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Preface 

 

This thesis is submitted to the Faculty of Organic Agricultural Sciences of the 

University of Kassel to fulfil the requirements for the degree Dokter der Agrar-

wissenschaften (Dr. agr.). 

This dissertation is based on three papers as first author, which are published or 

submitted to international refereed journals. They are included in chapter 4, 5 and 

6.  

Chapter 1 gives the introduction to all parts of the thesis. Chapter 2 contains the 

objectives of the work and chapter 3 gives an overview of the basic principles of 

field spectroscopy. 

Chapter 7 considers the results of the chapters 4, 5 and 6 in a general discussion. 

A general conclusion and the summary is given in chapter 8 and chapter 9.  

 

The following papers contribute to this thesis: 

 

Chapter 4: 

Biewer, S., S. Erasmi, T. Fricke and M. Wachendorf. 2008. Prediction of yield 

and the contribution of legumes in legume-grass mixtures using field spectrome-

try. Precision Agriculture, Online first. DOI 10.1007/s11119-008-9078-9. 

 

Chapter 5: 

Biewer, S., T. Fricke and M. Wachendorf. 2008. Determination of dry matter 

yield from legume-grass swards by field spectroscopy. Crop Science, submitted.  

 

Chapter 6: 

Biewer, S., T. Fricke and M. Wachendorf. 2008. Determination of forage quality 

in legume-grass mixtures using field spectroscopy. Crop Science, submitted. 
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1 General introduction 

 

Productivity and botanical composition of legume-grass swards are important 

factors for successful arable farming in both organic and conventional farming 

systems. A main advantage of legumes is their ability to fix atmospheric nitrogen 

by legume-rhizobium symbiosis (Boller and Nösberger, 1987). Many detailed 

studies investigating legume-grass mixtures have shown that high amounts of ni-

trogen (>300 kg N ha-1) can be fixed by legumes (Loges, 1998; Schmidtke, 1997; 

Weißbach, 1995). Hence forage legumes in mixture with grass are virtually self-

sufficient for nitrogen and can concurrently transfer appreciable nitrogen to the 

companion grass (Heichel and Henjum, 1991). Another benefit of legumes is their 

excellent feeding value for animal production (Frame, 1992). In comparison to 

grass, clover is richer in protein and minerals and the digested nutrients are me-

tabolized more efficiently. Particularly white clover contains lower fibre, is more 

acceptable to stock and maintains a better digestibility over the season (Frame, 

1992; Wilhelmy, 1993). Therefore legume-grass mixtures usually result in in-

creased yield, higher quality and improved seasonal distribution of forage when 

being compared to pure swards of legumes or grass (Sleugh et al., 2000).  

 

1.1 Site specific determination of canopy parameters of legume-
grass mixtures 

Growth of legumes can vary strongly through spatial and temporal influences. For 

example, legume abundance depends on seasonal disturbances, such as cutting, 

frost and drought damage and can lead to sustained field scale variations in leg-

ume content that are only partly explained by the level of seasonal disturbance 

itself (Schwinning and Parsons, 1996). Hence, continuous mapping of legume 

distribution in the field could help to understand the processes which affect the 

abundance of legumes in swards at the field scale and to adapt the management to 

these processes. Moreover, since yield and proportion of legumes are strongly 

related to the amount of fixed nitrogen (Høgh-Jensen et al., 2004), frequent in-
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formation on the status of legume-grass swards could help to predict the nitrogen 

supply of the soil for arable crops to be grown after the legume-grass mixtures or 

to direct fertilizer applications. Besides, forage management could be optimized 

as forage quality is highly affected by the yield and legume composition in the 

swards. 

To analyse spatial distribution of dry matter yield and forage nutritive value and 

to predict its variability on grassland, systematic manual plant sampling has been 

used (Bailey et al., 2001; Gottardi, 2008). Although widely used in experiments, 

these procedures are not applicable to real farm situations because they are too 

labour intensive. A technical solution for yield monitoring in grassland and forage 

crops is proposed by a pendulum sensor which works through bending crop-stems 

and recording, on-the-go, the angle of the suspended pendulum (Ehlert et al., 

2003). Another solution is to measure the rate of flow on forage harvesters (Kum-

hála and Prosek, 2003). However, such measurements are only able to monitor 

yield, whereas spectral measurements offer more possibilities through a simulta-

neous detection of several plant parameters, such as biomass (Numata et al., 2007; 

Schino et al., 2003), plant nitrogen (Lamb et al., 2002; Mutanga et al., 2003), wa-

ter status (Fitzgerald et al., 2006), vegetation cover (Eastwood et al., 1997) or leaf 

area index (LAI) (Ray et al., 2006). 

A highly accurate application of spectral measurements is the near infrared reflec-

tance spectroscopy (NIRS) which has been successfully used for the detection of 

agricultural products, foodstuffs, forage and pharmaceutical products (De Boever 

et al., 1996; Montes et al., 2006; Nie et al., 2008; Norris et al., 1976; Shenk and 

Westerhaus, 1993). Although the high prediction accuracy of NIRS is comparable 

with laboratory chemical methods, it still requires the collection and preparation 

of vegetation samples which is not practicable at field. In contrast remote sensing 

by satellites or aircraft needs no sample preparation as reflectance data can be 

automatically collected during the overflight. The challenge of this technique is 

the coinstantaneous realisation of an adequate spatial and spectral resolution and 

sufficient frequency of coverage through the return interval. However, field spec-

tral measurements do not suffer such problems, as they can be collected with high 

spatial and spectral resolution and time and frequency of application can be freely 
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determined. A spectral field sensor with special configuration to detect N defi-

ciency in cereal crops is already available in practice (YARA N-sensor®), but 

such sensing technique has not yet been tested on grassland (Schellberg et al., 

2008).  

 

1.2 Analysis of spectral data 
While several studies confirm the use of spectral reflectance data to determine 

patterns in species assemblages, biomass and nutritive values of grassland com-

munities, techniques to analyse the spectral data vary widely (Cho et al., 2007; 

Dymond et al., 2006; Locher, 2003; Schmidtlein and Sassin, 2004; Shut et al., 

2006).  

1.2.1 Vegetation indices 

A simple approach is the mathematical transformation by ratio building of vegeta-

tion reflectance into dimensionless measures, generally known as vegetation indi-

ces (VIs). A common known VI is the simple ratio (SR), which is calculated by 

the ratio of NIR to red reflectance (Eq. 4.2). The normalized form of SR repre-

sents the normalized difference vegetation index (NDVI; Eq. 4.3), which is often 

used for monitoring natural biomes and agro-ecosystems (Boegh et al., 2002; Box 

et al., 1989; Ferreira et al., 2003).  

Most VIs are calculated by various arithmetic combinations of red reflectance and 

near infrared reflectance (NIR). While visible red reflectance corresponds to the 

chlorophyll pigment in leaves which causes considerable photosynthetic absorp-

tion of the incoming radiation, NIR is linked to the part of the spectrum where 

spongy mesophyll and plant cell structural material leads to high reflectance (Jen-

sen, 2000; p. 339). However, there are major limitations with these indices despite 

their wide application for the analysis of spectral data. Several studies show that 

VIs can be unstable, varying with soil colour, canopy structure, leaf optical prop-

erties and atmospheric conditions (Huete and Jackson, 1988; Middleton, 1991; Qi 

et al., 1995; Todd et al., 1998). Furthermore, NDVI asymptotically approaches a 

saturation level after a certain biomass or LAI height (Sellers, 1985; Gao et al., 
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2000). Other variants of NDVI such as the enhanced vegetation index (EVI) have 

been developed to correct for soil and atmospheric effects (Eq. 4.4). Besides, EVI 

is less sensitive to saturation when it exceeds a certain biomass or LAI level 

(Boegh et al., 2002; Huete et al., 2002). Hence, the improved EVI is more sensi-

tive in detecting seasonal changes among various vegetation formations compared 

to NDVI (Ferreira et al., 2003; Huete et al., 2006). The red edge position (REP), 

which marks the inflection point of the ascending part of the reflection curve be-

tween red and NIR (Eq. 4.5), is also known to be less sensitive to changes in per-

centage soil cover and to atmospheric effects (Pu et al., 2003; Huete et al., 2002). 

The REP has been used as a means to estimate grass/herb biomass (Cho et al., 

2007), foliar chlorophyll concentration and content (Lamb et al., 2002; Pinar and 

Curran, 1996) as well as an indicator of vegetation stress (Horler et al., 1983). 

Another benefit of the REP over the NDVI is that it is less sensitive to sensor 

view angle (Blackburn and Pitman, 1999; Clevers et al., 2001). Despite the limita-

tions of VIs, their advantage is the use of a limited range of the whole spectrum 

which lower the costs for a potential sensor. Hence, for practical purposes the ap-

plication of VIs to predict vegetation parameters of legume-grass swards is desir-

able. 

During the past decades vegetation indices have been based on either broad wave-

bands (50-100 nm scale) for example from the satellite-based Landsat Thematic 

Mapper or short wavebands (10 nm scale) from field-based spectrometers (Han-

sen and Schjoerring, 2003). Broadband VIs use average spectral information over 

a wide range resulting in a loss of critical spectral information available in spe-

cific narrow (hyperspectral) bands. Therefore further improvement in the predic-

tion accuracy of indices is generally obtained through the use of spectral data 

from distinct short bands. For example, Starks et al. (2006a, b) demonstrate that 

narrowband SR perform better in estimating forage neutral detergent fibre (NDF), 

acid detergent fibre (ADF) and crude protein (CP) of bermudagrass [Cynodon 

dactylon (L.)] pastures when compared to the broadband NDVI and SR. Many 

recent studies dedicating on the development of hyperspectral VIs have focused 

on single crops (Hansen and Schjoerring, 2003; Jain et al., 2007; Thenkabail et al., 

2004; Zhao et al., 2005). Hence, the development of hyperspectral reflectance 
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ratios for predicting biophysical canopy parameters and nutritive values of leg-

ume-grass mixtures remains to be established. 

1.2.2 Modified partial least square regression  

Besides this relatively simple approach of univariate regression involving VIs, 

multivariate regression techniques can be used to predict vegetation parameters. 

The advantage of multivariate regression models is the inclusion of several wave-

bands into the analysis, resulting in lower losses of spectral information. A tech-

nique widely used in laboratory spectroscopy is the analysis of hyperspectral data 

with modified partial least square regression (Ehsani et al., 1999; Fassio and Coz-

zolino, 2004; Leardi and Gonzalez, 1998). The MPLS can easily treat data matri-

ces in which each object is described by several hundred variables (Galadi and 

Kowalski, 1986; Haaland and Thomas, 1988). This method is closely related to 

principal component regression. But instead of first decomposing the spectra into 

a set of eigenvectors and scores and regressing them against the response vari-

ables as a separate step, MPLS regression actually uses the response variable in-

formation during the decomposition process (Geladi and Kowalski, 1986). The 

partial least square (PLS) regression has been successfully applied to field spectral 

data for the determination of plant biomass, leaf area index (LAI), nitrogen and 

chlorophyll concentration and density of wheat canopies (Hansen and Schjoerring, 

2003), to assess the effects of different nitrogen applications on a potato crop (Jain 

et al., 2007) and to calculate within-field variation in crop growth and nitrogen 

status of rice (Nguyen et al., 2006). Furthermore good results were obtained by 

PLS predicting biomass of complex grassland sites (Cho et al., 2007) and biomass 

and its nitrogen content of species rich meadows (Gianelle and Guastella, 2007). 

Starks et al. (2004) determined forage NDF, ADF and nitrogen concentrations of 

bermudagrass with MPLS and found that it could explain 63 to 76% of the vari-

ability expressed in the reference data. However, the great potential of MPLS, 

offering the use of the whole hyperspectral range, still remains to be examined for 

the estimation of biomass and forage quality variables from legume-grass swards.  
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1.2.3 Stepwise multiple linear regression 

Although MPLS seems to be a powerful method for the analysis of large data sets, 

it is not practical for livestock managers to predict yield and forage quality vari-

ables using an expensive, full range spectrometer. An approach to reduce the 

range could be the analysis of stepwise multiple linear regression (SMLR), as it 

enables a few wavelengths to be extracted from the full dataset to create a predic-

tion model (Kokaly and Clark, 1999; LaCapra et al., 1996). This methodology is 

based on laboratory techniques developed in the agriculture industry for rapid 

estimation of forage quality from the reflectance spectra of dried and ground foli-

age (Norris et al., 1976). Problems known with this method are the potential of 

overfitting, multicollinearity and waveband selection that fail to correspond with 

known absorption bands (Curran et al., 1992; Grossman et al., 1996). Neverthe-

less, to identify combinations of wavelengths most highly correlated with canopy 

chemistry and biomass, several studies have used SMLR with satellite (Huang et 

al., 2004; Serrano et al., 2002) and field data (Nguyen et al., 2007). In addition, 

recent research has demonstrated that optimal information to quantify characteris-

tics of different plant species is present in a few specific wavebands (Blackburn et 

al., 1999; Starks et al., 2008; Thenkabail et al., 2004). Hence, SMLR may be used 

to identify spectral regions that are highly correlated with vegetation parameters 

of legume-grass swards to build accurate prediction models by only a few wave-

bands. 
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2 Research objectives 

 

The objectives of this study were to evaluate if field spectral measurements can be 

used to predict dry matter (DM) yield and nutritive values of legume-grass swards 

across a wide range of legume species, legume proportion and growth stage. 

In a first attempt two experiments were conducted in a greenhouse under con-

trolled conditions to allow the potential of field spectroscopy to be assessed for 

estimating the DM yield of legume-grass swards. Spectral measurements were 

made with artificial sources of illumination to exclude interference from effects 

such as wind, passing clouds and changing angles of solar irradiation. Therefore, 

the results obtained were free from the kind of interference one could expect un-

der field conditions. This initial investigation was then evaluated over two years 

in a field experiment with the similar legume-grass swards. Finally, field spectral 

measurements of the second year of field experiment were used to predict metabo-

lizable energy (ME), ash, crude protein (CP) and ADF of legumes-grass swards.  

 

The specific objectives of this investigation were:  

i) to determine if the vegetation indices, SR, NDVI, EVI and REP are 

appropriate indicators to detect DM yield of legume-grass swards and 

the proportion of legume in the sward. 

ii) to evaluate if the development of two-waveband reflectance ratios, 

based on signals at specific narrowbands enable the estimation of ME, 

ash, CP and ADF. 

iii) to develop reflectance algorithms for the prediction of DM yield and 

the forage quality constituents ME, ash, CP and ADF based on the to-

tal reflectance in the visible and near infrared wavelength ranges using 

modified partial least square regression and stepwise multiple linear 

regression. 
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iv) to reduce the hyperspectral data range for the prediction of DM yield, 

ME, ash, CP and ADF to a few informative bands in order to improve 

the practical applicability.  
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3 Basic principles of field spectroscopy 

 

Incident optical radiation can be reflected, transmitted or absorbed by material. 

Spectroscopy is a widely used method that measures light reflectance to predict 

quality and quantity parameters of distinct materials. Within field spectroscopy 

the solar irradiation is used in the range between 400 nm and 2500 nm.  

 

3.1 The Beer-Lambert Law 
The fraction of reflected irradiation is the part of energy which is measured by the 

sensor, but it is strongly dependent on the rate of absorbed radiation. Absorption 

by a constituent in materials is a linear function of its concentration and the path 

length of radiance through the material. It is described in the Beer-Lambert law, 

usually written as: 

cbaA **)(λ=         (3.1) 

where A is the measured absorbance; a(λ) the wavelength-dependent absorptivity 

coefficient; b the path length; c the concentration of the constituent.  

The important feature of this relationship is the possibility of measuring the con-

centration of the constituent directly from the amount of absorbed irradiance. 

However, the linearity of the Beer-Lambert Law is limited by chemical and in-

strumental factors. Chemical limitations comprise deviations in absorptivity coef-

ficients at high concentrations due to electrostatic interactions between molecules 

in close proximity, scattering of light due to particle structure in the material as 

well as fluorescence and phosphorescence (spontaneous and delayed release of 

energy respectively) of the material. Instrumental factors are non-monochromatic 

radiation and stray light (Miller, 2001). In these cases the relationship between the 

concentration of the constituent and measured absorption must be calculated by 

using empirical models. For the development of these models usually the whole 

concentration range of the constituent is needed (Günzler and Gremlich, 2003). 
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3.2 Fundamentals of light-plant interaction 
On atomic and molecular levels, respectively, several mechanisms are linked to 

absorption processes.  

In the visible light region electronic processes are dominating. These processes 

involve absorption of photons with specific energy contents or wavelengths, re-

spectively that causes an electron jump from a lower energy state to an electron 

shell at a higher energy state (Clark, 1999). An example for electronic absorption 

by vegetation is the photosynthetic process. Light is used by chlorophyll and other 

pigments for the incorporation of carbon dioxide and water into the energy-rich 

sugar that can be metabolized by the plants (Jensen, 2000): 

↑++→+ 22612622 66126 OOHOHCOHCO    (3.2) 

Chlorophyll a and b are the most important plant pigments absorbing blue and red 

light: chlorophyll a at wavelengths of 430 and 660 nm and chlorophyll b at wave-

lengths of 450 and 650 nm (Curran, 1983; Schilling, 2000). Other pigments such 

as carotenes, xanthopyll, anthocyanin and phycoerythrin are also present in the 

plant cells, but usually masked by the abundance of chlorophyll pigments. When a 

plant undergoes senescence in the fall or encounters stress, the chlorophyll pig-

ment disappears, allowing the carotenes and other pigments to become dominant 

(Jensen, 2000). Depending on the plant species and the amount and nature of the 

occurring pigments, the absorption intensity in the visible light differs between 

70% and 95% of the solar irradiation (Hildebrandt, 1996). Normally green light is 

more reflected, resulting in a typical reflection maximum at about 500 nm (Figure 

3. 1). 

In the near infrared region, reflection processes on plant surfaces dominate, as 

shown in Figure 3. 1. This prevents proteins from denaturation (Jensen, 2000). 

Thereby the spongy mesophyll layer in a green leaf controls the amount of near 

infrared energy that is reflected by the internal scattering at the cell wall-air inter-

faces within the leaf (Gausmann et al., 1969). The amount of near infrared energy 

absorbed by plants is responsible for vibrational and rotational processes of va-

lence bonds in asymmetric molecules. At distinct energy levels, the atomic units 

held by bonds are set into motion, either as a back and forth vibration and/or as a 
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Figure 3. 1: The dominant factors controlling leaf reflectance of healthy, green vegetation for the 
wavelength interval 400-2600 nm (Source: Jensen, 2000).  

 

rotation. The frequencies that these molecules absorb are usually lower then those 

offered by visible light and depend on the strengths of the bonds and the masses 

of atoms or ions participating in the movement. Given a molecule composed of n 

atoms, there exist 3n minus 6 fundamental vibrations or rotations, respectively. 

Concurrently, additional vibrations at higher frequencies appear. These comprise 

combinations of fundamental vibrations as well as overtones, which are fixed 

multiples - i.e. 1/2, or 1/3 - of the fundamentals. Normally the absorption of these 

combinations and overtones is weaker.  

The most common absorption bands in the near infrared result from the OH, CH, 

NH and CO functional groups (Rudzik, 1993). Especially water, present in the 

atmosphere and in the plant canopy, shows strong absorption features. Water in 

the atmosphere creates the four major absorption bands at 970, 1119, 1450 and 

1940 nm (see Figure 3. 1). However, there is also a strong relationship between 

the irradiance and the amount of water present in the plant canopy. Water in 
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plants absorbs incident energy between the absorption bands of atmospheric water 

with increasing strength at longer wavelengths. Reflectance peaks occur at about 

1600 and 2200 nm (Jensen, 2000). The greater the turgidity of leaves, the lower 

the reflection of the near infrared light. Conversely, as the moisture content of 

leaves decreases, reflectance in the near infrared region increases substantially 

(Jensen, 2000). 

Further plant constituents such as protein, carbohydrates, cellulose, lignin and fat, 

containing different functional groups, show broad absorption bands in the near 

infrared region. In most instances these absorption bands are masked by water 

absorption and overlap each other. Thus, a direct assignment of a wavelength to a 

certain constituent based on the original spectrum is nearly impossible (Socrates, 

2001). 
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4 Prediction of yield and the contribution of legumes in 

legume-grass mixtures using field spectrometry 

 

Abstract    Productivity and botanical composition of legume-grass swards in 

rotation systems are important factors for successful arable farming in both or-

ganic and conventional farming systems. As these attributes vary considerably 

within a field, a non-destructive method of detection while doing other tasks 

would facilitate more targeted management of crops and nutrients in the soil-

plant-animal system. Two pot experiments were conducted to examine the poten-

tial of field spectroscopy to assess total biomass and the proportions of legume, 

using binary mixtures and pure swards of grass and legumes. The spectral reflec-

tance of swards was measured under artificial light conditions at a sward age 

ranging from 21 to 70 days. Total biomass was determined by modified partial 

least squares (MPLS) regression, stepwise multiple linear regression (SMLR) and 

the vegetation indices (VIs) simple ratio (SR), normalized difference vegetation 

index (NDVI), enhanced vegetation index (EVI) and red edge position (REP). 

Modified partial least squares and SMLR gave the largest R² values ranging from 

0.85 to 0.99. Total biomass prediction by VIs resulted in R² values of 0.87 to 0.90 

for swards with large leaf to stem ratios; the greatest accuracy was for EVI. For 

more mature and open swards VI-based detection of biomass was not possible. 

The contribution of legumes to the sward could be determined at a constant bio-

mass level by the VIs, but this was not possible when the level of biomass varied. 

 

Keywords: Field spectroscopy • Modified partial least squares (MPLS) regression 

• Stepwise multiple linear regression (SMLR) • Vegetation index. 
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4.1 Introduction 
Biomass production of legume-grass swards is affected by several properties that 

vary within a field, such as soil moisture concentration, texture, nutrient supply 

and temperature (Ledgard and Steele, 1992). The site-specific detection of total 

biomass within the growing period of plants could help in understanding the rea-

sons for poor productivity in some areas and to adapt management to the particu-

lar needs of plants. Furthermore, not only poor but also optimal productivity is 

important to monitor as it provides an insight into the spatial variation of swards 

and a better understanding of ecological processes and patterns. Legumes with 

their ability to fix nitrogen contribute considerably to the nutrient supply in forage 

production (Ledgard and Steele, 1992, Wachendorf et al., 2004), which is of par-

ticular importance in organic agriculture, where they contribute 20 to 50% to the 

arable farm area. Legume-grass swards are usually grown as short-term grassland 

for 1 to 3 years in a crop rotation system. They are managed by cutting and used 

for silage or fresh fodder. The yield and proportion of legumes are strongly related 

to the amount of fixed nitrogen (Høgh-Jensen et al. 2004). Therefore, frequent 

information on the status of legume-grass swards could help to direct fertilizer 

applications and to predict the nitrogen supply of the soil for arable crops in the 

field to be grown after the legume-grass mixtures.  

One method of detecting total biomass in the field is to record and map the yield 

of harvested plants by techniques that measure the rate of flow on forage harvest-

ers (Kumhála et al., 2003). However, such measurements are inevitably destruc-

tive and restricted to the time of harvest. Another approach is to predict the 

amount of green biomass in grassland using spectral measurements, which Kün-

nemeyer et al. (2001) assessed by a simple, portable reflectometer. This method is 

more flexible as it can be used on various agricultural machines and it also pro-

vides non-destructive estimation of other plant parameters, such as plant nitrogen 

(Lamb et al., 2002; Mutanga et al., 2003; Nguyen et al., 2006) and water status 

(Fitzgerald et al., 2006), vegetation cover (Eastwood et al., 1997), leaf area index 

(LAI) (Ray et al., 2006) or biomass (Numata et al., 2007; Schino et al., 2003). 

The detection of total biomass of grassland ecosystems by spectral reflectance has 

been described in several studies (Boschetti et al., 2007; Friedl et al., 1994; Ikeda 
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et al., 1999; Numata et al., 2007; Schino et al., 2003). Most studies used complex 

grassland types and information from satellite-based sensors that were not syn-

chronized with harvesting of the swards. The majority of studies investigated eco-

systems with low biomass production or obtained models with only a poor accu-

racy of prediction. 

The analysis of reflectance data can be done using modified partial least squares 

regression (MPLS). Although this method can handle several hundred variables to 

describe an object (Haaland and Thomas, 1988; Nguyen et al., 2006), for practical 

implementation of a spectral approach at the field scale hyperspectral measure-

ments are too expensive. In general, it is acceptable to use a small range only of 

the whole spectrum, which is commonly the NIR and the red light. Stepwise mul-

tiple linear regression (SMLR) enables a few wavelengths to be extracted from the 

full dataset to create a prediction model (Curran et al., 1992). The SMLR can be 

used to identify wavelengths in the spectra where reflectance is correlated with 

biomass. Those wavelengths can then be applied to estimate biomass in other 

samples. Also spectral vegetation indices (VIs) use a limited range only of the 

whole spectrum (Zha et al., 2003); most are based on various arithmetic combina-

tions of red and near infrared reflectance values. Visible red reflectance corre-

sponds to the part of the spectrum where the chlorophyll pigment in leaves causes 

considerable photosynthetic absorption of the incoming radiation. Near infrared 

reflectance is linked to the part of the spectrum where spongy mesophyll and plant 

cell structural material leads to high reflectance (Jensen, 2000; p. 339). A widely 

used VI is the simple ratio (SR), which is calculated by the ratio of NIR to red 

reflectance. The normalized form of SR represents the normalized difference 

vegetation index (NDVI), which is often used for monitoring natural biomes and 

agro-ecosystems. The limitation of these indices is their sensitivity to variation in 

the canopy background; this is particularly so when the canopy background 

brightness is intermediate (Huete, 1988). By contrast, red edge position (REP) and 

the enhanced vegetation index (EVI) are known to be more insensitive to changes 

in percentage soil cover and to atmospheric effects (Pu et al., 2003; Huete et al. 

2002). The REP marks the inflection point of the ascending part of the reflection 

curve between red and NIR. A simple but robust method to calculate the REP is a 
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four-point interpolation, which assumes that the reflectance curve at the red edge 

can be simplified to a straight line centred near the midpoint between the reflec-

tance in the NIR at about 780 nm and the reflectance minimum of the chlorophyll 

absorption feature at about 670 nm (Dawson and Curran, 1998; Pu et al., 2003). 

The EVI was developed to optimize the vegetation signal in areas of large 

amounts of biomass and to improve vegetation monitoring by reducing the canopy 

background signal and atmospheric effects (Huete et al., 2002).  

The primary objective of the present investigation was to examine the relations 

between reflected light in legume-grass swards and their total biomass and the 

proportion of legumes based on dry matter (DM). Two experiments were con-

ducted in a greenhouse under controlled conditions. Measurements were made 

with artificial sources of illumination to exclude interference from effects such as 

wind, passing clouds and changing angles of solar irradiation. Therefore, the re-

sults obtained are free from the kind of interference one could expect under field 

conditions. The controlled conditions allow the potential of field spectrometry for 

estimating dry biomass of legume-grass swards to be assessed. This initial inves-

tigation was essential to evaluate this technology for future application under field 

conditions. Eventually, this approach should enable the determination of biomass 

and the proportion of legumes in the field so that an objective decision can be 

made on the need to improve the sward by oversowing, together with an estimate 

of the amount of atmospheric nitrogen fixed by the legumes (Høgh-Jensen et al., 

2004). As the nitrogen partly accumulates in the soil and thus is available for the 

following crops, a more targeted management of these crops is possible by adjust-

ing fertilizer application, sowing rate and choice of crop and cultivar accordingly. 

 

The following questions were addressed in this study: 

i) What is the maximum spectral information needed to detect total bio-

mass of legume-grass swards based on the total reflectance in the visi-

ble and near infrared wavelength ranges. In addition, which wave-

lengths are most relevant for biomass prediction? 
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ii) Are the common vegetation indices, SR, NDVI, EVI and REP, based 

on signals at specific wavelengths appropriate indicators to determine 

total biomass of legume-grass swards? 

iii) Do reflection characteristics differ among legumes and grass and do 

they enable the proportion of legume in the sward to be detected? 

 

4.2 Material and Methods 

4.2.1 Experimental design 

Two pot experiments were carried out in a greenhouse during the year 2004/2005 

and 2005/2006 at the University of Kassel (51°20 N, 9°51 E), Germany. In addi-

tion to pure swards of red clover (Trifolium pratense L.), white clover (Trifolium 

repens L.) and lucerne (Medicago sativa L.) they were each combined to form 

binary mixtures: in the first experiment with perennial ryegrass (Lolium perenne 

L.) and in the second experiment with annual ryegrass (Lolium multiflorum Lam. 

ssp. alternativum) (Table 4. 1). To compare swards at different stages of growth, 

the sowing of seeds was repeated four times at intervals of two weeks (first ex-

periment used only the binary mixtures) and they were all harvested on the same 

date. The sowing was done manually with a distance between the rows of 12 cm 

and at a sowing depth of 0.5 cm. The pots were filled with homogenized loamy 

soil (3.6% sand, 73% silt, 23.4% clay and 2% humus). Soil analysis indicated op-

timum levels of phosphorus, magnesium and potassium and a pH-value of 6.7. No 

fertilizers were applied. 

4.2.2 First experiment 

Eight experimental swards, including four replicates, were sown on 08.11.2004 

(Table 4. 1). To determine the effects of growth stage, the sowing of binary mix-

tures was repeated four times at intervals of two weeks and the pots were har-

vested on a single day (13.01.2005), which was 21, 35, 49 and 63 days after sow-

ing. The swards were grown in wooden pots of 0.119 m × 0.119 m × 0.2 m. The 

minimum temperature at night was 10 C° and 18 C° at day. All swards were illu-

minated for 12 h per day by artificial light. 
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Table 4. 1: Species, cultivars and seed rates used in experiments 1 and 2. 

Treatment Cultivar Seed rate legume/grass; kg ha-1 
Experiment 1       
Perennial ryegrass (PG)  Liflora 0/20     
Red clover/PG Tamara 2/20 8/20 8/0   
White clover/PG Klondyke 4/20  4/0   
Lucerne/PG Daisy 16/20  16/0   
Experiment 2       
Annual ryegrass (AG) Liflora 0/20     
Red clover/AG Pirat 2/20 4/20 6/20 8/20 8/0 
White clover/AG Klondyke 1/20 2/20 3/20 4/20 4/0 
Lucerne/AG Daisy 4/20 8/20 12/20 16/20 16/0 

PG: perennial ryegrass; AG: annual ryegrass. 
 

4.2.3 Second experiment 

Sixteen experimental swards were investigated with three replicates and four dif-

ferent growth stages. There were four pure swards and twelve different binary 

legume-grass mixtures which were sown on 03.11.2005 (Table 4. 1). The sowing 

of all treatments was repeated four times at intervals of two weeks so that in total 

192 swards were examined. An early cut was done for each seeding interval after 

9 weeks to reduce the proportion of weeds. The swards were harvested on a single 

day on 15.03.2006, so that the growth period between the two cuts was for 28, 42, 

56 and 70 days. The treatments were grown in wood pots, with dimensions of 

0.16 m × 0.16 m × 0.2 m.  

4.2.4 Spectral data collection  

One day before harvest all swards were measured with a field spectrometer in a 

dark room using a quartz tungsten halogen lamp (JCV 14.5V – 50W C) to illumi-

nate the swards. The FieldSpec® Pro JR (Analytical Spectral Devices, CO, USA) 

field spectrometer measured light energy reflected from swards in the range 350 

to 2500 nm. Three detectors were used to measure this range. One measured the 

visible to near infrared portion of the spectrum from 350 nm to 1000 nm with a 

spectral resolution of 3 nm, and two others measured the short-wave infrared re-

flectance from 1000 nm to 2500 nm with a spectral resolution of 30 nm. The spec-

tral reflectance was then interpolated by the analytical spectral devices (ASD) 

software RS3
TM to produce readings at an interval of 1 nm. The field of view 
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(FOV) was 25° for the sensor optic. To measure reflectance of the incident light 

on the swards the sensor was stabilized on a tripod at a height of 0.7 m for the first 

experiment and at 0.8 m for the second one. Spectral calibrations were done after 

every 6th measurement using a 99% Spectralon panel (Labsphere, Inc., North Sut-

ton, NH, USA). The spectrometer automatically calculated percentage plant re-

flectance by dividing plant sample reflectance by reflectance of the white standard 

panel. The dark current, generated by thermal electrons within the spectrometer, 

was subtracted automatically from the radiometric signal at each calibration ses-

sion. Each radiometric data point represented a mean of 4 measurements consist-

ing of 10 replicated scans for each. In both experiments the total above-ground 

biomass was harvested shortly after the spectral measurements were made, and for 

each sward the yield was separated into fractions of grasses, legumes and weeds. 

After separation the samples were dried at 65 °C for 48 h. 

4.2.5 Analysis of spectral data 

Prior to spectral analysis, the spectra were smoothed using eleven convoluting 

integers and a polynomial of degree five (Savitzky-Golay, 1964; Erasmi and Do-

bers, 2004). Wavelengths from 350 to 399 nm and from 2401 to 2500 nm, respec-

tively, were excluded from the calculations, as instrument noise in these regions 

resulted in coefficients of variance greater than 0.1 for the four averaged meas-

urements (Erasmi and Dobers, 2004). Finally, three types of spectral analysis were 

used to estimate total sward yields: 

i) Modified partial least squares (MPLS) regression. This method is used to re-

duce the large number of measured collinear spectral variables to a few uncorre-

lated latent variables or factors (Cho et al., 2007). As in multiple regression, the 

main purpose of MPLS is to build a linear model: 

exbxbxby nn ++++= ......2211      (4.1) 

where y refers to the response variable (total biomass in this study), x is the pre-

dictor variable (here the spectral wavelengths reduced to independent factors), b 

indicates the regression coefficients and e are the residuals (Geladi and Kowalski, 

1986). Development of the MPLS equation involved smoothing and calculating 
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the first-order derivative of the spectra over a distance of 4 nm. Spectral data from 

the first and second experiments were divided into six and four groups, respec-

tively, for cross validation. This procedure was used for calibration, which avoids 

the need for separate validation and calibration sets (Terhoeven-Urselmans et al., 

2006). Outliers were removed from each local calibration by two passes through 

an elimination filter. Outliers were defined as samples with a spectrum outside the 

population spectra (H-outliers) or as those for which the difference between the 

reference and the predicted value was much larger than the standard error of cross 

validation (t-outliers). The limits were set to 10 (H-outliers) and 2.5 (t-outliers) as 

suggested by Tillmann (2000), resulting in 2 and 9 t-outliers in experiments 1 and 

2, respectively, and 8 t-outliers for the combined data.  

ii) Stepwise multiple linear regression (SMLR) was performed to select those 

wavelengths that are most strongly correlated with the reference values and to 

develop an equation with fewer variables compared to the MPLS. The addition of 

wavelengths to the equation was continued until the F value fell below 7 (WinISI 

III Manual, 2005). 

iii) Finally, common vegetation indices were calculated from the spectral data, 

simple ratio (SR), normalized difference vegetation index (NDVI), enhanced 

vegetation index (EVI) and red edge position (REP), using the following equa-

tions: 
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where R is reflectance value; NIR the range of reflectance from 800 to 900 nm; 

Red the range of reflectance from 650 to 700 nm; Blue the range of reflectance 

from 450 to 500 nm; L the canopy background adjustment that addresses nonlin-

ear, differential NIR and red radiant transfer through a canopy (here L=1); C1 and 

C2 the coefficients of the aerosol resistance term, which uses the blue light to cor-

rect for aerosol influences in the red band (here C1 = 6, C2 = 7.5); G the gain fac-

tor to limit the EVI value to the -1 to +1 range (here G = 2.5; Huete et al., 2002). 

Regression analysis was used to estimate the relation between the VIs and total 

biomass and species proportion using the GLM and NLIN procedures of SAS 9.1 

(SAS Institute, 2002-2003). The MPLS and SMLR analyses were performed us-

ing WinISI III (Infrasoft International, LLC. FOSS) software package. 

 

4.3 Results  

4.3.1 Experiment 1 

All swards examined at the time of harvest were at the stage of early stem elonga-

tion. Swards grown for 63 days after sowing had an almost closed canopy with, on 

average, 4% of the area with soil exposed (BBCH stage 29 for grass and BBCH 

stage 22 for legumes; Meier, 2001). The 49 day old swards were at the beginning 

of row closure (BBCH 25 for grass and BBCH 19 for legumes) and there was 

more bare soil (approximately 13%). The 35 and 21 day old swards had a large 

proportion of visible soil; approximately 50% and 84%, respectively. While the 

grass of the 35 day old swards had begun to tiller (BBCH 19/20) and the legumes 

developed their third or fourth leaf (BBCH 13/14), the grass and legumes of the 

youngest swards were still developing their first leaves (BBCH 12/13 and BBCH 

10, respectively). 

The proportion of legumes varied from 80% in the pure swards to 6% in the mix-

tures. By contrast, the proportion of grass was always greater; it gave a yield of 

86% in the pure swards reducing to 22% in the mixtures (Table 4. 2).  

As swards were investigated at different stages of development, total biomass 

varied from 2.1 g m-2 in the youngest swards to 170.9 g m-2 in the oldest swards  
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(Table 4. 2). Differences in total biomass were caused mainly by the legumes, as 

the grass yield did not differ greatly among treatments.  

The reflectance values from the spectral measurements show a characteristic pat-

tern for herbaceous plant canopies, with high absorption in the visible light and 

short-wave infrared radiation and large reflectances in the near infrared. Pure 

swards have very different NIR reflectances, but the differences are minor for the 

visible light (Figure 4. 1A). Although total biomass of the 63 day old pure red and 

white clover swards is almost similar, their NIR reflectances are very different. By 

comparison to sward canopies, bare soil shows a distinct spectral signature with 

low reflection in the NIR (Figure 4. 1B). As the youngest swards had very small 

biomass, their spectral signature resembles closely that of bare soil. With advanc-

ing age, signals of bare soil wane and NIR reflectance intensifies.  
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Figure 4. 1: Spectral signatures of: (A) pure swards at an age of 63 days and of (B) white clover-
grass mixtures at different sward age (21, 35, 49 and 63 days after sowing) and of bare soil in 
experiment 1. 

 

The MPLS regression predicts total biomass with a coefficient of determination 

(R²) of 0.99 and a standard error of calibration (SEC) of 6.1 g dry biomass m-2 

(Figure 4. 2, Table 4. 3). In the cross validation, the coefficient of determination 

(1-VR) is 0.95 and the standard error (SECV) is 12.0. Two outliers were elimi-

nated, which were pure grass samples. Legume-specific calibrations result in im-
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proved accuracies of prediction for all mixtures (Table 4. 3). Generally, the re-

gression equations for MPLS estimates are close to the y=x line. The equation 

derived from SMLR comprises five wavelengths representing blue (403 nm), red 

(747 nm) and near infrared (938, 993, 929 nm) regions of the measured spectral 

range (Table 4. 4). The resulting model gives an R² of 0.97 and an SEC of 10.1 g 

DM m-2 (Table 4. 3).  
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Figure 4. 2: Relationship of the common data set between MPLS-predicted and measured total 
biomass (g DM m-2) of swards in: (A) experiment 1 and (B) experiment 2 (for regression statistics 
see Table 4. 3).  

 

The VIs are positively correlated with the total biomass of swards (Figure 4. 3, 

Table 4. 5). Based on all VIs, the coefficients of determination for the common 

calibrations of all 80 swards are somewhat less (0.87 to 0.90) than the legume-

specific calibrations (0.90 to 0.98). However, an almost vertical slope of the ex-

ponential curves in the case of NDVI and REP at high levels of total biomass pre-

vents an accurate estimation of yields. By contrast, the linear or almost linear rela-

tion between total biomass and SR and EVI, respectively, facilitates the prediction 

across the whole range of biomass. Separate calibrations for mixtures with the 

same legume species improve the accuracy of the model; the standard errors (SE) 

for REP are particularly small (5.9 to 12.7 g m-2). Compared to the common cali-

bration, calibrations including only mixed swards reduce the SE to 14.2 g m-2, 
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averaged over all VIs. By contrast, calibrations based on the pure swards gener-

ally fail, except for lucerne, but here the sample size is small with n=4. The diffi-

culties with pure swards are also evident from the large partial standard errors 

(PSE) from the application of the common calibration to each plant species sepa-

rately. Values for pure swards are mainly larger than for mixtures, which is par-

ticularly so for pure grass with 58.7 (EVI) to 92.8 g m-2 (REP). It is remarkable 

that for all VIs total biomass of pure grass swards is underestimated (Figure 4. 3). 

 

Table 4. 3: Relationship between total biomass (g DM m-2) and MPLS and SMLR predictions in 
experiments 1 and 2 and in the combined dataset.  

Analysis Treatment N SEC R² SECV 1-VR Model 
Experiment 1      
MPLS Common 78 6.1 0.99 12.0 0.95 Y=2+x 
 RG 29 4.1 0.99 8.9 0.96 Y=1.7+0.96x 
 WG 16 1.1 0.99 6.8 0.98 Y=0.6+0.99x 
 LG 15 1.5 0.99 9.9 0.96 Y=1.1+0.98x 
SMLR Common 80 10.1 0.97  * *  Y=2.3+0.97x 
Experiment 2       

MPLS Common 179 12.2 0.93 19.3 0.82 Y=3.7+0.96x 

 RG 48 4.3 0.99 21.9 0.76 Y=(-1.8)+x 

 WG 46 7.0 0.97 28.0 0.59 Y=(-5.2)+1.1x 

 LG 45 14.8 0.88 24.6 0.68 Y=9.3+0.91x 

SMLR Common 188 19.0 0.85 * * Y=17.2+0.84 

Combined dataset       

MPLS Common 256 13.0 0.94 19.7 0.85 Y=3.3+0.96x 

SMLR Common 268 22.5 0.83  * *  Y=16.3+0.83x 

MPLS: modified partial least square regression; SMLR: stepwise multiple linear regression; RG: 
red clover-grass; WG: white clover-grass; LG: Lucerne-grass; N: number of observations; SEC: 
standard error of calibration; R²: coefficient of determination; SECV: standard error of cross vali-
dation; 1-VR: coefficient of determination of cross validation; DM: dry matter; *: not available. 
 

As legume and grass proportions are predicted with similar accuracy by the VIs, 

only results for EVI are given (Table 4. 6, Figure 4. 4). Apart from the 49 day old 

swards, there are significant linear relationships between EVI and the proportion 

of grass and legumes. An increase in legume content and a decrease in grass con-

tent generally correspond with an increase in EVI (Figure 4. 4). However, these 

relations are found only if regression analysis is done separately for the different 

levels of sward age. The fact, that similar proportions of grass or legumes at dif-
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ferent sward ages are connected with very different EVI values, indicates that 

biomass affects the relationship between spectral signature and species proportion 

in swards. 

4.3.2 Experiment 2 

Compared to the swards of experiment 1, phenology of the grass varied much 

more (from tillering, BBCH 25, to start of flowering, BBCH 61), depending on 

the length of time of growth after the initial clearing cut to reduce weeds. By con-

trast, legumes were less developed and remained in the early stages of stem elon-

gation (BBCH 21 to BBCH 31) for all treatments. Proportions of legumes in the 

mixtures were small with a maximum value of 45%; the grass dominated with 

proportions up to 99% (Table 4. 2). Weed proportions in the mixtures were small 

and in the pure grass swards they were <7%, but they increased to 62% in pure 

legume swards. Total biomass varied from 25 to 296 g m-2. Pure legume swards at 

advanced stages of growth had almost closed canopies with little soil exposed 

(<5%, as estimated from digital photographs). By contrast, swards containing rye-

grass still had areas of visible soil, even if the biomass yield was large. Grass till-

ers had considerable proportions of necrotic leaves in the oldest swards.  

 

Table 4. 4: Wavelengths (nm) selected by SMLR analysis to predict the total biomass (g DM m-2) 
of swards in experiments 1 and 2 and in the combined dataset. 

Experiment 1  Experiment 2 Combined experiments 
W (nm) F Coeff.  W (nm) F Coeff. W (nm) F Coeff. 

403 54.2 -2504.3  476 62.7 -18035.6 1144 88.7 10320.4
747 16.0 -2126.7  513 46.0 22431.9 1216 24.0 -15652.8
929 44.4 -13527.3  526 22.2 -8373.5 1226 25.6 -18527.9
938 19.5 20260.2  948 133.3 -24216.9 1276 7.7 10093.4
993 57.4 -4466.3  978 174.4 31640.6 1284 10.0 10354.9

Intercept      24.9  1006 7.8 5919.9 1389 107.7 10769.8
   1116 22.7 6864.9 1782 113.8 -13184.7
   1179 305.6 -23504.1 1850 29.5 8056.2
   1867 133.1 11632.7 2304 11.9 -2242.7
   2291 29.7 -5130.6 Intercept       94.0
   2389 12.2 -2491.5  

       Intercept       50.3      
SMLR: stepwise multiple linear regression; W: wavelength; F: F-value; Coeff.: Coefficient; DM. 
dry matter. 
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Compared to the first experiment, the results of the MPLS analysis of the second 

experiment for calibration and cross validation are slightly poorer (Table 4. 3, 

Figure 4. 2). Samples identified as outliers in the calibration are pure grass swards 

as in experiment 1 or they have a total biomass > 164 g m-2. Legume-specific 

calibrations improve the accuracy of prediction of MPLS for swards of red and 

white clover-grass mixtures. However, the standard error of cross validation is 

larger for all legume-specific calibrations compared to the common calibration. 

As for experiment 1, the plots of the fit for MPLS models result in slopes close to 

1 and intercepts close to 0 (Table 4. 3). 
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Figure 4. 3: Relationship between total biomass (g DM m-2) and vegetation index: (A) simple ratio 
(SR), (B) normalized difference vegetation index (NDVI), (C) enhanced vegetation index (EVI) 
and (D) red edge position (REP) in experiment 1 (statistics of common regressions see Table 4. 5). 

 

 



                                                                                                                    Chapter 4 

 28

Table 4. 5: Relationship between total biomass (g DM m-2) and vegetation index (VI) in experi-
ment 1.  

VI Treatment N Regression model R² SE PSE 
SR Common 80 y = 8.1 x - 14.6 0.89 20.0  
 Grass (G) 4 n.s.  81.7 
 Red clover (R) 4 n.s.  23.2 
 White clover (W) 4 n.s.  24.0 
 Lucerne (L) 4 y = 5.7 x + 28.9 0.94 3.9 7.2 
 RG 32 y = 8.7 x - 17.2 0.91 17.2 17.8 
 WG 16 y = 7.4 x - 14.3 0.95 10.2 13.1 
 LG 16 y = 8.2 x - 19.4 0.90 15.0 15.9 
 Mix 64 y = 8.2 x - 17.2 0.91 15.5 15.8 
NDVI Common 80 y = 1.4 + 0.4 e0.3x 0.90 19.4  
 G 4 n.s.  64.0 
 R 4 n.s.  22.3 
 W 4 n.s.  21.2 
 L 4 y = 1.6 e0.9x 0.93 4.1 4.4 
 RG 32 y= 8.2 + 0.003 e12.1x 0.91 16.6 18.1 
 WG 16 y= 4.1 + 0.04 e8.9x 0.90 13.9 14.5 
 LG 16 y= 10.3 + 0.0003 e14.9x 0.94 12.1 15.6 
 Mix 64 y=  9.1 + 0.0009 e13.5x 0.92 14.7 16.5 
REP Common 80 y= 0.9 e0.2(x-700) 0.87 20.0  
 G 4 n.s.  92.8 
 R 4 n.s.  23.2 
 W 4 n.s.  16.5 
 L 4 y= 2.5 e0.2(x-700) 0.97 2.5 21.8 
 RG 32 y= 0.5 e0.3(x-700) 0.95 12.7 14.0 
 WG 16 y= 0.1 e0.4(x-700) 0.98 5.9 12.2 
 LG 16 y= 0.1 e0.4(x-700) 0.95 10.9 16.0 
 Mix 64 y= 0.2 e0.3(x-700) 0.95 11.8 13.6 
EVI Common 80 y= 2.1 - 17.3 x + 294.7 x² 0.90 18.5  
 G 4 n.s.  58.7 
 R 4 n.s.  13.7 
 W 4 n.s.  36.6 
 L 4 n.s.  13.7 
 RG 32 y= 15.2 - 133.1 x + 477.6 x² 0.93 15.0 17.9 
 WG 16 y= 13.4 - 100.6 x + 370.6 x² 0.97 8.0 13.5 
 LG 16 y= 24.8 - 183.1 x + 506.9 x² 0.90 16.0 18.0 
 Mix 64 y= 16.9 - 137.4 x + 457.5 x² 0.92 14.7 16.2 

y: total biomass (g DM m-2); x: vegetation index (SR: simple ratio; NDVI: normalized difference 
vegetation index, EVI: enhanced vegetation index; REP: red edge position); N: number of obser-
vations; R²: coefficient of determination; n.s.: not significant; SE: standard error; PSE: SE of 
treatment, when the common equation was applied; mix: mixtures without pure swards; DM: dry 
matter. 
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The accuracy of SMLR is slightly less than for MLPS (Table 4. 3). The number of 

wavelengths selected is more than in the first experiment, and only bands 948, 

978 and 1006 nm cover similar regions of the spectrum. Additional wavelengths 

at 479, 513 and 526, 1179, 1867, 2291 and 2389 nm were selected in the second 

experiment; these cover almost the whole range of the measured spectra (Table 4. 

4).  

Contrary to the first experiment, regression analysis between VIs and dry biomass 

reveal only weak relationships across all treatments (R² < 0.2; data not shown). 

No relationships were identified for the VIs and the legume and grass proportion 

of dry biomass in the swards. In addition, MPLS and SMLR analyses were done 

with the combined data from both experiments. The results are comparable to 

those of experiment 2 showing a slightly larger SEC (Table 4. 3 and 4. 4). 
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Figure 4. 4: Relationship between grass and legume proportion (% of DM) and enhanced vegeta-
tion index (EVI) at different sward ages (21, 35, 49 and 63 days after sowing) in experiment 1 (for 
regression statistics see Table 4. 6). 
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Table 4. 6: Relationship between proportion of legumes and grass (% of DM) and enhanced vege-
tation index (EVI) at different sward age in experiment 1.  

DM yield (%) Sward age N Regression model R² SE 
Legumes 21 16 y = -65.42 + 747.33 x 0.75 7.4 
 35 16 y = -28.98 + 226.13 x 0.56 7.4 
 49 16 y = -17.47 + 74.49 x 0.37 6.5 
 63 32 y = -124.02 + 242.42 x 0.68 13.0 
Grass 21 16 y = 154.4 - 702.97 x 0.75 7.0 
 35 16 y = 105.5 - 171.19 x 0.46 6.9 
 49 16   n.s.  
 63 32 y = 264.26 - 343.4 x 0.72 16.9 

R²: coefficient of determination; SE: standard error; n.s.: not significant; DM: dry matter 

 

4.4 Discussion 
The major objective of the present investigation was to examine the relationship 

between spectral signatures of legume-grass swards and total biomass across a 

wide range of legume species, legume proportions and sward age. In both experi-

ments, MPLS analysis achieved the greatest accuracy in predicting total biomass. 

For the second experiment with more open and mature swards, use of the full 

range of hyperspectral data resulted in more accurate predictions. This degree of 

accuracy could not be obtained with VIs, as has been shown in other studies (Cho 

et al., 2007; Ye et al., 2007). In experiment 1 the plants were still in the vegetative 

growth stage, whereas in experiment 2 they had generally reached mature growth 

stages. Moreover, the oldest swards of the second experiment had considerable 

amounts of dry leaves. Reflectances from swards with larger proportions of grass 

were also affected by larger areas of visible soil as the grass tiller density was low 

in the second experiment. Spectral reflectance characteristics change with plant 

maturation as the fraction of dry biomass increases and the proportion of cell wall 

material augments in relation to cell contents (Frame, 1992; pp. 146-149). Loss of 

pigmentation increases visible reflectance, particularly in the red region of the 

spectrum (Hoffer, 1987). Therefore, with a decline of leaf to stem ratio and plant 

pigmentation the estimation of total biomass by NDVI (Gamon et al., 1995; Todd 

et al., 1998) and SR (Starks et al., 2006b) is constrained. This fact illustrates 

clearly the limits of applying VIs at mature growth stages. However, the problem 

of varying reflectance characteristics with plant maturation does not necessarily 
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complicate biomass detection in practise. In legume-based forage production sys-

tems, swards are usually cut when the grass is at early head emergence. At this 

growth stage the leaf to stem ratio is still high and the appearance of dead or dry 

plant material is marginal (Frame, 1992; p. 234). Thus, with sward ages and struc-

tures comparable to the conditions in experiment 1 there is scope to obtain useful 

information with a reduced range of spectral data, as expressed in the VIs.  

In relation to the present costs of hyperspectral sensors, it might be preferable to 

obtain data with only small spectral ranges at the field scale at present. To reduce 

hyperspectral data to a smaller number of wavelengths and to identify regions of 

the spectrum that are most important for biomass prediction, we applied SMLR 

analysis. In the first experiment only three bands were identified; they were in the 

spectral range partly used to calculate the VIs. The good performance of VIs in 

the first experiment probably results from the strong correlation between those 

wavelengths and total biomass. Biomass prediction in the second experiment, 

however, needed many more bands, as the selected wavelengths were scattered 

over the whole spectrum. This result supports the fact that VIs have poor accuracy 

in the prediction of biomass. This suggests that the spectral ranges used for calcu-

lating VIs need to be extended with further wavelengths for the sward architec-

tures of the second experiment. 

Plant species showed marked differences in canopy structure and reflectance 

properties, which might result in different VI values at the same level of leaf area 

index. White clover leaves, for example, are usually arranged in a horizontal plane 

within the plant canopy, whereas grass leaves are more vertically orientated. In 

the NIR wavelengths broad-leaved crops always result in larger reflectance values 

than cereal crops, whereas in the red region they show a similar trend in reflec-

tance (Huete et al., 1997). As the VIs are based on the ratio of NIR and red light, 

this inevitably leads to larger index values for broad-leaved plants than for cereal 

crops. This was verified in our study, as legumes always resulted in larger values 

of the VIs than grass. The results of the present study suggest that the differences 

in reflectance characteristics only enable the prediction of proportions of grass 

and legumes when the total biomass of the sward remains constant. With varying 

levels of biomass, the effect of biomass on the reflectances is superimposed on the 
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relationship between spectral signature and species proportion in the swards. 

Since biomass affected the reflectances much more strongly than leaf shape and 

leaf orientation it must be concluded that, for a non-destructive assessment of leg-

ume proportion in mixed swards, more appropriate methods, e.g. linear spectral 

unmixing (Mewes et al., 2008) or other sensors are necessary. Himstedt et al. 

(2006) showed that digital image analysis gave the most promising results over a 

wide range of sward age with the same experimental swards. Consequently, with a 

combination of field spectroscopy and digital image analyses the indirect assess-

ment of legume yield in legume-grass mixtures as a major predictor for atmos-

pheric nitrogen fixation (Høgh-Jensen et al., 2004) might be possible.  

4.5 Conclusion 
The following conclusions can be drawn from two greenhouse experiments with 

pure stands and binary mixtures of different forage legumes and grasses: 

i) The MPLS analysis for total biomass resulted in the smallest standard 

errors of 6 and 12 g m-2 in experiments 1 and 2, respectively. The hy-

perspectral approach, in particular, improved accuracy when the spec-

tral signals were confounded as a consequence of advanced maturity of 

the crop and/or enhanced signals from bare soil. The wavelengths se-

lected by SMLR analysis were different for the two experiments. 

Swards with large leaf to stem ratios (experiment 1) resulted in similar 

wavelengths to those in the spectral range of VIs, whereas wavelengths 

of swards with small leaf to stem ratios, indicating an increased sward 

maturity (experiment 2) were scattered over the whole spectrum.  

ii) Total biomass in experiment 1 was well predicted by the vegetation 

indices; EVI proved to be the most appropriate one with the smallest 

standard errors and good accuracy even at higher biomass levels. Ac-

curacy of prediction was improved further by legume-specific calibra-

tions. Weak relationships only were identified for swards in experi-

ment 2. 
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iii) The prediction of legume proportion by field spectroscopy is difficult 

as the species-specific signals are confounded by the effects of bio-

mass. 

The results of this study suggest that biomass can be determined from field spec-

tral measurements. Nevertheless, these results were obtained under controlled 

conditions in a greenhouse. Further research is necessary to prove the potential of 

the technique at the field scale where signatures might be masked by variable light 

conditions. 
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5 Determination of dry matter yield from legume-grass 

swards by field spectroscopy  

 

Abstract    An efficient and accurate detection of dry matter (DM) yield of leg-

ume-grass mixtures can facilitate a targeted and site-specific management of leg-

ume-based swards. The major objective of this study was to examine the relation-

ship between spectral signatures of legume-grass swards and DM yield across a 

wide range of legume species (white clover, red clover, lucerne, birdsfoot trefoil), 

legume proportion (0 to 100% of DM) and growth stage (beginning of tillering to 

end of flowering). Modified partial least squares (MPLS) regression, stepwise 

multiple linear regression (SMLR) and the vegetation indices (VIs) simple ratio 

(SR), normalized difference vegetation index (NDVI), enhanced vegetation index 

(EVI) and red edge position (REP) were used for analysis of the hyperspectral 

data set (350-2500 nm). Compared to common calibrations, legume-specific mod-

els achieved better results, indicating that each legume species had its own spec-

tral characteristics. MPLS and SMLR gave best R² values ranging in cross valida-

tion from 0.74 to 0.92 with a standard error below 92 g DM m-2. The DM yield 

prediction by VIs resulted in unsatisfactory accuracies. Prediction accuracy for 

MPLS and SMLR models were still acceptable even with a reduced spectral data 

set (630 to 1000 nm), a finding which could facilitate an application of field spec-

troscopy in practice. 

 

Keywords: Field spectroscopy • Legume-grass • Modified partial least squares 

(MPLS) regression • Stepwise multiple linear regression (SMLR) • Vegetation 

indices. 
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5.1 Introduction 
The ability to fix atmospheric nitrogen is one of the main advantages of legumes 

as components of swards for forage production (Boller and Nösberger, 1987). In 

organic agriculture especially, which is usually nitrogen-limited (Watson et al., 

2002), legume-grass mixtures are an essential contributor to the nitrogen supply in 

crop rotations. Legume-grass swards are known for their high spatial and temporal 

variability, due to disturbances such as cutting, frost, drought damage and lack of 

nutrients. As a result, the functional and structural ground cover patterns become 

irregular and gaps in the canopy can occur. A site specific determination of dry 

matter (DM) yield in the field would aid in detecting and quantifying this hetero-

geneity and optimize field management. Various non destructive approaches have 

been investigated to determine biomass of different grassland types based on 

measuring the reflected light from their canopies. Satellite-derived vegetation in-

dices (VIs) have been widely used to estimate grassland biomass (Boschetti et al., 

2007; Numata et al., 2007; Todd et al., 1998). However, VIs are highly site and 

sensor specific (Huang et al., 2004) and based on infrared to red ratios, saturate 

around a leaf area index of about 2.0-2.5 (Heege et al., 2008) which limit their 

applicability at higher biomass levels.  

Other techniques widely used in laboratory spectroscopy are the analysis of spec-

tral data with partial least square regression (PLS) (Cho et al., 2007; Gianelle and 

Guastella, 2007) and stepwise multiple linear regression (SMLR) (Huang et al., 

2004; Thenkabail et al., 2000). The advantage of PLS is the inclusion of the whole 

hyperspectral data range into the analysis, resulting in lower losses of spectral 

information (Haaland and Thomas, 1988; Nguyen et al., 2006). However, few 

studies have explored the potential of PLS for estimating vegetation parameters 

using field or satellite data (Cho et al., 2007; Schmidtlein and Sassin, 2004; 

Huang et al., 2004). The great potential of PLS, offering the use of the whole hy-

perspectral range, still remains to be examined for the estimation of DM yield 

from legume-grass swards.  

Nevertheless, for practical implementation at the field scale, hyperspectral meas-

urements are very expensive and therefore the use of a small range of the whole 

spectrum is desirable. Stepwise multiple linear regression (SMLR) using a defined 
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range of the whole spectrum has been applied in estimating plant biochemical 

composition and biomass by identifying wavebands related to the constituent of 

interest (Curran et al., 1992; Nguyen et al., 2006; Park et al., 1997). The SMLR 

method suffers from the potential of overfitting and the selection of bands that fail 

to correspond with known absorption bands (Curran et al., 1992; Grossman et al., 

1996). Nevertheless, recent research has demonstrated that optimal information to 

quantify characteristics of different plant species is present in a few specific 

wavebands (Blackburn et al., 1999; Starks et al., 2008; Thenkabail et al., 2004), 

where particularly those of the red edge region proved to be important for the es-

timation of biomass (Cho et al., 2007; Gianelle and Guastella, 2007; Hansen and 

Schjoerring 2003).  

 

We conducted a two-year study to determine relationships between canopy reflec-

tance and DM yield of different legume-grass swards. The specific objectives 

were:  

i) to determine if the vegetation indices, simple ratio, normalized differ-

ence vegetation index, enhanced vegetation index and red edge posi-

tion, based on signals at specific wavelengths are appropriate indica-

tors to determine DM yield of legume-grass swards. 

ii) to develop reflectance algorithms for the prediction of DM yield based 

on the total reflectance in the visible and near infrared wavelength 

ranges using modified partial least square regression and stepwise mul-

tiple linear regression. 

iii) to reduce the hyperspectral data range for DM yield prediction to a few 

informative bands in order to improve the practical applicability. 
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5.2 Material and methods 

5.2.1 Experimental design and plant sampling 

The field experiment was conducted during 2005 and 2006 on the organic ex-

perimental farm Neu Eichenberg of the University of Kassel (5123'N, 954'E, 227 

m a.s.l.). In addition to pure swards of red clover (Trifolium pratense L.), white 

clover (Trifolium repens L.), lucerne (Medicago sativa L.) and birdsfoot trefoil 

(Lotus corniculatus L.), binary mixtures of each legume with perennial ryegrass 

(Lolium perenne L.) were tested (Table 5. 1). Pure grass swards were fertilized 

with five N treatments: 0, 40, 80, 120, 160 kg N ha-1 to induce additional growth 

variation in the first year. The nitrogen was supplied as granulated calcium am-

monium nitrate on 28 July 2005. The soil was a sandy loam with 3.6% sand, 73% 

silt, 23.4% clay and 2% humus. Soil analysis indicated optimum levels of phos-

phorus, magnesium and potassium and a pH of 6.4. During the two-year experi-

ment the average rainfall was 550 mm and the average temperature 9.9 C. 

 

Table 5. 1: Species, cultivars and seed rates used in the field experiment. 

Treatment Cultivar Seed rate: legume/grass; kg ha-1 
Perennial ryegrass (G) Fennema 0/25   
White clover/G Klondike 4/ 0 4/ 15 
Red clover/G Pirat 8/ 0 8/ 15 
Lucerne/G Ameristand 16/ 0 16/ 15 
Birdsfoot trefoil/G Rocco 8/ 0 8/ 15 

 

The experimental treatments were established in four replicates on 2 June 2005. 

After a first clearing cut to reduce the growth of weeds on 26 July 2005, the first 

harvest period with a biweekly sampling interval lasted two months from 26 July 

to 5 October 2005. In 2006, spring, summer and autumn growth were sampled at 

weekly intervals to determine effects of growth stages and harvested on 12 June, 

25 July and 14 September, respectively. To define plant development the BBCH 

scale according to Meier (2001) was used. Growth stages are represented by two 

digits, i.e. germination (01-10), leaf development (11-20), formation of side 

shoots/tillering (21-30), stem elongation or rosette growth, (31-40), development 

of harvestable vegetative plant parts or vegetatively propagated organs/booting 

(41-50), inflorescence emergence/heading (51-60), flowering (61-70) and devel-
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opment of fruit (71-80). Due to frost damage, pure stands and mixtures of lucerne 

and birdsfoot trefoil were analysed in 2006 only at the harvest dates. Total bio-

mass was determined one day after spectral measurements by cutting herbage at a 

height of 5 cm above soil surface. Samples were dried at 65 C for 48 h. 

5.2.2 Spectral data collection  

Spectral measurements were conducted with a FieldSpec Pro JR (Analytical Spec-

tral Devices, CO, USA). This type of field spectrometer measures light energy 

reflected from swards in the range from 350 to 2500 nm with a spectral resolution 

of 3 nm (350-1000 nm) and 30 nm (1000-2500 nm). Measurements were then 

interpolated by the analytical spectral devices (ASD) software RS3
TM to produce 

readings at an interval of 1 nm. The sensor optic had a field of view of 25, which 

was stabilized on a tripod at a height of 1.07 m above soil. Where possible, read-

ings were taken on unclouded atmospheric conditions with stable lighting condi-

tions between 10:00 and 14:00 h Central European Time. Depending on light 

conditions spectral calibrations were carried out at least after every 6th measure-

ment using a Spectralon panel (Labsphere, Inc., North Sutton, NH, USA). Each 

radiometric data point represented four measurements consisting of 40 replicated 

scans.  

5.2.3 Analysis of spectral data 

Prior to spectral analysis, spectra were smoothed using eleven convoluting inte-

gers and a polynomial of degree five (Savitzky and Golay, 1964; Erasmi and Do-

bers, 2004). Subsequently, three types of spectral analysis were conducted to es-

timate DM yield (g m-2) of swards: 

i) Four common vegetation indices were calculated from the spectral dataset, sim-

ple ratio (SR), normalized difference vegetation index (NDVI), enhanced vegeta-

tion index (EVI) and red edge position (REP), using the following equations: 

 

RED

NIR

R
RSR =         (5.1) 
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REDNIR

REDNIR

RR
RR

NDVI
+
−

=       (5.2) 

LRCRCR
RRGEVI

BLUEREDNIR

REDNIR

+−+
−

=
**

*
21

   (5.3) 

700740
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780670
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RR
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RR

REP
−

−⎟
⎠
⎞

⎜
⎝
⎛ +

+=     (5.4) 

Where R is the reflectance value; NIR the range of reflectance from 760 to 900 

nm; Red the range of reflectance from 630 to 690 nm; Blue the range of reflec-

tance from 450 to 520 nm (NIR, red and blue were adapted to the bands widths of 

the Landsat Thematic Mapper); L the canopy background adjustment that ad-

dresses nonlinear, differential NIR and red radiant transfer through a canopy (here 

L=1); C1 and C2 the coefficients of the aerosol resistance term, which use the blue 

light to correct for aerosol influences in the red band (here C1 = 6, C2 = 7.5); and 

G the gain factor to limit the EVI value to the -1 to +1 range (here G = 2.5; Huete 

et al., 2002). 

Vegetation indices were subjected to regression analysis to estimate the DM yield 

via the GLM and NLIN procedures of SAS 9.1 (SAS Institute, 2002-2003).  

ii) Modified partial least square (MPLS) regression, which is a method used for 

data compression by reducing the large number of measured collinear spectral 

variables to a few non-correlated latent variables or factors (Cho et al., 2007). As 

in multiple regression, the main purpose of MPLS is to build a linear model: 

exbxbxby nn ++++= ......2211       (5.5) 

Where y refers to the response variable (DM yield in this study), x is the predictor 

variable (here the spectral wavelengths reduced to independent factors), b indi-

cates the regression coefficients and e the residuals (Geladi and Kowalski, 1986). 

The MPLS equations were developed with the WinISI III (Infrasoft International, 

LLC. FOSS, version 1.63) software package. Parameters in the mathematical 

processing were sought through trial and error to minimize the standard error of 

cross validation, giving best results with the mathematical treatment 1, 4, 4, 1, 
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which means 1: number of derivative of spectra, 4: extent of data points over 

which the derivative was to be calculated, 4: the smoothing of points, 1: second 

smoothing, almost never used and normally set as 1. Only every 4th wavelength 

was used for the calculation of MPLS in order to reduce the computing time.  

iii) Stepwise multiple linear regression (SMLR) was performed to select those 

wavelengths that are mostly correlated with the reference values and to build an 

equation with reduced variables compared to the MPLS. To avoid multicollinear-

ity only every 8th wavelength was used for analysis. The addition of wavelengths 

to the equation was continued until the F value fell below 7 (WinISI III Manual, 

2005).  

For MPLS and SMLR analysis reflectance values in three ranges (1351 to 1439 

nm, 1791 to 2019 and 2351 to 2500 nm) were omitted from analysis because of 

instrument noise or interaction with high atmospheric moisture absorption. Fur-

thermore, the calibration procedure divided the samples at least into four groups 

in order to perform a cross validation, followed by predictions for the values of 

one group based on the calibrations developed from the other groups. Finally, 

standard error of cross validation (SECV) was calculated from the average of sin-

gle SECVs. The number of outlier elimination passes was two for both MPLS and 

SMLR analysis. Outliers were defined as samples with a spectrum out of the aver-

age population spectra (H-outliers) or for which the difference between the refer-

ence and the predicted value was much larger than the standard error of cross 

validation (T-outliers). The limits were set to 10 (H-outliers) and 2.5 (T-outliers), 

respectively, as suggested by Tillmann (2000).  

  

5.3 Results 

5.3.1 Sward characteristics 

Swards were investigated at various growth stages ranging from tillering (BBCH 

23) to finishing of flowering (BBCH 67), DM yield varied from 5 to 1756 g m-2. 

Spring growth exhibited the highest yields (1756 g m-2), whereas summer (1008 g 

m-2) and autumn growth (191 and 185 g m-2 for the first and second year, respec- 
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tively) were lower in yield. In summer the growth of grass swards was affected by 

very dry weather (maximum 51 g m-2), whereas legume species, with their large 

root system, still achieved high yields, which were at maximum 462 and 1008 g 

DM m-2 for white clover and lucerne, respectively (Table 5. 2). 

Due to the late sowing date (02.06.2005) and three weeks of no rain after sowing, 

sward establishment was sub-optimal. As a result in the first year high amounts of 

bare soil and weeds (Chenopodium album L., Capsella bursa-pastoris L., Thlapsi 

arvense L., Matricaria perforate Merat., Lamium amplexicaule L., Convolvulus 

arvensis L., Sonchus asper L., Myosotis arvensis L., Cirsium arvense L., Stellaria 

media L., Brassica napus L.) occurred, which could not be eliminated by a clear-

ing cut. While the perennial ryegrass colonized the bare soil by tillering, the leg-

umes did not provide much ground cover until the end of the vegetation period. 

Thus, the average proportion of legumes was very low (7 % of DM) in the first 

year, whereas in 2006 it increased up to 50 % and 77 % of DM in the spring and 

summer growth, respectively (Table 5. 2). 

5.3.2 Vegetation Indices 

An initial step in the analysis was to investigate whether it was possible to deter-

mine the DM yield with the spectral indices SR, NDVI, EVI and REP. All models 

derived from the VIs showed poor prediction accuracy. In the common model, 

which included all treatments, the best calibration was obtained with the index 

REP, resulting in a coefficient of determination (R²) of 0.23 and a standard error 

(SE) of 215 g m-2 (Table 5. 3). However, in practise legume-grass mixtures usu-

ally include one legume species, which may develop to almost pure legume or 

pure ryegrass areas in parts of the field. Therefore legume-specific calibrations 

were developed, which included mixtures and pure swards of perennial ryegrass 

and of the respective legume species. The legume-specific calibration improved 

R² up to 0.44, but the SE still remained very high, ranging from 155 to 264 g m-2. 

The R² of models derived from pure swards of legumes and legume-grass mix-

tures further improved R² up to 0.83, whereas the SE (78-339 g m-2) could not be 

reduced (Table 5. 3). Lowest prediction accuracy was found for white clover-

grass mixtures, where no significant relationships were found. 
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Table 5. 4: Calibration statistics of the prediction of dry matter yield (g m-2) by modified partial 
least squares regression including sample number (N), mean and standard deviation (SD) of the 
calibration data.  

   Calibration Cross validation  
Treatment N   Mean SD SEC R²  SECV 1-VR RPD 
Common 434  240.2 180.7 71.7 0.84 88.4 0.76 2.0 
Mixtures including pure legume and grass   
White clover (W) 170  207.6 153.7 64.5 0.82 72.5 0.78 2.1 
Red clover (R)  171  256.3 217.5 74.7 0.88 89.3 0.83 2.4 
Lucerne (L) 102  222.1 228.4 56.9 0.94 76.9 0.89 3.0 
Birdsfoot trefoil (B)  102  202.6 190.2 50.9 0.93 64.0 0.89 3.0 
Pure swards only    
W  59  210.3 106.8 71.1 0.56 83.8 0.39 1.3 
R 56  323.0 251.5 107.9 0.82 125.7 0.76 2.0 
L 23  280.2 249.8 62.7 0.94 95.4 0.85 2.6 
B  23  267.2 240.0 50.3 0.96 63.4 0.93 3.8 
Grass (G) 118  201.8 161.2 41.7 0.93 62.7 0.85 2.6 
Mixtures only    
WG 58  254.0 188.0 65.7 0.88 89.3 0.78 2.1 
RG 59  317.5 240.5 79.3 0.89 109.5 0.80 2.2 
LG 24  341.2 307.6 61.1 0.96 132.9 0.81 2.3 

BG 22   208.3 161.3 29.7 0.97  68.1 0.83 2.4 
SEC: standard error of calibration; SECV: standard error of cross validation;  
1- VR: coefficient of determination of cross validation; RPD: ratio of standard deviation of the 
measured results to standard error of cross validation. 
 

5.3.3 Hyperspectral analysis of full spectral data 

The MPLS regression predicted DM yield of the common data set with a R² of 

0.84 and a standard error of calibration (SEC) of 72 g DM m-2. Results of cross 

validation showed a coefficient of determination of cross validation (1-VR) of 

0.76 and a standard error of cross validation (SECV) of 88 g m-2. The residual 

predictive value (RPD) was 2.0 (Table 5. 4), which represents the standard devia-

tion of the field data divided by the standard error of cross validation and provides 

a comparison of the performance of all calibrations irrespective of the units of the 

investigated parameters (Park et al., 1997). An RPD value greater than three is 

considered adequate for analytical purposes in most of the laboratory near infrared 

applications for agricultural products (Cozzolino et al., 2006). However, at field 

scale variable measurement conditions reduce prediction accuracy, so that some-

what lower RPD values may indicate good results. According to Therhoeven-

Urselmans et al. (2006) satisfactory prediction results are given in laboratory for  
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Figure 5. 1: Relationship between the MPLS-predicted and the measured dry matter yield for the 
common, pure grass and legume-specific calibrations (legume-specific calibrations are composed 
by binary legume-grass mixtures, pure legume and pure grass swards; for regression statistics see 
Table 5.4). 
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organic matter in soil and litter if 1.4 ≤ RPD ≤ 2.0 and good results, if RPD is 

higher than 2.0. In the calibration procedure 25 outliers were eliminated, which 

were mainly samples from mature swards (BBCH 55-76). Legume-specific cali-

brations resulted in an improved prediction accuracy for all models, especially for 

lucerne and birdsfoot trefoil (Figure 5. 1, Table 5. 4). Similar to the common 

model, samples in legume-specific calibrations were detected as ouliers if their 

DM yield exceeded either 900 g m-2 or was very low (6-7 g m-2).  

Calibrations for pure swards of white clover showed the least accuracy (R: 0.56; 

1-VR: 0.39); however, if white clover was combined with grass in the mixture, 

prediction accuracy improved (R: 0.88; 1-VR: 0.78). Good prediction results were 

found for all other species, both grown in pure swards as well as in mixtures (Ta-

ble 5. 4). Covariance analysis was used to assess the effect of growth period (au-

tumn growth in the year of sowing, spring, summer and autumn growth in the 

following year) on the prediction accuracy of legume-specific models (data not 

shown). Only for the pure grass a significant interaction between the growth pe-

riod and the predicted DM could be detected, which legitimises the inclusion of 

all periods within one legume-specific model. 

Prediction accuracy of SMLR calibrations was slightly lower than that of MPLS 

regression, (Table 5. 5). The common equation achieved a R² of 0.74 with a SEC 

of 93 g DM m-2. Cross validation achieved similar results with 1-VR of 0.74 and 

SECV of 94 g DM m-2. Similar to the MPLS models, legume-specific calibrations 

resulted in an improved prediction accuracy, irrespective of the legume species. In 

contrast to MPLS, the SMLR procedure detected fewer outliers, usually among 

the group of mature swards, and wavebands selected were scattered over the 

whole spectrum and differed widely among the legume species. Remarkably, 

SMLR of pure legume swards resulted in a maximum of 5 significant wavebands, 

whereas for pure grass swards 9 wavebands were included. Across legume spe-

cies, the number of significant wavebands in the models parallels the proportion 

of grass in the sward, with a maximum of 5 wavebands for pure legume swards 

and 9 wavebands for pure grass swards, legume-grass mixtures being intermittent. 

Generally, the red (620-750 nm) and short wave near infrared (750-1100 nm)  
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wavebands had the highest F-values, indicating their importance for DM yield 

prediction. 

5.3.4 Hyperspectral analysis of reduced spectral data 

Due to the importance of red and short wave near infrared wavebands in DM yield 

detection as indicated by SMLR, the hyperspectral data were reduced to a range of 

620 to 1000 nm with a resolution of 10 nm. This range is adapted to the Yara N-

sensor® (FS; Yara International ASA, Oslo, Norway) which is already used for 

site-specific fertilizer applications in practise.  

In comparison to the full data set the reduction resulted in lower prediction accu-

racy for MPLS models, except for pure white clover swards and white clover-

grass mixtures (Table 5. 6). However, 9 out of 15 models showed RPD>2.0, indi-

cating good prediction accuracy. Similar to the analysis of the hyperspectral data 

range, samples were eliminated as outlier (20 for the common model), either if the 

DM yield was very high (> 816 g m-2) or if they were in advanced growth stages 

(BBCH stages 55-76). Prediction accuracy of SMLR analysis was similar to that 

of MPLS (Table 5. 7), but fewer wavebands were detected as being important in 

the model. Again, legume specific calibration improved model accuracy leading 

to a RPD higher than 2.0. 

 

5.4 Discussion 
The main objective of our study was to examine the relationship between spectral 

signatures of legume-grass swards and DM yield across a wide range of legume 

species, legume proportion and growth stage. Analysis of the full hyperspectral 

data range by MPLS and SMLR resulted in the highest accuracy for DM yield 

prediction. Compared to common calibrations, legume specific models achieved 

better results, indicating that each legume species had its own spectral characteris-

tics. However, DM yield of pure white clover swards was difficult to determine.  

One reason may be the lower variability in DM yield compared to the other leg-

umes. Another reason may be the structure of white clover swards, characterized 

by a dense layer of horizontally oriented clover leaves at a height of 10 to 20 cm 
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Table 5. 6: Calibration statistics of the prediction of dry matter yield (g m-2) by modified partial 
least square regression with the reduced data set (620 to 1000 nm, resolution 10 nm) including 
sample number (N), mean of the calibration data and standard deviation (SD). 

   Calibration  Cross validation   
Treatment N Mean SD SEC R² SECV 1-VR RPD 
Common 439 240.3 183.6 110.6 0.63 114.2 0.61 1.6 
Mixtures including pure legume and grass swards   
White clover (W) 174 209.4 159.0 83.1 0.73 89.8 0.69 1.8 
Red clover (R) 172 259.0 223.1 108.2 0.76 116.2 0.73 1.9 
Lucerne (L) 103 220.1 224.9 85.0 0.86 94.8 0.82 2.4 
Birdsfoot trefoil (B) 101 196.0 180.9 67.3 0.86 76.1 0.83 2.4 
Pure swards only    
W 57 211.8 108.1 61.6 0.68 83.7 0.4 1.3 
R 56 323.0 251.5 129.8 0.73 150.3 0.66 1.7 
L 23 280.0 249.8 90.6 0.87 107.0 0.82 2.3 
B 24 265.2 234.9 83.4 0.87 93.3 0.85 2.5 
Grass (G) 116 197.1 157.1 66.0 0.82 73.2 0.79 2.1 
Mixtures only   
WG 56 254.2 178.9 49.7 0.92 63.9 0.88 2.8 
RG 60 330.9 260.2 98.2 0.86 124.2 0.78 2.1 
LG 23 310.2 273.6 110 0.84 155 0.69 1.8 
BG 21 202.9 163.2 43.3 0.93  70.2 0.82 2.3 
SEC: standard error of calibration; SECV: standard error of cross validation; 1- VR: coefficient of 
determination of cross validation; RPD: ratio of standard deviation of the measured results to stan-
dard error of cross validation. 

 

(Sanderson et al., 2006), irrespective of the clover's growth stage. Regularly dis-

persed leaves of white clover in the top layers causes a high effective light extinc-

tion coefficient (Lantinga et al., 1999) resulting in a strong but undifferentiated 

pattern of absorption and reflection of light and thus contributing to the weak rela-

tionship between DM yield and spectral signature. Growth stage influenced the 

reflectance characteristics and model development both with SMLR and MPLS. 

For example, plants at advanced growth stages (especially flowering plants) ex-

hibited spectral attributes that differed strongly from those of less mature swards, 

so that some of them were eliminated as outliers. However, this should not pre-

vent the use of the technology in practice, as legume-based swards are commonly 

grown as short-term leys with a limited species diversity and usually are cut when 

grasses are at early head emergence and legumes are in the early stage of flower-

ing (Frame, 1992), stages which were well represented by the range of phenology 

of the swards used in this study. 
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Waveband selection by SMLR differed strongly among legume species, which 

reveals the high sensitivity of SMLR to the initial choice of sward composition for 

calibration, which is confirmed by other studies (Thenkabail et al., 2000; Huang et 

al., 2004). Yet Huang et al. (2004) concluded that SMLR appeared to give stable 

results. In our study, the reliability of SMLR was proved by the evidence, that in 

nearly all models wavebands of the red and especially the near infrared region 

were selected as the most important for DM yield prediction which is confirmed 

by other authors for other crops like rice (Nguyen et al., 2006) cotton, corn, potato 

and soybean (Thenkabail et al., 2000). 

Although SMLR analysis emphasized the high predictive power of the red and 

near infrared wavelengths, VIs based on these spectral regions showed only poor 

relationships to DM yield. The heterogeneous plant structure caused by the high 

proportion of weeds and bare soil in the experimental swards in the first year and 

the wide range of developmental stages may have confounded the relationships 

between VIs and DM yield. The reduction of spectral information to only two or 

three spectral regions probably does not suffice to cover the high variability 

within the investigated swards for DM yield prediction which is confirmed by 

other studies (Blackburn et al., 1999; Gamon et al., 1995; Zwiggelaar, 1998). 

However, the utilization of several narrow wavebands by SMLR and MPLS 

analysis in the red and near infrared demonstrated the possibility to obtain satis-

factory prediction results with both regions. Obviously there is a need to use the 

information of several specific wavebands instead of averaging the information of 

the red and near infrared which was done in this study to calculate VIs as used by 

the broadbands of Landsat Thematic Mapper. This finding is affirmed by many 

other studies, which found spectral information of narrow-bands to be superior to 

broad-bands (Blackburn, 1998; Hansen and Schjoerring, 2003; Heege et al., 

2008). 

In a greenhouse study with similar legume-grass swards, where spectral re-

cordings were taken under controlled conditions with artificial light sources, pre-

diction accuracy for DM yield by MPLS, SMLR and VIs was higher (Biewer et 

al., 2008). These results indicate the potentials for further improvement of DM 

yield prediction even under field conditions, which could be achieved e.g. by the 
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use of an additional sensor that measures the incoming radiation to adjust the re-

flectance signal to changing light conditions or by the application of artificial light 

to obtain stable measurements which are free of weather interferences. 

We think that the direct assessment of essential traits of mixed forage swards in 

the field would be a major advance in the efficient and environment-friendly man-

agement of legume-based farming systems. In parallel studies with the same leg-

ume-grass swards the detection of legume proportions by digital image analysis 

proved promising with a R² of 0.7 (Himstedt et al., 2006). Thus, a synchronized 

determination of total yield and legume proportion by appropriate sensors would 

allow a more accurate prediction of the nitrogen supply for the succeeding arable 

crop and help adjust the fertilizer application, as it is well-known that the total 

annual legume yield is related to the amount of nitrogen fixed during the ley pe-

riod (Høgh-Jensen et al., 2004; Loges, 1998).  

 

5.5 Conclusions 
The vegetation indices, SR, NDVI, EVI and REP, based on signals at specific 

wavelengths had weak relationships with DM yield. Hyperspectral analysis by 

MPLS and SMLR resulted in the highest accuracy for DM yield estimation with a 

standard error of cross validation of 88 and 94 g m-2 for MPLS and SMLR, re-

spectively. Accuracy of prediction was improved further by legume-specific cali-

brations. Although selected wavelengths by SMLR analysis differed for each cali-

bration, in nearly all models the red and especially the near infrared region re-

vealed the highest information for DM yield prediction. The reduction of the hy-

perspectral data set to the range of 620 to 1000 nm with a resolution of 10 nm 

gave satisfactory prediction results for both the MPLS and SMLR analysis. Pre-

diction accuracy could be improved if legume-specific calibrations were calcu-

lated. 
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6 Determination of forage quality in legume-grass mix-

tures using field spectroscopy 

 

Abstract    Timely assessments of nutritive values of legume-based swards during 

the growing season can facilitate a targeted and site-specific forage management. 

This study was undertaken to explore the potential of field spectral measurements 

for a non destructive prediction of metabolizable energy (ME), ash content, crude 

protein (CP) and acid detergent fiber (ADF) of legume-grass mixtures. A popula-

tion of 200 legume-grass swards [Lolium perenne (L.), Trifolium repens (L.), Tri-

folium pratense (L.)] representing a wide range of legume proportion (0 to 100% 

of DM) and growth stages (beginning of tillering to end of flowering) were used 

in this investigation. The paper examines three techniques for analysis of the hy-

perspectral data set (350-2500 nm): two-waveband reflectance ratios, modified 

partial least squares (MPLS) regression and stepwise multiple linear regression 

(SMLR). Forage quality variables had weak relationships with the developed re-

flectance ratios, whereas hyperspectral analysis by MPLS and SMLR resulted in 

high prediction accuracy (0.70≤R²≤0.94). Even with a reduced spectral data set 

(630 to 1000 nm) estimates of MPLS and SMLR models were still acceptable for 

forage ash (0.62≤R²≤0.78) and CP (0.83≤R²≤0.86), a finding which could facili-

tate an application of field spectroscopy in practice. Prediction accuracy for ash 

and CP was further improved by legume-specific calibrations. 

 

Keywords: Metabolizable energy (ME) • Ash • Crude protein (CP) • Acid deter-

gent fiber (ADF) • Legume-grass • Modified partial least squares (MPLS) regres-

sion • Stepwise multiple linear regression (SMLR) • Two-waveband reflectance 

ratio. 
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6.1 Introduction 
Accurate information on nutritive values of legume-grass swards is extremely 

useful in livestock and forage management. However, nutritive values of legume-

grass swards can vary considerably within a field and during the growing period, 

due to disturbances such as lack of nutrients, frost, drought damage or defoliation. 

Hence, a site specific determination of the nutritive values such as metabolizable 

energy (ME) ash content, crude protein (CP) and acid-detergent fibre (ADF) in 

the field would help in detecting and quantifying this heterogeneity and optimize 

field and forage management.  

Various non-destructive approaches have been investigated in field crops and 

scrublands to determine plant biochemical properties and nutrient status by meas-

uring reflectance of the incident light on the leaf (Curran et al., 1992; Zhao et al., 

2005) canopy (Hansen and Schjoerring, 2003; Nguyen et al., 2006; Thenkabail et 

al., 2000), or landscape level (Blackburn and Steele, 1999; Serrano et al., 2002). 

However, similar studies on the estimation of forage quality variables are limited 

and basically focused on nitrogen concentration (Gianelle and Guastella, 2007; 

Lamb et al., 2002; Mutanga et al., 2003). 

The determination of forage neutral detergent fibre (NDF), ADF and CP with 

canopy reflectance of bermudagrass [Cynodon dactylon (L.)] pastures were inves-

tigated by Starks et al. (2006b) using the broadband vegetation indices (VIs) nor-

malized difference vegetation index (NDVI) and simple ratio (SR). They con-

cluded that these VIs could only explain a small portion of variance in the forage 

quality variables, whereas further investigations indicated that the development of 

narrow two-waveband reflectance ratios performed better (Starks et al., 2006a). 

Also Biewer et al. (2008) found that estimates by broadband VIs (SR, NDVI and 

enhanced vegetation index) were poor for dry matter yield detection of legume-

grass swards, if sward age was beyond heading. Hence, the development of two-

waveband reflectance ratios may be an alternative to the broadband VIs for pre-

dicting forage nutritive values. 

Other techniques for analysing spectral data are modified partial least square re-

gression (MPLS) and stepwise multiple linear regression (SMLR). The advantage 
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of MPLS is the inclusion of the whole hyperspectral data range into the analysis, 

resulting in lower losses of spectral information (Haaland and Thomas, 1988; 

Nguyen et al., 2006). However, few studies have explored the potential of MPLS 

for estimating forage quality constituents using field data. Starks et al. (2004) de-

termined forage NDF, ADF and nitrogen concentrations of bermudagrass with 

MPLS and found that it could explain 63 to 76% of the variability expressed in 

the reference data. However, the great potential of MPLS, offering the use of the 

whole hyperspectral range, still remains to be examined for the estimation of for-

age quality variables from legume-grass swards. 

Although MPLS seems to be a powerful method for the analysis of large data sets, 

it is not practical for livestock managers to predict forage nutritive variables using 

an expensive, full range spectrometer. An approach to reduce the range could be 

the analysis of SMLR, as it enables a few wavelengths to be extracted from the 

full dataset to create a prediction model. Problems known for the SMLR method 

are the potential of overfitting and waveband selection that fail to correspond with 

known absorption bands (Curran et al., 1992; Grossman et al., 1996). However, 

recent research has demonstrated that much information to quantify characteristics 

of different plant species is available in a few specific wavebands (Blackburn and 

Steele 1999; Starks et al., 2008; Thenkabail et al., 2004), where particularly those 

of 2054 and 2172 nm (Kokaly, 2001) and the red edge region (Gianelle and 

Guastella, 2007; Lamb et al., 2002) proved to be important for the estimation of 

nitrogen concentration. 

 

In this study we investigated canopy reflectance of different legume-grass swards 

in order to determine the contents of ME, ash, CP and ADF. The specific objec-

tives were:  

i) to determine, if the development of two-waveband reflectance ratios, 

based on signals at specific wavelengths are appropriate indicators for 

the estimation of ME, ash, CP and ADF. 

ii) to develop reflectance algorithms for the prediction of the forage qual-

ity parameters ME, ash, CP and ADF based on total reflectance in the 
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visible and near infrared wavelength ranges using MPLS regression 

and SMLR. 

iii) to reduce the hyperspectral data range for the prediction of ME, ash, 

CP and ADF to a few informative bands in order to improve the prac-

tical applicability. 

 

6.2 Material and methods 

6.2.1 Experimental design and plant sampling 

The field experiment was conducted during the year 2006 on the organic experi-

mental farm Neu Eichenberg of the University of Kassel (51°23’N, 9°54’E, 227 m 

a.s.l.). Pure swards of red clover (Trifolium pratense L.), white clover (Trifolium 

repens L.) and perennial ryegrass (Lolium perenne L.) as well as binary mixtures 

of each legume with perennial ryegrass were tested (Table 6. 1). The soil was a 

sandy loam with 3.6% sand, 73% silt, 23.4% clay and 2% humus. Soil analysis 

indicated optimum levels of phosphorus, magnesium and potassium and a pH-

value of 6.4. In the growing period of the experiment the yearly rainfall was 554 

mm and the average temperature 9.6° C. 

 

Table 6. 1: Species, cultivars and seed rates used in the field experiment. 

Treatment Cultivar Seed rate: legume/grass; kg ha-1 
Perennial ryegrass (G) Fennema 0/25   
White clover/G Klondike 4/ 0 4/ 15 
Red clover/G Pirat 8/ 0 8/ 15 

 

The experimental treatments with a size of 29 m² were established on 2. June 

2005. In the following year 2006 three main cuts were taken on 12. June, 25. July 

and 14. September. In between these cuts, samples in a weekly interval were har-

vested to determine effects of growth stages. To define plant development the 

BBCH scale according to Meier (2001) was used. Growth stages are represented 

by two digits, i.e. germination (01-10), leaf development (11-20), formation of 

side shoots/tillering (21-30), stem elongation or rosette growth (31-40), develop-

ment of harvestable vegetative plant parts or vegetatively propagated or-
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gans/booting (41-50), inflorescence emergence/heading (51-60), flowering (61-

70) and development of fruit (71-80). One day after spectral measurements bio-

mass was harvested at a height of 5 cm above soil surface and dried at 65 °C for 

48 h. Subsequently, samples were ground with a 1 mm sieve in order to determine 

the nutritive value.  

6.2.2 Assessment of reference data 

Reflectance spectra of near infrared spectroscopy (NIRS) measurement were ob-

tained using a XDS-spectrometer (Foss NIRSystems, Hillerød, Denmark). The 

spectrum of a sample was an average of 25 subscans and was recorded as the 

logarithm of the inverse of the reflectance [log(1/R)]. Quality parameters were 

determined using calibrations developed by Loges (1998) with standard errors of 

cross validation (SECV) of 0.3 MJ kg DM-1, 1.1 % DM, 0.9% DM and 2.0 % DM 

for ME, ash, CP and ADF, respectively. The calculation was done with the 

WinISI software (version 1.63, Foss NIRSystems/Tecator Infrasoft International, 

LLC, Silver Spring, MD, USA), using the range between 1100 and 2498 nm. 

6.2.3 Spectral data collection  

Spectral measurements in the field were conducted with a FieldSpec® Pro JR 

(Analytical Spectral Devices, CO, USA). This type of field spectrometer measures 

light energy reflected from swards in the range from 350 to 2500 nm with a spec-

tral resolution of 3 nm (350-1000 nm) and 30 nm (1000-2500 nm). Measurements 

were then interpolated by the analytical spectral devices (ASD) software RS3
TM to 

produce readings at an interval of 1 nm. The sensor optic had a field of view of 

25°, which was stabilized on a tripod in a height of 1.07 m above soil. Where pos-

sible, readings were taken on unclouded atmospheric conditions with stable light-

ing conditions between 10:00 and 14:00 h Central European Time. Depending on 

light conditions spectral calibrations were carried out at least after every 6th meas-

urement using a Spectralon® panel (Labsphere, Inc., North Sutton, NH, USA). 

Each radiometric data point represented a mean of four measurements consisting 

of 40 replicated scans.  
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6.2.4 Processing and analysis of spectral data 

Prior to spectral analysis, spectra were smoothed using eleven convoluting inte-

gers and a polynomial of degree five (Savitzky and Golay, 1964; Erasmi and Do-

bers, 2004). Then reflectance values in the ranges from 1800 to 1939 nm and 2430 

to 2500 nm were omitted from analysis because of instrument noise or interaction 

with high atmospheric moisture absorption. Subsequently, three types of spectral 

analysis were conducted to estimate nutritive values of swards: 

i) Two-waveband reflectance ratios were calculated in order to find the optimal 

spectral regions to estimate ME, ash, CP and ADF. Ratios were developed by av-

eraging spectral data over 10 nm to reduce the number of wavebands to 183.  

Pearson correlation coefficients were calculated using the CORR procedure of 

SAS 9.1 (SAS Institute, 2002-2003) in order to select the wavebands with maxi-

mum correlation coefficient (R) for ME, ash, CP and ADF. The reflectance values 

at these selected wavebands were used as the numerators and reflectance values at 

all other wavebands were used as denominators to calculate reflectance ratios, 

according to Zhao et al. (2005). 

The two-waveband reflectance ratios were then subjected to regression analysis in 

order to estimate nutritive values using the GLM procedures of SAS 9.1.  

ii) Modified partial least square (MPLS) regression was conducted, which is a 

method employed for data compression by reducing the large number of measured 

collinear spectral variables to a few non-correlated latent variables or factors (Cho 

et al., 2007). As in multiple regression, the main purpose of MPLS is to build a 

linear model: 

exbxbxby nn ++++= ......2211      (6.1) 

Where y refers to the response variable (ME, ash, CP and ADF in this study), x is 

the predictor variable (here the spectral wavelengths reduced to independent fac-

tors), b indicates the regression coefficients and e are the residuals (Geladi and 

Kowalski, 1986).  

iii) Stepwise multiple linear regression (SMLR) was performed to select those 

wavelengths that are mostly correlated with the reference values and to build an 
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equation with reduced variables compared to the MPLS. In order to avoid multi-

collinearity only every 8th wavelength was used for analysis. The addition of 

wavelengths to the equation was continued until the F value fell below 7 (WinISI 

III Manual, 2005).  

Both, MPLS and SMLR equations were developed with the WinISI software. For 

MPLS and SMLR analysis parameters in the mathematical processing were 

sought through trial and error in order to minimize the standard error of cross 

validation, giving best results with weighted multiplicative scatter correction and 

mathematical treatment of 1, 4, 4, which means 1: number of derivative of spec-

tra, 4: extent of data points over which the derivative was to be calculated and 4: 

the smoothing of points. Only every 4th wavelength was used for the calculation of 

MPLS in order to reduce the computing time. Furthermore the WinISI software 

divided the samples for the calibration procedure at least into four groups in order 

to perform a cross validation. Cross validation was conducted by a random sepa-

ration of the data set into four or more groups followed by predictions for the val-

ues of one group based on the calibrations developed from the other groups. In 

turn, predictions were made for all groups and finally averaged. The number of 

outlier elimination passes was two for both MPLS and SMLR analysis. Outliers 

were defined as samples with a spectrum out of the population spectra (H-outliers) 

or for which the difference between the reference and the predicted value was 

much larger than the standard error of cross validation (T-outliers). The limits 

were set to 10 (H-outliers) and 2.5 (T-outliers), respectively, as suggested by Till-

mann (2000).   

 

6.3 Results and discussion 

6.3.1 Sward characteristics and nutritive values 

As swards were investigated at various growth stages ranging from tillering 

(BBCH 23; Meier, 2001) to finishing of flowering (BBCH 67), nutritive values 

varied widely over the growth period (Table 6. 2). The ME content was highest in 

spring with 12.5 MJ kg DM-1, whereas in summer, where the growth of grass was 

strongly affected by very dry weather, lowest values (6.6 MJ kg DM-1) were ob-



                                                                                                                    Chapter 6 

 60

tained. Variation in the stage of maturity was highest in spring, which was re-

flected in ash and CP contents showing a wide range from 4.2 to 14.1 % DM and 

3.5 to 33.6 % DM, respectively. Lowest ash and CP values were found for the 

pure grass swards. Highest ADF values were achieved in the summer period with 

34.8 % DM. Thus, the wide range of nutritive values found in our study provided 

an appropriate data set for the development of reflectance algorithms, as it cov-

ered most of the variability reported in literature for white clover (Berado, 1997), 

red clover (Wachendorf, 1995) and perennial ryegrass (De Boever et al., 1996). 

6.3.2 Correlation among forage quality constituents and relationships be-

tween narrowband reflectance and nutritive values 

In the common data set linear correlation among nutritive values was highest be-

tween ash and ME (r=0.79), as well as between ADF and CP (r=-0.55). In con-

trast, correlation between CP and ash and between ME and ADF revealed only 

low values (r=0.34 and r=-0.18, respectively). No significant relation could be 

found between CP and ME and ADF and ash, respectively (Table 6. 3). Similar 

results were found for the legume-specific data sets of white and red clover, which 

included mixtures and pure swards of perennial ryegrass and of the respective 

legume species.  

The correlation between nutritive values and sward reflectance including the 

waveband range between 355 to 2495 nm is presented in Figure 6. 1. Aside from a 

parallel shift, canopy reflectance of legume-grass swards exhibited almost similar 

correlation curves for the ash and CP, although the correlation among these qual-

ity variables was relatively low. High positive correlation coefficients were ob-

tained at ranges of 355-370, 540-555, 720-1370 and 1680-1700 nm, indicating 

similar regions in the spectrum which were somehow correlated with both quality 

parameters. There were spectral regions significantly correlated with the contents 

of ME and ADF. However, they varied from that of ash and CP and generally had 

lower correlation coefficients. Altogether, the correlation of standing pasture re-

flectance in single wavebands maximally reached a coefficient of determination 

(R²) of 0.58, which is not satisfactory for practical application. 
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Table 6. 3: Correlation coefficient among nutritive values. 

Nutritive values ME Ash CP 
Common MJ kg-1 DM-1 % DM % DM 
ME, MJ kg-1 DM-1 1   
Ash, % DM 0.79*** 1  
CP, % DM n.s. 0.34*** 1 
ADF, % DM -0.18* n.s. -0.55*** 
White clover-specific data set  
ME, MJ kg-1 DM-1 1   
Ash, % DM 0.84*** 1  
CP, % DM n.s. 0.61*** 1 
ADF, % DM n.s. n.s.  -0.62*** 
Red clover-specific data set  
ME, MJ kg-1 DM-1 1   
Ash, % DM 0.84*** 1  
CP, % DM n.s. 0.39*** 1 
ADF, % DM n.s. n.s.  -0.43*** 
 

An initial step in the analysis was to investigate whether it is possible to determine 

ME, ash, CP and ADF with two-waveband narrow reflectance ratios (data not 

shown). Compared to linear correlation of nutritive values with reflectance data, 

this approach improved the prediction accuracy only for ME and ADF. The best 

calibration was obtained for CP with the reflectance ratio R1210/R1260, resulting in 

a R² of 0.33 and a standard error (SE) of 6% DM. The lowest prediction accuracy 

was found for ADF, which did not exceed a R² of 0.15. Several studies on differ-

ent plant species have indicated that two-waveband reflectance ratios of canopies 

performed quite well in predicting plant variables (Carter and Spiering, 2002; 

Hansen and Schjoerring, 2003; Heege et al., 2008). Starks et al., (2006a) used 

two-waveband reflectance ratios to determine CP of bermudagrass pastures, 

reaching a R² of 0.61 and a root mean square error of 1.47. However, in our study 

prediction accuracy of two-waveband reflectance ratios was rather poor for forage 

quality variables. Presumably, heterogeneous sward structures caused by a vary-

ing legume dry matter contribution and a wide range of developmental stage, as 

well as variable atmospheric conditions while taking spectral measurements at 

field may have confounded the relationships between two-waveband reflectance 

ratios and quality constituents. Hence, the reduction of spectral information to 

only two spectral wavebands does not suffice to cover the high variability within 

the investigated swards. 
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Figure 6. 1: Relationship between canopy reflectance for single wavebands (expressed as Pear-
son’s correlation coefficient) and metabolizable energy (ME), ash, crude protein (CP) and acid 
detergent fibre (ADF). Wavelengths between 1799 and 1940 nm were omitted from analysis be-
cause of interaction with atmospheric moisture absorption. 

 

 

6.3.3 Hyperspectral analysis of full spectral data 

Hyperspectral analysis of the full data set yielded for all constituents in the high-

est prediction accuracy (Figure 6. 2, Table 6. 4). MPLS calibrations of the com-

mon data set explained 80, 87, 93 and 84% of the variance and had standard errors 

of cross validation (SECV) of 0.4, 0.9, 3.1 and 2.4 for ME, ash, CP and ADF, 

respectively. Residual predictive values (RPD) ranged between 1.8 and 2.4. RPD 

represents the standard deviation of the field data divided by the standard error of 

cross validation and provides a comparison of the performance of all calibrations, 

irrespective of the units of the investigated parameters (Park et al., 1997). An RPD  
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Table 6. 4: Calibration statistics of the prediction for metabolizable energy (ME), ash, crude pro-
tein (CP) and acid detergent fibre (ADF) by modified partial least squares regression including 
sample number (N), mean and standard deviation (SD) of the calibration data. 

      Calibration  Cross validation   
  Constituent N Mean SD SEC R²   SECV 1-VR RPD 
Common ME, MJ kg-1 DM-1 186 11.0 0.7 0.3 0.80  0.4 0.70 1.8 
 Ash, % DM 194 11.4 1.7 0.6 0.87  0.9 0.73 1.9 
 CP, % DM 196 20.6 7.6 2.1 0.93  3.1 0.83 2.4 
 ADF,% DM 190 22.2 4.8 2.0 0.84  2.4 0.75 2.0 
Mixtures including pure legume and grass swards       

ME, MJ kg-1 DM-1 110 11.1 0.8 0.4 0.73  0.5 0.62 1.6 White 
clover Ash, % DM 115 11.1 1.9 0.6 0.88  0.8 0.84 2.5 
 CP, % DM 113 19.7 8.2 2.1 0.93  2.5 0.90 3.2 
 ADF,% DM 116 20.8 4.8 2.7 0.70  3.1 0.59 1.6 
           

ME, MJ kg-1 DM-1 114 10.7 0.8 0.3 0.81  0.5 0.64 1.7 Red 
clover Ash, % DM 114 11.1 1.7 0.8 0.78  0.9 0.76 2.0 
 CP, % DM 118 18.7 7.2 2.8 0.85  3.0 0.83 2.4 
  ADF,% DM 117 23.3 4.4 1.7 0.85   2.3 0.73 1.9 

SEC, standard error of calibration; SECV, standard error of cross validation; 1- VR, coefficient of 
determination of cross validation; RPD, ratio of standard deviation of the measured results to stan-
dard error of cross validation. 
 

value greater than three is considered adequate for analytical purposes in most of 

the laboratory near infrared applications for agricultural products (Cozzolino et 

al., 2006). However, at field scale variable measurement conditions reduce predic-

tion accuracy, so that even lower RPD values may indicate good results. Accord-

ing to Therhoeven-Urselmans et al. (2006), satisfactory prediction results are 

given in laboratory for organic matter in soil and litter if 1.4 ≤ RPD ≤ 2.0 and 

good results, if RPD is higher than 2.0.  

Overall model accuracy was lowest for ME and highest for CP, which is also re-

flected by the number of outliers being excluded from the model. For ME, 14 

samples were detected as outlier, which were mainly grass swards of the summer 

growth with low ME values (< 9 MJ kg DM-1). In summer the growth of grass 

swards was heavily affected by very dry weather resulting in considerable 

amounts of dry leaves and larger areas of visible soil which impacts spectral re-

flectance characteristics (Elvidge and Chen, 1995; Gamon et al., 1995; Todd et 

al., 1998). Ten outliers were detected in the ADF model predominantly repre-

sented by white clover swards at advanced growth stages (BBCH 41-65) or with  
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Figure 6. 2: Comparison of the reference values of metabolizable energy (ME), ash, crude protein 
(CP) and acid detergent fibre (ADF) as detected by laboratory NIRS and values predicted by field 
spectroscopy using modified partial least square regression (statistics see Table 6.4) for the com-
mon, white clover- and red clover-specific data set (legume-specific calibrations are composed by 
binary legume-grass mixtures, pure legume and pure grass swards). 
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rather low ADF values (13-15% DM). In the calibration procedure of ash only six 

outliers were eliminated, which were mainly in the advanced growth stages 

(BBCH 55-65). No specific pattern could be found for the four eliminated outliers 

in the CP model. The lower prediction accuracy of ME may be associated with its 

narrow range of values which was relatively higher for the other constituents. 

Overall, the better performance of MPLS compared with two-waveband ratios is 

in accordance with other authors (Cho et al., 2007; Hansen and Schjoerring, 

2003), showing that MPLS indeed is a potentially useful method. 

In practise legume-grass mixtures often exhibit a wide range of legume dry matter 

contribution which comprises all levels between pure legume and pure grass spots 

in parts of the field. Therefore, legume-specific calibrations were developed, 

which included mixtures and pure swards of perennial ryegrass and of the respec-

tive legume species. Legume-specific calibrations resulted in enhanced prediction 

accuracies in cross validation for ash and CP. Prediction accuracy for ME and 

ADF could not be improved (Figure 6. 2, Table 6. 4).  

Prediction accuracy of SMLR resembled that of the MPLS models (Table 6. 5). In 

the calibration procedure slightly lower R² values were obtained, which were 

0.73, 0.79, 0.87 and 0.75 for ME, ash, CP and ADF, respectively. However, in 

cross validation prediction accuracy was mostly higher, yielding in a SECV of 

0.4, 0.8, 2.8 and 2.5 for ME, ash, CP and ADF, which is also reflected on the 

slightly higher RPD values. 

Legume-specific calibrations resulted in an improved prediction accuracy for all 

nutritive variables except for ME. Furthermore, fewer outliers were detected in 

the SMLR than in the MPLS procedure (except with the ADF model). Wavebands 

selected were scattered over the whole spectrum and differed widely among the 

constituents and legume species which was also found in other investigations, 

where selected wavebands differed strongly among the plant species (Biewer et 

al., 2008; Huang et al., 2004, LaCapra et al., 1996; Thenkabail et al., 2000). There 

exists a multitude of possible explanations, including variability in the magnitudes 

of constituent levels between data sets, canopy architecture effects, sensor limita-

tions, background vegetation and soil influences (Kokaly, 2001). Yet, Huang et al.  
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(2004) concluded that SMLR appeared to give stable results. In our study, the red 

(620-750 nm) and short wave near infrared (750-1100 nm) wavebands were se-

lected in each model, reaching mostly the highest F-values, which indicates their 

importance for model prediction. This is in accordance with other studies where 

reflectance of the red and near infrared was frequently found to have a close rela-

tionship with plant biochemical concentration (Nguyen et al., 2006; Gianelle and 

Guastella, 2007; Starks et al., 2006a). 

6.3.4 Hyperspectral analysis of reduced spectral data 

Due to the importance of red and short wave near infrared wavebands in detecting 

forage quality variables as indicated by SMLR, the hyperspectral data were re-

duced to a range of 620 to 1000 nm with a resolution of 10 nm. This range was 

chosen in accordance to the Yara N-sensor® (FS; Yara International ASA, Oslo, 

Norway) which is already used for site-specific fertilizer applications in practise.  

In comparison to the full data set the reduction resulted in lower prediction accu-

racies for MPLS models, except for the common and red clover-specific model of 

CP (Table 6. 6). Ash and CP still obtained rather high coefficients of determina-

tion in the cross validation (1-VR) ranging from 0.55 to 0.86, whereas ME and 

ADF only reached values of 0.44≤1-VR≤0.50 and 0.44≤1-VR≤0.56, respectively. 

However, 10 from 12 models showed RPD values ≥1.4, indicating still satisfac-

tory prediction accuracy.  

Results of SMLR analysis resembled that of MPLS (Table 6. 6). Ash and CP were 

estimated with satisfactory and good results, whereas the prediction accuracy of 

ME and ADF was poor, indicating that further spectral regions should be used for 

model building. Legume-specific calibration only improved model accuracy of 

ash and CP leading to a RPD value higher than 1.8.  

The analyses of the reduced data set by MPLS and SMLR indicated that it might 

be difficult to accurately predict forage ME and ADF. However, estimates of ash 

contents were satisfactory and the determination of forage CP produced compara-

ble results to that of the full data set.  
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Table 6. 6: Cross validation statistics of the prediction for metabolizable energy (ME), ash, crude 
protein (CP) and acid detergent fibre (ADF) by modified partial least squares regression (MPLS) 
and stepwise multiple linear regression (SMLR) with the reduced data set (620 to 1000 nm, resolu-
tion 10 nm). 

    MPLS  SMLR 
    SECV 1-VR RPD  SECV 1-VR RPD 
Common ME, MJ kg-1 DM-1 0.5 0.50 1.4  0.5 0.51 1.4 
 Ash, % DM 1.0 0.62 1.6 1.0 0.64 1.7 
 CP, % DM 3.1 0.83 2.4 3.7 0.75 2.0 
 ADF,% DM 3.4 0.50 1.4 3.4 0.54 1.5 
Mixtures including pure legume and grass swards   

ME, MJ kg-1 DM-1 0.6 0.49 1.4 0.6 0.51 1.4 White 

clover Ash, % DM 0.9 0.78 2.1 0.9 0.76 2.1 
 CP, % DM 3.1 0.86 2.7 3.3 0.84 2.5 
 ADF,% DM 3.7 0.44 1.3 3.4 0.54 1.5 
    

ME, MJ kg-1 DM-1 0.5 0.44 1.3 0.6 0.41 1.3 Red 

clover Ash, % DM 1.0 0.55 1.5 0.9 0.71 1.9 
 CP, % DM 2.9 0.83 2.4 3.2 0.80 2.2 
  ADF,% DM 2.9 0.56 1.5  2.6 0.60 1.6 

SECV: standard error of cross validation; 1- VR: coefficient of determination of cross validation; 
RPD: ratio of standard deviation of the measured results to standard error of cross validation. 
 

It should be pointed out that the reference data were determined by laboratory 

NIRS and, hence, incorporated prediction errors by themselves. Thus, accuracies 

reported in the present study indicate the lower boundaries of the spectral meth-

odology and may be further improved using reference values determined chemi-

cally in the laboratory. Furthermore, the use of an additional sensor that measures 

the incoming radiation to adjust the reflectance signal to changing light conditions 

or the application of artificial light to obtain stable measurements which are free 

of weather interferences may still enhance prediction accuracy. 

 

6.4 Conclusions 
The developed two-waveband reflectance ratios, which were based on signals at 

specific wavelengths, had weak relationships with all forage quality constituents. 

Hyperspectral analysis by MPLS and SMLR resulted in the highest accuracy for 

the estimation of ME, ash, CP and ADF with standard errors of cross validation 

for the respective variables of 0.4, 0.9, 3.1 and 2.4 for MPLS and 0.4, 0.8, 2.8 and 

2.5 for SMLR, respectively. Accuracy of prediction for ash, CP and to some ex-
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tent for ADF was further improved by legume-specific calibrations. Although 

selected wavelengths by SMLR analysis differed for each calibration, in nearly all 

models the red and especially the near infrared region revealed the highest infor-

mation for the prediction of nutritive variables. The analysis of the reduced hyper-

spectral data set to the range of 620 to 1000 nm with a resolution of 10 nm indi-

cated that it might be difficult to accurately predict forage ME and ADF, whereas 

forage ash could be predicted with satisfactory and CP with good results. 
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7 General discussion 

The objectives of this study were to evaluate if field spectral measurements can be 

used to predict the DM yield and the forage quality constituents ME, ash, CP and 

ADF of legume-grass swards across a wide range of legume proportion and 

growth stage. Two experiments were conducted in a greenhouse under controlled 

conditions which allowed to collect spectral measurements which were free from 

interferences such as wind, passing clouds and changing angles of solar irradia-

tion. This initial investigation was then evaluated over two years in a field ex-

periment with the same legume-grass swards in order to test its applicability for 

practical purposes. 

 

7.1 General aspects of hyperspectral data analysis 
Field spectroscopy has been widely investigated as analytical tool for the detec-

tion of nitrogen (Erasmi, 2002; Jain et al., 2007; Mutanga et al., 2003; Zhao et al., 

2005), biomass (Hansen and Schjoerring, 2003; Starks et al., 2008; Zhao et al., 

2003) and nutritive values (Starks et al., 2006a) of different agricultural crops. 

However, spectral signals of canopy reflectance are very complex as they are in-

fluenced by various factors such as biophysical and biochemical properties, sward 

architecture, canopy background (i.e. soil, litter), atmospheric conditions, inci-

dence angle of light and sensor configuration. Hence, the challenge of spectral 

analysis is to minimize negative effects which interfere with the reflection signal 

as well as to identify those regions in a spectrum which are closely correlated to 

the vegetation parameter in question. However, the spectral determination of sev-

eral parameters such as DM yield can rather be conducted by indirect attributes. 

Green biomass, for example, is closely correlated to the chlorophyll content of 

plants which causes considerable photosynthetic absorption of the incoming radia-

tion in the visible red reflectance or to spongy mesophyll and plant cell structural 

material which is linked to the near infrared reflectance (Jensen, 2000). A diffi-

culty in detecting biomass and other vegetation parameters is that chemical and 

structural compositions of plants change considerably during the growing period, 
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entailing a change in their spectral reflectance. With plant maturation the fraction 

of dry biomass increases and the proportion of cell wall material augments in rela-

tion to cell contents. Loss of pigmentation i.e. enhances visible reflectance, par-

ticularly in the red region of the spectrum (Hoffer, 1978). Consequently, VIs 

which are based on the red and near infrared region are highly affected by sward 

maturation. 

 

7.2 Options of hyperspectral data analysis  
In our study hyperspectral data was analysed by the common known vegetation 

indices SR, NDVI, EVI and REP as well as by two waveband reflectance ratios 

using only a limited range of the whole spectrum. The two waveband reflectance 

ratios were developed according to Zhao et al. (2005) in order to find the best 

waveband ratio for the prediction of nutritive values. In addition MPLS and 

SMLR models were calculated including the whole hyperspectral data range. 

The detection of DM yield by the vegetation indices SR, NDVI, EVI and REP 

were strongly interfered by sward maturation and the occurrence of larger areas of 

visible soil. Only in the first greenhouse experiment, where swards had large leaf 

to stem ratios, good prediction results could be obtained. For more mature and 

open swards VI-based detection of DM yield was not possible. 

The development of two-waveband reflectance ratios, which were not necessarily 

based on the red and NIR but on signals at specific narrowbands, did also not suc-

ceed in predicting forage quality variables. The combination of heterogeneous 

sward structures caused by a wide range of developmental stages and a varying 

legume dry matter contribution, as well as variable atmospheric conditions while 

taking spectral measurements at field may have confounded the relationships be-

tween two-waveband reflectance ratios and quality constituents. Hence, the reduc-

tion of spectral information to only two spectral wavebands does not suffice to 

cover the high variability within the investigated swards.  

In contrast, the use of several wavebands for the prediction of vegetation parame-

ters by SMLR and MPLS solved the problem of changing spectral responses dur-

ing the growing period. Especially with MPLS regression, including the whole 
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spectrum into the analysis, good prediction results were obtained. Hence, the com-

bination of many different absorption features of the spectrum may balance the 

effect of heterogeneous sward structures and variable atmospheric conditions.  

Good results were also achieved with SMLR, although the hyperspectral data set 

was reduced to only a few wavebands. Nevertheless, uncertainty of the robustness 

of SMLR models is imposed by the different choice of wavebands in each model 

which is also found in other investigations in which selected wavebands differ 

strongly between the plant species (Huang et al., 2004; LaCapra et al., 1996; 

Thenkabail et al., 2000). Kokaly (2001) suggests that differences in the magni-

tudes of variable levels between data sets, canopy architecture effects, sensor limi-

tations, background vegetation and soil influences are reasons for this finding. 

Furthermore, Martin and Aber (1997) and LaCapra et al. (1996) demonstrate that 

equations for estimating nitrogen derived from one site are unable to predict the 

nitrogen concentrations for other sites. Thus, to prove the robustness of SMLR 

models it is necessary to extend them to further data sets.  

However, the aim of this study was to select some regions in the hyperspectral 

data range by SMLR that are closely correlated with DM yield and nutritive val-

ues of legume-grass swards. The red (620-750 nm) and short wave near infrared 

(750-1100 nm) wavebands were selected in each model, reaching mostly the high-

est F-values, which indicates their importance for model prediction. This choice 

was made in accordance with other studies where reflectance of the red and near 

infrared is frequently found to have a close relationship with DM yield (Nguyen et 

al., 2006; Thenkabail et al., 2000) and plant biochemical concentration (Gianelle 

and Guastella, 2007; Starks et al., 2006a). Hence, the hyperspectral data set was 

reduced to the range of the Yara N-sensor® which uses the red and short wave 

near infrared reflectance for site-specific fertiliser applications in practise. In 

comparison to the full data set the reduction resulted in lower prediction accuracy 

for almost all MPLS and SMLR models. Especially forage ME and ADF could be 

hardly predicted, showing that further spectral regions should be used for model 

building. However, estimates of ash content and DM yield were satisfactory and 

the determination of forage CP produced very good results which were compara-

ble to that of the full data set. 
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Yet for the application of field spectral measurements in practise there is a bal-

ance to be found between reducing the spectral data range in order to lower the 

costs for the sensor and maintaining high prediction accuracy for DM yield and 

forage nutritive values. Sanderson et al. (2001) evaluate accurate assessment of 

forage mass in pastures with an electronic capacitance meter, a rising plate meter 

and a pasture ruler. They state that none of these indirect methods are accurate or 

precise and error levels range from 26 to 33% of the mean forage mass measured 

on the pastures. Different scenarios are then simulated, including under- or over-

estimating forage yield on pastures by 10 or 20%. All scenarios simulated result in 

lower net returns compared with the optimum farm, with decreases in net return 

ranging from $8 to $198 ha-1yr-1. In our field study the relative error [(SECV of 

the model/mean of values included) 100] for the prediction of DM yield was even 

higher than 33% when the reduced data set was applied, indicating that model 

development must be improved.  

Also the prediction accuracy of ash content should be enhanced, as the SECV 

(10.4 % DM) was as high as the difference between maximum and minimum ash 

value (10.1 % DM). However, the SECV of CP (3.1 % DM) was relatively small 

in comparison to the range of CP values (min. 6.0 and max. 33.6 % DM), indicat-

ing that CP can be determined quite well with the reduced data set. At the same 

time, the range of CP was very wide, as both very young swards with high CP 

contents and swards with considerably amounts of dry leaves, holding low CP 

contents, were investigated.  

 

7.3 Options to improve the applicability of field spectral meas-
urements  

A possibility to improve the validity of spectral measurements was the calculation 

of legume-specific models, which included mixtures and pure swards of perennial 

ryegrass and of the respective legume species. Thereby differences in canopy 

structure, chemical composition and reflectance properties of plant species were 

considered. In the NIR region, for example, broad-leaved crops always result in 
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larger reflectance values than small-leaved crops, whereas in the red region they 

show a similar trend in reflectance (Gao et al., 2000; Huete et al. 1997).  

In a first attempt, the distinct reflectance properties of plant species were also used 

to determine the proportion of legumes in the swards using VIs. However, differ-

ences in reflectance characteristics only enabled the prediction of proportions of 

grass and legumes when the DM yield of the sward remained constant. With vary-

ing levels of DM yield, the relationship between spectral signature and species 

proportion in the swards was covered by the effect of DM yield on reflectance. 

The attempt to improve the determination of legume proportions by MPLS analy-

sis also did not succeed. Since DM yield affected reflectance much more strongly 

than leaf shape and leaf orientation it must be concluded that, for a non-

destructive assessment of legume proportion in mixed swards, more appropriate 

methods, e.g. linear spectral unmixing (Mewes et al. 2008) or digital image analy-

sis (Himstedt et al., 2006) are necessary.  

In this investigation the interaction between spectral reflectance and weather con-

ditions as well as the incidence angle of light interfered the most with an accurate 

determination of DM yield. This can be clearly seen through the comparison of 

the greenhouse and the field experiments. In the greenhouse studies spectral re-

cordings were taken under controlled conditions with artificial light sources, 

which resulted in considerably higher accuracy for DM yield prediction by MPLS, 

SMLR and VIs than in the field experiment. These results indicate the potentials 

for further improvements for the prediction of DM yield and forage quality con-

stituents even under field conditions. This could for example be achieved by the 

use of an additional sensor that measures the incoming radiation to adjust the re-

flectance signal to changing light conditions or by the application of artificial light 

to obtain stable measurements which are free of weather interferences and inci-

dence angle of light. 

A further possibility to improve model calibration for the prediction of DM yield 

and forage quality constituents of legume-grass swards, could be the exclusion of 

reflectance data derived from swards that cut across the growth stage of early 

flowering. Spectral reflectance of swards at advanced growth stages interfered 
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with all methods for hyperspectral data analysis. For practical purposes, however, 

they are of secondary significance as swards are commonly cut when grasses are 

at early head emergence and legumes are in the early stage of flowering (Frame, 

1992). 

It is also supposable that the occurrence of varying areas of visible soil impacted 

the accurate prediction of DM yield and forage quality constituents by spectral 

data, as it is also part of the reflection signal. However, these effects should not 

affect the application of field spectroscopy at the time of harvest, as by then the 

ground is usually completely covered by the plant canopy. 

Beside these possibilities to improve prediction accuracy of field spectral meas-

urements further research is still needed to evaluate the methods by effects of 

varying sites and vegetation periods in order to enhance the robustness and port-

ability of models to other environmental conditions. 
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8 Conclusions 

 

The following conclusions can be drawn from the two greenhouse experiments 

and the field study with pure stands and binary mixtures of different forage leg-

umes and perennial and annual ryegrass: 

i) The vegetation indices, SR, NDVI, EVI and REP, based on the red and 

near infrared wavelengths had weak relationships with DM yield. An 

exception is the first greenhouse experiment, where the swards did not 

reach the growth stage of flowering and DM yield was well predicted 

by all vegetation indices. In this case EVI proved to be the most ap-

propriate index with the smallest standard errors and good accuracy 

even at higher biomass levels. 

ii) The developed two-waveband reflectance ratios had weak relation-

ships with the forage quality constituents ME, ash, CP and ADF. 

iii) Hyperspectral analysis by MPLS and SMLR resulted for all experi-

ments in the highest accuracy for the prediction of DM yield and the 

forage quality constituents ME, ash, CP and ADF.  

iv) Although selected wavelengths by SMLR analysis differed for each 

calibration, in nearly all models the red and especially the near infrared 

region revealed the highest information for DM yield prediction and 

the determination of ME, ash, CP and ADF. The reduction of the hy-

perspectral data set to the range of 620 to 1000 nm with a resolution of 

10 nm indicated that it is difficult to accurately predict forage ME and 

ADF, whereas DM yield, as well as forage ash could be predicted with 

satisfactory results and CP with good results. 

v) Accuracy of prediction was further improved for all methods of spec-

tral data analysis by legume-specific calibrations. 

vi) The comparison between the greenhouse and the field experiments in-

dicated that the interaction between spectral reflectance and weather 
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conditions as well as incidence angle of light interfered with an accu-

rate determination of DM yield. Hence, further improvements for the 

prediction of DM yield and forage quality constituents under field 

conditions should be tested. This may be achieved, for example, by the 

use of an additional sensor that measures the incoming radiation to ad-

just the reflectance signal to changing light conditions or by the appli-

cation of artificial light to obtain stable measurements which are free 

of weather interferences. 

The results of this study have shown the potential of field spectroscopy and 

proved its usefulness for predicting DM yield, ash content and CP across a wide 

range of legume species, legume proportion and growth stage. Further research is 

needed to evaluate the effects of changing weather conditions and incidence angle 

of light source on the reflection signal to develop strategies for the handling of 

these interferences. Furthermore, the developed models should be tested on vary-

ing sites and vegetation periods in order to enhance the robustness and portability 

of these models under other environmental conditions. 
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9 Summary 

 

Productivity, botanical composition and forage quality of legume-grass swards are 

important factors for successful arable farming in both organic and conventional 

farming systems. As these attributes can vary considerably within a field, a non-

destructive method of detection while doing other tasks would facilitate a more 

targeted management of crops, forage and nutrients in the soil-plant-animal sys-

tem.  

This study was undertaken to explore the potential of field spectral measurements 

for a non destructive prediction of dry matter (DM) yield, legume proportion in 

the sward, metabolizable energy (ME), ash content, crude protein (CP) and acid 

detergent fiber (ADF) of legume-grass mixtures. Two experiments were con-

ducted in a greenhouse under controlled conditions which allowed to collect spec-

tral measurements which were free from interferences such as wind, passing 

clouds and changing angles of solar irradiation. In a second step this initial inves-

tigation was evaluated in the field by a two year experiment with the same leg-

ume-grass swards. Several techniques for analysis of the hyperspectral data set 

(350-2500 nm) were examined in this study: four vegetation indices (VIs): simple 

ratio (SR), normalized difference vegetation index (NDVI), enhanced vegetation 

index (EVI) and red edge position (REP), two-waveband reflectance ratios, modi-

fied partial least squares (MPLS) regression and stepwise multiple linear regres-

sion (SMLR). 

The first and second greenhouse experiments comprised a sample size of 80 and 

192 experimental swards, respectively. Pure swards of red clover (Trifolium prat-

ense L.), white clover (Trifolium repens L.) and lucerne (Medicago sativa L.) as 

well as binary mixtures of each legume with perennial ryegrass (Lolium perenne 

L.) in the first experiment and with annual ryegrass (Lolium multiflorum Lam. ssp. 

alternativum) in the second experiment were tested. Growth stages ranged from 

tillering to start of flowering and the proportion of legumes from 0 to 92 %. Dry 

matter yield prediction by MPLS and SMLR gave the largest R² values ranging 
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from 0.85 to 0.99 with standard errors of cross validation (SECV) differing be-

tween 9 and 28 g DM m-2. The prediction of DM yield by VIs resulted in R² val-

ues of 0.87 to 0.90 and standard errors of 4 to 20 g DM m-2 for swards with large 

leaf to stem ratios; EVI was the most accurate. For more mature and open swards 

VI-based detection of DM yield was not possible. The contribution of legumes to 

the sward could be determined at a constant DM yield level by the VIs, but this 

was not possible when the level of DM yield varied. 

The two year field experiment represented a wide range of different legume-grass 

swards [(Lolium perenne (L.), Trifolium pratense (L.), Trifolium repens (L.), 

Medicago sativa (L.) and Lotus corniculatus (L.)], legume proportion (0 to 100% 

of DM) and growth stages (beginning of tillering to end of flowering). In total 459 

legume-grass samples were investigated. Similar to the greenhouse experiments 

DM yield prediction by MPLS and SMLR gave the best R² values ranging in 

cross validation from 0.74 to 0.92 with a standard error below 92 g DM m-2. The 

DM yield prediction by VIs resulted in unsatisfactory accuracies. Prediction accu-

racy for MPLS and SMLR models to determine DM yield in cross validation were 

still acceptable (0.61≤R²≤0.88; 70.0≤SECV≤114.2) even with a reduced spectral 

data set (630 to 1000 nm with a resolution of 10 nm). 

To explore the potential of field spectral measurements for the prediction of the 

forage quality constituents ME, ash, CP and ADF, the field data of the second 

year, comprising a population of 200 legume-grass swards [Lolium perenne (L.), 

Trifolium repens (L.), Trifolium pratense (L.)], was investigated. Forage quality 

constituents had weak relationships with the developed reflectance ratios, whereas 

hyperspectral analysis by MPLS and SMLR resulted in high prediction accuracy 

in cross validation (0.70≤R²≤0.94; 0.4≤SECV≤3.1). Even with a reduced spectral 

data set (630 to 1000 nm) estimates of MPLS and SMLR models were still ac-

ceptable for forage ash (0.62≤R²≤0.78; 0.9≤SECV≤1.0) and CP (0.83≤R²≤0.86; 

2.9≤SECV≤3.7) in cross validation. 

Field spectroscopy has shown its potential and proved its usefulness for the pre-

diction of DM yield, ash content and CP across a wide range of legume proportion 

and growth stage. In all investigations prediction accuracy of DM yield, ash con-
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tent and CP could be improved by legume-specific calibrations which included 

mixtures and pure swards of perennial ryegrass and of the respective legume spe-

cies. The comparison between the greenhouse and the field experiments shows 

that the interaction between spectral reflectance and weather conditions as well as 

incidence angle of light interfered with an accurate determination of DM yield. 

Further research is hence needed to improve the validity of spectral measurements 

in the field. Furthermore, the developed models should be tested on varying sites 

and vegetation periods to enhance the robustness and portability of the models to 

other environmental conditions. 
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10 Zusammenfassung 

 

Sowohl in der ökologischen als auch in der konventionellen Landwirtschaft sind 

Produktivität, Bestandszusammensetzung und Futterqualität von Legumino-

sengras-Beständen wichtige Voraussetzungen für einen erfolgreichen Feldfutter-

bau. Diese Parameter können jedoch innerhalb eines Feldes beachtlichen Schwan-

kungen unterworfen sein, so dass eine nicht destruktive Erfassung von Produktivi-

tät, Bestandszusammensetzung und Futterqualität während der Feldarbeit ein ver-

bessertes Management der Leguminosengras-Bestände, der Fütterung sowie der 

Düngung ermöglichen würde. 

Die vorliegende Untersuchung evaluiert das Potenzial feldspektroskopischer Mes-

sungen für die Erfassung des Trockenmasseertrags (TM-Ertrags), des Legumino-

senanteils in den Pflanzenbeständen, der metabolisierbaren Energie (ME), des 

Aschegehalts, des Rohproteins (RP) und des Acid Detergent Fibre (ADF) von 

Leguminosengras-Beständen. Dafür wurden zwei Gewächshausversuche durchge-

führt, die es ermöglichten, die spektroskopischen Messungen unter kontrollierten 

Bedingungen durchzuführen: frei von Störungen durch Wind, vorbeiziehende 

Wolken und sich ändernde Winkel der Sonneneinstrahlung. Des Weiteren wurde 

ein zweijähriger Freilandversuch mit den gleichen Leguminosengras-Beständen 

durchgeführt, um den Einsatz feldspektroskopischer Messungen unter Praxisbe-

dingungen zu prüfen. Verschiedene Methoden zur Auswertung der hyperspektra-

len Datensätze wurden untersucht: vier Vegetationsindizes: Simple Ratio (SR), 

Normalized Difference Vegetation Index (NDVI), Enhanced Vegetation Index 

(EVI) und Red Edge Position (REP), die Entwicklung von Reflexionsquotienten 

aus den Messwerten zweier Wellenlängenbereiche, Modified Partial Least 

Squares (MPLS) Regression und Stepwise Multiple Linear Regression (SMLR). 

Der erste und zweite Gewächshausversuch umfaßte einen Probenumfang von 80 

bzw. 192 Leguminosengras-Beständen. Untersucht wurden Reinsaaten und binäre 

Leguminosengras-Gemenge aus Rotklee (Trifolium pratense L.), Weißklee (Trifo-

lium repens L.), Luzerne (Medicago sativa L.) und Deutschem Weidelgras (Loli-
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um perenne L.) im ersten Versuch, sowie Einjährigem Weidelgras (Lolium mul-

tiflorum Lam. ssp. alternativum) im zweiten Versuch. Die untersuchten Bestände 

umfassten Vegetationsstadien von der Bestockung/Bildung von Seitensprossen bis 

zur Blüte. Der Anteil der Leguminosen in den Pflanzenbeständen schwankte zwi-

schen 0 und 92%. Mit MPLS und SMLR konnte der TM-Ertrag am Besten be-

stimmt werden, die Werte des Bestimmtheitsmaßes (R²) lagen dabei zwischen 

0.85 und 0.99 und der Standardfehler der Kreuzvalidation (SECV) zwischen 9 

und 28 g TM m-2. Die Schätzung des TM-Ertrags durch die VIs ergab im ersten 

Gewächshausversuch mit Pflanzenbeständen, die ein hohes Blatt-zu-Stängel-

Verhältnis aufwiesen, gute Ergebnisse (0.87≤R²≤0.9 und 4≤Standardfehler ≤20), 

wobei die größte Genauigkeit mit dem EVI erzielt wurde. Dagegen war die TM-

Ertragsschätzung durch VIs im zweiten Gewächshausversuch bei älteren und 

gleichzeitig lichteren Pflanzenbeständen nicht möglich. Der Leguminosenanteil 

im Pflanzenbestand konnte nur bei einem konstanten TM-Ertrag bestimmt wer-

den.  

Im zweijährigen Feldversuch wurden Reinsaaten und binäre Gemenge aus Lolium 

perenne (L.), Trifolium pratense (L.), Trifolium repens (L.), Medicago sativa (L.) 

und Lotus corniculatus (L.) untersucht. Insgesamt wurden 459 Leguminosengras-

Proben mit unterschiedlichen Leguminosenanteilen in den Pflanzenbeständen (0-

100%) und Vegetationsstadien (Anfang Bestockung/Bildung von Seitensprossen 

bis Ende Blüte) erhoben. Ähnlich wie bei den Gewächshausversuchen, wurden 

mit MPLS und SMLR die besten Ergebnisse erzielt (0.74≤R²≤0.92; SECV<92 g 

TM m-2). Mit den VIs konnte der TM-Ertrag nur unbefriedigend bestimmt wer-

den. Trotz der TM-Ertragsbestimmung durch einen reduzierten Spektraldatensatz 

(630 bis 1000 nm mit einer Auflösung von 10 nm) waren die Ergebnisse der 

Kreuzvalidation für MPLS und SMLR befriedigend (0.61≤R²≤0.88; 

70.0≤SECV≤114.2). 

Um das Potenzial feldspektroskopischer Messungen für die Erfassung der Futter-

qualitätsparameter ME, Aschegehalt, RP und ADF zu bestimmen, wurden die 

Felddaten aus dem zweiten Freiland-Versuchsjahr untersucht. Dafür wurden ins-

gesamt 200 Proben von Reinsaaten und binären Gemengen aus Lolium perenne 

(L.), Trifolium repens (L.) und Trifolium pratense (L.) verwendet. Die Futterqua-
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litätsparameter und die entsprechend entwickelten Reflexionsquotienten waren 

nur schwach miteinander korreliert. Dagegen führte die hyperspektrale Datenaus-

wertung mittels MPLS und SMLR zu guten Ergebnissen in der Kreuzvalidation 

(0.70≤R²≤0.94; 0.4≤SECV≤3.1). Die Schätzergebnisse der MPLS und SMLR in 

der Kreuzvalidation waren mit dem reduzierten Spektraldatensatz (630 bis 1000 

nm mit einer Auflösung von 10 nm) für den Aschegehalt (0.62≤R²≤0.78; 

0.9≤SECV≤1.0) und für RP (0.83≤R²≤0.86; 2.9≤SECV≤3.7) befriedigend bzw. 

gut. 

Die vorliegende Untersuchung bestätigt die Eignung feldspektroskopischer Mes-

sungen für die Bestimmung des TM-Ertrags, des Aschegehalts und des Rohprote-

ins. Die Schätzgenauigkeit dieser Parameter konnte in allen Untersuchungen 

durch leguminosen-spezifische Kalibrationen verbessert werden. Der Vergleich 

zwischen Gewächshaus- und Freilandversuch zeigt, dass Änderungen der Witte-

rung sowie des Sonneneinstrahlungswinkels die genaue Bestimmung des TM-

Ertrags erschwerten. Weitere Untersuchungen sind nötig, um die Güte spektraler 

Messungen im Feld zu verbessern. Darüber hinaus wäre es sinnvoll, die Robust-

heit und Übertragbarkeit der Modelle auf andere Umweltbedingungen zu prüfen 

und gegebenenfalls in unterschiedlichen Gegenden und Vegetationsperioden wei-

ter zu entwickeln. 
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