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Abstract

The present thesis is a contribution to the study of laser-solid interaction. Despite the
numerous applications resulting from the recent use of laser technology, there is still a
lack of satisfactory answers to theoretical questions regarding the mechanism leading to
the structural changes induced by femtosecond lasers in materials. We provide here theo-
retical approaches for the description of the structural response of different solids (cerium,
samarium sulfide, bismuth and germanium) to femtosecond laser excitation. Particular
interest is given to the description of the effects of the laser pulse on the electronic systems
and changes of the potential energy surface for the ions. Although the general approach
of laser-excited solids remains the same, the potential energy surface which drives the
structural changes is calculated with different theoretical models for each material. This
is due to the difference of the electronic properties of the studied systems. We use the
Falicov model combined with an hydrodynamic method to study photoinduced phase
changes in cerium. The local density approximation (LDA) together with the Hubbard-
type Hamiltonian (LDA+U) in the framework of density functional theory (DFT) is
used to describe the structural properties of samarium sulfide. We parametrize the time-
dependent potential energy surface (calculated using DFT+ LDA) of bismuth on which
we perform quantum dynamical simulations to study the experimentally observed am-
plitude collapse and revival of coherent A1g phonons. On the basis of a time-dependent
potential energy surface calculated from a non-orthogonal tight binding Hamiltonian, we
perform molecular dynamics simulation to analyze the time evolution (coherent phonons,
ultrafast nonthermal melting) of germanium under laser excitation. The thermodynamic
equilibrium properties of germanium are also reported. With the obtained results we are
able to give many clarifications and interpretations of experimental results and also make
predictions.

ii



Table of Contents

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . i
Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ii
Table of Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii
List of Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v
List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vi
1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
2 Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.1 Theoretical approach of laser excited solids . . . . . . . . . . . . . . . . . 13
2.2 Strongly correlated materials: Ce and SmS . . . . . . . . . . . . . . . . . 18

2.2.1 Theoretical background . . . . . . . . . . . . . . . . . . . . . . . . 18
2.2.2 Falicov model: electronic Hamiltonian . . . . . . . . . . . . . . . 22
2.2.3 Model for laser heating of cerium . . . . . . . . . . . . . . . . . . 23
2.2.4 Density functional theory: LDA+U method . . . . . . . . . . . . 28

2.3 Coherent A1g phonons in bismuth . . . . . . . . . . . . . . . . . . . . . . 33
2.3.1 Structure of bismuth: Peierls distortion . . . . . . . . . . . . . . . 33
2.3.2 Calculation of the total energy . . . . . . . . . . . . . . . . . . . . 34
2.3.3 Effect of laser excitation . . . . . . . . . . . . . . . . . . . . . . . 35
2.3.4 Parametrization of the potential energy surface . . . . . . . . . . 36
2.3.5 Theory of amplitude collapse and revival . . . . . . . . . . . . . . 38
2.3.6 Quantum dynamical simulation method . . . . . . . . . . . . . . 39

2.4 Theoretical description of laser-excited germanium . . . . . . . . . . . . . 42
2.4.1 Nonorthogonal tight-binding formalism . . . . . . . . . . . . . . . 42
2.4.2 Parametrization of the Hamiltonian and overlap . . . . . . . . . . 44
2.4.3 Calculation of forces . . . . . . . . . . . . . . . . . . . . . . . . . 47
2.4.4 Absorption of laser energy . . . . . . . . . . . . . . . . . . . . . . 49
2.4.5 Molecular dynamics . . . . . . . . . . . . . . . . . . . . . . . . . . 54
2.4.6 Summary of the numerical approach . . . . . . . . . . . . . . . . 58

3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
3.1 photoinduced structural changes in cerium . . . . . . . . . . . . . . . . . 59

3.1.1 Volume collapse phase transition . . . . . . . . . . . . . . . . . . 59
3.1.2 Laser induced phase changes . . . . . . . . . . . . . . . . . . . . . 61
3.1.3 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

3.2 Structural and electronic properties of SmS . . . . . . . . . . . . . . . . . 67
3.3 Laser-induced coherent phonons in bismuth . . . . . . . . . . . . . . . . 72

3.3.1 Time dependence of the potential energy surface . . . . . . . . . . 73
3.3.2 Collapse and Revival phenomenon . . . . . . . . . . . . . . . . . . 74
3.3.3 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

3.4 Lattice dynamics of germanium. . . . . . . . . . . . . . . . . . . . . . . . 78
3.4.1 Structural properties . . . . . . . . . . . . . . . . . . . . . . . . . 78
3.4.2 Vibrational properties . . . . . . . . . . . . . . . . . . . . . . . . 84
3.4.3 Laser induced coherent phonons . . . . . . . . . . . . . . . . . . . 86

iii



3.4.4 Ultrafast non-thermal melting . . . . . . . . . . . . . . . . . . . . 88
4 Summary and Outlook . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
A The Frozen phonon approach . . . . . . . . . . . . . . . . . . . . . . . . 99
Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
Publications related to this thesis . . . . . . . . . . . . . . . . . . . . . . . . . 114
Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115
Erklärung . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

iv



List of Tables

2.1 Fitting parameters using data from [GR73] for up 6= 0 (see text). . . . . . 28
2.2 Best-fit parameters. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
2.3 Electronic parameters used in the present work [Har]. . . . . . . . . . . . 45
2.4 NOTB parameters used in the present work. . . . . . . . . . . . . . . . . 47

3.1 The calculated lattice constant (a), bulk modulus (B) and its derivative
(BP) in comparison with experimental results and other LDA. . . . . . . 68

3.2 Buk equilibrium properties of SmS. . . . . . . . . . . . . . . . . . . . . . 70

v



List of Figures

1.1 Images of a germanium surface at different times after the laser excitation
(pump fluence 3.10± 0.08J/cm2, ablative regime). A denotes an imaging
artifact which is not related to a modification of the sample surface. The
image sequence is encoded in a linear gray scale with an optimized contrast.
Figure reproduced from [BBSS06]. . . . . . . . . . . . . . . . . . . . . . . 2

1.2 Grazing incidence x-ray diffraction (GIXD) analysis of the semiconduc-
tor samarium sulfide (S-SmS) to metal samarium sulfide (M-SmS) phase
transition induced by femtosecond laser excitation. The figure shows the
GIXD patterns of the as-deposited and irradiated film. Figure reproduced
from [KTM03] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.3 Time derivative of R/R0 as a function of the time delay demonstrating
the collapse and revival in Bi at T = 10 K for different laser fluences with
pulse duration of 130 fs (the transients are offset along the y axis and
labeled with the fluence value). Arrows indicate the time collapse. Figure
reproduced from [MMHK04] . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.4 X-ray diffraction efficiency (integrated reflectivity) versus delay time. In-
finity symbol: measurement a few minutes after the pump pulse. Inset:
integrated reflectivity for an extended time span. Dashed line: melt from
velocity of 850 m/s for rapid thermal melting. Figure reproduced from
[STBD+03] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.5 Cohesive energy of silicon in the absence of electron hole plasma (left fig-
ure) ξ = 0.0, and presence of hot electron-hole plasma of density ξ = 0.15
corresponding to the excitation of 15% of the valence electrons to the
conduction band. δt and δl are respectively the transverse acoustic and
longitudinal optic distortions (amplitude of the phonons). The ideal di-
amond structure (δt = δl = 0) becomes unstable in the presence of laser
excitation (right figure) and corresponds to a stable minimum of the co-
hesive energy in the absence of excitation (left figure). Figures reproduced
from [SB94] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.6 Time derivative of R/R0 as a Isotherm of cerium. Illustration of the vol-
ume collapse γ → α transition at ambient temperatures. Figure reproduced
from [LLC83] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

vi



2.1 Illustration of laser excitation of solids and the resulting effect on the
potential energy surface. This scheme shows the effect of a generation of
dense electron-hole plasma on the potential energy surface which governs
the atomic motions. Situation before the action of the laser pulse: the solid
is in thermodynamical equilibrium. For low temperatures, the electrons fill
the states up to the Fermi level. The atoms are at the equilibrium positions
of the ground state potential energy surface. The laser pulse changes the
electronic occupations. This leads to rapid changes in the potential energy
landscape. As a consequence, the lattice becomes unstable and forces
appear on the atoms, driving a structural change. . . . . . . . . . . . . . 15

2.2 Laser induced changes in the electronic distribution. From the ground
state (electron temperature T0) to the excited states (electron temperature
T ), a non-equilibrium state is created followed by a rapid thermalization
process at a higher temperature T >> T0. . . . . . . . . . . . . . . . . . 16

2.3 A7 structure of Bismuth with two atoms in the unitcell. In the A1g phonon
mode the atoms move in the direction of the c3 axis labelled as z in the text. 33

2.4 Absorption of laser energy. The laser intensity at the frequency ω effects
for an energy level ǫm an occupation increases from a level at ǫm− h̄ω and
an occupation decreases toward a level at ǫm + h̄ω. Figure reproduced from
[JG]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

2.5 Molecular dynamics scheme for the time evolution of the system. Potential
energy surface φ({rij}, t) which governs the atomic motions is obtained
from an electronic Hamiltonian in the basis of nonorthogonal tight binding
framework. The time dependent non-equilibrium electronic occupation
n(ǫm, t) is taken into account explicitly in the potential energy calculation. 56

3.1 Phase diagram p(V) of Ce for different isotherms at high and low temper-
atures calculated using the promotional Falicov model. Good agreement
is obtained with the ab-initio results [LED+05] . . . . . . . . . . . . . . . 60

3.2 (Color online). Scheme of the mechanical change induced in α-Ce by a
femtosecond laser pulse. The unexcited part of the system remains cold
and is compressed with the shock velocity driven by the pressure P of the
excited region, which is high due to the excitation. In the calculations, the
pressure is assumed to be continuous at the interface between expanding
and shocked matter. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

3.3 Degree of delocalization, δ, as function of f-level position in the band
for different values of electronic temperature Te. The f-level position is
determined with respect to the Fermi energy The degree of delocalization
δ depends strongly on the f level occupation in the band in the vicinity
of the Fermi level. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

3.4 Plot of Pressure vs particle velocity in the cold material obtained in the
present work. The particle velocity up is assumed to be constant in the
bulk. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

vii



3.5 Volume variation as a function of time after laser excitation for different
electronic temperatures. At the maximum reached volume the correspond-
ing degree of delocalization is almost 0. Note that for higher electronic
temperatures the volume expansion is faster. . . . . . . . . . . . . . . . . 65

3.6 Time evolution of the electron delocalization degree for a laser excitation
resulting in an electronic temperature Tel = 1000K. The initial time t = 0
corresponds to the laser excitation. Note that for this high electronic tem-
perature no discontinuity is observed. The inset shows the time evolution
of the [111] Bragg peak, obtained from Eq (14). . . . . . . . . . . . . . . 66

3.7 Time evolution of the total pressure for different electronic temperatures. 67
3.8 The total energy of SmS as function of volume for different values of the

Hubbard parameter Ueff . Good description of the ground state total en-
ergy is observed at Ueff ≈ 0.55Ry. . . . . . . . . . . . . . . . . . . . . . 69

3.9 Total energy +21667.808957 and derived total pressure as function of vol-
ume. open squares are our LDA+U calculation, and data are fitted to to
the Birch-Murnaghan equation. (solid lines) . . . . . . . . . . . . . . . . 70

3.10 Calculated total density of states for SmS at the total energy minimum (
a = 11.29a.u ) with f 6 configuration. . . . . . . . . . . . . . . . . . . . . 71

3.11 Computed potential energy at different times during ultrafast laser excita-
tion. The curves A, B, and C correspond to the points A, B, and C in the
inset. A represents the ground state potential, B is the excited potential
at the peak time of the gaussian pulse, and C represents the potential at
t = 200 fs. The inset shows the variation of the absorbed energy E0 as a
function of time. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

3.12 Oscillatory part of the z coordinate of an artificial dimer (N = 1) for
different absorbed energies n0. The excitation was caused by a laser with
pulse duration of 130 fs. Note that the curves are offset along the y axis,
for clarity of presentation. Arrows indicate the amplitude collapse of the
oscillations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

3.13 Oscillatory part of the z coordinate for an absorbed laser energy of n0 = 10
mRy/atom and a pulse duration of 130 fs. Curves for different values of
N are offset along the y axis. The five lowest curves show results from
our quantum dynamical simulations and the uppermost curve shows the
classical trajectory of the resulting A1g oscillation. . . . . . . . . . . . . . 76

3.14 The 64 supercell diamond used for the NOTB calculation. The snapshot
was taken during the molecular dynamics run at T=300K and t = 10 ps. It
shows the tetrahedrally bounded nature of the structure of Ge at ambient
temperatures. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

3.15 Equation of states for diamond structure of Ge. Curve obtained from
a fully relaxed zero temperature with the nonorthogonal tight binding
scheme discussed in section 2.4.1. . . . . . . . . . . . . . . . . . . . . . . 79

viii



3.16 Calculated radial distribution functions. Each curve corresponds to a ra-
dial distribution function calculated from an ensemble average ofN = 1000
configurations in the molecular dynamics trajectory at temperature T. One
can clearly observed the ordered nature of the crystal at low temperatures
with well defined peaks of the pair distribution function. The solid-to-
liquid transition (melting) is observed at T ≈ 1500K. . . . . . . . . . . . 81

3.17 Plot showing the calculated bond angles distribution functions. Each curve
corresponds to a bond angles distribution function calculated from an en-
semble average of N = 1000 configurations in the molecular dynamics
trajectory at temperature T. . . . . . . . . . . . . . . . . . . . . . . . . . 82

3.18 The coordination number as function of lattice temperatures. At low
temperatures its value is 4 as expected. The dramatic change at about
T > 1500K indicates the disordered nature of the crystal. . . . . . . . . . 84

3.19 The calculated phonon dispersion curves along high symmetry directions
in the Briouillin zone (lines) in comparison with experimental results (tri-
angles) [NN70]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

3.20 The phonon dispersion curves along high symmetry directions in the Briouillin
zone and density of states of Ge calculated with our sp3 NOTB. . . . . . 86

3.21 Motion along the transverse acoustic direction at low fluences, with pulse
duration of 50fs. The inset represents the Fourier transform of the oscil-
latory part. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

3.22 Time evolution of the [111] Bragg peak intensity of Ge at low fluences,
with pulse duration of 50fs. . . . . . . . . . . . . . . . . . . . . . . . . . 87

3.23 Transverse acoustic (TA) phonons at the different high symmetry points in
the first Brillouin zone at different values of electronic temperature (Tel).
Pure imaginary frequencies are plotted as negative.The points in the main
figure are experimental values taken from [NN70]. . . . . . . . . . . . . . 89

3.24 Transverse acoustic (TA) phonons frequencies at the high symmetry points
X and L in the first Brillouin zone vs electronic temperature (Tel). Pure
imaginary frequencies are plotted as negative. . . . . . . . . . . . . . . . 89

3.25 Computed time evolution of the radial distribution function after excita-
tion with a laser pulse of τ = 50 fs duration. The intensity of the pulse
was chosen to reach an absorbed energy of 2.6 eV/atom. The peak time
of the gaussian pulse corresponds to t = 0 ps. . . . . . . . . . . . . . . . 90

3.26 Computed time evolution of the bond angles distribution (see text) after
excitation with a laser pulse of τ = 50 fs duration. The intensity of the
pulse was chosen to reach an absorbed energy of 2.6 eV/atom. The peak
time of the gaussian pulse corresponds to t = 0 ps. . . . . . . . . . . . . . 91

3.27 Time evolution of the [111] Bragg peak intensity of Ge after excitation with
a laser pulse of = 50fs duration, The energy absorbed from the laser was
2.6eV/atom. The peak time of the gaussian pulse corresponds to t = 0 ps. 92

3.28 Time evolution of the [111] Bragg peak intensity of Ge after excitation
with a laser pulse of = 50fs duration. The energy absorbed from the laser
is 3.8eV/atom. The peak time of the gaussian pulse corresponds to t = 0 ps. 93

ix



Chapter 1: Introduction

Chapter 1

Introduction

The main motivation of this work is the understanding and description of the response

of solids to ultrafast optical excitations. In particular, we have studied structural changes

induced in solids by the creation of a hot electron-hole plasma.

The study of the interaction of femtosecond laser pulses (pulse duration < 500fs) with

solids has attracted considerable attention during the last decades [GDG83, SLFE87,

BFI87, TABC88, KCL+88, LKJ+00, CTS+01, STBB+03, LLSTeA05, BBSS06, RTD+07,

HEH+08]. Several studies were motivated by the fact that femtosecond laser excitation

offers a novel tool for inducing new phenomena in solids, promising exciting potential

applications. Most of the fundamental processes occurring in nature such as chemical

reactions and phase transitions involve structural changes. By exciting solids appro-

priately, many different structural changes can be induced. In fact, depending on the

laser characteristics (wavelength, pulse energy, pulse duration), laser solid interaction can

result in a wide range of structural responses.

Among the different laser induced structural changes observed one can mention ul-

trafast melting [SAPF96a, JHL+03, LLSTeA05], solid-solid phase transitions [CTS+01,

KTM03, RTD+07, KEH+07, CBRZ08], ablation [BBSS06, RSTvdLA04] and also gen-

eration of coherent phonons [PKKS92, SPK93, NHM+01, MMHK04, IKU06, ZTG06a].

The advantage of using ultrashort laser pulse is that the different stages during the struc-

tural changes can be studied in a time-resolved way. For instance, melting, ablation and

re-solidification phenomena take place on different time scales [BBSS06] (see figure 1.1)

and therefore can be investigated separately.

A clear understanding of the mechanism for the structural response of solids to femtosec-
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Chapter 1: Introduction

Figure 1.1: Images of a germanium surface at different times after the laser excitation
(pump fluence 3.10± 0.08J/cm2, ablative regime). A denotes an imaging artifact which
is not related to a modification of the sample surface. The image sequence is encoded in
a linear gray scale with an optimized contrast. Figure reproduced from [BBSS06].

ond laser excitation is therefore essential to take advantages of the huge technological

applications possible.

Since the development of techniques using ultrashort laser pulses in the 1980s, a consid-

erable number of applications have been found. For example, ultrafast laser techniques

offer possibilities to shape tissues and skin for medical replacement and to manipulate

and fabricate nano-sized materials which have direct applications in our everyday life.

Despite the huge and technological applications in real world and the intense research

investigations on the subject, a complete and exact understanding of the ultrafast dy-

namical processes which take place during and after an intensive excitation of materials

still remains a scientific and technological challenge.

New experimental techniques such as ultrafast x-ray diffraction [CTS+01, STBB+03,

STBD+03, RTD+07] and time resolved reflectivity measurements [BBSS06, CBRZ08,

2



Chapter 1: Introduction

HEH+08] allow to follow the detailed steps of matter transformation within the time scale

on which the effect of a laser pulse is considered. Thus with the help of these techniques

one can investigate the first steps in the laser driven phase transitions and transformations

of materials. Up to the development of pump-probe techniques, it has not been possible

to directly observe the atomic motion leading to a phase transformation in matter. For

instance, while the first and last step of a chemical reaction was well established, it was not

possible to probe the different intermediate steps of the elementary reactions. With the

development of pump-probe techniques, structural changes are now measured in a time-

resolved way. In the 1990s, Zewail and coworkers [Zew88, Zew92, PHP+92, Zew00] used

ultrashort laser pulses to observe chemical reactions on the time scales they occur. The

authors show that femtosecond laser pulses can be used as a mean to control the different

processes occurring during chemical reactions [Zew88, KZ90] and structural changes in

solids [KTM03, MMHK04, STBD+03, BBSS06]. The main outcome is the possibility

to obtain the quantitative structural informations of physical, chemical and biological

systems on time scales that are comparable with the natural periods of vibrations of

atoms and molecules (10fs ≤ T ≤ 1ps).

Among the experimental studies regarding structural responses of solids to femtosec-

ond laser excitation done so far, one can mention the following examples which attract

our attention and are part of the motivations of this theoretical work:

1) The first example is the work from Kitagawa and coworkers [KTM03]. They used

a femtosecond laser pulse to study a volume collapse phase transition which occurs in

samarium sulfide. Kitagawa and coworkers performed Grazing incidence x-ray diffraction

(GIXD) analysis of SmS (Fig. 1.2), and showed that by exciting samarium sulfide using

femtosecond laser it is possible to induce the semiconductor (S-SmS) to metal phase

transition (M-SmS). Ce and SmS exhibit phase transitions with the same characteristics

at ambient conditions [JNM70, LLC83]. Therefore by exciting cerium, the same physical

3



Chapter 1: Introduction

Figure 1.2: Grazing incidence x-ray diffraction (GIXD) analysis of the semiconductor
samarium sulfide (S-SmS) to metal samarium sulfide (M-SmS) phase transition induced
by femtosecond laser excitation. The figure shows the GIXD patterns of the as-deposited
and irradiated film. Figure reproduced from [KTM03]

phenomenons can be expected. Up to now experiments regarding laser-induced transition

in cerium have not been done.

2) The second example concerns the structural response of bismuth to femtosecond

laser excitation. Misochko and coworkers [MMHK04] report measurements of the reflec-

tivity of bismuth during and after the femtosecond laser pulse. The authors used a pulse

duration of 130fs less than a phonon period. Figure 1.3 shows the time derivative of the

reflectivity in bismuth at different laser fluences. It was shown that the amplitude of co-

herent A1g phonon oscillations vanishes and, at a later time, reappears when the fluence

of the pump laser is above a certain threshold value. This phenomenon was explained

as a quantum mechanical effect and was therefore referred to as “amplitude collapse and

revival”. The same phenomenon was observed in an independent experimental study by

Hase and coworkers [HKNM02].

4
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Figure 1.3: Time derivative of R/R0 as a function of the time delay demonstrating the
collapse and revival in Bi at T = 10 K for different laser fluences with pulse duration
of 130 fs (the transients are offset along the y axis and labeled with the fluence value).
Arrows indicate the time collapse. Figure reproduced from [MMHK04]

3) The third and last example is related to the work from Sokolowski-Tinten and

coworkers [STBB+03, STBD+03]. The authors report study of the non-thermal melting

of germanium using ultrafast x-ray diffraction techniques. Non-thermal melting simply

means that on the time scale on which the phase transition is observed, no thermal

motions are involved (the lattice remains cold). The exchange energy between electrons

and ions which causes the lattice heating, takes place usually in some picoseconds after

the laser excitation peak. Therefore, the immediate change of the lattice structure after

the laser excitation is entirely due to the presence of hot electron-hole plasma. The non-

thermal melting can be seen from the loss of order indicated by the drop of the X-ray

diffraction efficiency peak in figure 1.4. Another illustration of this non-thermal melting

of germanium occurring in time scale less than half a picosecond is given in figure 1.1. In

5
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Figure 1.4: X-ray diffraction efficiency (integrated reflectivity) versus delay time. Infinity
symbol: measurement a few minutes after the pump pulse. Inset: integrated reflectivity
for an extended time span. Dashed line: melt from velocity of 850 m/s for rapid thermal
melting. Figure reproduced from [STBD+03]

an independent work Bonse and coworkers [BBSS06] studied the different stages of laser

driven structural changes in germanium. The authors used time-resolved reflectivity

measurements and show that the non-thermal melting take place at time t = 400fs

after the laser peak. It was also shown in both experimental studies that after the laser

excitation the system undergo several phases before ending to its almost initial phase at

time t =∞ (re-solidification), see figures 1.1 and 1.4.

Although the existing ultrafast x-ray diffraction techniques and time resolved reflectiv-

ity measurements allow monitoring of atomic motions in femtosecond time and angstrom

spatial resolution, there are still a considerable uncertainty in the correspondence between

the macroscopic quantities and the atomic scale properties for a given material. There-

fore, there is need to go through the theoretical description of the response of materials

to optical excitation.
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A realistic theoretical description of laser heating solids must take into account explic-

itly the electronic as well as the atomic degrees of freedom. The reason is that, systems

subjected to intense laser excitation will respond strongly to the modification of the in-

teratomic potential or potential energy surface (PES) due to the significant electronic

excitations. To calculate the potential energy surface which governs the atomic motion,

several theoretical methods exist in various levels of sophistication: density functional

theory, Hartree theory, tight binding approximations, empirical theory. Among these

methods the most accurate and sophisticated ones so far are first principles (ab-initio)

methods based on density functional theory [HK64, KS65].

However first principles methods are limited by the fact that they are computation-

ally expensive. For this reason, theories based on simple empirical pair potential (for

example Lennard-Jones-type potentials) are still in use for numerical study of dynamical

properties of solids. In contrast to the other models, the empirical pair potentials do

not include explicitly the electronic system and therefore are not suitable for the study

of the dynamical processes which occur in excited systems. An intermediate possibility

which combine a quantum mechanical treatment of electrons and classical treatment of

ions is the tight binding theory. As discussed in section 2.4.1 the tight binding method

is widely used because of its ability to treat different properties of solids in a reasonable

way. The efficiency of tight binding formalism comes from the fact that the Hamiltonian

can be parametrized. Consequently the electronic structure can be easily obtained. The

tight binding Hamiltonian of solids are calculated from the hopping integral functions

which are parameters and interatomic distance dependent. The difficulty of tight binding

theory is to find an accurate and transferable model to study systems. Up to now only

models for silicon [MS94a, BMP00], carbon [XWCH92] and germanium [MS98] exist.

Although many simulation methods of excited materials have been reported [VGCC96,

SAPF96b, SP98], only few theoretical approaches which pay as much attention to the
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atomic as to the electronic system have been developed.

The starting point of the theoretical investigations was the work of Stampfli and Benne-

man [SB90, SB92, SB94] regarding the study of structural responses of covalent materials

(silicon, carbon, germanium) to femtosecond laser excitation. Stampfli and Benneman

Figure 1.5: Cohesive energy of silicon in the absence of electron hole plasma (left figure)
ξ = 0.0, and presence of hot electron-hole plasma of density ξ = 0.15 corresponding to
the excitation of 15% of the valence electrons to the conduction band. δt and δl are
respectively the transverse acoustic and longitudinal optic distortions (amplitude of the
phonons). The ideal diamond structure (δt = δl = 0) becomes unstable in the presence
of laser excitation (right figure) and corresponds to a stable minimum of the cohesive
energy in the absence of excitation (left figure). Figures reproduced from [SB94]

analysed the ultrafast laser-induced instability of the diamond structure of semiconduc-

tors (Si,Ge,C). The cohesive energy of silicon was calculated [SB94] in function of trans-

verse acoustic δt and longitudinal optic δl distortions (see figure 1.5). The time-dependent

lattice instability of silicon was obtained and the results show that the softening of the

tranverse acoustic modes are mainly responsible of the lattice changes. However due to

the strong anharmonic interactions resulting from the laser-induced potential energy sur-

face changes (figure 1.5), the longitudinal optical phonons are also affected. According

to Stampfli and Benneman this lattice instability takes place within 120fs after the laser

pulse and yields to rapid melting of the crystal. Same phenomenon was also observed for
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gallium arsenide (GaAs) [SB93].

Later on Jeschke and Garcia [JGB99a, JGB99b, JGB01, JG, GJ03, RGV+05] devel-

oped a theory based on the approach proposed by Stampfli and Benneman to study the

response of covalent materials to femtosecond laser excitation. In contrast to the model

from Stampfli and Benneman, the model proposed by Jeschke and Garcia incorporated

explicitly the time dependent non-equilibrium occupation of the energy levels (taking

into account explicitly the time dependent changes of the electronic occupation during

and after the laser pulse) in the calculation of the potential energy surface. They used

MD simulation on the basis of an orthogonal tight binding Hamiltonian. This model was

well applied for the description of structural responses of graphite and carbon nanotubes

[JGL+02, GDJ04, DGJY04, RGV+05, DGJY06, JDG09] to femtosecond laser excitation.

In the 1990s, Parrinello and coworkers [SAPF96b] have used first principles molecular

dynamics simulation to study the dynamical response of silicon to ultrashort laser exci-

tation. Similar study has been performed to describe laser-induced melting of graphite

[SP98]. The method proposed by Parrinello and coworkers are mainly based on the

treatment of ions and electrons with density functional theory in the local density ap-

proximation. Within these model, an instant creation of electron hole plasma is assumed

at time t = 0 so that the duration of laser pulse is set to zero (τ = 0). In fact the first

principle methods do not allow an explicit time treatment of the laser pulse. We used a

similar idea in the second purpose of this work, to calculate the potential energy surface

of bismuth at high electronic temperatures (simulating laser excitation) and we proposed

a model to include the time dependent laser parameters, see sec. 2.3.

The aim of this thesis is to provide theoretical approaches combined with simulation

tools to:

i) Firstly study the structural responses of cerium to femtosecond laser excitation.

Special attention is paid to the description of laser-induced volume changes in the vicinity

9
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of the fascinating isostructural phase transition (referred as α ←→ γ phase transition).

Figure 1.6 shows the observed isostructural phase transition [LLC83] (both phases are fcc

structures) leading to a volume collapse of roughly 15% under ambient temperature and

at a given critical external pressure. Same isostructural phase transition have been also

observed for samarium sulfide [JNM70]. Regarding this fascinating behavior observed

Figure 1.6: Time derivative of R/R0 as a Isotherm of cerium. Illustration of the volume
collapse γ → α transition at ambient temperatures. Figure reproduced from [LLC83]

in both systems cerium and samarium sulfide the questions which have no clear answer

up to now are: how the microscopic quantities (electronic structure) are coupled to the

macroscopic quantities (volume change during the phase transition)? What is the driving

mechanism of the transition? And finally what is the role of the correlation between f

electrons and spd valence electrons in the transition? These fundamental questions are

still under debate, and many experimental [vdEKvdM01, ea04] and theoretical studies

[AM82, AL92, HOSK05] are devoted to this subject. We proposed an approach based
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on calculation of the potential energy surface from the model Hamiltonian proposed by

Falicov [RF71] to study laser-induced phase changes in cerium. With a hydrodynamic

simulation we estimate the time scale on which laser induced volume changes of cerium

can occur and discuss about how the electronic structure changes are involved. We also

investigated the structural properties of samarium Sulfide by means of first principle

methods based on LDA+U. For this purpose we used LDA+U to study the equilibrium

properties of SmS and discuss the possibility of laser induced the experimentally observed

semiconductor-metal phase transition.

ii) Secondly we studied the dynamical response of bismuth to femtosecond laser ex-

citation. A particular attention is given to the study of the experimentally observed

amplitude collapse and revival of coherent A1g phonons. When femtosecond laser pulse

interacts with bismuth crystal, due to the presence of hot electron-hole plasma large

amplitude coherent phonons are excited [HWDK95]. These collective lattice vibrations,

which usually involve only a few degrees of freedom, provide a useful system to study

both laser-matter interactions and the physical processes related to the relaxation of the

non-thermal state induced by the laser [HKNM02, JBM+08, BGR+08]. A question that

has received relatively little attention is, whether the induced phonons behave classically

as is usually assumed or whether some quantum effects may be detected [MSN00]. In

this respect interesting observation has recently been made by Misochko and coworkers

[MMHK04] in bismuth: The goal of this work is to clarify whether the origin of the

observed amplitude collapse and revival of the coherent A1g phonon is classical or quan-

tum mechanical. To this aim we have performed quantum dynamical simulations on

time-dependent potential energy surfaces calculated using density functional theory and

accurate full-potential linearized augmented plane wave methods. The time dependent

potential energy surface includes explicitly the laser pulse parameters (fluence, intensity,

pulse duration).

11
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iii) The third and last purpose of this thesis is the description of ultrafast phe-

nomenons occurring in covalent materials upon ultrashort laser excitation. Particular

interest has been given to the semiconductor germanium. The aim of our investigations

was to understand on which time scale do laser-induced structural transitions occur in

germanium, and identify the different processes involved in the experimentally observed

changes [PKKS92, SPK93, NHM+01, STBD+03, BBSS06]. And finally look at whether

these different processes can be controlled by laser parameters like fluences, duration,

and intensity. In this last part of the work a theory which is mainly based on the model

proposed by Jeschke and Garcia [JGB99a, JGB99b, JGB01, JG, GJ03] for the descrip-

tion of laser induced electronic non-equilibrium states, will be developed and combine to

MD simulations.

The thesis is organized as follows:

In chapter 2 we presents all the theoretical approaches and methods used for the cal-

culations. In chapter 3 we present our results. Finally in chapter 4 we give a general

conclusion and discuss about the future work perspectives.
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Chapter 2

Theory

This chapter starts with an overview of the theoretical approach outlining the general

aspects of the methodology used to describe laser-irradiated solids. This is followed by

the application of this theoretical framework to the different systems (Ce, SmS, Bi, Ge),

although using different methods for the calculation of the potential energy surface which

drives the structural changes.

2.1 Theoretical approach of laser excited solids

In this section we introduce the basic concepts of the theoretical description of laser-

induced structural changes in solids. The approaches used are mainly based on the

calculation of the time-dependent potential energy surface and an explicit treatment of

electronic degrees of freedom.

The physics and the resulting phenomena of laser excitation of materials can be sum-

marized as follow: In most of the cases, intense femtosecond laser pulses are able to

produce in solids a situation of extreme non-equilbrium state in which electrons acquire

very high temperatures while the lattice remains cold. This is due to the fact that on

the time scale on which the laser interacts with solids, the laser energy is initially cou-

pled with the carriers yielding to the creation of electron-hole pairs (the excited electrons

and holes thermalize on a very short time-scale [STvdL04]). The exchange energy be-

tween electrons and ions resulting from the relaxation process, takes place usually in

some picoseconds after the laser excitation peak. This relaxation time is usually referred

to as electron-phonon coupling time and causes delayed heating of the lattice. Thus,
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a significant increase of the lattice temperature is observed only within several picosec-

onds. Therefore the immediate change of the lattice structure after the laser excitation

is entirely due to the presence of a hot electron-hole plasma and no thermal motions

are involved. Furthermore, depending on the density of excited carriers and the laser

characteristics, this extremely rapid excitation can lead to several structural transforma-

tions such as solid-liquid [SAPF96a, JHL+03, LLSTeA05], solid-solid [JGB99a, CTS+01,

KEH+07, JGB01, CBRZ08, RTD+07, KTM03] phase transitions, and also generation of

coherent phonons [PKKS92, SPK93, NHM+01, MMHK04, IKU06, ZTG06a].

In fact, the types of phenomenon which occurs after the laser excited solids can be di-

vided into three main classes depending upon the laser characteristics. In the case of low

laser energy, the interaction produces only an increase in the electronic pressure result-

ing to a volume expansion of the heated region while the cold region (unexcited part)

is compressed (see below for the case of cerium). However depending on the symmetry

of the studied system, the generation of coherent phonons is possible at low fluences

(for example diamond structure of germanium [PKKS92, IKU06], rhombohedral struc-

ture of bismuth [MMHK04, ZTG06b]). At high laser energies when a certain fluence

threshold is exceeded, the interaction may give rise to ultrafast non-thermal melting

[STBB+03, BBSS06, ZTG06b, ZWG+08] and ablation [RSTvdLA04].

The knowledge of time dependent electronically excited potential energy surfaces is essen-

tial for describing properly these different processes. The physical picture of the response

of solids to laser excitation used in the present work is summarized in figures 2.1 and

2.2.

Figure 2.1 illustrates the effect of a short laser pulse on the potential energy surface.

During the irradiation of an absorbing crystalline material, the incident optical energy is

coupled to the carriers, which are excited from bonding (valence states) to anti-bonding

states (conduction band states). Consequently, the inter-atomic forces are therefore mod-
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Figure 2.1: Illustration of laser excitation of solids and the resulting effect on the potential
energy surface. This scheme shows the effect of a generation of dense electron-hole
plasma on the potential energy surface which governs the atomic motions. Situation
before the action of the laser pulse: the solid is in thermodynamical equilibrium. For
low temperatures, the electrons fill the states up to the Fermi level. The atoms are at
the equilibrium positions of the ground state potential energy surface. The laser pulse
changes the electronic occupations. This leads to rapid changes in the potential energy
landscape. As a consequence, the lattice becomes unstable and forces appear on the
atoms, driving a structural change.

ified and cause the structural changes.

Figure 2.2 shows the sketch of the electronic distribution during and after the laser exci-

tation process. In the ground state (electron temperature T0) electrons show a Fermi-like

distribution. During the absorption of laser energy we assist to a non-equilibrium distri-

bution followed by a rapid thermalization of carriers at temperatures much higher than

the ground state temperature.

From the ideas mentioned above, one can conclude that a realistic description of laser

heating of solids, must take into account explicitly the electrons as well as the atomic

degrees of freedom. Thus, the link between electrons and atomic structure for a given

material has to be established in an explicit manner in order to consider properly the

laser excitation effects.

The coupling of the laser energy to the electrons of the target material is one of the most
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Figure 2.2: Laser induced changes in the electronic distribution. From the ground state
(electron temperature T0) to the excited states (electron temperature T ), a non-equilib-
rium state is created followed by a rapid thermalization process at a higher temperature
T >> T0.

difficult problems to face when constructing theoretical models to study laser-matter in-

teraction. This is because many physical processes can be expected depending on the

nature of the materials which are treated. Up to now there is no single model which can

be used to describe all the physical phenomena resulting from femtosecond laser excita-

tion of solids.

Recently, a theory using the two-temperature molecular dynamics model, which takes

into account the electron dynamics has been developed for metals [IZ03]. Although this

improved method works well for metallic systems, it is not suitable for all the materi-

als. First principle methods have been also used by Parrinello and coworkers [GMCP89,

SAPF96b, VGCC96]. These methods are mainly based on the treatment of ions and elec-

trons with density functional theory in the local density approximation. Within these

models, an instant creation of electron hole plasma is assumed at time t = 0 so that the

duration of laser pulse is set to zero (τ = 0). The first principle methods do not allow

an explicit time-dependent treatment of the laser parameters. These methods would not

permit a study of materials in a range of laser intensities and durations. Moreover, mod-

els based on first principle molecular dynamics simulation, are limited by the fact that

they are computationally expensive and therefore do not permit to study systems with
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large number of atoms.

Thus, there is a need to develop methods which allow to explicitly include the different

laser parameters (duration, intensities, fluences) to study the interaction of ultrashort

laser with solids. An appropriate theory would also permit to handle the electronic non-

equilibrium states.

The basis approach used in the present study, is inspired from the pioneer works of

Stampfli and Bennemann [SB90, SB92, SB94] and the recent works of Jeschke and Gar-

cia [JG, GJ03, RGV+05]. The method proposed by Stampfli and Bennemann was very

successful on describing the laser-induce lattice destabilization of covalent systems sili-

con, carbon and germanium. The approach consist of analyzing the instabilities caused

by the presence of hot electron plasma in terms of one or two phonons degrees of freedom

by assuming that the entropy of the excited electrons remains constant during and after

the laser excitation. Later on Jeschke and Garcia proposed an improvment of the model.

The proposed model is based on tight binding molecular dynamics, thus the lattice dy-

namics is described in real space. They used Born Oppenheimer approximation for the

simultaneous integration of the equations of motion of electrons and ions. An explicit

time-dependent treatment of the electronic occupation changes due to the laser excitation

has been introduced. It allowed to explicitly handle the time-dependent laser parameters

(pulse duration, intensity, absorbed energy), and study the effect of the variation of those

parameters on the dynamics of the lattice.

Although the basic approach remains the same for the description of the electronic non-

equilibrium states, the way to compute the potential energy surface which governs the

dynamics is different from a particular system to another (depending on the type of elec-

tronic structure, we have to deal with). Thus, the previous theoretical works need to be

extended for the study of particular systems. We propose here different approaches to

study the dynamics of cerium, samarium sulfide, bismuth and germanium upon femtosec-
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ond laser irradiation. An overview of each of the different theoretical models employed

is given in the next sections.

2.2 Strongly correlated materials: Ce and SmS

Strongly correlated solids are characterized by the presence of incomplete f and d electron

shells which mainly determine their physical properties. Among these materials cerium

and samarium sulfide attract our attention because of their unique properties. For these

elements, the conflict between the valence s − d electrons and the localized f states

leads to fascinating physical properties including Kondo behavior [AM82] as well as the

unconventional volume collapse phase transition which involves also electronic, optical

and magnetic properties changes [JNM70].

Before coming to the discussion concerning the possibility of using femtosecond laser

pulse to induce such transition, we review the different theoretical models proposed to

give physical explanation of the transition.

2.2.1 Theoretical background

In this subsection we address the old questions regarding the physical origin of the volume

collapse phase transition observed in cerium and samarium sulfide. We mention different

theoretical models proposed so far, for the description of the phase transition. Although

in all the previous models the transition is attributed to the behavior of the 4f electrons,

the physical interpretations diverge in how the electronic properties are specially affected

during the transition. Among these previous theories the two main microscopic descrip-

tion of the problem are the promotional Falicov model PM [RF71] and Kondo volume

collapse model KVCM [AM82].

In the Falicov picture [RF71], there are two main distinguishable states: one where

4f shell is almost empty while the valency is almost 4 and the second where 4f shell is
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occupied while valency is almost 3. This single 4f electron play a dominant role in the

properties of cerium, it is the most important parameter. On the basis of the PM, the

removal of the 4f electron has as consequence that the nucleus is less screened and then

5d and 6s orbitals collapse causing an atomic volume reduction. In the spirit of the PM

the 4f level moves from below the Fermi level in the γ → α transition, consequently the

electronic occupation changes 4f 16s25d1→ 4f 06s25d2. The 4f state is closed to Fermi

level and the energy needed to promote an electron is of the order of energy gained by

the phase transition. In this model the relevant energy scales are the interaction energy

between 4f states and valence states, and the 4f band width. Ramirez and Falicov

[RF71] include a Coulomb interaction term G (see below section 2.2.2) between the 4f

and conduction band states. The Coulomb interaction term plays a major role in the

transition. It acts to lower the free energy and can compete with the free energy when

electrons raised from the Fermi level to the 4f level during the α ←→ γ phase transition.

Unlike to the model proposed by Ramirez and Falicov, which does not account for the

hybridization or mixing between states, Alascio et al. [AGL71, ALO73] included the

hybridization in their model and showed that the partial occupation found from experi-

ments [GMR69, KLL80, AOL+81, AOL+82] of the 4f level, can be explained within this

model. In the model proposed by Alascio et al., the introduction of the hybridization

leads to a broadening of the f level so that the low energy part lies below the Fermi level.

However strong indications are arguing against these promotional type models. In fact

recent photoemission experiments show that unlike to the promotional type models the

4f state is not close to the Fermi level. They place the 4f level at roughly 2 eV in the γ

phase, meaning that the energy required to excite 4f electron to the conduction band is

higher compared to the energy needed to compress the high volume γ phase to the low

volume α phase.

The common point of the promotional type models is the fact that they explain the
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transition from a transition of electron from the localized f state to the delocalized s d

band states. As described below these models can be used for a qualitative description

of cerium and give satisfactory agreements with the experimental phase diagram. In

contrast to the promotional type models cited so far, the other models consider the inter-

action between the localized f states and conduction band states as the most important

ingredient for the transition.

A second theoretical approach of the transition is the so called Kondo volume collapse

model (KVCM) proposed by Allen and Martin [AM82, AL92]. In the KVCM the

change in 4f occupancy is in principle small. The model involves the spin degrees of

freedom and both phases are characterized by a near 4f 1 configuration. Within the

model it is assumed that the transition is as a result of a change in the conduction

electron screening of the 4f electron which is considered to be localized in both phases.

In fact Allen and Martin [AM82] showed that the difference in the both phases is in

the magnitude of the on-site exchange interaction between localized 4f spins and the

conduction electron spins. As the volume decreased in the α phase the hybridization,

and hence exchange interaction increase. Thus in the spirit of KVCM [AM82] the α

phase is characterized by a state where the exchange interaction (coupling constant) is

large and each 4f spin is engaged in a strongly bonded singlet together with one of the

valence electron while the γ phase is characterized with a weak coupling constant.

A third model, the so-called Mott transition model MTM, was proposed by Johans-

son [Joh74]. This model was the first one which did not described the transition to a

promotion of an electron from the 4f state to the conduction band state. In fact, in

this model the 4f electron retains its 4f character. The nature of the 4f states changes

from local non-bonding in the γ to itinerant bonding in the α phase, thus 4f electron

is described by classical band theory in the α phase of cerium for example. In the Mott

transition picture the transition is explained as follows: localized 4f states in the high
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volume γ phase become delocalized in the lower volume α phase. The relevant energy

scale within this model is the Coulomb repulsion term U between 4f electrons in a given

atom. The value of U determines the transition between localized behavior and band

behavior. Therefore the transition occurs if the coulomb interaction between f electrons

in the same atom, is in the same order of magnitude as the 4f band width. Johansson

showed that the intra atomic Coulomb interaction is 3− 4eV and the 4f band width is

∼ 1eV which is in contrast to the promotional type picture.

The last method used for the description of the volume collapse transition is the local

density approximation in the framework of density functional theory (DFT). The DFT

emerged as an efficient and suitable method to describe properties of many systems. In

the case of cerium a comparative study using both LDA and LDA+U methods [SPL00,

SFL98] showed that the γ phase of cerium is well described by LDA+U method while

the α phase is better described by LDA method. This is due to the localized nature of

the 4f electron in γ phase of cerium and its itinerant behavior in the α phase.

Despite the different interpretations in how the transition occurs and how it affects

the electronic properties of the materials, all the theories described above agree in the

fact that the γ → α transition is accompanied by a change in the electronic properties

and hence change in volume. At low temperatures the average volume reduction varies

from 12% to 17% depending on the applied external pressure.

In the present work we used the qualitative description proposed by Falicov. This quali-

tative model described well the observed phase transition in cerium under certain thermo-

dynamics conditions (see below sec. 3.1.1). And based on this, we studied the structural

properties of cerium upon femtosecond laser excitation.
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2.2.2 Falicov model: electronic Hamiltonian

The calculations were done in the framework of the model proposed by Falicov and

Ramirez [RF71], which is based on the existence of two possible and qualitatively dif-

ferent states for the electrons: the localized f electronic states (ionic like states) and

the itinerant d-band electronic states, coupled via an effective intra atomic Coulomb re-

pulsion G. The volume collapse transition is then described by a delocalization of the

electrons through a promotion of electrons from the f− to the 4d-states.

It is important to point out that more recent theories are able to account for more de-

grees of freedom than the promotional model and describe the alpha-gamma transition as

an entropy driven process [LED+05, ABGA06]. Both the non magnetic (α− phase) and

magnetic (γ − phase) phases are interpreted respectively as pure Kondo phases with high

and low Kondo temperature TK [AM82, AL92]. According to the modern descriptions

not the occupancy of the f -electrons but its spectral weight shifts as the temperature is

raised due to the unlocking of the Kondo state [HOSK05]. The most important fact is,

however, that the volume collapse transition is accompanied by electron delocalization,

as one would intuitively expect. The delocalization manifests itself by an increase of

double occupancies in the d-orbitals [HMS01].

The above mentioned improvements certainly contributed to obtain a more accurate pic-

ture of the electronic properties and, in particular, of the excitation spectrum of Ce at low

temperatures. However, and concerning the equation of state p(V T ), the promotional

model still yields correct results. Therefore, it also reproduces the values of the sound

velocity and mechanical properties of Ce with reasonable accuracy. Since our calcula-

tions are based on these quantities, we expect our results to give a correct qualitative

description of the laser induced phenomena in Ce.

Note also, that the Kondo effect has been shown to be important for a quantitative

description of the transition in thermodynamical equilibrium. However, in the case of
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laser induced transitions the electronic temperature (Tel) generated by the excitation is

far above the Kondo temperature of Ce (TK). Therefore, effects involving much lower

energy scales compared to the absorbed energy can be neglected.

The electronic Hamiltonian is given by sum of three different terms:

H =
∑

k

ǫkd
+
k dk + G

∑

i

f+
i fid

+
i di + ǫf

∑

i

f+
i fi (2.1)

with d+
k ,dk being the creation and annihilation operators for s − d electrons in the con-

duction band states with energy ǫk. f+
i ,fi are the creation and annihilation operators

for a f state electron at the lattice site i, with binding energy ǫf . A double occu-

pancy of the localized f state is excluded. The first term in the Hamiltonian is the

contribution to the energy coming from the itinerant conduction electrons. The second

term represents the on-site Coulomb interaction between localized f states with num-

ber density nf = (1/N)
∑

i f
+
i fi, and the s − d band electrons with number density

nc = (1/N)
∑

i d
+
i di, where N is the total number of atoms. Finally, the third term refers

to the energy of localized f electrons (ionic energy).

If the system is in thermodynamical equilibrium it is straightforward to obtain the equa-

tion of state from the Helmholtz free energy, including the contributions from the elec-

trons and the ions. For the calculation of thermodynamic properties upon femtosecond

laser excitation we propose the following model presented below.

2.2.3 Model for laser heating of cerium

As mentioned in the previous sections, a femtosecond laser induce in the material an

extreme non-equilibrium state in which the electron and lattice temperatures differ dra-

matically. The formation of this state can be qualitatively understood as follows. First,

electrons gain a large amount of energy due to the absorption of photons. As a conse-

quence, a non-equilibrium (non Fermi-like) electron distribution is produced (see figure
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2.2) which, due to electron-electron collisions, thermalizes after a short time to a Fermi-

like electron distribution f(Tel), being Tel the electron temperature after laser excitation.

Note that Tel is much higher than the room temperature, reflecting the laser heating of

electrons. Consequently, Tel >> Tionic ≃ Troom, since both laser excitation and electron

thermalization occur on time scales which are shorter than typical phonon periods [JG].

Therefore, while the electrons acquire a temperature of a few thousand Kelvin, the ions

remain at room temperature Troom. The large increase of Tel leads to an increase of the

electron pressure. As a consequence, the laser excited region tends to expand against

the surrounding unexcited part. The resulting expansion dynamics, which determines

the laser induced inverse volume collapse transition, is microscopically described in the

following.

Using the mean field approximation, the electronic part of the Helmholtz free energy per

atom for a given volume V and electronic temperature Tel is given by

F (T, V ) = Fconf (T, V ) + Fel (T, V ) + Fmag (T, V ) . (2.2)

Here, the first term Fconf refers to the electronic contribution to the ionic configuration,

the second one Fel accounts for the free energy of the conduction electrons, whereas the

last term describes the magnetic free energy. The density of states is assumed to be

uniform and normalized in such a way to allow 4 valence electrons in the ground state.

The conduction band extends from −D/3 to 2D/3, being D = 8.16eV the band width.

The Fermi energy is taken to be zero (EF = 0).

In the ground state, the occupied part of the conduction band has a width of 2.72eV

while the width of the empty part is 5.44eV . The electronic part of the free energy can

be expressed as Fel = Eel − TSel, with from EF .

Eel =
∫

n (ǫ, V ) f (ǫ, Tel) ǫdǫ (2.3)
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and

Sel (Tel, V ) =
∫

n (ǫ, V )
[

f (ǫ, Tel) lnf (ǫ, Tel) + (2.4)

(1− f (ǫ, Tel)) ln (1− f (ǫ, Tel))
]

dǫ.

Here, f(ǫ, Tel) denotes the Fermi-Dirac distribution and n (ǫ, v) the electron density of

states. The chemical potential entering in f(ǫ, Tel) is computed using that the number

of electrons per atom remains constant upon laser excitation, i.e., nf + nc = 4, being

nc =
1

N

∫

n (ǫ, V ) f(ǫ, Tel)dǫ (2.5)

the total number of conduction electrons and nf the occupation number of f level.The

magnetic free energy, second term of Eq(2.2) is written as

Fmag (T, v) = −kBTnf ln [2J + 1] . (2.6)

Where 2J + 1 = 6 is the spin degeneracy and J = 5/2 the total angular momentum of

the localized 4f electron.

Finally, the configuration free energy Fconf = Econf − TSconf is given by

Fions = ǫfnf −Gn2
f

− kBT [nf ln (nf) + (1− nf ) ln (1− nf)] .

(2.7)

Here, the first two terms represent the mean ionic energy of the ground state configuration

of Ce ions, and nf the occupation number of the localized 4f orbitals. We recall that

the f electrons are assumed to be well localized on the ions. The last term refers to the

configuration entropy of the localized f electrons, which is given by the different possible

distributions of the nf -electrons on the ions.

In order to describe the lattice expansion dynamics we assume, based on the original

idea of Stampfli and Bennemann [SB90, SB92], that on sub-picosecond time scales there
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is practically no entropy exchange between electrons and ions, and therefore the electronic

entropy remains constant,

Sel (Tel, V ) = S0. (2.8)

This assumption is correct as long as only very few degrees of freedom of the lattice

become active after laser excitation. For instance, it has been successfully used to de-

termine the dynamics of coherent phonons in Bi [ZTG06a]. In the case of laser excited

Ce in the α phase it is reasonable to assume that the motion of the lattice immediately

after femtosecond excitation is the expansion, and that other types of lattice motion only

become active on later times. Therefore, we rely on Eq. (2.8) and use it to determine the

electronic temperature Tel as a function of time.

Thus, the excited part of the system will expand through the formation of a shock wave

(see below), where the unexcited part will compress. This is shown schematically in

Fig. 1. The compression of the unexcited part is not adiabatic, since the whole sample

is supposed to be kept at the temperature at which the experiment is performed (for

instance room temperature). The electronic pressure which builds up in the excited part

as a consequence of the laser excitation is calculated as

P = − ∂Eel

∂V

∣

∣

∣

∣

∣

S

. (2.9)

When the excited part expands the on-site energy of the f−orbitals must increase, since

the attractive potential of the neighboring ions become less important. We model this

fact by writing ǫf = ǫ0f + λ (V − V0). ǫ
0
f is the f−level position in the absence of volume

changes and λ is an adjustable parameter, which is determined from our choice of ǫαf and

ǫγf . The temperature dependence of the thermodynamic quantities are obtained from the

free energy F (Tel, v), the f−level occupation is computed using [sy96] nf = − ∂F
∂ǫf

. The

first step of the simulation is to determine the chemical potential from charge conservation

(nc + nf ) = 4. Then, the other thermodynamic quantities nf , E, p... are calculated. As
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mentioned before, the sudden increase of the electronic temperature in the laser excited

part leads to a rapid increase of the electron pressure. As a consequence, the excited

part of the system will expand. Due to the large difference in temperature, entropy

and carrier density between the excited and the non excited regions, nonlinear effects

are expected to be important and the expansion takes place through the build up of a

shock wave. In order to account for this effect we describe the shock wave by using the

Rankin-Hugoniot equations, which are derived from the three conservation law (mass,

momentum and energy respectively) [GR73].

ρ (us − up) = ρ0us

P − P0 = ρ0usup

E − E0 =
1

2
(P + P0) (V − V0) (2.10)

Here the subscript 0 labels the quantities in the unexcited solid. E refers to the internal

energy and ρ0 to the initial density. Note that the complete process of shock wave propa-

gation in solids can be governed by the above three conservation laws. The combination

of these three conservation laws yields the transformation between the kinetic quantities

(particle- and shock velocities) and the thermodynamic variables (P, V.E). In the first

terms of Eqs. (2.10), us and up refer to the shock- and the so called particle velocity,

respectively. They are related by the equation [GR73].

us = c0 + c1up + c2u
2
p, (2.11)

where the coefficients c0, c1 and c2 are determined from the experimental data by a

least square fitting method, and for the particular case of Ce they are shown in table

2.1. This method for deriving the isotherm in the cold part of the material is based

on the analysis of the Hugoniot curve, where the quantities us and up can be directly

measured. Then combining equations (2.11) and (2.10) leads to the relation between
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Table 2.1: Fitting parameters using data from [GR73] for up 6= 0 (see text).
c0 c1 c2

0.6052 2.4765 -0.2292

the applied pressure and particle velocity across the shock front. It is assumed that

compression behind the shock line is isotropic, and that the cold part of the material is

in thermodynamic equilibrium. The proposed relationship (2.11) is valid in the range of

pressure and temperature considered in the present work. The high pressure induced by

the laser pulse in the heated region leads, according to Eqs. (2.10), to an increase of the

particle velocity. We assume that the particle velocity across the front is equal to the

velocity of the material behind the front. In other words, we assume that the expansion

velocity of the heated part is equal to compression velocity of the unexcited part. Thus,

we evaluate the lattice-volume change in the vicinity of the shock front from the time

integration of the particle velocity

δl = 2
∫ t

0
updt (2.12)

With a constant total volume, and assuming isotropic expansion, this equation serves

to determine the volume change in the expanded material. As already stated above,

the shock velocity is derived from pressure by combining Eq. (2.11) and the standard

relations of the three law conservation equations. (2.10). Results of the calculations are

shown in sec. 3.1.

2.2.4 Density functional theory: LDA+U method

The Density functional theory (DFT) is a quantum mechanical method for the description

of electronic structure of atoms, molecules and solids. It has been developed in the 1960s
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[HK64, KS65]. Its ability to successfully describe ground state properties of metals,

semiconductors, and insulators was well proved. We give here the main aspects of the

theory.

The DFT can be seen as a reformulation of a many-body problem in the sense that,

instead of solving directly the Schrödinger equation of interacting electrons, the problem

is reduced to an electron density dependent of the total energy. Thus the many-body

wave function is replaced by the electron density as the basis physical quantity and

therefore the problem of N electrons with 3N spatial coordinates is reduced to a problem

depending only on three spatial coordinates (through the use of the functional of ρ(r) see

Eq. 2.15). The theory is based on the Hohenberg-Kohn theorem which states that the

ground state energy of a system is an exact functional of the electron density ρ(r). The

Kohn-Sham equations [KS65] allow to calculate the electron density which minimizes the

total energy. Kohn and Sham have introduced a method based on the Hohenberg-Kohn

theorem that enables one to minimize the functional Etot [ρ(r)] in Eq. 2.15 by varying the

electron density ρ(r) over all densities containing N electrons. The method consists of

assuming a system with non-interacting electrons moving in an external potential veff(r).

The electron density is obtained by solving the one electron Schrödinger equation
[

− h̄2

2m
∇2 + veff (r)

]

ψi (r) = ǫiψi (r) . (2.13)

This eigenvalues equation can be seen as the typical representation of Kohn-Sham equa-

tions. Here, ǫi is the orbital energy of the corresponding Kohn-Sham orbital ψi. The

density for an N-particles system

ρ (r) =
N
∑

i

|ψi (r) |2 (2.14)

, is derived from these Kohn-Sham equations.

As mentioned above the DFT total energy is a functional of ρ(r) and reads

Etot [ρ(r)] = T [ρ(r)] + Eee [ρ(r)] + ENe [ρ(r)] + EXC [ρ(r)] + ENN . (2.15)
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The first four terms represent the electronic contribution to the total energy which are re-

spectively the kinetic energy of non-interacting electrons (single-electron kinetic energy),

the electron-electron repulsion term, the attractive term between nuclei and electrons,

and the exchange correlation potential, the last term is the nuclei-nuclei Coulomb repul-

sion (electrostatic interaction).

While the other terms of the total energy are well known, the exact form of the exchange

correlation energy functional EXC is unknown. Its description has given rise to approx-

imations such as the Local Density Approximation (LDA), the Generalized Gradient

Approximation (GGA) etc. This exchange correlation energy EXC is the only approxi-

mated quantity within the Kohn-Sham density functional theory.

The LDA method is the simplest way to describe EXC . The method consists to consider

an homogeneous electron density ρ(r) and express EXC as a functional of ρ(r),

ELDA
XC [ρ(r)] =

∫

d3rρ(r)µXC [ρ(r)] . (2.16)

A more generalized approach is used for spin polarized systems. This so-called local spin

density approximation (LSDA) consists to express the exchange-correlation energy as

function of spin density,

ELSDA
XC [ρ(r)] =

∫

d3rρ(r)µXC [ρ↓(r), ρ↑(r)] (2.17)

with ρ(r) = ρ↓(r) + ρ↑(r) the total density. The LDA methods propose to approximate

the total energy of the true electron density by the energy of the local constant density,

therefore the method fail in describing more complex systems such as molecule sytems

where the electronic density undergoes rapid changes. This lack of accuracy in describing

complex systems has led to the development of new and improved functionals. In this

regard, an improvement of the LDA and LSDA has been proposed by considering both the

gradient of the electron density and the density itself in the evaluation of the exchange-

correlation energy. This so-called Generalized Gradient Approximation (GGA) method
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[LM88, PW92, PBE96] tends to improve the accuracy of the calculation of the total

energy (eq. 2.15). Within this approximation EXC is written as

EGGA
XC (ρ(r)) = EXC (ρ(r),∇ρ(r)) =

∫

d3rf (ρ↓(r), ρ↑(r),∇ρ↓(r),∇ρ↑(r)) (2.18)

, where f is an analytical parametrized function. Several parametrization forms exist for

the functional f (ρ↓(r), ρ↑(r),∇ρ↓(r),∇ρ↑(r)) [PW92, CVJ+92, PBE96].

The approximations described above to calculate EXC have limitations when they are

used to study systems with correlated electrons (f- or d- electrons) e.g. rare-earth com-

pounds (i.e. SmS, SmTe etc.) or some transition metal oxides. For this reason, a method

which incorporates the Hubbard-type Hamiltonian [Hub74] into the total energy calcu-

lation has been used to describe properties of strongly correlated materials. For the

practical use of DFT, this so-called LDA+U method was one of the most influential

improvement during the last decades [AAL97, PMCL03]. The success of the method

comes from the fact that the simple LDA based models do not properly describe strongly

correlated systems where d- or f-electrons play a main role. In fact the d- or f-states

are close to localization and the Coulomb interaction between these electrons within an

open shell is of a completely different nature than in homogeneous electron gas, upon

which LDA and GGA are based. With the LDA+U approach the Coulomb interaction

can be handled in the total energy calculation. However this consideration of the strong

Coulomb interaction between electrons in the LDA+U framework leads to some ambi-

guities in the total energy calculation. This comes from the fact that within LDA all

the electron interactions are already incorporated in a mean field way in the total energy

calculation, and the Hubbard Hamiltonian [Hub74]

H =
∑

ijσ

tijc
+
iσcjσ + U

∑

i

ni↑ni↓ (2.19)

also takes into account a large part of the total Coulomb energy of the system. Here, c+iσ

and cjσ are respectively the creation and annihilation operators, tij the hopings between
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site i and j. U is the Hubbard parameter and ni↑, ni↓ are respectively the spin up and

down occupation numbers. Thus, the combination of LDA and Hubbard Hamiltonian

leads to a surplus of energy because of the double counting of the Coulomb energy term

E = U
∑

i

ni↑ni↓. (2.20)

Thus, there is a need to identify the surplus in the DFT total energy which are already

included in the Hubbard Hamiltonian and subtract them. This task is not obvious if not

impossible, since the DFT total energy is formulated in terms of the total electron density

and the Hubbard Hamiltonian in the orbital representation. A direct link between the

two representations is not possible. The efficiency of the LDA+U method depends on

the choice of the model used to avoid such double counting of the Coulomb energy. As

mentioned above the double counting comes from the LDA method used to describe the

exchange correlation term in Eq. 2.15. In fact the LDA method introduces an unphysical

self-interaction of a particle with itself (In principle, an exact density functional for the

total energy calculation do not need such correction because orbitals do not self interact).

An exact parametrized functional of EXC would then have a self interaction part which

would exactly cancel this self interaction term in the total energy (Hartree part of the

total energy which contains the mean field interaction energy of an electron with itself).

This self interaction term can be neglected for systems with broad bands where the

electrons are in Bloch states. However, for strongly correlated materials (with localized

states as 4f states in SmS), the scenario is different and the self interaction correction

(SIC) must be seriously considered.

In the present work we followed the PBE method [PBE96] as implemented in wien2k code

[BSM+01] to subtract the self interaction energy from the DFT total energy of SmS.
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2.3 Coherent A1g phonons in bismuth

2.3.1 Structure of bismuth: Peierls distortion

The atoms in bismuth are located on positions near the vertices of a distorted simple

cubic lattice. At low temperatures bismuth crystallizes in A7 structure. The unit cell of

bismuth contains two atoms which are separated non-equidistantly along the hexagonal

c3 − axis due to a Peierls instability (see figure 2.3.1). Consequently, we assist to the

presence of a double-well potential along this hexagonal c3 − axis we describe as the Z

axis in the present work. The magnitude of the Peierls displacement can be derived from

Figure 2.3: A7 structure of Bismuth with two atoms in the unitcell. In the A1g phonon
mode the atoms move in the direction of the c3 axis labelled as z in the text.

the atomic coordinate z, which is usually expressed as a fraction of the hexagonal lattice

parameter c = 11.8 Å. A value of z = 0.25 indicates no Peierls distortion. In the ground
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state z = 0.234, which means that atomic planes are displaced by 0.19 Å in alternating

directions. The coordinate z is perhaps the most important parameter here, because

it is associated to the A1g phonons. These phonons can be excited by a femtosecond

laser pulse and can, for example, be detected through induced changes in the isotropic

reflectivity. As we will see below, the A1g phonon frequency is proportional to the second

derivative of the potential energy curve along the z direction.

2.3.2 Calculation of the total energy

We computed the total energy of bismuth with the all-electron full-potential linearized

augmented plane wave (LAPW) computer program WIEN2k [BSM+01]. This implemen-

tation of density functional theory (DFT) [HK64, KS65] has been designed to provide

accurate results, which validity depends on no other approximation than the local den-

sity approximation [PW92]. Details of our calculations are as follows. In our basis set

we included LAPW’s with energies up to 18.9 Ry. Atomic spheres around the Bi atoms

had radii of 2.3 a0. Inside the atomic spheres we used a combination of augmented

plane waves and local orbitals (APW+lo) [SNS00, MBS+01] to describe the 5d, 6s, and

6p states. The augmentation energies for these APW+lo’s were −1.237, −0.274, and

0.262 Ry, respectively. In order to achieve a further reduction of linearization errors we

employed additional 6p and 6d local orbitals [Sin91] with energy parameters of 2.262

and 0.142 Ry, respectively. We treated spin-orbit coupling self-consistently in a second

variational procedure [Sin94], where we used the scalar relativistic eigenstates up to 10

Ry as a basis for the relativistic calculation. We sampled the entire Brillouin zone with

32768 k points using temperature smearing (Te = 1 mRy).
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2.3.3 Effect of laser excitation

To describe bismuth after laser excitation we have used the following physical picture:

The laser pulse creates electrons and holes, which undergo dephasing and collisions on a

timescale that is much shorter than the typical time of ionic motion (∼ 300 fs, based on

the A1g phonon frequency). Therefore one can for all practical purposes assume that the

excited carriers thermalize instantaneously. In other words, we simulated the effect of

the excitation by an ultrashort laser pulse by heating the electrons. In our calculations

the electronic temperature Te ranged between 1 mRy for the electronic ground state and

28 mRy (4.4 103 K) for the highest excited state. Here we wish to mention, that we have

used the microcanonical ensemble for the electrons (there is no heat bath). This means

that the electronic entropy Se, not the temperature Te, was a constant of motion. The

atomic z coordinate of bismuth was treated as an external parameter.

In practical computations, we have calculated the total energies at elevated electronic

temperatures Te (corresponding to constant values of the entropy Se) using

Etot(Te) = Etot(gs) + ∆Eband, (2.21)

where Etot(gs) is the self-consistent total energy of the electronic ground state and

∆Eband = Eband(Te) − Eband(gs). This approach is based on the interpretation of the

Kohn-Sham energies [KS65] as single-electron excitation energies. In standard temperature-

dependent DFT [Mer65] the electronic occupation numbers are incorporated in the self-

consistent cycle to take into account possible screening effects. We have also performed

such calculations, assuming that the local density approximation of [PW92] is still valid

at high temperatures.
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2.3.4 Parametrization of the potential energy surface

We fitted our total energies, which we computed on a fine grid of z values (z = 0.2250, 0.2251, ·

and for 28 different electronic entropies (The entropies were chosen in such a way that

Te = 1, 2, · · · , 28 mRy at z = 0.2341) to a function of the form

V (z, E0) = E0 + 4373.0 ν2(z − zeq)2 + γ(z − zeq)3 + δ(z − zeq)4 + ǫ(z − zeq)5, (2.22)

where E0 was entropy dependent (a different value has been allowed for each electronic

entropy) and the parameters ν, zeq, γ, δ, and ǫ depended implicitly on the electronic

entropy through E0 via the following relations:

ν = ν0 + ν1E0 + ν2E
2
0 + ν3E

3
0 + ν4E

4
0 + ν5E

5
0 (2.23)

zeq = z0 + z1E0 + z2E
2
0 + z3E

3
0 (2.24)

γ = γ0 + γ1/2 E
1/2
0 + γ3/2E

3/2
0 (2.25)

δ = δ0 + δ1 E0 + δ2 E
2
0 + δ3E

3
0 (2.26)

ǫ = ǫ0 + ǫ1/2 E
1/2
0 + ǫ1 E0 (2.27)

where E0 was shifted by a constant to make it zero for the electronic ground state cal-

culation. The symbols in the above equations have the following physical meaning and

units: ν is the harmonic A1g phonon frequency in THz, V (z, E0) is the total energy in

mRy/atom, and zeq is the quasi-equilibrium value of the atomic z coordinate of Bi (see

section 2.3.1). γ, δ, and ǫ describe the third, fourth, and fifth order anharmonicity of

the potential [see equation (2.22)]. E0 is the total energy at the minimum of a constant-

entropy curve, which can be interpreted as the energy absorbed from the laser.

Whereas this interpretation is exact for relatively long laser pulses, which heat Bi adi-

abatically, the error is never more than ≈ 5% of E0, even in the limiting case of an

extremely short laser pulse that deposits an energy of E0 = 10.5 mRy/atom, which is the
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Table 2.2: Best-fit parameters.

Parameter Fitted value Parameter Fitted value

ν0 2.98316 ν1 −0.146079
ν2 0.0219823 ν3 −0.00407929
ν4 0.000370427 ν5 −1.27975 10−5

z0 0.234416 z1 0.00047797
z2 −3.79899 10−6 z3 3.51079 10−7

γ0 −0.698865 γ1/2 −0.197901
γ3/2 0.00845577 δ0 −31.8839
δ1 0.914822 δ2 0.16485
δ3 −0.0103825 ǫ0 −1.30737
ǫ1/2 1.0219 ǫ1 −0.176243

maximum value of E0 for which our fit is still valid. Therefore, in the present work we

have used this interpretation. We wish, however, to stress that it is not complicated to

compute corrections to the absorbed laser energy for short pulses using equation (2.22).

In summary, we fitted 6468 computed data points to a function with 48 free parame-

ters [28 values of E0 plus the 20 parameters of equations (2.23)–(2.27)]. Our best-fit

parameters are summarized in table 2.2. Together with equations (2.23)–(2.27) they

give a closed analytical description of the A1g phonon frequency, the quasi-equilibrium

value of the atomic coordinate, and the third, fourth, and fifth order anharmonic terms

as a function of the energy absorbed from the laser. It is worth mentioning, that the

root-mean square of the residuals of our fit was only 0.005 mRy/atom, indicating that

our parametrized potential energy surface followed the computed data very closely. For

more details of the time dependence of the parametrized potential energy surface, see sec

3.3.1.
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2.3.5 Theory of amplitude collapse and revival

A theoretical derivation of the amplitude collapse and revival of wave packets in weakly

anharmonic potentials has been given in [AP89]. Here we just mention the main re-

sults. (i) Wave packets in a harmonic potential move along classical trajectories. They

typically spread, but the spreading is reversible. After one period a packet completely

regains its initial shape due to the equidistant character of the spectrum of states. (ii)

Anharmonicity leads to a quantum dephasing of a wave packet. The time scale on which

this happens can be estimated from

Trev =
2Tcl

h
∣

∣

∣

∂νcl

∂E

∣

∣

∣

. (2.28)

Here, Tcl is the classical period of the trajectory, νcl is the classical frequency, and E is the

expectation value of the energy of the wave packet. Note, that all quantities appearing

on the right-hand side of equation (2.28) are classical. For times t ≪ Trev, the wave

packet behaves essentially classically. (iii) If the anharmonicity is small, the quantum

dephasing is reversible. In particular, at t = Trev the initial wave packet is approximately

restored (this is called revival) and at t = Trev/2 the wave packet is shifted by half a

classical period (the so-called revival of order 1/2). (iv) In between these revivals, which

are phase shifted with respect to each other, the expectation value of the amplitude of

the oscillation disappears. This is sometimes referred to as “amplitude collapse of the

wave packet”.

The derivation given in [AP89] relies on the discrete nature of the spectrum of states.

Therefore, it should be expected that “amplitude collapse and revival” can only be ob-

served in finite systems. In equation (2.28) this becomes apparent if one realizes that νcl

is an intrinsic quantity, which changes little with system size, and that E is an extrin-

sic quantity, which scales roughly linearly with, for example, the number of atoms in a

molecule.
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Experimentally, amplitude collapse and revival has unambiguously been observed for

electronic wave packets in Rydberg atoms [YMJ90] and for molecular wave packets in

small molecules [VVS96]. In addition, the recent experiment on bulk bismuth that we

have mentioned in the introduction has also been explained in the same way [MMHK04].

2.3.6 Quantum dynamical simulation method

In this subsection we present the method used to simulate the dynamics of A1g phonons.

We assumed that the displacive excitation of coherent phonons (DECP) [ZVC+91] is the

only generating mechanism of the A1g oscillations in Bi (see [ZTG06a] for a justification

of this approximation). The idea behind DECP is that oscillations along the z direction

(coherent A1g phonons) are essentially a consequence of the change in the potential equi-

librium position zeq due to the laser excitation. When the pulse duration is short enough

(approximately less than half a phonon period) to induce such a change nonadiabatically,

the atoms start to oscillate about their new equilibrium positions after the laser pulse.

Note that our simulations on time-dependent potential energy surfaces automatically in-

clude the phonon generation due to DECP.

For the description of the time evolution of the wave packet ψ which represents the A1g

phonon, we solve the time-dependent Schrödinger equation (TDSE).

ih̄
∂ψ (z, t)

∂t
=
[

T̂ + V (z, t)
]

ψ (z, t) . (2.29)

Where T̂ and V (z, t) are respectively the kinetic energy and potential energy operators.

Because of the complexity of V (z, t), due to the contribution of the anharmonic terms,

only numerical methods can be used to solve the quantum mechanical equation of motion.

Several numerical schemes exist to solve such equation. Numerical method based on split

operator techniques whose we used in the present work, appears to be the most stable
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one. The method consist in writing

ψ (z, t+ δt) = U (δt)ψ (z, t) , (2.30)

where U (δt) is the evolution operator (an unitary operator). With a time independent

Hamiltonian H the evolution operator U (δt) reads.

U (δt) = e−iH(δt)/h̄ (2.31)

In case of a variable potential, the kinetic energy T̂ and the potential energy operators

V (z) do not commute, therefore equation 2.31 can be rewritten as

U (δt) ≈ e−iT̂ (δt)/h̄e−iV (δt)/h̄. (2.32)

This approximation lies on the Glauber’s formula. According to this formula eAeB =

eA+Be
1

2
[A,B], where [A,B] is the commutator. The error introduced in this approximation

is 0(δt)2. This error vanishes in case of constant potential because T̂ and V commute(free

particle case for example).

One can also reduce this error to 0(δt)3 by making a symmetric decomposition of the

evolution operator U (δt).

U (δt) ≈ e−iT̂ (δt)/2h̄e−iV (δt)/h̄e−iT̂ (δt)/2h̄ (2.33)

As described in subsection 2.3.4 the calculated potential energy V (z, t) is a scalar function

in coordinate space, hence the action of the operator e−iV (δt)/h̄ on the wave function is

only a multiplication of V (z, t) respect to ψ (z, t). However, the action of the operator

e−iT̂ (δt) /h̄ on the wave packet is less obvious to describe, since the kinetic energy

operator T̂ is a differential function in coordinate space z. To evaluate its action on the

wave function one can utilize the property of the Fourier transform which claims that

the differentiation of a function in coordinate space is equivalent to the multiplication of

that function’s representation in the Fourier space by the conjugate variable k (variable
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conjugate of the real coordinate z). This means that the kinetic energy operator T̂ is a

scalar function of the wave vector k in the momentum space (T̂ = h̄2k2/2m). Thus, the

action of e−iT̂ (δt)/h̄ can be evaluated in the momentum space using Fourier transform,

e−iT̂ (δt)/h̄ψ (z, t) = F−1
[

e−ih̄2k2(δt)/2mF [ψ (z, t)]
]

. (2.34)

The method used to describe the time evolution of the A1g phonon coordinate (z coor-

dinate) can be summarized as follows:

First, we constructed two one-dimensional grids, in position and momentum space, where

our spatial grid ranged from zmin = 0.227 c to zmax = 0.248 c, with 1024 grid points.

At low temperature (amplitude collapse and revival in Bi has been observed for T = 10

K [MMHK04]), only the ground state is occupied. Therefore, a well-defined initial wave

packet is formed. This initial state was constructed by solving numerically the time-

independent Schrödinger equation on the spatial grid. We obtained the spatial and

time propagation of the quantum wave packet using the above split operator technique

[FF82], in which one calculates ψ(z, t + δt) from ψ(z, t) by applying the propagator

U(δt) ≈ e−iδtV/2e−iδtT e−iδtV/2, where V is evaluated at t + δt/2. We used an extremely

small time step of 0.01 fs, which was necessary to properly account for the time de-

pendence of the Hamiltonian. The potential and kinetic operators are diagonal in the

position and momentum space, respectively. By going back and forth between our two

numerical grids using Fourier transformations the propagator U(δt) could efficiently be

applied [FF82].

An important point that we have not addressed so far is how the macroscopic size of

bulk bismuth affects the quantum simulations of the A1g phonons. To study this we

have introduced a parameter N , which indicates the number of unit cells included in our

quantum dynamical simulation. This parameter affects both the initial wave packet and

the form of the operators V̂ and T̂ . The case N = 1 represents an artificial Bi dimer with
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exactly the same potential energy surface as bulk bismuth. As this is a finite system,

we expected to see clear indications of its quantum nature. To calculate the quantum

response of bismuth, we have studied the A1g oscillations as a function of N , where the

bulk limit is obtained for N →∞. Note that, according to our discussion after equation

(2.28), one expects the emergence of classical mechanics as N → ∞. Results are shown

in sec. 3.3.

2.4 Theoretical description of laser-excited germanium

As mentioned in the introduction the theoretical model used in the present work to de-

scribe femtosecond laser excited germanium is inspired from the works of Jeschke and

Garcia [JGB99a, JGB99b, JGB02, JGL+02, JG02] which were based on the original inves-

tigations of Stampfli and Bennemann [SB90, SB92, SB94]. The approach used consists

to perform molecular dynamics simulation on the basis of a time-dependent potential

energy surface derived from a nonorthogonal tight binding Hamiltonian.

2.4.1 Nonorthogonal tight-binding formalism

A realistic simulation method of the physical properties of solids needs to satisfy two

main demands: The first demand is the need of accuracy of the theoretical model used,

without which the results are meaningless, and the second demand is the need of large

system sizes to approach the real systems in nature. The first principle methods although

describing accurately the properties of semiconductors, do not satisfy the second demand

due to the computational costs. For this reason, the tight binding methods remain good

candidates for theoretical study of solids. They give a reasonable description of the

inter-atomic interactions and have as advantage this possibility to study relatively large

systems. The quantum mechanical nature of the electrons which controls the inter-atomic

bonding are taken into account in tight binding approach. In fact the approach keeps the
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fundamental physics through the quantum description of the electron degrees of freedom

in the forces calculation (see sec 2.4.3).

The basis ideas behind tight binding approximation are the followings:

In the spirit of the method the total wave function ψm which represents the state of

system of N components is given by a linear combination of atomic orbitals |iα > (LCAO

method)

ψm =
∑

iα

Cm
iα|iα > . (2.35)

Here i labels the ions and run from 1 to N . Cm
iα is the occupancy of the α − th orbital

located at the i − th site. In the case of nonorthogonal basis (< iα|jβ > 6= 0), the

eigenvalues and eigenvectors are obtained from the secular equation:

HC = εSC (2.36)

where H and C are respectively the Hamiltonian and overlap matrix. The matrix ele-

ments are

Hiαjβ =< iα|H|jβ >=
∫

φ∗
iαHφjβd

3r (2.37)

and

Siαjβ =< iα|jβ >=
∫

φ∗
iαφjβd

3r. (2.38)

In order to calculate the Hamiltonian and overlap matrix elements, we follow the con-

cept developed by Harrisson and Schilfgaarde [vSH71]. Within this model the effect of

nonorthogonality is introduced via a proportional relationship between the overlap and

Hamiltonian matrix elements (sec 2.4.2 for details).

Despite its simplicity and the possibility to study system with relatively large number

of atoms, the tight binding approximation is usually confronted to a loss of accuracy

and transferability when describing complex systems. The main difficulty lies on the

parametrization of the Hamiltonian and hence the calculation of the total energy.
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2.4.2 Parametrization of the Hamiltonian and overlap

The efficiency of tight binding formalism comes from the fact that the Hamiltonian (and

overlap in case of nonorthogonal basis) can be parametrized. This allows to easily extract

the electronic structure properties and calculate the inter-atomic forces.

The first parametrization of tight binding Hamiltonian has been formulated by Slater

and Koster in 1954 [SK54]. This two-center approximation based model can be seen as

the starting point of the investigations of electronic structure of crystalline solids. Later

on, in the 1970s tight binding models for total energy calculation have been developed by

Harrison [Har] and Chadi [Cha78, Cha84]. The models proposed by Harrison and Chadi

were very successful on describing properties of silicon and carbon in tetrahedral bond

environment. These first investigations have given rise to a race toward many theories

on the orthogonal [SFPO88, GSP89, WHC93, JLMC94, KBW+94] and nonorthogonal

[PBF92, FWK+95, MS94b, MS98] formulations of the tight binding approximation.

Our work is based on the the original parametrized model proposed by Menon [MS98]

for germanium. We give here a general overview of our model.

Our treatment of bulk germanium containing N atoms is based on the calculation of the

total energy, which reads as,

U = Uel + Urep + U0. (2.39)

The first term Uel is the contribution of electrons to the total energy. The second term

Urep is the repulsive potential. The third term U0 is an additional atomic energy which is

an arbitrary constant used to shift the total energy value. The repulsive energy is given

by

Urep (r) =
∑

i>j

φ (rij) . (2.40)

Here, Rij is the inter-atomic distance and φ (rij) a scaling function.

φ (rij) = φ0e
−β(rij−d0), (2.41)
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φ0 and β are adjustable parameters and d0 is the equilibrium bond length.

The attractive part of the total energy Uel is less trivial to compute than the repulsive

energy which is an analytical function of rij . In the following, we focus on the calculation

of Uel.

The attractive part of the total energy Uel is the sum over all occupied states. It reads

Uel =
occ
∑

m

n (εm, t) εm, (2.42)

where n(ǫm, t) is the occupation number at time t of the energy level εm. For the cal-

culation of the eigenvalues εm, we solved numerically the secular equation 2.36. The

overlap matrix was built from the Hamiltonian matrix using the extended Hückel theory

[Hof63]. Within this theory, the off-diagonal Hamiltonian matrix elements Hij are related

Table 2.3: Electronic parameters used in the present work [Har].
parameters eV

Vssσ -1.73
Vspσ 1.86
Vpsσ -1.86
Vppσ 2.42
Vppπ -0.78

to the diagonal elements of the Hamiltonian and overlap matrix via the proportionality

relationship [WH52]

Sij =
2

K

Hij

(Hii +Hjj)
. (2.43)

The overlap matrix is therefore directly derived from the Hamiltonian. The coefficient K

is the Wolfsberg-Helmholtz parameter [WH52], which is called coefficient for nonorthog-

onality. For the parametrization of the Hamiltonian and Overlap matrix, we used as

previously mentioned the general and transferable parametrization scheme proposed by

45



Chapter 2: Theory

Menon [MS98]. Within this method, the matrix elements Hij are derived from the or-

thogonal matrix elements Vij.

Hij = Vij

(

1 +
1

K
− S2

2

)

(2.44)

where r is the inter-atomic distance and K the coefficient for nonorthogonality which is

exponentially r dependent function.

K (r) = K0e
σ(r−d0)

2

, (2.45)

with K0, σ and d0 adjustable parameters. In our calculation we reduced this exponential

function to a constant value K = K0. The other term in equation 2.44 are

S2 =
Sssσ − 2

√
3Sspσ − 3Sppσ

4
(2.46)

with

Sλλ′µ =
2Vλλ′µ

K (ελ + ελ′)
(2.47)

and Vλλ′µ (r) the hopping terms,

Vλλ′µ(r) = Vλλ′µ (d0) e
−α(r−d0) (2.48)

which are also exponentially r dependent. For the determination of the equilibrium

hopping elements Vλλ′µ (d0),

Vλλ′µ (d0) = nλλ′µ
h̄2

md2
0

(2.49)

we used the universal parameters proposed by Harrison [Har], the values are given in

tab. 2.4.2.

The other parameters are given in tab. 2.4. With this parametrization of the Hamil-

tonian and the Overlap matrix, we can easily compute the forces.
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Table 2.4: NOTB parameters used in the present work.
ǫs ǫp d0 α K0 φ0 σ

(eV ) (eV )
(

Å
) (

Å−1
)

(eV )
(

Å−2
)

-14.38 -6.36 2.44 1.604 2.92 0.44 0.0

2.4.3 Calculation of forces

One of the most important aspects in all dynamical study of solids is the efficiency to

compute the forces acting on atoms. The calculation of forces is the main computational

and also the most time-consuming task in case of molecular dynamics simulation (as

in the present work). There exist several methods to evaluate the interaction forces.

While the repulsive force can be easily computed from a simple analytical derivative

of the repulsive energy of Eq. 2.40, the attractive force from the electronic part of the

Hamiltonian (see Eq. 2.42) is less trivial to obtain. Here, the attractive force acting

on a given atom is computed quantum mechanically through the Hellmann-Feynmann

theorem [G32, Fey56].The total force reads

F = −∂U
∂R

= m
∂2R

∂t2
, (2.50)

with U the total energy. Since the repulsive part of the total force is calculated by the

analytical derivative of the repulsive potential (Eq. 2.40) respect to the atomic position,

we only focus on the attractive part. We give here the details of the calculation of Fatt

as implemented in our molecular dynamics TB code.

First of all the generalized linear equation

∑

jβ

(Hiαjβ − εmSiαjβ)Cm
jβ = 0 (2.51)

is solved. With matrix notation this equation becomes

(H − εmS)Cm = 0. (2.52)
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As H and S are Hermitic we can write

Cn+ (H − εmS) = 0. (2.53)

Differencing (2.52) with respect to the atomic position R leads to

[

∂

∂R
(H − εmS)

]

Cm + (H − εmS)
∂

∂R
Cm = 0, (2.54)

then

Cm+

[

∂

∂R
(H − εmS)

]

Cm + Cn+ (H − εmS)
∂

∂R
Cm = 0. (2.55)

Because of Eq. (2.53) the second term vanishes. By means of the Hellmann-Feynmann

theorem [G32, Fey56], we obtain the derivative of the eigenvalues respect to atomic

position R

∂

∂R
εm =

Cn+
(

∂H
∂R
− εm

∂S
∂R

)

Cm

Cn+SCm
. (2.56)

The eigenvectors are normalized,

C+SC = 1. (2.57)

Equation (2.56) can be rewritten in details

∂

∂R
εm =

∑

iαjβ

Cn∗
iα

(

∂Hiαjβ

∂R
− εm

∂Siαjβ

∂R

)

Cm
jβ. (2.58)

The attractive part of the total force acting on atoms is obtained by differencing the

attractive energy respect to atomic position,

Fatt = −∂Uel

∂R
= −

∑

m

n (εm, t)
∂

∂R
εm (2.59)

here n (εm, t) is the time dependent eigenvalue occupation. Replacing (2.58) in (2.59)

gives

Fatt = −
∑

m

∑

iαjβ

n (εm, t)C
n∗
iα

(

∂Hiαjβ

∂R
− εm

∂Siαjβ

∂R

)

Cm
jβ (2.60)

and

Fatt = −
∑

iαjβ

(

∂Hiαjβ

∂R
Aiαjβ −

∂Siαjβ

∂R
Wiαjβ

)

, (2.61)
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where

Aiαjβ =
∑

m

n (εm, t)C
n∗
iαjβC

m
iαjβ, (2.62)

and

Wiαjβ =
∑

m

εmn (εm, t)C
n∗
iαjβC

m
iαjβ (2.63)

are respectively the matrix density and the energy weighted matrix density elements.

Technically, this calculation is an intensive computationally task in terms of time and

memory since it is achieved at every time step. For instance, in our pairwise interacting

system of N atoms, if we consider only the first neighbors contribution to the force we

must evaluate N × (N − 1) pair distances which means that the time needed to evaluate

the forces scales as N2. However some tricks (i.e Verlet list [Verb], Cell lists [HE] etc.)

can be used to reduce such computational time to a scaling factor of N (see sec. 2.4.5).

Although the physical description of the electronic properties of the excited and non-

excited bulk germanium differ, the computation of the forces described in this subsection

remains the same.

2.4.4 Absorption of laser energy

As emphasized in sec. 2.1 the laser pulse interacts primary with the electrons which

thermalize very quickly. The time dependent many-body potential which governs the

dynamics of the system, is derived from the single electronic Hamiltonian

H =
∑

iα

ǫiαniα +
∑

ijαβj 6=i

V αβ
ij (rij)c

+
iαcjβ. (2.64)

Here, ǫiα is the on-site energy of atom i and orbital α (s,p orbitals). The values of ǫs and

ǫp are given in table 2.4. c+iα and cjα are the creation and annihilation operators, and

V αβ
ij (rij) the hopping integrals. We assume that the valence electrons of germanium can

be described by this effective single-particle Hamiltonian. The parametrized functions

of the Hamiltonian and overlap matrix elements are presented in sec. 2.4.2. Note that
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the Hamiltonian and overlap matrix elements depend on the inter-atomic distances rij.

Thus, the solution of the secular equation 2.36 yields to M eigenvalues ǫm which depend

on {rij}. For the coupling between laser energy and electrons we assume that the time-

dependent potential energy surface U({rij}, t) which governs the motion of the atoms is

equal to the free energy of the electrons Fel({rij}, t), which is given by

U({rij}, t) = Fel({rij}, t) =
∑

m

n(ǫm, t)ǫm +

+Urep({rij})− Tel(t)Sel(t), (2.65)

where n(ǫm, t) are the occupations of the corresponding electronic levels ǫm. This as-

sumption is based on the fact that electron thermalization is very fast compared with the

time scale for the motion of the ions. As described in sec. 2.1, the rapid thermalization

of electrons is justified for laser pulse intensities that excite significant percentage of the

valence electrons (> 8% for Ge). As consequence of the strong excitation the system

undergo rapid bond breaking and structural changes. Due to the presence of the laser

pulse, these occupations are time-dependent. The first term of Eq. 2.65 represents the

attractive contribution from the valence electrons. The second term is the repulsive part

of the potential energy (described in eqs. 2.40 and 2.41). The third term contains the

electronic temperature Tel and the electronic entropy Sel, which is given by

Sel = −kB

∑

m

[n(ǫm, t) log (n(ǫm, t))

+ (1− n(ǫm, t)) log (1− n(ǫm, t))] . (2.66)

Eq. (2.65) represents a generalization of the Born-Oppenheimer approximation (BOA).

Note that the usual BOA is recovered for Tel = 0.

It is important to point out that the functional dependence of U({rij}, t) on the inter-

atomic distances {rij} is strongly dominated by the electronic occupations n(ǫm, t) present

in the first and third terms of Eq. 2.65. Therefore strong changes in electronic occupa-

tions yield to strong modifications of the potential energy landscape U({rij}, t).
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From the above points it comes out that, it is essential to take into account explic-

itly the time-dependent change of electronic occupation n (ǫm, t) for the description of

laser induced structural effects. Here, we use the approach proposed by Jeschke and

Garcia [JG, JDG09] to introduce the time dependent change of electronic occupation.

This approach gives a good description of laser induced structural changes in diamond,

graphite and silicon [JGB99a, JGB99b, JGB02, JGL+02, GJ03] and also in carbon nan-

otubes [DGJY04, RGV+05]. We give here the details of the approach combined with our

NOTB method to study laser excitation of bulk germanium.

In order to obtain an equation for the rate of change of the electron occupations n(ǫm, t)

we consider the equation of motion for the density matrix ˆρ(r), which reads

˙̂ρ = − i
h̄

[HTB + Vlaser, ρ̂] +
∂ρ̂

∂t

∣

∣

∣

∣

∣

coll

. (2.67)

The first term refers to the coherent motion of the electrons, which is driven by the laser

field and which involves optical transitions between the energy levels of the Hamiltonian

HTB. Since the tight-binding Hamiltonian is a single-particle one, it does not describe

interactions between the excited electrons, which are essential for the thermalization pro-

cesses. Thus, we treat them by including a second, dissipative term in Eq. 2.67.

Eq. 2.67 represents a system of coupled differential equations for the diagonal and nondi-

agonal elements of the density matrix. However, since the electron-hole plasma created

by the laser undergoes rapid dephasing, the relevant equations of motion will be those de-

scribing the diagonal elements. Therefore, neglecting the contribution of the nondiagonal

elements one obtains

dn(ǫm, t)

dt
=

∫ ∞

−∞
dω g(ω, t− τ)

{

[n(ǫm − h̄ω, t− τ)

+n(ǫm + h̄ω, t− τ)− 2n(ǫm, t− τ)]
}

−n(ǫm, t)− n0(ǫm, Tel)

τ1
. (2.68)
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Here, the first integral describes the laser excitation and creation of a non-equilibrium

electron distribution. Eq. 2.68 describes the absorbtion of light from the laser pulse.

g(ω, t) is the intensity function of the laser pulse and is calculated by:

g(ω, t) = I0exp{−
4ln2 (t− t0)

τ 2
p

− fτp (ω − ω0)
2

16ln2
}. (2.69)

g(ω, t) represents the distribution of intensity over time and energies. It is the product

of the envelope of the pulse I (t) which may be described by a Gaussian function with a

pulse duration τp and its Fourier transform I (ω).

I (t) = I0exp{−
4ln2 (t− t0)2

τ 2
p

} (2.70)

and

I (ω) = Ĩ0exp{−
fτp (ω − ω0)

2

16ln2
}. (2.71)

With f a factor depending on the units used for time and energies. In our case f = 10−15e
h

for time in fs and ω in eV .

The effects of the laser excitation on the electronic system can be described as follows.

The electronic distribution is at each time step folded with the intensity function g(ω, t).

This means that at each time step, the occupation of an energy level ǫm changes in

proportion to the occupation difference with respect to levels at ǫm − h̄ω and at ǫm +

h̄ω. Another important simplification which has been made within the approach is to

neglect the optical matrix elements in eq. (2.68). They are assumed to be equal to

unity. Therefore the band structure plays the main role in the absorption process. This

absorption process is illustrated in fig. 2.4. The second term of Eq. (2.68) describes the

electron thermalization resulting from electron-electron collisions through a relaxation

time τ1. Thus, with a time constant τ1, the distribution n(ǫm, t) approaches a Fermi-

Dirac distribution n0(ǫm, Tel), which is given by

n0(ǫm, Tel) =
1

exp{β(ǫm − µ) + 1} , with β =
1

kBTel
. (2.72)
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Figure 2.4: Absorption of laser energy. The laser intensity at the frequency ω effects for
an energy level ǫm an occupation increases from a level at ǫm − h̄ω and an occupation
decreases toward a level at ǫm + h̄ω. Figure reproduced from [JG].

Here, Tel is the electron temperature, and µ is the chemical potential. This simple

approach yields good description of laser excited germanium. This is explained by the

fact that for dense electron-hole plasmas in covalent solids extremely low relaxation

times τ1 have been found. A carrier thermalization faster than 10 fs in GaAs has been

reported [KCL+88]. Even studies that use lower laser intensities than are studied here

find thermalization times of the order of 100 fs [ESRL91, WFP+94]. We here use τ1 =

10 fs. Note, for these short thermalization time the exact electronic dynamics leading

to electronic equilibrium do not play a significant role for the structural changes we are

studying here.

The electronic temperature Tel and the chemical potential µ, which appear in the Fermi-

Dirac distribution and which are not determined by Eq. (2.68), need to be fixed by

an additional principle. We will demand that the non-equilibrium distribution n(ǫm, t)

approaches the Fermi-Dirac distribution while conserving the total energy of the system.

Energy loss mechanisms, which are of course already present as soon as some laser energy
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has been absorbed, will be treated in a way that does not interfere with this principle of

energy-conserving equilibration. The total energy at time t is required to be

Etot(t) = U({rij(t)}, t) + Ekin(t)

!
= Etot(t = 0) + Eabs(t)− Eloss(t) , (2.73)

where Ekin(t) is the kinetic energy of the ions, and Eabs(t) is the energy that has been

absorbed from the laser pulse up to the time t. A further, obvious demand which is

necessary to determine Tel and µ is that the number of electrons Ne stays constant over

the entire calculation:

Ne(t) =
∑

m

n(ǫm, t)
!
= N0

e . (2.74)

Thus, by enforcing conservation of energy during the electron thermalization we make

sure that we get physically meaningful results.

With this approach the effect of a laser-induced electronic non-equilibrium on the struc-

tural response can be studied. With the help of molecular dynamics technique described

in the next subsection we study the structural changes of excited bulk germanium.

2.4.5 Molecular dynamics

Molecular dynamics (MD) simulation is a well established method to study the time

evolution of classical and quantum mechanical systems. It allows to provide detailed

informations on the structural transformations of a material in a range of time scale over

which the changes take place. The key tool of the method is the numerical solution of

the equation of motions which are solved for an ensemble of atoms. We discuss here some

practical aspects of the MD method.

Originally Molecular dynamics was introduced by Alder and Wainwright in the 1950’s

to study the interactions of hard spheres [AW57]. From their original work, many inter-

esting results regarding the behaviour of liquid system emerged. Later on the efficiency
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of MD simulation techniques to study behavior of solids and other complex systems has

been proved. The use of MD technique has been facilitated by the availability of powerful

computers during the last decades and the simplicity of its algorithm to be implemented.

The methodology used to describe the inter-atomic forces in solids can be either empir-

ical or first principle methods, but the MD scheme remains the same. In fact the only

difference comes from the electronic contribution to the total energy used to calculate

the forces and the subsequent set of dynamical equations to solve. In this work, we used

nonorthogonal tight binding (described in sec. 2.4.1) molecular dynamics (NOTB-MD)

to study the physical properties of bulk germanium with and without laser excitation.

We give here a description of the different steps of our MD scheme.

First of all an initial structure consisting of N particles is assembled, by assigning initial

positions for all atoms {rk(t = 0)}. The initial structure is usually guided by the nature

of the structure that we aim to study. For instance, germanium crystallizes in diamond

phase at low temperatures, therefore it is preferable but not necessary to initially place

the atoms in a diamond lattice. It is also important to point out that the atoms should

be placed in reasonable positions, to avoid significant overlap of the atomic cores.

The second step is to solve routinely the Newton’s equation of motion until the properties

of the system no longer change with time. The system is therefore equilibrated and the

statistical quantities are derived.

In the specific case of simulating laser excited bulk germanium, the system is not nec-

essary in equilibrium state. This yields to some additional physical considerations.

For instance, the electronic and ionic motions are treated separately using the Born-

Oppenheimer approximation [BOA].

In practice, for a given configuration we first search the electronic ground state and then

calculate the potential energy corresponding to that configuration. The motion of ions
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Figure 2.5: Molecular dynamics scheme for the time evolution of the system. Potential
energy surface φ({rij}, t) which governs the atomic motions is obtained from an electronic
Hamiltonian in the basis of nonorthogonal tight binding framework. The time dependent
non-equilibrium electronic occupation n(ǫm, t) is taken into account explicitly in the
potential energy calculation.

is controlled through the Newton’s equation of motion

Fi = Mir̈i. (2.75)

This differential equation is numerically solved and yields to the time evolution of coor-

dinate and velocity of every atom inside the simulation box.

The main task is to compute the forces acting on atoms. It is computationally expensive

in the sense that it involves calculation over all pairs of atoms. For these reason, the

time step used to integrate the Newton’s equation of motion must be as large as possible

while the physical properties of the system are retained. For example, the condition of

the conservation of total energy must be fulfilled since we use microcanonical ensemble.
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It would be also interesting to have an algorithm that accurately integrate eq. 2.75 and

then predicts exactly the trajectory of all atoms in short and long times. Unfortunately,

up to now such accurate algorithm doesn’t exist. The difficulty comes from the fact that

system studied by MD simulation are in regime where the trajectory through phase space

depends sensitively on the initial conditions. This essentially means that two trajectories

that are initially closed can diverge significantly in time. Therefore one has to consider an

algorithm which is able to keep the simulated trajectory as close as possible to the true

trajectory expected from the initial conditions. Several algorithms exist in literature.

The most used are: Verlet Algorithm [Verb, Vera], Velocity Verlet [SABW82], Leap-frog

Algorithm [HE] and predictor-corrector schemes. Due to the time reversible nature of

the Newton’s equation, the algorithm used have also to be so. The integration techniques

based on predictor-corrector do not ensure this time reversibility and hence can not be

used for a proper description of the time evolution of the system. In our simulations we

used the Verlet Algorithm in its velocity form ( ’velocity Verlet algorithm’).

The Verlet algorithm in its original form consider the positions rk at times t and t − δt

and acceleration r̈k at time t to predict the position at time t+ δt which reads

rk (t+ δt) = 2rk (t)− rk (t− δt) + r̈kδt
2. (2.76)

Here, rk is the position of atom k and δt the integration time step. The ’velocity Verlet

algorithm’ [SABW82] computes the atomic positions and velocities as follows:

rk (t + δt) = rk (t) + ṙk (t) δt+
1

2
δt2r̈k (t) (2.77)

ṙk (t+ δt) = ṙk (t) +
1

2
δt [r̈k (t) + r̈k (t+ δt)] (2.78)

From the initial conditions [{rk}t=0, {ṙk}t=0], the time dependent system [rk (t) , ṙk (t)] is

simply obtained by solving routinely eq. 2.75, 2.77 and 2.78. All the atomic degrees of

freedom are taken into account, in our real space description of the material.
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Another important aspect to emphasize is the size of the studied system. In laboratory

experiments, the typical extension of a laser spot is 15 µm and the usual penetration

depth is roughly 100 nm. This depends naturally on the studied material and the laser

light frequency. The estimation of the excited volume of a material is therefore 7x103Å3.

A typical volume of MD supercell is 103Å3, which means that only a small size of the

entire heated part of the material is considered in the simulation. The method used is

in fact limited with respect of the number of atoms that can be treated with the avail-

able computing power and cost in term of time. In order to handle the system size, it is

very common in MD simulation to use periodic boundary condition (PBC). Applying the

PBC in the three spatial directions (x,y,z) of the MD cell allows to not only simulate an

infinite bulk, but to also eliminate the surface effects (see [JG] for a detailed description

of the use of PBC). The complete process of our calculation is illustrated in figure 2.5

and summarized in the next subsection.

2.4.6 Summary of the numerical approach

Our theoretical description of laser induced structural changes in bulk germanium re-

quires to solve in a parallel way the classical equations of motion for the nuclear degrees

of freedom (Newton’s equations 2.75) and the equations of motion for the electronic oc-

cupations [Eq. (2.68)]. The equations of motion are, of course, coupled. Changes in the

occupations lead to changes in the potential energy surface φ({rij(t)}, t). These lead

to changes in the atomic coordinates which cause changes in the eigenvalue-spectrum

ǫm({rij(t)}) obtained from the secular equation 2.36 (due to changes of the hopping ma-

trix elements, Eqs. 2.48 and 2.47). Thus the time evolution of the structure is obtained.

Results are shown in sec. 3.4.
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Chapter 3

Results

3.1 photoinduced structural changes in cerium

Cerium is the most abundant of rare earth metals in nature and the only element in

the periodic table with a solid-solid critical point. It can be found in many minerals

like allanite, cerite, basnazite etc. Cerium crystallizes in a face-centered cubic (fcc). At

ambient conditions it is in its low volume phase named α with a volume reduced to

15 − 17% compared to the high volume phase γ. It exhibits a fascinating iso-structural

transition from γ to α phase under certain thermodynamic conditions. This transition

which is referred to as α ←→ γ phase transition is accompanied by a discontinuous

volume change [LLC83] (volume collapse transition). In sec. 3.1.1 we describe this

volume collapse transition driven by external pressure. In sec 3.1.2 we investigate the

inverse phase transition. For this, we study the time dependent volume expansion induced

by an ultrashort laser excitation using the model described in 2.2.3.

3.1.1 Volume collapse phase transition

To describe the phase transition we have used the qualitative description proposed by Fal-

icov and Ramirez [RF71]. This approach although qualitative allows to describe appro-

priately the experimentally observed α←→γ phase transition. The calculated isotherms

of cerium are shown in figure 3.1.1. At low temperatures (T < 600K) and at a given crit-

ical pressure depending on the temperature, a discontinuous volume change is observed.

According to Falicov’s theory, this sudden volume change is due to a discontinuous tran-

sition of one electron from the valence states to the 4f states. This transition becomes
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continuous at high temperatures (T > 600K).

However at low pressure an intermediate phase named β-phase can be observed. The

β phase has an hexagonal close-packed as crystal structure and its electronic structure

is similar to that of the γ phase. The β phase is found when γ phase cerium is cooled.

This β phase is not yet well established and described. We focus here on the two well

described α and γ phases. As shown in figure 3.1.1, the phase boundary between the α

and γ phases is an increasing line with increasing pressure and temperature. Up to now
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Figure 3.1: Phase diagram p(V) of Ce for different isotherms at high and low temperatures
calculated using the promotional Falicov model. Good agreement is obtained with the
ab-initio results [LED+05]

it is believed that there are no broken symmetries at the critical points, despite some

reasonable doubts which can take place due to some physical reasons. To move smoothly

from one phase to another by applying pressure and increasing the temperature, it is not

possible that a symmetry is altered. In fact a change in symmetry can not occur in a

smooth way and therefore can not take place during such phase transition. Same phase

transition from a fcc structure to a distorted fcc structure has also been observed in other

systems like SmS.
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3.1.2 Laser induced phase changes

In this subsection we analyze the volume changes due to laser excitation and describe

the time evolution of the degree of electron delocalization, which we define as

δ = 1− nf (3.1)

(see sec. 2.2.3). Where nf is the occupation of the localized 4f state. In Fig. 3.3

we show the development of the degree of electron delocalization at different electronic

temperature depending on the f level position. As mentioned before, high electronic

temperatures correspond to high laser fluences. We have found that the decrease of de-

localization of the 4f states increases with increasing ǫf . The delocalization of the 4f

electrons takes place continuously in the high volume gamma phase. This is consistent to

recent DAFT calculations [HMS01]. Since the f -level position will change upon the laser

induced expansion, the curve shows that, particularly at high electronic temperatures,

no discontinuous transition will occur. This means that for the conditions created by the

laser pulse the 5d6s-4f transition seems to occur continuously. For a sufficiently large

value of ǫf , no f−occupation is expected.

As explained in the section 2.2.3, the time evolution of the system was introduced using

the shock wave compression technique. The detailed mechanism of the shock compres-

sion of solids has not yet been clarified. However, the shock wave compression technique

remains a very important tool to study solids under shock loading. Since solids are

incompressible in practical terms, very large pressures are necessary to create even a

modest change in volume.

In general, solids do not behave like fluids at low stress due to the presence of shear stress.

This means that solids stress and plastic flow may enhance the mechanical changes. This

is what we expect to occur upon shock wave formation induced by a femtosecond laser

pulse. The increase of the electronic temperature induced by the femtosecond laser pulse
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Figure 3.2: (Color online). Scheme of the mechanical change induced in α-Ce by a
femtosecond laser pulse. The unexcited part of the system remains cold and is compressed
with the shock velocity driven by the pressure P of the excited region, which is high due
to the excitation. In the calculations, the pressure is assumed to be continuous at the
interface between expanding and shocked matter.

leads to the increase of the pressure. This results in the formation of shock waves and in

the expansion of the system. To describe the dynamics of the system and in particular

de propagation of the shock waves after the laser heating, and for the sake of simplicity,

we assume the volume expansion to be isotropic.

We assume that the total volume of the sample remains constant within the time scales

on which the shock waves propagate. This assumption is clearly valid, since only a small

part of the sample is irradiated (the size of the laser spot is usually considerably smaller

than surface of the sample). Thus, thermal expansion of the whole sample will be a neg-

ligible effect. Moreover, it will also occur on much longer time scales than those involved

in the shock-wave formation and propagation.
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Figure 3.3: Degree of delocalization, δ, as function of f-level position in the band for
different values of electronic temperature Te. The f-level position is determined with
respect to the Fermi energy The degree of delocalization δ depends strongly on the f
level occupation in the band in the vicinity of the Fermi level.

Since the total volume remains constant, and as explained in the previous section, the

change in volume in the heated part due to expansion is equal to the change in the unex-

cited part due to compression. Note that the time scale for the expansion of the excited

region will be governed by the compression velocity in the unexcited part.

We have calculated the laser induced pressure from Eq. 2.9 and used Eqs. 2.10 and 2.11 to

determine the particle velocity up. The resulting system of four equations with the four

unknowns, us, up, P , V is solved numerically. In Fig. 3.4 we plot the interdependence

between up and P .

It is important to mention that we do not consider the effect of the elastic pressure in

our calculations. This is because the elastic term in the free energy (not considered in

Eq. 2) will lead to volume oscillations at time scales which are much larger than those

which are relevant for this work.
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In Fig. 3.5 the time evolution of the volume of the excited part is shown for differ-
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Figure 3.4: Plot of Pressure vs particle velocity in the cold material obtained in the
present work. The particle velocity up is assumed to be constant in the bulk.

ent electronic temperatures (corresponding to different laser fluences). We obtain very

fast volume changes of the order of 15% occurring on a time scale of 150fs. This shows

that ultrashort laser pulses of high enough intensity can induce ultrafast local volume

changes in Ce. Interestingly, these sudden laser induced volume changes are related to a

transition from α-Ce to γ-Ce. As a consequence of the expansion there is a continuous

transition in the occupation of the 4f -level from values near nf ∼ 0 to nf → 1.

Thus, we predict a laser induced inverse volume collapse transition or a laser induced

localization of the valence electrons on a sub-picosecond time scale.

In Fig. 3.6 we plot the time evolution of the degree of electron delocalization δ assuming

an excitation which leads to an electronic temperature of Tel = 1000K. The very fast lo-

calization of the electrons yields to the volume changes shown in Fig. 3.5. The structural

part of the transition (volume expansion) could be monitored via time-dependent rock-
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Figure 3.5: Volume variation as a function of time after laser excitation for different
electronic temperatures. At the maximum reached volume the corresponding degree
of delocalization is almost 0. Note that for higher electronic temperatures the volume
expansion is faster.

ing curves measured through pump-probe experiments based on probe ultrashort x-ray

pulses [RTD+07] or through time-resolved electron diffraction [CBRZ08, HEH+08]. It is

well established that for fcc crystals the (111) Bragg peak is that of highest intensity.

Therefore we have computed the time dependence of the Bragg reflections during the

lattice expansion from the structure factor

| I (t) |2=| 1

N

N
∑

i=1

eiGkhl.Ri(t) |2, (3.2)

where Gkhl is the corresponding reciprocal lattice vector and Ri (t) the position of ion i

in the unit cell at time t. The diffraction angle is obtained from the Bragg condition.

In the inset of Fig. 3.6 the time evolution of the (111) Bragg peak. Note that there is

a very rapid shift of the peak towards smaller angles reflecting the laser induced expan-

sion.
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Figure 3.6: Time evolution of the electron delocalization degree for a laser excitation
resulting in an electronic temperature Tel = 1000K. The initial time t = 0 corresponds
to the laser excitation. Note that for this high electronic temperature no discontinuity
is observed. The inset shows the time evolution of the [111] Bragg peak, obtained from
Eq (14).

The time evolution of the pressure P after the laser excitation, derived from the free

energy applying Eq. 2.9 is shown in Fig. 3.7 for different values of the electronic temper-

ature Tel.

Note the presence of a maximum for a given time, which corresponds to the change in

curvature for the time behavior of the volume (Fig. 3.5). This maximum shifts to shorter

times as the laser fluence increases.

3.1.3 Summary

We used a microscopic model of laser induced structural changes combined with an elec-

tronic model Hamiltonian and the Hugoniot theory to demonstrate that an ultrafast

photo-induced transition involving large local volume and electronic changes can be in-
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Figure 3.7: Time evolution of the total pressure for different electronic temperatures.

duced in Cerium. In the range of electronic temperatures we have considered in this

work, the photoinduced transition occurs as rapid expansion of the solid, initially in the

high density α phase, due to the strong excitation of the band electrons. This expansion

is accompanied by electron delocalization. We predict a very fast expansion dynamics

helped by the formation of shock waves. As a consequence, an ultrafast shift of the

(111)-Bragg peak occurs which should be possible to measured by means of time-resolve

diffraction experiments.

3.2 Structural and electronic properties of SmS

At ambient conditions SmS crystallizes in NaCl structure with 2 atoms in the unit cell.

It belongs to symmetry group Fm3m (No. 225). In order to study the structural prop-

erties of SmS, we calculate the phase diagram. For this, we compute the total energy in

function of crystal volume. The total energy is calculated using the DFT framework with
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the LDA + U SIC (Self interaction correction) formalism and the full potential linearized

augmented plane wave method (FPLAPW) as implemented in Wien2k code [BSM+01].

The following ingredients have been used to achieve the calculation: Orbital potential

was evaluated only for f −electrons in Sm atoms. Spin polarized f electrons along (001)

direction and spin orbit coupling have been considered.

To better describe the ground state properties, we adopt for the exchange correlation

energy, the Perdew-Burke-Ernzherof (PBE) parametrization [PBE96]. A value of 10−7

is chosen as charge convergence criterion, and a good convergence for the self-consistent

scheme was achieved with this value. The energy separation between valence and core

Table 3.1: The calculated lattice constant (a), bulk modulus (B) and its derivative (BP)
in comparison with experimental results and other LDA.

properties present work experiment [HS83] other work [LSK88]
a(a.u) 11.29 11.29 10.4218
B(GPa) 47.03 50.3 84.3
BP 4.22 2.4 3.9632

electrons was ∆E = −6Ry. This value is large enough to allow a good separation be-

tween valence and core states in Sm. The values of Hubbard U and exchange parameter J

(Ueff = U −J) were turned to describe the exact equilibrium phase diagram of SmS. We

used basis set corresponding to RMT ×Kmax = 8.0, where RMT is the muffin tin radius

and Kmax the plane wave cutt off. Our RMT = 2.5 a.u was enough to confine almost

all the charges inside the atomic sphere. The angular momentum for the wave function

expansion inside the sphere was l = 12. The relativistic effects were considered by taking

into account the self consistent interaction of the sixth relativistic states of Sm with total

angular momentum J = 5/2. The smearing technique has been used to smooth the Fermi

distribution. A broadening parameter of 0.002 Ry for the Fermi function was found to

be low enough and gives good description of the ground state. The First Brioullin zone
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Figure 3.8: The total energy of SmS as function of volume for different values of the
Hubbard parameter Ueff . Good description of the ground state total energy is observed
at Ueff ≈ 0.55Ry.

(BZ) was sampled accurately with 512 k-points and we used the tetrahedron method to

perform reciprocal space integration.

The results are shown in figure 3.9. The total pressure was calculated by fitting the

total energy to the Birch-Murnaghan equation of state [Bir47]. Our LDA+U calculation

reproduce the correct semiconducting ground state of SmS with a Hubbard parameter

value of roughly Ueff = 0.5 Ry (≈ 6.8 eV ). This value is in good agreement with x-ray

photoemission spectroscopy experiment [CBWL74] which places Ueff in between 6 and

7 eV. Tab. 3.1 shows comparison between calculated equilibrium bulk properties and

experimental results. For the lattice parameter, we obtained an exact reproduction of

the experimental value (a = 11.29). In comparison to our LDA+U calculation, the LDA

calculations provide an inadequate description of the 4f states in SmS due to an inap-

propriate treatment of correlation effects. For instance same calculation of total volume
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Figure 3.9: Total energy +21667.808957 and derived total pressure as function of volume.
open squares are our LDA+U calculation, and data are fitted to to the Birch-Murnaghan
equation. (solid lines)

versus energy using LDA approximation underestimates the equilibrium lattice constant

[LSK88]. However, these calculations show that the bulk modulus agrees much better

with the experimental value when the 4f electrons are treated as core states. Our calcu-

lated bulk modulus is slightly underestimated. In tab. 3.2 we show the calculated values

Table 3.2: Buk equilibrium properties of SmS.
Ueff(Ry) latt. constant (a.u) Bulk modulus B(GPa) BP

0.40 11.18 48.43 4.47
0.45 11.24 47.29 4.35
0.50 11.29 47.07 4.20
0.55 11.33 46.40 4.14
0.60 11.37 46.36 4.10

of the equilibrium parameters for different values of Ueff .

The electronic density of states within the unit cell at the equilibrium volume is shown

in fig. 3.10. A clear distinction can be seen among two groups of levels separated by the

Fermi level. The first group which contains the 3p states of atom S and 4f5/2 of atom
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Sm extends from E = −6 eV to E = −3 eV below the Fermi level; the second group is

composed by 5d and 4f7/2 states of Sm and extends from E = 1 eV to E = 5 eV above

the Fermi level. The energies of occupied and non-occupied 4f levels are separated by

approximately Ueff (in good agreement with experiment [CBWL74, OA84]). The shift

between the two spin states 4f5/2 and 4f7/2 is responsible of the magnetization. Thus,

the f electrons determine the magnetic properties of the material. As it can be observed
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Figure 3.10: Calculated total density of states for SmS at the total energy minimum (
a = 11.29a.u ) with f 6 configuration.

from fig 3.10, the six 4f5/2 are fully occupied and are localized in the gap between S 3p

and Sm 5d, while the 4f7/2 are completely unnoccupied and are situated well above the

Fermi level. This splitting of filled and empty f bands, which is expected to be 6− 7 eV

from x-ray photoemission spectroscopy [CBWL74] and bremsstrahlung isohromat spectra

measurement [OA84], can not be reproduced by a simple LDA calculation. The LDA+U

theory goes beyond the simple LDA theory by offering the possibility to distinguish the
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occupied and non-occupied 4f states. In fact the introduction of the Coulomb interaction

U as an additional parameter in the one particle (LDA) equation gives better results and

better understanding of the semiconducting state of SmS.

As in the case of Ce, it was also experimentally shown that applying external pressure

can induce semiconductor to metal transition in SmS [JNM70, SLH+82, HS83]. This

transition is accompanied by a discontinuous volume change and significant variations

of the optical and electrical properties. An abrupt decrease of both the lattice constant

and the resistivity were observed at 0.65 Gpa pressure at 300 K. The experimentally

observed phase diagram [JNM70] shows a conversion of Sm2+ to Sm3+ (4f → 5d elec-

tron delocalization) during the transition. This is consistent with the model proposed

by Falicov [RF71]. However, there is lack of understanding of some important aspects of

the effects of the transition on the electronic structure. The LDA+U method emerged

as a powerful method to describe the electronic structure, since it takes into account the

localized nature of the f orbitals. It has been used to study the optical and electronic

properties of Tm monochalcogenides (TmS, TmSe, TmTe) [AHY00] and Sm monochalco-

genides(SmS, SmSe, SmTe)[AHY02].

Recent experimental study [KTM03] showed that by using femtosecond laser excitation

it was possible to induce the metal-semiconductor transition in SmS. From the above

results, it is clear that LDA+U approach gives very good description of the equilibrium

properties of SmS and hence can be used as the basis theory to theoretically study laser

induced phase transition in SmS.

3.3 Laser-induced coherent phonons in bismuth

In many materials there is extensive evidence from x-ray diffraction techniques and time-

resolved optical spectroscopy [SYH83, SWS+91, STBvdL95, MMHK04] that femtosecond
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laser pulse can generate coherent phonons. Recently, a variety of experiments on the laser

excitation of coherent phonons has been performed on bismuth [MMHK04], germanium

[PKKS92, SPK93, NHM+01], silicon [KHCP05] and GaAs [IKU06]. Many excitation

mechanisms such as displacive excitation mechanisms (DECP) [ZVC+91], and impulsive

stimulated Raman scattering (ISRS) [YN87] have been discussed. We assume in the

present work that the DECP is the only generating mechanism of the A1g oscillations

in Bi. The DECP mechanism is based on electronically induced displacement of the ion

equilibrium coordinates. In fact the A1g oscillations are consequence of the change in the

minimum of the potential energy surface due to the laser excitation.

3.3.1 Time dependence of the potential energy surface

We here report the dependence of the parametrized potential energy surface on the laser

parameters. In [JBM+08] a model for the time dependence of the energy density absorbed

from a short laser pulse is presented. The explicit form is given by the sum of expressions

(5) and (6) in [JBM+08]. This model depends on the following parameters: The electronic

energy decay time τ1, the penetration depth L0 of the laser light, a diffusion constant D

for the electrons and holes, and a constant n0, which is the total absorbed energy from

the laser. Assuming that the optical properties of bismuth do not change during the

laser excitation, in the present work, we have simply obtained the time dependence of E0

for a laser pulse of finite duration by convoluting the model of [JBM+08] with the laser

pulse shape. In our simulations we have used τ1 = 4 ps, D = 0, L0 = 16 nm, and we

have varied n0. These values are somewhat different from the experimentally determined

parameters in [JBM+08], but they do not affect our qualitative conclusions. To create

comparable conditions as in [MMHK04] we have assumed that the laser pulse shape is

a Gaussian with a full width at half maximum of 130 fs. The resulting time-dependent

potential energy surface for n0 = 5 mRy/atom is shown in figure 3.11. We wish to stress
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Figure 3.11: Computed potential energy at different times during ultrafast laser exci-
tation. The curves A, B, and C correspond to the points A, B, and C in the inset.
A represents the ground state potential, B is the excited potential at the peak time of
the gaussian pulse, and C represents the potential at t = 200 fs. The inset shows the
variation of the absorbed energy E0 as a function of time.

that our approach, which combines the model of [JBM+08] and the parametrization of

section 2.3.4, can be used to describe the time-dependent potential energy surface of

bismuth due to lasers pulses of arbitrary shapes and intensities.

3.3.2 Collapse and Revival phenomenon

Our computed oscillatory parts of the expectation value of the z coordinate of Bi are

shown in figures 3.12 and 3.13. As pointed out in the previous sections, the oscillations

depend on the laser characteristics (fluence, pulse duration, pulse shape). In figure 3.12

we show the dynamics of the phonon wave packet in a two-atom system (N = 1). The

interaction of the wave packet and the potential leads to a series of collapses and revivals.

At low fluences, collapses and revivals are not observed in agreement with experiment

[MMHK04]. For high fluences, we found that the collapse and revival times increase when
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Figure 3.12: Oscillatory part of the z coordinate of an artificial dimer (N = 1) for
different absorbed energies n0. The excitation was caused by a laser with pulse duration
of 130 fs. Note that the curves are offset along the y axis, for clarity of presentation.
Arrows indicate the amplitude collapse of the oscillations.

75



Chapter 3: Results

N=1

N=64

time (ps)

N=128

N=16

N=4

classical
o

s
c
il
la

ti
o

n
 a

m
p

li
tu

d
e

 (
c
)

 0

 0  5  10  15  20  25  30

 0.25

 0.5

−0.25

Figure 3.13: Oscillatory part of the z coordinate for an absorbed laser energy of n0 = 10
mRy/atom and a pulse duration of 130 fs. Curves for different values of N are offset along
the y axis. The five lowest curves show results from our quantum dynamical simulations
and the uppermost curve shows the classical trajectory of the resulting A1g oscillation.
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the absorbed laser energy is decreased. Figure 3.13 shows the results of our quantum

dynamical simulation as a function of system size. As was to be expected (sec. 2.3.5), for

large systems the behavior of the quantum system approaches the classical limit (the top

curve in figure 3.13). This implicates that the experimentally observed series of beatings

in bulk bismuth [MMHK04] cannot be explained as a quantum mechanical effect, but is

most likely of classical origin.

3.3.3 Discussion

We have performed quantum dynamical simulations on time-dependent potential energy

surfaces in order to elucidate the origin of experimentally observed [MMHK04] beat-

ings of laser-induced coherent phonons in bismuth. By introducing a parameter for the

number of unit cells included in our study we found that the behavior of the excited

phonons approaches the classical behavior rapidly as a function of system size. This

is a strong indication that quantum effects do not play a role in the generation of the

observed beatings. Possible alternative explanations are a classical interference between

signals reflected from different parts of the sample or the beating between excited modes

of different symmetries. The first mechanism would presuppose that the sample has

been heated unevenly by the laser. Of course from our computations we cannot judge

the likeliness of this scenario, but we hope that our study will inspire experimental-

ists to study this possibility. The second mechanism requires that at least two kinds of

phonons are excited in bismuth, that their frequencies are near, and that there is a strong

coupling between the two modes. Whereas the first condition is fulfilled (so-called Eg

phonons are excited in Bi through Ramann scattering), previous calculations on bismuth

[ZTG06a, ZTG06b] indicate that the A1g and Eg frequencies are not close enough to

explain the observed beatings and that the coupling between these modes is relatively

weak. Therefore, we believe that this latter explanation is unlikely.
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3.4 Lattice dynamics of germanium.

3.4.1 Structural properties

In this subsection we report the structural properties of bulk germanium as function of

lattice temperature. We used the NOTB MD simulation described in sec. 2.4.5 to inves-

tigate the thermal equilibrium properties of germanium at constant pressure.

Germanium crystallizes in diamond structure at room temperature. Diamond structure

x

y
z

Figure 3.14: The 64 supercell diamond used for the NOTB calculation. The snapshot
was taken during the molecular dynamics run at T=300K and t = 10 ps. It shows the
tetrahedrally bounded nature of the structure of Ge at ambient temperatures.

can be seen as two inter-penetrating face centered cubic (fcc) structures with atom (0,0,0)

the position of the first fcc structure and atom (1/4, 1/4, 1/4) the origin for the second

one expressed in terms of the basis vector. Each atom is surrounded by four nearest

neighbors in a tetrahedral bonding configuration (coordination number is four) and the

nearest neighbor distance is equal to
√

3a/4, with a the lattice constant.

Constant pressure molecular dynamics simulation were performed at different tempera-
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tures using the Parrinello-Rahman approach [PR81]. The system was initially arranged

in a 216 (8 x 3 x 3 x 3) perfect diamond crystal (unit cell of diamond contains 8 atoms).

For each temperature, an equilibration run of 50 ps was performed. The time step used

to solve the Newton equations was 1 fs. These ingredients were sufficient to yield static

properties and adequate bond fluctuations were found at any finite temperature ranging

from 0K to 4000K.

For the description of the 0 K configuration we computed the cohesive energy which is

the energy required to break all the binding atoms into isolated atoms. The knowledge

of the volume dependence of the cohesive energy is important for determining the equi-

librium structure. Fig. 3.15 displays the cohesive energy per atom as function of the
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Figure 3.15: Equation of states for diamond structure of Ge. Curve obtained from a
fully relaxed zero temperature with the nonorthogonal tight binding scheme discussed in
section 2.4.1.

relative volume. The experimental equilibrium lattice constant (a0 = 5.65Å i.e. neighbor

distance r0 =
√

3
4
a0 = 2.45Å) is well reproduced.

In order to study the thermodynamic properties one needs to introduce temperature into

the system. This is not an obvious task because of the fluctuation of the temperature
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in micro-canonical ensemble. To maintain the system at a given temperature, we rescale

the velocities of atoms at regular time intervals (every 100 × timesteps). Physically,

rescaling the velocities at regular time intervals consist to add and remove energy from

the system. There is no physical justification of such method but it is an efficient tool

to avoid large variation of the temperature. According to the equipartition theorem, at

the thermal equilibrium state the kinetic energy per degree of freedom is 3/2kBT .

For the analysis of the structure at a given temperature, we computed the pair correla-

tion function g (r), the bond angles distribution g (θ) and the coordination number n.

The pair correlation function g (r) is the density of atoms surrounding a given particle

in the MD cell. It reads

g (r) =
V

N2
〈

N
∑

i=1

N
∑

j 6=i

δ [r − (Ri − Rj)]〉. (3.3)

Where V is the cell volume and N the number of atoms. This pair correlation function

is important for many reasons, it gives many informations about the structural nature of

the system at any temperature. The structure factor which is the Fourier transform of

this pair correlation function can be measured experimentally from neutron and X-ray

diffraction techniques. Fig. 3.16 shows the pair correlation function computed at different

lattice temperatures. The highest peaks observed in the different curves indicate the

average distances of the nearest neighbors. Simulation performed at T = 300K with a

fully relaxed system, shows an average neighbor distance rn = 2.45Å, which corresponds

to the experimental bond length of solid Ge. The other peaks with decreasing amplitudes

indicate the long-range order of the crystal and give the location of neighbors at longer

distances. However, the pair correlation function is in itself not sufficient to determine the

real nature of the crystal, since it gives only informations on the inter-atomic distances

and the number of neighbors of each atom. Therefore, to better describe the different

phases of germanium at finite temperatures we computed the bond angles distribution
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Figure 3.16: Calculated radial distribution functions. Each curve corresponds to a radial
distribution function calculated from an ensemble average of N = 1000 configurations
in the molecular dynamics trajectory at temperature T. One can clearly observed the
ordered nature of the crystal at low temperatures with well defined peaks of the pair
distribution function. The solid-to-liquid transition (melting) is observed at T ≈ 1500K.
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Figure 3.17: Plot showing the calculated bond angles distribution functions. Each curve
corresponds to a bond angles distribution function calculated from an ensemble average
of N = 1000 configurations in the molecular dynamics trajectory at temperature T.
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function corresponding to the same MD trajectories.

The bond angle is defined as the angle between two vectors joining a given atom in the

MD cell. For its determination, a cut off distance rcut was chosen. The value of rcut

is in between the first two peaks of the pair correlation function. Fig. 3.17 shows the

calculated bond angles distribution at different lattice temperatures. The sharp peaks

observed at θ = 109 degree give evidence of the tetrahedral nature of the crystal at low

temperatures. The results showed in Figs. 3.16 and 3.17 indicate strongly that the

stable bonding configuration of germanium at low temperatures is the diamond struc-

ture. From Figs. 3.16 and 3.17 one can also clearly see that the crystal melts at roughly

T = 1500K. This calculated melting temperature although different to the experimental

value (T exp
melting = 1211K), is an acceptable value compared to other simulation result

[Bor00]. We do also emphasize that the temperature of the system is statistically defined

and it is not an obvious task to extract its exact value since it fluctuates. This is due to

the fact that we have considered a micro-canonical ensemble where the potential energy

as well as the kinetic energy fluctuate while the total energy remains constant.

The melting properties can be also carried out via the determination of the coordination

number. Fig. 3.18 displays the calculated coordination number as function of lattice tem-

peratures. The coordination number is calculated by integrating the radial distribution

function from r = 0 to r = rcut = 3.2 Å, so that only the first neighbors are included. The

constant value at temperatures below T = 1500K confirms that the crystal remains in

diamond structure at low temperatures (n = 4 for bulk diamond), and the discontinuity

observed at T = 1500K indicates the disordered nature (liquid phase) of the structure

at temperature more than 1500K.

The combination of the three figures 3.16, 3.17 and 3.18 gives a direct analysis of the

atomic structure at each temperature. Note that for all the above mentioned results

the pressure was kept constant at low values and the variation of the MD cell size was

83



Chapter 3: Results

T ( K )

co
or

di
na

tio
n 

nu
m

be
r (

 n
/a

to
m

 )
 4.5

 5.5

 0  500  1000  1500  2000  2500  3000  3500  4000

 4.0

 5.0

 6.0

Figure 3.18: The coordination number as function of lattice temperatures. At low tem-
peratures its value is 4 as expected. The dramatic change at about T > 1500K indicates
the disordered nature of the crystal.

obtained using the standard Parrinello-Rahman approach [PR81] as described in [JG].

In summary, the calculated structural properties of germanium (pair correlation func-

tion, bond angles distribution, coordination number) are in satisfactory agreement with

experimental results. Further investigations have been done to determine the vibrational

properties of germanium.

3.4.2 Vibrational properties

Lattice vibrational properties of germanium are presented here. We computed the

phonon dispersion curves using the frozen phonon method as implemented in the FROPHO

code [Tog] in the framework of the nonorthogonal tight binding (NOTB) Hamiltonian

described in sec. 2.4.2. The frozen phonon method [KM, KM82] is a direct approach

in which a distorted crystal is treated as a crystal in new structure. The distortion

of the initial equilibrium structure implies significant increase of the inter-atomic forces

[KM82]. Thus, the dynamical matrix of the entire system can be built and the phonon
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frequencies are obtained from the diagonalization of this matrix (see appendix for more

details). The equilibrium phonon frequencies of Ge (electronic ground state Tel = 0) are
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Figure 3.19: The calculated phonon dispersion curves along high symmetry directions in
the Briouillin zone (lines) in comparison with experimental results (triangles) [NN70].

reported in Fig. 3.19. The transverse acoustic (TA) as well as the longitudinal acoustic

(LA) phonon frequencies agree well with the experimental results [NN70]. Fig. 3.20

shows the phonon dispersion curves and the corresponding density of states. Very strong

localization is observed for modes at the high- and low-frequency edges of the phonon

spectrum.

We do emphasize that our calculated optical phonons can not be exactly compared to

the experimental data [NN70] because of the limitation of the frozen phonon method to

describe such phonons [Tog].

From the above results it emerges that our nonorthogonal TB method yields a correct

description of bulk germanium. This makes us confident to investigate the dynamics

under laser excitation.
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Figure 3.20: The phonon dispersion curves along high symmetry directions in the
Briouillin zone and density of states of Ge calculated with our sp3 NOTB.

3.4.3 Laser induced coherent phonons

It has been experimentally observed that femtosecond laser pulse can generate coherent

phonons in germanium [PKKS92, SPK93, NHM+01]. In general coherent phonons in

solids can be excited by a laser pulse whose pulse duration is shorter than a phonon period

(typical transverse acoustic phonon in germanium ≈ 500fs at the ground state). The

focus of the present work is to analyze the coherent vibrations in the acoustic directions

of bulk germanium when excited by a femtosecond laser pulse. We assume that the

displacive excitation mechanism (DECP) [ZVC+91] is the generating mechanism of the

oscillations. We show that irradiation with moderate fluences (< 2 eV/atom) induces

oscillations of atoms along the acoustic directions. Germanium is indeed characterized by

a small and indirect band gap (Eg = 0.66 eV ). Therefore a minimum of absorbed energy

of Eg is required to excite electrons from the valence band to the conduction band.

In this study, the electron-hole pairs are generated with excitations pulse of 50 fs
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Figure 3.21: Motion along the transverse acoustic direction at low fluences, with pulse
duration of 50fs. The inset represents the Fourier transform of the oscillatory part.
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Figure 3.22: Time evolution of the [111] Bragg peak intensity of Ge at low fluences, with
pulse duration of 50fs.
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duration and absorbed energies per atom of 1.6 eV and 1.8 eV . These laser characteristics

are sufficient to drive coherent phonon oscillations in Ge [SPK93]. However, as previously

mentioned the only requirement for the pulse durations is that they do not exceed the

phonon period [MMHK04, IKU06], and for the fluences is that they must be below the

melting threshold value (≈ 2.0 eV ). As shown in many experiments the high symmetry

L point in the diamond structure is a natural reference point for analyzing the structural

changes.

In Fig. 3.21 we report the time dependence of the transverse acoustic (TA) phonon

coordinate at high symmetry L point in the first Briouillin zone. A coherent oscillation

with a frequency of ν ≈ 1.86 THz is clearly observed, matching exactly the acoustic-

phonon frequency in germanium corresponding to this low excitation. The inset of Fig.

3.21 shows the Fourier transform of the oscillatory part of the TA phonon coordinate

trajectory.

In Fig 3.22 the response of the [111] Bragg peak intensity to the laser excitation is shown.

A slight drop of the intensity (less than 20% of its initial value) followed by coherent

oscillations is observed. Same behavior has been also observed for pulses duration less

than 200 fs and absorbed energies ranging from 1.0 eV to 2.0 eV . Beyond 2.0 eV we

assist to a complete destruction of the crystal order which can lead to melting.

3.4.4 Ultrafast non-thermal melting

In this subsection we report the analysis of laser induced non-thermal melting of bulk

germanium. As described in sec. 2.1, the generation of hot electron-hole plasma by an

intense laser excitation may also yield a strong destabilization of the lattice structure.

As consequence of the lattice destabilization a transition from the covalent crystalline

state to a liquid state occurs. Such transition which takes place within few hundred

femtoseconds after the excitation (In comparison normal thermal transition occurs in
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Figure 3.23: Transverse acoustic (TA) phonons at the different high symmetry points in
the first Brillouin zone at different values of electronic temperature (Tel). Pure imaginary
frequencies are plotted as negative.The points in the main figure are experimental values
taken from [NN70].
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Figure 3.24: Transverse acoustic (TA) phonons frequencies at the high symmetry points
X and L in the first Brillouin zone vs electronic temperature (Tel). Pure imaginary
frequencies are plotted as negative.
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Figure 3.25: Computed time evolution of the radial distribution function after excitation
with a laser pulse of τ = 50 fs duration. The intensity of the pulse was chosen to reach
an absorbed energy of 2.6 eV/atom. The peak time of the gaussian pulse corresponds to
t = 0 ps.
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Figure 3.26: Computed time evolution of the bond angles distribution (see text) after
excitation with a laser pulse of τ = 50 fs duration. The intensity of the pulse was
chosen to reach an absorbed energy of 2.6 eV/atom. The peak time of the gaussian pulse
corresponds to t = 0 ps.
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much longer time scale) has been extensively investigated by means of ultrafast x-ray

diffractions [CTS+01, STBB+03, STBD+03, RTD+07] and ultrafast optical spectroscopy

[BBSS06, CBRZ08, HEH+08]. This electronically induced solid-liquid transition is re-

ferred to as ”ultrafast non-thermal melting” because the time scale required is much

shorter than that required for the thermalization of ions due to the deposited laser en-

ergy.

We performed two types of calculation in order to analyze the problem of ultrafast melt-

ing: We first determined the phonon spectrum of bulk Ge (Fig. 3.20) at the electronic

time ( ps )
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Figure 3.27: Time evolution of the [111] Bragg peak intensity of Ge after excitation with
a laser pulse of = 50fs duration, The energy absorbed from the laser was 2.6eV/atom.
The peak time of the gaussian pulse corresponds to t = 0 ps.

ground state. We performed the same type of calculation, but assuming the electrons to

be at a high temperature Tel in order to simulate the laser excitation. We were especially

interested in seeing how the TA modes are affected by the laser excitation. The results

are presented in Fig. 3.23 as well. One can clearly observe how the TA phonons undergo

a dramatic softening as the electronic temperature (i.e., the laser intensity) increases.

In fact the anharmonicity of the TA modes becomes more significant as the electronic

92



Chapter 3: Results

temperature increases, and it help to advance the structural transformations. Moreover,

for high enough values of Tel the TA frequencies become purely imaginary in the range

between the high symmetry points L, Γ, X and K of the Brillouin zone. This means that

the potential surface along these directions and for all the k-points in between becomes

repulsive. A particular case is shown in Fig. 3.24, in which the softening and the tran-

sition to a pure imaginary frequency is shown for the TA modes at the X and L points.

This is in agreement with the predictions of Stampfli and Bennemann for Silicon [SB94].

Although the laser induced softening of particular phonon branches gives us important

information about the first stages of the melting of Ge, it is necessary to perform MD

simulations in order to learn more about the time scale of the melting process. Therefore

we performed MD simulations using a supercell consisting of 64 atoms. To follow the

dynamics of melting of Ge we calculated the time evolution of the structural proper-

ties such as the bond angles distribution , the pair correlation function and also the [111]

Bragg peak intensity. For the determination of the bond angles a cut-off distance of 3.2 Å
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Figure 3.28: Time evolution of the [111] Bragg peak intensity of Ge after excitation with
a laser pulse of = 50fs duration. The energy absorbed from the laser is 3.8eV/atom.
The peak time of the gaussian pulse corresponds to t = 0 ps.
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was chosen, which is slightly beyond the position of the first peak of the pair correlation

function shown in Fig. 3.25. Different laser parameters (pulse duration, fluence, inten-

sity) have been used. As examples, we show in Figs. 3.26 and 3.25 the calculated bond

angles distribution and the pair correlation as a function of time before and after laser

excitation. The pulse duration was τ = 50 fs and the absorbed energy Eabs = 2.6 eV.

The initial temperature of the crystalline Ge supercell was T = 10 K. Before the action

of the laser pulse, the bond angles distribution shows a very sharp peak at 109 degrees,

which gives evidence of the tetrahedral nature of the bond distribution in the initial di-

amond crystal structure of the cold Ge. This is confirmed by the sharp peaks observed

in the pair distribution functions before the action of laser. As a consequence of laser

excitation, however, the bond distribution peak starts to broaden very rapidly. For a

time-delay of 400 fs the whole range of bond angles from 60 to 120 degrees can be found

with high probability, which means that the crystalline ordering starts to be destroyed.

According to our simulations the time scale for non-thermal melting is less than half a

picosecond. The disordered nature of the crystal can also be seen from the plot of the

correlation function at time t = 400 fs in Fig. 3.25.

In another side, we computed the time-dependent [111] Bragg peak intensity. In Figs.

3.27 and 3.28 we show the behavior of this peak in time for absorbed energies Eabs =

2.6 eV, Eabs = 3.0 eV and Eabs = 3.8 eV. On can observed from 3.27 a significant drop of

the intensity for both absorbed energies within 300 fs after the excitation. The drop is

followed by an exponential increase of the intensity due to the energy exchange between

electrons and ions. In fact the crystal tends to regain its initial ground state after that

the process of the energy absorption is complete. The electron phonon coupling time used

in the present work was τ = 2.8 ps. The analysis of the atomic structure in real space

(radial distribution function in fig. 3.25, bond angles distribution in fig. 3.26) shows that

the crystal melts when the Bragg peak intensity looses more than 25% of its initial value
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(i.e. Intensity < 0.75). However, at very high laser intensity (absorbed energy near the

ablation threshold which is ≈ 4.2 eV for pulse duration of 50 fs), the peak disappears

completely at time scale less than 500 fs giving evidence of the complete disordered na-

ture of the crystal. This is illustrated in Fig. 3.28. Experiments based on time-resolved

reflectivity measurements [BBSS06] have shown that the lattice destabilization can take

place in less than 500fs after the excitation depending on the pulse intensity, this is

confirmed by our calculations.
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Chapter 4

Summary and Outlook

In this thesis we have developed theoretical models to describe the ultrafast structural

response of different solids to an intense femtosecond laser excitation (intenstiy I ≈

1012 − 1013W/cm2), pulse duration τ < 500fs). Our approaches provide theoretical

frameworks for the treatment of non-equilibrium states in solids and the link between

microscopic and macroscopic quantities via the calculation of the time-dependent poten-

tial energy surface. We have studied the structural responses of cerium, bismuth and

germanium upon femtosecond laser excitation. The structural properties of samarium

sulfide has been also studied. Quantitative agreements have been found with the existing

experimental results and predictions have also been made.

The following results were obtained:

•We have used a hydrodynamic approach combined with an electronic model Hamil-

tonian to demonstrate that an ultrafast photo-induced transition involving large local

volume and electronic changes can be induced in cerium. In the range of electronic tem-

peratures we have considered in this work, the photoinduced transition occurs as rapid

expansion of the solid, initially in the high density α phase, due to the strong excitation

of the band electrons. This expansion is accompanied by electron localization.

Moreover, also the structural properties of samarium sulfide have been investigated. For

this, we have used the local density approximation + interatomic Coulomb interaction

(LDA+U) in the framework of the density functional theory. Our results showed that by

choosing an appropriate value of U, the structural properties of SmS can be well described.

We discussed the possibility of modeling the experimentally observed isostructural tran-

sition [KTM03] induced by femtosecond laser pulse.
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• Secondly, we have performed quantum dynamical simulations on time-dependent

potential energy surfaces calculated using DFT + LDA in order to elucidate the origin of

the experimentally observed [MMHK04] beatings of laser-induced coherent phonons in

bismuth. It emerged from our study that the behavior of the excited phonons approaches

the classical behavior rapidly when increasing the system size. This is a strong indication

that quantum effects do not play an important role in the generation of the observed

beatings, and that the observed phenomena is probably classical origin.

• Finally, we have performed molecular dynamics (MD) simulation on the basis of

a nonorthogonal tight binding (NOTB) Hamiltonian to study the dynamics of semicon-

ductor germanium upon femtosecond laser excitation. With our NOTB model combined

with MD simulation, we first described the equilibrium and thermal properties of ger-

manium and analyzed the different phases in the range of temperature going from 0K

to 4000K (well above the melting point Tmelt = 1210K). The different phases of germa-

nium as function of temperature were well described. Therefore being confident of the

efficiency of the method to describe inter-atomic forces in germanium, we studied the

non-thermal melting induced by femtosecond laser pulse under different perspectives.

The laser parameters such as fluences, pulses duration have been varied and their effects

on the structural phase transitions have been analysed. We were able to show that the

non-thermal melting of germanium can take place on sub-picosecond time scales as it

was observed experimentally [STBB+03, BBSS06] and is mainly caused by the softening

of the transverse acoustic modes. Moreover we also discussed the generation mechanisms

of coherent phonons in germanium.

This work is a continuation of the considerable efforts done so far to understand the

mechanism underlying the dynamics of solids under laser excitation. With our theoretical

models and simulation methods we were able to describe and give interpretations of most

structural phenomena which occur in solids under femtosecond laser excitation. However,
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there are some experimental features which were not taken into account in the proposed

models. For example, the spatial laser profile and the subsequent temperature profile

in the heated spot were not included. We assumed an uniform distribution of all these

quantities. This assumption has not unduly influenced the results that were compared

to experimental results.

The future of this work lies in developing more accurate models to include all the

physical aspects of the materials. The models must be valid for the whole range of time

from femtosecond to nanosecond time scale. An accurate time treatment of the carriers

mobility during and after the laser excitation should be considered. The environment of

the heated spot and the spatial energy profile must be involved in the calculation.

The unquestionable success of the density functional theory for the description of the

ground state properties of large material classes (semiconductors, insulators, metals, rare

earth) makes it the most efficient basis of any future electronic structure theory for a

precise description of the nonequlibrium states of materials.

It is clear that for reasons related to technologcal applications which result, study of laser-

matter interaction remains an active and exciting research subject for both theoreticians

and experimentalists.
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Appendix A

The Frozen phonon approach

We describe here the approach used to compute the phonon specrum of bulk Ge. First

of all the force constants

φ (li, l′j) = − Fβ (l′, j)

∆uα (l, i)
(A.1)

are calculated from Eq. 2.56. i. e. the ratio of the force acting on atom j of the l′−th unit

cell in the β direction to the displacement of atom i of the l−th unit cell in the α direction.

Note that α and β are independent directions and are arbitrary chosen. α, β = x, y, z

are directions along the cartesian axis (see fig. 3.14). In practise what is done is, an

atom is moved along a specific direction with a small amount of displacement ∆u from

its equilibrium position. Because of the lattice distortion due to this atomic displacement

the forces acting on atoms in the rest of the cell become more significants, thus the force

constants φ (li, l′j) are evaluated. The relaxed positions of the atoms and force constants

calculated from the Hamiltonian through the Helmann-Feynmann theorem Eq. 2.56 are

then used to build the dynamical matrix for the entire system. The phonon are derived

from the diagonalization of the Fourier transform of the real space dynamical matrix (see

below). In fact the diagonalization of the q-space dynamical matrix gives the vibrational

frequencies and there corresponding eigenvectors. At a given q-point in the reciprocal

space, an element of a dynamical matrix is calculated by a sum of the force constants in

the supercell multiplied by a phase factor.

M (q, ij) =
1

(mimj)
1

2

∑

l′
φ (li, l′j) exp [iq (R (l′, j)− R (0, i))] (A.2)

l′ runs through the unit cell inside the supercell. In our study we sampled the first

Brillouin zone of diamond structure of Ge with 512 q-points meshed along the high
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symmetry directions. The international crystallography table have been used for the

determination of the q points coordinate. The phonon frequencies can be obtained from

the diagonalization of the dynamical matrix M (q) described in eq. A.2 by solving the

following eigenvalues equation

ω2e (q, ν) = M (q) e (q, ν) , (A.3)

where ωe (q, ν) and e (q, ν) are respectively eigenvalues and eigenvectors (polarisation

vector). The eigenvalue ω may be positive (real frequency) or negative (pure imaginary

frequency) depending on the physical conditions (see text). The phonon density of states

(DOS) is given by

D (ω) =
1

Nq

∑

q,ν

g (ω − ω (q, ν)) , (A.4)

with Nq the number of q−points, ω the phonon frequency and g (ω) a broadening function

with Gaussian shape. Because of accuracy reasons of the frozen-phonon approximation,

The vibrational simulations results presented in this work were computed by averaging

in several supercells. However our calculations show similar results for supercell sizes

N=64, 216, 512, this means that our N=64 supercell is large enough to give reasonable

description of Ge bulk. The eigenvector e (q, ν) in Eq. A.4 corresponding to a particular

mode gives the relative amplitude and also the direction that each of atoms in the su-

percell moves under laser excitation of that mode. e (q, ν) is a polarization vector. For

the treatment of optical modes a non-analytical term must be added to the dynamical

matrix, this is due to the long range interaction when k → 0 in case of semiconductors.
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W. Kautek. Appl. Surf. Sci., 197-198:839, 2002.

[JHL+03] S.L. Johnson, P.A. Heimann, A.M. Lindenberg, H.O. Jeschke, M.E. Gar-

cia, Z. Chang, R.W. Lee, J.J. Rehr, and R.W. Falcone. Phys. Rev. Lett.,

91:157403, 2003.

[JLMC94] Jr. J. L. Mercer and M.Y. Chou. Phys. Rev. B, 49:8506, 1994.

[JNM70] A. Jayaraman, V. Narayanamurti, and R.G. Maines. Phys. Rev. Lett.,

25:1430, 1970.

[Joh74] B. Johansson. Philos. Mag., 30:469, 1974.

[KBW+94] I. Kwon, R. Biswas, C.Z. Wang, K.M. Ho, and C.M. Soukoulis. Phys.

Rev. B, 49:7242, 1994.

[KCL+88] W.H. Knox, D.S. Chemla, G. Livescu, J.E. Cunningham, and J.E. Henry.

Phys. Rev. Lett., 61:1290, 1988.
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