
CD-Systems of Restarting Automata Governed
by Explicit Enable and Disable Conditions

Friedrich Otto

Fachbereich Elektrotechnik/Informatik, Universität Kassel
34109 Kassel, Germany

otto@theory.informatik.uni-kassel.de

Abstract. We introduce a new mode of operation for CD-systems of
restarting automata by providing explicit enable and disable conditions
in the form of regular constraints. We show that, for each CD-systemM
of restarting automata and each mode m of operation considered by
Messerschmidt and Otto, there exists a CD-systemM′ of restarting au-
tomata of the same type asM that, working in the new mode ed, accepts
the language Lm(M) that M accepts in mode m. Further, we will see
that in mode ed, a locally deterministic CD-system of restarting au-
tomata of type RR(W)(W) can be simulated by a locally deterministic
CD-system of restarting automata of the more restricted type R(W)(W).
This is the first time that a non-monotone type of R-automaton without
auxiliary symbols is shown to be as expressive as the corresponding type
of RR-automaton.

Keywords: Restarting automaton, CD-system, modes of operation.

1 Introduction

The restarting automaton was introduced by Jančar et. al. as a formal tool to
model the analysis by reduction, which is a technique used in linguistics to an-
alyze sentences of natural languages [3]. This technique consists in a stepwise
simplification of a given sentence in such a way that the correctness or incor-
rectness of the sentence is not affected. It is applied primarily in languages that
have a free word order.

A (one-way) restarting automaton, RRWW-automaton for short, is a de-
vice M that consists of a finite-state control, a flexible tape containing a word
delimited by sentinels, and a read/write window of a fixed size. This window is
moved from left to right until the control decides (nondeterministically) that the
content of the window should be rewritten by some shorter string. In fact, the
new string may contain auxiliary symbols that do not belong to the input al-
phabet. After a rewrite, M can continue to move its window until it either halts
and accepts, or halts and rejects, or restarts, that is, it places its window over
the left end of the tape, and reenters the initial state. Thus, each computation
of M can be described through a sequence of cycles that is followed by a tail
(which is the part of a computation that follows after the last restart step).

2 F. Otto

Many restricted types of restarting automata have been studied and put into
correspondence to more classical classes of formal languages. For a recent survey
see [9] or [10]. Also further extensions of the model have been considered. In par-
ticular, in [5] cooperating distributed systems (CD-systens) of restarting auto-
mata have been introduced, and it has been shown that CD-systems of restarting
automata working in mode = 1 correspond to the nonforgetting restarting auto-
mata of Messerschmidt and Stamer [4, 8]. Also various other modes of operation
were introduced in that paper. In the = j mode (j ≥ 2) the active component
automaton is required to execute exactly j cycles, while in the t mode the active
component stays active until it cannot apply another meta-instruction anymore.
In that situation a successor component takes over and procedes with the com-
putation. Should that component be unable to execute any meta-instruction at
all, neither a rewriting one nor an accepting one, then the computation fails.
While the former mode is static, as the number of cycles executed by the ac-
itve component automaton is always the same, independent of the actual tape
contents, the latter mode is dynamic, as the number of cycles executed by the
active component automaton depends on the tape contents and that component
itself.

Here we introduce and study another dynamic mode of operation for CD-
systems of restarting automata by associating explicit enable and disable condi-
tions in the form of regular expressions with each component automaton. A com-
ponent automaton can only become active if at that moment its enable condition
is satisfied by the current tape contents, and it then stays active until its disable
condition is satisfied by the (then modified) tape contents. This is motivated by
similar modes of operation considered for CD-grammar systems [1, 2]. We study
the expressive power of CD-systems of restarting automata working under this
mode of operation, which we call ed mode. We will see that, for each CD-system
M of restarting automata and each mode m of operation considered in [5], there
exists a CD-system M′ of restarting automata of the same type as M that,
working in mode ed, accepts the language Lm(M) that M accepts in mode m.
In fact, the mode = 1 and mode t computations of a CD-system of restarting
automata can be simulated by mode ed computations of the same CD-system,
if appropriate enable and disable conditions are chosen. On the other hand, the
mode ed computations of a CD-system of RR(W)(W)-automata can be simulated
by mode = 1 computations of a modified CD-system of the same type of restart-
ing automata, which proves that CD-systems of RR(W)(W)-automata working
in mode = 1 and CD-systems of RR(W)(W)-automata working in mode ed have
the same expressive power. Actually these results also extend to CD-systems
of RR(W)(W)-automata that are locally deterministic or globally deterministic.
However, for strictly deterministic CD-systems of R(R)(W)-automata, the ex-
pressive power is properly increased by going from mode = 1 computations to
mode ed computations. Finally, we will see that in mode ed, a locally determin-
istic CD-system of restarting automata of type RR(W)(W) can be simulated by
a locally deterministic CD-system of restarting automata of the more restricted
type R(W)(W). This is the first time that a non-monotone type of R-automaton

CD-Systems of Restarting Automata 3

without auxiliary symbols is shown to be as expressive as the corresponding type
of RR-automaton.

This paper is structured as follows. In Section 2 we introduce CD-systems of
restarting automata. In Section 3 we define the new mode of operation and give
an example. Then in Section 4 we compare the expressive power of CD-systems of
restarting automata working in mode ed to that of CD-systems of the same type
working in other modes of operation. In Section 5 we carry our investigations
over to the various types of deterministic CD-systems of restarting automata,
and in Section 6 we establish the equivalence between locally deterministic CD-
R(W)(W)-systems and locally deterministic CD-RR(W)(W)-systems working in
mode ed. The paper closes with a number of open problems in Section 7.

2 Definitions

We first describe in short the types of restarting automata we will be dealing
with. Then we restate the definition of a CD-system of restarting automata
from [5].

A one-way restarting automaton, abbreviated as RRWW-automaton, is a one-
tape machine that is described by an 8-tuple M = (Q,Σ, Γ, c, $, q0, k, δ), where
Q is a finite set of states, Σ is a finite input alphabet, Γ is a finite tape alphabet
containing Σ, the symbols c, $ 6∈ Γ serve as markers for the left and right border
of the work space, respectively, q0 ∈ Q is the initial state, k ≥ 1 is the size of
the read/write window, and δ is the transition relation that associates a finite
set of transition steps to each pair (q, u) consisting of a state q ∈ Q and a
possible contents u of the read/write window. There are four types of transition
steps: move-right steps, rewrite steps, restart steps, and accept steps. However,
the behaviour of M can be described more succinctly through a finite set of
so-called meta-instructions (see below).

A configuration of M is described by a string αqβ, where q ∈ Q, and either
α = ε (the empty word) and β ∈ {c} · Γ ∗ · {$} or α ∈ {c} · Γ ∗ and β ∈ Γ ∗ · {$};
here q represents the current state, αβ is the current content of the tape, and it is
understood that the head scans the first k symbols of β or all of β when |β| ≤ k.
A restarting configuration is of the form q0cw$, where w ∈ Γ ∗; if w ∈ Σ∗, then
q0cw$ is an initial configuration.

A rewriting meta-instruction for M has the form (E1, u→ v,E2), where E1

and E2 are regular expressions, and u, v ∈ Γ ∗ are words satisfying k ≥ |u| > |v|.
To execute a cycle M chooses a meta-instruction of the form (E1, u→ v,E2). On
trying to execute this meta-instruction M will get stuck (and so reject) starting
from the restarting configuration q0cw$, if w does not admit a factorization of the
form w = w1uw2 such that cw1 ∈ L(E1) and w2$ ∈ L(E2). On the other hand,
if w does have factorizations of this form, then one such factorization is chosen
nondeterministically, and q0cw$ is transformed into the restarting configuration
q0cw1vw2$. This computation, which is called a cycle, is expressed as w `cM

4 F. Otto

w1vw2. In order to describe the tails of accepting computations we use accepting
meta-instructions of the form (E1,Accept), which simply accepts the strings
from the regular language L(E1).

A computation of M now consists of a finite sequence of cycles that is followed
by a tail computation. An input word w ∈ Σ∗ is accepted by M , if there is a
computation of M which starts with the initial configuration q0cw$, and which
finishes by executing an accepting meta-instruction. By L(M) we denote the
language consisting of all words accepted by M .

We are also interested in various restricted types of restarting automata.
They are obtained by combining two types of restrictions:

(a) Restrictions on the movement of the read/write window (expressed by the
first part of the class name): RR- denotes no restriction, and R- means that
each rewrite step is immediately followed by a restart.

(b) Restrictions on the rewrite-instructions (expressed by the second part of
the class name): -WW denotes no restriction, -W means that no auxiliary
symbols are available (that is, Γ = Σ), and -ε means that no auxiliary
symbols are available and that each rewrite step is simply a deletion (that
is, if the rewrite operation u→ v occurs in a meta-instruction of M , then v
is obtained from u by deleting some symbols).

Obviously, a rewriting meta-instruction for an RWW-automaton has the form
(E1, u→ v, Γ ∗ · $), which will be abbreviated as (E1, u→ v).

A cooperating distributed system of RRWW-automata (or a CD-RRWW-
system for short) consists of a finite collectionM := ((Mi, σi)i∈I , I0) of RRWW-
automata Mi = (Qi, Σ, Γi, c, $, q

(i)
0 , k, δi) (i ∈ I), successor relations σi ⊆ I

(i ∈ I), and a subset I0 ⊆ I of initial indices. Here it is required that Qi∩Qj = ∅
for all i, j ∈ I, i 6= j, that I0 6= ∅, that σi 6= ∅ for all i ∈ I, and that i 6∈ σi for all
i ∈ I. Further, let m be one of the following modes of operation, where j ≥ 1:

= j : execute exactly j cycles;
≤ j : execute at most j cycles;
≥ j : execute at least j cycles;

t : continue until no more cycle can be executed.

The computation of M in mode = j (≤ j, ≥ j) on an input word w pro-
ceeds as follows. First an index i0 ∈ I0 is chosen nondeterministically. Then
the RRWW-automaton Mi0 starts the computation with the initial configura-
tion q

(i0)
0 cw$, and executes j (at most j, at least j) cycles. Thereafter an index

i1 ∈ σi0 is chosen nondeterministically, and Mi1 continues the computation by
executing (at most, at least) j cycles. This continues until, for some l ≥ 0, the
machine Mil accepts. Should at some stage the chosen machine Mil be unable
to execute the required number of cycles, then the computation fails.

In mode t the chosen automaton Mil continues with the computation until it
either accepts, in which case M accepts, or until it can neither execute another

CD-Systems of Restarting Automata 5

cycle nor an accepting tail, in which case an automaton Mil+1 with il+1 ∈ σil
takes over. Should this machine not be able to execute a cycle or an accepting
tail, then the computation of M fails.

By Lm(M) we denote the language that the CD-RRWW-system M accepts
in mode m. It consists of all words w ∈ Σ∗ that are accepted by M in mode m
as described above. If X is any of the above types of restarting automata, then
a CD-X-system is a CD-RRWW-system for which all component automata are
of type X. By Lm(CD-X) we denote the class of languages that are accepted by
CD-X-systems working in mode m.

3 A New Mode of Operation

Let M := ((Mi, σi)i∈I , I0) be a CD-RRWW-system, and let Si, Ti be regular
expressions that are associated to the component automaton Mi (i ∈ I). The
expression Si is called the enable condition of Mi, while Ti is the disable condition
(or termination condition) of Mi. We say that M is working in mode ed with
regular constraints (Si, Ti)i∈I if, given an input word w ∈ Σ∗, M proceeds as
follows:

– An initial index i0 ∈ I0 is chosen nondeterministically. If the current tape
content (that is, the string cw$) does not belong to the regular language
L(Si0), then the computation fails. Otherwise, Mi0 applies one of its meta-
instructions. If that meta-instruction is accepting, then Mi0 accepts, and so
does M. Otherwise Mi0 executes a cycle of the form w `cMi0

w1. If cw1$
does not belong to the disable language L(Ti0), then Mi0 continues with
another cycle. This process continues until either Mi0 accepts, in which case
M accepts the given input, or until Mi0 gets stuck (that is, it cannot apply
another meta-instruction anymore), in which case the current computation
ofM fails, or until the tape content cwi$ produced belongs to the language
L(Ti0), in which case the current computation of Mi0 terminates.

– In the latter case a successor index i1 ∈ σi0 is chosen nondeterministically.
If the current tape content (that is, the string cwi$) does not belong to the
regular language L(Si1), then the computation fails. Otherwise, the compu-
tation continues with Mi1 as described above. This continues until either the
active component accepts, or until the computation fails.

By Led(M) we denote the language consisting of all words w ∈ Σ∗ that the
CD-system M accepts in mode ed. Further, by Led(CD-RRWW) we denote the
class of languages that are accepted by CD-RRWW-systems working in mode ed.

Example 1. Let M := ((Mi, σi)i∈I , I0) be the CD-RW-system that is specified
by I := {0, 1, 2}, I0 := {0}, σ0 := {1}, σ1 := {2}, σ2 := {0}, where the RW-
automata M0,M1, and M2 are given through the following meta-instructions.
Here Σ0 := {a, b} and x, y ∈ Σ0:

6 F. Otto

M0 : (c · ((Σ2
0)+ · xy ·#)+ · (Σ2

0)+, xy · $→ x · $),
(c · (xy ·#)+ · xy · $,Accept),

M1 : (c · ((Σ2
0)+ ·Σ0 ·#)∗ · (Σ2

0)+, xy ·#→ x ·#),

M2 : (c · ((Σ2
0)+ ·#)∗ · (Σ2

0)+, x ·#→ #),
(c · ((Σ2

0)+ ·#)+ · (Σ2
0)+, x · $→ $).

In [7] Proposition 13 it is shown that Lt(M) coincides with the iterated copy
language Lcopy∗ := {w(#w)n | w ∈ (Σ2

0)+, n ≥ 1 }. Now we assign regular
enable and disable conditions to the components of the system M:

S0 := c · ((Σ2
0)+ ·#)+ · (Σ2

0)+ · $,
T0 := c · ((Σ2

0)+ ·#)+ · (Σ2
0)+ ·Σ0 · $,

S1 := T0,
T1 := c · ((Σ2

0)+ ·Σ0 ·#)+ · (Σ2
0)+ ·Σ0 · $,

S2 := T1,
T2 := S0.

Observe that Lcopy∗ ⊆ L(S0) holds. Given an input word w ∈ Σ∗, M will
reject immediately if c · w · $ 6∈ L(S0); otherwise, w can be written as w =
w0#w1# . . .#wn for some words w0, . . . , wn ∈ (Σ2

0)+ and some integer n ≥ 1.
If all factors wi are of length 2, and if they all coincide, then x ∈ Lcopy∗ , and M0

accepts in a tail computation. If all factors are of length at least 4, and if they
all end with the same suffix xy of length 2, then M0 executes the cycle

w = w0#w1# . . .#wn `cM0
w0#w1# . . .#znx =: x1,

where wi = zixy for all i = 0, . . . , n. In all remaining cases M0 will reject, but
then w 6∈ Lcopy∗ anyway.

So let us assume that M0 executes the cycle above. As c · x1 · $ ∈ L(T0), M0

terminates after this cycle, and M1 takes over. As S1 = T0, the enable condition
of M1 is satisfied, and M1 performs the following computation:

x1 = w0#w1# . . .#znx `c
∗

M1
z0x#z1x# . . .#znx =: x2.

As c · x2 · $ ∈ L(T1), M1 now terminates, and M2 takes over, which is possible
as S2 = T1 holds. Now M2 performs the computation

x2 = z0x#z1x# . . .#znx `c
∗

M2
z0#z1# . . .#zn =: x3,

and as c · x3 · $ ∈ L(T2), M2 then terminates. Now M0 takes over again, and as
T2 = S0, this is indeed possible. Inductively it follows that the input word w is
accepted if and only if w belongs to the language Lcopy∗ , that is, it follows that
Led(M) = Lcopy∗ holds. Thus, using the given enable and disable conditionsM
accepts in mode ed the same language that it accepts in mode t.

Below we will see that this is not a coincidence, but that in fact mode ed
computations can always simulate the mode t computations of a CD-system of
restarting automata.

CD-Systems of Restarting Automata 7

4 On the Power of Enable and Disable Conditions

First we compare the expressive power of mode ed computations to that of
mode t computations.

Theorem 1. Let M := ((Mi, σi)i∈I , I0) be a CD-X-system for any X ∈
{R,RR,RW,RRW,RWW,RRWW}. Then there exists a collection of regular en-
able and disable conditions (Si, Ti)i∈I such that, with respect to these conditions,
the languages Led(M) and Lt(M) coincide.

Proof. Let M = ((Mi, σi)i∈I , I0) be a CD-X-system, where each component Mi

is given through a sequence of meta-instructions (I(i)
0 , I

(i)
1 , . . . , I

(i)
mi). Here we can

assume without loss of generality that I(i)
0 = (E(i)

0 ,Accept) is the only accepting
meta-instruction of Mi, and that the rewriting meta-instruction I

(i)
j is of the

form (E(i)
j , u

(i)
j → v

(i)
j , F

(i)
j) for all 1 ≤ j ≤ mi, and all i ∈ I. We now define the

enable and disable conditions as follows:

Si := E
(i)
0 ∪

⋃mi

µ=1(E(i)
µ · u(i)

µ · F (i)
µ),

Ti := (c · Γ ∗ · $) ∩ ((Γ ∪ {c, $})∗ r Si).

Then, for x ∈ Γ ∗, we see that c · x · $ belongs to the set L(Si) if and only
there exists a meta-instruction of Mi that is applicable to the restarting con-
figuration q

(i)
0 cx$. Thus, if component Mi is called, then the enable condition

Si just ensures that Mi can apply a meta-instruction to the current restarting
configuration. Further, the string cx′$ belongs to the set L(Ti) if and only if no
meta-instruction of Mi applies to the restarting copnfiguration q

(i)
0 cx′$. Thus,

this disable condition is met at the end of a cycle of Mi if and only if Mi is
not able to execute another meta-instruction. But this shows that under these
enable and disable conditions the mode ed computations ofM coincide with the
mode t computations of M. Thus, Led(M) = Lt(M) follows. ut

An analogous result can be established for the = 1 mode.

Theorem 2. Let M := ((Mi, σi)i∈I , I0) be a CD-X-system for any X ∈
{R,RR,RW,RRW,RWW,RRWW}. Then there exists a collection of regular en-
able and disable conditions (Si, Ti)i∈I such that, with respect to these conditions,
the languages Led(M) and L=1(M) coincide.

Proof. Let M = ((Mi, σi)i∈I , I0) be a CD-X-system, where each component Mi

is given through a sequence of meta-instructions (I(i)
0 , I

(i)
1 , . . . , I

(i)
mi). As above

we can assume that I(i)
0 = (E(i)

0 ,Accept) is the only accepting meta-instruction
of Mi, and that the rewriting meta-instruction I

(i)
j is of the form (E(i)

j , u
(i)
j →

v
(i)
j , F

(i)
j) for all 1 ≤ j ≤ mi, and all i ∈ I. We now define the enable and disable

conditions as follows:

Si := E
(i)
0 ∪

⋃mi

µ=1(E(i)
µ · u(i)

µ · F (i)
µ),

Ti := (c · Γ ∗ · $).

8 F. Otto

Then, for x ∈ Γ ∗, we see that c · x · $ belongs to the set L(Si) if and only there
exists a meta-instruction of Mi that is applicable to the restarting configuration
q
(i)
0 cx$. Thus, if componentMi is called, then the enable condition Si just ensures

that Mi can apply a meta-instruction to the current restarting configuration.
Further, each string cy$ with y ∈ Γ ∗ belongs to the set L(Ti). Thus, this disable
condition is met at the end of the first cycle of Mi. This shows that under these
enable and disable conditions the mode ed computations ofM coincide with the
mode = 1 computations of M. Thus, Led(M) = L=1(M) follows. ut

A CD-system of restarting automata that is working in mode = j can also
be simulated by a CD-system of restarting automata that is working in mode
ed. However, the simulating system has several component automata for each
component of the system being simulated.

Theorem 3. Let M := ((Mi, σi)i∈I , I0) be a CD-X-system for any X ∈
{R,RR,RW,RRW,RWW,RRWW}, and let j ≥ 2. Then there exists a CD-X-
system M′ := ((M ′(i,µ), σ

′
(i,µ))(i,µ)∈I×{1,...,j}, I

′
0) and regular enable and disable

conditions (S(i,µ), T(i,µ)), (i, µ) ∈ I×{1, . . . , j}, such that the languages Led(M′)
and L=j(M) coincide.

Proof. Let M := ((Mi, σi)i∈I , I0) be a CD-X-system, and let j ≥ 2. Again
we assume that each component Mi is given through a sequence of meta-
instructions (I(i)

0 , I
(i)
1 , . . . , I

(i)
mi), where I(i)

0 = (E(i)
0 ,Accept) is the only accepting

meta-instruction of Mi, and the rewriting meta-instruction I
(i)
ν is of the form

(E(i)
ν , u

(i)
ν → v

(i)
ν , F

(i)
ν) for all 1 ≤ ν ≤ mi, and all i ∈ I. For all i ∈ I, we define

the automata M ′(i,µ) (1 ≤ µ ≤ j) as j disjoint copies of the component Mi ofM.
Further, we take I ′0 := { (i, 1) | i ∈ I0 } as set of initial indices, and we define the
successor sets σ′(i,µ) as follows:

σ′(i,µ) := {(i, µ+ 1)} for all i ∈ I and µ = 1, . . . , j − 1,
σ′(i,j) := { (l, 1) | l ∈ σi } for all i ∈ I.

Finally, we introduce the following enable and disable conditions:

S(i,µ) := E
(i)
0 ∪

⋃mi

ν=1(E(i)
ν · u(i)

ν · F (i)
ν) for all i ∈ I and all µ = 1, . . . , j,

T(i,µ) := (c · Γ ∗ · $) for all i ∈ I and all µ = 1, . . . , j.

The enable conditions just ensure that M(i,µ) can apply a meta-instruction to
the current restarting configuration. Further, the disable condition is always
met at the end of the first cycle of M(i,µ). Together with the revised successor
relations this shows that under these enable and disable conditions the mode ed
computations of M′ simulate exactly the mode = j computations of M. Thus,
we see that Led(M′) = L=j(M) holds. ut

To simulate the ≤ j mode by the ed mode we simply take the construction
from the proof of the previous theorem, but we change the successor relations

CD-Systems of Restarting Automata 9

as follows:

σ′(i,µ) := { (l, 1) | l ∈ σi } ∪ {(i, µ+ 1)} for all i ∈ I and µ = 1, . . . , j − 1,
σ′(i,j) := { (l, 1) | l ∈ σi } for all i ∈ I.

This gives the following result.

Corollary 1. Let M := ((Mi, σi)i∈I , I0) be a CD-X-system for any X ∈
{R,RR,RW,RRW,RWW,RRWW}, and let j ≥ 2. Then there exists a CD-X-
system M′ := ((M ′(i,µ), σ

′
(i,µ))(i,µ)∈I×{1,...,j}, I

′
0) and regular enable and disable

conditions (S(i,µ), T(i,µ)), (i, µ) ∈ I×{1, . . . , j}, such that the languages Led(M′)
and L≤j(M) coincide.

Finally, to simulate the ≥ j mode by the ed mode we replace each component
Mi of the system M by j + 1 components, and define the successor relations as
follows:

σ′(i,µ) := {(i, µ+ 1)} for all i ∈ I and µ = 1, . . . , j − 1,
σ′(i,j) := { (l, 1) | l ∈ σi } ∪ {(i, j + 1)} for all i ∈ I,
σ′(i,j+1) := { (l, 1) | l ∈ σi } ∪ {(i, j)} for all i ∈ I.

Corollary 2. Let M := ((Mi, σi)i∈I , I0) be a CD-X-system for any X ∈
{R,RR,RW,RRW,RWW,RRWW}, and let j ≥ 1. Then there exists a CD-X-
system M′ := ((M ′(i,µ), σ

′
(i,µ))(i,µ)∈I×{1,...,j+1}, I

′
0) and regular enable and dis-

able conditions (S(i,µ), T(i,µ)), (i, µ) ∈ I ×{1, . . . , j+ 1}, such that the languages
Led(M′) and L≥j(M) coincide.

Thus, the ed mode is sufficiently powerful to simulate all the other modes
considered so far. On the other hand, it can be shown that for CD-RR(W)(W)-
systems, the = 1 mode is as expressive as the ed mode.

Theorem 4. Let M := ((Mi, σi)i∈I , I0) be a CD-X-system for any X ∈
{RR,RRW,RRWW}, and let (Si, Ti,), i ∈ I, be a collection of regular en-
able and disable conditions for M. Then there exists a CD-X-system M′ :=
((M ′i , σ

′
i)i∈I′ , I

′
0) such that the languages L=1(M′) and Led(M) coincide.

Proof. Let M := ((Mi, σi)i∈I , I0) be a CD-X-system, and let (Si, Ti,), i ∈ I, be
a collection of regular enable and disable conditions for M. Let n := |I| be the
number of components of M. We can assume without loss of generality that
I = {1, . . . , n}.

We define a CD-X-systemM′ := ((M ′i , σ
′
i)i∈I′ , I

′
0) as follows. Each component

Mi of M will be simulated by n + 2 components of M′. In addition, we need
three components for each initial component of M. Accordingly, we take

I ′ := I × {1, . . . , n+ 2} ∪ { (̂i, j) | i ∈ I0, 1 ≤ j ≤ 3 }.

For each i ∈ I and each j ∈ {1, . . . , n+ 2}, M ′(i,j) is a copy of Mi, and for each
i ∈ I0 and each j ∈ {1, 2, 3}, M ′

(̂i,j)
is another copy of Mi. These components

are now modified as follows:

10 F. Otto

– For j = 1, . . . , n, component M ′(i,j) verifies with each of its meta-instructions
that the tape content cw$ of the actual restarting configuration belongs to
the regular set L(Si)∩L(Tj), that is, that it satisfies the enable condition of
component Mi and the disable condition of component Mj . In the affirma-
tive, it just executes the current meta-instruction of Mi, but in the negative
it halts and rejects.

– For j = n + 1, n + 2, component M ′(i,j) verifies with each of its meta-
instructions that the tape content cw$ of the actual restarting configuration
does not belong to the regular set L(Ti), that is, that it does not satisfy the
disable condition of component Mi. In the affirmative, it just executes the
current meta-instruction of Mi, but in the negative it halts and rejects.

– For i ∈ I0, component M ′
(̂i,1)

verifies with each of its meta-instructions that
the tape content cw$ of the actual restarting configuration belongs to the reg-
ular set L(Si), that is, that it satisfies the enable condition of component Mi.
Components M ′

(̂i,2)
and M ′

(̂i,3)
verify with each of their meta-instructions

that the tape content cw$ of the actual restarting configuration does not
belong to the regular set L(Ti), that is, that it does not satisfy the disable
condition of component Mi.

For the initial indices ofM′ be take the set I ′0 := { (̂i, 1) | i ∈ I0 }, and we define
the successor relations as follows:

σ′(i,j) := {(i, n+ 1)} ∪ { (l, i) | l ∈ σi } for all i ∈ I and all 1 ≤ j ≤ n,
σ′(i,n+1) := {(i, n+ 2)} ∪ { (l, i) | l ∈ σi } for all i ∈ I,
σ′(i,n+2) := {(i, n+ 1)} ∪ { (l, i) | l ∈ σi } for all i ∈ I,
σ′

(̂i,1)
:= {(̂i, 2)} ∪ { (l, i) | l ∈ σi } for all i ∈ I0,

σ′
(̂i,2)

:= {(̂i, 3)} ∪ { (l, i) | l ∈ σi } for all i ∈ I0,
σ′

(̂i,3)
:= {(̂i, 2)} ∪ { (l, i) | l ∈ σi } for all i ∈ I0.

Now, given an input w ∈ Σ∗, an index i0 ∈ I0 is chosen, and component Mi0

begins the computation ofM on input w by executing a certain number of cycles.
Actually, it is first checked whether cw$ belongs to the regular set L(Si0), and
then Mi0 continues with the computation until it either terminates (accepting
or non-accepting) or until the tape content cw1$ obtained belongs to the regular
set L(Ti0). Then an index i1 ∈ σi0 is chosen, and component Mi1 continues
with the computation, provided that the tape content belongs to the regular set
L(Si1). This continues until the actual component terminates.

Now let us consider the possible mode = 1 computations of M′ on input w.
Here we can choose the initial component M ′

(̂i0,1)
. It verifies that the tape content

belongs to the regular set L(Si0), and in the affirmative it executes the same cycle
as Mi0 . Then M ′

(̂i0,2)
becomes active. It checks that the current tape content does

not belong to the regular set L(Ti0), and in the affirmative it executes the same
cycle as Mi0 . Thereafter M ′

(̂i0,3)
becomes active. Thus, by alternating between

the latter two components the computation of Mi0 described above is being

CD-Systems of Restarting Automata 11

simulated. At some stage the index (i1, i0) ∈ σ′
(̂i0,j)

(j ∈ {1, 2, 3}) is chosen,
and component M ′(i1,i0) continues with the computation. It verifies that the
actual tape content belongs to the regular set L(Si1) as well as to the regular
set L(Ti0), which corresponds to the situation in the above computation of M
when component Mi1 takes over from component Mi0 . If these constraints are
met, then M ′(i1,i0) executes the same cycle as Mi1 , and then M ′(i1,n+1) becomes
active. It checks that the current tape content does not belong to the regular set
L(Ti1), and in the affirmative it executes the next cycle of Mi1 . It follows that
the computations ofM′ in mode = 1 can simulate all the mode ed computations
of M.

Conversely, it can be shown that the mode = 1 computations of M′ can
only simulate mode ed computations of M. It follows that L=1(M′) = Led(M)
holds. ut

Thus, we have the following consequence.

Corollary 3. For all X ∈ {RR,RRW,RRWW}, Led(CD-X) = L=1(CD-X).

It remains open whether Theorem 4 extends to CD-R(W)(W)-systems.
Thus, it is not known yet whether the inclusion L=1(CD-R(W)(W)) ⊆
Led(CD-R(W)(W)) of Theorem 2 is proper or not.

5 Deterministic CD-Systems of Restarting Automata

Various forms of determinism have been studied for CD-systems of restarting
automata [7]. Here we restate the relevant definitions in short.

A CD-system M := ((Mi, σi)i∈I , I0) of restarting automata is called locally
deterministic if Mi is a deterministic restarting automaton for each i ∈ I. As
the successor system is chosen nondeterministically from among all systems Mj

with j ∈ σi, computations of a locally deterministic CD-system of restarting
automata are in general not completely deterministic.

To avoid this remaining nondeterminism the following variant of determin-
ism has been introduced. A CD-system M := ((Mi, σi)i∈I , I0) is called strictly
deterministic if I0 is a singleton, if Mi is a deterministic restarting automaton, if
|σi| = 1 for each i ∈ I, and if the function σ : I → I that maps each component
to its unique successor is a bijection.

However, the restriction of having at most a single possible successor for each
component system is a rather serious one. Thus, a third notion has been defined.
A CD-system M := ((Mi, σi)i∈I , I0) is called globally deterministic if I0 is a
singleton, if Mi is a deterministic restarting automaton for each i ∈ I, and if, for
each i ∈ I, each restart operation ofMi is combined with an index from the set σi.
Thus, when Mi finishes a part of a computation according to the actual mode
of operation by executing the restart operation δi(q, u) = (Restart, j), where
j ∈ σi, then the component Mj takes over. In this way it is guaranteed that all
computations of a globally deterministic CD-system are deterministic. However,
for a component system Mi there can still be several possible successor systems.

12 F. Otto

This is reminiscent of the way in which nonforgetting restarting automata (see,
e.g., [8]) work.

We use the prefix det-local- to denote locally deterministic CD-systems, the
prefix det-global- to denote globally deterministic CD-systems, and the prefix
det-strict- to denote strictly deterministic CD-systems. For each type of restart-
ing automaton X ∈ {R,RR,RW,RRW, RWW,RRWW}, the following inclusions
hold [7]:

L(det-X) ⊆ L=1(det-strict-CD-X) ⊆ L=1(det-global-CD-X)
⊆ L=1(det-local-CD-X) ⊆ L=1(CD-X).

Concerning the power of enable and disable conditions for the various types
of deterministic CD-systems we have the following results.

Corollary 4. LetM := ((Mi, σi)i∈I , I0) be a CD-X-system that is strictly (glob-
ally, locally) deterministic, where X ∈ {R,RR,RW,RRW,RWW,RRWW}. Then
there exists a collection of regular enable and disable conditions (Si, Ti)i∈I such
that, with respect to these conditions, the languages Led(M) and Lt(M) coincide.

Proof. In the proof of Theorem 1 neither the component automata nor the suc-
cessor relations are modified. Thus, it carries over to all types of deterministic
CD-X-systems. ut

Analogously the following result is obtained.

Corollary 5. LetM := ((Mi, σi)i∈I , I0) be a CD-X-system that is strictly (glob-
ally, locally) deterministic, where X ∈ {R,RR,RW,RRW,RWW,RRWW}. Then
there exists a collection of regular enable and disable conditions (Si, Ti)i∈I such
that, with respect to these conditions, the languages Led(M) and L=1(M) coin-
cide.

For locally deterministic CD-systems we also have the following result.

Corollary 6. Let M := ((Mi, σi)i∈I , I0) be a CD-X-system that is locally de-
terministic, where X ∈ {R,RR,RW,RRW,RWW,RRWW}, let j ≥ 2, and let m
be one of the modes of operation ≤ j, = j, or ≥ j. Then there exists a locally
deterministic CD-X-system M′ and regular enable and disable conditions such
that the languages Led(M′) and Lm(M) coincide.

Proof. Let M := ((Mi, σi)i∈I , I0) be a locally deterministic CD-X-system, let
j ≥ 2, and let m be one of the modes of operation ≤ j, = j, or ≥ j. In the
proof of Theorem 3 the CD-X-system M′ is constructed from M by taking a
finite number of disjoint copies of all the component automata of M, and by
modifying the successor relations and the set of initial indices. Thus, if M is
locally deterministic, then so isM′. The same observation applies to the proofs
of Corollary 1 and Corollary 2. ut

It remains to consider globally deterministic and strictly deterministic CD-
systems. Here we only need to study the mode = j (j ≥ 2), as the other modes
are inherently nondeterministic.

CD-Systems of Restarting Automata 13

Corollary 7. LetM := ((Mi, σi)i∈I , I0) be a CD-X-system that is strictly (glob-
ally) deterministic, where X ∈ {R,RR,RW,RRW,RWW,RRWW}, and let j ≥ 2.
Then there exists a strictly (globally) deterministic CD-X-system M′ and regu-
lar enable and disable conditions such that the languages Led(M′) and L=j(M)
coincide.

Proof. For the case of a strictly deterministic CD-X-system M, we can simply
use the proof of Theorem 3. IfM is a globally deterministic CD-X-system, then
we can still take the same construction. Here, however, we need to describe
which successor index is associated with which restart operation of the various
component automata.

Consider a component Mi of M. In M′ there are j disjoint copies
M ′(i,1), . . . ,M

′
(i,j) of Mi. For µ = 1, . . . , j − 1, the corresponding successor set

σ′(i,µ) is the singleton {(i, µ + 1)}, and hence, this index is associated to all
restart operations of M ′(i,µ). Finally, σ′(i,j) = { (l, 1) | l ∈ σi }. Now to a restart

operation δ′(i,j)(q
(i,j)
r , u) = Restart we associate the successor (l, 1), provided that

l ∈ σi is the successor that is associated with the corresponding restart operation
δi(q

(i)
r , u) = Restart of Mi. Then M′ is globally deterministic, and as before it

follows that Led(M′) = L=j(M) holds. ut

Finally we want to carry Theorem 4 over to the setting of deterministic CD-
systems of restarting automata. In the proof of Theorem 4 a CD-RR(W)(W)-
system M′ is constructed from a given CD-RR(W)(W)-system M. If all com-
ponent automata of M are deterministic, then so are all component automata
of M′. Thus, we have the following result.

Corollary 8. Let M := ((Mi, σi)i∈I , I0) be a locally deterministic CD-X-
system, where X ∈ {RR,RRW,RRWW}, and let (Si, Ti,), i ∈ I, be a collection of
regular enable and disable conditions for M. Then there exists a locally deter-
ministic CD-X-system M′ := ((M ′i , σ

′
i)i∈I′ , I

′
0) such that the languages L=1(M′)

and Led(M) coincide.

For globally deterministic CD-RRWW-systems we have the corresponding
result. However, for these systems we need a different technique for constructing
the system M′.

Theorem 5. Let M := ((Mi, σi)i∈I , I0) be a globally deterministic CD-X-
system, where X ∈ {RR,RRW,RRWW}, and let (Si, Ti,), i ∈ I, be a collection of
regular enable and disable conditions for M. Then there exists a globally deter-
ministic CD-X-system M′ := ((M ′i , σ

′
i)i∈I′ , I

′
0) such that the languages L=1(M′)

and Led(M) coincide.

Proof. Let M := ((Mi, σi)i∈I , i0) be a globally deterministic CD-X-system, and
let (Si, Ti,), i ∈ I, be a collection of regular enable and disable conditions forM.
Let n := |I| be the number of components of M. We can assume without loss
of generality that I = {1, . . . , n}.

14 F. Otto

We define a globally deterministic CD-X-system M′ := ((M ′i , σ
′
i)i∈I′ , i

′
0) as

follows. Each component Mi ofM will be simulated by three components ofM′.
Accordingly, we take I ′ := I × {1, 2, 3}, and take i′0 := (i0, 1). For each i ∈ I,
the three components M ′(i,µ), 1 ≤ µ ≤ 3, are obtained as copies of Mi that are
slightly modified as follows:

– M ′(i,1) verifies with each of its meta-instructions that the tape content cw$ of
the actual restarting configuration belongs to regular set L(Si), that is, that
it satisfies the enable condition of component Mi. In addition, it checks with
each of its rewriting meta-instructions whether the tape content cw1vw2$
produced by applying this meta-instruction belongs to the regular set L(Ti),
that is, whether it satisfies the disable condition of component Mi. In the
affirmative, the restart operation of this meta-instruction is associated to
the index (l, 1), where l ∈ σi is the index that is associated with the corre-
sponding restart operation of Mi. In the negative, that is, if the resulting
tape content does not yet meet the disable condition of Mi, then the restart
operation of this meta-instruction is associated to the index (i, 2).

– M ′(i,2) checks with each of its rewriting meta-instructions whether the tape
content cw1vw2$ produced by applying this meta-instruction belongs to the
regular set L(Ti), that is, whether it satisfies the disable condition of com-
ponent Mi. In the affirmative, the restart operation of this meta-instruction
is associated to the index (l, 1), where l ∈ σi is the index that is associated
with the corresponding restart operation of Mi. In the negative, that is, if the
resulting tape content does not yet meet the disable condition of Mi, then
the restart operation of this meta-instruction is associated to the index (i, 3).

– M ′(i,3) checks with each of its rewriting meta-instructions whether the tape
content cw1vw2$ produced by applying this meta-instruction belongs to the
regular set L(Ti), that is, whether it satisfies the disable condition of com-
ponent Mi. In the affirmative, the restart operation of this meta-instruction
is associated to the index (l, 1), where l ∈ σi is the index that is associated
with the corresponding restart operation of Mi. In the negative, that is, if the
resulting tape content does not yet meet the disable condition of Mi, then
the restart operation of this meta-instruction is associated to the index (i, 2).

Thus, M′ is indeed a globally deterministic CD-X-system. Further, it is easily
seen that in mode = 1 it simulates the mode ed computations of M. It follows
that L=1(M′) = Led(M) holds. ut

It is open whether Corollary 8 and Theorem 5 extend to CD-R(W)(W)-
systems. Further, it remains currently open whether a result corresponding to
Theorem 5 also holds for strictly deterministic CD-RRWW-systems. At least for
strictly deterministic CD-systems of restarting automata without auxiliary sym-
bols, that is, for strictly deterministic CD-RR- and CD-RRW-systems, it does
not hold as shown by the following results. Recall the iterated copy language
Lcopy∗ := {w(#w)n | w ∈ (Σ2

0)+, n ≥ 1 } from Example 1, where Σ0 := {a, b}.
In [6, 7] the following results are established.

CD-Systems of Restarting Automata 15

Proposition 1. Lcopy∗ is accepted by

– a globally deterministic CD-R-system working in mode = 1,
– a strictly deterministic CD-RWW-system working in mode = 1, and
– a strictly deterministic CD-R-system working in mode t,

but it is not accepted by any strictly deterministic CD-RRW-system working in
mode = 1.

Thus, Corollary 4 implies that the language Lcopy∗ is accepted by a strictly
deterministic CD-R-system working in mode ed. Together with Corollary 5 this
yields the following proper inclusion.

Corollary 9. For all X ∈ {R,RR,RW,RRW},

L=1(det-strict-CD-X) (Led(det-strict-CD-X).

6 CD-R-Systems Versus CD-RR-Systems

Here we compare the expressive power of CD-RR(W)(W)-systems working in
mode ed to that of CD-R(W)(W)-systems working in mode ed. To this end we
first study the information that a description by meta-instructions reveals on a
deterministic RRWW-automaton.

Let M = (Q,Σ, Γ, c, $, q0, k, δ) be a deterministic RRWW-automaton, and let
I0 = (E0,Accept) and Ii = (Ei, ui → vi, E

′
i) (1 ≤ i ≤ n) be a sequence of meta-

instructions that describe the behaviour of M . Here we can assume without loss
of generality that |ui| = k holds for all i = 1, . . . , n. As M is deterministic, the
above meta-instructions are used as follows. Assume that M is in the restarting
configuration q0cw$. Then M scans the tape from left to right until it detects
the shortest prefix w1 of w such that w1 = w3ui and cw3 ∈ L(Ei) for some
i ∈ {1, . . . , n}. It then rewrites ui into vi and checks whether the corresponding
suffix w2 of w satisfies the condition that w2$ ∈ L(E′i). At the same time it
checks whether the original tape content cw$ belongs to the language L(E0). If
the latter holds, then M halts and accepts; if cw$ 6∈ L(E0), but w2$ ∈ L(E′i),
then M restarts, which yields the restarting configuration q0cw3viw2$. Finally,
if w2$ ∈ L(E′i) does not hold, either, then M halts and rejects. If no prefix of
the above form is found, then M halts and rejects as well, unless cw$ ∈ L(E0)
holds, in which case M halts and accepts.

Thus, we can replace each regular constraint Ei by a regular constraint Fi
such that

L(Fi) = { cw ∈ L(Ei) | No proper prefix of cwui is in
n⋃
r=1

(L(Er) · ur) },

and the resulting meta-instructions I ′i = (Fi, ui → vi, E
′
i) (1 ≤ i ≤ n) will

describe M together with I0.

16 F. Otto

The new contraints have the following advantage. If

cw$ ∈
n⋃
i=1

(L(Fi) · ui · L(E′i)) ,

then there exist a unique index i ∈ {1, . . . , n} and a unique factorization
w = w1uiw2 such that cw1 ∈ L(Fi) and w2$ ∈ L(E′i) hold. Thus, if it is known
that cw$ ∈

⋃n
i=1 (L(Fi) · ui · L(E′i)) holds, then on detecting a prefix w1 of w

satisfying cw1ui ∈ L(Fi) ·ui, it is guaranteed that the corresponding suffix w2 of
w satisfies the condition w2$ ∈ L(E′i). Observe, however, that in general the in-
tersection L(E0)∩

⋃n
i=1 (L(Fi) · ui · L(E′i)) will not be empty, that is, some words

are accepted by M in tail computations that have a prefix from the language
L(Fi) · ui for some value of i.

We now use the above observation for establishing the following relationship
between locally deterministic CD-RR(W)(W)-systems and locally deterministic
CD-R(W)(W)-systems working in mode ed.

Theorem 6.
For all X ∈ {λ,W,WW}, Led(det-local-CD-RRX) ⊆ Led(det-local-CD-RX).

Proof. Because of Corollary 8 it suffices to consider locally deterministic CD-
RRX-systems that are working in mode = 1. Let M := ((Mi, σi)i∈I , I0) be
a locally deterministic CD-RRX-system, and let L = L=1(M). Each compo-
nent Mi can be described by a finite sequence of meta-instructions of the form
(Ii,0, Ii,1, . . . , Ii,ni

), where Ii,0 = (Ei,0,Accept) is an accepting meta-instruction,
and Ii,j = (Ei,j , ui,j → vi,j , E

′
i,j) (1 ≤ j ≤ ni) are rewriting meta-instructions.

We now construct a locally deterministic CD-RX-system M′ and enable and
disable conditions such that Led(M′) = L holds. In this construction we will
have two components P(i,a) and P(i,c) for each component Mi. Thus, we take
M′ := ((P(i,µ), σ(i,µ))i∈I,µ∈{a,c}, I ′0), where

σ(i,a) := σ(i,c) := { (j, a), (j, c) | j ∈ σi } for all i ∈ I,

and
I ′0 := { (i, a), (i, c) | i ∈ I0 }.

For each index i ∈ I, the component P(i,a) is described by the accepting
meta-instruction Ii,0. Its enable condition S(i,a) describes the language c ·Γ ∗ · $,
where Γ is the (combined) tape alphabet of the components ofM, and its disable
condition T(i,a) describes the same language. If this component is called during
a computation of M′, then the computation necessarily ends: either the tape
content cw$ belongs to the regular language L(Ei,0), and P(i,a) accepts, or it
does not belong to this language, and then P(i,a) rejects.

It remains to define the components P(i,c) and the enable and disable condi-
tions S(i,c) and T(i,c) for all i ∈ I. Let i ∈ I, and let j ∈ {1, . . . , ni}. By Fi,j we

CD-Systems of Restarting Automata 17

denote the regular expression for the language

L(Fi,j) = { cw ∈ L(Ei,j) | No proper prefix of cwui,j is in
ni⋃
r=1

(L(Ei,r) · ui,r) }.

Then we define P(i,c) by the meta-instructions I ′i,j := (Fi,j , ui,j → vi,j) (1 ≤
j ≤ ni), and take S(i,c) and T(i,c) to describe the languages

L(S(i,c)) :=
ni⋃
j=1

(L(Fi,j) · ui,j · L(E′i,j)), and L(T(i,c)) := c · Γ ∗ · $.

If this component is called during a computation of M′, and if cw$ is the
corresponding restarting configuration, then the enable condition S(i,c) checks
whether w admits a factorization of the form w = w1ui,jw2 for some index
j ∈ {1, . . . , ni} such that cw1 ∈ L(Fi,j) and w2$ ∈ L(E′i,j). If such a factorization
does not exist, then P(i,c) halts and rejects. However, we see from the discussion
above that then none of the meta-instruction Ii,j (1 ≤ j ≤ ni) ofMi is applicable,
either. Otherwise, w1ui,j is the shortest prefix of w to which a meta-instruction of
Mi applies. Hence, P(i,c) executes exactly the same cycle that Mi would execute
in this situation. From the disable condition T(i,c) we see that in mode ed the
component P(i,c) will execute a single cycle only. It follows that Led(M′) =
L=1(M) holds. ut

Together with Corollary 8 and the trivial inclusion

Led(det-local-CD-RX) ⊆ Led(det-local-CD-RRX)

this yields the following equalities.

Corollary 10. For all X ∈ {λ,W,WW},

Led(det-local-CD-RX) = Led(det-local-CD-RRX) = L=1(det-local-CD-RRX).

7 Concluding Remarks

Is it possible to extend Theorem 6 to globally deterministic CD-RR(W)(W)-
systems? Let M := ((Mi, σi)i∈I , I0) be a globally deterministic CD-RR(W)(W)-
system, and let L = L=1(M). Each component Mi can be described by
a finite sequence of meta-instructions of the form (Ii,0, Ii,1, . . . , Ii,ni

), where
Ii,0 = (Ei,0,Accept) is an accepting meta-instruction, and Ii,j = (Ei,j , ui,j →
vi,j , E

′
i,j ,Restart(αi,j)) (1 ≤ j ≤ ni) are rewriting meta-instructions Here

αi,j ∈ σi is the unique successor of component Mi that is called once meta-
instruction Ii,j of Mi has been executed successfully. As in the discussion above
Mi must determine the shortest prefix w1 of w such that cw1ui,j ∈ L(Ei,j) · ui,j
for some j ∈ {1, . . . , ni}. However, in contrast to the situation for locally de-
terministic CD-RR(W)(W)-systems, the suffix w2 may influence the subsequent

18 F. Otto

computation of M in an essential way. Assume that there exist indices j 6= r
such that L(Ei,j) ∩ L(Ei,r) 6= ∅, ui,j = ui,r, and vi,j = vi,r, and let w ∈ Γ ∗

have a factorization of the form w = w1uw2 such that cw1 ∈ L(Ei,j) ∩ L(Ei,r)
and u = ui,j = ui,r. Then it depends on the corresponding suffix w2 whether
component αi,j or αi,r is called next. The former happens if w2$ ∈ L(E′i,j), and
the latter happens if w2$ ∈ L(E′i,r) holds.

Now a simulating globally deterministic CD-R(W)(W)-system will have the
difficulty that, after detecting the prefix cw1u and executing the correct rewrite
u = ui,j = ui,r → vi,j = vi,r, it must decide whether to simulate component
Mαi,j

or component Mαi,r
next. Further, as the simulating CD-R(W)(W)-system

is to be globally deterministic, there is only a single successor that is associated
with the current cycle. Hence, it is not possible to carry the construction from
the proof of Theorem 6 over to globally deterministic CD-systems. It remains
open whether or not the corresponding result holds.

Finally, we consider the general case of nondeterministic CD-RR(W)(W)-
systems. Let M = (Q,Σ, Γ, c, $, q0, k, δ) be a nondeterministic RR(W)(W)-
automaton, and let I0 = (E0,Accept) and Ii = (Ei, ui → vi, E

′
i) (1 ≤ i ≤ n) be

a sequence of meta-instructions that describes the behaviour of M . Here we can
assume without loss of generality that |ui| = k holds for all i = 1, . . . , n. As M is
nondeterministic, the above meta-instructions are used as follows. Assume that
M is in the restarting configuration q0cw$. Then M scans the tape from left to
right until it detects a prefix w1 of w such that w1 = w3ui and cw3 ∈ L(Ei)
for some i ∈ {1, . . . , n}. It then rewrites ui into vi and checks whether the cor-
responding suffix w2 of w satisfies the condition that w2$ ∈ L(E′i). Observe
that there may exist a shorter prefix w′1 = w′3uj such that cw′3 ∈ L(Ej) holds,
where the corresponding suffix w′2 may or may not satisfy the condition that
w′2$ ∈ L(E′j). At the same time M checks whether the original tape content cw$
belongs to the language L(E0). If the latter holds, then M may halt and ac-
cept; if w2$ ∈ L(E′i), then M restarts, which yields the restarting configuration
q0cw3viw2$. Finally, if w2$ ∈ L(E′i) does not hold, or if no prefix of the above
form is found, then this particular computation of M fails.

When trying to simulate M (or a CD-RR(W)(W)-system M) by a CD-
R(W)(W)-system M′ working in mode ed, we have the following problem. Even
if the enable condition of a component ofM′ tells us that the current tape con-
tent cw$ belongs to the language L(Ei) · ui · L(E′i), and if it detects a prefix
cw1ui of cw such that cw1 ∈ L(Ei) holds, then this does not guarantee that
the corresponding suffix w2$ is in the language L(E′i). Hence, it is not possible
to carry the construction from the proof of Theorem 6 over to nondeterministic
CD-systems. It remains open whether or not the corresponding result holds.

Also the following questions and problems remain for future work:

1. Does Theorem 4 extend to CD-R-, CD-RW-, and CD-RWW-automata? If so,
then together with Theorem 6 this would imply that also in mode = 1 locally
deterministic CD-R(W)(W)-systems are as expressive as locally deterministic
CD-RR(W)(W)-systems.

CD-Systems of Restarting Automata 19

2. Does Theorem 4 extend to other modes of operation? Or is it possible to
establish a proper separation result, at least for those types of restarting
automata that have no auxiliary symbols?

3. Another topic for research is the question about the number of components
that are needed to accept a certain language. From the proofs above it ap-
pears that less components may be needed in the ed mode of operation than
in the = 1 mode of operation.

References

1. E. Csuhaj-Varjú, J. Dassow, J. Kelemen, and G. Păun. Grammar Systems. A
Grammatical Approach to Distribution and Cooperation, Gordon and Breach, Lon-
don, 1994.

2. J. Dassow and J. Kelemen. Cooperating/Distributed grammar systems: A link
between formal languages and artificial intelligence, Bulletin of the EATCS 45
(1991) 131–145.

3. P. Jančar, F. Mráz, M. Plátek, and J. Vogel. Restarting automata. In: H. Reichel
(ed.), FCT 1995, Proc., Lect. Notes Comput. Sci. 965, Springer, Berlin, 1995, 283–
292.

4. H. Messerschmidt and F. Otto. On nonforgetting restarting automata that are
deterministic and/or monotone. In: D. Grigoriev, J. Harrison, and E.A. Hirsch
(eds.), CSR 2006, Proc., Lect. Notes Comput. Sci. 3967, Springer, Berlin, 2006,
247–258.

5. H. Messerschmidt and F. Otto. Cooperating distributed systems of restarting au-
tomata. Int. J. Found. Comput. Sci. 18 (2007) 1333–1342.

6. H. Messerschmidt and F. Otto. Strictly deterministic CD-systems of restarting
automata. In: E. Csuhaj-Varjú and Z. Ésik (eds.), FCT 2007, Proc., Lect. Notes
Comput. Sci. 4639, Springer, Berlin, 2007, 424–434.

7. H. Messerschmidt and F. Otto. On deterministic CD-systems of restarting auto-
mata. Int. J. Found. Comput. Sci. 20 (2009) 185–209.

8. H. Messerschmidt and H. Stamer. Restart-Automaten mit mehreren Restart-
Zuständen. In: H. Bordihn (ed.), Workshop “Formale Methoden in der Linguis-
tik” und 14. Theorietag “Automaten und Formale Sprachen”, Proc., Institut für
Informatik, Universität Potsdam, 2004, 111–116.

9. F. Otto. Restarting automata and their relations to the Chomsky hierarchy. In:
Z. Esik and Z. Fülöp (eds.), DLT 2003, Proc., Lect. Notes Comput. Sci. 2710,
Springer, Berlin, 2003, 55-74.

10. F. Otto. Restarting automata. In: Z. Ésik, C. Martin-Vide, and V. Mitrana (eds.),
Recent Advances in Formal Languages and Applications, Studies in Computational
Intelligence Vol. 25, Springer, Berlin, 2006, 269–303.

