension to the intension as whole, and one intension toanother" [7]. Brachman observed that for the semantic network representationsof that time, this epistemological level is missing.For Conceptual Graphs, the epistemological level is still not fully activated.The structures of type hierarchies belong to this level and also the expansionand contraction operators which are de�ned in the Conceptual Graph theory(see [37]). These operators allow multiple representations of the same knowledgebecause they provide a mechanism for the aggregation of lower-level constructsinto higher abstractions (used at the conceptual level). Based on lambda ex-pressions, these operators allow the representation and processing of the sameknowledge at di�erent levels of granularity. Type de�nitions implement theselambda expression de�nitions. They are solely based on extensional semanticsand, in our opinion, they may not be su�cient to provide a sound justi�cation fortheir existence. Beside representing the internal structure of concepts, anotherfeature of the epistemological level is the representation of `inheritance', which,according to [7], \is not a logical primitive; on the other hand, it is a mechanismassumed by all conceptual level nets [in particular Conceptual Graphs], but notaccounted for as a `semantic' (deep case) relation."Concept lattices, the core structures of Formal Concept Analysis, are locatedon the epistemological level: Formal concepts are considered as \formal objects,with predetermined internal organization that is more sophisticated than sets ofcases" [7]. Formal concepts bring together extensional and intensional views on`concepts', and represent explicitly inheritance by refering to the set semantics ofthe intents (or extents) of the formal concepts. Concept lattice constructions alsobelong to the epistemological level. As Formal Concept Analysis is founded onlattice theory, lattice constructions and lattice decompositions can be activatedfor establishing more complex concept hierarchies out of simpler ones, and, viceversa, for reducing complex concept hierarchies to simpler ones. Constructionslike direct products and tensor products of concept lattices and decompositionslike subdirect and atlas decompositions have been successfully applied in dataanalysis. It is interesting to note that most concept lattice constructions (decom-positions) have as counterpart a context construction on the logical level (see[14]). As formal contexts are only `logarithmic in size' compared to the conceptlattice, the knowledge representation on the logical level can be seen in the lightof the fourthprinciple of Davis, Schrobe, and Szolovits as a medium of e�cientcomputation.The interplay between representations by formal contexts and by concept lat-tices supports also the �fth principle: The acceptance of Formal Concept Anal-ysis as a medium of human expression by users from various domains (consider12



for instance the patients mentioned in Section 2.2 who have no higher mathe-matical education) results from the visualization of the data (as present on thelogical level) on the epistemological level. In particular, the construction of com-plex lattices as (sub-)direct product of simpler lattices allows the visualizationof complex data by nested line diagrams. The corresponding construction onthe logical level is the semiproduct of conceptual scales, which is applied fore�ciently querying the database.Conceptual Level. The conceptual level is the major domain of ConceptualGraphs, just as it is for most semantical networks. Concept meanings are struc-tured in type hierarchies according to levels of generality. They are linked byprimitive semantic relations understood as those relations \that the verb in asentence has with its subject, object, and prepositional phrase arguments in ad-dition to those that underlie common lexical, classi�cational, and modi�cationalrelations" [35]. According to [7], \networks on this level can be characterized ashaving a small set of language-independent conceptual elements (namely, prim-itive object- and action-types) and conceptually primitive relationships (i. e.,`deep cases') out of which all expressible concepts can be constructed". In thetheory of Conceptual Graphs, there is no prede�ned relation type other thanLINK, which is the most general relation, being already formally located on thelogical level. By applying concept expansion as described on the epistemologicallevel, each concept type can be expanded such that all relationships are repre-sented by the LINK relation. Hence case grammar based relations are in no waycompulsory to the development of Conceptual Graph systems. However, the wayConceptual Graphs are used in practice identi�es them clearly as being on theconceptual level: Although the LINK-relation is the only primitive relation intheory, in applications, the starter set of relation types is used as if consistingof primitive types in practice. The starter set plays the role of the small set oflanguage-independent conceptually primitive relationships mentioned by Brach-man. We conclude that the typical use of relation types identi�es ConceptualGraphs as a knowledge representation formalism which is located mainly on theconceptual level.In Formal Concept Analysis, word-senses are represented by the context at-tributes which lead to a contextual representation of concept intensions. Asprimitive case relations, there are de�ned four basic relations: an object has anattribute, an object belongs to a concept, a concept abstracts to an attribute,and a concept is a subconcept of another concept. These four relations are usedas primitive relations in the mathematical model for Conceptual KnowledgeSystems described in [22]. Other relations (especially meronomy) are discussedin [30].Linguistical Level. Neither Conceptual Graphs nor Formal Concept Analysisprovide (at least not in their core) language-speci�c primitives. The linguisti-cal level is activated only indirectly. For Formal Concept Analysis, this activa-tion is discussed in more detail in [2] from a pragmatic-semiotic point of view.13



There the existence of quali�ed knowledge [anspruchsvolles Wissen] is claimed todepend from the existence of a community of discourse in which the knowledgeis intersubjectively constituted.Considering that the vocabulary (made of aggregations and primitive types)used to describe all Conceptual Graphs in a system is highly dependent on thetype de�nition mechanism, we feel that Conceptual Graphs need to considersome complementary mechanism to ensure some epistemological soundness ofthe type de�nition mechanism. As Formal Concept Analysis is strong on theepistemological level, we are con�dent that Formal Concept Analysis can con-tribute to this. On the other hand, the experience of data analysis with FormalConcept Analysis has shown that there are applications with a need to enhancethe expressiveness of Formal Concept Analysis on the conceptual level. We ex-pect from the interplay of both theories a step in this direction.5 Interplay and IntegrationAs already stated in Section 3, Conceptual Graphs and Formal Concept Analysishave basic concerns in common: the focus on conceptual structures, the use ofdiagrams for supporting communication, the orientation by Peirce`s Pragmatism,and the aim of representing and processing knowledge. These concerns open richpossibilities of interplay and integration. Since both disciplines have their speci�cquality besides their common concerns, they may also complement each other.In this section, we discuss possible approaches of interplay and integration; but,because of the lack of space, we have to restrict to two themes: conceptualhierarchies and systems of logic.5.1 Interplay: Deriving and Improving Conceptual HierarchiesConceptual hierarchies are basic in Conceptual Graphs and Formal ConceptAnalysis where they are mainly considered at the epistemological and the con-ceptual level. For conceptual graphs hierarchies of concept types are presumed asan ontological commitment. Often they are taken from conceptual taxonomieswhich, in general, are only ordered sets. But, for many purposes, it is desir-able that the concept types form even a lattice. This can be e�ectively derivedby methods of Formal Concept Analysis. In [13], Bernhard Ganter and SergeiKuznetsov describe simple algorithms with satisfactory complexity bounds forminimally completing a �nite ordered set to a lattice. For obtaining a meaning-ful type lattice, the minimal extension of a given ordered set of concept typesmight not be satisfactory. For �nding useful completions, the construction of con-cept lattices of meaningfully deduced formal contexts can be o�ered as generalmethod. The formal context need not contain all objects and attributes that be-long to the concepts of the type hierarchy; it is su�cient to have enough typicalobjects and attributes. Then its concept lattice can be used as completed typehierarchy. The formal context can either be derived from an existing data set14



(if it provides enough typical objects and attributes), or it must be interactivelyacquired from some human expert.For instance, there is a concept type COFFEE MACHINE in the type hierarchyfor the document retrieval system in Section 2.1. This concept has in its extensionall existing co�ee machines and in its intension all attributes common to all co�eemachines. In the knowledge acquisition process, however, it is su�cient to askthe user only for some few objects and attributes which distinguish this conceptfrom the other involved concepts such as USER or CITRIC ACID.Formal Concept Analysis provides di�erent knowledge acquisition algorithmswhich can be used for that purpose: Attribute Exploration [14], DistributiveConcept Exploration ([43]), and Concept Exploration ([46]). In [4], Franz Baaderhas used Attribute Exploration together with the Subsumption Algorithm ofDescription Logics for automatically deriving a V-completion for an arbitrarilygiven type hierarchy. For a general overview concerning knowledge acquisitionby methods of Formal Concept Analysis, see [50] and [45].Methods of Formal Concept Analysis may also be applied to the general-ization order on conceptual graphs. For instance, Gerard Ellis and StephenCallaghan [12] have used conceptual scaling for improving the search in thegeneralization hierarchy of conceptual graphs. If the generalization order is rep-resented as concept lattice, such a search might even be performed within aTOSCANA system (see [29]). Guy Mineau and Olivier Gerb�e discuss in [24]context lattices in their de�nitional framework for contexts, based on FormalConcept Analysis.As Formal Concept Analysis can be used for deriving and improving concep-tual structures occuring in Conceptual Graphs, there may also be applications ofConceptual Graphs methods to Formal Concept Analysis. In particular, concep-tual graphs could be very helpful in translating structural meaning of conceptlattice into natural language to lead users of Formal Concept Analysis to a bet-ter understanding of possible interpretations. Another application would be tosupport knowledge acquisition for Conceptual Information Systems. In Concep-tual Information Systems, the data are organized in a relational database. Butif the data are only available in a less structured way (for instance from struc-tured interviews), then Conceptual Graphs may support the formalization of theinformation, as they are close to natural language for being understood by thedomain expert, and formal enough for being computationally tractable. Once theknowledge is represented in Conceptual Graphs, it can be transformed to formalcontexts by using power context families (discussed in the next subsection).5.2 Integration: Unifying Systems of LogicAn integration of developments in Conceptual Graphs and FormalConcept Anal-ysis would mean to establish a common theoretical basis for the �eld of inter-est. An attractive �eld would be, as already indicated at the end of Section 3,knowledge-oriented systems of logic. In both disciplines, criticisms have beenmade about the inadequacy of mathematical logic concerning knowledge rep-resentation and processing. In [40], John Sowa lists a number of reasons why15



people who use a knowledge representation language may want to diverge fromFirst Order Logic; those reasons are concerned with readability, computability,convenience, surprises, context dependence, and extended logics. All these issueshave been actively explored in the Conceptual Graph community, and di�erentapproaches to them have been suggested, implemented, and published.These activities might be combined with the recent development of \Contex-tual Logic" in FormalConcept Analysis (see [54], [55], [57], [26], [27]). ContextualLogic is understood as a mathematization of classical philosophical logic basedon the elementary doctrines of concepts, judgments, and conclusions; FormalConcept Analysis yields the mathematization of the doctrine of concepts, andConceptual Graphs is used for mathematizing the doctrines of judgments andconclusions. Contextual Logic is set-theoretically grounded on families of relatedcontexts whose formal concepts allow a representation of the concepts and rela-tions of conceptual graphs. Such representation of a conceptual graph is called a\Concept Graph" of the context family from which is is derived, and the familyof related contexts is said to be a \Power Context Family". In [29] it is shownthat the concept graphs of a power context family always form a lattice withrespect to generalization, which can be represented as a concept lattice. Sincepower context families can always be derived from many-valued data contexts,the approach via Contextual Logic opens a large �eld of common applicationsfor Conceptual Graphs and Formal Concept Analysis. This might stimulate tocontinue the process of integration of both disciplines and even further develop-ments of logic systems.References1. ADAC:Gewu�t wie { 10000 praktische Tips f�ur alle Tage. ADACVerlag, M�unchen1993.2. U. Andel�nger: Begri�iche Wissenssysteme aus pragmatisch-semiotischer Sicht.In: R. Wille, M. Zickwol� (eds.): Begri�iche Wissensverarbeitung { Grundfragenund Aufgaben. B.-I.-Wissenschaftsverlag, Mannheim 1994, 152{172.3. A. Arnauld, P. Nicole: La logique ou l'art de penser. Amsterdam 1662.4. F. Baader: Computing a minimal representation of the subsumption lattice of allconjunctions of concept de�ned in a terminology. In: Proc. Intl. KRUSE Sympo-sium, August 11{13, 1995, UCSC, Santa Cruz 1995, 168{178.5. H. Berg: Terminologische Begri�slogik. Diplomarbeit, TU Darmstadt 1997.6. K. Biedermann: How triadic diagrams represent conceptual structures. LNAI1257. Springer, Heidelberg 1997, 304{317.7. R. J. Brachman: On the epistemological status of semantic networks. In: N.V.Findler (ed.): Associative networks: representation and use of knowledge by com-puters. Academic Press, New York 1979, 3{50 (reprinted in [8]).8. R. J. Brachman, H.L. Levesque (eds.): Readings in Knowledge Represenation.Morgan Kaufmann, Los Altos 1985.9. R. J. Brachman, D. L. McGuinness, P. F. Patel-Schneider, L. Alperin, L. A.Resnick, A. Borgida: Living With Classic: When and how to use a KL-ONE-likelanguage. In: J. F. Sowa (ed.): Principles of Semantic Networks, Morgan Kauf-mann, Los Altos 1991, 401-456. 16
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