On Globally Deterministic CD-Systems of
Stateless R-Automata with Window Size One*

Benedek Nagy! and Friedrich Otto?

! Department of Computer Science, Faculty of Informatics
University of Debrecen
4032 Debrecen, Egyetem tér 1., Hungary
nbenedek@inf .unideb.hu

2 Fachbereich Elektrotechnik/Informatik
Universitat Kassel
34109 Kassel, Germany
otto@theory.informatik.uni-kassel.de

Abstract. It is known that cooperating distributed systems (CD-sys-
tems) of stateless deterministic restarting automata with window size 1
accept a class of semi-linear languages that properly includes all rational
trace languages. Although the component automata of such a CD-system
are all deterministic, the CD-system itself is not, as in each of its com-
putations, the initial component and the successor components are still
chosen nondeterministically. Here we study CD-systems of stateless de-
terministic restarting automata with window size 1 that are themselves
completely deterministic. In fact, we consider two such types of CD-
systems, the strictly deterministic systems and the globally deterministic
systems.

1 Introduction

Cooperating distributed systems (CD-systems) of restarting automata have been
defined in [8], and in [9, 10] various types of deterministic CD-systems of restart-
ing automata have been studied. As expected CD-systems are much more expres-
sive than their component automata themselves. On the other hand, stateless
restarting automata, that is, restarting automata with only a single state, have
been introduced and studied in [5, 6]. In the monotone case and in the determin-
istic case, they are just as expressive as the corresponding restarting automata

* This work was supported by grants from the Balassi Intézet Magyar Oszténdij Bi-
zottsdga (MOB) and the Deutsche Akademischer Austauschdienst (DAAD). The
first author was also supported by the TAMOP 4.2.1/B-09/1/KONV-2010-0007
project, which is implemented through the New Hungary Development Plan, co-
financed by the European Social Fund and the European Regional Development
Fund. The results of this report will be presented at the 5-th International Confer-
ence on Language and Automata Theory and Applications (LATA 2011) in Tarrag-
ona, Spain, May 2011. An extended abstract will appear in the proceedings of that
conference [14].

2 B. Nagy and F. Otto

with states, provided that auxiliary symbols are available. Without the latter,
however, stateless restarting automata are in general much less expressive than
their corresponding counterparts with states.

Here we continue our study of CD-systems of stateless deterministic restart-
ing automata that have a read/write window of size 1. The restarting automata
of this type have a severely restricted expressive power. However, by combining
several such automata into a CD-system we obtain a device that is suprizingly
expressive. In fact, in mode = 1 these systems accept all rational trace lan-
guages [11]. Further, the class of languages that are accepted by mode = 1
computations of CD-systems of stateless deterministic restarting automata with
window size 1 is closed under union, product, Kleene star, commutative closure,
and disjoint shuffle, but it is not closed under intersection with regular lan-
guages, complementation, or e-free morphisms. In addition, it has been shown
that for these CD-systems the emptiness problem and the finiteness problem
are easily solvable, while the regularity problem, the inclusion problem, and the
equivalence problem are undecidable in general [12].

A major feature of these CD-systems is the fact that, although all their com-
ponent automata are deterministic, the CD-system itself is not, as in each of its
computations, the initial component and the successor components are still cho-
sen nondeterministically. Actually, as pointed out in [13] these CD-systems cor-
respond to nondeterministic finite-state acceptors with translucent letters. Here
we study CD-systems of stateless deterministic restarting automata with window
size 1 that are themselves completely deterministic. Actually, following the devel-
opment in [9, 10] we introduce two different kinds of deterministic CD-systems:
the strictly deterministic systems and the globally deterministic systems.

In a strictly deterministic system, there is only a single initial component, and
each component automaton has only a single successor component. This ensures
that all computations of such a CD-system are completely deterministic, but at
the same time it severely restricts the expressive power of these systems as we
will see. In fact, these systems do not even accept all finite languages. We then
concentrate on globally deterministic systems, which also have a single initial
component only, but for which the successor component of an R(1)-automaton
is chosen based on the symbol that has been deleted in the current cycle. This
still guarantees that each computation of a globally deterministic CD-system
is completely deterministic, but it allows for much more flexibility. Accordingly,
globally deterministic CD-systems of R(1)-automata accept more languages than
the strictly deterministic systems, as they accept all regular languages. However,
they are not as expressive as the locally deterministic CD-systems of determin-
istic R(1)-automata considered in [11], as they do not accept all rational trace
languages. In fact, these globally deterministic CD-systems of R(1)-automata
just correspond to the deterministic finite-state acceptos with translucent letters
introduced in [13].

This paper is structured as follows. In Section 2 we give the definition of the
stateless deterministic R(1)-automaton and of the stl-det-local-CD-R(1)-system
from [11] and we restate some of the main results on these systems. In Sec-

Globally Deterministic CD-Systems of Stateless R(1)-Automata 3

tion 3 we define the strictly deterministic CD-systems of stateless deterministic
R(1)-automata, and we show that they have a rather weak expressive power. In
addition, we prove that the class of languages accepted by these systems is an
anti-AFL that is not even closed under reversal; however, this language class is
closed under complementation. Finally, in Section 4 we define the main notion of
this paper, the globally deterministic CD-system of stateless deterministic R(1)-
automata. We show that these systems accept all regular languages, we present a
normal form result for them, and we prove that they are not sufficiently expres-
sive to accept all rational trace languages. Thus, they are strictly less expressive
than the locally deterministic systems of [11]. Also we show that the class of
languages accepted by the globally deterministic CD-systems of stateless de-
terministic R(1)-automata is closed under complementation, but that it is not
closed under union, intersection with regular languages, product, Kleene star,
reversal, or commutation. Thus, with respect to closure properties these sys-
tems are much weaker than the locally deterministic systems. Then we consider
decision problems for stl-det-global-CD-R(1)-systems in Section 5. While the de-
cidability of the membership problem, the emptiness problem, and the finiteness
problem follows immediately from the corresponding results for stl-det-local-CD-
R(1)-systems, the closure under complementation implies that also the universe
problem is decidable for stl-det-global-CD-R(1)-systems. This is an important
constrast to the situation for stl-det-local-CD-R(1)-systems, where the regularity
problem, the inclusion problem, and the equivalence problem are shown to be
undecidable by a reduction from the universe problem. Here we present a reduc-
tion from the Post Correspondence Problem to show that the inclusion problem
is undecidable for stl-det-global-CD-R(1)-systems. The paper then closes with a
short summary and some open problems in Section 6.

2 CD-Systems of Stateless Deterministic R(1)-Automata

Stateless types of restarting automata were introduced in [5] (see also [7]). Here
we are only interested in the most restricted form of them, the stateless determin-
istic R-automaton of window size 1. A stateless deterministic R(1)-automaton is
a one-tape machine that is described by a 5-tuple M = (X,¢,$,1,0), where X
is a finite alphabet, the symbols ¢,$ ¢ X serve as markers for the left and right
border of the work space, respectively, the size of the read/write window is 1,
and § : YU {¢,$} — {MVR, Accept, e} is the (partial) transition function. There
are three types of transition steps: move-right steps (MVR), which shift the win-
dow one step to the right, combined rewrite/restart steps (denoted by €), which
delete the content a of the window, thereby shortening the tape, and place the
window over the left end of the tape, and accept steps (Accept), which cause the
automaton to halt and accept. Finally we use the notation §(a) = @) to express
the fact that the function § is undefined for the symbol a. Some additional re-
strictions apply in that the sentinels ¢ and $ must not be deleted, and that the
window must not move right on seeing the $-symbol.

4 B. Nagy and F. Otto

A configuration of M is described by a pair («, 3), where either a = ¢ (the
empty word) and 3 € {¢} - X*-{$} or « € {¢} - X* and 3 € X* - {$}; here af is
the current content of the tape, and it is understood that the window contains
the first symbol of 5. A restarting configuration is of the form (e, ¢w$), where
w € X*; to simplify the notation a restarting configuration (g, cw$) is usually
simply written as ¢w$. By by we denote the single-step computation relation
of M, and 3}, denotes the reflexive transitive closure of -j;.

The automaton M proceeds as follows. Starting from an initial configuration
¢w$, the window moves right until a configuration of the form (¢z, ay$) is reached
such that 6(a) = . Here w = zay and a € X. Now the latter configuration is
transformed into the restarting configuration ¢xy$. This sequence of computa-
tional steps, which is called a cycle, is expressed as w -4, zy. A computation of
M now consists of a finite sequence of cycles that is followed by a tail compu-
tation, which consists of a sequence of move-right operations possibly followed
by an accept step. An input word w € X* is accepted by M, if the computation
of M which starts with the initial configuration ¢w$ finishes by executing an
accept step. By L(M) we denote the language consisting of all words accepted
by M.

If M =(X,¢8,1,9) is a stateless deterministic R(1)-automaton, then we can
partition its alphabet X into four disjoint subalphabets:

(1) X1 ={aeX|d(a) =MVR}, (38.) Xs={aeX|da)=Accept},
(2) Xy ={aeX|da)=c}, 4)Xs={aecX|d(a)=0}.

It has been shown in [11] that the language L(M) can be characterized as

I* if §(¢) = Accept,
L(M) =< (Z1UXy)* Xy X%, if 6(¢) = MVR and §($) # Accept,
(ZLUXo)* - (X5 - Z*)U{e}), if §(¢) = MVR and §($) = Accept.

Cooperating distributed systems (CD-systems) of restarting automata were
introduced and studied in [8]. Here we study restricted variants of the CD-
systems of stateless deterministic R(1)-automata of [11].

A CD-system of stateless deterministic R(1)-automata consists of a finite
collection M = ((M;,0;)ic1, Ip) of stateless deterministic R(1)-automata M; =
(X,¢,8,1,8;) (¢ € I), successor relations o; C I (i € I), and a subset Iy C I of
initial indices. Here it is required that Iy # (), and that o; # 0 for all i € I. In
[11] it was required in addition that ¢ & o; for all ¢ € I, but this requirement
is easily met by using two isomorphic copies of each component automaton M;,
t € I. Therefore, we abondon it here in order to simplify the presentation.

As for CD-grammar systems (see, e.g., [1,2]) various modes of operation have
been introduced and studied for CD-systems of restarting automata, but here
we are only interested in mode = 1 computations. A computation of M in mode
= 1 on an input word w proceeds as follows. First an index iy € Iy is chosen
nondeterministically. Then the R-automaton M;, starts the computation with
the initial configuration ¢w$, and executes a single cycle. Thereafter an index

Globally Deterministic CD-Systems of Stateless R(1)-Automata 5

i1 € 0y, is chosen nondeterministically, and M;, continues the computation by
executing a single cycle. This continues until, for some [> 0, the automaton M;,
accepts. Such a computation will be denoted as

(10, w) Fig (i1, w1) Fiy -+ Fiy (i, wi) By, Accept.

Should at some stage the chosen automaton M;, be unable to execute a cycle or
to accept, then the computation fails. By L_;(M) we denote the language that
the system M accepts in mode = 1. It consists of all words w € X* that are
accepted by M in mode = 1 as described above. By £ (stl-det-local-CD-R(1))
we denote the class of languages that are accepted by mode = 1 computations of
stl-det-local-CD-R(1)-systems, that is, by CD-systems of stateless deterministic
R(1)-automata.

Ezample 1. Let M = (M, 0:)ier, lo), where X = {a,b,c}, I = {a,b,c}, Iy =
{a}, 0, = {b}, op = {c}, 0. = {a}, and M,, M,, and M. are the stateless
deterministic R(1)-automata that are given by the following transition functions:

M, : 8,(¢) = MVR, §,(a) =, 34(8) = Accept,
M, - (51;(63) = MVR, (51,((1) = MVR, 61,(0) = MVR, 5b(b) =g,
M, : 6.(¢) = MVR, §.(a) = MVR, §.(b) = MVR, d.(c) =e.

The automaton M, accepts the empty word. If the input is non-empty, then
M, deletes the first letter, provided it is an a; otherwise, it gets stuck, and so it
rejects. The automaton M, simply deletes the first occurrence of the letter b, and
M. simply deletes the first occurrence of the letter ¢. Thus, for each occurrence
of a, also an occurrence of b and an occurrence of ¢ is deleted. However, while M,
and M. can read across occurrences of the letter a, M, can read across neither
b nor c¢. Hence, L_1(M) is the language Lsp. = {w € {a,b,c}* | |w|a = |w|p =
|w]e > 0, and for each prefix u of w : |u|, > max{|ulp, |u|.} }. Obviously, this
language is not context-free, as Lape N (a* - 0* - ¢*) = {a™b"c" |n >0},

In [11] the following results were established. Here ¢ : £* — NI*I denotes
the Parikh mapping defined by ¥(w) = (|Jw|ay,- - -, [W]a,), if ¥ = {a1,...,an}.

Proposition 1. (a) Fach language L € L_;(stl-det-local-CD-R(1)) contains a
reqular sublanguage E such that (L) = ¢(FE) holds. In fact, a finite-state
acceptor for E can be constructed effectively from a stl-det-local-CD-R(1)-
system for L.

(b) L_i(stl-det-local-CD-R(1)) properly contains the class of all rational trace
languages, and therewith it contains all reqular languages.

It follows from Proposition 1 (a) that £—;(stl-det-local-CD-R(1)) only con-
tains languages that are semi-linear, that is, it only contains languages with semi-
linear Parikh image. As the deterministic linear language L = {a"b" | n > 0}

6 B. Nagy and F. Otto

does not contain a regular sublanguage that is letter-equivalent to the language
itself, we see from (a) that this language is not accepted by any stl-det-local-
CD-R(1)-system working in mode = 1. Together with Example 1 this implies
that the language class L£_1 (stl-det-local-CD-R(1)) is incomparable to the classes
DLIN, LIN, DCFL, and CFL with respect to inclusion. Here DLIN denotes the
class of deterministic linear languages, which is the class of languages that are
accepted by deterministic one-turn pushdown automata, LIN is the class of lin-
ear languages, and DCFL and CFL denote the classes of deterministic context-free
languages and context-free languages.

3 Strictly Deterministic CD-R(1)-Systems

Although all the component automata of a stl-det-local-CD-R(1)-system are de-
terministic, the system itself is not. Indeed the initial component with which to
begin a particular computation is chosen nondeterministically from the set I
of all initial components, and after each cycle the component for executing the
next cycle is chosen nondeterministically from among all the successors of the
previously active component. Observe that in deriving the main results of [11]
this feature is used repeatedly in essential ways. Here we introduce and study a
type of CD-system of stateless R(1)-automata that is completely deterministic.
The idea and the notation is taken from [9], where a corresponding notion was
introduced for CD-systems of general restarting automata.

A CD-system M = ((M;,0;)ier, Ip) of stateless deterministic R(1)-automata
is called strictly deterministic if |Iy] = 1 and |o;| = 1 for all ¢ € I. Then, for
each word w € X*, M has a unique computation that begins with the initial
configuration corresponding to input w. Thus, M is completely deterministic.
By L£_; (stl-det-strict-CD-R(1)) we denote the class of languages that are accepted
by strictly deterministic stateless CD-R(1)-systems working in mode = 1.

Observe that the CD-system in Example 1 is strictly deterministic. On the
other hand, we have the following negative result.

Lemma 1. The finite language Ly = {aaa,bb} is not accepted by any strictly
deterministic stateless CD-R(1)-system working in mode = 1.

Proof. Assume that M = ((M;,0;)icr, Ip) is a strictly deterministic stateless
CD-R(1)-system such that L_j(M) = Ly, let Iy = {io}, and let o;, = {i1}.
Obviously, d;,(¢) = MVR, and 6;,(a) = 0;,(b) = . Now (i, aaa) F, (i1,aa),
which leads to acceptance, while (i, baa) -5, (i1,aa) should lead to rejection,
which is a contradiction. Thus, L is not accepted by any strictly deterministic
stateless CD-R(1)-system working in mode = 1. ad

Thus, we obtain the following immediate consequences.

Corollary 1. The language class L—;(stl-det-strict-CD-R(1)) is incomparable
under inclusion to the language classes FIN of finite languages, REG of regu-
lar languages, and CFL of context-free languages. In particular, it follows that
the inclusion L_1(stl-det-strict-CD-R(1)) C L_4 (stl-det-local-CD-R(1)) is proper.

Globally Deterministic CD-Systems of Stateless R(1)-Automata 7

From Lemma 1 we immediately obtain several non-closure properties for the
class L£_(stl-det-strict-CD-R(1)). In fact, we can derive the following result.

Theorem 1. The language class L—1(stl-det-strict-CD-R(1)) is an anti-AFL,
that is, it s not closed under union, product, Kleene star, intersection with reg-
ular sets, e-free morphisms, and inverse morphisms.

Proof. The languages {aaa}, {bb}, and {a,b}* are all accepted by stl-det-strict-
CD-R(1)-systems. As {aaa} U {bb} = {aaa,bb} = {aaa,bb} N {a,b}*, Lemma 1
shows that this language class is neither closed under union nor under intersec-
tion with regular sets.

The languages {c,d} and {c®} are accepted by stl-det-strict-CD-R(1)-systems.
Let hy : {¢,d}* — {a,b}* be the morphism defined by ¢ — aaa and d +— bb,
and let hy : {a,b}* — {c}* be the morphism defined by a + ¢ and b
¢®. Then hy({c,d}) = {aaa,bb} = h5*({c®}), and hence, Lemma 1 shows that
this language class is neither closed under e-free morphisms nor under inverse
morphisms.

For showing non-closure under product we consider the languages {a}* and
{b}*, which are accepted by stl-det-strict-CD-R(1)-systems.

Claim 1. Ljoq = {a}* - {b}* & L1 (stl-det-strict-CD-R(1)).

Proof. Assume that M = ((M;,0;)icr,Io) is a strictly deterministic stateless
CD-R(1)-system such that L_q(M) = Lpyod, let Iy = {io}, and let o5, = {i1}.
Obviously, d;,(¢) = MVR, and as M must accept all powers of a, d;,(a) cannot
be undefined. Analogously, as M must accept all powers of b, d;,(b) cannot be
undefined, either. Further, d;,(a) # Accept # d;, (D).

If §;,(a) = MVR = §;,(b), then §;,(3) = Accept would follow, which would
imply that L_;(M) = {a, b}* holds, a contradiction.

If §;,(a) = MVR and é;,(b) = ¢, then the computation of M on input ab
would start with the cycle (ig,ab) -5, (i1,a), and the computation of M on
input ba would start with the cycle (ig,ba) FS, (i1,a). As ab € Lypoa, while
ba & Lyprod, this contradicts our assumption on L_j(M).

If §;,(a) = € and 0;,(b) = MVR, then the computation of M on input ab
would start with the cycle (ig,ab) F§, (¢1,b), and the computation of M on
input ba would start with the cycle (ig,ba) F4, (i1,b), which yields the same
contradiction.

Finally, if 6;,(a) = € = 0;,(b), then M could not distinguish between the
words aa and ba. As this covers all cases, we see that Lpoq is not accepted by
any stl-det-strict-CD-R(1)-system. a

For showing non-closure under Kleene star we consider the language L, =
{aab™ | n > 1}, which is accepted by a stl-det-strict-CD-R(1)-system.

Claim 2. Ly, = (Ls)* & L1 (stl-det-strict-CD-R(1)).

8 B. Nagy and F. Otto

Proof. Assume that M = ((M;,0;)icr, lo) is a strictly deterministic stateless
CD-R(1)-system such that L_;(M) = Lgtar, let Iy = {io}, and let o;, = {i1}.
In each word from Lga,, blocks consisting of the form a? alternate with blocks
from b*. Hence, M cannot simply erase a’s or b’s, as that would make it impos-
sible to verify that the given input has a structure of this form. It follows that
M must process the given input strictly from left to right. Hence, d;,(¢) = MVR,
0io(a) = &, ;,(b) is undefined, and 0;,($) = Accept. Also d;,(¢) = MVR,
0i, (a) = ¢, and 0;,(b) and d;, ($) are undefined. Let o;, = {iz}. Consider the
input word wy = aab™aab € Lg,,, where n is a large positive integer. Then the
computation of M on input w; begins as follows:

(10, aab™aab) F5, (i1, ab"aab) F5, (i2, b"aab).
As n is large, it will continue as follows:
(g, b"aab) 5, (4,6 "aab) Foy (4, 0" " aab)

for some component j. Thus, there is a cycle of components that follow one after
the other, and each of them erases an occurrence of the letter b. Now consider
the inputs wy = aab™ *aab and wz = aab” T*baab. Then

24r+s 2+r+s+1

(io, aab™ " *aab) 5y (j, aab) and (ig, aab” T baab) F5 (4, aab),

where o; = {j'}. Hence, we see that J,(a) = ¢ = d;/(a) must hold, and in fact
this follows for all components within this cycle. This, however, means that while
running through this cycle, an arbitrary word x € {a,b}® is deleted. Thus, we
see that Lty is not accepted by any stl-det-strict-CD-R(1)-system. O

This completes the proof that the language class £_(stl-det-strict-CD-R(1))
is an anti-AFL. a

If (M;,04)ier, Lo) is a stl-det-strict-CD-R(1)-system for a language L C X*,
then by turning undefined transition steps into Accept steps and vice versa, we
obtain a stl-det-strict-CD-R(1)-system for the language L¢ = X* \ L. This yields
our only closure property for stl-det-strict-CD-R(1)-systems.

Proposition 2. The language class L1 (stl-det-strict-CD-R(1)) is closed under
the operation of complementation.

We close this section with two additional non-closure properties.

Proposition 3. (a) The language class L_1 (stl-det-strict-CD-R(1)) is not closed
under the operation of reversal.

(b) The language class L—1(stl-det-strict-CD-R(1)) is not closed under the oper-
ation of taking the commutative closure.

Proof. (a) Let X = {a,b}, and let L, = {ab™ | n > 0}. Then L, is accepted
by the stl-det-strict-CD-R(1)-system M = ((Mj, 0i)ic{0,1}, {0}) that is defined as

Globally Deterministic CD-Systems of Stateless R(1)-Automata 9

follows:
My : 50((13) = MVR, M, (51((13) = MVR,
do(a) = ¢, d1(a) = 0,
do(b) =0, 51(b) = MVR,
5o($) =0, 51(8) = Accept,
oo ={1}, o ={1}

Now we consider the language L = {b"a |n >0}.
Claim. L ¢ £_, (stl-det-strict-CD-R(1)).
Proof. Assume that M’ = ((M/, 0})icr,{i0}) is a stl-det-strict-CD-R(1)-system

on X satisfying L_;(M’) = LE. Let us first analyze the starting component M
of M'.

If 0; (¢) = 0, then L_;(M’) = () would follow, and if d; (¢) = Accept, then
L_;(M’) = ¥* would follow. Thus, we see that §; (¢) = MVR holds.

Asa € LF and ba € LE, d;,(a) and &; (b) must both be defined. On the other
hand, aa ¢ LE and b ¢ LE, which means that d;, (a) # Accept # 6; (b).

Now assume that 6] (a) = MVR. As a € LE, this implies that &] ($) =
Accept. But then M’ would also accept the word aa ¢ L%. Hence, it follows
that o] (a) = €. Let o} = {i1}, that is, M is the unique successor component
of M| . Then (ig,a) =4, (i1,€) s, Accept, while (0,aa) FGp (i1,a), and the
configuration (i1, a) must not lead to acceptance. Hence, we see that 0; (¢) =
MVR, d; (8) = Accept, and J;, (a) # MVR.

Next assume that J; (b) = MVR. Then M’ executes the cycle (ig,ba) Fi
(i1,b), and as ba € L, the configuration (i, b) leads to acceptance. However, M’
also executes the cycle (ig, ab) F4 (i1,0), that is, it would also accept on input
ab & L. Hence, it follows that d;,(b) = e. However, this yields the computation

(i0,b) Fiyr (i1, €) F*Mle Accept,

which also contradicts our assumption above as b & L. As this covers all possible
cases, we conclude that L is not accepted by any stl-det-strict-CD-R(1)-system.
O

Thus, the language L, witnesses the fact that the language class
L1 (stl-det-strict-CD-R(1)) is not closed under the operation of reversal.

(b) Let X = {a,b,c}, and let
L.={a"|n>1}U{awecz |w € {a,b}", |w|y > 1+ |w|,, z€ X" }.

Claim 1. L, € £_;(stl-det-strict-CD-R(1)).

10 B. Nagy and F. Otto

Proof. Let M = ((M;, 04)ie{0,1,2,3},10}) be the stl-det-strict-CD-R(1)-system on
2 that is defined as follows:

Jo(€) = MVR, 81(¢) = MVR, d2(¢) = MVR, d5(¢) = MVR,
do(a) = ¢, d1(a) = MVR, da(a) =¢, d3(a) = MVR,
(So(b) = Q), (51(()) =g, (52(()) = MVR, (53(()) =g,
(50(6) =0, 51(6) =0, 52(0) = Accept, 63(8) =0,
5(%) =0, 51(8) = Accept, 62($) 83(%) =0,

Given a word w € X* as input, the initial component My checks that w is of
the form w = aw;. In the negative, it rejects; otherwise, the letter a is deleted
and component M; becomes active. If w; = a™ for some n > 0, then M; accepts;
otherwise it looks for the first occurrence of b that must only be preceded by a’s.
If there is no such occurrence, then M; rejects; otherwise, this occurrence of the
letter b is deleted and component My becomes active. Now the components Moy
and M3 delete occurrences of the letters a and b, respectively, until My discovers
an occurrence of ¢ that is only preceded by b’s, and then M accepts. If no such ¢
is encountered, or if there is no occurrence of b that is only preceded by a’s when
M3 is active, then the computation fails. It now follows that L_; (M) = L.. O

The commutative closure L. of the language L. is the language

Le={a"|n>1}U{we X | |w|,>1, |w>1, and |w|. >1}.

Claim 2. L. ¢ £, (stl-det-strict-CD-R(1)).

Proof. Assume that M’ = ((M/, 0})icr,{i0o}) is a stl-det-strict-CD-R(1)-system

on X satisfying L—1(M’) = L. Let us first analyze the starting component M;
of M.

As 0 # L. # X*, we see that d;,(¢) = MVR. Further, as a™ € L.foralln>1,
while ¢ ¢ L, we see that di,(a) = e. Let o} = {i1}.

As (ig,a) FSy (i1,¢) and as a € L, while ab & L., we conclude that 0, (¢) =
MVR and 6; ($) = Accept.

Let us return to 6; . As bac € L and cba € L., we see that d;,(b) and &;_(c)
must be defined. On the other hand, as b,c ¢ L., we see that 8, (b),0; (c) &
{Accept, e}, either, that is, d; (b)) = MVR = & (c). Thus, on input a"*', M’
executes the cycle (ig,a" ™) F4, (i1,a™), and on input w = wav, where u €
{b, c}*, M’ executes the cycle (ig, uav) =5 (i1, uv). Hence, we must now analyze
the behaviour of Mj .

As aa, abe, ach € L., we sce that d;,(a), 6; (b), and &; (c) are all defined. On
the other hand, as aab, ac,ab & L., we see that 0i, () # Accept for all z € X.
If 07, (b) = MVR, then (i1, b) }_7‘451 Accept, contradicting the fact that ab & L..
Analogously, if §; (c) = MVR, then (i1,¢) 3, Accept, contradicting the fact
1

that ac & L. Thus, we see that i, (b) = € = &; (c). Let o} = {iz}. Then M’

Globally Deterministic CD-Systems of Stateless R(1)-Automata 11

will execute the following sequence of cycles:
(40, abe) FSq (i1, be) Foy (i2,0),

and the latter configuration will lead to acceptance, as abc € L. But M’ will
also execute the following sequence of cycles:

(%0, acc) FSq (i1, cc) Foy (i2,0),

which means that giz, ¢) should not lead to acceptance, as acc ¢ L. Tt follows
that the language L. is not accepted by any stl-det-strict-CD-R(1)-system. O

Thus, we see that the language class £ (stl-det-strict-CD-R(1)) is not closed
under commutation. This completes the proof of Proposition 3. O

4 Globally Deterministic CD-R(1)-Systems

As the strictly deterministic CD-R(1)-systems do not even accept all finite lan-
guages, we now consider a less restricted variant of the CD-R(1)-systems.

Let ((M;, 04)icr, o) be a CD-system of stateless deterministic R(1)-automata
over X' such that |Iy| = 1. For each ¢ € I, let Zél) be the set of letters that are
deleted by the component automaton M;. Further, let ¢ : [J,o, ({7} x Z‘él)) -1
be a mapping that assigns to each pair (i,a) € {i} x Z‘éz) an element j € o;.
Then § is called a global successor function. It assigns a successor component
Jj € o, to the active component ¢ based on the letter a € ES) that is deleted by
M; in the current cycle. It follows that, for each input word w € X*, the system
M = (M;,04)icr, Lo,) has a unique computation that starts from the initial
configuration corresponding to input w, that is, M is completely deterministic.
Accordingly we call M a globally deterministic stateless CD-R(1)-system, and by
L1 (stl-det-global-CD-R(1)) we denote the class of languages that are accepted
by globally deterministic stateless CD-R(1)-systems working in mode = 1.

Obviously, each strictly deterministic stateless CD-R(1)-system is globally
deterministic. However, the globally deterministic stateless CD-R(1)-systems are
more expressive than the strictly deterministic ones.

Ezample 2. Let M = ((M;, 0;)ier, lo,9) be the following globally deterministic
CD-system of stateless deterministic R(1)-automata over X' = {a, b}:

I = {Oa 172737+}7 Iy = {0}7 00 = {1,3}, g1 = {2}, 02 = {+} =03, 04+ = {O}a
and My, My, Ms, Ms, and M, are the stateless deterministic R(1)-automata
that are given by the following transition functions:

My : dp(¢) = MVR, dp(a) =e, do(b) = ¢,
M : 61(¢) =MVR, 61(a) =e¢,
My : 65(¢) = MVR, d2(a) =¢,
My : 65(¢) = MVR, 05(b) =e,

My :64(¢) = MVR, 6.($) = Accept,

12 B. Nagy and F. Otto

and § is defined by §(0,a) = 1, 6(0,b) = 3, §(1,a) = 2, §(2,a) = +, §(3,b) =
+. Then it is easily seen that L—;(M) = {aaa,bb}, which is not accepted by
any strictly deterministic stateless CD-R(1)-system working in mode = 1 by
Lemma 1.

Thus, we have the following proper inclusion.

Corollary 2. £_;(stl-det-strict-CD-R(1)) € L£—;(stl-det-global-CD-R(1)).
In fact, we also have the following proper inclusion.

Lemma 2. REG C L_,(stl-det-global-CD-R(1)).

Proof. From Example 1 we see that £_;(stl-det-global-CD-R(1)) contains lan-
guages that are not even context-free. Thus, it remains to show that each regular
language is accepted by a globally deterministic stateless CD-R(1)-system work-
ing in mode = 1.

Let L C X* be aregular language, and let A = (Q, X, po, F, d4) be a complete
deterministic finite-state acceptor for L. From A we construct a stl-det-global-
CD-R(1)-system M = ((M;,0;)ier,Io,0) as follows:

- I=Q,Ip={po},os =1foralliel,
— for each ¢ € I, the automaton M; is defined through

5;(¢) = MVR,
di(a) =¢ forall a € X,
0;($) = Accept if i € F,

— and the successor function 0 is defined through
0(i,a) =04(i,a) foralliel and all a € X.
By induction on |w]| it is now easily shown that, for all w € X* and all i € I,
54 (po, w) = i iff (po, w) Foy (i,€).

Hence,
weL=L(A)iff §4(py,w) € F
iff (po, w) I—j\; (i,€) F3y, Accept
iffwe Lzl(M),

which shows that L_;(M) = L holds. Thus, each regular language is accepted
by a globally deterministic stateless CD-R(1)-system working in mode = 1. O

To simplify the discussions and proofs below we now introduce a normal form
for stl-det-global-CD-R(1)-systems.

Definition 1. A stl-det-global-CD-R(1)-system M = ((M;, 0;)icr, {i0},9) is in
normal form if it satisfies the following conditions:

Globally Deterministic CD-Systems of Stateless R(1)-Automata 13

1. Each component M, is reachable from the initial component M, , that is, for
each i € I, there exists an input w € X* such that (ig,w) 5, (i,2) holds for
some z € X*.

2. For each component M;, §;(¢) = MVR.

3. For each component M; and each letter a € X, §;(a) € {MVR, e}, that is,

SO =9 =35 foralliel

Thus, if M = ((M;,0:):cr1, {io},0) is in normal form, then each computation
of M ends with a component that accepts or rejects on the $-symbol.

Proposition 4.
From a stl-det-global-CD-R(1)-system M = ((M;,0:)ic1,{i0},9), a stl-det-global-
CD-R(1)-system M" = (M}, 0%)jecs,{jo},d") can be constructed such that M’ is

in normal form, and L_1(M') = L_1(M).

Proof. First of all those components of M that are not reachable from the initial
component M;, can simply be deleted. By inspecting the successor function &,
these components can actually be determined. So we can now assume that all
components of M are reachable from M.

Assume that §;(¢) = @ for some ¢ € I. Then each computation that reaches
the component M; gets stuck, and so it is rejecting. In particular, M; never
executes a rewrite step, and hence, the value of §(i,a) (a € X) is irrelevant.
Define a new component M_ as follows:

d_(¢) =MVR, 6_(a) = MVR for all a € X7, §_($) =0,

and replace the component M; by M_ in all successor sets and in the right-hand
side of the function §. Then the system obtained in this way still accepts the
same language as M.

If 6;(¢) = Accept for some i € I, then each computation that reaches the
component M; accepts immediately. In particular, M; never executes a rewrite
step, and hence, the value of (4, a) (¢ € X)) is irrelevant. Define a new component
M as follows:

d4(¢) =MVR, 6, (a) = MVR for all a € X, 6, ($) = Accept,

and replace the component M; by M in all successor sets and in the right-hand
side of the function §. Then the system obtained in this way still accepts the
same language as M. Thus, we may now assume that M satisfies conditions (1)
and (2) from Definition 1.

Assume that after these steps the system M has the form M =
((M;,04)ier, {io},d). We now define the system M’ = ((M/,0;)icr,{i0},0’) by
revising, for each ¢ € I, the component M; and the successor function ¢ as fol-
lows, where a € X', and M_ and My denote the components introduced above:

5/(¢) = MVR,

8'(a) = MVR, if §,(a) = MVR,
ol(a) = ¢, if §;(a) = ¢, and §'(i,a) = (i, a),

14 B. Nagy and F. Otto

§i(a) =€, iféd;(a) = Accept, and §'(i,a) = +,
0i(a) =¢, ifd;(a) =10, and §'(i,a) = —,
0L(8) = 6:(8).
Then M’ is obviously in normal form.
Let w € X*. Then the computation of M on input w has the following form:

(g, w) Fiy (i1, w1) FSy -+ Foy (i, wi) I—*Ml (i, (CUr, v,-8)),

and either ¢;_(a) = 0, where a denotes the first letter of v,.$, or §; (a) = Accept.
In the former case M rejects on input w, while in the latter case it accepts. From
the construction of M’ we immediately see that on input w, M’ will execute the
following computation:

(i07w) l_i\/tf (ilawl) I_s\/[' cee |_5\/1' (irawr) |_>'1<\/[1' (irv (¢UT,UT$))~

If v,$ = §, then M| will reject or accept just as M; , and if v, = ax, for some
letter a € X', then Mi’r will delete the letter a, and the component M_ or the
component My will become active. The former happens if d; (a) = (), and the
latter happens if d;, (a) = Accept. Hence, we see that M’ accepts on input w if
and only if M does, that is, L_;(M’) = L_1(M) holds. O

Using the above normal form result we can now establish the following in-
clusion rather easily.

Proposition 5. £_;(stl-det-global-CD-R(1)) C £_;(stl-det-local-CD-R(1)).

Proof. Let M = ((M;,0;)icr,{i0},0) be a stl-det-global-CD-R(1)-system on al-
phabet Y. By Proposition 4 we can assume that M is in normal form. From M
we now construct a stl-det-local-CD-R(1)-system M’ = ((M},07%) e, Jo) satisfy-
ing Lzl(MI) = Lzl(M)

Let
J={(iya)|iel,ac X Yu{(i,+)|iel},
let ‘
Jo = {(io,a) | a € 2§ } U {(io, +)},
and take
Ol ={0,0) | 5=0(i,a), be S¥} U{(8(i,a),+)} for all i € I and a € X",
02i7+) =J for all 7 € I.

Finally, we define the deterministic R(1)-automata M(;) and M(; ., as follows,
where i € I and a € Zéi):
M, o <0

(i,a (i,a

Globally Deterministic CD-Systems of Stateless R(1)-Automata 15

M, 1y 2 6(; 1y (¢) = MVR, o
5El)+)(b) =MVR forall be ZlA ,
8(;,4y(c) =0 for all ¢ € X,
o 1(8) = 1(5).

Let w = ajas---a, € X*, where n > 0 and aq,...,a, € X. Assume that the
computation of M on input w has the following form:

(i0, w) = (f0,uobovo) F4y (i1,uove) = (i1, urbrvr) FGq -+
}_L_/vl (imurflvrfl) = (ir;wr)a

and that starting with the configuration (i,,w,), the component automaton

M;, performs a tail computation. Thus, u; € Eiij)* and b; € Eém for all

7=0,1,...,r—1,and w, € Zyr)*. Then M’ can execute the following sequence
of cycles by guessing, in each step, what the next letter deleted by M will be:

((i0.bo), w) = ((io, bo), uobove) Fie ((i1,b1) uove) = ((in,b1), uabrvn) Fip
o B (G) ur—1vp—1) = (@, +), wr),

and starting from the configuration ((i,,4+),w,), M(’z +) executes a tail com-
putation that accepts if and only if the above tail computation of M;, accepts.
Thus, we conclude that L_; (M) C L_;(M’) holds.

Conversely, if M’ has an accepting computation on input w € X*, then it
follows easily from the above construction of M’ that M will also accept on
input w. Thus, we see that L_;(M’) = L_;(M), which completes the proof of
Proposition 5. O

This inclusion result raises two questions.

Question 1. Is £_; (stl-det-global-CD-R(1)) C £ (stl-det-local-CD-R(1)) a strict

inclusion?

Question 2. Are all rational trace language accepted by globally deterministic
stateless CD-R(1)-systems?

Recall from [3] or from [11] that a language L C X* is called a rational
trace language if there exists a reflexive and transitive binary relation D on X
(a dependency relation) such that L = (J,cp [w]p for some regular language R
on X. Here [w]p denotes the congruence class of w with respect to the congruence

=p = { (vabv,ubav) |u,v € Z*, a,be X, (a,b) € D }.

The following result anwers Question 2 (and therewith also Question 1) in the
negative.

Proposition 6. The rational trace language

Ly ={we{a,b}* | In>0:|wl, =n and |w|, € {n,2n}}

16 B. Nagy and F. Otto

is not accepted by any globally deterministic stateless CD-R(1)-system.

Proof. Let X = {a,b}, and let D be the dependency relation D = {(a, a), (b,b)}.
Then I := Ip = {(a,b), (b,a)} is the corresponding independence relation, and
the trace monoid Mp presented by (X, D) is the free commutative monoid gen-
erated by X. For the regular language Ry = (ab)* U (abb)* we see that

Uwer, [Wlp ={we X" |Fue R, :w=pu}
={weX*|In>0:w=p (ab)™ or w=p (abb)™}
={weX*|In>0:|w,=nand |wl €{n,2n}}
:LV7

which shows that L., is indeed a rational trace language.
Claim. Ly ¢ L£_;(stl-det-global-CD-R(1)).

Proof. Assume that M = ((M;,0;):cr1,1o,0) is a stl-det-global-CD-R(1)-system
such that L_y(M) = Ly. Without loss of generality we can assume that I =
{0,1,...,m — 1} and that I, = {0}.

Let n > 2m, and let w = a”b™ € Ly,. Then the computation of M on input
w is accepting, that is, it is of the form

(0,a™0") Fiy (i1, w1) Foy - Foy (i, wy) Fhy, Accept,

where M, accepts the tape contents ¢w,$. If |w,|, > 0 and |w,.|, > 0, then
M;, would also accept the tape contents w,.a™b®™ for any m > 0, and therewith
M would accept the input wa™b®" = a™b"a"b>". As this word is not contained
in Ly, this contradicts our assumption that L_;(M) = L. Hence, it follows
that |w,|, = 0 or |w,|p = 0. If w = a® for some s > 0, then it follows analogously
that with w, M would also accept the word wa™ for all m > 0. Hence, it would
accept the word wa™ = a™b™a™ ¢ Ly, which yields the same contradiction as
above. Thus, |w,|, = 0, and analogously it can be shown that |w,|, = 0, that is,
w, = €. Hence, in the above computation 2n cycles are executed that delete the
input w = a™b" symbol by symbol, and then M;, accepts the empty word.

As n > m, there exists an index ¢ € I and integers s,t,k, ¢ >0, m > s+t >0
and m > k + ¢ > 0, such that the above computation can be written as follows:

(0, a™™) Fiq (i, 756" Fiy (6,055) 15 (i €) Fhy, Accept.
Obviously, M will also execute the following shortened computation:
(0,a™F") Fooy (6, a™ 50" FS (i €) ., Accept,

that is, M accepts on input a” ~*b"~*. From our assumption that L—;(M) = Ly
we can therefore conclude that k = ¢, as n > 2m.

Now consider the computation of M on input a”b?”. As a"b*" € Ly, this
computation is accepting, that is, it has the following form:

(0,a™6*™) F (1,0 502" 70) Foy (4,570 R) 1 (i) Fhy., Accept.

Globally Deterministic CD-Systems of Stateless R(1)-Automata 17

But then M will also execute the following computation:
(0,a"F6?F) By (4,0 R R B (i) iy, Accept,

that is, it accepts on input a®*¥b?"~* & L.,. It follows that L_;(M) # Ly, that
is, Ly is not accepted by any globally deterministic stateless CD-R(1)-system
working in mode = 1. oo

As all rational trace languages are accepted by locally deterministic stateless
CD-R(1)-systems, we have the following consequence, which answers the first of
the above questions in the negative.

Corollary 3. £_(stl-det-global-CD-R(1)) C £ (stl-det-local-CD-R(1)).

The Dyck language D" is not a rational trace language, but it is ac-
cepted by the following strictly deterministic stateless CD-R(1)-system M =
((M;,04)ier,Io), where I = {a,b}, Iy = {a}, 0, = {b}, o, = {a}, and the state-
less R(1)-automata M, and M, are defined by the following transition functions:

M, : (1) 6a(¢) = MVR, M, : (4) 8,(¢) = MVR,
(2) d4(a) = &, (5) dp(a) = MVR,
(3) 6a(8) = Accept, (6) 6p(b) = €.

Thus, we have the following consequence.

Corollary 4. £_;(stl-det-strict-CD-R(1)) and L_(stl-det-global-CD-R(1)) are

incomparable to the class of rational trace languages with respect to inclusion.

Next we study the closure and non-closure properties of the language class
L1 (stl-det-global-CD-R(1)).

Proposition 7. (a) The language class L—1(stl-det-global-CD-R(1)) is closed
under complementation.

(b) The language class L_1(stl-det-global-CD-R(1)) is not closed under union,
intersection with regular sets, and alphabetic morphisms.

Proof. (a) Assume that the language L C X* is accepted by a stl-det-global-CD-
R(1)-system M = ((M;, 0;)ier, Lo,d) in normal form, and let M® be the system
that is obtained from M by constructing an automaton M from M; for all ¢ € I
as follows, where a € X

5¢(¢) = MVR,

d¢(a) = MVR, if §;(a) = MVR,
5¢(a) =g, if §;(a) =¢,
5¢($) = Accept, if 6;($) =0,

5 (%) =0, if 0;($) = Accept.

Thus, MY is obtained from M; by retaining the move-right and rewrite opera-
tions, and by interchanging Accept operations with undefined (that is, reject)

18 B. Nagy and F. Otto

operations. Hence, given a word w € X* as input, M and M€ will execute the ex-
act same sequence of cycles, and so they will eventually reach some corresponding
final components, say M; of M and M¢ of M, that perform tail computations,
and these components will both start with the same tape contents. From the
definition above we see that M; accepts the current tape contents if and only
if M rejects it, and conversely, M accepts if and only if M; rejects. It follows
that L_q (M) = X* N\ L=1(M) = X* \ L, which shows that the language class
L1 (stl-det-global-CD-R(1)) is closed under complementation.

(b) Obviously,
Ly ={we{a,b}" [|wla = [w]p > 0} U{w € {a,0}" | 2 [w|a = |w|p > 0}

As both languages { w € {a,b}* | |w|, = |w|p > 0} and {w € {a,b}* | 2 |w|, =
|wlp > 0} are accepted by stl-det-global-CD-R(1))-systems, while Ly is not by
Proposition 6, it follows that L£_;(stl-det-global-CD-R(1)) is not closed under
union.

The language {a™0" | n >0} = {w € {a,b}* | |w|e = |w|p > 0} N (a* - b*)
does not contain a regular sublanguage that is letter-equivalent to the language
itself. Hence, this language is not even accepted by any stl-det-local-CD-R(1)-
system by Proposition 1 (a). Thus, £_;(stl-det-global-CD-R(1)) is not closed
under intersection with regular sets.

Finally, let I' = {a, b, ¢,d}. Then the language

Ly ={we{a b} [|wla=|wlp 20} U{we{c,d}" [2wl = |wla >0}

is accepted by a stl-det-global-CD-R(1)-system. Define an alphabetic morphism
h : I'* — {a,b}* through ¢ — a, b — b, ¢ — a, and d — b. Then h(L{,)) =
Ly. It follows that L£_;(stl-det-global-CD-R(1)) is not closed under alphabetic
morphisms. O

Proposition 8. The language class L_1(stl-det-global-CD-R(1)) is not closed
under the operation of taking the commutative closure.

Proof. The language L, is the commutative closure of the regular language
(ab)* U (abb)*. Hence, Lemma 2 and Proposition 6 yield the stated non-closure
property. O

Recall from [11] that the language class £_(stl-det-local-CD-R(1)) is closed
under the operation of taking the commutative closure.

Finally we establish that the language class £_;(stl-det-global-CD-R(1)) is
not closed under the operations of product, Kleene star, and reversal.

Let L> be the following language on Xy = {a, b}:
Ly ={we Xy | |wa = |w =0}

For this language we have the following technical results.

Globally Deterministic CD-Systems of Stateless R(1)-Automata 19

Lemma 3. (a) L> € L_4(stl-det-global-CD-R(1)).
(b) L> is not accepted by any stl-det-global-CD-R(1)-system that first completely
erases the given input and that then accepts on the empty word.

Proof. (a) Let M = ((M;, 0;)icr, Io,) be the stl-det-global-CD-R(1)-system that
is defined as follows:

— I1={0,1,2}, Iy = {0}, op = {1,2}, 01 = {0} = 02,
— the automata My, M7, M> are defined through

5o(¢) = MVR, §1(¢) = MVR, 48,(¢) = MVR,
w>: 61(a) = MVR, d3(a) =¢,
do(b) = 1(0) =, 5,(b) = MVR,

b
00(3) = Accept, 01(8) = Accept,

— and the successor function 4 is defined through

5(0,a) =1, 8(0,b)=2 6(1,0)=0, 6(2,a)=0.

Given a word w € {a,b}* as input, the system M proceeds as follows. If w =
g, then the initial component M, performs a single move-right step and then
accepts; otherwise, it deletes the first symbol s of w. If s = a, then M; becomes
active. It deletes the leftmost occurrence of the symbol b, if there is any, otherwise
it simply accepts on reaching the $-symbol. If s = b, then Ms becomes active,
which deletes the leftmost occurrence of the symbol a, if there is any, otherwise
it gets stuck on reaching the $-symbol. In both cases, if a symbol is deleted, then
My becomes active again. In this case one occurrence of a and of b each has been
deleted. It now follows easily from this description that L—;(M) = L> holds,
that is, we have shown that L> € £_;(stl-det-global-CD-R(1)).

(b) Let M’ = ((M;,04)ier, {io},0) be a stl-det-global-CD-R(1)-system such that
each accepting computation of M’ is of the following form:

(io,UJ) 5\‘/1" (]7 6) '_?\47 Accepta
that is, during the first |w| many cycles the word w is completely erased, and then
the component M; reached accepts in two steps starting from the configuration
q(()])¢ -$. We claim that L_;(M’) # L>.

Assume that L> C L_;(M'). Let w = a", where n > |I|. Then w € L>,
and hence M’ accepts on input w. According to our assumption above, the
accepting computation of M’ on input w has the following form, where i; € T
forall j=1,...,n

(ig, w) = (ig,a™) Fy (i1,a" ") Fopr - Four (iny €) F?Win, Accept.
As n > |I|, there are indices r, s, 1 <r < s < n, such that i, = i.

Now we consider input z = a™b"™ € L>. As M’ is globally deterministic, the
computation of M’ on input z has the following form:

(i0, 2) Fopr (i1,a™710™) Fpr - For (insb™) Fogr (imo€) 3, Accept

20 B. Nagy and F. Otto

for some 4, € I. As i, = i,, M’ will perform the following computation on input
an75+rbn:

n—s

(i0, a™5F70") g (ir,a"50") = (is,a"50") FS,
FS (in, 0™) Fop (im,€) F3s,, Accept.

Since n — s + 7 < n — 1, we have " 570" ¢ L, which implies that L> is in
fact a proper subset of L_;(M). This completes the proof of (b). a

Lemma 3 implies in particular that for stl-det-global-CD-R(1)-systems we do
not have the strong normal form that we have for stl-det-local-CD-R(1)-systems
(see, [12]). Based on this technical lemma we can now prove the following non-
closure property.

Corollary 5. The language class L_1(stl-det-global-CD-R(1)) is not closed un-
der product.

Proof. We consider the product of the languages L> and L. = {c}, where ¢ ¢
{a,b} is a new letter. While L> € L_;(stl-det-global-CD-R(1)) by Lemma 3 (a),
L. is regular, and so it is accepted by a stl-det-global-CD-R(1)-system by
Lemma 2. We claim, however, that the product

Ly = Ly - Lo = {we | w € {a,0}", [wl, > [u], > 0}

is not accepted by any stl-det-global-CD-R(1)-system.
Assume to the contrary that M = ((M;, 0;)ier, {i0},9) is a stl-det-global-CD-
R(1)-system such that L_1 (M) = L,,.

Claim. For each word w = uc € Ly, the accepting computation of M on input
w is of the form (i, w) = (ig, uc) I—j‘:‘ (im,€) Foq (4, €) F3y Accept.

Proof. As M must verify that the given input w ends with the symbol ¢, one
of the components of M must read the symbol ¢ in the course of the accepting
computation of M on input w. Assume that M, is this particular component.
If 0;,, (c) is undefined, then M, would get stuck, and so the computation of M
on input w would not accept. Thus, J;, (c) is defined.

If 0;, (c) = MVR, then after executing the corresponding step, M; would
read the $-symbol. As the computation considered is accepting, this means that
M;, must accept at this point. But then M would also accept the word wc =
ucc & Ly, as the computation of M on input we would be exactly the same as
the one on input w. This, however, contradicts our assumption above. Hence, it
follows that ¢;, (c) = e.

Let j = 6(im,c) be the index of the corresponding successor component.
Then the accepting computation of M on input w has the following form:

(0, w) = (ig,uc) Fihq (im,ve) Fiy (4,v) Fi Accept.

Thus, it remains to show that v = e, that is, r = |u| must hold. Assume to the
contrary that v # e. Then ¢;, () = MVR for all letters = € {a,b} satisfying

Globally Deterministic CD-Systems of Stateless R(1)-Automata 21

|v] > 1. Let v = v'x, where x € {a,b}, and let z = w'cz be the word that is
obtained from w = uc by moving the last occurrence of the letter x to the right
end of the word. Then the computation of M on input z looks as follows:

(ig, 2) = (io, v cx) Fig (im,v"cx) Foy (4,0'2) = (4, v) Fiy Accept.

This, however, contradicts our assumption above, as z = v'cz ¢ L,,. Hence, it
follows that v = €, which proves the above claim. O

Note that, for each component M; that can only encounter an occurrence of
the symbol ¢ in a non-accepting computation, we can simply take d;(c) to be
undefined.

Now we modify the system M to obtain a stl-det-global-CD-R(1)-system M’
as follows. For each index i € I, if §;(c) is defined, that is, if §;(¢) = € according to
our observations above, then we remove this transition and take §;($) = Accept.
Then, for each word v € L, the computation of M’ on input u will parallel the
computation of M on input uc, and thus, we see from the claim above that it
will first erase w completely and then accept on reaching the empty word. Now
the proof of Lemma 3 (b) implies that Ls> C L—1(M/’), that is, there exists a
word u € {a,b}* \ L> such that M’ accepts on input u. But then M will accept
on input uc € Ly, which contradicts our assumption above. Hence, it follows
that L,, is not accepted by any stl-det-global-CD-R(1)-system. O

Consider the language LY. = {cw | w € {a,b}*, |w|, > |w|y, > 0}. From
Lemma 3 (a) we have a stl-det-global-CD-R(1)-system M = ((M;, 0;)icr,{0},0)
for accepting the language L>. Let M’ be obtained from M by introducing a new
initial component M;,; that is defined by the transition function d;,;(¢) = MVR,
dini(c) = €, and the successor set 0;,; = {0}, and by extending the successor
function ¢ by taking 6(ini,c) = 0. Then it is ecasily scen that L_i(M’) = LE.
holds. Thus, together with the fact that the language L,, is not accepted by
any stl-det-global-CD-R(1)-system this yields the following additional non-closure
result.

Corollary 6. The language class L£—1(stl-det-global-CD-R(1)) is not closed un-
der reversal.

Next we want to prove that the language class £_ (stl-det-global-CD-R(1)) is
not closed under Kleene plus. In preparation we introduce the following variant
of the language Ly,

Lprg = Ly - {a}" = {weca" | w € {a,b}", |w|s > |w|p >0, n>0}.
Lemma 4. L, € L_1(stl-det-global-CD-R(1)).

Proof. Let M = ((M;,0:)ic1,{0},9) be the stl-det-global-CD-R(1)-system that
is defined as follows:

— I = {071,2,3}, gg — {1,2,3}, g1 = {0,3}, 09 — 03 = {O},

22 B. Nagy and F. Otto

— the automata My, My, Ms, M3 are defined through

50(@) = MVR, 51((13) MVR 52(6}) = MVR, (53(@) = MVR,
do(a) = ¢, d1(a) = MVR, d2(a) = ¢, d3(a) = MVR,
do(b) = ¢, 51(b) =, d2(b) = MVR, d5($) = Accept,
50(0) =& 61(6) =5
— and the successor function ¢ is defined through

0(0,a) =1, 4&(1,b) =0, §(2,a)=0.

0(0,0) =2 4(1,¢) =3,

5(0,¢) =3

The transition function d together with the component M3 ensure that each
word accepted contains a single occurrence of the letter ¢, that is, it is of the form
w = ucv for some u,v € {a,b}*. Now the components My, My, and M, together
verify that |ul, > |ul, > 0 holds, that is, that v € L, and the component M;
simply accepts if v € {a}*. Hence, it follows that L_1 (M) = Lpy. O

While L., € L—1(stl-det-global-CD-R(1)), we have the following negative
result on the language Ly = (Lprq)"

Lemma 5. Ly = (Lpy,)" & L_1(stl-det-global-CD-R(1)).
Proof. Let M = ((M;,0;):icr1, 1o, 0) be a stl-det-global-CD-R(1)-system satisfying

Ly Lyra vea™ | u,v € {a, b}, |ulg > |ulp >0, |v]e > |v]p >0, m >0}

={uc = 2
C L=y (M).
Claim. L_1(M) ¢ L.

Proof. Assume to the contrary that Ly, - Lyrq € L=1(M) C L; holds. From
this assumption we will derive a contradiction.

We consider the computations of M on inputs of the form w =
a™ b ca™ b ¢, where ny,na,ng,ng > |I] are large positive integers. If n; > no
and n3 > ng, then w € Ly, - Lyyrq, and we see from our assumption above that
the corresponding computation is accepting, that is, it is of the form

(g, w) Foyq (i1, w1) Fq -+ Fou (i, wie) kaf,k Accept,

where M;, is the initial component of M, and the last part (i, wy) l—}‘mk Accept
is an accepting tail computation. If k = 0, that is, if already the initial component
performs an accepting tail computation, then together with w, M would also
accept the word z = a"10"™2cb™ ¢ L. Hence, we see that k£ > 1, and that M;,
executes a delete operation on w. Also, as each letter = € {a, b, ¢} occurs as the
first letter of some word from L,, - Ly, we see that d;,(z) € {MVR, ¢} for all
x € {a,b,c}.

‘We now consider several cases:

Globally Deterministic CD-Systems of Stateless R(1)-Automata 23

— If 6;,(a) = MVR and §;,(c) = €, then, for each n > 1, M would perform the
cycles (ig,a"ca™ " e) FS, (4,a®" 10" e) and (ig, a™Ttea™b") HS,
(j,a®" 1"t e) for some j € 1. As aca™ 0" e € Ly, - Lyra, we see that
the computation starting from the restarting configuration (j, "7 +1c)
is accepting. This, however, implies that also the word a"*lca™b"*lc & L,
is accepted.

— If §;,(a) = MVR = §;,(c) and 0;,(b) = e, then, for each n > 1, M would
perform the cycles (ig,a"bca™b"c) F54 (j, a"ca™b™c) and (ig, a™cba™b™c) 5,
(4,a™ca™b"c) for some j € I. As a™bcab™c € Ly, - Lprq, we see that the com-
putation starting from the restarting configuration (j, a™ca™b"c) is accepting.
This, however, implies that also the word a"cba™bc € L is accepted.

It follows that d;,(a) = . Thus, the accepting computation of M on an input
of the form a"b™cve, n > m > |I]| and v € L>, begins with a finite sequence of
cycles in each of which the first occurrence of the letter a is deleted, that is, we
can factor it as

(i, a™b™cve) FSy (Gry a0 eve) Foy (Grats wegn) iy Accept,

where the component j,. will not erase an occurrence of the letter a, that is,
0;,(a) # €. Observe that we have r < |I|, since otherwise some component would
occur repeatedly in this initial sequence of cycles, and we could use pumping to
accept a word of the form a™~*b"cvc ¢ L, for some integer s satisfying 0 < s <n
together with the word a™b"cvc € Ly, - Lyrq. If 05, (¢) = Accept, then M would
accept every word that has prefix a”. Hence, we can conclude that ¢, (¢) = MVR,
d;,.(a) = MVR, and that 4;, (b) € {MVR,¢}.

We now analyse the behaviour of M _ in detail by considering several cases:

— If §;,(b) = MVR, then 4, (c) must be defined. If §; (c) = Accept, then M
would accept the word a™b*"cve € L. 1f §; (¢) = MVR, then M;_ would only
perform tail computations. Hence, ;. ($) = Accept, as we are considering
an accepting computation. This, however, would again imply that M would
accept on input a"b*"cve € L . Finally, if d;,(c) = e, then w, 1 = a™ "b™ve
would follow, implying that

(i, a™b™cve) Foy (G, a0 cve) Foy (g1, a" O™ 0e) Fiy Accept

is an accepting computation of M. For m = 2n this implies that M accepts
on input a"b*"cve ¢ L.

— If 6;,(b) = € and 4, (c) is undefined, then the computation of M on input
a’cve € Ly, - Lyrq would get stuck, as (ig, a”cve) I—‘j\:, (jr,a™ "cve) holds.
Thus, §;,(c) must be defined. If §;, (c) = Accept, then M would accept on
input a"cb™c & Ly. If §; (¢) = MVR, then M would perform the computa-
tions

(io, a™bea™b"c) Foy (jr, a™ "bea™b™e) Foy (Grar, a™ " ca™b"c)

24

B. Nagy and F. Otto

and
(io, a™cba™b"c) Foy (jr, a™ " cba™b™c) Foy (Grr1, a™ " ca™b"c).

As a™bca"b"c € Ly, - Lpra, (jry1,a" "ca™b™c) 3, Accept, which implies
that also the word a™cba"b"c ¢ L is accepted by M. Finally, if §; (c) = ¢,
then M would perform the computations

(ig, a"ca™b"c) FSy (Jr,a™ "ca™™c) Foy (Jri1,a®" D)

and
(ig, a*"cb"™c) Foy (Girr a® T cb™c) Foy (Grpr, a7 70").

As a"ca™b"c € Ly, - Lprg, (jr+17a2”_rb"c) i Accept, which implies that
also the word a®"cb"c & L, is accepted by M.

As this covers all cases we conclude that indeed L_y(M) € L holds. O

Since Ly, - Lprq € L4, the above claim shows that the language L. is not

accepted by any stl-det-global-CD-R(1)-system. O

From this lemma and its proof we now obtain the following non-closure re-

sults.

Corollary 7. The language class L_1(stl-det-global-CD-R(1)) is neither closed
under Kleene plus nor under Kleene star.

The following table summarizes the closure and non-closure properties of the

language classes that are accepted by the various types of stateless CD-R(1)-

systems:
Type of CD-System Operations
UlNgeal ¢ || *|h|ht|com| B
stl-det-local-CD-R(1) |+| — | — |+|+|—| ? + | ?
stl-det-global-CD-R(1) | —| — |+ |—-|—|—| ? - | -
stl-det-strict-CD-R(1) |—| — |+ |-|—|—-| — | — | —

Here the operations are abbreviated as follows:

U denotes the operation of union,

- Nreg denotes the intersection with a regular language,

denotes the operation of complementation,

denotes the product operation,

denotes the Kleene star,

h denotes the application of an alphabetic morphism,

- h™! denotes the operation of taking the preimage with respect to a mor-

phism,

- com denotes the operation of taking the commutative closure,

denotes the operation of taking the reversal,

Globally Deterministic CD-Systems of Stateless R(1)-Automata 25

and “4” denotes the fact that the corresponding class is closed under the given
operation, “—” denotes the fact that it is not closed, and “?” indicates that the
status of this property is still open.

Let X be a finite alphabet, and let X = {@| a € X'} be a copy of X such that
YnX=0.By :X*— " we denote the morphism that replaces each letter
a € X by its copy a. Then the language Ly := {sh(w,w) | w € X* }, where
sh(w,w) denotes the shuffle of the two words w and w, is called the twin shuffle
language over X. Further, let ProT (Y UX)* — Xz denote the projection from
(X UX)* onto X% for a subalphabet Y7 of X. As shown by the following classical
result, the twin shuffle languages are quite expressive

Proposition 9. [15] For each recursively enumerable language L C X7, there
exist an alphabet X containing X and a reqular language R C (X U X)* such
that L = Pr*7(Lx N R).

Observe that one can easily design a stl-det-global-CD-R(1)-system M 5, such
that L—1(Myx) = Lyx. Hence, we obtain the following consequence.

Corollary 8. For each recursively enumerable language L C X7, there are an
alphabet X containing X'r, a language Ly € L (stl-det-global-CD-R(1)), and a
regular language R C (X U X)* such that L = Pr™" (L; N R).

Thus, the closure of the language class L£_;(stl-det-global-CD-R(1)) under
intersection with regular sets and projections already yields all recursively enu-
merable languages.

5 Decision Problems

Finally we take a look at some standard decision problems for stl-det-global-CD-
R(1)-systems. As these systems are a special type of stl-det-local-CD-R(1)-sys-
tems, we inherit the following decidability results from [12].

Corollary 9. The membership problem, the emptiness problem, and the finite-
ness problem are effectively decidable for stl-det-global-CD-R(1)-systems.

By Proposition 7 (a) the language class £_;(stl-det-global-CD-R(1)) is (ef-
fectively) closed under the operation of complementation. Thus, we obtain the
following from the decidability of the emptiness problem.

Corollary 10. The universe problem is effectively decidable for stl-det-global-
CD-R(1)-systems, that is, it is decidable whether L_i(M) = X* for a given
stl-det-global-CD-R(1)-system M on X.

It remains to study the regularity, the inclusion and the equivalence problems
for stl-det-global-CD-R(1)-systems. The proof for the corresponding undecidabil-
ity results for stl-det-local-CD-R(1)-systems in [12] rests on the fact that the uni-
verse problem is undecidable for stl-det-local-CD-R(1)-systems. Thus, this proof

26 B. Nagy and F. Otto

does not carry over to stl-det-global-CD-R(1)-systems because of Corollary 10.
Accordingly we have to find a new approach for establishing the corresponding
undecidability results for stl-det-global-CD-R(1)-systems.

Below we begin this investigation by studying the following variant of the
intersection emptiness problem:
Intersection With Regular Language Emptiness Problem:
Instance : A stl-det-global-CD-R(1)-system M and a finite-state acceptor A.
Question : Does L_;(M) N L(A) = 0 hold?

As all regular languages are accepted by stl-det-global-CD-R(1)-systems

(Lemma 2), this is indeed a special variant of the intersection emptiness problem
for stl-det-global-CD-R(1)-systems.

Theorem 2. The Intersection With Regular Language Emptiness Problem is
undecidable for stl-det-global-CD-R(1)-systems.

Proof. We will establish the undecidability of the Intersection With Regular
Language Emptiness Problem for stl-det-global-CD-R(1)-systems by a reduction
from the Post Correspondence Problem (PCP). This problem can be formulated
as follows (see, e.g., [4]):

Instance : Two morphisms f,g: X* — A*.
Question : Is there a non-empty word w € XF such that f(w) = g(w)?

It is well-known that the PCP is undecidable in general. Let f,g: X* — A*
be two morphisms, where we can assume without loss of generality that the
two alphabets Y and A are disjoint. With each of the morphisms f and g we
now associate a language; however, the languages L associated with f and L,
associated with g are defined differently:

Ly = {sh(w, f(w)) |we Xt} -#, and
Ly ={ag(a) |a€ X} #,

where sh(u, v) denotes the shuffle of u and v, and # is a new symbol. Obviously,
the language L, is regular, and from g we can easily construct a finite-state
acceptor A, for this language.

Claim 1. L; € £_4(stl-det-global-CD-R(1)).

Proof. Let My = ((M;,0i)icr,{0},0) be the stl-det-global-CD-R(1)-system on
I' = YU AU {#} that is defined as follows:

- I'={(f(a),i)|ac X, 1 <i<|f(a)|} and I ={0,1,+} U T,
— the successor sets are defined through

oo =1"U{l},
g1 = I/ U{1,+},
O+ = {+}7

O(fa),i) = 1(f(a),i+ 1)} foralla € ¥ and all 1 <i < |f(a)l,
O(fa)i) = 11} for all @ € X and i = |f(a)|,

Globally Deterministic CD-Systems of Stateless R(1)-Automata 27

— the automata My, M;, and M, are defined through

Jo(¢) = MVR,

dola) =¢ for all @ € X,
do(b) =MVR forallbe A,
50(#) = ®7

30($) = 0,

51(€) = MVR,

01(a) =¢ for all a € X,
01(b) =MVR forallbe A,
0(#) =e¢,

51(%) =0,

54 (¢) = MVR,

5i(c)=10 forallce X UAU{+},
0+ (8) = Accept,

— for all @ € X and all 1 < i < |f(a)], the automaton Ms(,)) is defined as
follows, where f(a) =by...by, m>1,b1...,b, € A,

(f(a)yi (a) = MVR for all a € X,
(f(a).n)(bi) =€,
(f(a),i)() =0 for all b € AN {bl},
(. (#) =0,
(f(a),i) ($) = @7
— and the successor function 4 is defined through
5(0,a) =1 for all @ € X satistying f(a) = ¢,
5(0,a) = (f(a),1) for all a € X satisfying f(a) # ¢,
§(l,a) =1 for all a € X satisfying f(a) = ¢,
5(1,a) = (f(a),1) for all @ € X satistying f(a) # ¢,
O0(1,#) =+,
((f(a),d),b;) = (f(a),i+ 1), if f(a) =b1...by and 1 < i < m =|f(a)l,
((f(a),d),b;) =1, if fla)=0b1...b, and 1 <i=m =|f(a)|.
Then it is quite easily verified that L—; (M) = Ly holds. O
There exists a non-empty word w € X7T such that f(w) = g(w) holds, if
and only if there exists a word w = a, a4, ...a;,, € Xt (r > 1, a;,,...,a;, €
X)) such that a;, g(a;,)ai,g(a,) ... ai,g(a;.) € sh(a;, aiy ... a;,, f(ai,ai, ... a;.)),
if and only if there exists a word w = aja;,...a;, € X7 such that

a;, 9(ai,)aig(as,) ... a;,.g(a;.) - # € Ly N Ly, if and only if Ly N Ly # 0.

As My and Ay are effectively constructible from the given morphisms f
and g, and as the PCP is undecidable in general, the above equivalence implies
that the Intersection With Regular Language Emptiness Problem is undecidable
for stl-det-global-CD-R(1)-systems. O

28 B. Nagy and F. Otto

Based on this undecidability result we can now prove that the following
variants of the inclusion problem are undecidable, too.

Corollary 11. The following inclusion problems are undecidable in general:
(1) Inclusion In Regular Language Problem:

Instance : A stl-det-global-CD-R(1)-system M and a finite-state acceptor A.
Question : Does L_1(M) C L(A) hold?

(2) Containing Regular Language Problem:

Instance : A stl-det-global-CD-R(1)-system M and a finite-state acceptor A.
Question : Does L(A) C L_1(M) hold?

Proof. Let M be a stl-det-global-CD-R(1)-system on X, and let A be a finite-
state acceptor on X. From M we can construct a stl-det-global-CD-R(1)-system
Me for the language X* \ L_; (M), and from A we can construct a finite-state
acceptor A€ for the language X* \ L(A). Now

L_i(M)NL(A) =0 iff Ly(M) C L(A°),

and

Lo1(M) N L(A) = 0 iff L(A) C L_y(M°).

Thus, it follows from Theorem 2 that the above inclusion problems are
undecidable. O

As each regular language is accepted by some stl-det-global-CD-R(1)-system,
Corollary 11 yields the following undecidablility result.

Corollary 12. The inclusion problem is undecidable for stl-det-global-CD-R(1)-
systems.

6 Concluding Remarks

We have studied two deterministic variants of the stl-det-local-CD-R(1)-systems:
the stl-det-strict-CD-R(1)-systems and the stl-det-global-CD-R(1)-systems. The
former type of system is quite weak, as it does not even accept all finite languages,
while the latter type accepts all regular languages; however, it does not accept
all rational trace languages. Thus, the three types of CD-systems of stateless
deterministic R(1)-automata give a proper 3-level hierarchy.

We have investigated the closure properties of the language classes defined
by the two types of CD-systems introduced in this paper. As it turned out, both
classes are closed under complementation, but apart from that we could only
establish non-closure properties. However, it remains open whether the language
class L£_(stl-det-global-CD-R(1)) is closed under inverse morphisms.

Finally we have also considered decision problems for stl-det-global-CD-R(1)-
systems. In contrast to the situation for stl-det-local-CD-R(1)-systems, the uni-
verse problem is decidable for stl-det-global-CD-R(1)-systems. On the other hand,

Globally Deterministic CD-Systems of Stateless R(1)-Automata 29

we could show that the inclusion problem is undecidable, but it remains open
whether the regularity problem or the equivalence problem are decidable for
these systems.

References

1.

10.

11.

12.

13.

14.

15.

E. Csuhaj-Varju, J. Dassow, J. Kelemen, and G. Paun. Grammar Systems. A
Grammatical Approach to Distribution and Cooperation, Gordon and Breach, Lon-
don, 1994.

. J. Dassow, G. Paun, and G. Rozenberg. Grammar systems. In: G. Rozenberg and

A. Salomaa (eds.), Handbook of Formal Languages, Vol. 2, Springer, Berlin, 1997,
155-213.

V. Diekert and G. Rozenberg (eds.), The Book of Traces, World Scientific, Singa-
pore, 1995.

T. Harju and J. Karhuméki. Morphisms. In: G. Rozenberg and A. Salomaa (eds.),
Handbook of Formal Languages, Vol. 1, Springer, Berlin, 1997, 439-510.

M. Kutrib, H. Messerschmidt, and F. Otto. On stateless two-pushdown automata
and restarting automata. In: E. Csuhaj-Varju and Z. Bsik (eds.), Automata and
Formal Languages, AFL 2008, Proc., Computer and Automation Research Insti-
tute, Hungarian Academy of Sciences, 2008, 257—-268.

M. Kutrib, H. Messerschmidt, and F. Otto. On stateless deterministic restarting
automata. In: M. Nielsen, A. Kucera, P.B. Miltersen, C. Palamidessi, P. Tuma,
and F. Valencia (eds.), SOFSEM 2009: Theory and Practice of Computer Science,
Proc., Lect. Notes Comput. Sci. 5404, Springer, Berlin, 2009, 353—-364.

M. Kutrib, H. Messerschmidt and F. Otto. On stateless two-pushdown automata
and restarting automata. Int. J. Found. Comput. Sci. 21 (2010) 781-798.

H. Messerschmidt and F. Otto. Cooperating distributed systems of restarting au-
tomata. Int. J. Found. Comput. Sci. 18 (2007) 1333-1342.

. H. Messerschmidt and F. Otto. Strictly deterministic CD-systems of restarting

automata. In: E. Csuhaj-Varji and Z. Esik (eds.), FCT 2007, Proc., Lect. Notes
Comput. Sci. 4639, Springer, Berlin, 2007, 424-434.

H. Messerschmidt and F. Otto. On deterministic CD-systems of restarting auto-
mata. Int. J. Found. Comput. Sci. 20 (2009) 185-209.

B. Nagy and F. Otto. CD-systems of stateless deterministic R(1)-automata accept
all rational trace languages. In: A.H. Dediu, H. Fernau, and C. Martin-Vide (eds.),
LATA 2010, Proc., Lect. Notes Comput. Sci. 6031, Springer, Berlin, 2010, 463-474.
B. Nagy and F. Otto. On CD-systems of stateless deterministic R-automata
with window size one. Kasseler Informatikschriften, 2/2010. Fachbereich Elek-
trotechnik /Informatik, Universitdt Kassel, 2010. https://kobra.bibliothek.uni-
kassel.de/handle/urn:nbn:de:hebis:34-2010042732682.

B. Nagy and F. Otto. Finite-state acceptors with translucent letters. In: G. Bel-
Enguix, V. Dahl, and A.O. De La Puente (eds.), BILC 2011: AI Methods for
Interdisciplinary Research in Language and Biology, Proc., SciTePress, Portugal,
2011, 3-13.

B. Nagy and F. Otto. Globally deterministic CD-systems of stateless R(1)-
automata. In: A.H. Dediu, S. Inenaga, and C. Martin-Vide (eds.), LATA 2011,
Proc., Lect. Notes Comput. Sci. , Springer, Berlin, 2011, to appear.

A. Salomaa. Jewels of Formal Language Theory. Computer Science Press, Rock-
ville, Maryland, 1981.

