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We discuss the recent progress in the development of the single center (SC) method for
computation of highly-delocalized discrete and partial photoelectron wave continuous functions of
molecules. Basic equations of the SC method are presented, and an efficient scheme for the nu-
merical solution of a system of coupled Hartree–Fock equations for a photoelectron is described.
Several illustrative applications of the method to photoionization and electronic excitation processes
in diatomic molecules are considered. Thereby, we demonstrate its potential for theoretically study-
ing angularly resolved molecular photoionization processes. © 2011 American Institute of Physics.
[doi:10.1063/1.3526026]

I. INTRODUCTION

The theoretical investigation of photoionization and
electronic excitation processes of molecules is a complex
problem, requiring precise molecular orbitals (MOs) of the
molecular ion core and the electron in discrete or contin-
uous spectra. One of the most accurate many-center repre-
sentations of a molecular orbital as the linear combination
of atomic orbitals (MO LCAOs), primarily intended for the
study of the lowest molecular excited states, allows one to
calculate MOs of the core, valence, and first unoccupied
shells with very high accuracy. The MO LCAO representa-
tion, however, is restricted to studying highly excited delocal-
ized states in discrete and continuous spectra of molecules.
Therefore, considerable efforts have been invested in the last
decades to the development of theoretical methods and com-
putational approaches to solve the electron continuum prob-
lem in molecules.

Several alternative approaches have been applied for
computing molecular Auger decay rates, requiring accurate
continuous wave functions for the outgoing electron. Among
them are numerous scattering methods1–6 or the Stieltjes
imaging technique.7–12 These approaches are, however, re-
stricted to the calculation of the total decay rates with respect
to the final Auger continuous chanels and are not designed for
the computation of partial photoelectron waves. The latter dif-
ficulties are absent in the multichannel Schwinger scattering
methods,13–17 where the Auger continuous channels are the
solutions of the Lippmann–Schwinger equation in a numeri-
cal basis set optimized in a model Hamiltonian13–15 or in a ba-
sis set of atom-centered Gaussian functions.16, 17 Subsequent
asymptotic one-center extrapolation of the continuous chan-
nels via partial electron waves with given angular momentum
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Heidelberg, Germany. Electronic mail: phd@rgups.ru and philipp.
demekhin@pci.uni-heidelberg.de.

� and projection m also allows calculations of electron angu-
lar distributions.

Another comparatively simple method for the com-
putation of partial decay amplitudes and electron partial
waves, proposed by Siegbahn et al.18 and applied widely
nowadays,19–23 is the one-center approximation. It utilizes
photoelectron continuous partial waves computed in the field
of one atomic center at which the Auger decay happens, ne-
glecting, therefore, interatomic and molecular field effects in
the continuum. It describes rather satisfactorily solid-angle-
averaged intensities of the Auger spectrum22 and even an-
gularly resolved intensities.23 The latter approximations are
absent in the generalization of the atomic random-phase-
approximation (RPA) for diatomic molecules.24–26 According
to this method, the Hartree–Fock (HF) zero order basis set of
one-particle wave functions containing both discrete excited
states and the continuous spectrum is calculated numerically
in prolate spheroidal coordinates in the field of a frozen core
of a singly charged ion. This basis set is then used for the RPA
calculations, accounting for intershell correlations. Since ba-
sis continuous wave functions are sought as the solutions with
given angular momentum � and its projection m (partial elec-
tron waves), this method is most suited for the study of angu-
larly resolved decay spectra of molecules.25, 26

The present paper is focused on the recent develop-
ments of the alternative approach for studying molecular
photoabsorption, which is known as the single center (SC)
method,27, 28 and which was among the first computational
approaches for molecular wave function calculations.27 Be-
cause of the breakthrough in the development of many-center
MO LCAO computational approaches in the middle of the last
century, the use of the SC method was reduced. Its comeback
at the end of the last century was stimulated by the neces-
sity to study highly delocalized molecular excited states. In
the SC method, a one-particle MO is represented with respect
to a single center of the molecule via an expansion in terms
of spherical harmonics. The traditional way of implement-
ing this method is to search for partial harmonics of an SC

0021-9606/2011/134(2)/024113/11/$30.00 © 2011 American Institute of Physics134, 024113-1
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expansion in form of a linear combination of Slater orbitals
by minimization of the total energy of a molecular electronic
state.27

In the case of a photoelectron in the continuum, it is con-
venient to utilize another version of the SC method, where
the variational principle is applied to derive a system of cou-
pled integrodifferential HF equations and these equations are
solved numerically.28 This realization of the SC method was,
at first, designed for the study of hydrogenous molecules28–32

and later on for the investigation of heavier nonhydrogenous
molecules.33–36 In the last decade, an efficient scheme has
been utilized for the numerical solution of a system of cou-
pled HF equations, and the SC method has been successfully
applied for the calculations of highly delocalized Rydberg
states37–40 and continuous partial photoelectron waves40–46 of
simple diatomic molecules, such as O2, N2, NO, and CO.
It was demonstrated that the SC method allows for accurate
calculations of total and partial cross sections and oscillator
strengths,38–40 Auger decay rates,37, 41, 42 as well as angular
distribution parameters for photoelectrons and fluorescence
photons43–46 in molecules.

In order to attract more attention to the single center
method, essentials of the method and its applications are pre-
sented in this paper. Basic equations of the method are given
in Sec. II A. Efficient procedure for numerical solution of
these equations and a practical scheme for noniterative ac-
counting for exchange Coulomb interaction of the photoelec-
tron with the core are described in Sec. II B. Several illustra-
tive applications of the method to the theoretical description
of photoexcitation of O2 (Sec. III A), resonant photoioniza-
tion of O2 (Sec. III B), and angular distribution of photoelec-
trons and fluorescence photons in the core-excited CO and
NO molecules (Sec. III C) are also shown. We conclude with
a brief summary.

II. THE SINGLE CENTER METHOD

A. Basic equations of the method

According to the SC method, the spatial part of the MO is
represented with respect to the single center of a molecule as
an expansion by spherical harmonics Y�m(θ, ϕ) with a given
projection m of the angular momentum � on a chosen quanti-
zation axis (z):

�ε(x, y, z) =
∑
�m

Pε�m(r )

r
Y�m(θ, ϕ), (1)

where x, y, z and r, θ, ϕ are the Cartesian and spherical co-
ordinates with respect to the chosen center, Pε�m(r ) stands for
the radial parts of partial harmonics in the SC expansion of the
MO. In the most general case, these radial parts are complex
functions and summations in Eq. (1) over indices � and m are
infinite. If, however, a particular symmetry of the MO is im-
plied, summation over index m is restricted according to this
symmetry. For instance, in a diatomic molecule, where the
projection m on the molecular axis is a good quantum num-
ber, radial parts Pε�m(r ) can be chosen real and summation
over m is omitted. Thereby, one defines σ , π , δ orbitals for
m = 0,±1,±2, respectively. There, the center of a diatomic

molecule is practical to choose in the middle of the molecular
axis (z-axis) in between the two nuclei.

The radial parts Pε�m(r ) of the photoelectron molecular
orbital satisfy the following system of coupled Hartree–Fock
equations:28, 40

∑
�′m ′

[(
−1

2

d2

dr2
+ �(� + 1)

2r2
− ε

)
δ��′δmm ′

+V ne
�m�′m ′(r ) + V ee

�m�′m ′ (r )

]
Pε�′m ′(r ) = 0, (2)

under the following normalization conditions for the discrete
Pn�m and continuous Pε�m MO:∑

�m

〈Pn�m |Pn′�m〉 = δnn′ ,∑
�m

〈Pε�m |Pε′�m〉 = δ(ε − ε′).
(3)

In the system of equations (2) the following designations are
used: ε is the one-electron energy in atomic units, V ne

�m�′m ′

is the potential describing nuclear-electron interaction, and
V ee

�m�′m ′ is the potential describing local direct J ee
�m�′m ′ and non-

local exchange K ee
�m�′m ′ electrostatic Coulomb interactions of

the photoelectron with the ionic core. Because of a nonspher-
ical molecular field, the system of equations (2) contains the
off-diagonal potentials with �m �= �′m ′, which couples equa-
tions for different partial harmonics. These potentials can be
calculated as described below using the MO LCAO represen-
tation of the occupied shells deconvolved as Eq. (1).

Let Rn, θn, φn are the spherical coordinates of the nucleus
n of charge Zn with respect to the chosen center. In these des-
ignations, the potential for the nuclei–electron interaction is
given in atomic units as28

V ne
�m�′m ′ = −

∑
n

Zn

∑
k

(−1)m
√

(2� + 1)(2�′ + 1)

×
(

� k �′

0 0 0

) (
� k �′

−m q m ′

)

×
√

4π

2k + 1
Y ∗

kq (θn, φn)
rk
<

rk+1
>

, (4)

where r< = min(r, Rn), r> = max(r, Rn), and q = m − m ′.
For a diatomic molecule aligned along the z-axis, index q = 0
and the coefficient

√
4π/(2k + 1)Y ∗

k0(θn, φn) is equal to 1 or
(−1)k for nuclei with the coordinates (R, 0, 0) or (R, π, 0),
respectively. It immediately implies that the potential (4) is
diagonal over indices m and m ′ (V ne

�m�′m ′ = V ne
��′ δmm ′) and σ ,

π , δ, . . . orbitals do not mix. Moreover, for homonuclear di-
atomics only even values of index k = 2i appear in Eq. (4),
since for k = 2i + 1 odd values Z (1 + (−1)2i+1) = 0. Thus,
only partial harmonics with every second angular momentum
� are mixed by the nonspherical molecular field: even for ger-
ade symmetry and odd for ungerade.

The potential describing direct Coulomb interaction
of the photoelectron with electrons of the core can be
computed as28
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J ee
�m�′m ′ =

∑
c

ac

∑
�cmc

∑
�′

cm ′
c

∑
k

(−1)mc+m ′

×√
(2�c + 1)(2�′

c + 1)(2� + 1)(2�′ + 1)

×
(

�c k �′
c

0 0 0

) (
�c k �′

c

−mc q m ′
c

)(
�′ k �

0 0 0

)

×
(

�′ k �

−m ′ q m

)
yk(�cmc, �

′
cm ′

c). (5)

Index c in Eq. (5) numerates the core electrons, indices �cmc

and �′
cm ′

c numerate partial harmonics of the bra- and ket- MO
of the core, index q is defined by q = mc − m ′

c = m ′ − m,
and summation over index k accounts for the partial harmon-
ics of the electrostatic Coulomb potential defined in atomic
units by

yk(�cmc, �
′
cm ′

c) =
∫ ∞

0

rk
<

rk+1
>

P∗
nc�cmc

(r ′)Pnc�′
cm ′

c
(r ′)dr ′, (6)

with r> = max(r, r ′) and r< = min(r, r ′). Nonlocal exchange
Coulomb interaction of the photoelectron with the core can be
computed similarly via

K ee
�m�′m ′ Pε�′m ′ =

∑
c

bc

∑
�cmc

∑
�′

cm ′
c

∑
k

(−1)mc+m ′
c

×√
(2�c + 1)(2�′

c + 1)(2� + 1)(2�′ + 1)

×
(

�c k �′

0 0 0

)(
�c k �′

−mc q m ′

)

×
(

�′
c k �

0 0 0

) (
�′

c k �

−m ′
c q m

)
× yk(�cmc, �

′m ′)Pnc�′
cm ′

c
. (7)

Coefficients ac and bc in Eqs. (5) and (7) are determined by
all quantum numbers of the electronic configuration formed
by the ionic core and the photoelectron.

B. Scheme for numerical solution

The system of coupled differential equations of the
second order [Eq. (2)] can be conveniently solved with
the use of the Numerov finite-difference scheme, which re-
lates the values of an unknown multicomponent function to
three neighboring points. These equations can be numerically
integrated using, for instance, asymptotic expansions of the
desired functions in powers of r �+k(k = 1, 2, . . .) at the ori-
gin of the coordinates. As a rule, system (2) couples the har-
monics Pε�m over a wide range of angular momenta �. In
the spatial range below the centrifugal barrier, the harmon-
ics Pε�m corresponding to small and large values of the angu-
lar momentum � differ from each other by several tens orders
of magnitude. Consequently, this integration technique nec-
essarily involves computational problems associated with the
accuracy decrease. In order to overcome these difficulties, it
is convenient to use the vector sweep method by reducing the
Cauchy problem for the second-order equation to a boundary
problem (see Appendix A). The main advantage of the

method is that the sweep matrices are of the same order of
magnitude over the entire range of angular momenta �. Such
a combination of the Numerov finite-difference scheme and
the sweep method is described in the monograph47 and was
successfully applied to the calculations of atomic orbitals.

For the photoelectron in the discrete spectrum, the sys-
tem of equations (2) relates solutions in the “closed channels.”
Integration of the system for the case of ε < 0 must be per-
formed in both directions. The nonlocal exchange Coulomb
interaction of the photoelectron with the core electrons can
be included, for instance, by an iterative procedure and calcu-
lated using the solutions Pε�m obtained in the preceding iter-
ative step. In the first iteration step, the nonlocal term can be
omitted. In this phase of the integration of the homogeneous
system of coupled differential equations, matching of the de-
sired functions and their derivatives obtained by integration in
opposite directions results in the criteria for determination of
the one-electron energy ε. When the exchange interaction is
taken into account, the system of equations (2) has a unique
solution for any one-electron energy ε. The invariability of
the intermediate normalization of the desired function in the
discrete spectrum can be used as a criterion to determine a
unique value of the energy at each iteration step. After iter-
ative procedures have converged, the molecular orbital must
be normalized according to Eq. (3). Details of the integration
of system of equations [Eq. (2)] in the discrete spectrum are
summarized in Appendix B 1.

For the photoelectron in a continuous spectrum (ε > 0),
the system of equations (2) relates solutions in the “open
channels” and integration must be performed only outward.
In the case of interaction of C continuous spectra at a fixed
energy, one obtains C degenerate C-components solutions.
According to Ref. 48, linearly independent solutions of the
system of equations (2) at r → ∞ should be sought in the
following asymptotic form:

P L M
�m (r ) = δL

� δM
m J�(r ) + RL M

�m H�(r ), ∀ L M, �m = 1, . . . , C.

(8)

Here, J�(r ) and H�(r ) are so-called Coulomb functions (the
linearly independent and energy-normalized solutions in the
spherically symmetric Coulomb potential). The superscripts
L M in Eq. (8) numerate the different degenerate multicom-
ponent solutions, and the subscripts �m number the different
components of each solution. The complex hermitian C × C
matrix RL M

�m in Eq. (8) is known as the reaction matrix or R-
matrix (see Appendix B 2 for details).

The new solutions, P L M
�m (r ), which are normalized on the

energy scale according to Eq. (3), satisfy the condition of
mutual orthogonality, and describe the partial photoelectron
incoming-wave channels (outgoing spherical waves only in
channel �m = L M), should be chosen as the following linear
combinations of the solutions (8):49, 50

P L M
�m =

∑
L ′ M ′

{ ∑
L ′′ M ′′

(
Ũ L ′′ M ′′

L ′ M ′

)∗

× cos ηL ′′ M ′′ e−iηL′′ M ′′ U L M
L ′′ M ′′

}
P L ′ M ′

�m , (9)
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where complex vectors U L M
L ′ M ′ are the solutions of the

eigenvalue problem for the hermitian R-matrix with real
eigenvalues − tan ηL M :∑

L ′ M ′
RL ′ M ′

�m U L M
L ′ M ′ = − tan ηL MU L M

�m . (10)

We point out that after the transformation (9) partial contin-
uum waves are always complex functions, even in the case of
diatomics, where solutions (8) can be sought as real.

In order to increase the accuracy of the numerical proce-
dure in the regions of singularity of molecular potentials, the
system (A1) can be solved by changing the spatial integration
variable r with the new variable ρ via the expression

ρ(r ) = α r + β ln r +
∑

n

arctan
Rn − r

γn
. (11)

Integration is performed in constant steps in the variable ρ.
The second term in expression (11) makes it possible to con-
centrate the integration points at the center of the molecule, as
suggested in Ref. 47. In addition, we have introduced the third
term (sum runs over the nuclei centers) that symmetrically
concentrates integration points around the positions of the nu-
clei Rn . It can be easily shown (see also Ref. 47) that replacing
the solution functions Pε�m(r ) by the new ones Fε�m(ρ) via

Pε�m = Fε�m

(
dρ

dr

)−1/2

= Fε�m√
ρ ′

r

, (12)

results in the following system of coupled differential equa-
tions, which also do not contain the first derivative of the
Fε�m(ρ) functions [compared with Eq. (A1)]:

d2 Fε�m(ρ)

dρ2
= 1(

ρ ′
r

)2

∑
�′m ′

[ (
�(� + 1)

r2(ρ)
− 2ε

)
δ��′δmm ′

+ 2V ne
�m�′m ′(ρ) + 2J ee

�m�′m ′ (ρ)

+
{

1

2

ρ ′′′
r

ρ ′
r

− 3

4

(ρ ′′
r )2

(ρ ′
r )2

}
δ��′δmm ′

]
Fε�′m ′(ρ)

+ 1

(ρ ′
r )2

∑
�′m ′

2K ee
�m�′m ′ (ρ)Fε�′m ′(ρ). (13)

Finally, the solution of the system (2) becomes easier if
one takes into account the persistency of the shape of Pε�m

functions at high �m-values. This allows the restriction of
the expansion (1) for simple diatomic molecules, such as O2,
N2, NO, and CO, to � ≤ 20 − 25, increasing the V ne

�m�′m ′ (r )
and V ee

�m�′m ′ (r ) potentials for large �m.37–46 The inhomoge-
neous (due to exchange Coulomb interaction) system of cou-
pled equations (2) can be solved, for instance, iteratively.40

The alternative approach implies that the system (2) and inte-
gral equations for exchange Coulomb potentials (6) can be re-
duced to a united homogeneous system of coupled differential
equations relative to both partial harmonics and correspond-
ing exchange potentials as suggested in Ref. 51 and described
in details in Ref. 48. Essentials of this procedure are given in
Appendix C.

C. Computational details and application range

Before discussing recent applications of the single center
method, let us briefly outline relevant computational details,
perspectives for going beyond the one-electron Hartree–Fock
approximation, as well as its application range and limitations
for heavy and polyatomic molecules.

The computational details will be outlined by two rep-
resentative examples. The first is the calculation of the CO
5σ−13sσ Rydberg orbital. We restrict the SC expansion (1)
for the core MOs of CO and for the Rydberg electron to
�c ≤ 24 and � ≤ 20, respectively. The exchange Coulomb in-
teraction of the Rydberg electron with the ionic core can be
described by 45 generalized potentials (C5) for each of the
core orbitals with the multiplicity k running from 0 to 44 (ex-
cept for the 1π orbital where k runs from 1 to 44). Here,
one has to solve 290 coupled differential equations (C8) for
269 exchange potentials and for 21 partial harmonics of the
Rydberg electron (� = 0 − 20). The change of the integra-
tion variable according to Eq. (11) allows one to cover the
radial interval of 0–35 a.u. by only 250 grid points and, si-
multaneously, to obtain a relative accuracy in energy below
10−4. It becomes possible owing to increase of the accuracy
of the numerical calculation in the regions of singularity of the
molecular potential (concentration of the integration points at
the center of the molecule and at the positions of the nuclei).
This numerical problem required less than 0.5 GB memory
and was solved by a contemporary single processor personal
computer (PC) within 5 min.

The second example is the 3σ−1
g εσu ionization of the

N2 molecule. The following parameters were used in the cal-
culations: �c ≤ 30, � ≤ 19, and 350 grid points. As mentioned
above, for homonuclear diatomic molecules every second an-
gular momentum � enters the SC expansion (1), and every
second multiplicity k of the generalized potentials (C5) is nec-
essary to describe exchange interaction of the photoelectron
with the ionic core. As a result one has to integrate only 159
coupled differential equations (C8): 149 equations for gen-
eralized exchange potentials and 10 equations for the par-
tial harmonics of the continuum electron (� = 1, 3, . . . , 19).
However, a complete solution requires integration of ten de-
generate ten component continuous functions (8). This nu-
merical problem required even less memory and was solved
by a single processor PC within 2 min.

Of course, studying heavier molecules requires longer SC
expansions over �, depending on the energy of an MO and on
the internuclear distance. A maximal angular momentum in
the expansion (1) grows with the one-electron energy ε as

√
ε

and linearly with the coordinate R of a nucleus with respect to
the chosen center. Longer expansions over �, in turn, result in
much longer expansions of the exchange potentials (C5) over
multiplicity k. As is obvious from the considered examples,
the latter quantities provide a major contribution to the size of
the system of coupled differential equations (C8). A precise
solution of this problem would require much more memory
and a parallelization of the computer code. However, one can
still solve this problem within a justified approximation. Ma-
jor parts of storage memory and computational time can be
reduced by restricting expansions of the generalized exchange

 This article is copyrighted as indicated in the abstract. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to  IP:

141.51.38.6 On: Thu, 31 Oct 2013 06:54:44



024113-5 Single center method J. Chem. Phys. 134, 024113 (2011)

potentials (C5) up to a certain value kmax. The latter value can
be estimated from the convergence of computational results
with respect to the maximal multiplicity taken into account.
The kmax value providing satisfactory results ranges usually
from 30 to 50, depending on the molecule. Applications of
the method to heavy molecules can be found in Refs. 33–36.

In the case of nonlinear polyatomic molecules, the SC
representation of an MO includes an additional expansion
over index m. However, the largest value of the projection of
the angular momentum in the expansion (1) must not neces-
sarily coincide with the largest angular momentum. Depend-
ing on the geometry of the molecule it can be chosen smaller.
In addition, summation over index m in the expansion (1) is
always restricted according to the symmetry of an MO. Most
importantly, expansion over m does not increase the num-
ber of the generalized potentials (C5), since all summations
over indices m and mc in Eqs. (C10) are performed analyt-
ically (multiplicity k of potentials (C5) depends solely on �

and �c values). These facts allow the straightforward appli-
cation of the method to nonlinear polyatomic molecules, as
has been done for H2O, H2S, NH3, PH3, CH4, and SiH4 in
Refs. 28–32.

One of the most important advantages of the single
center method is the “atomiclike” representation of the molec-
ular orbitals. The representation of an MO via Eq. (1)
allows the straightforward implementation of numerous
existing methods elaborated for inclusion of many-electron
correlations in atoms. Among them are configuration in-
teraction expansions, multireference approaches, many-body
perturbation theory, and random-phase-approximation. For
instance, the effect of many-electron correlations on va-
lence and subvalence shells ionization of molecules has been
studied by the SC method in Refs. 28–32. There, the effect
of the polarization of valence shells by a subvalence shell va-
cancy has been described by a two-reference representation
of a final ionic state, and the random-phase-approximation
has been implemented in order to include intershell and in-
trashell correlations. In the recent studies of core-excited
molecules,43–46 the monopole relaxation of a molecular core
was taken into account within the sudden approximation by
applying the theory of nonorthogonal orbitals.

III. APPLICATIONS

A. Discrete spectrum: Highly excited molecular
Rydberg states

In this subsection we discuss applications of the SC
method to the calculation of MOs of a photoelectron in
the discrete spectrum. In Refs. 37 and 40 properties of the
highly delocalized O∗

2(c 4�−
u )n�σg

3�−
u molecular Rydberg

states have been computed. This allowed a quantitative in-
terpretation of the experimentally observed competition be-
tween the neutral predissociation and autoionization of these
resonant states (see Sec. III B). Recently,38 the SC method
has been successfully applied to the interpretation of a pre-
dominant dissociation of the CO∗(D 2�)n(d/s)σ 1� Rydberg
states into atomic excited Rydberg fragments with the same
effective principal quantum number. Below we briefly dis-
cuss very recent results from Ref. 39, where the competi-

TABLE I. Properties of some O∗
2(a 4�u )n�σg/n�δg

3�u molecular
Rydberg states computed by the SC method in Ref. 39 at the internuclear
distance R = 2.28 a.u.

Assignment I P/εa(eV) rb (a.u.) 〈�m|�m〉c (%)

Ref. 53 Ref. 54/SC Ref. 53 SC SC s d
H 3sσg 3sσg 3.727 3.591 5.74 93.6 6.1
I 3dσg 4sσg 1.690 1.649 11.3 67.7 32.2
I′ 4sσg 3dδg 1.521 1.520 10.4 0.1 99.9
I′′ 3dδg 3dσg 1.488 1.456 12.4 31.4 68.5

aExperimental ionization potential (theoretical single-electron energy) of the MO.
bAverage radius of the MO.
cNorm of the partial harmonic Pn�m in percent. The prevailing integrals are indicated
in bold.

tion between autoionization and neutral dissociation of the
I, I′, and I′′ vibronic Rydberg processions of O2 has been
studied. There, predissociation of these molecular Rydberg
states results in the fragmentation of a molecule into
O(2p4 3PJ ) + O∗(2p3(4S) 3s 3S1) fragments, and the excited
atomic fragment decays further via emission of fluorescence
photon. Computed electronic properties of the I, I′, and I′′

states allowed the interpretation of the experimental atomic
fluorescence spectra from Ref. 52.

Some properties of the O∗
2(a 4�u)n�σg/n�δg

3�u

Rydberg states calculated by the SC method in Ref. 39 are
collected in Table I. One can see from this table that the ex-
perimental ionization potentials from Ref. 53 can be satisfac-
torily reproduced by the SC one-electron energies of Rydberg
electrons (cf. columns 4 and 5), even for delocalized electrons
(average radii are listed in column 6). Columns 7 and 8 show
the norms of the partial harmonics 〈�m|�m〉, which char-
acterize the part of the MO described by the given angular
momentum. The main contributions used for the assignment
of the Rydberg electrons in column 3 are set in bold. The first
Rydberg state is described mainly by s symmetry and is sep-
arated from the next group of states by an energy gap. In the
next group, a practically pure d state of δg symmetry appears
in between two σg states, which are strongly mixed with each
other. The strong ns/(n − 1)d mixing for the energetically
close Rydberg states of σ symmetry was found to be a gen-
eral effect in small homonuclear37, 40 and almost symmetric
heteronuclear38 molecules. The first σg state has the largest
admixture of the s symmetry and the second one that of the
d symmetry. These facts allowed the reassignment of the I,
I′, and I′′ states as given in column 3. Although the reas-
signment suggested in Ref. 39 was in contradiction to the
assignment of Ref. 53 based on a quantum defect analysis
(column 2 of Table I), it supports the later reassignment54

based on the analysis of the autoionization dynamics of the
spin–orbit components of these states.

B. Continuous spectrum: Photoionization via
autoionization of resonances

Recently,41–46 the SC method has been applied to com-
putations of absolute partial and total Auger (autoioniza-
tion) decay rates of the core-ionized (core-excited) N2,
CO, and NO molecules. The theoretical decay rates were
found in a good agreement with the available theoretical19–21

and experimental55–57 data. Computed absolute oscillator
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FIG. 1. Upper panel: Total cross sections for emission of atomic fluores-
cence in the range of 97–131 nm after predissociative photoionization of the
oxygen molecule in the exciting-photon energy range of 20.6–24.8 eV com-
puted by the SC method in Ref. 40 and measured in Ref. 58. The solid curve
is shifted by +0.5 Mb. Lower panel: Total photoionization cross sections
computed by SC method in Ref. 40 and measured in Ref. 59. The theoret-
ical cross sections are broadened by the instrumental Gaussian function of
20 meV FWHM. Experimental positions of the O∗

2(c 4�−
u )n�σg

3�−
u , v vi-

bronic resonances from Ref. 53 are shown on the top.

strengths for core-excitations of these molecules and absolute
partial and total autoionization rates allowed a quantitative in-
terpretation of their experimental core-excitation spectra (see
Sec. III C). In this subsection, we briefly discuss results of
the calculation of the resonant photoabsorption cross sections
of O2 in the exciting-photon energy range of 20.6–24.8 eV,
obtained in Refs. 37 and 40. In this energy range, absorption
of a photon results in ionization of the 3σg, 1πu, 1πg valence
shells of O2 or in the excitation of the 2σ−1

u (c 4�−
u )nσg Ry-

dberg states. In the next step, these excited states can either
autoionize into the mentioned ionization continua or can pre-
dissociate into the O(2p4 1D) + O∗(2p3(4S)n(d/s) 3S) limits.
In the latter case, excited atomic fragments relax further via
emission of a fluorescence photon in the range of 97–131
nm. Competition between the autoionization and predisso-
ciation pathways of the excited vibronic 2σ−1

u (c 4�−
u )nσg, v

Rydberg states of O2 results in the resonances of different
shapes in the cross sections for photoionization and for atomic
fluorescence emission (proportional to cross section for neu-
tral dissociation58).

The absolute total photoionization cross section of O2

and the corresponding cross section for fluorescence emis-
sion computed in Ref. 40 in the exciting-photon energy
range of 20.6–24.8 eV are compared in Fig. 1 with the
corresponding experimental data from Refs. 58 and 59.
Experimental positions of the O∗

2(c 4�−
u )n�σg

3�−
u , v vi-

bronic resonances are indicated at the top of the fig-
ure. In the calculations,40 it was assumed that the pre-
dissociation of the molecular 2σ−1

u (c 4�−
u )nσg, v Rydberg

states takes place mainly due to the predissociation of the
molecular ionic core 2σ−1

u (c 4�−
u ), v , and the delocalized

Rydberg electrons are spectators of the process. Analysis
of the computed absolute predissociation and autoionization
rates yielded that (i) the predissociation width of the vibra-
tional state v = 0 is considerably smaller than the autoion-
ization widths of Rydberg electrons and (ii) for the vibra-
tional state v = 1 these widths are comparable to each other.
As a result, the 2σ−1

u (c 4�−
u )nσg, v = 0 resonances manifest

themselves mainly in the photoionization cross section (lower
panel of Fig. 1), whereas the 2σ−1

u (c 4�−
u )nσg, v = 1 reso-

nances are observed in both the photoionization and fluo-
rescence emission cross sections (lower and upper panels of
Fig. 1). The figure illustrates good overall agreement between
the resonance’s shapes in the theoretical and experimental
cross sections.

C. Continuous spectrum: Angularly resolved
deexcitation spectra of molecules

The aim of this subsection is to demonstrate the poten-
tial of the SC method for computing angularly resolved decay
spectra of molecules. Here, a precise theoretical description
of the partial photoelectron waves �m in the molecular contin-
uum is necessary. The angularly resolved Auger electron and
subsequent fluorescence emission spectra of the core-excited
CO (Refs. 43 and 44) and NO (Refs. 45 and 46) molecules are
discussed below.

Vibrationally and angularly resolved CO+ A 2� decay
spectra of the C∗O and CO∗ resonances were studied the-
oretically in Refs. 43 and 44, respectively. In Fig. 2, the
partial photoionization cross section (panel a) and photo-
electron angular distribution parameter (panel b) for the
CO+ A 2�(v ′ = 0) vibronic state as well as the angular
distribution parameter for the subsequent A 2�(v ′ = 0) →
X 2�+(v ′′) fluorescence (panel c), computed in Ref. 43 by
the SC method, are compared with the corresponding exper-
imental data measured in Refs. 43 and 60. The figure illus-
trates a good quantitative agreement between the computed
and measured angular distribution parameters βe and β2 f l ,
supporting the high quality of photoelectron partial waves
computed by the SC method. The C(1s → π∗) core excita-
tion of CO satisfies the condition for weak lifetime vibra-
tional interference (LVI) (Ref. 61): vibrational energy spacing
between the vr levels of the C∗O resonance, ωe = 250 meV
(Ref. 21), is about three times larger than their natural life-
time width, �π∗ = 80 meV.56 Therefore, the LVI is practi-
cally invisible in the magic-angle-recorded decay spectra of
this resonance.21, 60, 62 However, in the angularly resolved de-
cay spectra (corresponding angular distribution parameters),
the effect of LVI is more “visible.” As one can see from pan-
els (b) and (c) of Fig. 2, the measured angular distribution pa-
rameters βe and β2 f l exhibit substantial variation across the
positions of the vibrational levels vr of the C∗O resonance.
Calculations performed in Ref. 43 support these observations
and assign these variations to the LVI effect.
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FIG. 2. Panel (a): Cross section for the population of the CO+ A 2�(v ′ = 0)
vibronic state in the vicinity of the C∗O resonance. Theory and ex-
periment from Ref. 43. Panel (b): Angular distribution parameter for
the CO+ A 2�(v ′ = 0) photoelectrons. Theory from Ref. 43 and exper-
iment from Ref. 60. Panel (c): Angular distribution parameter for the
A 2�(v ′ = 0) → X 2�+(v ′′) fluorescence bands progression. Theory and
experiment from Ref. 43. The computed parameters were additionally
convolved with a Gaussian of 70 meV FWHM.

The angularly resolved Auger decay spectra of the core-
excited NO molecule have been measured in Ref. 63. There,
a large disagreement between the measured NO+(X 1�+)
Auger electron angular distribution parameters and theoret-
ical parameters computed within the “standard LVI” theory
in Ref. 63 have been found and tentatively assigned to the
interference between overlapping electronic states within the
multiplet structure of the resonance (known as electronic state
interference (ESI) (Ref. 64). The effect of ESI on the angu-
larly resolved decay spectra of the core-excited NO molecule,
which is symmetry forbidden in the solid-angle-averaged
(magic-angle-recorded) spectra, has recently been verified in
Refs. 45 and 46. Experimental63 and theoretical46 parameters
βe for the NO+(X 1�+) Auger electrons are compared in the
upper and lower panels of Fig. 3 as functions of the vibrational
quantum number v ′′ at different exciting-photon energies (in-
dicated in the figure). Good quantitative agreement between
the theory and experiment supports the effect of interference
between amplitudes for population and decay of different
by symmetry intermediate resonances 1s−12π2(2�, 2�±), as
suggested in Ref. 63.

The angularly resolved A 1� → X 1�+ fluorescence
spectra of the resonantly populated NO+ ion at the N(1s
→ π∗) and O(1s → π∗) excitations of NO were studied in
Refs. 45 and 46. The theoretical photoionization cross sec-
tion of the NO+ A 1�(v ′ = 0) state and angular distribution
parameter for the A 1�(v ′ = 0) → X 1�+(v ′′) fluorescence,
computed by the SC method in the vicinity of the N∗O res-
onance, are compared with the corresponding experimental

FIG. 3. Angular distribution parameters for the NO+ X 1�+(v ′′) photoelec-
trons measured in Ref. 63 (upper panel) and computed by the SC method in
Ref. 46 (lower panel) as functions of the vibrational quantum number v ′′ for
selected exciting-photon energies in the vicinity of the N∗O resonance.

data in Fig. 4. Here, the interference results in strong exciting-
photon energy dependence of the angular distribution
parameter across the positions of electronic resonances and
is responsible for the change of sign of the β2 f l(ω) func-
tion twice, as also observed in the experiment (panel (b) of
Fig. 4). Good quantitative agreement between the computed
and measured parameters β2 f l indicates the quality of partial
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Theory SC
Experiment

β2
fl

NO
+

A
1Π (v' =0)
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FIG. 4. Theory and experiment from Ref. 45. Panel (a): Cross section
for the population of the NO+ A 1�(v ′ = 0) vibronic state across the N∗O
resonance. Panel (b): Angular distribution parameter for the A 1�(v ′ = 0)
→ X 1�+(v ′′) fluorescence bands progression. Computed parameters were
convolved with a Gaussian of 110 meV FWHM.
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continuum photoelectron waves computed by the SC method
and supports the effect of ESI on the angularly resolved fluo-
rescence spectra suggested by the theory.45, 46

IV. SUMMARY

Basic equations of the SC method for the calculation of
highly delocalized discrete and partial photoelectron contin-
uum functions of molecules are presented, and an efficient
scheme for the numerical solution is discussed. The method
implies representation of MO as an expansion over spher-
ical harmonics with respect to a chosen single center and
subsequent solution of a system of coupled Hartree–Fock
differential equations for a photoelectron in discrete or contin-
uous spectra. The scheme implies the combination of the Nu-
merov finite-difference scheme with the vector sweep method
and allows noniterative inclusion of nonlocal exchange in-
teraction of a photoelectron with a molecular core. All nec-
essary relations for the numerical procedure are provided in
the Appendices. Implementation of the method results in an
accurate and stable numerical tool for the theoretical study
of angularly resolved molecular photoabsorption problems.
By several illustrative applications of the method to diatomic
molecules, we reveal its potential for studying molecular
photoionization in the discrete and continuous spectra. The
method allows straightforward application to nonlinear poly-
atomic molecules. We hope this short overview will attract
more attention to the method.
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APPENDIX A: DETAILS OF THE NUMERICAL
PROCEDURE

For the sake of convenience the system of equations (2)
can be rewritten as

d2 Pε�m(r )

dr2
=

∑
�′m ′

[ (
�(� + 1)

r2
− 2ε

)
δ��′δmm ′

+ 2V ne
�m�′m ′(r ) + 2J ee

�m�′m ′ (r )

]
Pε�′m ′(r )

+
∑
�′m ′

2K ee
�m�′m ′ (r )Pε�′m ′(r ). (A1)

By introducing the solution vector P = {P�m}, the nonlo-
cal exchange vector X = {X�m} = ∑

�′m ′ 2K ee
�m�′m ′(r )Pε�′m ′ ,

and the matrix F̂ = {F�m�′m ′ } = (�(� + 1)/r2 − 2ε)δ��′δmm ′

+ 2V ne
�m�′m ′(r ) + 2J ee

�m�′m ′(r ), the system (A1) takes the follow-
ing matrix form:

d2 P

dr2
= F̂ × P + X . (A2)

The Numerov finite-difference scheme relates the values of
an unknown multicomponent function satisfying Eq. (A2),

which do not include the first derivative of the desired func-
tion, to three neighboring points as

ân+1 × Pn+1 − b̂n × Pn + ân−1 × Pn−1 = fn + O(h6),

(A3)

with the â, b̂, and f matrices defined by

ân =
[

Ê − h2

12
F̂n

]
, b̂n =

[
2Ê + 10h2

12
F̂n

]
,

fn = h2

12
[Xn+1 + 10Xn + Xn−1]. (A4)

Here, Ê is the unity matrix and subscript n numerates grid
points with a constant integration step h.

The outward (out) or inward (in) vector sweep relates the
values of the unknown multicomponent function P at only
two neighboring points n and n + 1 or n − 1 and n, respec-
tively, via

P
out
n = U

out
n + V̂ out

n × P
out
n+1,

P
in
n = U

in
n + V̂ in

n × P
in
n−1.

(A5)

Substitution of expressions (A5) into Eq. (A3) allows deter-
mination of recurrent matrix relations for the V̂n and U n ma-
trices. Using the boundary condition for exponential decrease
of the desired multicomponent function in the spatial range
below the potential barrier, it is possible to reconstruct these
matrices at the whole coordinate grid. For the case of the out-
ward vector sweep, these relations read as

V̂ out
n = (

b̂n − ân−1 × V̂ out
n−1

)−1 × ân+1,

U
out
n = (

b̂n − ân−1 × V̂ out
n−1

)−1 × (
ân−1 × U

out
n−1 − f n

)
.

(A6)

The boundary conditions for sweep matrices at r → 0,

V̂ out
1 = V̂ out

2 = V̂ , U
out
1 = U

out
2 = 0, f 1 = f 2 = 0,

(A7)

allow one to start the outward vector sweep by solving the
following equation relatively to the unknown matrix V̂ :

V̂ = (b̂2 − â1 × V̂)−1 × â3. (A8)

The inward vector sweep can only be applied to solutions
in the discrete spectrum (ε < 0). Similar relations for matrices

V̂ in
n and U

in
n read as

V̂ in
n = (

b̂n − ân+1 × V̂ in
n+1

)−1 × ân−1,

U
in
n = (

b̂n − ân+1 × V̂ in
n+1

)−1 × (
ân+1 × U

in
n+1 − f n

)
.

(A9)

Integration of Eqs. (A9) can be started by applying the bound-
ary conditions at r → ∞,

V̂ in
N = V̂ in

N−1 = V̂, U
in
N = U

in
N−1 = 0, f N = f N−1 = 0,

(A10)
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resulting in the following equation relatively to the unknown
matrix V̂ :

V̂ = (b̂N−1 − âN × V̂)−1 × âN−2. (A11)

APPENDIX B: DETAILS OF THE INTEGRATION

1. Discrete spectrum

Equations (A6)–(A8) and (A9)–(A11) allow one to de-
termine sweep matrices V̂ out

n , U
out
n , n = 1, . . . , K + 1, and

V̂ in
n , U

in
n , n = K + 1, . . . , N , respectively, at each trial energy

ε. Matching the solutions of Eq. (A2), integrated in the two
opposite directions, and their derivations at the grid point K
results in the following system of linear equations relative to
the values P K of the desired vector function in this point:([

V̂ out
K

]−1 − V̂ in
K+1

) × P K = U
in
K+1 + [

V̂ out
K

]−1 × U
out
K .

(B1)

In absence of the exchange Coulomb potentials (i.e., X = 0),
the right hand side of Eq. (B1) is equal to zero. The homoge-
neous system of linear equations (B1) has a nontrivial solution
if

det
([

V̂ out
K

]−1 − V̂ in
K+1

)
= 0. (B2)

The latter equations are the criteria to determine the one-
electron energy ε for the solution of the homogeneous system
of equations (A2). Assuming that the solution (P�1m1 )K in the
first channel �1m1 has the value of 1 in the matching point K ,
it is possible to solve Eq. (B1) relative to values of the other
components �m at point K and to reconstruct the solution P
in the whole coordinate grid via vector sweep relations (A5).
It is obvious that if exchange Coulomb interaction is taken
into account (i.e., X �= 0), the system of linear equations (B1)
has a unique solution for any one-electron energy ε. In this
case, the invariability of the intermediate normalization of the
desired discrete function,∑

�m

〈Pn�m |Pn�m〉 = const. (B3)

is the criterion to determine a unique value of the energy at
each iteration step.

2. Continuum spectrum

Let the vector solution P
L M

in the channel L M has un-
known values (P L M

�m )N in the last grid point N . Using the vec-
tor sweep relations (A5) and the asymptotical condition (8) in
the last two points of the integration grid N and N − 1, one
can write

⎧⎪⎨⎪⎩
(
P L M

�m

)
N

− RL M
�m (H�)N = δL

� δM
m (J�)N ,∑

�′m ′

(
V L M

�m�′m ′
)out

N−1

(
P L M

�′m ′
)

N
− RL M

�m (H�)N−1 = δL
� δM

m (J�)N−1 − (
U L M

�m

)out

N−1 .
(B4)

For each channel L M , the system of 2C linear equations (B4)
relates C unknown solutions (P L M

�m )N in the last grid point and
C values of the RL M

�m matrix. Since two terms δL
� δM

m (J�)N and
δL
� δM

m (J�)N−1 in the right hand side of Eq. (B4) do never van-
ish simultaneously, this system is inhomogeneous at each step
of iteration over the exchange potential. Solving Eq. (B4) for
each channel L M determines the complete RL M

�m matrix and
all values of the solutions in the last grid point N in each
channel (P L M

�m )N . Afterward, one can reconstruct the continu-

ous solutions P
L M

in the whole coordinate grid via outward
vector sweep relation (A5) and renormalize them via transfor-
mation (9).

APPENDIX C: NONITERATIVE PROCEDURE

We redefine the partial harmonics of an electrostatic
Coulomb potential (6) as follows:

Yk(P1, P2) = r yk(P1, P2). (C1)

The harmonic (C1) of multiplicity k satisfies the following

differential equation:51

d2Yk(P1, P2)

dr2
= k(k + 1)

r2
Yk(P1, P2) − (2k + 1)

r
P1 P2,

(C2)

with the asymptotic conditions,

Yk(P1, P2) = Akrk+1 (r → 0) and

Yk(P1, P2) = Bkr−k (r → ∞). (C3)

Even for the case of a simple diatomic molecule (such
as O2, N2, NO, and CO), the exchange term (7) includes
about 105 potentials (6), which differs by (i) core shells (sum
over index c), (ii) partial harmonics of core MOs (sums over
indices �cmc and �′

cm ′
c), (iii) partial harmonics of a photo-

electron (indices �m and �′m ′), and (iv) by multiplicity k. In
order to reduce the amount of equations (C2), which must
be solved, to a satisfactory order, we introduce the general-
ized harmonics for exchange Coulomb potential as described
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below. For this purpose we change the order of summations
in the exchange term (7) entering Eq. (A1) as follows:∑
�′m ′

2K ee
�m�′m ′ Pε�′m ′

=
∑

c

2bc

∑
kq

∑
�′

cm ′
c

(−1)m ′
c
√

(2�′
c + 1)(2� + 1)

×
(

�′
c k �

0 0 0

) (
�′

c k �

−m ′
c q m

)
Yk(Pc, Pε)

r
Pnc�′

cm ′
c
.

(C4)

Generalized potential Yk(Pc, Pε) in Eq. (C4) describes the
harmonic of multiplicity k of the exchange Coulomb inter-
action of a photoelectron Pε with the core electron Pc and is
given via potentials (C1) by

Yk(Pc, Pε) =
∑
�cmc

∑
�′m ′

(−1)mc
√

(2�c + 1)(2�′ + 1)

×
(

�c k �′

0 0 0

) (
�c k �′

−mc q m ′

)
× Yk(Pnc�cmc , Pε�′m ′). (C5)

Using Eq. (C2), it is straightforward to show that general-
ized potentials (C5) satisfy the following differential equation
of the second order:

d2Yk(Pc, Pε)

dr2
= k(k + 1)

r2
Yk(Pc, Pε)

− (2k + 1)

r

∑
�cmc

∑
�′m ′

(−1)mc

×
√

(2�c + 1)(2�′ + 1)

(
�c k �′

0 0 0

)

×
(

�c k �′

−mc q m ′

)
Pnc�cmc Pε�′m ′ , (C6)

with the asymptotic conditions (C3). The complete exchange
interaction of a photoelectron with a core of a simple di-
atomic molecule can now be described with the help of
about 102 generalized potentials (C5). In order to determine
these potentials one needs to solve only about 102 differen-
tial equations (C6) instead of about 105 equations (C2) for
potentials (6).

Let us now introduce the vector solution P that includes
both the partial harmonic of a photoelectron and generalized
potentials,

P =
( {P�m}{

Yk(Pc, Pε)
})

. (C7)

Unification of a system of differential equations for a pho-
toelectron (Eq. (A1)) and generalized exchange potentials
(Eq. (C6)) results in the following homogeneous system of
differential equations relatively solutions (C7):

d2 P

dr2
= F̂ × P, (C8)

with the F̂ matrix defined by

F̂ =
( {F�m�′m ′ } {F�mck}

{Fck�′m ′ } {Fckc′k ′ }
)

. (C9)

Matrix elements F�m�′m ′ are defined in Appendix A, and the
explicit equations for the other matrix elements can be ob-
tained with the help of Eqs. (C4) and (C6). They read as

F�mck = 2bc

r

∑
q

∑
�′

cm ′
c

(−1)m ′
c
√

(2�′
c + 1)(2� + 1)

×
(

�′
c k �

0 0 0

) (
�′

c k �

−m ′
c q m

)
Pnc�′

cm ′
c
, (C10a)

Fck�′m ′ = − (2k + 1)

r

∑
�cmc

(−1)mc
√

(2�c + 1)(2�′ + 1)

×
(

�c k �′

0 0 0

) (
�c k �′

−mc q m ′

)
Pnc�cmc ,

(C10b)

Fckc′k ′ = k(k + 1)

r2
δkk ′δcc′ . (C10c)

Equations (C10) can be straightforwardly modified for the
new solution function (C7) redefined via Eq. (12) after chang-
ing the integration variable according to Eq. (11), as shown in
Sec. II B.

The homogeneous system of differential equations (C8)
can be solved noniteratively by the numerical procedure
described in Appendices A and B. In order to start numer-
ical integration, the asymptotic conditions (C3) for general-
ized exchange potentials must be utilized. For a homogeneous
system (i.e., X = 0), both U

out
and U

in
vectors in vector

sweep relations (A5) must be omitted. In the discrete spec-
trum, matching the solutions integrated in the two opposite
directions, and their derivations at the grid point K , result in
a homogeneous system of linear equations (given by Eq. (B1)
without right part) relatively to the values P K of the de-
sired vector function (C7) including both partial harmon-
ics of a photoelectron and generalized exchange potentials.
Equation (B2) is the criterion to determine the one-electron
energy ε in the discrete spectrum. In the continuum, integra-
tion must be performed outward only, and asymptotic con-
ditions (8) and (C3) allow one to determine a complete R-
matrix, all values of the solution (C7) in the last grid point
P N , as well as the asymptotic coefficients Bck in Eq. (C3), in
each channel L M .
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56K. C. Prince, M. Vondráček, J. Karvonen, M. Coreno, R. Camilloni, L.
Avaldi, and M. de Simone, J. Electron Spectrosc. Relat. Phenom. 101–103,
141 (1999).

57B. Kempgens, A. Kivimäki, M. Neeb, H. M. Koppe, A. M. Bradshaw, and
J. Feldhaus, J. Phys. B 29, 5389 (1996).

58H. Liebel, A. Ehresmann, H. Schmoranzer, Ph. V. Demekhin, B. M.
Lagutin, and V. L. Sukhorukov, J. Phys. B 35, 895 (2002).

59D. M. P. Holland, D. A. Shaw, S. M. McSweeney, M. A. MacDonald, A.
Hopkirk, and M. A. Hayes, Chem. Phys. 173, 315 (1993).

60E. Kukk, J. D. Bozek, W. Cheng, R. F. Fink, A. A. Wills, and N. Berrah, J.
Chem. Phys. 111, 9642 (1999).

61F. K. Gel’mukhanov, L. N. Mazalov, and A. V. Kondratenko, Chem. Phys.
Lett. 46, 133 (1977).

62Z. W. Gortel, R. Teshima, and D. Menzel, Phys. Rev. A 58, 1225
(1998).

63H. Wang, R. F. Fink, M. N. Piancastelli, M. Bässler, I. Hjelte, O. Björne-
holm, F. Burmeister, R. Feifel, A. Giertz, C. Miron, S. L. Sorensen, K.
Wiesner, and S. Svensson, Chem. Phys. 289, 31 (2003).

64A. Cesar and H. Ågren, Phys. Rev. A 45, 2833 (1992).

 This article is copyrighted as indicated in the abstract. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to  IP:

141.51.38.6 On: Thu, 31 Oct 2013 06:54:44

http://dx.doi.org/10.1063/1.1850898
http://dx.doi.org/10.1103/PhysRevA.35.1022
http://dx.doi.org/10.1063/1.453582
http://dx.doi.org/10.1063/1.1316046
http://dx.doi.org/10.1063/1.2126976
http://dx.doi.org/10.1063/1.3043437
http://dx.doi.org/10.1063/1.3043437
http://dx.doi.org/10.1063/1.468841
http://dx.doi.org/10.1103/PhysRevA.56.3666
http://dx.doi.org/10.1063/1.1467902
http://dx.doi.org/10.1088/0953-4075/30/12/011
http://dx.doi.org/10.1088/0953-4075/32/5/008
http://dx.doi.org/10.1016/0009-2614(75)85615-6
http://dx.doi.org/10.1016/0368-2048(95)02469-7
http://dx.doi.org/10.1063/1.473137
http://dx.doi.org/10.1088/0953-4075/30/24/008
http://dx.doi.org/10.1063/1.481241
http://dx.doi.org/10.1063/1.3042153
http://dx.doi.org/10.1103/PhysRevA.61.032704
http://dx.doi.org/10.1103/PhysRevA.61.032704
http://dx.doi.org/10.1088/0953-4075/36/7/310
http://dx.doi.org/10.1103/PhysRevA.75.032707
http://dx.doi.org/10.1016/S0065-3276(08)60086-6
http://dx.doi.org/10.1134/1.1843943
http://dx.doi.org/10.1134/1.1843943
http://dx.doi.org/10.1088/0953-4075/37/22/002
http://dx.doi.org/10.1088/0953-4075/42/16/165103
http://dx.doi.org/10.1063/1.3432199
http://dx.doi.org/10.1134/S0030400X07030022
http://dx.doi.org/10.1134/S0030400X07030022
http://dx.doi.org/10.1088/0953-4075/39/2/006
http://dx.doi.org/10.1140/epjd/e2007-00274-6
http://dx.doi.org/10.1103/PhysRevA.80.063425
http://dx.doi.org/10.1103/PhysRevA.81.069902
http://dx.doi.org/10.1088/0953-4075/43/6/065102
http://dx.doi.org/10.1103/PhysRevLett.104.243001
http://dx.doi.org/10.1088/0953-4075/43/16/165103
http://dx.doi.org/10.1103/PhysRevA.50.1218
http://dx.doi.org/10.1103/PhysRev.147.21
http://dx.doi.org/10.1088/0953-4075/34/13/304
http://dx.doi.org/10.1016/0022-4073(87)90115-4
http://dx.doi.org/10.1088/0953-4075/26/18/017
http://dx.doi.org/10.1088/0953-4075/34/22/311
http://dx.doi.org/10.1016/S0368-2048(98)00436-8
http://dx.doi.org/10.1088/0953-4075/29/22/016
http://dx.doi.org/10.1088/0953-4075/35/4/313
http://dx.doi.org/10.1016/0301-0104(93)80148-3
http://dx.doi.org/10.1063/1.480337
http://dx.doi.org/10.1063/1.480337
http://dx.doi.org/10.1016/0009-2614(77)85180-4
http://dx.doi.org/10.1016/0009-2614(77)85180-4
http://dx.doi.org/10.1103/PhysRevA.58.1225
http://dx.doi.org/10.1016/S0301-0104(02)00792-9
http://dx.doi.org/10.1103/PhysRevA.45.2833

