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Abstract. Conceptual Graphs and Formal Concept Analysis have in
common basic concerns: the focus on conceptual structures, the use of di-
agrams for supporting communication, the orientation by Peirce's Prag-
matism, and the aim of representing and processing knowledge. These
concerns open rich possibilities of interplay and integration. We dis-
cuss the philosophical foundations of both disciplines, and analyze their
specific qualities. Based on this analysis, we discuss some possible ap-
proaches of interplay and integration.

1 Conceptual Structures in Knowledge Representation

Conceptual structures in knowledge representation are models (or artifacts) rep-
resenting a perceived reality. With computer applications, these models support
and delimit the kind of processing that a knowledge system will be able to carry
out. Hence, the semantics they carry is of the outmost importance to the sound-
ness and completeness of the applications that use them. With Artificial Intelli-
gence related applications, these models represent human knowledge in a format
available to an inference engine. To describe knowledge, a multitude of knowl-
edge representation formalisms were devised. Among them, semantic networks
aim at bringing together knowledge representation and graphical formalisms,
hoping to alleviate the knowledge modeling and transfer problems pertaining to
knowledge acquisition.

Through the years, different semantic network based formalisms were intro-
duced, each having a different scope. Some dealt with linguistic knowledge, using
the assumption that knowledge 1s necessarily expressible using natural language
(cf. [33]). One of the underlying reasons for using this assumption was to fa-
cilitate the interfacing between the knowledge system and both the knowledge
engineer and the end-user, since both could use a natural language based in-
terface to communicate with the system. Furthermore, this would improve the
interpretability of the achievements of the system at any given time.

Some other formalisms had preoccupations pertaining to complexity, as their
applicability was often challenged by complexity results which discarded them



from the spectrum of formalisms usable for the development of large-size appli-
cations (cf. [9], [23]). Applicability considerations must often restrict the kind
of knowledge that can be represented by the formalism; it is referred to as the
completeness/tractability trade-off. For instance, modal quantification, though
very useful for many applications such as planning, is often omitted in order to
simplify inference mechanisms.

Further formalisms put their emphasis on some logical aspects such as quan-
tification and scope in order to address problems that require them (see [59]).
The motivation behind this approach is to allow simple modeling of complex
interrelations between sets of individuals. Tn brief, the nature of the knowl-
edge captured by these formalisms varies greatly depending on the scope of the
formalism: the same knowledge could be represented differently using different
formalisms.

Twenty years ago, Ron Brachman surveyed the most popular semantic net-
work based formalisms and identified five levels pertaining to knowledge repre-
sentation [7]:

Implementational Level: The primitives are nodes and links where links are
merely pointers and nodes are simply destinations for links. On this level
there are only data structures out of which to build logical forms.

Logical Level: The primitives are logical predicates, operators, and proposi-
tions together with a structured index over those primitives. On this level
logical adequacy is responsible for meaningfully factoring knowledge.
Epistemological Level: The primitives are conceptual units, conceptual sub-
pieces, inheritance and structuring relations. On this level conceptual units
are determined in their inherent structure and their interrelationships.
Conceptual Level: The primitives are word-senses and case relations, object-
and action-types. On this level small sets of language-independent conceptual
elements and relationships are fixed from which all expressible concepts can
be constructed.

Linguistic Level: The primitives are arbitrary concepts, words, and expres-
sions. On this level the primitives are language-dependent, and are expected
to change in meaning as the network grows.

Brachman discusses general criteria for judging the utility and formality of a
given network language with respect to the described levels, namely neutrality,
adequacy, and semantics. Tn a network, each level should be neutral (i.e.: not
forcing any choice), and adequate in its support, to the level above it, and should
have as definite as possible a well-defined semantics.

More recently, Randall Davis, Howard Schrobe, and Peter Szolovits stated
five basic principles about knowledge representation in their critical review and
analysis of the state of the art in knowledge representation [10]: A knowledge
representation is (1) a surrogate, (2) a set of ontological commitments, (3) a
fragmentary theory of intelligent reasoning, (4) a medium for efficient, compu-
tation, and (5) a medium of human expression. These principles together with
Brachman’s level description and criteria for semantic networks shall be used as



a framework for discussing the role of conceptual structures in knowledge repre-
sentation performed by Conceptual Graphs and Formal Concept Analysis. The
main aim of this paper is to investigate possibilities of interplay and integration
of Conceptual Graphs and Formal Concept Analysis. For preparing this, we first
give a brief introduction to both disciplines via illustrating examples in Section
2. Then their philosophical foundations are outlined in Section 3. In Section
4, methods of knowledge representation are described and evaluated, so that,
finally in Section 5, possibilities of interplay and integration can be discussed.

2 Conceptual Graphs and Formal Concept Analysis:
Mlustrating Examples

To make this paper as much as possible self-contained, we give in this section
brief introductions to Conceptual Graphs and Formal Concept Analysis via some
illustrating examples. The reader who is familiar with those disciplines is rec-
ommended to skip the corresponding subsections, respectively.

2.1 Conceptual Graphs

Conceptual Graphs are a knowledge representation mechanism together with
a reasoning mechanism. A conceptual graph is a labeled graph that represents
the literal meaning of a sentence or even a longer text. Tt shows the concepts
(represented by boxes) and the relations between them (represented by circles)
(cf. [38]). As illustrating example, we show how the following text of instructions
for decalcifying a coffee machine [1, p.32] may be represented by a conceptual
graph:

In order to decalcify a coffee machine in an environment friendly way,
one must fill it up with water and put in two teaspoons of citric acid
(from the drugstore). Then one must turn it on and let the mixture go
through the machine. Then, one must fill it up with clear water and let
it go through the machine, twice.

Figure 1 shows a conceptual graph that represents the fext and makes the text
with its instructions tractable by a computer. For instance, it could be part of
a document retrieval system for technical instructions. All concepts represented
in the graph are generic concepts, because the text does not describe a specific
situation, but instructions which are applicable to all kinds of coffee machines.
The concept types (e.g., WATER) of conceptual graphs are usually organized in
a type hierarchy. Tn this example, the concept types are all incomparable (with
the exception ACTION < PROCESS). For a document retrieval system with many
texts, however, the resulting type hierarchy will become larger and, as the texts
treat similar topics, there will also arise comparable concept types. For keeping
our introduction short, we consider all concept types as primitive types, i.e., we
do not use type definitions.
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Fig. 1. A conceptual graph describing how to decalcify a coffee machine

In the conceptual graph, the process of decalcifying a coffee machine is split-
ted into succeeding actions. These actions are represented by larger boxes, called
conterts, linked by the (SUCC)-relation. The sequel of all these actions is grouped
together to a process which 1s stated as a method for decalcifying a coffee-
machine in an environmentally-friendly way. Observe how the identity of the
user and the coffee-machine 18 maintained throughout the whole process by dot-
ted lines, called coreference links.

The conceptual graph in Figure 1 represents only the literal meaning of the
instructions. Tt does not include background knowledge of a domain expert which
is not provided by the text. For a document retrieval system, this approach
is sufficient, because we assume that the end-user is familiar with the basic
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Fig. 2. Part of a test report about coffee machines with integrated thermos flasks.

concepts of the domain. If there is the need of additional explanations, the set
of documents must be extended.

This example shows that the decision to which extent domain knowledge
should be formalized depends on the purpose. For a system with a human end-
user one can rely on his background and common sense knowledge, while, for
a knowledge base for a robot system which automatically decalcifies coffee ma-
chines, much more of the background knowledge has to be made explicit. For
instance, we must let the system know that no coffee machine can be clean and
dirty at the same time.

2.2 Formal Concept Analysis

Formal Concept Analysis is mainly used for analyzing data tables. We demon-
strate this by a typical example: an investigation of coffee machines with inte-
grated thermos flasks. Figure 2 shows part of a test report. ([48]). This data table
represents a so-called many-valued contert in the sense of Formal Concept Anal-
ysis. | Tn order to obtain a concept lattice for investigating the data, we have to
derive a one-valued context. Therefore we must decide which of the attributes
are important, and how they shall be translated into one-valued attributes. The
result of this so-called (plain) conceptual scaling is the formal context in Fig-
ure 3. The first four machines in Figure 2 are constructively indentical, so they
are all represented by ‘Otto Hanseatic’ in the formal context. We emphasize that
the choice of the conceptual scales depend on the purpose of the analysis. For
instance, other attributes may be suitable for market analysis than for decision
support. The attributes in Fig. 3 have been chosen in order to support a buyer
in choosing a coffee machine.

! For the basic definitions of Formal Concept Analysis, see for instance [14] or [53].
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Fig. 3. Formal context derived from the table in Figure 2
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Fig. 4. The concept lattice derived from the formal context in Fig. 3

deficient handling

good handling
very good handling

From the formal context, the concept lattice is computed, and visualized by
a line diagram (cf. Fig. 4). We recall that each circle in the diagram represents
a formal concept, i.e., a pair (A, B) where A is a subset of the set of objects, B



a subset of the set of attributes, and both are maximal such that each object
has each attribute and vice versa. The extent A of a concept contains all objects
whose labels are attached at concepts which are lower in the diagram, and the
intent B contains all attributes whose labels are attached at concepts which
are higher in the hierarchy. For instance, the rightmost concept has the objects
‘Philips HD 7612°, Bosch TKA 2930°, ‘Braun KF 170, and ‘Moulinex AR 4’ in
its extent, and the attributes ‘very high technical quality’, ‘high coffee quality’,
sufficient coffee quality’, ‘sufficient handling’, ..., ‘< 200 DM’ in its intent.

In the diagram, we can see that all machines have at least ‘sufficient handling’,
‘high technical quality’, ‘high security’, and cost ‘< 200 DM’. There 1s only one
machine producing deficient coffee quality, ‘Rowenta FT 774", and it does not
even belong to the cheaper machines. On the other hand, ‘Tsmet KM 582’ ‘Braun
KF 170°, and ‘Moulinex AR 4’ have most of the positive attributes. Here, one
has to decide between ‘very high security’” and ‘< 100 DM’ on one side and ‘very
high technical quality’ on the other. The fact that the label ‘very high technical
quality’ is below the label ‘high coffee quality’ indicates that for all tested coffee
machines the implication ‘very high technical quality’ — ‘high coffee quality’
holds.

In many applications, it is an advantage to limit the represented knowledge.
Then the whole information can be visualized by one line diagram, which sup-
ports communication between knowledge engineers, experts, and novices. For
instance, line diagrams of concept lattices have been used to a large extent for
visualizing repertory grids tests in the treatment of patients suffering from bu-
limia ([41]). The diagrams were small enough to he understood by the patients,
and at the same time they provided all information provided by the repertory
grid. A similar application was the visualization of the water pollution of Lake
Ontario for decision support ([42]).

For larger data, the attributes of the derived context are grouped to concep-
tual scales and, for each scale, its concept lattice i1s determined. By combining
the concept lattices in nested line diagrams, information about the interplay of
attributes is provided. Such applications are supported by the management sys-
tem TOSCANA for Conceptual Information Systems. Examples of Conceptual
Tnformation Systems have been presented at TCCS’96 and TCCS *98 ([44], [15]).
Other applications are, for instance, a conceptual information system about the
medical nomenclature system SNOMED ([32]), a system for investigating inter-
national cooperations ([19]), and a retrieval system for a library ([20], [31]). The
largest implemented system has 600,000 objects, and a system with 20,000,000
objects is planned for a basket analysis of a credit card company.

3 Philosophical Foundations

Conceptual Graphs and Formal Concept Analysis are each based on an elabo-
rated philosophical understanding leading its development and application. For
investigating the possibilities of their interplay and integration, it is necessary
to bring the philosophical bases of both disciplines to mind. At first glance the



philosophical foundations of Conceptual Graphs and Formal Concept Analysis
seem to widely coincide: They both have conceptual structures as central theme
of inquiry, both emphasize graphical representations for activating human think-
ing, both rely on Peirce’s Pragmatism, and both aim to represent and process
knowledge. But, since they were grown out of different roots and purposes in
different scientific communities, each of the philosophical foundations has its
special quality. This shall be outlined in this section to understand better how
Conceptual Graphs and Formal Concept Analysis may be successfully combined.

According to [34], conceptual graphs arose in the Artificial Tntelligence com-
munity when John Sowa started in 1968 to combine semantic networks and
linguistic dependency graphs for forming a semantic representation of natural
language. The used box and circle notation was influenced by the plastic tem-
plates used for computer flow charts. A systematic presentation of conceptual
graphs which adapted also ideas of relational database theory was first published
n [36]. Conceptual Graphs matured to a precise system of logic when John Sowa
accommodated a new foundation based on Peirce’s Logic of Existential Graphs in
1983. With this foundation, Sowa could present Conceptual Graphs as a rich and
matured discipline in his book “Conceptual Structures: Information Processing
in Mind and Machine” [37].

In this book Sowa views Conceptual Graphs as a knowledge representation
language based on Linguistics, Psychology, and Philosophy, and in his “Concep-
tual Graphs Summary” [38] as a system of logic based on the existential graphs
of Charles Sanders Peirce and the semantic networks of Artificial Intelligence.
The key words “knowledge” and “logic” refer to a philosophical tradition of over
two and a half millennia. Sowa extensively discusses this tradition in his new
book “Knowledge Representation: TLogical, Philosophical, and Computational
Foundations” [39] to clarify the ontological basis of conceptual graphs. Starting
with Heraclitus and Plato, he explains the systems of categories proposed by
Aristotle, Kant, Peirce, Husserl, Whitehead, and Heidegger for deriving a new
system of twelve categories which are obtained by associating the three major
distinctions: Thing - Relation - Mediation; Physical - Abstract; Continuant -
Occurrant. The categories provide a framework for classifying everything that
exists, and can therefore be considered as a philosophical basis for hierarchies of
concept types that are assumed for conceptual graphs.

In [39], the philosophical tradition for understanding the logical character
of conceptual graphs is presented too. In sketching the history of logic, Sowa
discusses Aristotle’s syllogisms and their scholastic classification, first attempts
toward automated reasoning by Lull and Leibniz, and the first major contribu-
tions to modern mathematical logic by Boole, Frege, Peirce, Schroder, Peano,
Russell, and Whitehead. In the same way logic became more mathematical, the
connections to common sense and natural language got weaker. Against this
trend, conceptual graphs were designed as a logic with a human readable nota-
tion and a semantic basis of natural language for representing models of the real
world or other possible worlds. Tn [37], Sowa describes this as follows:

Rules of syntax map the graph to and from sentences in natural languages.



Arcs of the graphs correspond to the function words and case relations of
natural language.

Nodes of the graphs are intensional concepts of individuals that may exist
in the real world or some hypothetical world.

Exact reasoning is based on Peirce’s existential graphs [...]. The graphs are
a complete notation for first-order logic with direct extensions to modal and
higher-order logic.

Plausible reasoning is based on schemata and prototypes, which codify the
defaults and family resemblances that accommodate the variability of the
real world.

Model theory uses the same kinds of graph structures for both formal models
and propositions about models.

Conceptual graphs have the ontological status of a model: they simulate
significant structures and events in a possible world; a set of axioms, called
“laws of the world” , must at all times be true of the graphs; and certain graphs,
called “schemata” and “prototypes”, serve as patterns or frames that are joined
to form the model. Understanding the knowledge of something as the ability to
form a mental model that accurately represent the thing as well as the actions
that can be performed by it and on it, 1t becomes clear why conceptual graphs
as mental models are successful in knowledge representation, acquisition, and
processing.

Formal Concept Analysis arose in the Fachbereich Mathematik of the TH
Darmstadt out of efforts toward a better understanding of the relationships
of mathematics to the world. These efforts led to the program of restructur-
ing mathematics, an activity of reworking mathematical developments in order
to integrate and to rationalize origins, connections, interpretations, and appli-
cations (cf. [54]). Besides several other attempts to restructure mathematical
disciplines, the restructuring of mathematical order theory and lattice theory
was successfully approached (see [49], [25]). The most fruitful result of this re-
structuring was the interpretation of complete lattices as concept lattices, which
increasingly opened connections to new fields of applications. In this way, For-
mal Concept Analysis became established as a discipline of applied mathematics,
based on a mathematization of concept and conceptual hierarchy, which activates
mathematical thinking for conceptual data analysis and knowledge processing
(see [14]).

Formal Concept Analysis is grounded on the philosophical understanding of a
concept as a unit of thought constituted by its extension and its intension. This
concept understanding has grown during centuries from Greek philosophy to
late Scholastic and has finally found its modern formulation in the 17th century
by the Togic of Port Royal (cf. [3], [16], [62]). Tts actual use is exemplified by
the German Standards DIN 2330 “Begriffe und Benennungen” [11]. Togically,
Formal Concept Analysis fits in the tradition of the classical philosophical logic
with its elementary doctrines of concepts, judgments, and conclusions (cf. [18],
(541, [27)).

The mathematical notions of formal context, formal concept, and concept



lattice - resulting from the mathematization of context, concept, and concep-
tual hierarchy - are not understood as realistic models, but as artifacts which
may support human thinking, communication, and argumentation. Why such
a support is possible, may be explained on the ground of Heidegger’s charac-
terization of Modern Science as guided by “das Mathematische” [17]. Martin
Heidegger understands “das Mathematische” as the formal conception in which
we take note of realities and acquire their use. Mathematics is then viewed as
a specific culture of thinking in which “das Mathematische” 1s elaborated and
conventionalized, caused by a complex process of communication within the re-
spective community of mathematicians (cf. [58]). This explains that mathematics
may support human thinking in general because mathematics is arising out of
“das Mathematische” in human thought. The mathematizations used in Formal
Concept Analysis are therefore understood as purpose-oriented constructions
shaping “das Mathematische” in the thoughts which are mathematized.

As mathematical discipline, Formal Concept Analysis 1s semantically based
on set theory as used in today’s mathematics. On this basis, all its theoretical
notions and results are of mathematical nature and have first of all to satisfy
mathematical standards of adequacy and correctness. But as part of applied
mathematics, Formal Concept Analysis also activates systematically connections
of the mathematical theory to reality. Concerning such connections, human com-
munication and argumentation must be considered since mathematical methods
cannot grasp realities without an eventually serious loss of content. Therefore
mathematizations have always to keep connections to their origins so that the
consequences of mathematical treatments may be rationally analysed and inter-
preted in human communication. One way of establishing ties between mathe-
matical theory and reality is to insert pieces of natural language into mathemati-
cal structures and their graphical representations. Formal Concept Analysis does
this, for instance, by keeping the namings of objects and attributes and by using
them in lattice diagrams to give conceptual meaning to structural relationships.

According to Peirce’s Pragmatism, human knowledge is always incomplete
and continuously requires intersubjective communication and argumentation for
its formation. This understanding of knowledge i1s basic for Formal Concept
Analysis (cf. [51]). Therefore its formalizations for the structural and compu-
tational treatment of data and knowledge are performed in such a way that
they may support human communication and argumentation for establishing
intersubjectively assured knowledge. For connecting all aspects of contents and
formal settings, there is the vision of formally developing “conceptual landscapes
of knowledge” which allow humans to commonly explore and acquire knowledge
satisfying their specific requests (see [56]).

Although the above description shows quite different philosophical founda-
tions, Conceptual Graphs and Formal Concept Analysis could join their specific
qualities for obtaining a broader spectrum of methods of representing and pro-
cessing conceptual structures. For instance, the world semantics of conceptual
graphs and the set semantics of concept lattices could complement each other to
increase the meaningfulness of representations and the mathematical tractability
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of structures; this would include an appropriate use of linguistic contexts and for-
mal contexts for specific purposes in knowledge representation. More generally,
Conceptual Graphs and Formal Concept Analysis could join to merge different
developments of logics such as philosophical logics, mathematical logics, descrip-
tion logics, situational logics and others.

4 Conceptual Graphs and Formal Concept Analysis:
Methods of Representation

The five levels of Brachman provide a framework for discussing the role of Con-
ceptual Graphs and Formal Concept Analysis in knowledge representation. In
the disussion, we also refer to the five principles of Davis, Schrobe, and Szolovits.

Implementational Level. The basic data structures of Conceptual Graphs
are graphs in the usual mathematical understanding, as Sowa points out in
[38]: “The dyadic relation LINK is the only primitive in the formal theory. All
other conceptual relations may be defined in terms of 1t.” However, virtually,
all research in the Conceptual Graph community is done on the higher levels of
representation. In Formal Concept Analysis, the basic data structures are formal
(dyadic) contexts formed by a binary relation and many-valued (triadic) contexts
formed by a ternary relation. The simplicity of these data structures makes clear
that they are not understood as models imaging reality, but as surrogates or
artifacts. On the implementational level, “there is nothing inherently ‘semantic’”
[7]; indeed, graphs and formal contexts are abstract mathematical structures
without any content. Implementational issues of Formal Concept Analysis are
discussed in [47].

Logical Level. Tn Conceptual Graphs and in Formal Concept Analysis, the
logical level is activated in processing of the basic data structures. For Concep-
tual Graphs the logical primitives are the (abstract) concept and relation types
and the connectives representing conjunctions, references, coreferences, contexts,
actors, and type definitions. Reasoning is a major activity in processing Concep-
tual Graphs. Graph transformation rules (like projections) provide a fragmentary
theory of intelligent reasoning which is inherent to Conceptual Graphs. Also the
Peircing rules of deduction based on the context mechanism 1s also typical of
the system of logic that the conceptual graph theory is. By mapping Conceptual
Graphs to First Order Logic by the @-operator, other reasoning mechanisms can
be activated for efficient computation as well. In Formal Concept Analysis, the
(formal) object, attribute, and concept names are logical primitives which al-
low the composition of further predicates by logical connectives and quantifiers
(cf. [5], [28]). Then the means for logical reasoning are taken from Predicate
Logic. As logical operators, the numerous context constructions for one- and
many-valued contexts may be considered; the mostly used context construction
is the semiproduct which is basic for ‘plain conceptual scaling’ (described in
Section 2.2).
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Epistemological Level. The epistemological level addresses “the possibility of
organizations of conceptual knowledge into units more structured than simple
nodes and links or predicates and propositions, and the possibility of processing
over larger units than single network links. The predominant use of concepts as
intensional descriptions of objects hints that there is a class of relationship that
is not accounted for by the [other] four levels [...]. This kind of relationship
relates the parts of an intension to the intension as whole, and one intension to
another” [7]. Brachman observed that for the semantic network representations
of that time, this epistemological level is missing.

For Conceptual Graphs, the epistemological level is still not fully activated.
The structures of type hierarchies belong to this level and also the expansion
and contraction operators which are defined in the Conceptual Graph theory
(see [37]). These operators allow multiple representations of the same knowledge
because they provide a mechanism for the aggregation of lower-level constructs
into higher abstractions (used at the conceptual level). Based on lambda ex-
pressions, these operators allow the representation and processing of the same
knowledge at different levels of granularity. Type definitions implement these
lambda expression definitions. They are solely based on extensional semantics
and, in our opinion, they may not be sufficient to provide a sound justification for
their existence. Beside representing the internal structure of concepts, another
feature of the epistemological level is the representation of ‘inheritance’, which,
according to [7], “is not a logical primitive; on the other hand, it is a mechanism
assumed by all conceptual level nets [in particular Conceptual Graphs], but not
accounted for as a ‘semantic’ (deep case) relation.”

Concept lattices, the core structures of Formal Concept Analysis, are located
on the epistemological level: Formal concepts are considered as “formal objects,
with predetermined internal organization that is more sophisticated than sets of
cases” [7]. Formal concepts bring together extensional and intensional views on
‘concepts’, and represent explicitly inheritance by refering to the set semantics of
the intents (or extents) of the formal concepts. Concept lattice constructions also
belong to the epistemological level. As Formal Concept Analysis 1s founded on
lattice theory, lattice constructions and lattice decompositions can be activated
for establishing more complex concept hierarchies out of simpler ones, and, vice
versa, for reducing complex concept hierarchies to simpler ones. Constructions
like direct products and tensor products of concept lattices and decompositions
like subdirect and atlas decompositions have been successfully applied in data
analysis. Tt is interesting to note that most concept lattice constructions (decom-
positions) have as counterpart a context construction on the logical level (see
[14]). As formal contexts are only ‘logarithmic in size’ compared to the concept
lattice, the knowledge representation on the logical level can be seen in the light
of the fourthprinciple of Davis, Schrobe, and Szolovits as a medium of efficient
computation.

The interplay between representations by formal contexts and by concept lat-
tices supports also the fifth principle: The acceptance of Formal Concept Anal-
ysis as a medium of human expression by users from various domains (consider
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for instance the patients mentioned in Section 2.2 who have no higher mathe-
matical education) results from the visualization of the data (as present on the
logical level) on the epistemological level. Tn particular, the construction of com-
plex lattices as (sub-)direct product of simpler lattices allows the visualization
of complex data by nested line diagrams. The corresponding construction on
the logical level is the semiproduct of conceptual scales, which is applied for
efficiently querying the database.

Conceptual Level. The conceptual level is the major domain of Conceptual
Graphs, just as 1t 1s for most semantical networks. Concept meanings are struc-
tured in type hierarchies according to levels of generality. They are linked by
primitive semantic relations understood as those relations “that the verb in a
sentence has with its subject, object, and prepositional phrase arguments in ad-
dition to those that underlie common lexical, classificational, and modificational
relations” [35]. According to [7], “networks on this level can be characterized as
having a small set of language-independent conceptual elements (namely, prim-
itive object- and action-types) and conceptually primitive relationships (i.e.,
‘deep cases’) out of which all expressible concepts can be constructed”. Tn the
theory of Conceptual Graphs, there is no predefined relation type other than
LINK, which is the most general relation, being already formally located on the
logical level. By applying concept expansion as described on the epistemological
level, each concept type can be expanded such that all relationships are repre-
sented by the LINK relation. Hence case grammar based relations are in no way
compulsory to the development of Conceptual Graph systems. However, the way
Conceptual Graphs are used in practice identifies them clearly as being on the
conceptual level: Although the LINK-relation is the only primitive relation n
theory, in applications, the starter set of relation types is used as if consisting
of primitive types in practice. The starter set plays the role of the small set of
language-independent conceptually primitive relationships mentioned by Brach-
man. We conclude that the typical use of relation types identifies Conceptual
Graphs as a knowledge representation formalism which is located mainly on the
conceptual level.

In Formal Concept Analysis, word-senses are represented by the context at-
tributes which lead to a contextual representation of concept intensions. As
primitive case relations, there are defined four basic relations: an object has an
attribute, an object belongs to a concept, a concept abstracts to an attribute,
and a concept is a subconcept, of another concept. These four relations are used
as primitive relations in the mathematical model for Conceptual Knowledge
Systems described in [22]. Other relations (especially meronomy) are discussed

in [30].

Linguistical Level. Neither Conceptual Graphs nor Formal Concept Analysis
provide (at least not in their core) language-specific primitives. The linguisti-
cal level is activated only indirectly. For Formal Concept Analysis, this activa-
tion is discussed in more detail in [2] from a pragmatic-semiotic point of view.
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There the existence of qualified knowledge [anspruchsvolles Wissen] is claimed to
depend from the existence of a community of discourse in which the knowledge
is intersubjectively constituted.

Considering that the vocabulary (made of aggregations and primitive types)
used to describe all Conceptual Graphs in a system is highly dependent on the
type definition mechanism, we feel that Conceptual Graphs need to consider
some complementary mechanism to ensure some epistemological soundness of
the type definition mechanism. As Formal Concept Analysis is strong on the
epistemological level, we are confident that Formal Concept Analysis can con-
tribute to this. On the other hand, the experience of data analysis with Formal
Concept Analysis has shown that there are applications with a need to enhance
the expressiveness of Formal Concept Analysis on the conceptual level. We ex-
pect from the interplay of both theories a step in this direction.

5 Interplay and Integration

As already stated in Section 3, Conceptual Graphs and Formal Concept Analysis
have basic concerns in common: the focus on conceptual structures, the use of
diagrams for supporting communication, the orientation by Peirce‘s Pragmatism,
and the aim of representing and processing knowledge. These concerns open rich
possibilities of interplay and integration. Since both disciplines have their specific
quality besides their common concerns, they may also complement each other.
In this section, we discuss possible approaches of interplay and integration; but,
because of the lack of space, we have to restrict to two themes: conceptual
hierarchies and systems of logic.

5.1 Interplay: Deriving and Improving Conceptual Hierarchies

Conceptual hierarchies are basic in Conceptual Graphs and Formal Concept
Analysis where they are mainly considered at the epistemological and the con-
ceptual level. For conceptual graphs hierarchies of concept types are presumed as
an ontological commitment. Often they are taken from conceptual taxonomies
which, in general, are only ordered sets. But, for many purposes, it is desir-
able that the concept types form even a lattice. This can be effectively derived
by methods of Formal Concept Analysis. In [13], Bernhard Ganter and Sergei
Kuznetsov describe simple algorithms with satisfactory complexity bounds for
minimally completing a finite ordered set to a lattice. For obtaining a meaning-
ful type lattice, the minimal extension of a given ordered set of concept types
might not be satisfactory. For finding useful completions, the construction of con-
cept lattices of meaningfully deduced formal contexts can be offered as general
method. The formal context need not contain all objects and attributes that be-
long to the concepts of the type hierarchy; it is sufficient to have enough typical
objects and attributes. Then its concept lattice can be used as completed type
hierarchy. The formal context can either be derived from an existing data set

14



(if it provides enough typical objects and attributes), or it must be interactively
acquired from some human expert.

For instance, there is a concept type COFFEE MACHINE in the type hierarchy
for the document retrieval system in Section 2.1. This concept has in its extension
all existing coffee machines and in its intension all attributes common to all coffee
machines. In the knowledge acquisition process, however, it 1s sufficient to ask
the user only for some few objects and attributes which distinguish this concept
from the other involved concepts such as USER or CITRIC ACID.

Formal Concept Analysis provides different knowledge acquisition algorithms
which can be used for that purpose: Attribute Exploration [14], Distributive
Concept, Exploration ([43]), and Concept Exploration ([46]). Tn [4], Franz Baader
has used Attribute Exploration together with the Subsumption Algorithm of
Description Logics for automatically deriving a A-completion for an arbitrarily
given type hierarchy. For a general overview concerning knowledge acquisition
by methods of Formal Concept Analysis, see [50] and [45].

Methods of Formal Concept Analysis may also be applied to the general-
ization order on conceptual graphs. For instance, Gerard FEllis and Stephen
Callaghan [12] have used conceptual scaling for improving the search in the
generalization hierarchy of conceptual graphs. If the generalization order is rep-
resented as concept lattice, such a search might even be performed within a
TOSCANA system (see [29]). Guy Mineau and Olivier Gerbé discuss in [24]
context lattices in their definitional framework for contexts, based on Formal
Concept Analysis.

As Formal Concept Analysis can be used for deriving and improving concep-
tual structures occuring in Conceptual Graphs, there may also be applications of
Conceptual Graphs methods to Formal Concept Analysis. In particular, concep-
tual graphs could be very helpful in translating structural meaning of concept
lattice into natural language to lead users of Formal Concept Analysis to a bet-
ter understanding of possible interpretations. Another application would be to
support knowledge acquisition for Conceptual Information Systems. In Concep-
tual Information Systems, the data are organized in a relational database. But
if the data are only available in a less structured way (for instance from struc-
tured interviews), then Conceptual Graphs may support the formalization of the
information, as they are close to natural language for being understood by the
domain expert, and formal enough for being computationally tractable. Once the
knowledge is represented in Conceptual Graphs, 1t can be transformed to formal
contexts by using power context families (discussed in the next subsection).

5.2 Integration: Unifying Systems of Logic

An integration of developments in Conceptual Graphs and Formal Concept Anal-
ysis would mean to establish a common theoretical basis for the field of inter-
est. An attractive field would be, as already indicated at the end of Section 3,
knowledge-oriented systems of logic. ITn both disciplines, criticisms have been
made about the inadequacy of mathematical logic concerning knowledge rep-
resentation and processing. Tn [40], John Sowa lists a number of reasons why
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people who use a knowledge representation language may want to diverge from
First Order Togic; those reasons are concerned with readability, computability,
convenience, surprises, context dependence, and extended logics. All these issues
have been actively explored in the Conceptual Graph community, and different
approaches to them have been suggested, implemented, and published.

These activities might be combined with the recent development of “Contex-
tual Logic” in Formal Concept Analysis (see [54], [55], [57], [26], [27]). Contextual
Logic is understood as a mathematization of classical philosophical logic based
on the elementary doctrines of concepts, judgments, and conclusions; Formal
Concept Analysis yields the mathematization of the doctrine of concepts, and
Conceptual Graphs is used for mathematizing the doctrines of judgments and
conclusions. Contextual Logic is set-theoretically grounded on families of related
contexts whose formal concepts allow a representation of the concepts and rela-
tions of conceptual graphs. Such representation of a conceptual graph is called a
“Concept Graph” of the context family from which is is derived, and the family
of related contexts is said to he a “Power Context Family”. Tn [29] it is shown
that the concept graphs of a power context family always form a lattice with
respect to generalization, which can be represented as a concept lattice. Since
power context families can always be derived from many-valued data contexts,
the approach via Contextual Togic opens a large field of common applications
for Conceptual Graphs and Formal Concept Analysis. This might stimulate to
continue the process of integration of both disciplines and even further develop-
ments of logic systems.
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