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Abstract
Artificial neural networks (ANN) are widely used to solve problems of differ-
entiating between groups. However, serious comparisons of this method with
the traditional procedure for such tasks (discriminant analysis) are rare. Dis-
cussing the results of both methods with the example of highly topical data, we
try to demonstrate advantages and drawbacks of both methods. For this pur-
pose, quantitative EEGs of 78 alcoholics were investigated in order to deter-
mine whether it is possible to predict relapse of these patients at the beginning
of treatment. ANN software is available in Kassel (Institute for Computer
Sciences and Mathematics).
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Introduction

This article intends to provide a short, basic introduc-
tion to artificial neural networks (ANN) and a compari-
son with conventional multivariate discriminant analysis
to scientists who are engaged in neurophysiological re-
search. This is done by giving a brief explanation of the
most popular neural network tool at present, a feedfor-
ward multilayered network trained using backpropaga-
tion, and by contrasting discriminant analysis with ANN
on a practical example. Thus, we investigated quantita-
tive EEGs (QEEG) of 78 chronic alcoholics in order to
find out whether relapse prediction is possible at the
beginning of treatment. Major benefits and drawbacks of
neural networks compared to conventional statistical
methods with reference to neurophysiological research
will be discussed.

ANN have received a great deal of attention during the
last few years. They have been applied to a wide range of
classification problems where statistical methods are tra-

ditionally employed, including speech recognition [1],
prediction of stock market performance [2], or identifica-
tion of underwater sonar contacts [3]. In addition, neural
networks have been used successfully in biomedical re-
search, such as predicting heart problems in patients [4,
5], predicting the mechanisms of action of cancer drugs
[6], detecting errors in anesthesia breathing circuit [7],
medical signal processing [8], medical imaging [9, 10] and
analysis of laboratory data [11–13]. There are also a num-
ber of good introductory articles on neural networks.
Warner and Misra [14] provide an excellent understand-
ing of neural networks as a statistical tool for the reader
with a mathematical or statistical background, Forström
and Dalton [15] give a comprehensible overview of ANN
for decision support in clinical medicine, and Selker et al.
[16] present an impressive comparison of ANN with logis-
tic regression, to mention just a few articles.

Neural networks have their origin in using computers
to simulate the function of the brain. Theories on the
physiology of the brain have set the scene for the develop-
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Fig. 1. This figure shows the principal
constituents of a neuron within an artificial
neural network. It receives input from other
neurons (x1–x3) firing at different rates (w1–
w3). Different firing rates are weighted and
summed up ™wi which results in a function y
that expresses the firing rate of the neuron.

Fig. 2. A typical multilayer perceptron
architecture.

Fig. 3. Way of working of ANN.

ment of neural network algorithms. Thus, during the last
decade a new branch of research developed, now known
as computational neuroscience [17–19]. While research in
this area essentially strove for modelling basic neuronal
processes (e.g. Hebb’s learning rule), a byproduct of this
research has been the application of ANN as a statistical
tool to feature detection in complex data sets. This devel-
opment was furthered by the argument that conventional
statistical programs running on currently available com-
puters are very fast at numerical computations, far ex-
ceeding human capabilities, however, lack abilities of the
human brain such as quickly identifying features, even in
the presence of noise; to understand, interpret, and act on
probabilistic or fuzzy notions, and to make inferences
and judgements based on past experience and relate
them to situations that have never been accounted be-
fore. Therefore, it seemed attractive to include properties
of the human brain in computer programs, when prob-

lems of feature detection (e.g. classification tasks) are
addressed.

Simulating basic brain architecture, ANN consist of
neurones as the principal computational units (fig. 1). The
general structure of a feedforward multilayer neural net-
work (multilayer perceptron) is made up of an input layer,
one or several hidden layers and an output layer; each
layer consisting of several neurones, which are intercon-
nected as depicted in figure 2. Usually, the number of
neurones in the input layer is determined by the number
of attributes in the data (e.g. different laboratory tests).
The number of output neurones is equal to the number of
predefined classes (e.g. number of treatment effects to be
extracted from a given data input). The number of neu-
rones of the hidden layer is essentially dependent on the
complexity of the relationships between the input vari-
ables and has to be established experimentally, as it is fre-
quently not known in advance. In regard to the function
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Fig. 4. Elasticity-plasticity dilemma in finding the optimal mod-
el, which both describes data and allows generalization. The training
set data (filled triangles) were fit by either a linear, quadratic or cubic
regression. A linear approximation is poor to both sets of data. The
quadratic function is best fit in this case, while a cubic one is to spe-
cific.
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of a net, one has to distinguish between the learning and
test phase (fig. 3). In its learning phase, the net is given
predefined input-output example pairs (training set), and
it is taught to calculate the desired output from the input
data, which is called supervised learning method. This is
similar to the regression problem where we have a set of
independent variables (inputs) and dependent variables
(output), and we want to find the relationship between the
two. After an input pattern has been applied as a stimulus
to the input-layer, it is then propagated through each
upper layer until an output is generated (feedforward net).
This output pattern is then compared to the desired out-
put, and an error signal is calculated for each output unit.
This error signal is then transmitted backwards across the

net (backpropagation algorithm), which results in an ad-
justment of the connection weights between the neurones.
By this way, the patterns which the network learns are
coded into the distributed connection weights between
neurones as internal representations. Typically, example
cases must be presented to the net many thousands of
times, until the knowledge inherent in the input data set is
learned adequately. Once a network has learned its knowl-
edge, it is able to classify new cases very quickly, that is, to
generalize its knowledge to independent test data (test
set).

Although a detailed discussion of technical aspects
(benefits and drawbacks) inherent to the application of
neural networks is beyond the scope of this article, several
general remarks have to be made. First, as knowledge is
distributed across the connections, it is impossible to
interpret knowledge, e.g. to characterize the functional
relationship between the input variables in relation to a
given output. In other words, knowledge cannot be ex-
pressed in rules. Therefore, neural networks are often
called ‘black boxes’ [15]. Second, the topographical struc-
ture of a net has a considerable influence on the learning
of the net. Actually, the capacity of a net, that is, the num-
ber of connections, should be kept as small as possible. If
the capacity is too large, this will result in a bad generali-
zation performance (fig. 4), because the net remembers
every single example presented during the learning phase
and only recognizes exactly identical examples during the
test phase [20, 21]. Other related difficulties with neural
networks involve e.g. choosing the initial starting weights
of the connections and the decision when to stop training
[14]; the latter being directly related to the necessity for
large data sets [22] which is a frequent problem in medical
research and the problem of so-called overlearing after too
many iterations. Here, overlearning means that the net-
work has adapted its weights too closely to the set of learn-
ing cases, which again results in a bad generalization per-
formance. Finally, it should be mentioned here, that feed-
forward nets and backpropagation algorithm – although
most frequently applied – represent only one of numerous
possible network approaches and it is currently far from
being clear which network type optimally suits a given
classification task.

Despite all these yet unsolved problems, there is now
general agreement that ANN offer some advantages when
compared to conventional statistics. Thus, neural net-
works allow much more complex tasks to be learned from
examples and are particularly suited to the analysis of
nonlinear, multivariate data [15], although, in practice,
this advantage again presupposes large data sets for net-
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work training. Additionally, no a priori assumptions
about the character of a functional relationship between
input and output variables (e.g. type of nonlinear func-
tion) are necessary [14]. Finally, it is noteworthy that vari-
ables with different scalers can be fed simultaneously to
the net, which for instance, allows the admixture of clini-
cal data and data from laboratory investigations for classi-
fication purposes [15].

Patients and Methods

Patients. 78 alcohol-dependent patients who were treated for
detoxification in our hospital were diagnosed according to the crite-
ria of the International Classification of Diseases (ICD 10). Patients
had been included in the study only when detoxicated, unmedicated
for at least 3 days and if they no longer showed any clinical signs of
withdrawal. After release from the hospital, patients were followed
up in our outpatient unit for 3 months. During this time, patients
were seen on a weekly basis within the first month and biweekly until
the end of observation to determine whether they abstained or
relapsed. Relapse was defined as minimum consumption of 50 g eth-
anol. To be able to compare distinguishable groups, we assessed
patients for clinical outcome and included: (1) 49 patients who
relapsed within 3 months after detoxification and (2) 29 patients who
remained abstinent for at least 3 months.

EEG Recording. All EEG recordings were performed between 9
and 11 a.m. 7 days after the beginning of detoxification. Each EEG
lasted 10 min and was recorded with Ag/AgCl electrodes under rest-
ing condition (semisupine position, eyes closed and instruction to
relax but not to fall asleep). Electrode positions were defined accord-
ing to the international 10/20 system, impedance was kept below 5
kø. The recordings were carried out with a conventional 32-channel
electroencephalograph (Walter Graphtek). Amplifiers were cali-
brated using a 0.5-Hz rectangle generator, notch filter: 50 Hz., time
constant: 0.3 s. The signals were digitized with a sampling frequency
of 166.6 Hz. Antialias was performed in two steps. Analogue antial-
ias at 1,000-Hz sampling rate: Butterworth 4th order, 140 Hz and
digital antialias: FIR 64 taps, 75 Hz. Data were stored on optical
disks. Of each patient one uninterrupted, ‘representative’ artefact-
free EEG segment of 30 s was further analyzed. A segment was con-
sidered ‘representative’, when it contained exclusively basic EEG
activity. Additionally, EEG activity 10 s after the intermittent in-
struction to open and close the eyes for 2 s during the running record-
ing were excluded.

Parameters. For quantitative analysis the recorded signals (30-
second segments) were split in 9 consecutive epochs of 3.072 s dura-
tion and submitted to spectral analysis using the fast Fourier trans-
form. The square root of absolute power (magnitude), expressed in
ÌV as well as the relative power was computed for the following fre-
quency bands according to the recommendations of Kubicki et al.
[23] which were based on factor analysis: ‰F = 0.5–5.5 Hz,  F = 6.0–
8.0 Hz, ·F = 8.5–12 Hz, ß1F = 12.5–18 Hz, ß3F = 21.0–30.0 Hz.
Power values were computed for all electrode positions with ears as
reference (A1 + A2)/2. Additionally, we considered the correlation
dimension of Grassberger-Procaccia [24–26], which is an upper
bound of the fractal dimension of the signal. The correlation dimen-
sion was calculated for a 27-second EEG segment for the following

pairs of electrodes: F3–F7, F4–F8, P3–O1, P4–O2, T3–P3, T4–P4.
The latter parameter was applied to our data although we are aware
of their high sensitivity to nonstationarity of the signal. However,
from visual inspection we knew that EEGs of alcoholics are generally
highly stationary.

Discriminant Analysis. Further analyzing our data, we computed
a discriminant function analysis with stepwise introduction of spec-
tral variables (approximated F test for Wilk’s lambda; weighted
cases) [27]. For this purpose, we first compared randomly chosen 14
abstainers and 24 relapsers (training group), with the aim to achieve
proper results with as few variables as possible. Then we applied the
resulting discriminant function to the remaining 15 abstainers and
25 relapsers (test group), thus testing the resulting discriminant func-
tion, independently. For better comparison with nonlinear network
tools, we extended the linear model by interaction terms (polynomial
model of second order). Although there are not enough cases to esti-
mate much more independent model parameters, tendencies can be
described.

Artificial Neural Network. A detailed technical description of our
network approach is submitted elsewhere [28]. For our investigation,
improved, multilayer perceptron (feed-forward) networks (transfer
function 1/(1 + e–x) [21, 29, 30] had been used with one hidden layer
(2–20 neurons). Improvement was carried out by enhancing the
learning speed: steprange control and a layer-specific overrelaxation
factor [31–33]. Additionally, for a formal improvement of generali-
zation, a quantitative reduction of synaptic weights (weight decay)
was carried out [34–36]. However, as the large number of input neu-
rons (due to the large number of variables of the original data set)
enforces the large amount of synaptic weights (degrees of freedom),
only minor improvements were achieved. Consequently, two input
selection methods had been applied: a. knowledge-based input sets
referring to the results of the discriminant analysis and b. genetic
algorithms [37–39] with stepwise input pruning, depending on non-
linear sensitivities.

The network input had been selected from the major domains
relative spectral power and absolute spectral power. Spectral values
had been applied either directly to the ANN or after a linear z-trans-
formation. Comparable to the discriminant analysis, training of the
net was performed with the data of the training group, independent
testing was done with the data of the test group.

In a first knowledge-based approach, we reduced the number of
input neurons in the subsequent way: First, we built a training set
(EEG data of the training group) with subsets of possible network
inputs (unscaled values) based on our knowledge from the discrimi-
nant analysis. Second, a reduction using singular value decomposi-
tion was applied [34]. So, the original lesson was substituted by a
lesson with fewer inputs and maximum rank. For the subsequent
independent test (EEG data of the test group) the same transforma-
tion was applied.

As an alternative to the knowledge-based approach, we applied
genetic algorithms for the reduction of variables. In general, the
genetic algorithm (GA) [37–39] as a mathematical model mimics the
natural survival of the fittest individual of a given population (selec-
tion) together with mutation and recombination within the genom of
an individual. A population is defined as a set of input variables.
Each individual represents a subset of variables (e.g. some spectral
parameters) which act as input for an appropriate neural network.
Initially, the population contains randomly chosen individuals. Dur-
ing the genetic algorithm, for each individual of the actual population
the corresponding network will be built and trained on a subset L1 of
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the complete lesson L. Then, the generalization of the trained net-
work will be evaluated using a subset L2 of L, which is disjoint from
L1. According to this generalization, the GA calculates the fitness of
each individual and the set of best individuals will remain within the
population. All other individuals will be substituted by new ones
which are built by recombination or mutation of those individuals
which have ‘survived’: e.g. exchange input with an existing input of
another surviving individual (recombination) or substitute it with an
arbitrary new input (mutation). The advantage of this procedure is
that it uses no a priori knowledge about the given data. Therefore, it
is possible that unusual subsets will be selected and can yield good
results for the corresponding neural network. However, this fact
makes theory-driven considerations and interpretation of the selec-
tion hard or rather impossible.

Furthermore, genetic algorithms are global optimization algo-
rithms, thus avoiding problems of local minima. Clear disadvantages
are a usually very slow convergence compared with mathematical
optimization methods and the fact that one reduces the effective
length of the original lesson by introducing the disjoint subsets L1

and L2 where only L1 will be used to train the network and L2 is used
by the genetic algorithm. In our case, L2 is equivalent to the EEG
data of the second split half (test group) of the linear approach.

In combination with the GA approach, a neural sensitivity analy-
sis [40] was performed, based on a simplified network modulariza-
tion approach (SNMA). This approach allows a uniform combina-
tion and concatenation of probably different network modules. Here
we applied it to the concatenation of a linear preprocessing algorithm
S with the above mentioned network N giving a system N o S. The
preprocessing S(x) = y calculates yi si, so it depends on scaling param-
eter vector s with one component for each possible input compo-
nent.

Using SNMA, the combined system N o S was trained according
to the desired task. After successful training, the scaling parameters si

of the preprocessing S can be evaluated. For uniform scaled input
vectors x, absolute small values of si indicate a small relevance for all
network inputs of the component i. So, for network inputs i with Asi A !
‰ for a given threshold ‰, the input can be eliminated and the proce-
dure can continue.

To improve the estimation for the significance, the training of the
combined system will be repeated, starting with random synaptic
weights for the network component N. The final elimination uses the
mean values of si for the elimination condition.

Results

Discriminant Function Analysis
QEEG clearly shows differences between abstainers

and relapsers in group 1 (training group rsp. first split
half) and group 2 (test group rsp. second split half) as indi-
cated in table 1. By means of QEEG, applying linear dis-
criminant function analysis, relapsers can be classified
correctly with high sensitivity (training group = 87.5%;
test group = 88.0%), however, specificity (correct classifi-
cation of abstainers) is far from being satisfying in the test
set (training group = 92.9%; test group = 53.3%). This
resulted in an overall correct classification rate of 90.2%

Table 1. Linear discrimination of relapsers and abstainers with
five EEG variables

Group n Predicted group membership, %

abstainers relapsers

14 (15) 92.9 (53.3) 7.1 (46.7)
Relapsers 24 (25) 12.5 (12.0) 87.5 (88.0)

Overall pooled correct classification 90.2 (70.7)
Test of different group means at

discriminant function: Degrees of freedom: 5 (p = 0.0007)

Numbers refer to the training group, numbers in parentheses
refer to the independent test group.

Table 2. Quadratic discrimination of relapsers and abstainers
with four variables of second order

Group n Predicted group membership, %

abstainers relapsers

14 (15) 92.9 (53.3) 7.1 (46.7)
Relapsers 24 (25) 4.2 (16.0) 95.8 (84.0)

Overall pooled correct classification 94.4 (68.7)
Test of different group means at

discriminant function: Degrees of freedom: 4 (p = 0.0001)

Numbers refer to the training group, numbers in parentheses
refer to the independent test group.

(training group) and 70.7% (test group). The result was
achieved with a 5-variable model: compared with abstain-
ers, relapsers showed especially less frontocentral alpha-
activity and less left frontal relative theta-activity, a high-
er left frontal correlation dimension and, to a lesser
extent, also an increased left temporal (relative) beta3-
power, and increased left frontal (relative) beta3-power.
Additional inclusion of variables did not improve classifi-
cation results. Taken together, these results point to a
frontally pronounced desynchronization (low-voltage
EEG) in our relapsing patients.

Very similar results produced a discriminant function
analysis using a polynomial model of second order (ta-
ble 2). To the five variables chosen in the linear case we
added all of their paired interactions. A stepwise proce-
dure took only four interaction variables into account,
yielding a better sensitivity for the training group (95.8%),
but for the test group it was slightly worse (68.7%).
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Table 3. Discrimination of relapsers
and abstainers using ANN (genetic
algorithm and pruning)

Training data
OK, %
(overall)

Test data
OK, %
(overall)

Hidden
neurons

Electrodes/frequency bands

82.5 8 O1-delta O1-beta1 O1-beta3 O2-delta O2-theta
O2-beta1 O2-beta3 F7-total F8-total T3-theta
T3-beta1 T3-beta3 T4-beta1 T4-beta3 Fz-theta
Fz-beta1 Fz-beta3 Cz-delta Cz-theta Cz-beta1
Cz-beta3

Table 4. Classification of relapsers (sensitivity) and abstainers
(specificity) of the test group

Group n Predicted group membership, %

abstainers relapsers

15 73.3 26.7
Relapsers 25 8.0 92.0

Table 5. Discrimination of relapsers and abstainers using ANN
(knowledge-based)

Training
group OK, %
(overall)

Test group
OK, %
(overall)

Hidden
neurons

Electrode/frequency bands

85.0 3 F7, F8, Fz (total, beta1, beta3)

Table 6. Classification of relapsers (sensitivity) and of abstainers
(specificity) of the test group

Group n Predicted group membership, %

abstainers relapsers

15 60.0 40.0
Relapsers 25 0.0 100.0

ANN Approach
In order to improve our results, we additionally ap-

plied ANN (supervised multilayer perceptron). Thus, we
were able to include complex, nonlinear interactions be-
tween EEG variables in our analysis without any a priori

assumptions about the character of their functional rela-
tionship, which is not possible with classical linear statis-
tics. The best results were obtained by absolute power
spectra; relative power values and correlation dimension
are significantly worse. In contrast to the discriminant
analysis, inclusion of more than five variables improved
the classification results.

Actually, the overall classification of ANNs, using
absolute power spectra, could be increased up to 80.0%
for the independent test group. The input data were z-
transformed using means and standard deviations from
the training and test sets, respectively. The actual input
variables for the ANN were obtained by a genetic algo-
rithm, working only on the data of the training group. Fur-
ther input reduction (pruning) based on nonlinear sensi-
tivity analysis, allowed an increase of the overall classifi-
cation rate up to 82.5% (tables 3, 4).

Clearly, the number and selection of the electrodes and
frequency bands show no similarity to the selection of the
linear statistics (discriminant function analysis, DFA),
indicating that the brain as a whole is involved and not
only the frontal and temporal cortex. Hence, the very poor
specificity (correct detection of abstainers) of the discrim-
inant analysis could be raised from 53.3 to 73.3%. How-
ever, due to the unfavorable ratio of input dimension and
number of observations, this result should be regarded
with caution. Actually, only 3 more abstainers have been
correctly classified. Nevertheless, this result was achieved
with an independent test set.

A second investigation used predefined variable sets of
unscaled spectral values, based on our knowledge from
the DFA in order to obtain a more realistic comparison
between stepwise discriminant analysis and neural net-
work classification techniques and in order to be able to
show that, based on frontal variables only, a classification
is already possible. Indeed, an overall classification of
85% could be achieved, with a considerably smaller num-
ber of variables. However, this approach shows a similar
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sensitivity/specificity ratio as the discriminant analysis,
although on a significantly better performance level (ta-
bles 5, 6).

Discussion

The conclusion that can be drawn from our compara-
tive analysis is that the application of ANN obviously
offers the possibility to extract more relevant information
from the EEG signal when compared with discriminant
analysis, which resulted in a better classification of pa-
tients. Especially correct detection of abstainers was im-
proved compared with discriminant analysis. However, it
has to be taken into account that the network approach
based on the genetic algorithm was only achieved with a
large amount of variables which – despite independent
classification of test data – may have resulted in so-called
overfitting of the network function. This means that due
to the large number of variables the possibility to improve
classification power by chance is certainly increased. Ac-
tually, this restriction points to an important and major
weakness of networks. Thus, the application of network
usually needs large sample sizes to be able to take advan-
tage of the possibility to create complex functions. Unfor-
tunately, sample size of clinical trials is usually relatively
small as for instance in our case. This problem can only be
managed by the a priori selection of variables, which we
have done with our knowledge-based approach and which
also resulted in better classification results when com-
pared with the discriminant analysis, but was less success-
ful in comparison to the approach based on the genetic
algorithm. Nevertheless, taking into account the current

discussion about advantages and drawbacks of ANN in
comparison with conventional statistics, our investigation
exemplifies that it may be reasonable from a practical
point of view to apply both tools, especially when there is
a paucity of a priori knowledge about the data structure
and the nature of the discriminating function, respective-
ly. Thus, in addition to the improvement of classification
results, only by the application of both statistical tools
were we able to localize all pathophysiologically relevant
brain areas which would have remained undetected if
only discriminant analysis had been applied. However, in
the clinical context it is presumably more practical only to
apply one of the applied tools.

Our results suggest that the function of the whole cor-
tex, with emphasis on the prefrontal cortex, is affected in
our relapsers. The application of only one of both statisti-
cal strategies would not have been sufficient to allow this
conclusion. However, here we have to be aware of another
major weakness of neural networks. Although classifica-
tion results could be improved, pathophysiological inter-
pretation of the network results is difficult because it only
gives us an impression about the involved variables, but
does not distinguish between more or less important vari-
ables.

Summarizing, our results suggest that neural network
analysis of QEEG measures from patients with chronic
alcoholism predicts abstinence or relapse with high sensi-
tivity and satisfying specificity. In other words, almost all
relapsers are classified correctly but some abstainers are
misclassified as relapsers. Finally, our example demon-
strates advantages and drawbacks of neural network tech-
nology which have to be taken into account in future
studies.
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