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Summary 
 
The 21st century has brought new challenges for forest management at a time when 
globalization in world trade is increasing and global climate change is becoming 
increasingly apparent. In addition to various goods and services like food, feed, timber or 
biofuels being provided to humans, forest ecosystems are a large store of terrestrial 
carbon and account for a major part of the carbon exchange between the atmosphere and 
the land surface. Depending on the stage of the ecosystems and/or management regimes, 
forests can be either sinks, or sources of carbon. At the global scale, rapid economic 
development and a growing world population have raised much concern over the use of 
natural resources, especially forest resources. The challenging question is how can the 
global demands for forest commodities be satisfied in an increasingly globalised 
economy, and where could they potentially be produced? For this purpose, wood demand 
estimates need to be integrated in a framework, which is able to adequately handle the 
competition for land between major land-use options such as residential land or 
agricultural land.  
 
This thesis is organised in accordance with the requirements to integrate the simulation of 
forest changes based on wood extraction in an existing framework for global land-use 
modelling called LandSHIFT. Accordingly, the following neuralgic points for research 
have been identified: (1) a review of existing global-scale economic forest sector models 
(2) simulation of global wood production under selected scenarios (3) simulation of 
global vegetation carbon yields and (4) the implementation of a land-use allocation 
procedure to simulate the impact of wood extraction on forest land-cover. 
 
Modelling the spatial dynamics of forests on the global scale requires two important 
inputs: (1) simulated long-term wood demand data to determine future roundwood 
harvests in each country and (2) the changes in the spatial distribution of woody biomass 
stocks to determine how much of the resource is available to satisfy the simulated wood 
demands.  
 
First, three global timber market models are reviewed and compared in order to select a 
suitable economic model to generate wood demand scenario data for the forest sector in 
LandSHIFT. The comparison indicates that the ‘Global Forest Products Model’ (GFPM) 
is most suitable for obtaining projections on future roundwood harvests for further study 
with the LandSHIFT forest sector. Accordingly, the GFPM is adapted and applied to 
simulate wood demands for the global forestry sector conditional on selected scenarios 
from the Millennium Ecosystem Assessment and the Global Environmental Outlook until 
2050. Secondly, the Lund-Potsdam-Jena (LPJ) dynamic global vegetation model is 
utilized to simulate the change in potential vegetation carbon stocks for the forested 
locations in LandSHIFT. The LPJ data is used in collaboration with spatially explicit 
forest inventory data on aboveground biomass to allocate the demands for raw forest 
products and identify locations of deforestation.  
 
Using the previous results as an input, a methodology to simulate the spatial dynamics of 
forests based on wood extraction is developed within the LandSHIFT framework. The 
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land-use allocation procedure specified in the module translates the country level 
demands for forest products into woody biomass requirements for forest areas, and 
allocates these on a five arc minute grid. In a first version, the model assumes only actual 
climate conditions through the entire study period and does not explicitly address forest 
age structure. Although the module is in a very preliminary stage of development, it 
already captures the effects of important drivers of land-use change like cropland and 
urban expansion. As a first plausibility test, the module performance is tested under three 
forest management scenarios. The module succeeds in responding to changing inputs in 
an expected and consistent manner. The entire methodology is applied in an exemplary 
scenario analysis for India. A couple of future research priorities need to be addressed, 
particularly the incorporation of plantation establishments; issue of age structure 
dynamics; as well as the implementation of a new technology change factor in the GFPM 
which can allow the specification of substituting raw wood products (especially 
fuelwood) by other non-wood products. 
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Zusammenfassung 
 
Das 21ste Jahrhundert ist geprägt durch eine zunehmende Globalisierung des 
Welthandels und durch die immer deutlicher werdenden Auswirkungen des 
Klimawandels. Daraus ergeben sich auch für das Forstmanagement neue 
Herausforderungen. Zusätzlich zu ihrer Funktion in der Bereitstellung von Nahrung, 
Futter, Biobrennstoffen usw. hat das Ökosystem Wald  eine zentrale Bedeutung als 
Kohlenstoffspeicher und für den Austausch von Kohlendioxid zwischen Erdoberfläche 
und Atmosphäre. In Abhängigkeit vom Zustand des Ökosystems und seines 
Managements können Wälder sowohl Kohlenstoffquellen als auch -senken darstellen. 
Die rasante weltweite ökonomische Entwicklung sowie der dramatische Anstieg der 
Weltbevölkerung geben zunehmend Anlass zur Besorgnis um die nachhaltige Nutzung 
von natürlichen Ressourcen im Allgemeinen und der Ressource Wald/Holz im 
Besonderen. Eine große Herausforderung ist dabei die Frage wie der steigende Bedarf der 
globalen Weltwirtschaft an Forstprodukten befriedigt werden kann und wo diese 
Produktion stattfinden wird. Zu diesem Zweck müssen Annahmen über die künftige 
Holznachfrage im Wettbewerbskontext zu anderen Landnutzungen wie etwa 
Landwirtschaft und Urbanisierung gesehen werden.  
 
Die Struktur dieser Arbeit orientiert sich an der Aufgabenstellung, die Simulation der 
Veränderung von Waldflächen durch Holzentnahme in ein bestehendes Framework zur 
Modellierung globaler Landnutzung (LandSHIFT) zu integrieren. Die Arbeit umfasst vier 
Forschungsschwerpunkte: 
 

(1) Eine Literaturanalyse über existierende globale ökonomische Forstmodelle, 
(2) Simulation der globalen Holzproduktion für ausgewählte Szenarien, 
(3) Simulation des globalen „Kohlenstoffertrags“ von Wäldern, 
(4) Die Implementierung eines Algorithmus zur Simulation des Einflusses der 

Holznutzung auf die räumliche Verteilung der Waldbedeckung. 
 
Die Modellierung der räumlichen Dynamik der Waldfläche im globalen Maßstab 
erfordert zwei wichtige Komponenten: 
 

1. Simulation von Langzeitdaten über die Holznachfrage, um auf Staatenebene 
Vorhersagen über den zukünftigen Holzbedarf und Holzernte machen zu können, 

2. Angaben über Veränderungen der räumlichen Verteilung von Holzbiomasse, um 
zu bestimmen wie viel von dieser Ressource an welchem Ort zur Deckung des 
simulierten Bedarfs zur Verfügung steht. 

 
Zunächst erfolgte die Auswahl eines geeigneten Models zur Erzeugung von Daten über 
den zukünftigen  Holzbedarf in LandSHIFT. Hierzu wurden drei ökonomische Modelle 
die globale Holzmärkte abbilden miteinander verglichen. Auf Basis dieser Analyse wurde 
das ‘Global Forest Products Model’ (GFPM) zur Berechnung von Projektionen des 
zukünftigen Holzbedarfs für den Forstsektor in LandSHIFT ausgewählt. 
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Entsprechend wurde GFPM adaptiert und angewendet, um den globalen Holzbedarf für 
ausgewählte Szenarien aus dem „Millennium Ecosystem Assessment“ und dem „Global 
Enviromental Outlook 4“ bis 2050 zu simulieren. 
 
Zweitens wurde das globale dynamische Vegetationsmodell LPJ (Lund-Potsdam-Jena 
Modell) dazu genutzt, um Veränderungen im Kohlenstoffvorrat von Wäldern in 
LandSHIFT abzubilden. Die LPJ Simulationsergebnisse wurden zusammen mit 
regionalisierten Waldinventurdaten zur oberirdischen Biomasse kombiniert, um den 
forstliche Produktion räumlich zuzuordnen und von Entwaldung betroffene Gebiete zu 
lokalisieren.   
 
Weiterhin wurde eine Methode zur Simulation der räumlichen Dynamik der Forstnutzung 
innerhalb von LandSHIFT entwickelt, welche die oben genannten Informationen als 
Eingabegrößen nutzt. Der neu entwickelte Allokationsalgorithmus des Forstmoduls 
übersetzt zunächst den Bedarf nach Forstprodukten auf Länderebene in die benötigte 
Menge an Holzbiomasse und berechnet dann auf Ebene von Rasterzellen (Auflösung 5 
Bogenminuten) die Holzentnahme für verschiedne Managementoptionen. Die aktuelle 
Implementierung betrachtet dabei weder die Alterstruktur von Wäldern noch mögliche 
Auswirkungen des Klimawandels auf das Waldwachstum. Obwohl sich das Modell in 
einem noch frühen Entwicklungsstadium befindet, erfasst es bereits wichtige 
Wechselwirkungen zwischen der Forstnutzung und anderen Landnutzungsaktivitäten wie 
etwa Landwirtschaft und Siedlungsentwicklung. In einem ersten Test wurde die 
Funktionsweise des neuen Moduls für drei Arten des Forstmanagements getestet. Das 
Modul lieferte in diesen Tests  plausible auf konsistente Ergebnisse. Die neu entwickelte 
Methode wurde dann exemplarisch für eine Szenarienanalyse für Indien angewendet. 
Abschließend identifiziert die Arbeit eine Reihe zukünftiger Forschungsfragen zu dem 
bearbeiteten Themenkomplex. Diese umfassen (1) die Berücksichtigung von 
Plantagenwirtschaft, (2) die Modellierung der Alterstruktur gemanagter Wälder sowie (3) 
die Einbeziehung der Entwicklung neuer Technologien und der damit verbundenen 
Substitution von des Rohstoffs Holz (insbesondere Feuerholz) durch andere Nicht-Holz 
Produkte.  
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Chapter 1                                                                                                            Introduction 

1.1 Forests, Land-Use and Land-Cover Changes, Climate 
Change 
 
From tropical rainforests, to pine woods, to the boreal forests of the northern latitudes, 

forests cover nearly one-third of Earth’s surface (FAO 2007). In addition to providing 

various goods and services like food, feed, freshwater, timber, biofuels etc., forest 

ecosystems are a large store of terrestrial carbon and account for a major part of the 

carbon exchange between the atmosphere and the land surface (WWF 2003, WRI 2007). 

They also play a major role in recycling atmospheric moisture and stabilizing soils 

(WWF 2003). To summarize, forests contribute considerably to sustain life on Earth. 

 
Human activities like logging (commercial and/or for subsistence) and conversion of 

forestland for agriculture and other purposes have drastically altered the 

natural distribution of forests through history (Lambin and Geist, 2006). Numerous cases 

have been discerned and several examples have been described to illustrate the extensive 

modifications of forest landscapes already by ancient cultures like the Harappan 

civilization (Tripathi et al. 2004). Today, deforestation is one of the most commonly 

recognized forms of land-use change. Each year, approximately 13 million hectares are 

lost to deforestation (FAO 2005). Deforestation for wood and agricultural land can 

provide numerous economic benefits, but can have damaging impacts on the functional 

role forest ecosystems play in the earths system as described above. However, the 

occurrence and prevalence of these impacts can vary regionally, depending on the agro-

ecological and socio-economic settings.  

 

Land-use and land-cover change are intrinsically linked to global climate change. On the 

one hand, changes in global climate are already stressing forests through higher mean 

annual temperatures, altered precipitation patterns and more frequent and extreme 

weather events (MA 2005). At the same time, the wood produced in the forests trap and 

store carbon dioxide, thus playing a major role in mitigating climate change. And 

conversely, when destroyed or over-harvested and burned, forests can become sources of 

greenhouse gases, mainly carbon dioxide. At the global level, biomass burning has been 

shown to be a major source of greenhouse gases, contributing approximately 20% to the 
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global budget of major gases such as carbon dioxide; and studies have identified it as 

almost the sole source of greenhouse gases in tropical countries (WRI 2008). 

 

Based on the discussion above, it is clear that human causes of land-use change can have 

multiple and multi-directional impacts in the natural environment system. An analysis of 

time series of remote sensing data obtained from satellite sensors have revealed that there 

are short-term land-cover changes (often caused by the interaction of climatic and land-

use factors) which show periods of rapid and abrupt change followed by either a quick 

recovery or by a non-equilibrium trajectory (Taylor et al, 2002b; Stolle and Lambin 

2003). As a result of these interactive effects between land-use and climate, the role of 

forests as a carbon source or sink can vary from time to time. Highly variable ecosystem 

conditions driven by fluctuating climate conditions tend to amplify the pressures upon 

forest ecosystem condition and services (Geist and Lambin, 2004). Finally, these effects 

could lead to an increase in human vulnerability to environmental change, thereby 

affecting human welfare. 

 
Understanding the significance of land-cover changes is not possible without additional 

information on land-use. This is because most land-cover change is nowadays driven by 

human use and because land-use practices themselves also have major effects on 

environmental processes and systems (Lambin et al. 2001). As elucidated above, it is 

clear that land-use/cover change dynamics are highly complex and encompass 

interrelated determining factors (biophysical, economic, social, cultural, political and/or 

institutional). Recently, the Millennium Ecosystem Assessment (MA) and the Global 

Environmental Outlook (GEO4), two international programs to assess the status and 

long-term trends in global ecosystem change, have recognized the importance of land-use 

and land-cover change (MA 2005, UNEP 2007). They underline not only the enormous 

value of the Earth’s ecosystems and the goods and services they provide, but also 

underscore the central role the environment has for development and human well-being. 

Most importantly, they emphasize the need for integrated assessment tools in order to 

adequately strengthen land-use/cover modeling and assessment at the global scale. The 

next section provides an overview of the importance of global land-change modeling and 
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highlights some of the complexities associated with modeling forest land-cover changes 

at the global scale. 

 

1.2 Forests and Global Land-Use Modeling 
 
Over the last few decades, numerous research groups have made substantial efforts in 

improving the understanding and measurement of land-cover changes, in part under the 

auspices of the Land-Use and Cover Change (LUCC) project of the International 

Geosphere-Biosphere Programme (IGBP) and the International Human Dimensions 

Programme on Global Environmental Change (IHDP) (Lambin and Geist, 2006).  Recent 

publications indicate that a wide range of land-use/cover change models, aiming at 

different scales and research questions, are now available (Veldkamp and Lambin 2001; 

Parker et al. 2003; Nagendra et al. 2004; Veldkamp and Verburg 2004; Verburg at al. 

2004b; Verburg and Veldkamp 2005, Heistermann et al. 2006; Schaldach et al. 2009). As 

is illustrated by the many publications, land-use/cover change modeling has made an 

important contribution to land-use/cover change science in general, and will most likely 

continue to do so in the future.  

 

Apart from being a learning tool in understanding the driving factors and comprehending 

the system dynamics, the existing land-use change models also play an important role in 

exploring possible future land-use dynamics. However, only a few focus on continental 

and/or global scale assessments (Heistermann et al., 2006). It is urgently needed that 

more innovative approaches for modeling land-cover change at the global scale are 

designed, tested and validated to better equip the many environmental and social 

assessments at the global scale. Global scale modeling is important for several reasons, a 

few of them being: (1) Land-cover change impacts are scale-dependent in that some 

affect the local environment (e.g. local soil degradation), while other impacts extend far 

beyond their origin (e.g. global carbon cycle, global climate change) (Mustard et al. 

2004). (2) Specific policies and processes interlink locations and regions all over the 

globe: e.g., changes in international trade policies tend to shift land requirements from 

one world region to another (Heistermann et al., 2006).  
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Most current models of global land-use/cover change follow a trajectory path, starting 

from individual decisions taken at the micro level (local) and accounting for feedbacks to 

and from macro level (countries, regions, etc.) (Lambin and Geist 2006). This is because 

global land-use change models are often based on input datasets at the macro level, while, 

at the same time, the models try to simulate macro level developments by specifying 

mechanisms at the micro level. Examples of such models are the CLUE model (Verburg 

et al. 1999; Verburg and Veldkamp 2005), GEOMOD (Pontius et al. 2001), LOV (White 

and Engelen 2000) and LTM (Pijanowski et al. 2002a). Explicit attention needs to be 

given to the incorporation of interactions between agents and feedbacks in the decision-

making process. Abstraction of local land-use decisions to explain regional or global 

processes is a major challenge for global scale land-use modeling  (Geist and Lambin, 

2004; Lambin and Geist, 2003). 

 

In addition to the above-mentioned general aspects of global land-use modeling, the 

inclusion of spatial forestland dynamics in a global land-use model requires specific data: 

to begin with, simulated long-term wood demand data. Therefore, the field of long-term 

wood production* modeling is introduced in Section 1.3. To model the spatial dynamics 

of forestland, the spatial distribution of the woody biomass productivity has to be known. 

Biomass productivity models are an adequate tool to reflect the spatial distribution and 

management of stocks as well as their changes as a result of changing climate. Currently, 

this information in LandSHIFT is based on simulations conducted with the Lund-

Potsdam-Jena Dynamic Global Vegetation Model (LPJ-DGVM; Sitch et al., 2003; 

Bondeau et al., 2007). Details on application and testing of the LPJ-DGVM are provided 

in Chapter 4. In addition, timber harvests notably depend on age structure and rotation 

periods, since timber can be harvested for merchandise purposes only when it reaches a 

certain maturity age. These data vary significantly not only between regions but also 

between different tree species within a particular region. The differences can be attributed 

to the specific ecosystems in which the trees grow and to the management strategies 

opted by landowners. Hence, Section 1.4 addresses the significance and particularities of 

forest management. 

 
In economic forest sector models, demand is estimated in terms of wood ‘production’ which refers to the harvesting of raw wood from 
forests to be utilized in the manufacturing of wood products. 
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1.3 Modeling Long-Term Global Wood Production 
 
Forests supply the raw materials for lumber, plywood, paper, packaging and other wood-

based materials that are staples of modern life. Forest products trade runs the spectrum 

from raw wood materials, such as logs and wood chips, to highly processed products such 

as furniture and fine papers. Within the wood products sector, some countries specialize 

in the production of raw wood; others specialize in various facets of processing, while 

still others produce both raw wood and processed goods. 

 

It is widely recognized that climate change will have substantial impacts upon global 

forest ecosystems during this century (McCarthy et al., 2001). In addition to many 

existing stresses, such as deforestation, pest infestations, forest fires, and invasive 

species, climate change is expected to increase stresses upon forested ecosystems. These 

stresses include potential changes in the distribution of species (Iverson and Prasad, 

2001), as well as positive or negative changes in the productivity of individual species 

and entire ecosystems (Shugart et al., 2003). The ecological impacts of climate change 

could have substantial impacts on the global structure and functioning of timber markets. 

 
How will the global wood products markets develop in the long run? This vital question 

underlies not only strategic decisions made by forest growers, and wood and fiber 

processors; but also valuable information used by institutions and researchers involved in 

integrated modeling and assessment of environmental issues in general. Economic forest 

sector models aim at providing an insight into country and/or regional forecasts of forest 

resources as well as the consumption, production, trade and prices of wood products.  

 

Current global timber harvests are approximately 1.6 billion m3 of industrial roundwood 

per year (FAO 2008). An assessment of timber market studies suggests that this could 

rise to 1.9 – 3.1 billion m3 by 2050, depending on timber demand growth and relative 

price changes (Solberg et al. 1996). An alternative set of scenarios based on the global 

timber market model described in Sohngen et al. (1999) suggests similar results. These 

changes would represent an increase in annual timber harvests of 0.5% to nearly 2.0% by 

2050. 
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In this study, the ‘Global Forest Products Model’ (GFPM), a dynamic spatial-equilibrium 

representation of the forest sector (Buongiorno et al., 2003), is utilized to produce 

information on potential production (harvest) of raw forest product commodities 

(industrial roundwood, fuelwood) in the future under the storylines of the Millennium 

Ecosystem Assessment (MA 2005) and Global Environmental Outlook-4 (UNEP 2007) 

scenarios. GFPM results are used to determine how much wood would be harvested in 

each country to meet global timber demands. These estimates are used as input in the 

‘Forest’ module of the LandSHIFT model (See Section 1.6 for introduction to 

LandSHIFT and Chapter 5 for implementation details).  

 

1.4 Global Forest Management 
 
Forest ecosystems are expected to undergo dramatic changes in response to projected 

pressures from timber demands, land-use change resulting from factors like urbanization 

and expansion of croplands and pastures, and global climate change in the coming 

decades. Many countries have demonstrated the political will to improve the manner in 

which forests are currently being managed i.e., by revising forest policies and 

strengthening forest institutions (FAO 2007). The Seventh Biennial Issue of State of the 

World’s Forests of the global forestry sector (FAO 2007) has evaluated significant 

progress in sustainable forest management in regions including developed countries and 

having temperate climates; however, other regions - especially developing economies and 

those having tropical climate, continue to lose forest area. But, even in these regions that 

are losing forest area, a number of positive trends have been noted (FAO 2007).  

 
In light of the above, it can be argued that the incorporation of forest mangement 

practices forms a significant part of land-use-land-cover change research in order to 

ensure that environmental and social issues are adequately evaluated. As mentioned in 

Section 1.1, land-use changes are the result of complex interactions between humans and 

biophysical driving forces (Verburg at al., 2006). Sustainable forest management 

activities imply various degrees of deliberate human intervention, ranging from actions 

aimed at safeguarding and maintaining the forest ecosystem and its functions (for 

example by establishing conservation areas), to favouring specific socially or 

economically valuable species or groups of species for the improved production of goods 
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and services (for example by establishing plantations). The underlying determinants of 

this form of human interventional behavior include, but are not limited to: supply issues 

such as the environmental pressures to reduce timber harvesting and particularly, clear-

cutting; timber management, including plantation establishment; recycling; substitution 

of raw timber with other non-timber products; technological change; etc. This study 

makes an attempt to address forest management issues by incorporating a few of the 

above-mentioned factors in the form of assumptions going into the timber market model 

GFPM (See Chapter 3).  

 

1.5 Global Land-Use/Land-Cover Change 
 
Land-use and land-cover change play a pivotal role in global environmental change. 

Changes in land-cover through human induced activities like cropping, grazing, forestry 

and urbanization represent the most substantial alteration through their interaction with 

most components of global environmental change (Ojima et al., 1994). They contribute 

significantly to earth-atmosphere interactions and biodiversity loss, are a major factor in 

sustainable development and human responses to global change, and are important to 

integrated modeling and assessment of environmental issues in general. Research that 

examines historic, current, and future land-use and land-cover change, its drivers, 

feedbacks to climate, and its environmental, social, economic consequences is therefore 

of great importance for understanding climate change (Lambin and Geist, 2006).  

 
At the global scale, rapid economic development and a growing world population have 

raised much concern over the use of natural resources, especially forest resources. The 

challenging question is how can the global demands for forest commodities be satisfied 

in an increasingly globalized economy, and where could they potentially be produced? 

Land-use and land-cover change studies can provide valuable information for large-scale 

vegetation biomass and forest cover assessments that are key components of the carbon 

cycle. Future land-use and land-cover change goals include (1) understanding 

regional/global land-use changes that affect forest biomass, and (2) quantifying linkages 

and feedbacks between land-use and land-cover change, climate change forcings, climate 

change, and other related human and environmental components. 
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In a first version, this study aims to model the long-term land-use and land-cover changes 

(from 2000 to 2050) in India and to provide quantitative analysis of LUCC information in 

the region using the LandSHIFT modeling framework (See Section 1.6). 

 
 
1.6 The LandSHIFT Modeling Framework 
 
LandSHIFT1 is an integrated model system currently under development at the Center for 

Environmental Systems Research (CESR) at the University of Kassel, Germany, that 

aims at simulating and analyzing spatially explicit land-use dynamics and their impacts 

on the environment on a global scale (Alcamo and Schaldach, 2006; Schaldach at al, 

2006). It has been designed for studying changing land-use and land-cover on the global 

scale and its relationship to other global change processes like climate change, water 

cycle, biodiversity risk, etc. It is capable of carrying out a wide range of tasks including 

(1) identification of continental scale competition for land (2) identification of future 

potential “hot spots” of land-use change (3) comparison of future rates of change in 

different countries/regions. The framework aims at providing a tool to modelers, 

researchers, policy makers and agencies involved in land-use/change cover studies for 

medium-term analysis (20 – 50 years) of land-cover change and the resulting 

environmental impacts under varying scenarios. Some applications including subsets of 

LandSHIFT include an analysis of land-use changes in Africa until 2050 (Schaldach at al, 

2006) and the development of scenarios of livestock grazing in the Middle East (Koch at 

al., 2008). 

 

The guiding principle of LandSHIFT is to integrate drivers of land-use change at macro 

(country) level and grid variables at the micro level (5“- grid) in order to simulate 

changes in the spatial distribution of land-use on a global five arc minute grid. At the 

macro level, the driving forces describe the socio-economic and agricultural development 

of a country, while the grid variables (micro-level) describe the local landscape 

characteristics and zoning regulations (e.g. the extent of conservation areas).  

 
1 Land simulation to harmonize and integrate freshwater availability and the terrestrial 

environment 
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The central component of LandSHIFT is the LUC (Land Use Change) module, which 

computes changing land-use using a modified cellular automata approach (Schaldach et 

al., 2009). The classification of the land-use/land-cover types follows the IGBP 

classification (Loveland et al., 2000) which comprises arable land, urban land, grassland 

and a set of “natural” land cover types such as forests, shrub lands and deserts. This 

classification is combined with additional information on pasture and a set of major crop 

types (irrigated and rain-fed), based on the global map by Heistermann (2006). The major 

drivers of change are demand and supply side factors like demand for timber for the 

forest sector, food demand for agricultural sector and, supply defined by local biomass 

productivity. The principal goal of the module is to translate regional/national production 

trends for land intensive commodities (such as roundwood, field crops, etc.,) into area 

requirements for land-use types, and to allocate these on a grid of five arc minute 

resolution. The production is allocated to the most suitable cells (based on Preference 

Ranking) by changing the land-use type of as many cells as needed to fulfill the country’s 

demand. The Preference Ranking of each grid cell of a particular land-use type (e.g. 

forest) is computed with the Multi-Criteria-Analysis (MCA) method (Eastman at al., 

1995; Cromley at al; 1999). The main model output is a time series of raster maps of the 

changing land-use pattern of the study area in 5-year time steps. Moreover, the model 

generates a set of subsidiary land-related variables (like rates of deforestation), thus 

documenting the land-use change processes in an aggregated form. 

 

An important feature of the LandSHIFT model is that it comprises a highly modularized 

structure, which permits the integration of functional model components representing 

different aspects of the global land-use system. While on one hand, the model supports 

the integrated analysis of drivers of land-use change on different scale levels, it 

implements a strictly modular and transparent structure which clearly distinguishes the 

different land-use activities such as logging, settlement and grazing. This enables the 

incorporation of specific knowledge on the spatial dynamics guiding the land-use 

processes for each individual sector. The following section presents the objectives and 

tasks that are oriented alongside the requirements to simulate forest dynamics in the 

LandSHIFT model. 
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1.7 Objectives, methodologies and structure of this thesis 
 
The previous sections highlighted the following scientific issues: the significance of 

forests from the perspective of Land-Use and Land-Cover Change; the specific need to 

consider long-term simulated wood demand for such an analysis; the required input data 

to enable such an analysis in terms of forest management and the simulation of biomass 

productivity; and the need to analyze changes in the magnitude and extent of 

deforestation in the context of global land-use models. The guiding principle of this thesis 

is to integrate over these requirements by developing and providing spatial data and 

methodologies which are needed to simulate large-scale changes in forest areas.  

 
This work is the first version of the incorporation and implementation of forest sector 

dynamics in the LandSHIFT modeling framework. The thesis does not address all the 

above-discussed issues. It also does not address the issues presented in this thesis in their 

entire complexity, but rather aims at selected interfaces relevant for this study. The data 

and methodologies presented here are intended to remain efficacious for themselves, but 

are also designed to meet the intended implementation requirements of the ‘Forest’ 

module in the LandSHIFT model. Accordingly, the following objectives and tasks have 

been identified: 

 

a) Reviewing available global scale economic forest sector models 
 

Over the years, many different timber market models have been developed to analyze 

changes in potential future demand and supply of timber products with regards to market 

behavior, policy changes, and other important factors like demographic trends. Not only 

do the models differ in theory and structure, but their outputs differ as well. The models 

also vary in their capacity to provide users with the flexibility and ease of scenario 

implementation. The main objective of this part of the thesis is to compare model theory 

and structure of available global scale economic forest sector models. This is done in 

order to select a model that is appropriately flexible to incorporate information on major 

economic drivers under several plausible scenarios and, that can assist in generating 

wood production datasets on country scale for implementation in LandSHIFT. 
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b) Simulating global wood production 
 
Based on the task described above, the ‘Global Forest Products Model’ (GFPM) is 

selected for further study with LandSHIFT. In the specific context of this thesis, the 

adaptation and application of the GFPM mainly serves to provide global wood production 

data for major raw wood products at country level to the global modelling framework 

LandSHIFT. The model output enables LandSHIFT to capture the impacts of wood 

extraction activities on land-cover change in forest areas. 

 

c) Modeling of spatial dynamics in forests 
 
The final objective of this thesis goes into the research needs being expressed in Section 

1.5: this is the development and implementation of an approach to simulate the large 

scale spatial distribution of forest areas based on wood extraction. This part of the study 

describes the implementation, plausibility analysis and testing of the first version of a 

new land-use activity called ‘FOREST’ in LandSHIFT. The main objective of this 

module is to quantify deforestation as result of wood extraction. The inclusion of this 

module in LandSHIFT adds to an increased understanding of land-use/cover changes 

since deforestation for timber and fuelwood might play a substantial role in altering the 

magnitude and spatial distribution of forest cover. It also allows for a more detailed 

analysis of the temporal development of land-use pattern and thus opens new directions 

for environmental impact assessments. In this study, the LandSHIFT model has been 

expanded by two new components to simulate the spatial and temporal dynamics of 

forest management: (1) a module to calculate cell level biomass productivity of forests 

(2) a forest management activity (FOREST) as new part of the land-use change (LUC) 

module. The general methodology is based on the implementation of the cropland/urban 

modules of LandSHIFT as presented in Schaldach et al. [2006]. This implies the 

application of Multi-Criteria-Analysis in order to assess the suitability of land to locate 

suitable cells for forest management (Section 4.2.3.2). The methodology also investigates 

the effects of varying forest management scenarios on the spatial distribution of forest 

patterns (Section 4.3.2). As a starting point, spatially explicit forest inventory data on 

aboveground biomass from Kindermann et al (2008) is used to represent the initial 

condition of biomass stocks in each forest grid cell. In order to make long-term 
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assessments of biomass available for wood extraction, the study attempts to make the 

data available from Kindermann et al (2008) dynamic. In a first approach, this data is 

integrated with data on change in vegetation carbon stocks in future time periods from 

LPJ-DGVM in order to calculate the annual change in forest stocks in the future 

(Sections 4.2 and 4.6). The entire methodology is applied in an exemplary scenario 

analysis for India. The study attempts to integrate and expand the capabilities of 

LandSHIFT with scenario data from the global forest economy model GFPM and the 

global vegetation model LPJ-DGVM. 

 

According to the objectives and the methodological requirements presented above, the 

core chapters of the thesis are structured in three parts.  

 

Part I of this thesis (Chapters 2 and 3) describes the basis of the selection and adaptation 

of the Global Forest Products Model (GFPM) and offers an evaluation of the simulation 

results. Chapter 2 reviews the current state-of-the-art in global scale economic forest 

sector modeling. Major deficits and potentials of existing global scale timber market 

models are identified by contrasting only those aspects that are relevant for 

implementation in this study. Chapter 3 documents the set-up and the application of the 

GFPM to simulate potential production of raw forest product commodities (industrial 

roundwood, fuelwood) in the future under several plausible scenarios. It also provides a 

comparison of the simulation results from the GFPM against existing wood demand 

scenarios. 

 

Part II (Chapter 4) presents the model description, plausibility testing and simulation for a 

first version of the FOREST module in LandSHIFT. The chapter also offers a detailed 

description of the implementation and testing of the dynamic global vegetation model 

LPJ that is utilized to simulate the productivity patterns of potential vegetation carbon for 

use in LandSHIFT. 

 

Part III (Chapter 5) summarizes and discusses the main conclusions resulting from 

Chapters 2-4 and identifies priorities for future research. 
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A Review of Global Scale 
Economic Forest Sector 
Models 
 

 

 

 

 
Summary 

This chapter compares and contrasts three global timber market models. The models have 

been applied to predict harvests, price, inventory and market welfare impacts under 

different exogenous forces that impact timber markets. The goal of this assessment is to 

select a suitable economic model to produce information on potential production of raw 

forest product commodities in the future under several plausible scenarios for the forest 

sector in LandSHIFT. The framework and theory for each model type relevant to this 

study is presented and discussed. The comparison indicates that the ‘Global Forest 

Products Model’ is most suitable for obtaining projections on future raw wood harvests 

for further study with the LandSHIFT forest sector. 

 

Keywords: timber markets; forest sector models; scenario implementation; flexibility 
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2.1 Introduction  

Globally, the forest sector has to deal with increasing demand for forest products, with 

dynamic globalization in world trade of wood products, and with conversion of forests to 

other land-uses like agriculture or grassland (Achard et al., 2004, Lambin and Geist, 

2006, Rudel et al, 2004). Furthermore, technological advancements in forest 

management, change in local and/or regional forest policies (e.g. for forest protection), 

global environment management and trade decisions made in the political arena like 

establishment of new plantations, have their respective consequences on the enhancement 

or degradation of the forest regime (Sedjo et al, 2006). In addition, forest ecosystems are 

a large store of terrestrial carbon and account for a major part of the carbon exchange 

between the atmosphere and the land surface (Lambin and Geist, 2006). All these factors 

have raised much concern over the future of forest resources. Moreover, any change in 

one or a combination of the above stated factors would, directly or indirectly, influence 

future production (supply) of raw wood products (industrial roundwood, fuelwood). This 

in turn, will affect any land-use allocation and competition for land between forest and 

other land-use types (Verburg et al, 1999).  

 

As described in Chapter 1 (Section 1.6), LandSHIFT is an integrated model system that 

aims at simulating and analyzing spatially explicit land-use dynamics and their impacts 

on the environment on a global scale (Alcamo and Schaldach, 2006). It has been designed 

for studying changing land-use and land-cover on the global scale and its relationship to 

other global change processes. A preliminary application of the model deals with 

scenario analysis of land-use changes in Africa until 2050, conducted as part of the 

United Nations Environmental Programme Global Environmental Outlook (UNEP 2007) 

assessment (Schaldach et al, 2006). The central component of LandSHIFT is the LUC 

(Land Use Change) module, which computes changing land-use using a modified cellular 

automata approach (Alcamo and Schaldach, 2006). The major drivers of the model are 

demand and supply side factors like food demand for agricultural sector, etc. The 

principal goal of the model is to translate regional/national production trends for land 

intensive commodities (such as settlements, field crops, rangelands, etc.,) into area 

requirements for land-use types, and to allocate these on a grid of five arc minutes 
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resolution. Section 1.7 in Chapter 1 mentioned that the main objective of this study is to 

incorporate and implement forest sector dynamics based on wood extraction in the 

LandSHIFT modelling framework. This chapter describes the first step to contribute to 

such an integrated assessment; that is to select a suitable economic model to produce 

information on potential production of raw forest product commodities (industrial 

roundwood, fuelwood) in the future under the Millennium Ecosystem Assessment (MA 

2005) and Global Environmental Outlook (GEO4) scenarios for the forest sector in 

LandSHIFT.  

 

Over the last few decades, several timber market models have been developed to analyze 

changes in potential future demand and supply of timber products with regards to market 

behavior, policy changes, and other important factors like demographic trends. The 

models are quite distinct in the economic theories that they are built upon, as well as in 

the scope of their analysis. For the purpose of this study, three economic models are 

reviewed. These are (1) The CINTRAFOR Global Trade Model (CGTM; Cardellichio et 

al., 1989) (2) The Global Forest Products Model (GFPM; Buongiorno et al., 2003) and 

(3) The Timber Supply Model (TSM96; Sedjo and Lyon, 1996). The models differ in 

theory and structure, ranging from spatial equilibrium models to dynamic optimization 

models. Given these differences, this chapter compares the above-mentioned models to 

provide insight in selecting a model that is appropriately flexible to incorporate 

information on major economic drivers like GDP, trade and technology under the MA 

and GEO4 scenarios and, that can enable in generating wood production datasets on 

country scale (since LandSHIFT works on country scale). 

 

Section 2.2 briefly describes the three global scale timber market models mentioned 

above. Section 2.3 characterizes the major model distinctions in terms of regional 

classification, incorporation of market behavior, implementation of trade flows, 

assessment of technology change, and flexibility in scenario implementation. Section 2.4 

discusses the major deficits and potentials of each model. The chapter finally concludes 

with the presentation of the model selected for further study with LandSHIFT.  
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2.2 Three Timber Market Models  

 
The three timber models reviewed in this chapter are (1) The CINTRAFOR Global Trade 

Model (2) The Global Forest Products Model and (3) The Timber Supply Model 

(TSM96). The CGTM and the GFPM are spatial partial equilibrium models that consider 

in about the same detail the supply and the demand sides of the forestry sector. Their 

main characteristic is the endogenous determination of demand, supply, bilateral trade 

flows, and prices, conditional on exogenous economic activity outside the forest sector. 

The TSM96 is a timber supply model, which mainly concentrates on the issue of global 

timber supply. Its main characteristic is to study the transition of the world’s timber 

supply from natural forests to plantations. 

 

 2.2.1 CINTRAFOR Global Trade Model 
 
The CINTRAFOR Global Trade Model (CGTM) is a spatial partial-equilibrium model 

designed to assess the global trade of forest products (Cardellichio et al., 1989). It 

provides a broad coverage of forest products and markets and their many interlinkages. 

The CGTM has been applied to a wide variety of forest sector issues, including, the 

economic impacts of climatic change on the global forest sector (Perez-Garcia et al., 

1997, 2002a, 2002b), the impacts of U.S. carbon mitigation strategies on U.S. and global 

carbon accounts (Perez-Garcia 1995), and the impacts of timber supply shortages on 

land-use allocation (Perez-Garcia 1995). This brief summary of work with the CGTM 

illustrates the flexibility of the model to provide input into a variety of assessment 

processes involving the global forest sector. 

 
The CGTM is an integrated model since it describes all aspects of forest products 

production: forest growth, wood supply, processing capacity and final demand.  The 

CGTM projects production, consumption, prices and trade for 10 forest products in 43 

log-producing regions and 33 product-consuming regions.  Products considered in the 

model range from wood pulp to hardwood and softwood sawlogs. Log markets defined 

for important timber producing regions include Chile, New Zealand, the US Pacific 

Northwest, other US regions, Coastal British Columbia (BC), Interior BC, Eastern 

Canadian provinces as a region, European regions, the former Soviet Union and others. 
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The supply and demand regions are linked by over 400 trade flows. Dynamic elements in 

the CGTM include interperiod changes in forest inventory, and changes in production 

capacity. The CGTM summarizes changes in the forest sector using regional economic 

welfare measures. A detailed description of the CGTM is presented in Cardellichio et al. 

(1989). 

 
2.2.2 Global Forest Products Model 
 
The Global Forest Products Model (GFPM) is a dynamic spatial partial-equilibrium 

model of the forest sector to predict production, consumption, trade, and prices of major 

forest products at the global level. The forest sector includes timber production and 

harvesting, manufacturing in various industries, and transportation of products from 

forest to industries and to markets. The model describes how world forests and their 

industries interact through international trade. It was developed as part of Food and 

Agriculture Organization's (FAO) on-going work on forestry sector outlook studies. The 

GFPM has been previously applied for several studies like ‘Effects of Asian Economic 

Crisis’ (Buongiorno et al., 2003), ‘Effects of Tariff Liberalization’ (Zhu et al., 2001), 

‘Impact of US Paper Recycling Policies’ (Zhu at al., 2002) etc. 

 
The GFPM uses historical information and exogenous assumptions in a market 

equilibrium model to produce forecasts of global forest products market developments. 

The model is calibrated using 2006 as its base year and allows for the projection of 

consumption, production, capacity, prices and trade in forest products for 180 countries 

and territories and 14 different forest products categories. Base year production, 

consumption, trade and prices by country and commodity are from ForesSTAT-FAO 

(2006). The model provides a flexible mechanism that enables users to obtain the above-

mentioned forecasts on country scale in yearly (or at desired interval) time steps under 

various plausible scenarios. 

 
The general principle of the GFPM is that global markets optimize the allocation of 

resources in the short run (within one year). Resource allocation in the long run is partly 

governed by market forces, as in trade, and also by political forces such as the wood 

supply shifts determined by forest policy, the wastepaper recovery rates influenced by 
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environmental policy, the trade tariffs that change the cost of imports, and the techniques 

of production determined by exogenous technological progress. A detailed description of 

the GFPM can be found in Buongiorno et al. (2003). 

 

2.2.3 Timber Supply Model 
  
The Timber Supply Model (TSM96) is a dynamic timber market model, which uses an 

economic market supply/demand approach to project an intertemporal time path of the 

world's price and output level of industrial wood. The TSM96 maximizes the sum of 

consumer and producer surpluses over the entire projection horizon. This approach is 

based on rational expectations theory, which basically assumes that the expectations 

made by economic agents on an average are not systematically biased and, that the agents 

use all relevant information in forming expectations of economic variables, thus correctly 

anticipating future conditions. It is because the TSM96 rests on the above mentioned 

theory that it is often referred to as an optimal control model.  

 

The main purpose of the TSM96 is to function as a tool to assess the condition and the 

adequacy of the long-term world timber supply. Since it concentrates on the supply side 

of the forest sector, it was mainly developed to study the transition of the world’s timber 

supply from ‘old growth’ (natural forests) to ‘second growth’ (regeneration) and to 

‘plantation grown wood’. The modeling approach uses control theory to determine the 

economically optimal transition. The use of control theory in the TSM96 means that the 

wood supply is described in terms of a set of “initial conditions”, “laws of motion” and 

“control variables”. Such a concept produces forward-looking behavior, where decisions 

made today must be consistent with those made tomorrow. The implementation of this 

concept is rooted in the theory of renewable and non-renewable resources (Hotelling 

1931; Solow 1974). The model has been used for policy analysis in applications like (a) 

Carbon Sequestration in Global Forests Under Different Carbon Price Regimes (Sohngen, B. 

and R, A. Sedjo. 2006); (b) The Role of Forest Plantation in the World’s Future Timber 

Supply (Sedjo et al. 2001) etc. 
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The model provides data on long-term industrial wood supply for eight regions, one of 

which has been termed as ‘Unresponsive’ to price, implying that in this region, the level 

of wood supply is independent of market conditions. The seven ‘Responsive’ regions are 

subdivided into 22 timber land classes. Each land class is distinguished and described in 

terms of its quality, location, accessibilty, growth and yield functions, existing 

inventories and their age distribution, silvivicultural response to investment inputs, and 

timber land management costs (including establishment, growth, transportation and 

harvest). Apart from projecting the transition from ‘old growth’ to ‘plantation grown 

wood’ in terms of optimal harvest and regeneration effort, the TSM96 also provides 

projection data on timber prices and trade flows within and among supply regions. A 

detailed description of the TSM96 is presented in Sedjo and Lyon (1996). 

 
2.3 Comparing Model Theory and Structure 
 
This section considers some differences between the three timber market models 

described above. While similar in some respects, the models are quite distinct in the 

economic theory upon which they rely, and all of them are different in the scope of their 

analysis. Scope includes issues such as how many regions or how many market levels to 

consider. In addition to structural differences, the models are also at odds in their 

incorporation of market behavior, implementation of trade flows, assessment of factors 

like technology change and change in trade tariffs. They also differ in their capacity to 

provide users with the flexibility and ease of scenario implementation.  

 

It should be noted that although the literature on these three timber market models is 

quite vast and is very deeply rooted in economics, this chapter discusses only the model 

features that are considered relevant for this study. The model features compared in this 

section are selected based two factors: (1) their relevance in representing information on 

economic drivers from the MA and GEO4 scenarios and (2) their relevance in producing 

model output for further study with the forest sector in LandSHIFT. Table 2.1 provides a 

brief summary of the comparison of the model features. 
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Table 2.1: Comparison of three global timber market models 
 CGTM GFPM TSM96 

Regions 43 timber supply 
regions and 33 

product demand 
regions 

180 countries and 
territories as listed in 
FAO + one ‘World’ 

region 

8 (7 responsive and 
“Rest of the World” 

unresponsive) 

    
Markets Multiple Market 

levels 
Multiple Market levels Delivered logs only 

    
Trade Flows Bilateral Bilateral Does not account 

for bilateral trade 
    

Technology Wood-saving Wood-saving Investments in 
regeneration and 
Wood –saving 

    
Scenario 

Implementation 
Flexible Flexible Pre-defined 

scenarios 
 
 
2.3.1 Regional Classification 
 
The regional classification in the three timber market models is as follows. 
 
 
CGTM: 
 
Number of timber supply regions = 43 
Number of product demand regions = 33 
 
 
GFPM:  
 
Number of demand regions for forest product commodities = 181 
Number of supply regions for forest product commodities = 181 
 
These regions correspond to the 180 countries and territories used in the model and the 

world region. 

 

TSM96: 
 
The TSM96 subdivides the world into eight industrial wood supply regions. Seven of 

these are called “Responsive regions”. The rest of the world is lumped together as the 

eighth region and is called the “Nonresponsive Region”. The seven responsive regions of 
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TSM96 are further subdivided into 22 timber land classes, each of which corresponds to a 

unique geographical area. 

 
The specific regions are: 
 
Responsive Regions: 

• Emerging region (1 land class) 
• US Pacific Northwest (4 land classes) 
• Canada, west (2 land classes) 
• Canada, east (4 land classes) 
• US South (8 land classes) 
• Nordic Region (2 land classes) 
• Asia-Pacific (1 land class) 

 

Nonresponsive region: Rest of the world. 
 
 

NB: The Emerging Region is a composite consisting of a number of regions that are 

producing industrial wood from intensively managed exotic species tree plantations. 

These include countries such as Brazil, Chile, Indonesia, New Zealand, South Africa and 

Spain. Although the species, growth rates and rotations vary somewhat across regions, all 

these plantations have relatively rapid growth and short rotations. 

 
As described above, the models incorporate different regions, and have a different global 

scope. GFPM is by far the most comprehensive, as it attempts to model consumption and 

production on country scale. The CGTM is also quite compendious, as it attempts to 

model most major producing and consuming regions. The TSM96 incorporates multiple 

regions, including emerging plantation regions, but models a large part of the globe as a 

“non-responsive” region. The non-responsive regions include the Former Soviet Union 

and China. 

 

 2.3.2 Incorporation of Market Behavior 
 
The CGTM and the GFPM include multiple market levels, where all market levels are 

solved simultaneously. TSM96 on the other hand, solves only for delivered log market. 
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2.3.3 Implementation of Trade Flows 
 
The CGTM models trading between 40 regions of the globe. Bilateral trade flows can 

occur in both end product and log markets.  

 
The GFPM models trade flows in 180 countries and territories in the world, referred to as 

regions in the model. All countries and territories import to and export from the ‚World’ 

region. 

 
The TSM96 does not model bilateral trade like the CGTM or the GFPM. 

 

2.3.4 Incorporation of Technology Change 
 
In both CGTM and GFPM, technological change is manifested in the form of wood-

saving technology. Technological improvement is seen as a reduction in the wood 

requirement of various intermediate and final products using raw wood source. Hence, 

technology change is implemented in terms of input/output coefficients for products and 

how they change over time.  

 

In the TSM96, technological progress is incorporated via investments in forest 

regeneration in the supply side of the model. Technology change in tree growth is 

measured in terms of the genetic improvement that is imparted to improve the yield of the 

growing stock introduced through artificial regeneration. Since naturally regenerated 

forests do not incorporate genetic improvement, technology change is implemented only 

for artificially regenerated forests (plantations). Additionally, technological change can 

also enter TSM96 via the demand side in the form of wood-saving technology i.e by 

reducing the rate of increased demand for raw wood resource. 

 

2.3.5 Scenario Implementation 
 
The CGTM incorporates exogenous change data on cost shifts and capacity expansion 

rates, which can be adjusted to reflect policy changes influencing these two factors. 
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In the GFPM, exogenous change data can be specified for demand, supply, 

manufacturing costs, technology change and ad-valorem tax import rates in order to 

evaluate the effects of alternative scenarios on industrial roundwood harvests. 

 
The TSM96 offers timber harvest projections for six pre-defined scenarios. These are: 
 

1. Decreasing Demand 

2. High Demand (based on FAO forecasts) 

3. Very High Demand 

4. Integrated Supply Constraints with Base Case Demand 

5. Integrated Supply Constraints with Low Demand 

6. Very High Demand with High Plantation Establishment 

 
2.4 Deficits and Potentials 
 
The three models discussed in the above sections have both similarities and differences. 

In the discussion that follows, the five aspects described in Section 2.3 are analysed. This 

comparison provides an insight into the objective criteria for understanding which model 

will be best suited to obtain wood production data for further implementation in 

LandSHIFT. 

 
The first distinction is the regional classification that each of these models incorporate. 

While the CGTM and TSM96 offer forecasts on regional level only, GFPM is by far the 

most comprehensive, as it attempts to model consumption, production, prices and trade 

for 180 countries and 14 forest products as listed by the FAO. Output on country scale is 

very desirable for LandSHIFT as it works with country level input data. 

 
Secondly, the CGTM and the GFPM have been developed with multiple market layers, 

that is, they describe the vertical market for forest products (timber supply to end 

products), and simultaneously solve for equilibrium between demand and supply at each 

market level. Modelling multiple market levels enables for the capturing of important 

interactions between the market levels (as discussed in Haynes 1977). Hence, for 

example, if due to an increase in wood saving technology, the utilization rate of 

solidwood producing sawnwood decreases; models like the CGTM and the GFPM are 
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fully capable of representing the rate of upward shift in demand, whereas a model like the 

TSM96 cannot do so.  

 
A particular attraction of the CGTM and the GFPM is the relatively detailed treatment of 

bilateral trade flows in the model, which enables the user to assess the potential trade 

effects of alternative policies at regional or country level. However, it can be argued that 

the dynamics of trade are not well represented by the CGTM based on the way that 

historical trade relations are captured in the model, i.e. through the use of „inertial limits“ 

on period-to –period shifts in trade flows. This kind of approximation is not beneficial for 

obtaining long-term wood demand projections under varying scenarios; especially if the 

scenarios provide a distinctive outlook on trade liberalization (or barrier enforcement). 

On the contrary, the GFPM takes supply and demand curves for each country, fixes these 

such that the model roughly replicates global production, consumption and trade in the 

previous year for which actual data is available, and then shifts these curves out for every 

country and each year of the forecast. As part of this process, the model identifies the 

trade flows and price changes necessary to clear all markets within each year of the 

forecast using a linear programming algorithm. 

 
While multi-market levels provide forecasts on end-products, they require a substantial 

understanding of implementing technological change. Due to their complex framework, 

both CGTM and GFPM provide a wide range of different end products for which the 

input/output coefficients can be changed. TSM96, on the other hand, in its 

implementation of technology from the supply side, includes only one aspect of 

investments in regeneration to be adjusted over time. Also from the demand side, it is 

only the rate at which the demand for raw wood resource decreases over time that needs 

to be assumed. While the implementation of technological change is not a difficult task in 

either of these models (although it is more tedious in CGTM and especially more in 

GFPM), there is no clear evidence that multi-market models produce more accurate 

forecasts as a result of a more complex implementation of technology change than 

compared to single market level models.  

 

Finally, even though all three models offer scenario analysis in one form or another, it is 

only the CGTM and the GFPM that offer the user a mechanism to alter exogenous data to 
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reflect the impact of alternative scenarios on raw wood harvests. Even between these two 

models, the GFPM offers a wider range of exogenous data that can be modified by the 

user to depict different scenarios. Although there is no guarantee that more specification 

leads to better results, it certainly offers more flexibility and enables a more thorough 

representation of the scenario under study. 

 
2.5 Conclusions 
 
This chapter attempts to clarify differences between the three timber market models by 

comparing certain aspects of the model’s theory and structure relevant to this study. All 

three models predict long-term trends and harvest behaviour. Given the differences 

between these models as discussed in Sections 2.3 and 2.4, the ‘Global Forest Products 

Model’ is found to be most suitable for further study with LandSHIFT for the following 

main reasons: 

 
1. The model provides a consistent framework for implementing alternative 

scenarios and policy options.  

2. It provides harvest forecasts at country level. Downscaling regional data to 

country scale is not required with this model. 

3. It is flexible with providing projections till 2100 if desired. 

4. It works with the FAO country and forest product categories. 

5. It provides separate output for raw wood and end products. 

6. It provides a user-friendly method to implement exogenous change data on GDP, 

GDP per capita, technology and trade for scenario analysis. 

7. It offers the flexibility to modify input base year data if necessary. 

 
Although the GFPM is best suited for further study with LandSHIFT, it should be kept in 

mind that model predictions are no better than their input assumptions. The scenarios of 

population and income growth, as well as assumptions on changes in technology and 

trade influence the model predictions to a considerable extent. They also account for a 

substantial part of the differences observed in the projected harvests as outlined and 

discussed in the next chapter. 
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CHAPTER 3 

 

Simulation of global 
Wood Production  

 

 

Summary 

The Global Forest Products Model is used to simulate wood production data for the 

global forestry sector, conditional on selected scenarios from the Millennium Ecosystem 

Assessment (MA), and from the Global Environment Outlook (GEO4) for the period 

2006 - 2050. The average global production of total industrial roundwood increases by 

approximately 50% across the MA scenarios and by around 100% across the GEO4 

scenarios during this period. The chapter presents both global and selected regional 

analysis. Across both MA and GEO4, the results indicate that, for example, the Russian 

Federation will emerge as a strong economic market for industrial roundwood in the 

future. Additionally, some Asian countries like Japan and South Korea will remain as 

active importers. Brazil and Canada will be major exporters of wood and, both regions 

will experience immense amounts of logging. 

 

Keywords: forest sector, wood demand, net trade, scenario, Millennium Ecosystem 

Assessment (MA), Global Environment Outlook (GEO4), Global Forest Products Model 

(GFPM) 
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3.1 Introduction 

One main purpose of the Global Forest Products Model (GFPM) is to predict roundwood 

harvests under different scenarios (Buongiorno et al. 2003). The model shows how the 

raw wood supply (timber harvest) is likely to change in response to changing economic 

environments such as changes in economic growth, trade tariffs and/or technology 

(Buongiorno et al. 2003).  The GFPM has been previously applied for several studies like 

‘Effects of Asian Economic Crisis’ (Buongiorno et al., 2003), ‘Effects of Tariff 

Liberalization’ (Zhu et al., 2001), ‘Impact of US Paper Recycling Policies’ (Zhu at al., 

2002) etc. 

 

The objective of this study is the adaptation and the application of the ‘Global Forest 

Products Model’ to obtain an estimation of wood production data. Estimates are made 

based on the storylines of the ‘Techno Garden’ and ‘Order from Strength’ scenarios in 

the Millennium Ecosystem Assessment (MA), and on the ‘Sustainability First’ and 

‘Markets First’ scenarios under Global Environment Outlook (GEO4) until year 2050. 

These estimates represent the amount of wood to be harvested in each country to meet 

global wood demand. The GFPM results are used as input in the ‘Forest’ module in 

LandSHIFT (Chapter 4).  

 
 
Section 3.2 provides an overview of the storylines of two Millennium Ecosystem 

Assessment scenarios (‘TechnoGarden’ and ‘Order from Strength’), and, of two Global 

Environment Outlook scenarios (‘Sustainability First’ and ‘Markets First’). It also briefly 

introduces the Global Forest Products Model and describes the model implementation. 

Section 3.3 presents the results of the impact of both MA and GEO4 scenarios on total 

industrial roundwood production in their six respective regions, as well as in selected 

countries/regions contrasting in fraction of forest cover, economic status and climate. 

Section 3.4 offers some concluding remarks. Section 3.5 offers a comparison of GFPM 

wood demand forecasts with other existing wood demand scenarios. 
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3.2 Materials and Methods 

3.2.1 Millennium Ecosystem Assessment Scenarios (MA) 

The MA scenarios were designed to study four possible and internally consistent global 

futures of ecosystems, ecosystem services and human well-being under a broad range of 

assumptions on key demographic, economic, social, cultural and climatic driving forces 

(MA 2005). This study considers only the ‘Order from Strength’ and ‘TechnoGarden’ 

scenarios because of their strongly contrasting underlying assumptions. These two 

scenarios differ with respect to most of the direct and indirect drivers of change affecting 

ecosystems that are part of the MA framework. The key indirect driving forces of the MA 

scenarios include population, income, technological development, and changes in human 

behavior (people’s attitudes towards international cooperation and towards environmental 

policies).  

 

3.2.1.1 TechnoGarden Scenario 
 
The TechnoGarden scenario depicts a globally connected world. In this scenario, the 

countries opt for very strong technological improvement in all economic sectors in order 

to deliver needed goods and services, at the same time keeping ecosystems well 

maintained. Hence the technology development is overall more geared towards an 

efficient ecosystem management. The scenario generally assumes a moderate pace of   

change in both human fertility and mortality rates based on moderate economic growth 

assumptions. This relationship is assumed to be similar across the world regions. The 

global economic growth is much higher than in the ‘Order from Strength’ (OS) scenario, 

due to a combination of trade liberalization, economic cooperation, and rapid spread of 

new technologies. As low-income countries grow much faster than other countries, the 

income gap between the rich and the poor regions is closing to a considerable extent. 

Technological development is relatively high in this scenario throughout the entire 

period. Assumptions made on technological advancement in this scenario are very 

optimistic and can be interpreted as maxima. Finally, this scenario assumes that 

environmental policies, such as improved recycling of paper products, are implemented 

to a larger degree than in the OS scenario. 
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3.2.1.2 Order from Strength Scenario 

The Order from Strength scenario represents a regionalized and fragmented world in 

which the rich countries confine themselves to their boundaries in order to avoid poverty 

and other threats like illegal immigration from poorer countries. As a result, the attitude 

towards ecosystem management becomes more locally focused and overall degradation 

of ecosystems is seen due to lack of international environmental policies. The scenario 

generally assumes high human fertility and mortality rates. This relationship however 

differs across regions. While the developing countries experience high human fertility 

and mortality trends; a reverse trend of low human fertility and mortality is seen in many 

of the industrialized countries, especially in Western Europe. This is because this 

scenario assumes to have divergent fertility trends coupled with low migration across the 

industrialized countries. The global economic growth in this scenario is very low because 

of the low level of international trade and limited exchange of technology. The income 

gap between the rich and the poor regions widens between 2000 and 2025. Finally, this 

scenario assumes a more negative attitude towards implementation of environmental 

policies, such as the recycling of paper products. 

 

3.2.2 Global Environment Outlook Scenarios (GEO4) 

The underlying theme of the GEO-4 report (UNEP 2007) is environment for 

development. It highlights the critical issues of sustainable development and the choices 

available to policymakers across the range of environmental, social and economic 

challenges – both known and emerging.  In assessing the state and trends of the global as 

well as emerging issues, the report also addresses issues related to human well-being and 

the valuation of environmental goods-and-services, building upon the work of the 

Millennium Ecosystems Assessment (MA). GEO-4 assesses the current state of the 

global atmosphere, land, water and biodiversity, describes the changes since 1987 

(climate change, collapse of fisheries, biodiversity loss, and emergence of diseases and 

pests, etc.,), and identifies priorities for action. It analyses the implications of various 

actions, approaches and societal choices at both regional and global levels for the future 

of the environment and human well-being under four scenarios – Markets First, Policy 

First, Security First and Sustainability First. This study considers only the ‘Markets First’ 
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and ‘Sustainability First’ scenarios because of lack of availability of climate data for the 

other two. These two scenarios differ with respect to most of the direct and indirect 

drivers of change affecting ecosystems that are part of the Global Environment Outlook 

framework. The key indirect driving forces of the GEO4 scenarios are much the same as 

in the MA scenarios and include population, income, technological development, and 

changes in human behavior (people’s attitudes towards international cooperation and 

towards environmental policies).  

 

3.2.2.1 Sustainability First Scenario 

Sustainability First is a world in which a new development paradigm emerges in response 

to the challenge of sustainability, supported by new values and institutions. This scenario 

gives equal importance to both environmental and socio-economic policies, as well as 

accountability for all decisions in their arena. It also emphasizes on transparency and 

legitimacy across actors at all levels – local, national, regional and international, and 

across all sectors, including government, private and civil. It strongly supports the 

development of effective public-private sector partnerships, not only in the context of 

projects, but also in the area of governance, ensuring that stakeholders who are involved 

in the entire process also have the opportunity to offer their input to policy making and 

implementation. Technological innovation mainly concentrates on sustainable use of 

ecosystem services and on increased environmental protection. Freer trade is emphasized, 

but on fair trade principles. Even though economic growth is not very high in this 

scenario, the nature and level of cooperation at all levels allows for a broad acceptance 

for what needs to be done. This involves the allowing of all elements of global society to 

achieve basic needs and achieve personal goals without compromising the environment 

further or threatening the viability of future populations. 

 

3.2.2.2 Markets First Scenario 

The Markets First scenario depicts a liberalized and market-oriented society, almost 

universal. The chief characteristic of this scenario is the immense amount of trust and 

reliance that the world puts into the globalization and openness of markets; not only for 

economic improvement, but also for social and environmental benefits. The entire 
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process revolves around a mixture of several factors: increased role of the industrial 

lobby accompanied by the slowly diminishing role of governments, continued movement 

towards trade liberalization, and the commoditization of goods obtained from nature. The 

world achieves much in terms of modernization and economic growth, presenting new 

opportunities for a significant proportion of the global population. Yet, this scenario faces 

the fundamental questions on the sustainability and desirability of this pattern of 

development. Formal environmental protection is very slow as it competes against efforts 

to improve the economy and expand trade. Environmental standards continue to decline 

and pressures on natural resources remain severe, raising again the levels of economic 

uncertainty and conflict. Social stresses threaten socio-economic sustainability as 

persistent poverty and growing inequality, exacerbated by environmental degradation, 

undermine social cohesion, spur migration and weaken international security. Compared 

to the ‘Sustainability First’ scenario, this scenario lacks a fundamental change in human 

behavior and in society’s demands on the environment. 

 

3.2.3 The Global Forest Products Model 

The Global Forest Products Model is a spatial, dynamic partial-equilibrium model 

designed to simulate trends in the forest sector under varying scenarios on country level. 

The model calculates production, consumption, trade, and prices for 180 countries and 14 

forest products as defined by the Food and Agricultural Organization (FAO 2000) based 

on the theory of spatial equilibrium in competitive markets. The GFPM solves the 

equilibrium by maximizing the value of the products, minus the cost of production, 

subject to material balance and capacity constraints in each country and in each year. A 

more detailed description, including the mathematical formulation of the GFPM is 

presented in Buongiorno et al. (2003).  

 

In each projection year, for each country and commodity, supply (domestic production 

plus imports) equals demand (final consumption, plus input in other processes, plus 

exports). Final demand is price responsive, while demand for wood or intermediate 

products derives from the demand for final products through input-output coefficients 

that describe technologies in each country. The supply of raw wood and non-wood fibers 
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in each country is also price responsive. The supply of recycled paper is constrained by 

the waste paper supply, which itself depends on the paper consumption and the recycling 

rate. Each country exports to and imports from the world market. Projected prices are 

such that they clear markets; at those prices, demand equals supply in each country. 

 

From one year to the next, demand changes in each country because of exogenous 

changes in income. The wood supply shifts exogenously due to changes in forest stock 

and forest area. The amount of recycled fiber used for making paper and paperboard 

changes exogenously with technology and recycling policy. Capacity increases or 

decreases endogenously according to new investments that depend on past production 

and the profitability of production in different countries, as revealed by the shadow price 

of capacity. Exogenous tariff changes affect the cost of ad valorem imports. Trade 

changes with inertia tied to past trade and the income of importing countries.  

 

The general principle of the model is that global markets tend to optimize resource 

allocation in the short run (within one year). Long-run resource allocation under varying 

scenarios can be obtained by specifying exogenous changes in economic growth*, 

technology, trade tariffs on imports, and by forest resource changes affecting wood 

supply.  

 

The base year (currently 2006) is the year in which the scenarios begin. All input data 

relating to different modules of the model like demand, supply, forest resources, 

manufacture, production capacity, recycling supply, transportation cost, tax and 

exogenous change data are read from a database. The exogenous data are organized by 

period. They only need to be specified for periods when an exogenous change is desired. 

If the exogenous change data are not specified for a period, the previous period’s 

exogenous changes apply. The model then computes a new equilibrium under the new 

demand and supply conditions, new technology, and new tariffs. In this study, the model 

recalculates equilibria 10 times (for the period 2006 – 2050 at 5-year intervals). 

 
* The GFPM incorporates changes in demographic trends in the GDP growth rates, which are among the most 

important exogenous parameters of GFPM. 
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This study implements the following exogenous variables in the GFPM in order to obtain 

wood production forecasts based on the MA and GEO4 scenarios. 

• Annual rate of growth of Gross Domestic Product (GDP).  

• Annual rate of GDP growth per capita.  

• Annual rate of technology change.  

• Annual rate of change in import tariffs (ad valorem).  

• Annual rate of change in forest area.   

 

Assumptions on economic growth influence the future outlook of wood supply from 

forests by affecting the direct drivers of forest stock changes like wood use, and indirect 

drivers such as technology. A higher economic growth is generally associated with higher 

technology development, thereby reducing the pressure on forests for wood supply. The 

rate of technological change represents the efficiency with which wood products are 

produced or used. A more efficient technology in processing wood products could, for 

instance, reduce the demand for raw wood extracted from the forests. Import tariffs 

influence the shift in forest area requirements to satisfy wood demand. An increase in 

trade tariffs could, for example, cause countries to import lesser quantities of wood than 

usual, thereby putting more pressure on their own forests for wood supply. Finally, a 

change in the rate of growth/decline of forest area also affects the wood supply. 

 

For this study, exogenous change data on economic growth under the MA and GEO4 

scenarios is directly taken from the respective scenarios. The data on annual rate of 

change in forest area is taken from the GEO4 Outlook Study (UNEP 2007). The same 

data has been assumed to be relevant for the MA scenarios since the scenario 

assumptions in MA and GEO4 are sufficiently similar. Accordingly, for the 

‘TechnoGarden’ scenario, the rate of change in forest area is as described in the 

‘Sustainability First’ scenario and for the ‘Order from Strength’ scenario, the rate of 

change in forest area is as described in the ‘Markets First’ scenario in GEO4. Exogenous 

changes in technology and import tariff rates are assumed based on the scenario 

storylines. A comprehensive description of the evaluation of these data is provided 

below. 
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3.2.3.1 Evaluation of Technology Change 

 
In the GFPM, technological change is manifested in the form of wood-saving technology. 

The concept is implemented in two separate phases and follows the material flow as 

shown in Figure 3.1 after Buongiorno et al, 2003. In the first phase, input-output (IO) 

coefficients that indicate a decrease in the amount of industrial roundwood per unit of 

sawnwood, plywood, particleboard, fiberboard, mechanical pulp and chemical pulp are 

estimated. Data on base year (year 2006) IO coefficients and data on estimates of lower 

bounds of the IO coefficients are available from the GFPM and are used to obtain the IO 

coefficient change factor for each scenario. For each product within each country, the 

estimated lower bound value of the IO coefficient has first been subtracted from the 

available base year IO coefficient value. The remainder has then been divided by the 

number of years for which the values need to be generated (44 years in this study) Thus, 

the increase in technological efficiency assumes a steady linear trend until it reaches the 

assumed lower bound value in the year 2050 for both MA and GEO4 scenarios. Since 

according to the scenario descriptions, both TG and SusF scenarios describe a high regard 

for sustainable technological development, the same technology change calculations have 

been taken for these two scenarios. Similarly, technology change for both OS and MF 

scenarios have been calculated in the same manner since both these scenarios suggest 

little regard for sustainable technology progress.  

 

Below is an example for calculation of change in IO coefficient of the amount of 

industrial roundwood per unit of sawnwood in Canada under the TG scenario.  

Base year IO coefficient value = 1.64555;  

Lower Bound =1.00 

Change in IO coefficient per year till 2050 = -((1.64555 – 1.00)/44) = -0.01467 

 

In the second phase, IO coefficient factors indicating an increase in wastepaper recovery 

(corresponding to a decrease in the amount of pulp utilization) are estimated for the 

production of newsprint, printing and writing paper, and other paper and paperboard. 
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Figure 3.1: Product transformations in the Global Forest Products Model (Chapter 4, 

Figure 4.1, Buongiorno et al, 2003) 

 

Estimating IO coefficients for TG and SusF Scenarios: 

Table 3.1 lists the industrial roundwood IO coefficient bounds that have been used to 

calculate the change coefficients to produce each intermediate product (sawnwood, 

plywood, particleboard, fiberboard, mechanical pulp and chemical pulp) in all countries. 

The bounds are indicators of the minimum amount of industrial roundwood required in 

tons per unit production of each of the intermediate products. Since both TG and SusF are 

very optimistic with respect to technological development, it has been assumed that in 

these scenarios the amount of industrial roundwood used in manufacturing the above-

mentioned intermediate products would gradually decrease between 2006 and 2050 until 

the manufacturing technology reaches a stage where it cannot be further improved. For 

printing and writing paper, newsprint and other paper and paperboard, the utilization of 

wastepaper during their production is assumed to increase gradually in accordance with 

the increase in the recycle paper use (as explained below), with a corresponding decrease 

in the amount of wood pulp used between 2006 and 2050. The resulting increase in 

wastepaper utilization rate is as follows: Africa (0.2% per annum); North and Central 

America, South America, and Europe (0.35% to 5% per annum); Asia and Oceania (0.7%  
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per annum); Former USSR (0.1 to 0.2% per annum). For each of the three output 

products (Printing Writing Paper, Newsprint and Other Paper and Paperboard), the 

average change values have been selected such that for each country, in each year 

throughout the projection period, the sum of the IO coefficient values of all three 

products is approximately equal to 1. This constraint has been applied to adhere to the 

basic requirement in paper production of having at least 1 ton of fiber input for every 1 

ton of paper output. In some cases, the sum of the IO coefficient values may be slightly 

less than 1. This can be attributed to the fact that for some commodities, additives like 

clay are utilized in board and paper production. 

 

Estimating IO coefficients for OS and MF Scenarios: 

In these scenarios, technology development is assumed to be slow, as compared to the 

TG and SusF scenarios, due to less regard for ecosystem management. Hence, high 

improvement in technology is not anticipated. Accordingly, it has been assumed that the 

rate of growth of technology is only half of the technological growth rate in the TG (and 

SusF) scenario for all products in all countries.   

 

Table 3.1: Industrial Roundwood IO coefficient lower bounds considered in TG scenario 
 
Sawnwood* Plywood** Particle** 

Board 
Fiberboard** Mechanical** 

Pulp 
Chemical Pulp** 

1.00 0.83 0.66 0.75 0.86 1.25 
 

* In practice, there are always losses of at least 10-15% of industrial roundwood when Sawnwood is 
produced. Hence, the assumption that the countries finally attain a technological efficiency standard where 
no waste is produced is not feasible in the real production world. However, in the GFPM, there are 46 
countries for which the base year IO coefficient values for conversion of Industrial Roundwood to 
Sawnwood have already been set to a value of 1.00. This was done in order to reconcile the data on 
industrial roundwood consumption with the data on production of sawnwood, panels, etc. Hence, in this 
study, a lower bound value of 1.00 is only a theoretical indicator of a scenario in which maximum possible 
efficiency is achieved and cannot be improved further.  
 
** In case of Plywood, Particleboard, Fiberboard and Mechanical Pulp, the lower bound values are lower 
than 1.00 because the manufacturing process of these products also involves other additives than industrial 
roundwood. 
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Calculation of Recycle Paper Use for implementation of technology change in 
wastepaper utilization: 
 
Quantifying wastepaper recovery rates in the TG and SusF scenarios: 
 
Both TG and SusF scenarios envisage an ideal world in which high levels of recycling 

would be possible and every country would meet goals and targets for wastepaper 

recovery.  In this study, the targets for wastepaper recovery have been set based on the 

“optimal scenario” of Mabee and Pande (1997). According to this scenario, the estimated 

potential best wastepaper recovery rates until 2010 are as follows: Africa, 50 percent; 

North America, 50 percent; Latin America, 50 percent; Asia, 75 percent; Oceania, 75 

percent; Europe, 90 percent; and Former USSR, 40 percent. Although their study 

considers a projection period only until 2010, the target figures are indicative of recycling 

maximum achievable in long term also. For instance, Europe being a compact, highly 

developed area with traditionally high levels of recycling, has been given a target of 90% 

wastepaper recovery. It is highly unlikely that greater levels of wastepaper recovery 

could be achieved in the real world. Hence, it will not be completely incorrect to assume 

that the optimal scenario targets set for wastepaper recovery in Mabee and Pande (1997) 

will be feasible for a projection period until 2050. However, intensive-recyclable paper 

recovery is in general associated with greater utilization of recycled paper (Berglund 

2003). Also, according to Ince (1994), a higher rate of utilization of recycled paper 

results in lower paper quality, because the fiber becomes weaker and more contaminated 

each time it is reused. Hence a plausible upper limit on the wastepaper recovery rate is 

75% (Ince 1994). Based on the above studies, the assumed wastepaper recovery rates 

with respect to the TG and SusF scenarios in the GFPM are such that the world recovery 

rate would rise from 39% in 2006 to around 62% by 2050. Accordingly, the following 

target levels have been set for wastepaper recovery in each region in GFPM: Africa, 50 

percent; North and Central America, 75 percent; South America, 50 percent; Asia, 75 

percent; Oceania, 75 percent; Europe, 75 percent; and Former USSR, 40 percent. The 

recovery rates are also consistent with the Kuznets curve hypothesis, which predicts that 

for richer countries there will be a strong positive correlation between per capita income 

and the extent to which environmental protection measures, including waste management 

policies, are adopted (Berglund 2003).  
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Quantifying wastepaper recovery rates in OS and MF scenarios: 

Both OS and MF scenarios assume technology advancement for more ideological than 

for environmental reasons, and people see the environment as secondary to their other 

challenges. Therefore, it is assumed that a significant increase will occur in wastepaper 

recovery and utilization in the OS and MF scenarios, although lesser in magnitude as 

compared to the TG and SusF scenarios. Hence, it has been assumed that the world 

wastepaper recovery rate would experience only a half of the increase in world 

wastepaper recovery that has been assumed in the TG (and SusF) scenario and rise from 

39% in 2006 to around 45% by 2050. Accordingly, the following target levels have been 

set for wastepaper recovery in each region in GFPM: Africa, 35 percent; North and 

Central America, 50 percent; South America, 40 percent; Asia, 45 percent; Oceania, 50 

percent; Europe, 65 percent; and Former USSR, 30 percent.  

 

3.2.3.2 Evaluation of Import Tariff Rates 

MA Scenarios 

 

 
 
 
 
 
 
 
 
 

OS 

TG

1980 import 
tariffs 

0.1

1
Current tariff 

rates 

0.5

 2006 2020 2050
 
 
 
Figure 3.2: Estimation of import trade tariffs in TG and OS scenarios 
 

Quantifying Import Tariff Rates for TG Scenario: 

Since this scenario depicts a globally connected world and predicts accelerated 

liberalization in trade, it has been assumed that the current import tariff rates will 
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gradually decrease to ten percent of their present values until 2020 and then remain at 

that level until 2050 (Figure 3.2).  

 

Quantifying Import Tariff Rates for OS Scenario: 

Since this scenario represents a regionalized and fragmented world emphasizing 

primarily on regional markets, it has been assumed that the import tariff rates will 

initially increase until 2020 and then remain constant at that level until 2050 (Figure 3.2). 

The 1980 import tariff rates (Buongiorno, Personal Communication) are chosen as the 

target that the current tariff rates will reach in 2020 since these rates originate from a 

more regionalized world, and thus well represent the assumptions in the OS scenario. 

 

GEO4 Scenarios 
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Figure 3.3: Estimation of import trade tariffs in SusF and MF scenarios. 

 
Quantifying Import Tariff Rates for SusF Scenario: 
 
This scenario indicates a significant increase in trade liberalization. However, it also 

emphasizes on strong embodiment of fair trade principles and recognition of valuing 

ecosystem services. Hence, it has been assumed that the current import tariff rates will 

gradually decrease to half of their present values by 2020 and then remain so until 2050 

(Figure 3.3).  

 

Quantifying Import Tariff Rates for MF Scenario: 

This scenario depicts increased liberalization in trade. However, no global free trade zone 

is achieved. Hence, it has been assumed that the current import tariff rates will gradually 
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decrease to ten percent of their present values by 2020 and then remain so until 2050 

(Figure 3.3).  

 

3.3 Results and Discussion 
3.3.1 Global Analysis 
3.3.1.1 Production under MA scenarios 
 
 
Results 
 
Global production of industrial roundwood increases by approximately 50% between 

2006 and 2050 across the TG and OS scenarios. Detailed results on production and net 

trade of industrial roundwood in the six MA regions - (1) Asia (2) FSU, Former Soviet 

Union (3) LAM, Latin America (4) MENA, Middle East and North Africa (5) OECD90 

and (6) SSA, Sub-Saharan Africa - as outlined in the Millennium Ecosystem Assessment 

(MA) scenarios are outlined and discussed below. 

 
 
TG scenario 
 
Globally, the production of industrial roundwood increases almost 17% between 2006 

and 2050, from 1.7 billion m3 to nearly 2.1 billion m3. The simulations indicate a 

continuous increase in the production of industrial roundwood in all regions until 2050, 

except in OECD90, where it starts decreasing 2030 onwards (Figure 3.4a). Figure 3.4b 

shows the net trade of industrial roundwood in the six MA regions. The results indicate 

that the FSU will emerge as a major exporter of raw or processed industrial roundwood 

among the six MA regions. Imports into Asia increase from 2006 to 2030, and then 

remain on the decrease until 2050. Imports into the OECD90 countries are constant 

between 2006 and 2020, and then increase continuously until 2050. Also, imports into the 

OECD90 are higher than into Asia. The MENA and SSA regions import small quantities 

of industrial roundwood while the LAM is involved to a small extent in industrial 

roundwood exports over the entire projection period. 
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Figure 3.4a: Production of Total Industrial Roundwood in TG Scenario 

 
Figure 3.4b: Net trade of Total Industrial Roundwood in TG Scenario 

 
OS scenario 
 
The global production of industrial roundwood increases almost 80% between 2006 and 

2050, from 1.7 billion m3 to nearly 3.2 billion m3. On a global perspective, the 

simulations indicate a continuous increase in the production of industrial roundwood in 
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all regions (Figure 3.5a). Also, in each region, production in this scenario is higher than 

in the TG scenario.  

 
Figure 3.5a: Production of Total Industrial Roundwood in OS Scenario 

 
Figure 3.5b: Net trade of Total Industrial Roundwood in OS Scenario 

 

Figure 3.5b shows the net trade of industrial roundwood in the six MA regions. Like in 

TG, the FSU emerges as a major exporter of raw or processed industrial roundwood 
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among the six MA regions. However, the export quantity of industrial roundwood from 

FSU is much less in this scenario as compared to in the TG. Also, imports into OECD90 

are much less than in the TG. Unlike in TG, Asia imports more industrial roundwood than 

the OECD90 over the entire projection period. In the LAM region, export quantities are 

very low during the entire period. As in the case of TG, the MENA region imports small 

quantities of industrial roundwood over the entire period. However, in this scenario, the 

SSA region is involved in exporting small quantities of industrial roundwood till 2050. 

 

Discussion 

 

Global production of industrial roundwood is 55% higher in the OS scenario than in the 

TG scenario by 2050. In general, lower economic growth and less technology 

development are responsible for higher production (extraction of raw wood) in the OS. 

High technology advancement in TG enables the countries to produce more wood 

products with fewer raw materials, thus putting less pressure on their forest resources. 

However, low tariff rates in the TG scenario also enable exports from developing regions, 

and the FSU, which lead to a decrease in forest resources in these regions in the long run.   

 

TG Scenario 

 
The TG scenario (Figure 3.4a) shows a continuous increase in the production of industrial 

roundwood in all six regions, except in OECD90 where it decreases 2030 onwards. This 

decrease in production is not related to a decrease in the demand for industrial 

roundwood. It only indicates that the countries in this region will be able to satisfy 

increasing industrial roundwood demands while keeping raw roundwood removals low 

due to high progress in technology, implementation of effective paper recycling and 

increasing involvement in imports of raw or processed industrial roundwood. Even 

though production is highest in OECD90, Figure 3.4b indicates that FSU will emerge as a 

major exporter of raw or processed industrial roundwood among all six MA regions. 

There is already a steady increase in the number of wood processing industries interested 

in logging in this region (http://www.borealforest.org). Many countries in Asia, 

especially South Korea, import large quantities of tropical hardwood. However, as these 
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supplies get more limited, FSU represents a potential supplier to these regions. Current 

economic problems and need for foreign currency might force the region to engage in 

higher wood technology progress, thus being able to play the role of a major wood 

exporter as well as to protect the cultural and environmental interests of its country and 

people (http://ces.iisc.ernet.in). Asia and OECD90 are active importers in this scenario 

with imports in to the OECD90 region being at a higher level than into Asia (The major 

importers in OECD90 are Japan, Finland, Sweden and Italy. China, Korea and India are 

the major importers in Asia.) While low economical growth is mainly responsible for 

higher imports into Asia during the entire study period, a very high economical growth in 

the OECD90 is mainly responsible for higher imports into the region in order to maintain 

forest resources. Figure 3.4b shows that industrial roundwood exports from the LAM 

remain at a constant level throughout the projection period. Despite technology progress, 

heavy increase in population (leading to low per capita GDP) in the region as assumed in 

the MA scenario is mainly responsible for the LAM inability to participate to a greater 

extent in industrial roundwood exports. Furthermore, as indicated in Figure 3.4b, the 

MENA and SSA regions are hardly involved in industrial roundwood trade. This trend 

can be attributed to constantly improving technology in these regions, which enables 

them to satisfy their own industrial roundwood demands while maintaining their forest 

ecosystems to some extent. 

 

OS Scenario 

 
The OS scenario shows a continuous increase in the production of industrial roundwood 

in all six MA regions (Figure 3.5a). Also, in all regions, production in the OS is higher 

than in the TG scenario. Higher production in the OS can be attributed to lower per capita 

GDP, slower development of technology and less consideration for forest conserving 

activities like paper recycling, leading to greater exploitation of forest resources. 

However, trade quantities in this scenario are much lower than in the TG since this 

scenario depicts a regional world with trade barriers, thereby tending to reduce trade 

among regions. Like in the TG, Figure 3.5b indicates that FSU will emerge as a major 

exporter of raw or processed industrial roundwood, while Asia (mainly China, Korea and 

India) and OECD90 (mainly Japan, Sweden, Finland and Italy) remain as major 
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importers. However, unlike in the TG, the OECD90 imports much less compared to Asia. 

This difference occurs for two reasons. First, population growth in Asia is assumed to be 

higher than in OECD90 in the OS. Second, OECD90 owing to its economy is very 

capable of equipping itself for wood requirements without depending on imports. On the 

other hand, Asia, with a less developed economy and experiencing an assumed heavier 

increase in population, still needs to import raw/processed industrial roundwood. Another 

reason that adds to the phenomenon is that slow development in technology and 

increasing pressure on forest ecosystems additionally force the region to import more 

industrial roundwood. The LAM is involved only to a small extent in industrial 

roundwood exports. As in the case of the TG, MENA and SSA are hardly involved in 

imports or exports of industrial roundwood. They manage to satisfy their regional wood 

demands based on their internal production.  

 

3.3.1.2 Production under GEO4 scenarios 
   
 
Results 
 
The global production of industrial roundwood increases by approximately 100% 

between 2006 and 2050 across the SusF and MF scenarios. Detailed results on production 

and net trade of industrial roundwood in the six GEO4 regions - (1) Africa (2) Latin 

America and the Caribbean (3) North America (4) Asia and the Pacific (5) Europe and 

(6) West Asia - as outlined in the Global Environment Outlook (GEO4) scenarios are 

outlined and discussed below. 

 
SusF Scenario 
 
Globally, the total production of industrial roundwood increases almost 40% between 

2006 and 2050, from 1.7 billion m3 to nearly 2.4 billion m3. The simulations indicate a 

continuous increase in the production of industrial roundwood in all regions until 2050, 

except in North America, where it continuously decreases over the entire projection 

period; and in West Asia, where it remains almost constant throughout (Figure 3.6a). 

Figure 3.6b shows the net trade of industrial roundwood in the six GEO4 regions. The 

curves  indicate  that  ‘West  Asia’  and  ‘Asia  and  the  Pacific’ regions  are the only two  
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Figure 3.6a: Production of Total Industrial Roundwood in SusF Scenario 

 
Figure 3.6b: Net trade of Total Industrial Roundwood in SusF Scenario 

 

importers of industrial roundwood among the six GEO4 regions. Europe is the major 

exporter of industrial roundwood.  North America, Latin America and Caribbean, and 

Africa are also significant industrial roundwood exporters over the entire projection 

period. 
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MF Scenario    

The global production of industrial roundwood increases almost 150% between 2006 and 

2050, from 1.7 billion m3 to nearly 4.5 billion m3. The simulations indicate a continuous 

increase in the production of industrial roundwood in all regions (Figure 3.7a). Also, in 

each region, production in this scenario is higher than in the SusF. Figure 3.7b shows the 

net trade of industrial roundwood in the six GEO4 regions. Like in the SusF scenario, 

Europe emerges as a major exporter of industrial roundwood among the six GEO4 

regions. The ‘Asia and the Pacific’ region emerges as a major importer. However, the 

export quantities of industrial roundwood from Europe and Latin America and Caribbean 

regions as well as the import quantities of industrial roundwood into the Asia and the 

Pacific region are much higher in MF than in the SusF over the entire projection period. 

Europe exports almost three times more than in the SusF. Imports into the Asia and the 

Pacific region are almost twice as much as in the SusF. However, export quantities from 

North America are almost the same in both MF and SusF scenarios. Also, unlike in SusF, 

exports from Africa decrease continuously over the entire projection period and the 

region starts importing industrial roundwood in small quantities from 2040 onwards. 

Finally, West Asia is involved in industrial roundwood imports to a small extent and 

these import quantities are almost the same in both MF and SusF scenarios. 

 
Figure 3.7a: Production of Total Industrial Roundwood in MF Scenario 
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Figure 3.7b: Net trade of Total Industrial Roundwood in MF Scenario 

 

Discussion 

 

Global production of industrial roundwood is almost 100% higher in the MF scenario 

than in the SusF scenario by 2050. In general, higher population and less technology 

development are responsible for higher production (extraction of raw wood) in MF. 

Lesser population than in MF and higher technology advancement are the major factors 

responsible for lower production in the SusF scenario. However, low tariff rates in the 

MF scenario are responsible for promoting exports from developing regions, especially 

the Russian Federation, which might lead to a decrease in forest resources in these 

regions in the long run.   

 

SusF Scenario 

 
The SusF scenario (Figure 3.6a) shows a continuous increase in the production of 

industrial roundwood in all six regions, except in North America, where the production 

decreases continuously between 2006 and 2050. This decrease in production is not 

necessarily related to a decrease in the demand for industrial roundwood. It only indicates 

that Canada and USA will be able to satisfy increasing industrial roundwood demands 
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while keeping raw roundwood removals low due to high progress in technology, 

implementation of effective paper recycling and increasing involvement in imports of 

raw or processed industrial roundwood. Among all six regions, production is highest in 

Europe. According to the regional classification in GEO4, Russian Federation is a part of 

the Europe region. Also, the results indicate that it will export very high amounts of 

industrial roundwood among all the countries in Europe. Even in the TG scenario in MA 

(Figure 3.4b), the FSU region emerges as a major exporter, with exports from Russia 

being the highest. The discussion for Russia emerging as a major exporter in the SusF 

scenario can be attributed to the same lines of thought as discussed in the TG scenario 

above. Asia and the Pacific is the only active importer in this scenario with the majority 

wood being imported by China and Japan. However, the results indicate that China will 

see a continuous increase in imports whereas Japan will experience a continuous decrease 

in its imports. Japan already has a long history of tropical timber exports. The main 

sources of tropical timber imported into Japan were Malaysia, Indonesia and Papua New 

Guinea (ITTO Annual Review 1999). Since Japan's tropical log imports declined in the 

1990's, the world's number one importer of tropical logs is now China. The net trade 

projections for China and Japan are very representative of the current trends seen in these 

two countries. According to the GEO4 assumptions, decrease in GDP per capita in China 

is mainly responsible for higher imports. On the other hand, continuously increasing GDP 

per capita between 2005 and 2050 in Japan is mainly responsible for reduced imports into 

the region. North America (mainly Canada), Latin America and Caribbean (mainly Brazil 

and Chile), are also significant industrial roundwood exporters over the entire projection 

period in this scenario. High wood technology growth in these countries is the main 

factor that will enable these countries to continue being major exporters to their regions. 

Africa (mainly South Africa) is also involved in exports to some extent.  

 

MF Scenario 
 
The MF scenario (Figure 3.7a) shows a continuous increase in the production of 

industrial roundwood in all six GEO4 regions. Also, in all regions, production in MF is 

higher than in the SusF scenario. Higher production in this scenario can be attributed to 

higher population growth, slower development of technology and less consideration for 

forest conserving activities like paper recycling, leading to greater exploitation of forest 
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resources. However, trade quantities in this scenario are much higher than in the SusF 

since this scenario depicts a liberalized world with decelerating trade barriers and 

encouraging active trade among regions. Figure 3.7b indicates that Europe, mainly 

Russian Federation, will emerge as a major exporter of raw or processed industrial 

roundwood like in SusF. Also, Asia and the Pacific (mainly China and Japan) is the only 

importer in this scenario as well. Higher increase in population than in the SusF, slower 

development in technology, and much reduced trade import tariffs are mainly responsible 

for higher imports into the Asia region in this scenario. As in the case of SusF, North 

America (mainly Canada), Latin America and Caribbean (mainly Brazil and Chile), are 

significant industrial roundwood exporters over the entire projection period. Africa 

(mainly South Africa) is also involved in exports to some extent. 

 

3.3.2 Regional Analysis 
 
Exemplarily, regional results are presented for Brazil and Canada, because these regions 

strongly contrast in forest cover, economic status and climate. In both scenarios, these 

countries also play an important role in the net trade of Industrial Roundwood. According 

to the projections, Brazil is one country within the LAM region in MA as well as within 

the ‘Latin America and the Caribbean’ region in GEO4 that is actively involved in 

Industrial Roundwood exports. In the MA, within the OECD90, while most of the 

countries are mainly shown to be importers of Industrial Roundwood, Canada is shown to 

emerge as a major exporter. Also, in the GEO4, Canada is the major exporter in the North 

America region. 

 
3.3.2.1 Brazil 
 
MA Scenarios 
 
Industrial roundwood production increases continuously between 2006 and 2050. Table 

3.2a shows the production of industrial roundwood in Brazil from 2006 – 2050 under the 

TG and OS scenarios. In TG, the production of industrial roundwood increases by 

approximately 66% until 2050. The OS scenario shows a production increase of 180% 

during the projection period. The relative difference between the estimated production of 

industrial roundwood in the OS and TG scenarios increases continuously during the 
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entire projection period (Table 3.2a). Production in TG is almost 68% less than in the OS 

by 2050. This difference can be attributed to modest population growth, increased 

economic growth in terms of GDP and GDP per capita as well as to greater improvement 

in technology in the TG scenario. Hence, increased production activity is possible while 

keeping raw wood extraction low. On the contrary, higher population growth, lower 

income and less progress in technology as described in the OS scenario are responsible 

for increased raw wood removals in the country.  

 

Exports of Industrial Roundwood from Brazil are continuously on the rise over the entire 

length of the projection across both TG and OS (Table 3.2b). However, export quantities 

are much less in the OS than in the TG mainly because of higher tariff rates in the OS. 

 
Year TG 

(million m3) 
OS 

(million m3) 
Relative 

Difference 
2006 112.0 112.0 0.00 
2010 116.8 119.1 1.96 
2015 123.6 130.7 5.78 
2030 157.2 180.8 15.02 
2050 186.2 314.1 68.69 

Table 3.2a: Production of 
industrial roundwood in 
Brazil (2006-2050). The table 
shows the relative difference 
in the estimated production of 
industrial roundwood in TG 
and OS scenarios in Brazil. 
  

Year TG 
(million m3) 

OS 
(million m3) 

2006 2.2 2.2 
2010 2.7 2.2 
2015 3.5 2.3 
2030 7.4 2.5 
2050 20.1 6.0 

Table 3.2b: Net trade of industrial roundwood in 
Brazil (2006-2050). The table shows the 
estimated exports of industrial roundwood in TG 
and OS scenarios from Brazil. 

 

GEO4 Scenarios 

Industrial roundwood production increases continuously between 2006 and 2050. Table 

3.3a shows the production of industrial roundwood in Brazil from 2006 – 2050 under the 

SusF and MF scenarios. In SusF, production of industrial roundwood increases by 55% 

until 2050. The MF scenario shows a production increase of 192% by 2050. The relative 

difference between the estimated production of industrial roundwood in the MF and SusF 

scenarios increases continuously during the entire projection period (Table 3.3a). 

Production in the SusF is almost 87% less than in the MF by 2050. Low population and 

very high technology growth in the SusF scenario are mainly responsible for lesser 

production than in the MF scenario, where, on the contrary, population is quite high (as 

described in the GEO4 scenarios) and technology growth is less.  
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Exports of Industrial Roundwood from Brazil are continuously on the rise over the entire 

length of the projection across both SusF and MF (Table 3.3b). However, export 

quantities are much less in SusF than in the MF, especially from 2030 onwards, mainly 

because of lower tariff rates in the MF. 

 
Year SusF 

(million m3) 
MF 

(million m3) 
Relative 

Difference 
2006 112.1 112.1 0.00 
2010 116.6 119.1 2.14 
2015 123.6 130.0 5.20 
2030 153.8 185.8 20.82 
2050 174.8 328.0 87.67 

Table 3.3a: Production of 
industrial roundwood in 
Brazil (2006-2050). The table 
shows the relative difference 
in the estimated production of 
industrial roundwood in SusF 
and MF scenarios in Brazil. 

 

 
Year SusF 

(million m3) 
MF 

(million m3) 
2006 2.2 2.2 
2010 2.7 2.7 
2015 3.5 3.5 
2030 7.4 7.5 
2050 13.37 20.04 

Table 3.3b: Net trade of industrial roundwood in 
Brazil (2006-2050). The table shows the 
estimated exports of industrial roundwood in 
SusF and MF scenarios from Brazil. 

 

3.3.2.2 Canada 
 
MA Scenarios 
  

The results for Industrial Roundwood production in Canada for the period 2006-2050 in 

both TG and OS scenarios are presented in Table 3.4 a. Industrial roundwood production 

under the TG scenario decreases by approximately 11% by 2050. In the OS scenario, 

production increases continuously by around 50% between 2006 and 2050. The 

production of industrial roundwood is much less in TG scenario than in OS. This is 

mainly because Canada is a developed country and according to the TG scenario, high 

GDP growth, higher involvement in paper recycling activities and high technology 

growth enables the country to fulfill the demands for raw forest product commodities 

keeping production at a low level from its available forest resources. On the other hand, 

high increase in population, less consideration for ecosystems management and low 

technology progress are responsible for increased raw wood removals in the OS scenario.  

 

Industrial Roundwood export quantities in the OS scenario are less than in the TG 

scenario mainly because of higher tariff rates in the OS (Table 3.4b). 
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Year TG 
(million m3) 

OS 
(million m3) 

Relative 
Difference 

2006 197.7 197.7 0.00 
2010 193.2 200.1 3.56 
2015 190.3 206.0 8.29 
2030 185.3 231.3 24.82 
2050 175.2 295.2 68.51 

 
Year TG 

(million m3) 
OS 

(million m3) 
2006 1.5 1.5 
2010 1.5 1.5 
2015 4.3 4.3 
2030 10.5 7.9 
2050 32.2 23.4 

 
 
GEO4 Scenarios 
 

Industrial roundwood production under the SusF scenario decreases by 8% by 2050, 

while in the MF scenario, it increases by 61% by the end of the projection period (Table 

3.5a). The production of industrial roundwood is much less in SusF than in the MF. Like 

in the case of Brazil, low population combined with very high technology growth in the 

SusF scenario is mainly responsible for lesser production than in the MF scenario.  

 

Exports of Industrial Roundwood from Canada are continuously on the rise over the 

entire length of the projection across both SusF and MF (Table 3.5b). However, export 

quantities are slightly less in the SusF scenario than in the MF scenario, mainly because 

of lower tariff rates in the MF. 

 
Year SusF 

(million m3) 
MF 

(million m3) 
Relative 

Difference 
2006 197.7 197.7 0.00 
2010 194.6 201.1 3.34 
2015 193.5 209.0 8.01 
2030 191.7 244.6 27.60 
2050 182.9 318.4 74.08 

 
Year SusF 

(million m3) 
MF 

(million m3) 
2006 1.5 1.5 
2010 1.5 1.5 
2015 4.2 4.3 
2030 10.6 10.7 
2050 32.3 32.4 

Table 3.5b: Nettrade of industrial roundwood in 
Canada (2006-2050). The table shows the 
estimated exports of industrial roundwood in 
SusF and MF scenarios from Canada. 

Table 3.4b: Nettrade of industrial roundwood in 
Canada (2006-2050). The table shows the 
estimated exports of industrial roundwood in TG 
and OS scenarios from Canada. 

Table 3.5a: Production of 
industrial roundwood in Canada 
(2006-2050). The table shows 
the relative difference in the 
estimated production of 
industrial roundwood in SusF 
and MF scenarios in Canada. 

Table 3.4a: Production of 
industrial roundwood in Canada 
(2006-2050). The table shows the 
relative difference in the 
estimated production of 
industrial roundwood in TG and 
OS scenarios in Canada. 
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Regarding regional analysis, in both Brazil and Canada, very rich forest ecosystems are 

located. Brazil holds about one-third of the world's remaining rainforests, including the 

major fraction of the Amazon rainforest (http://www.mongabay.com); while, Canada’s 

temperate and boreal forests account for about 10% of the world’s forest cover 

(http://www.globalforestwatch.org). Both regions are major exporters of wood and, both 

regions have experienced and are still seeing immense amounts of deforestation due to 

logging (FAO 2008). With the occurrence of increased logging activities and 

inappropriate replanting, Northwest Canada has earned itself the nickname "the Brazil of 

the North."(E: The Environmental Magazine, April, 1994   by Andre Carothers)  That is 

because both Canada and Brazil have similar overall forestland masses, and have 

witnessed similar amounts of hectares destroyed by forestry (www.mongabay.com).  

Therefore, without some sort of forest management program, deforestation and 

environmental degradation can become a severe problem for any country, irrespective of 

whether that country is considered industrialized like Canada or developing like Brazil.   
 
3.4 Conclusions and Outlook 
 
The end of the 20th century and the beginning of the 21st century have witnessed an 

increasing amount of globalization in world trade of forest products. This makes it more 

and more necessary for any individual country or region to plan a strategy or enact a 

policy taking into account the effects on forestry and trade in other countries. Hence, the 

implementation of future scenarios in GFPM, which allows simultaneous treatment of the 

large number of countries and forest commodities, may contribute a very useful feature 

that can be employed for global land use models like LandSHIFT (Schaldach et al, 2006), 

which are also taking all other land-intensive sectors into account. The GFPM results 

obtained in this study will be used to drive forest sector dynamics in LandSHIFT, in order 

to simulate and analyze spatially explicit land use change and its impacts on the 

environment on a global scale. The simulated amounts of industrial roundwood 

production obtained in this study should be regarded as first estimates, obviously 

depending heavily on both endogenous and exogenous assumptions in the GFPM. 

Nevertheless this study provides consistent datasets to be used as input for an integrated 

assessment of the global forestry sector in LandSHIFT as discussed in detail in Chapter 4.  
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3.5 Supplement: Comparison of GFPM results with existing 
wood demand scenarios  
 

Over the last 20 to 30 years, numerous timber market models have been developed for 

various purposes like analyzing policy changes, projecting market behavior, or to 

consider other, more specific questions related to timber markets (Buongiorno et al., 

2003). A key output of all economic forest sector models is the projected demand for 

forest products. The previous sections presented a detailed analysis of future global and 

regional demands for total industrial roundwood under the MA and the GEO4 scenarios 

using the Global Forest Products Model (GFPM). In order to evaluate these outcomes, 

the global projections of total industrial roundwood production from the GFPM are 

compared with those from other models and organizations. This section reviews existing 

demand projections and comments on how the results from the GFPM relate to the 

forecasts obtained from other economic models and studies.   

 
The comparison includes 26 projections including data from various sources and the 

results for the four (two from MA and two from GEO4) scenarios obtained with the 

GFPM.  In a few cases, existing studies have provided multiple scenarios that consider 

variation in factors like projected population, economic growth rates, technology, etc. 

that could affect demand.  Some studies provide projections until year 2010; three studies 

offer projections until year 2020; one study provides projections until 2035, and three 

studies offer long-term projections until 2050.  The historical baseline data (year 2000) is 

taken from FAOSTAT online database (FAO Statistical Database, 2008). It should be 

noted that the model projections are a function of both theoretical and structural 

differences, as well as of the specific set of scenario assumptions (at regional and/or 

global levels) leading to model output. It is quite possible that these scenario assumptions 

may be a more important aspect of any differences than the theory. This study does not 

take into account these differences/assumptions in this analysis. The main focus is to 

compare the GFPM output on global industrial roundwood demand to other existing 

long-term global demand projections. Table 3.6 offers a brief overview of some existing 

global demand projections. Table 3.7 provides a summary of the global results simulated 

under the MA and the GEO4 scenarios with the GFPM. 
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The reference studies that offer projections until 2010 are: Brooks et al (1997), Brown et 

al. (1999), FAO (1999), Jaako Poyry (1995), and Nilsson (1996), non-mainstream. Three 

studies that provide demand projections till 2020 are Apsey & Reed (1995), International 

Tropical Timber Organization (ITTO 1999) and Nilsson (1996). One study (Sedjo and 

Lyon, 1990) provides demand estimates till 2035. Other projections that go until the year 

2050 are those of Sohngen et al. (1999), Solberg et al. (1996) and Victor and Ausubel 

(2000). 

 

Table 3.6: Summary of Projections from reference studies 
Demand for industrial roundwood (billion m3)  Reference Studies* 

2000 2010 2020 2035 2050 

Apsey & Reed (1995)  -- 2.2 -- -- 

Brooks et al (1997) scenario #1  1.8 -- -- -- 

Brooks et al (1997) scenario #2  1.9 -- -- -- 

Brown et al. (1999)  1.8 -- -- -- 

FAO Committee on Forestry (1999)  1.8 -- -- -- 

FAOStat (Historical) 1.6 -- -- -- -- 

ITTO (1999)   -- 2.2 -- -- 

Jaako Poyry (1995)  1.7 -- -- -- 

Nilsson (1996)  -- 2.4 -- -- 

Nilsson (1996), non-mainstream  1.8 -- -- -- 

Sedjo & Lyon (1990) base case  -- -- 2.0 -- 

Sedjo & Lyon (1990) high demand  -- -- 2.3 -- 

Sohngen et al (1999) high demand  -- -- -- 2.5 
Sohngen et al (1999) low access 
cost 

 
-- -- -- 2.2 

Sohngen et al (1999) baseline  -- -- -- 2.1 

Sohngen et al (1999) low plantation  -- -- -- 2.0 

Solberg et al (1996) scenario 1   -- -- -- 1.8 

Solberg et al (1996) scenario 2  -- -- -- 1.9 

Solberg et al (1996) scenario 3  -- -- -- 2.4 

Solberg et al (1996) scenario 4  -- -- -- 2.5 

Solberg et al (1996) scenario 5  -- -- -- 2.9 

Solberg et al (1996) scenario 6  -- -- -- 3.0 

Victor and Ausubel (2000)  -- -- -- 2.0 
 
*The studies included are for total world industrial roundwood, undistinguished between dimension lumber 
and pulp.  Non-industrial woods such as fuelwood are not included. 
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Table 3.7: Summary of Projections from the GFPM 

Demand for industrial roundwood (billion m3) GFPM results 
2000 2010 2020 2035 2050 

MA 'Techno Garden’ (TG)  1.8 1.9 2.0 2.1 

MA ‘Order from Strength’ (OS)  1.8 2.0 2.5 3.2 

GEO4 ‘Sustainability First’ (SusF)  1.8 1.9 2.1 2.4 

GEO4 ‘Markets First’ (MF)  1.8 2.2 3.1 4.5 
 
 
For the entire set of projections until 2010 only, the average estimate of total industrial 

roundwood is 1.9 billion m3. This figure is quite comparable to the GFPM average 

forecast of 1.8 billion m3 in all four scenarios. For the year 2020, the demand forecasts 

from the existing studies are in the range 2.2 – 2.4 billion m3. This corresponds to the 

GFPM forecast for the MF scenario, which is 2.2 billion m3. The demand forecasts for 

the TG, OS and SusF scenarios are also comparable but are slightly more modest. The 

TSM (Sedjo and Lyon, 19960), which is a formal economic model, provides demand 

projections of 2.0 billion m3 for a ‘base-case’, and of 2.3 billion m3 for a ‘high-demand’ 

scenario for the year 2035.  The TSM results correspond closely to the TG, OS and SusF 

scenarios. However, when compared to the demand forecast from the MF scenario in 

GEO4, the difference gets quite large.  

 
The three case studies that offer long term total industrial roundwood demand projections 

until the year 2050 are those of Sohngen et al. (1999); Solberg et al. (1996) and, Victor 

and Ausubel (2000). Victor and Ausubel (2000) provide a range of 2.0 - 2.5 billion m3, 

but again argue for the lower estimate of 2.0 billion m3 by 2050. Sohngen et al. (1999) 

provides a global demand estimate of 2.0-2.5 billion m3 by 2050. On an average, Solberg 

et al. (1996) also provides an estimate of 2.4 billion m3 across the six scenarios. These 

figures are quite corresponding to the TG scenario estimate of 2.1 billion m3 and to the 

SusF scenario estimate of 2.4 billion m3 for the year 2050. However, the difference gets 

quite significant when compared to the OS scenario forecast of 3.2 billion m3 (although it 

corresponds quite closely to Scenario 6 when individual scenarios are considered). The 

forecast of 4.5 billion m3 for the MF scenario in GEO4 is almost double than that what 

most of the existing demand projections estimate and is very much beyond the average 

range. 
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In summary, variance among the projections from existing scenarios and from the GFPM 

increases as the projections reach farther and farther into the future.  For the long term till 

2050, the GFPM projections of global industrial roundwood demands in the TG and SusF 

scenarios are quite modest and conservative. They agree with what most of the analysts 

believe that demand in 2050 will be near 2 billion m3, or roughly a one-third increase 

over 50 years above current levels. On the other hand, GFPM demand projections in the 

OS and MF scenarios are quite extreme and reflect very high future demand. 
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CHAPTER 4 

 

Implementation of FOREST 
Module in LandSHIFT  

 

 

 

Summary 

Deforestation is recognized as one of the most significant components in land use/cover 

change and global environmental change processes. It is imperative to assess its trend and 

the rates at which it is occurring by accounting for various proximate and underlying 

drivers of land-use/land-cover change. This study concentrates on the implementation of 

a new land-use activity that identifies wood extraction as a proximate driver of land-

cover change in LandSHIFT. Accordingly, a methodology to simulate the spatial 

dynamics of forests based on wood extraction is developed within the LandSHIFT 

framework. New features in the model include (1) a module to calculate cell level 

biomass productivity of forests (2) a forest management activity as a new addition to the 

land-use change (LUC) module. Simulated changes in forest areas are exogenously 

driven by wood demands at country scale. The spatial allocation of wood demands on a 

five arc minute grid is governed by a set of spatial factors such as forest stock, terrain 

slopes, proximity to settlements, etc. The methodology is tested and applied in an 

exemplary simulation experiment for India based on a Global Environmental Outlook 

scenario. Although the module is in a very preliminary stage of development and is based 

on coarse assumptions, it already captures the effects of important drivers of land-use 
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change like cropland and urban expansion. As a first plausibility test, the module 

performance is tested under three forest management scenarios. The module succeeds in 

responding to changing inputs in an expected and consistent manner. This study is a first 

attempt to integrate and expand the modeling capabilities of LandSHIFT with wood 

scenario data from a global forest economy model and forest stock data from a global 

vegetation model. 

 

Keywords: Land use change, forests, human interaction, wood extraction, India, 

plausibility testing, simulation experiment. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 69



Chapter 4                                            Implementation of FOREST Module in LandSHIFT 
 
4.1 Introduction 

Recently, human influence on land has become globally extensive and intensive, ranging 

from the extreme transformation of urban environments, to the intensive management of 

agricultural areas, or the careful protection of recreational areas and parks (Foley et al. 

2005). Deforestation, agricultural expansion and intensification, urban expansion, and 

desertification are significant global environmental issues (Lepers et al. 2005). According 

to Foley et al. (2005), nearly 30 to 40 percent of the global land surface is being exploited 

for agriculture. Also, tropical deforestation continues unabated, especially in Southeast 

Asia (Lepers et al. 2005). Such large-scale changes in land- use/land-cover can modify 

regional and global climate, degrade freshwater resources, cause air pollution, fragment 

habitats, cause species extinction and biodiversity loss, and have various other negative 

impacts (Foley et al. 2005). Clearly, land-use and land-cover change is a major driver of 

global change. In order to anticipate and understand future land-use/land-cover changes, 

it is helpful to have models that incorporate the cause-effect relationships involved in 

these global change processes. Chapter 1 (Section 1.6) offered a brief introduction to 

LandSHIFT, a global scale model that can be used to develop scenarios of future land-

use/land-cover changes. 

 

Contemporary land-cover change is generated principally by human activities directed at 

manipulating the Earth’s surface for some individual or societal need or want, such as 

wood, agriculture, etc. (Ojima et al. 1994; Cassman et al. 2005). Land- use is the sum of 

the proximate (or direct) causes of land-cover change i.e., human activities that originate 

from the intended manipulation of land-cover (Lambin and Geist 2006). Proximate 

causes involve a physical undertaking on land-cover and usually comprise a recurrent set 

of land-use activities such as development of infrastructure/ expansion of built-up areas, 

agriculture/expansion of agricultural areas, and forestry/wood extraction (Lambin and 

Geist 2006). So far, the land-use/change (LUC) module in LandSHIFT comprises three 

sub-modules, each of them representing a particular land-use activity: “settlements”, 

“crop cultivation” and “rangeland grazing” (Schaldach at al., 2006). This study 

concentrates on the implementation of a new land-use activity called “forest”, which 

identifies wood extraction as an additional ‘direct driver’ of land-cover change in the 
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LUC module in LandSHIFT. The implementation of this land-use activity facilitates the 

simulation of the effects of wood extraction on the spatial dynamics of forest areas. The 

driving force behind “wood extraction” that might lead to deforestation* is demand for 

raw wood commodities (industrial roundwood, fuelwood) per country. In this study, 

wood demand scenarios have been generated using the Global Forest Products Model 

(Buongiorno et al. 2003). 

 

Section 4.2 describes the methodology to implement the allocation of wood demand in 

LandSHIFT. Section 4.3 outlines a simulation experiment for India and presents the first 

model results.  It also offers a brief sensitivity analysis of the module behavior under 

different forest management scenarios. Section 4.4 presents the discussion on this study. 

Section 4.5 offers some concluding remarks. Section 4.6 describes in detail the 

application and testing of the LPJ (Lund-Jena-Potsdam) model to generate simulation 

data on potential vegetation carbon to be used as input in LandSHIFT.  

 

4.2 Forestry in LandSHIFT 
 
The LandSHIFT model has been expanded by two new components to simulate the 

spatial and temporal dynamics of forest management: (1) a module to calculate cell level 

biomass productivity of forests (2) a forest management activity (FOREST) as a new part 

of the land-use change (LUC) module.  

4.2.1. Additional input data and model output 
 
Table 4.1 lists all the relevant data used for this study, categorised according to spatial 

scale and purpose. 

As additional input, wood demand generated by the Global Forest Products Model 

(Chapter 3) is included at the country level. Secondly, a global forest inventory map 

described by Kindermann et al. (2008) is included on the 5 arc minute grid. It provides 

spatially disaggregated FAO forest inventory data for the year 2000 on a 0.5-degree 

raster. Based  on  this  information the initial  biomass  stock is  computed  for each micro  

* LandSHIFT assumes the FAO definition of deforestation in its framework. According to FAO 2000, deforestation refers to change of 
land-cover with depletion of tree crown cover to less than 10%. 
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level cell that is classified as ‘forest’ in the base land-cover map in LandSHIFT (Section 

4.2.2). 

As additional output, the module generates time series of 5 arc minute maps (in 5-year 

time steps) that include data on (1) amount of extracted biomass and (2) current forest 

stock for each simulation time step (Figure 4.1).  

Table 4.1: Input datasets used in this study. 

Spatial 
level 

Model 
variable 

Temporal 
coverage 

Purpose Comments Source 

Wood 
Production 

Production of 2 major wood 
types per country, from 
GFPM (See Chapter 3) 

Prepared for 
this study 

Change in 
crop 
production 

Change in food crop 
production relative to 
baseline based on IMPACT 
model 

Change in 
crop yields 

Change in crop yields due to 
technology change, based on 
IMPACT calculations 

Population 
growth 

2000 - 2050 Scenario 
Driver 

Change in human population 
per country relative to 
baseline based on IFs 
calculations 

Rothman et al. 
(2008) 

Crop 
production 1990 - 2000 Production of major crop 

types per country FAO (2006) 

Country 

Total irrigated 
area per crop 1991 - 1993 

Baseline 
definition 

Specifies the area irrigated 
for each of the above crops; 
sums up to FAOStat total 
irrigated area per country 

FAO (2006); 
Schaldach et al. 

(2009) 

Grid, 
30 arc  

minutes 

Change in 
vegetation 
carbon  

2000 - 2050 Carbon 
productivity

Change in vegetation carbon 
stocks relative to the baseline 
as influenced by soil and 
climate (Section 4.6) 

LPJ-DGVM      
(Sitch et al., 

2003) 

Forest 
inventory data 2005 

Biomass stock of each 5 arc 
minute grid cell in 
LandSHIFT 

Kindermann et 
al. (2008) 

Land-
use/land-
cover type 

1991 - 1993 Map of natural land-cover 
types  

Heistermann 
(2006) 

Population 
density 1990 

Initial 
condition 

 

Population density 
Klein-

Goldewijk 
(2005) 

Terrain slope 1995 - 2050 
Median slope within grid 
cell; includes seven slope 
classes 

IIASA and 
FAO (2000) 

Road 
infrastructure 1995 - 2050 Line density of road 

infrastructure per grid cell 
Heistermann 

(2006) 

Grid, 
5 arc 

minutes 

Conservation 
areas 2000 

Preference 
ranking 

Areas designated as national 
conservation areas WDPA (2004) 
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4.2.2 Forest productivity module 
 
The main purpose of this module is to maintain information on woody biomass stocks per 

forest grid cell (base land-use map) in each time step. Accordingly, the module performs 

the following tasks: 

1. Computes woody biomass stocks per grid cell (before demand allocation) 

2.   Computes balance of the forest stock in each grid cell (after demand allocation) 
 

Computing woody biomass stocks per grid cell 

As a first step, the module computes woody biomass stocks per grid cell in order to 

allocate wood demands (See Section 4.2.3.3 for demand allocation). For this purpose, it 

uses output data on vegetation carbon from LPJ (Section 4.6) in collaboration with data 

on aboveground vegetation carbon from Kindermann et al. (2008) as described below.  

 

For each time step, information on aboveground carbon from Kindermann et al. (2008) is 

used to represent current carbon stocks at the 0.5° grid. The actual availability of carbon 

stock per grid cell (referred to as ‘corrected stock’ in LandSHIFT) is then calculated by 

adding 5-year average changes in vegetation carbon* simulated by the LPJ-DGVM to the 

current carbon stock according to Equation 4.1 as follows.  

 

Yk(t+0.5) = Yk(t) * (1 + Change)         with Yk(0) from Kindermann et al. (2008)                Eq. 4.1 

Yk(t)   Forest biomass stock in cell k in time step t [Mg km-2] 

Change   Change of biomass stock as calculated by the LPJmL model [Mg km-2] 

 

The output is then geographically mapped to the 5 arc minute grid of LandSHIFT.  

 

Next, the corrected carbon stocks are multiplied by a factor of 0.71 to convert forest 

aboveground carbon to merchantable wood carbon (Seiler & Crutzen, 1980). These 

merchantable wood  carbon values are then converted  to woody biomass values based on  
 

 
* The amount of vegetation carbon in each grid cell as simulated by the LPJ is an aggregation of both above- and 

belowground carbon of all its PFTs. Therefore, the vegetation carbon stock resulting from LPJ is first multiplied by a 

factor of 0.75; assuming that living belowground carbon (roots) adds up to 25% (Seiler & Crutzen, 1980). 
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the assumption  that carbon content  in woody  biomass is 50% (Intergovernmental Panel 

on Climate Change (IPCC) 2006). Finally, based on wood density data (IPCC 2006) for 

each forest land-use class in LandSHIFT, the data on woody biomass stocks on area 

basis is converted to woody biomass data on a volume basis. Currently LandSHIFT 

differentiates between five forest types (as defined in the base land-cover map), 

characterized by different wood densities (Table 4.2).    

   
Table 4.2: Forest types and their respective wood densities. 
Forest type  Wood density (t/m3) 

Evergreen Needleleaved 0.55 

Evergreen Broadleaved 0.75 

Deciduous Needleleaved 0.45 

Deciduous Broadleaved 0.75 

Mixed 0.65 

Source: IPCC (2006). Guidelines for National Greenhouse Gas Inventories, Chapter 4. 
 

Computing forest stock balance in each grid cell 

Once the demand allocation routine is fulfilled, the module calculates the balance of the 

forest stock in each 5 arc minute forest cell according to the following equations: 

Yk(t+1) = Yk(t+0.5) * (1 - Harvest)                Eq. 4.2 

Yk(t)   Forest biomass stock in cell k in time step t [Mg km-2] 

Harvest  Part of biomass stock removed by logging [Mg km-2] 

 

The term Harvest represents the fraction of wood to be removed from the available forest 

stock by logging. This term is computed by the forest management activity as described 

in Section 4.2.3.3. 
 

4.2.3 Forest management activity 
 
In this study, the land-use change (LUC) module has been enhanced by a new activity 

designating forest management in LandSHIFT. The task of this module is to regionalize 

country level demands for forest commodities to the micro level, based on preferences 

and constraints described in the following paragraphs.  
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Figure 4.1: Schematic overview of the modelling procedure for a particular time step and 
country, including the steps driving force processing, preference ranking, and allocation. 
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Figure 4.1 provides an overview of the modelling procedure. Similar to the other modules 

in LandSHIFT (Schaldach et al., 2006), this module consists of implementation functions 

for wood demand calculation (4.2.3.1), preference ranking (4.2.3.2) and wood demand 

allocation (4.2.3.3). The following sections go through the modelling procedures in 

detail. 

 
4.2.3.1 Demand Calculation 
 
The wood demands for raw forest commodities are computed by the Global Forest 

Products Model (GFPM). The application of the GFPM has been described in detail in 

Chapter 3. Demands for fuelwood and industrial roundwood form the input to the 

demand allocation function. In this version of the forest management activity, there is no 

differentiation between the two demand pools. Hence the two demand estimates are first 

aggregated before being used as input in the allocation procedure (Figure 4.1).  

4.2.3.2 Preference Ranking 
 
A preference ranking is carried out on the micro-level in order to identify the most 

suitable cells for logging (wood extraction). The forest activity conducts a multi-criteria-

analysis (MCA) in order to determine the preference value of each micro-level grid cell, 

based on a set of local cell properties and neighborhood relations. Then, the cells are 

ranked according to their values.  

 

The preference value (Ψk) of a forest grid cell is expressed in Eq. 4.3 as: 
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   Eq. 4.3 

 
 
wi    weight of suitability factor pi                        gj()   value function applied on constraint cj 
 
fi()   value function applied on factor pi  cj,k     constraint j on cell k 
 
pi,k   suitability factor i on cell k  
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The first term of Eq. 4.3 is the sum of weighted factors pi that contribute to the cells’ 

suitability for being managed or deforested. These factors include n landscape properties 

that reflect preferable local conditions. The factor weights wi determine the importance of 

a single factor pi in the analysis. The second term is appended by multiplication and 

represents m land-use constraints cj, which reflect important aspects of human decision-

making. For example, land-use changes in natural conservation areas can be prohibited 

by setting the corresponding constraint to zero. Both pi and cj are standardized by value 

functions fi and gj, which have a co-domain from 0 to 1 (Geneletti, 2004). This allows 

considering the degree of implementation of a constraint, e.g. the degree of protection of 

a national park from forestry activities.  

The suitability and constraint factors included in this version of the study are briefly 

described below. This choice is based on an estimation of the most important factors 

affecting wood harvests (see e.g. Geist and Lambin 2002; World Rainforest Movement 

(WRM) 1998; Alcamo et al., 1998; Chattopadhyay et al., 1996). 

 

p1 – forest stocks: Potential yields of forest stocks have been computed on a 30 arc 

minute resolution with the LPJ-DGVM (Section 4.6) and have been used in collaboration 

with inventory data on biomass stock provided by Kindermann et al. 2008 (Section 

4.2.2). The resulting spatial forest stock distributions are also used in the allocation 

algorithm in order to assign wood production functions to each grid cell (Section 4.2.4).   

 

p2 – terrain slope: This dataset was derived from the GTOPO30 data [USGS, 1998] by 

IIASA and FAO (2000).  It includes maps of median terrain slopes categorized into seven 

slope classes on a 5 arc minute resolution. Terrain slopes are considered an important 

determinant in wood harvesting because of aspects such as workability and accessibility. 

 

p3 – proximity to roads: The map on line density of road infrastructure per grid cell has 

been taken from Heistermann (2006). Forest areas closer to roads are easily accessible for 

wood harvesting and also provide market access. 
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p4, p5 – population density and neighborhood to agriculture: Forest areas located in 

close proximity to areas with high population density and neighborhood to agriculture are 

more attractive for wood harvesting since it provides infrastructure, market access and/or 

local demand for wood. 

 

c1 – nature conservation: This constraint assumes the availability of two equally suitable 

grid cells – one protected, one unprotected. It seems obvious that the protected one is less 

likely to be harvested than the other. On the other hand, many nature reserves around the 

globe are actually encroached for timber extraction (WWF, 2004). One could think of 

different ways to quantify how rigorously the nature protection status constrains 

encroachment of forest areas (e.g. by considering country level governance indicators 

such as published by Kaufmann et al. (2005)). 

 

c2 – availability of minimum vegetation carbon: This constraint is applied as an 

indicator to identify the locations where wood harvesting would not be ecologically or 

economically efficient due to low availability of forest stocks. For this study, the total 

vegetation carbon threshold is set to 1000 Mg/km². This threshold value has been derived 

from Kindermann et al. (2008) in order to exclude forest grid cells with lower 

productivity from demand allocation. In a later version, the threshold value will be 

selected based on sensitivity tests and will thus be more established. 

 
4.2.3.3 Demand Allocation 
 

On the basis of preference ranking the demand allocation routine fulfils the country-level 

demands for forest commodities by allocating forest stock from micro-level grid cells 

with the highest preference values. Step by step, a forest cell is taken from the preference 

list and its stock is allocated to fulfill the wood demands. The amount of forest stock to 

be harvested from the cell is determined from (1) the amount of harvestable woody 

biomass available in the cell (Section 4.2.2) and (2) harvest rate. The harvest rate 

designates the fraction of harvestable stock and is defined by the model parameter 

Harvest. This parameter allows for the implementation of different types of forest 

management scenarios e.g. clear-cut or sustainable. The Harvest value can range from 0 

to 1 where 1 represents complete deforestation in a cell. Thus, for example, if clear-cut 
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management is desired, the harvest rate can be set to a value of 1. In this case the entire 

stock from a selected forest cell is removed and the cell is marked as deforested 

(reforestation is currently not included in the model). Apparently harvest rates below the 

value of 1 indicate that only a fraction of the cell can be harvested. Assuming a positive 

rate of change in forest stocks, if the harvest rate exceeds this rate of change, it implies 

that the forest stock is slowly diminishing, leading to a continuous decline of the natural 

resource. In contrast, if the harvest rate is below this rate of change, stability or an 

increase in forest stock is indicated.  

 
4.2.4 Simulation Schedule 
 
The allocation algorithm of the forest module considers both industrial roundwood and 

fuelwood demands (Section 4.2.3.1). Figure 4.1 provides an overview of the procedure. 

As a first step, each grid cell is assigned a vector of production functions that quantifies 

the potential local production of biomass stocks in the particular simulation year (as 

described in Section 4.2.2). Next, the urban and cropland (including grazing) activities 

are executed. In case that a forest cell is converted to urban or to another land-use type, 

the current biomass stock of that cell is stored in a buffer called ‘Harvest collection’. This 

procedure is executed until all expansion of urban and/or other land-use types 

(cropland/grazing in this study) has taken place. The biomass stocks stored in the ‘harvest 

collection’ are first utilized to fulfill the wood demand. In case, the wood demand has 

still not been met, forest management is computed. Similar to the procedure in other 

modules in LandSHIFT (Schaldach et al., 2006), the demand for raw wood commodities 

is satisfied for every single country by selecting grid cells according to a preference 

ranking (Section 4.2.3.2). Subsequently, grid cells with the highest ranking are selected 

for demand allocation (Section 4.2.3.3). The selected grid cells then contribute to satisfy 

the remaining country wood demands. This routine is executed until either the demand in 

each country is met or the natural forest resources are exhausted. 

 

The next section presents a simulation experiment for India in order to demonstrate a 

potential application of the presented methodology. 
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4.3 Simulation Experiment 
 
4.3.1 Experiment Set-Up 
 
The first application of the ‘FOREST’ module in LandSHIFT is on country scale for 

India based on macro-level drivers that are derived from the Global Environmental 

Outlook 4 of the United Nations Environmental Programme (GEO4, UNEP 2007). In the 

present study, scenario data from the ‘Markets First’ Scenario in GEO4 is used to 

investigate possible country-scale changes in forest cover patterns. This scenario 

describes a world of market-driven economic and technological development, implying 

low response capacities to ecosystem problems in many parts of the world. The scenario 

assumes a population growth in India from about 1 billion people in 2000 to more than 

1.7 billion in 2050 (UNEP 2007).  

 

The plausibility test and simulation experiment presented in Sections 4.3.2 and 4.3.3 

require large input datasets, as specified in Table 4.1. For the simulation experiment the 

model is driven with assumed country-level changes between 2000 and 2050 in 

population, crop production, crop yields and wood demand. Population scenarios were 

computed by the IFs model (Hughes, 1999) and future agricultural production and crop 

yields by the IMPACT model (Rosegrant et al., 2008). Wood demand scenarios are 

computed by the Global Forest Products Model (See Chapter 3). Additionally, biomass 

productivity comprises woody biomass stocks for each 5 arc minute grid cell under local 

climate, soil and management conditions. This data is derived from changes in vegetation 

carbon stocks obtained from the global vegetation dynamics model LPJ-DGVM and data 

on aboveground vegetation carbon from Kindermann et al. 2008 (Section 4.2.2).  

 4.3.2 Testing Model Plausibility 

Section 4.2 presented the implementation of the first version of the ‘FOREST’ module in 

LandSHIFT. This section explores the plausibility of the module behavior to different 

forest management scenarios (Table 4.3). The test identifies the number of grid cells 

being selected for harvest in year 2000 under three harvest management options. The 

reasoning behind this analysis is that the number of grid cells being selected for harvest 
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should vary with the management scenario. If the model performs correctly, the number 

of grid cells selected under clear-cut management will be less than the number of grid 

cells selected under sustainable management, since in the latter only a fraction of the grid 

cell is being used to satisfy wood demands.   

 

Table 4.3: Management scenarios  

Scenario Harvest Management 

(a) Clear cut1  

(b) Sustainable2 

(c) 0.75 * Sustainable2,3 
 

1. Clear cut management refers to harvesting the entire forest stock of a grid cell. 

2. Sustainable harvest (in this study) refers to logging the amount of increase in forest stocks only, thus keeping original stocks 

undisturbed. 

3. ‘0.75 * Sustainable’ represents a scenario in which forest stocks are increasing.  

 
 

Table 4.3 lists the three scenarios. Scenario (a) assumes clear-cutting of suitable grid cells 

to fulfill wood demands. Hence, entire grid cells are harvested in this scenario. In 

scenario (b), sustainable harvests are assumed to occur in suitable grid cells. Sustainable 

harvesting produces a condition in which the original stocks remain stable over the study 

period. Scenario (c) investigates the effects of harvesting a fraction of the sustainable 

harvest amount, thus enabling forest stocks to increase over the study period. Figure 4.2 

shows the number of grid cells selected for harvest in the year 2000 under these 

scenarios. Conservation areas are offered strict protection under all three management 

assumptions.  

 

 Figure 4.2 indicates that the selected number of grid cells is substantially higher in 

scenario (c) than in scenario (b). In scenario (a) where clear-cutting is assumed, only a 

few grid cells are subjected to harvest, and this number is considerably less than the 

number of grid cells selected in scenarios (b) and (c). It is logical that higher number of 

grid cells is selected in scenarios (b) and (c) since only a fraction of a suitable grid cell is 

cleared to maintain sustainability. This indicates that the ‘FOREST’ module in 

LandSHIFT is sensitive to changing management scenarios in a logical manner. 
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Figure 4.2: Comparison of number of grid cells being selected for harvest in three 
management scenarios, (a) Clear-cut (b) Sustainable and (c) 0.75 * Sustainable in the 
year 2000. It is logical that higher number of grid cells is selected in scenarios (b) and (c) 
since only a fraction of a suitable grid cell is harvested. 
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4.3.3 Simulation Results 
 
The simulation experiment for India starts with relatively simple assumptions. Climate 

change has not been considered in this run. 

Relevant suitability factors (pi) for FOREST are local forest stock, terrain slope, 

accessibility (road infrastructure), population density, and neighbourhood to agriculture 

(Section 4.2.3.2). Higher preference is given to grid cells with: 

• The fraction of forest stock within the grid cell. The more the stock, the higher the 
preference. 

• Slope. The lesser the slope, the higher the preference. 

• Proximity to roads. The shorter the distance, the higher the preference. 

• Proximity to agricultural land, large cities, and other areas with high population 
density. The shorter the distance, the higher the preference. 

 

In this version of the study, the value functions (fi) and (gj) are strictly linear and the 

factor weights (wi) are assumed as equal (Section 4.2.3.2). Additionally, a constraint 

specifies the exclusion of nature protection area from forest management. These coarse 

assumptions however do not take into consideration expert knowledge regarding the 

importance of each suitability factor or the enforcement of the constraint factor.  Hence, it 

is acknowledged that in this version of the study, the understanding of suitability and 

constraint factors as well as their interplay is incomplete and uncertain. The results are 

presented for clear-cut management scenario.  

 

The simulation results are presented in Table 4.4 and Figure 4.3. For visualization 

purposes land-use types have been aggregated to five classes namely ‘Forest’, 

‘Cropland’, ‘Urban/Builtup land’, ‘Other land use types’ and ‘Regrowth forest’. Forest 

types are aggregated to the class ‘Forest’. The ‘Cropland’ class includes all crop types. 

The ‘Urban/Builtup land’ class is an aggregate of urban and built up land. All other land- 

use types like wetlands, grasslands, etc, are classified as ‘Other land use types’, which are 

not an object of discussion in this study. The ‘Regrowth forest’ class represents grid cells 
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that are deforested and are set aside for regrowth (and are also not utilized for conversion 

to any other land-use type during the study period).  

           
Figure 4.3: Land-use scenario under clear-cut forest management for India for the year 
2000 and 2050 (Climate change is not included). 
 
The quantitative results on the change in land-use/cover types in this simulation 

experiment are shown in Table 4.4. The urban/builtup land increases by almost 53% 

between years 2000 and 2050. This reflects the large population increase under the 

Markets First scenario. Cropland increases by approximately 14% during this period. 

Although the expansion of urban area is high in percentage terms, it is far exceeded by 

the expansion of cropland in absolute terms. Urban land grows by more than 100000 km2. 

Cropland also grows significantly by more than 200000 km2 because of large population 

and food demand. Scenario (a) in Figure 4.2 shows the number of grid cells that have 

been harvested for timber and fuelwood in the year 2000. These grid cells account for an 

area of approximately 272 km2. As seen in Table 4.4, the area under cropland and urban 

use increases over the study period while deforestation for wood extraction decreases 

until 2020 and does not occur thereafter. At this point, it is not feasible to provide a 

quantitative analysis since the module is currently based on two major coarse 

assumptions (1) all types of natural vegetation can be converted to urban and cropland. 

(2) All the wood extracted from forest cells for urban and cropland expansion can be used 

to allocate both timber and fuelwood demands. Furthermore, the contribution of 
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plantation establishments in providing commercial timber has not been considered in this 

study. Therefore, the results presented in Table 4.4 should only be seen as an indication 

that wood extraction is not a major cause of deforestation in natural forests in India. 

Expansion of cropland (including graze lands in this study) and urban / built-up land play 

a more significant role in this regard.  

 

Table 4.4: Simulation results (Climate change is not included). 

Area in km2  Land-use/cover type 
 2000 2010 2020 2050 

Urban 193475 226445 253814 296373 

Cropland 1450000 1463850 1533490 1653540 

Wood extraction 272 190 0 0 

Forest 326775 303702 290124 242202 

 
 
According to the results of the Global Forest Products Model (Chapter 3), demand for 

industrial roundwood in India increases from 21384 m3 in year 2006 to more than 100000 

m3 in year 2050. Also, demand for fuelwood increases from around 300000 m3 in year 

2006 to more than 500000 m3 in year 2050. Despite continuous increase in wood demand 

in the ‘Markets First’ scenario, deforestation for roundwood does not lead to huge 

amount of forest loss (Table 4.4). This result is partly in accordance with several case 

studies carried out to understand the underlying causes of deforestation and forest 

degradation in India (Joshi and Singh, 2003; Jha et al., 2000; State of Forest Report 2001 

(Forest Survey of India)). The reports clearly highlight the main causes of deforestation 

in India, the predominant cause being agricultural expansion, and urbanization followed 

by consumerism (mainly fodder for cattle). Also according to an estimate made by FAO 

(FAO 2006), conversion of natural forests to agricultural land for crops and oil palm 

cultivation was mainly responsible for deforestation in India during 2000 and 2005.  

Section 4.4 presents the discussion on this study. 
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4.4 Discussion  
 
This study is a first attempt to integrate and expand the modelling capabilities of 

LandSHIFT with wood scenario data from a global forest economy model and forest 

stock data from a global vegetation model. In Section 4.3.2, the module performance is 

tested under three forest management scenarios. The module is found to respond to 

changing inputs in an expected and consistent manner. Once the module is enhanced, it 

can further be tested for its sensitivity towards several other factors like 

suitabilities/constraints, climate change, effect on potential productivity under different 

vegetation carbon models, etc., The sensitivity analysis can enable LandSHIFT to explore 

the effects of varying combinations of driving forces on deforestation rates.  

 
Presently, the module is based on a few coarse assumptions and does not involve climate 

change in its simulations. Therefore, this study does not attempt to validate the results. 

Although the module is in a very preliminary stage of development, it already captures 

important drivers of land-use change like cropland and urban expansion. However, the 

current version of the allocation algorithm is based on a simple assumption that all forest 

stocks extracted to allow these expansions are initially utilized to satisfy wood demands 

before additional logging is necessary. Also, the model does not differentiate between 

industrial roundwood and fuelwood demands in this version. This differentiation is very 

important because almost all types of wood species can be used for fuelwood; but in case 

of commercial timber only certain types of species in a certain age class are desired. Here 

it can be said that these are two main reasons why the model simulates zero wood 

extraction from 2020 onwards.  

 

Another major issue to be considered is the supply of timber and fuelwood from 

plantations. About 50% of India’s commercial wood supply is provided by non-forest 

sources, while the rest is fulfilled by imports and supply from forest plantations 

(International Tropical Timber Organization, 2008). This is an indicator that wood 

extraction for commercial timber is not a major source of deforestation in India. 

Countrywide, approximately 22% of the urban population and 75% of the rural 

population relies on fuelwood as a source of household energy (Defries and Pandey, 
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2009). However, with the implementation of social forestry and other large-scale 

afforestation programmes like the Joint Forest Management Programme (Ministry of 

Environment and Forests, Government of India), the area of production of fuelwood is 

gradually shifting from natural forests to non-forest areas like farms, wastelands and 

plantation establishments (Forest Survey of India 2000). Also according to Defries and 

Pandey (2009), increasing fuelwood demands due to increasing households might lead to 

local degradation of forests but not to large-scale deforestation. 

 

The result on wood extraction in India presented in Table 4.4 does reflect some of the 

points mentioned above. However, the basis of this result is not very realistic and well 

established in this version of the study. This module is being designed to assess land- 

use/cover changes in the global context. There are many countries (e.g. Brazil and 

Indonesia) where wood extraction is a significant proximate driver of deforestation 

(International Tropical Timber Organization, 2008). Therefore it is important to 

incorporate atleast some of the above-mentioned issues in the module in order to be able 

to obtain wood extraction estimates on a more established basis.  

 
The next section provides a detailed description of the application and testing of the 

Lund-Potsdam-Jena Dynamic Global Vegetation Model (LPJ-DGVM).  

 
4.5 Concluding Remarks 
 
The study presents the first version of the ‘FOREST’ module in LandSHIFT. In a first 

simulation experiment for India it has been demonstrated that forest scenarios are a 

valuable illustration of the connection between trends in other land-use types like urban 

and cropland, and the future tempo of global deforestation or afforestation. Additionally, 

the scenario analysis implies that forest trends are driven to a significant extent by 

cropland and urban expansion. Wood extraction is not the only factor causing 

deforestation. It is emphasized that the results of this version of the module are not to be 

understood as a prediction of future land-cover change estimates, rather as a means to 

identify the significance of wood extraction as a direct driver of deforestation. 
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The inclusion of this module in LandSHIFT is the leap forward to an increased 

understanding of land-use/cover changes. This allows a more detailed analysis of the 

temporal development of land-use pattern and thus opens new directions for 

environmental impact assessments. Further research focuses on three fields of action. 

First is the refinement of the methodological aspect of the allocation algorithm. Here a 

major issue is the inclusion of age structure and plantation establishments. The second 

field covers questions of model testing while the third field aims at extending the ability 

of the module for environmental impact assessment (e.g. climate change and 

biodiversity). The next chapter elaborates on the outlook for future research and 

development in LandSHIFT in order to enhance its role in studying global change. 

 
 
4.6 Supplement: Application and Testing of LPJ  
 
4.6.1 Introduction 
 
Land-use change profoundly affects many global change processes (Achard et al., 2004). 

Examples of such processes include fluxes of greenhouse gases (especially CO2), 

planetary surface energy and moisture (e.g. Achard et al., 2004) as well as water and 

nutrient cycles (Foley et al., 2005). Therefore, in order to anticipate and understand future 

land-use/cover changes, the development of the ‘Forest’ module in LandSHIFT requires 

consistent quantification of vegetation carbon pools in order to compute future rates of 

change. For this purpose, the Lund-Potsdam-Jena Dynamic Global Vegetation Model 

(LPJ-DGVM; Sitch et al., 2003; Bondeau et al., 2007) has been utilized to obtain 

projections on the change in vegetation carbon stocks. One of the main purposes of the 

LPJ-DGVM as articulated in Sitch et al. (2003), is the simulation of the geographical 

distribution of vegetation carbon under changing climate. This section has two main 

purposes: 

 

1. To describe the simulation of global vegetation carbon with the LPJ-DGVM 

2. To test its performance for using its results in the study 
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4.6.2 Simulation of global vegetation carbon with LPJ-DGVM 
 
4.6.2.1 Model Description 
 
The dynamic global vegetation model LPJ has been used to simulate the productivity 

patterns of potential natural vegetation on a global 0.5° x 0.5° grid. LPJ is a process-

based model, which simulates carbon and water fluxes as driven by climate and soil 

variables on grid scale. A grid cell is treated as a mosaic of fractional coverages of plant 

functional types (PFTs) and bare ground. Natural vegetation is represented in the LPJ by 

eight woody and two herbaceous PFTs. For each PFT, a set of parameters describes the 

processes of plant growth, physiology and bioclimatic constraints including competition 

between the PFT populations. Based on plant phenology, gross primary production is 

calculated as a function of insolation, climate and soil conditions, and atmospheric CO2 

concentration for each PFT. After subtracting maintenance requirements, the resulting net 

primary production (NPP) is allocated to four different plant compartments. For the eight 

woody PFTs the model distinguishes between the following compartments: leaves, 

heartwood, sapwood and roots. The carbon content of each of these pools is calculated in 

monthly time steps. An assessment of the environmental suitability and the establishment 

of new PFTs are carried out on a yearly basis. A more detailed description of the model 

can be found in Sitch et al. (2003). 

 

4.6.2.2 Data Input and Model Application 
 
In order to simulate vegetation carbon dynamics, the LPJ is driven by monthly 

climatologies of mean temperature, precipitation, number of rainy days, cloud cover, and 

atmospheric CO2 concentration. The data on atmospheric CO2 concentration is obtained 

from assessments made for the “Markets First” scenario of Global Environmental 

Outlook 4 (UNEP, 2007). A typical simulation with LPJ is initialized with  “bare ground” 

land-cover. The model then spins up for 1000 model years until approximate equilibrium 

is reached with respect to carbon pools and vegetation cover. The model is then driven 

using transient climate data for the period 1901 – 2050.  
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The monthly climatology of temperature and precipitation are taken from the CRU-TS2.1 

data set (Mitchell and Jones, 2005) for the period 1901 - 2003. For the remaining study 

period (2004 – 2050), climate results of the IMAGE model (MNP, 2006) are combined 

with climate variability from the CRU-TS2.1 data set (Mitchell and Jones, 2005) for 

climate normal period 1961-1990. The CO2 concentration data for the period 2000-2050 

are taken from the IMAGE model (MNP, 2006). Regarding input data on cloudiness and 

number of wet days, CRU data for the period 1961-1990 is used for the future period. For 

this study, the LPJ is run in the “natural vegetation only” modus, which means that the 

land-cover in each 0.5° grid cell consists of potential natural vegetation existing under the 

given climate and soil conditions only. This simulation results in a mosaic of different 

PFTs (including the respective vegetation carbon stocks) for each 0.5° grid cell, 

depending on its soil and climate. 

 

4.6.3 Testing of the LPJ-DGVM 
 
This section describes the testing of the output data on vegetation carbon produced by the 

LPJ model at both grid and country scale. Additional testing has been carried out for 

India, since the first simulation experiment of the forest module in LandSHIFT (as 

described in Section 4.3) considers forest cover changes in India only.   

 

Test design 
 
The main caveat for testing is the lack of standardized and internationally comparable 

data sets, especially on the grid level. Some available data on global biomass distribution 

are relatively old and provided only in the form of a general ecosystems map (Olson et al. 

2001). Others are outputs of current global dynamic vegetation models that are still under 

development with respect to carbon allocation and need further improvement (Kucharik 

et al. 2006). One dataset that is available and can be considered as a consistent and 

reliable source of vegetation carbon is the Global Forest Resources Assessment (FRA) 

produced by the Food and Agricultural Organization of the United Nations (FAO 2005). 

The dataset contains aggregated country-level information on growing stock, biomass 

and carbon stock in forests for 229 countries and territories. Kindermann et al. (2008) 

illustrates a technique to downscale the aggregated results of the FRA2005 to a half-
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degree global spatial dataset. This dataset contains information on:  forest growing stock; 

above/below-ground biomass, dead wood and total forest biomass; and above-ground, 

below-ground, dead wood, litter and soil carbon. Out of all these, only the map results on 

‘above-ground carbon’ and ‘below-ground carbon’ are of interest for testing model 

performance. The LPJ has been tested with the following four exercises: 

 

1. Comparison of gridded maps of “observed” vs. computed vegetation carbon at the 

global level. 

2. Comparison of country-scale “observed” vs. calculated vegetation carbon at the 

global level. 

3. Comparison of country-scale “observed” vs. calculated vegetation carbon in India. 

4. Comparison of gridded maps of “observed” vs. calculated vegetation carbon in India. 

 

The term “observed” has been put in quotes because the data sets that have been used for 

model testing are not based on a single set of direct observations, but on an amalgam of 

different data sets as in Kindermann et al (2008), or on secondary data such as national 

inventory information as in FRA2005.  

 

The LPJ data has been tested for the year 2000. For country-level and regional-level 

comparisons, data on computed and “observed” vegetation carbon is available for year 

2000. However, for the grid level comparisons, “observed” data from Kindermann et al. 

(2008) is for the year 2005 only. The maps of vegetation carbon produced on grid scale 

by Kindermann et al. (2008) represent one of the first attempts to produce a consistent 

global spatial database at half-degree resolution. 

 

Another map of vegetation carbon available on grid-scale is a New IPCC Tier-1 Global 

Biomass Carbon Map for the year 2000 available from Ruesch et al. (2008). It is a 

globally consistent map depicting vegetation carbon stocks for the year 2000. It follows 

the widely accepted IPCC methods for estimating carbon stocks at the national level. 

However, the methods employed in this study are not directly linked to ground-based 

measures of carbon stocks and have not been validated with field data. Therefore, it is 
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found preferable to test the LPJ model performance with data from Kindermann et al. 

(2008). The datasets used in this testing are listed in Table 4.5 and described as follows. 

 

Table 4.5: Datasets for LPJ testing  

Datasets used Values C/G Source 

Total vegetation carbon gC/m2 G Sitch et al. (2003); Bondeau at al. (2007) 

Above-ground carbon MtC G Kindermann et al. (2008) 

Below-ground carbon MtC G Kindermann et al. (2008) 

Land-cover classification - G Heistermann (2006) 

Country shape file - C Voss, Personal Communication 

Grid area Sq. kms G Prepared for this study 

C/G = Information available for country (C) / for grid points (G) 

 

The LPJ model provides a global map of total vegetation carbon (above and below-

ground) estimates for the year 2000 at 0.5-degree grid scale (Sitch et al., 2003; Bondeau 

at al., 2007). The carbon stock estimates are in gC/m2 (grams carbon per square meter). 

Kindermann et al. (2008) offers two separate global spatial datasets containing above and 

below-ground carbon at the 0.5-degree grid scale in MtC (metric tons carbon). A global 

land-cover map following the International Geosphere-Biosphere Programme 

classification is available at the 5 arc minute grid scale (Loveland et al., 2000; 

Heistermann (2006)). The land cover classification consists of thirty-one categories, five 

of which are forest types (Table 4.2). The country shape file provides the country outlines 

for all countries listed in the FAOSTAT (FAO 2000). The map of the grid area was 

created using the ‘Raster Creation’ tool in ArcGIS 9.2, where each rectangular grid has a 

uniform cell size of 5 arc minutes (approximately 9 km x 9 km at the Equator).  

 

All datasets mentioned above are available as ASCII maps. In order to perform 

calculations in ArcGIS 9.2, these maps are first converted to raster. The maps of 

above/below-ground carbon from Kindermann are added to obtain a map of total 

vegetation carbon. The grid cell units of total vegetation carbon maps from both LPJ and 

Kindermann are converted to gC/km2. Both these maps are then multiplied with the map 
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of the grid area to represent the total vegetation carbon data on 5 arc minute grid scale. 

The global land-cover map is then used to select grid cells containing total vegetation 

carbon in forest areas from both these maps. The resulting maps on total vegetation 

carbon in forest areas in both LPJ and Kindermann are used in the following four testing 

exercises. 

 
Test 1: Comparison of gridded maps of “observed” vs. computed vegetation carbon 
at the global level. 
 
The estimation of forest vegetation carbon is a key steering mechanism of land-use/cover 

changes since it determines how much from a forest grid cell is available to be put into 

production to meet new demand for wood supply. Hence, it is of great interest to test the 

ability of the model to compute vegetation carbon at a global spatial resolution of 5 arc 

minutes. Section 4.6.2 explains how the total vegetation carbon estimates have been 

obtained from LPJ. Here two spatial methods are used to compare the consistency of the 

computed vegetation carbon from LPJ with estimates from Kindermann et al. (2008). 

 

The first method is to compare the spatial pattern of the distribution of vegetation carbon 

in the two maps. Figure 4.4 shows the total vegetation carbon computed from LPJ and the 

estimated total vegetation carbon from Kindermann et al. (2008). Both the maps have a 

resolution of 5 arc minutes.  

 

Figure 4.5 shows the difference in the vegetation carbon quantities in the two maps. The 

difference map shows that total vegetation carbon computed with the LPJ is substantially 

higher than the estimated total vegetation carbon from Kindermann et al. (2008). 

Exceptions are seen in Indonesia, Papua New Guinea and some other surrounding small 

islands, where estimates from LPJ in many locations are more than double of the 

estimates given in Kindermann et al. (2008). 

 

One main reason why LPJ simulates high amount of vegetation carbon stocks is that it 

does not include age structure dynamics and forest management in its calculations. 

Changes in the carbon sink size are largely attributed to the dynamics of forest age 

distribution (Ryan et al., 1997).  
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Figure 4.4: Vegetation carbon estimates from the LPJ (1) and Kindermann et al. (2008) 
(2) at 5 arc minute grid-scale. 
 
 

Additionally, forest management options keep forests within a certain range of mean 

forest age (Nabuurs et al., 2003).The Kindermann et al. (2008) study includes the effects 

of human influence on forests thereby accounting for forest management. The human 

influence factor plays a significant role in keeping vegetation carbon estimates at a lower 

level compared to the estimates on vegetation carbon obtained from LPJ. 

 94



Chapter 4                                            Implementation of FOREST Module in LandSHIFT 
 

Figure 4.5: Comparison of vegetation carbon estimates from the LPJ (1) with 
Kindermann et al. (2008) (2) at 5 arc minute grid-scale. 
 
 

The second method is to compute the Pearson’s correlation coefficient (Rodgers et al., 

1988) to examine the “strength” between the two estimates. The Pearson’s correlation 

coefficient is a well-established statistical measure to evaluate how well the two data 

under study agree with each other. It indicates the strength of a linear relationship 

between two variables. The correlation is 1 in the case of an increasing linear 

relationship, −1 in the case of a decreasing linear relationship, and some value in between 

in all other cases, indicating the degree of linear dependence between the variables. The 

closer the coefficient is to either −1 or 1, the stronger the correlation between the 

variables. The strength between LPJ calculations and Kindermann et al. (2008) is 

computed to be 0.75 indicating relatively good agreement between model and data. This 

result suggests that the model can fairly simulate vegetation carbon yields at the grid 

scale. 

 

Test 2: Comparison of country-scale “observed” vs. calculated vegetation carbon at 
the global level. 
 
This exercise compares the calculated quantity of vegetation carbon for each country  

listed in FAOSTAT (2000) with “observed” vegetation carbon for year 2000. For this 
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purpose, calculated values of vegetation carbon from LPJ on the 5 arc minute grid scale 

are aggregated for every country using the ‘Zonal Statistics’ feature in ArcGIS 9.2. The 

cartographic zones are specified by the country shape file. Observed data is taken from 

the FAO Global Forest Resources Assessment (FRA 2000).  

 
Figure 4.6: Comparison of calculated vegetation carbon estimates from the LPJ (Y-axis) 
with FAO statistical data (X-axis) at country-scale. Values have been represented in the 
logarithmic scale. 
 
 

The measurement of agreement between LPJ calculations and FAO data is the 

“predicative accuracy” of the model identified by the coefficient of determination (R2). 

This is indicated  by  the “goodness of fit” of  the calculated data to the line of perfect 

agreement as shown in Figure 4.6. The predicative accuracy of LPJ is 0.82 (Figure 4.6) 

indicating low variability from the “observed” data. This result suggests that the model 

can fairly compute vegetation carbon for current climate and may get used for scenario 

analysis in future time periods. 
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Test 3: Comparison of country-scale “observed” vs. calculated vegetation carbon in 
India. 
 
In this exercise, the calculated quantity of vegetation carbon in India is compared with 

“observed” vegetation carbon for the year 2000. Like in Test 2 presented above, 

calculated values of vegetation carbon on the 5 arc minute grid level are aggregated for 

India using the ‘Zonal Statistics’ feature in ArcGIS 9.2. Observed data is taken from the 

FAO Global Forest Resources Assessment (FRA 2000). According to FRA2000, carbon 

stock in above/below-ground biomass in forest areas in India is approximately 2,325 

million metric tons. Data from LPJ show an aggregate value of 3,212 million metric tons. 

This calculation is almost 38% higher than the “observed” estimate.  

 

One possible reason for this discrepancy as also mentioned in Test 1 is that LPJ does not 

include age structure dynamics in its simulations. Another possible reason is that there 

might be some disagreement in the definition of ‘forest’ according to FRA2000 and the 

methodology of estimating it in Loveland et al., 2000 (since the vegetation carbon 

estimates from LPJ are aggregated for forest cells in in LandSHIFT where the base land-

cover map classification is based on Loveland et al., 2000). According to FRA2000,  

land-cover with greater than 10% tree canopy cover is considered as forest. On the other 

hand, land-cover classification in Loveland et al., 2000 is based on the unsupervised 

classification of AVHRR NDVI monthly composites. It is possible that some land-cover 

with less than 10% tree canopy has also been classified as ‘forest’ in their study, thereby 

causing discrepancy in recognition of forest areas.  

 
Test 4: Comparison of gridded maps of “observed” vs. calculated vegetation carbon 
in India. 
 
In this test, the spatial patterns of the distribution of vegetation carbon from LPJ and 

Kindermann et al. (2008) are compared. Figure 4.7 shows the total vegetation carbon 

computed from LPJ and the estimated total vegetation carbon from Kindermann et al. 

(2008) for India. Both the maps have a resolution of 5 arc minutes. The comparison of 

spatial patterns in Figure 4.7 shows that total vegetation carbon computed with the LPJ is 

substantially higher than the estimated total vegetation carbon from Kindermann et al. 

(2008) in most locations.  
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Figure 4.7: Comparison of vegetation carbon estimates from the LPJ (1) with 
Kindermann et al. 2008 (2) at 5 arc minute grid-scale for India.  
 
 
There are several possible reasons for this. 
 
• Forests in India are extremely diverse and heterogeneous in nature, and it is difficult 

to classify them into a small number of categories in LPJ. More so, different species 

respond differently to changes in climate (Shukla et al., 2003). In LPJ, the use of 

equilibrium is characterized by data limitations related to climate parameters, soil 

characteristics and plant physiological functions. Thus, the projections of calculated 

vegetation carbon by LPJ can be characterized by a certain amount of uncertainty. 

• Kindermann et al., (2008) presents vegetation carbon maps that have been produced 

by downscaling aggregated results from FRA2005. Since the methodology is based 

on an amalgamation of different datasets, uncertainties may exist in the actual 

interpretation of vegetation carbon quantities at the grid scale. 

• LPJ does not account for forest management and age structure dynamics in its 

calculations. This has a high impact on the simulation of vegetation carbon stocks as 

also mentioned in Test 1 above.  
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CHAPTER 5 

 

Synthesis 
 

 

 

 

 
Summary 

The major objective of this thesis was to develop data sets and methodologies for the 

simulation of forest area changes based on wood extraction.  This work is the first version 

of the incorporation and implementation of forest sector dynamics in the LandSHIFT 

modeling framework. For this purpose, the key research tasks identified were: a review of 

available global scale economic forest sector models, the simulation of global wood 

production and the modeling of spatial dynamics in forests. This chapter summarizes the 

findings related to the aforementioned issues. It also highlights some important research 

needs that emerge from the integrated consideration of all chapters. 

 

 

 

 

 



Chapter 5                                                                                                                 Synthesis 

5.1 Summary of findings  

A review of Global Scale Economic Forest Sector Models 

Chapter 2 presents a review on three global forest sector models namely the 

‘CINTRAFOR Global Trade Model’, the ‘Global Forest Products Model’ and the 

‘Timber Supply Model’.  All these economic approaches provide a formalised structure 

to represent the demand and supply of forest products. These are also highly suited to 

reflect on the shift of land requirements between geographical regions as a consequence 

of increasing wood demands in the future. However, since natural forest resources are 

depleting at a significant rate (FAO 2007) and wood demands are on the spur (FAOStat 

2008), it is also important to consider how the timber market will respond to changes in 

wood supply in the future. The main question that arises out of this consideration is 

‘which regions will supply industrial timber in the coming decades’. While models like 

the ‘Global Forest Products Model’ and ‘CINTRAFOR Global Trade Model’ have an 

impact on the quantity of timber harvests in different regions due to international trade, 

the Timber Supply Model (TSM) has a profound impact on the pattern of timber harvests 

from region to region. In the TSM, regional differences relate mainly to changes in the 

age distribution of timber inventories with time. If the role of plantations continues to 

expand in global markets, then optimal control models like the TSM may be particularly 

useful in projecting long-term regional harvests and supply, as the age distributions of 

plantations around the globe will vary based on planting rates and timber type.  

 

Simulation of Global Wood Production 
 
Chapter 3 presents the adaptation and implementation of the Global Forest Products 

Model to simulate country-scale wood production data for the global forestry sector. The 

capability of the model to provide country level output makes it easy to produce different 

regional aggregates as required. The model is found to be quite effective in the 

formalisation and integration of drivers on the demand side and in representing 

international trade. It is also found to be very capable of implementing technological 

change in the form of wood saving technology. A comparison of the model output to 

other existing long-term scenarios on wood demand shows that the model is capable of 
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generating future wood demands. However, the model does not account for land-use 

competition, either from within the industry or from agriculture and other land uses. It 

only accounts for exogenous adjustments to the resource base (e.g. change in forest 

stocks over time), which is not a convincing way of accounting for change in the 

availability of land and timber. Further, the model does not yet fully realize its potential 

in addressing technology change by considering product substitution possibilities (e.g. 

substitution of fuelwood with biofuels). Therefore it is desirable to integrate forest 

economy models with large-scale global land-use/cover change models like LandSHIFT. 

This will facilitate the assessment of feedbacks between the terrestrial environment and 

the global economy within one consistent framework.  

 

Application and Testing of LPJ 

The Lund-Potsdam-Jena (LPJ) dynamic global vegetation model was utilized to provide 

estimates of potential vegetation carbon stocks for the forested locations in LandSHIFT. 

The information is used as a base to allocate the demands for forest products. A 

comparison of the simulation results against FAO census data shows that the LPJ can 

fairly compute vegetation carbon estimates for current climate and may get used for 

scenario analysis in future time periods. However, the vegetation carbon estimates from 

LPJ are substantially high. This is because LPJ does not include forest management in its 

calculations and this has a high impact on forest carbon stocks. Hence, it is desirable to 

integrate the LPJ-DGVM into LandSHIFT in order to include dynamic vegetation carbon 

calculations as a function of climate and forest management.  

 
Implementation of forest module in LandSHIFT 

Chapter 4 addresses wood extraction as a proximate driver causing deforestation in many 

areas around the globe. This study is a first attempt to integrate this activity in a large-

scale land-use/cover change model and address its significance in causing deforestation. 

The approach endeavors to integrate and expand the modeling capabilities of LandSHIFT 

with wood scenario data from a global forest economy model and forest stock data from a 

global vegetation model. To achieve this objective, a methodology is developed and 

implemented to simulate the spatial dynamics of forest areas based on wood extraction 
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within the LandSHIFT framework. Simulated changes in forest areas are exogenously 

driven by wood demands at country scale. The spatial allocation of wood demands on a 

five-arc minutes grid is governed by a set of spatial factors such as forest stock or terrain 

slopes which are evaluated by means of Multi-Criteria-Analysis. The model already 

captures important drivers of land-use change like cropland and urban expansion. The 

methodology is tested and applied in an exemplary simulation experiment for India based 

on a Global Environmental Outlook scenario. The simulation results show that wood 

extraction is not a significant source of deforestation in India. The predominant cause of 

deforestation is agricultural expansion followed by urbanization. This result corresponds 

to many case studies and assessment reports made for analyzing the causes of 

deforestation in India. However, the basis of this result is not very realistic and well 

established in this version of LandSHIFT since the module is currently based on a few 

coarse assumptions. The module is being designed to study the effects of wood extraction 

on a global basis. Therefore, it is important to incorporate several other issues like 

plantation establishments and age structure in forests in order to assess the impacts of 

wood extraction on deforestation in a more established manner. 

 
5.2 Outlook for Future Research 
 
One important conclusion can be drawn from the findings mentioned above is an 

enhanced and systemized perception of wood extraction and its related dynamics needs to 

be further included in LandSHIFT. Certain aspects such as incorporation of plantation 

establishments, identification of age structure as well as recognition of forest 

management practices are not yet considered in a consistent context. Furthermore, it is 

important to distinguish between industrial roundwood and fuelwood demand pools 

because of the following reasons. (1) Commercial logging will always continue in order 

to satisfy timber demands; but in case of fuelwood consumption, some studies have 

concluded that many developing countries might change from fuel wood and charcoal to 

commercial energy - mainly fossil fuel (Nilsson and Bull, 2005). (2) Almost all kinds of 

wood species can be used for fuelwood but in case of industrial roundwood only certain 

species in a specific age class are desired. 
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Forest plantations are seen as a secure source of wood supply for industrial needs in 

many countries. According to the Seventh Biennial Issue of State of the World’s Forests 

of the global forestry sector (FAO 2007), plantations establishments, especially in 

developing countries are increasing. Therefore wood supply from plantations needs to be 

considered in LandSHIFT. In order to make reliable estimates for the supply from forest 

plantations, actual age classes are needed. The Global Trade Analysis Project (GTAP) 

forest database contains country-level information on the amount of carbon stocks 

available in different age classes (Sohngen and Colleen, 2007). In addition to the age 

class distributions, the carbon located in different timber types is defined for specific 

agro-ecological zones (AEZ’s). This information has been integrated at the 5-arc minute 

grid level in LandSHIFT and will be used in a next version of the forest module 

development.  

 

Forest management plays a significant role in affecting the total carbon stock of various 

forest pools including trees, debris, soil and products (White et al., 2005). Therefore, 

long-term changes in forest ecosystem carbon stocks need to be assessed under various 

forest management practices in LandSHIFT. This will also provide an improved 

understanding of the contribution of forests to the global carbon cycle. For this purpose, a 

country-scale tabular database of historical forest management practices has been 

generated (See Appendix A). This database not only provides information on forest 

management practices at country scale but also distinguishes between these practices for 

major tree species in each country. Furthermore, data on wood density, felling cycle and 

rotation age for each tree species is also present. For the next version of the forest module 

in LandSHIFT, this database will be integrated with the forest database from GTAP (see 

above). The resulting database will then contain information on carbon stocks defined by 

forest management practices and age structure under the different AEZ’s at the 5_arc 

minute grid scale.  
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Appendix A 
 
 
Appendix A: Country-scale Forest Management Database 
 
 
Table A.1: Structure of forest management database. 
Field  Variables Description 
1) Country_ID LandSHIFT country code. 

 
2) Eco_Code 4-character Bailey ecoregion code. (See Field 3 for code 

descriptions).  
L100, L200, L300, L400, M100, M200, M300, M400, 
Nodata 
 

3) Ecoregion Full name of Bailey ecoregion 
L100 – Boreal lowland 
L200 – Humid temperate lowland 
L300 – Dry tropical and temperate 
L400 – Humid tropical lowland 
M100 – Boreal upland 
M200 – Humid temperate upland 
M300 – Dry tropical and temperate upland 
M400 – Humid tropical upland 
Nodata 
 

4) Practice_Code 2-digit forest practice code. (See Field 5 for practice 
names).     10, 20, 30, 40, 60, 70, 80, Nodata. 
 

5) Practice Full name of forest practice.  
CODE – PRACTICE NAME 
10 – Reforestation 
20 – Afforestation 
30 – Plantation 
40 – Natural Regeneration 
60 – Silviculture 
70 – Short Rotation 
80 – Agroforestry 
Nodata 
 

6)  Species_Code 4-character forest species code. (This database includes 
major tree species only). 
 

7)  Species_Name Full name of the species grown or found in a particular 
Bailey ecoregion in each country. (This database includes 
major tree species only). 
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8) 

 
 
LPJ_Class 

 

Classification of the species in Fields 6 and 7 based on the 
Lund-Potsdam-Jena classification of plant functional types. 

 
9) Felling_Cycle 

(years) 
The planned period, in years, within which all parts of a 
forest zoned for wood production and being managed under 
a selected silvicultural system should be selectively cut for 
logs. The term is synonymous with Cutting Cycle (FAO 
forestry paper 135 – Guidelines for the management of 
tropical forests). 

 
10) Min_DBH 

(centimeters) 
The specified minimum diameter at breast height 
measurement of a tree in order for it to be considered for 
merchantable logging.  

 
11) Wood_Density 

(g/cm^3) 
Wood density of tree species based on dry weight per unit 
of fresh volume of wood. (Some species have different 
densities depending on region). 

 
12) Rotation_Length Rotation length of the species in years. 

 
13) Wood_Use Wood use of the forest species. (Industrial Roundwood / 

Fuelwood / Industrial Roundwood, Fuelwood).  

The Global Forest Products Model generates datasets of 
Industrial Roundwood and Fuelwood production till 2050 
for MA and GEO4 scenarios. This production data will be 
used in LandSHIFT to identify the quantity of wood 
removals in each simulation year. Hence, the ‘Wood Use’ 
column has been included in the forest management 
database to identify for which particular type of wood 
(Industrial Roundwood / Fuelwood / Industrial Roundwood 
+ Fuelwood) a suitable grid cell will be utilized. 
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