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Abstract

An electronic theory is developed, which describes the ultrafast demagneti-

zation in itinerant ferromagnets following the absorption of a femtosecond

laser pulse. The present work intends to elucidate the microscopic physics

of this ultrafast phenomenon by identifying its fundamental mechanisms.

In particular, it aims to reveal the nature of the involved spin excitations

and angular-momentum transfer between spin and lattice, which are still

subjects of intensive debate.

In the first preliminary part of the thesis the initial stage of the laser-induced

demagnetization process is considered. In this stage the electronic system

is highly excited by spin-conserving elementary excitations involved in the

laser-pulse absorption, while the spin or magnon degrees of freedom remain

very weakly excited. The role of electron-hole excitations on the stability of

the magnetic order of one- and two-dimensional 3d transition metals (TMs)

is investigated by using ab initio density-functional theory. The results show

that the local magnetic moments are remarkably stable even at very high

levels of local energy density and, therefore, indicate that these moments

preserve their identity throughout the entire demagnetization process.

In the second main part of the thesis a many-body theory is proposed, which

takes into account these local magnetic moments and the local character of

the involved spin excitations such as spin fluctuations from the very begin-

ning. In this approach the relevant valence 3d and 4p electrons are described

in terms of a multiband model Hamiltonian which includes Coulomb inter-

actions, interatomic hybridizations, spin-orbit interactions, as well as the

coupling to the time-dependent laser field on the same footing. An exact

numerical time evolution is performed for small ferromagnetic TM clusters.
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The dynamical simulations show that after ultra-short laser pulse absorp-

tion the magnetization of these clusters decreases on a time scale of hun-

dred femtoseconds. In particular, the results reproduce the experimentally

observed laser-induced demagnetization in ferromagnets and demonstrate

that this effect can be explained in terms of the following purely electronic

non-adiabatic mechanism: First, on a time scale of 10–100 fs after laser

excitation the spin-orbit coupling yields local angular-momentum transfer

between the spins and the electron orbits, while subsequently the orbital

angular momentum is very rapidly quenched in the lattice on the time scale

of one femtosecond due to interatomic electron hoppings. In combination,

these two processes result in a demagnetization within hundred or a few

hundred femtoseconds after laser-pulse absorption.
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Deutsche Übersetzung des Titels und der

Zusammenfassung

Titel:

Vielteilchentheorie der laserinduzierten ultraschnellen

Demagnetisierung und des Drehimpulstransfers in

ferromagnetischen Übergangsmetallen

Zusammenfassung:

Es wird eine elektronische Theorie entwickelt, die die durch Absorption eines Femto-

sekunden-Laserpulses induzierte ultraschnelle Demagnetisierung in itineranten Ferro-

magneten beschreibt. Die vorliegende Arbeit beabsichtigt die mikroskopische Physik

dieses ultraschnellen Phänomens durch Identifizierung seiner grundlegenden Mechanis-

men aufzuklären, die nach wie vor Gegenstand intensiver Debatten sind. Insbesondere

soll die Natur der beteiligten Spinanregungen und des Drehimpulstransfers zwischen

Spin und Gitter aufgedeckt werden.

Im ersten vorbereitenden Abschnitt dieser Doktorarbeit wird das Anfangsstadium

des laserinduzierten Demagnetisierungsprozesses betrachtet. In dieser Phase ist das

elektronische System hochangeregt durch Spin-erhaltende Anregungen, die bei der Ab-

sorption des Laserpulses auftreten, wohingegen die Spin- oder Magnon-Freiheitsgrade

sehr schwach angeregt bleiben. Durch Anwendung der ab initio Dichtefunktionalthe-

orie wird der Einfluss der Elektron-Loch-Anregungen auf die Stabilität ein- und zwei-

dimensionaler 3d-Übergangsmetalle untersucht. Die Resultate zeigen, dass die lokalen
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magnetischen Momente außergewöhnlich stabil sind, sogar bei sehr hohen lokalen Ener-

giedichten. Dies deutet darauf hin, dass die lokalen Momente ihre Identität während

des ganzen Demagnetisierungsprozesses bewahren.

Im zweiten und zentralen Teil der Dissertation wird eine Vielteilchentheorie vorge-

schlagen, die die lokalen magnetischen Momente und den lokalen Charakter der beteilig-

ten Spinanregungen, wie zum Beispiel Spinfluktuationen, von Anfang an mitberück-

sichtigt. In diesem Ansatz werden die relevanten 3d und 4p Valenzelektronen mit-

tels eines Mehrband-Modell-Hamiltonoperators beschrieben, der die Coulombwechsel-

wirkungen, interatomare Hybridisierung, Spin-Bahn-Wechselwirkungen und die Kop-

plung an das zeitabhängige Laserfeld auf gleicher Basis einbezieht. Es wird eine ex-

akte numerische Zeitentwicklung für kleine ferromagnetische Übergangsmetall-Cluster

durchgeführt. Die dynamischen Simulationen zeigen, dass die Magnetisierung dieser

Cluster nach der Absorption eines ultrakurzen Laserpulses auf einer Zeitskala von 100

Femtosekunden abfällt. Insbesondere reproduzieren die Resultate die experimentell

beobachtete laserinduzierte Demagnetisierung in Ferromagneten und beweisen, dass

dieser Effekt mittels des folgenden rein elektronischen nicht-adiabatischen Mechanis-

mus erklärt werden kann: Zunächst führt auf einer Zeitskala von 10–100 fs nach Laser-

anregung die Spin-Bahn-Kopplung zu lokalem Drehimpulstransfer zwischen den Spins

und den elektronischen Orbitalen, während anschließend der orbitale Drehimpuls sehr

schnell auf der Zeitskala von einer Femtosekunde aufgrund interatomarer Bewegung der

Elektronen im Gitter verschwindet. Das Zusammenspiel dieser zwei Prozesse resultiert

in einer Demagnetisierung innerhalb Hundert oder einiger Hundert Femtosekunden

nach Absorption des Laserpulses.
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ĤN , HN Hamiltonian / Hamiltonian matrix

projected onto the Krylov subspace

KN
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1

Introduction

The ultrafast magnetization dynamics in ferromagnetic transition metals (TMs) rep-

resents a most interesting and active research field. In the last two decades a large

effort has been made in order to explore the demagnetization and even the magnetiza-

tion reversal on the femtosecond (fs) timescale as well as to understand the underlying

physics. The present introduction contains a brief overview of this physical effect and

gives the state of the art of theoretical approaches. In particular, several open funda-

mental questions about the microscopic mechanisms responsible for the experimental

observations are discussed, which have motivated the present work.

1.1 Ultrafast demagnetization in ferromagnetic transition

metals

In their famous 1996 work Beaurepaire et al. have studied the relaxation processes

of electrons and spins systems following the absorption of fs optical pulses in ferro-

magnetic (FM) nickel films (1). They have shown that the Ni magnetization rapidly

breaks down during the first picosecond after the excitation. This was a very remark-

able experimental finding, since the dynamics of the magnetization proceeds much

faster than the shortest magnetic-moment precession periods, which take place on a

considerably slower picosecond–to–nanosecond time scale. In this way, the authors pi-

oneered the new interesting research field of laser-induced ultrafast demagnetization.

In subsequent years, several groups have performed time-resolved pump and probe ex-

periments on thin films and polycrystalline surfaces of magnetic 3d TMs in order to

1



1. INTRODUCTION

Figure 1.1: Setup of a typical femtosecond time-resolved X-ray magnetic cir-

cular dichroism experiment - After Ref. (8).

further investigate this phenomenon. Most of the experiments have been performed on

Ni (2, 3, 4, 5, 6, 7, 8, 9, 10), which has the lowest Curie temperature (TC = 631 K)

among the 3d TMs. Therefore, only relatively low absorbed energies are required to

induce a demagnetization. However, the ultrafast demagnetization has also been ob-

served in other FM metals, for instance in Co (4, 9, 11) and Fe films (12).

A variety of techniques has been applied in these experiments in order to measure

the laser-induced magnetization changes as a function of time. Several groups, includ-

ing Beaurepaire et al., have used the magneto-optical Kerr effect1 (MOKE). This allows

to record hysteresis loops at different time delays between pump and probe pulses and

thus to measure the magnetic remanence of the sample as a function of pump-probe

delay (1, 11, 12). Moreover, MOKE allows to measure the ellipticity and rotation of the

polarization of the reflected light beam (5, 6, 9). Both quantities are directly related

to the material magnetization. In addition, a nonlinear magneto-optical method has

been applied in Refs. (2, 4), where second-harmonic generation (SHG) has been used to

probe the ultrafast magnetization dynamics in Ni and Co. In this case the information

about the magnetic response to laser irradiation was obtained from differences of the

SHG reflected intensity for opposite magnetization directions. Besides magneto-optical

methods, there are other techniques based on photoemission spectroscopy, which have

also been used to measure the time-dependent sample magnetization (3, 7, 11). For

example, one considers the electrons that are photoemitted by a probe pulse, and sub-

1The MOKE describes the changes in polarization and intensity of a light beam after being reflected

from a magnetic surface. Two aspects of this effect have actually been used to measure the magneti-

zation dynamics: First, depending on the material magnetization ~M , linearly polarized incident light

undergoes a rotation of its polarization and/or becomes elliptically polarized. Second, the reflected

intensity depends on the magnitude and direction of ~M .
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1.1 Ultrafast demagnetization in ferromagnetic transition metals

Figure 1.2: Time-resolved XMCD signal of a 15 nm Nickel film - The reference

time corresponds to the center of the femtosecond pump pulse which has a 100 fs time

width. The decrease of the XMCD signal reflects the decrease in the Ni magnetization

within around 120 fs. After Ref. (8).

sequently, one measures the spin polarization of these photoelectrons by using a Mott

detector. The corresponding energies can be detected with a time-of-flight technique.

Finally, let us mention the X-ray magnetic circular dichroism (XMCD) method, which

was used by Stamm et al. (8, 10). This method is based on the dependence of the

absorption of circularly polarized X-ray pulses in magnetized metals as a function of

the photon helicity. In fact, the difference in the absorption spectra for pulses having

opposite circular polarizations (i.e., the XMCD signal) gives a measure for the material

magnetization. As an example, the setup of the time-resolved XMCD measurements

reported in Ref. (8) is illustrated in Figure 1.1. Figure 1.2 shows the corresponding

XMCD signal of a 15 nm Ni film, which is excited by a fs laser pulse. The decrease of

this signal reflects the ultrafast demagnetization effect (8).

To summarize, there is a lot of evidence that the excitation of a magnetic TM film

with an ultrashort laser pulse gives rise to a demagnetization on a time scale τdm of

about hundred or a few hundred femtoseconds. It is clear that the relaxation is so

fast that it cannot be explained simply by thermal heating arguments. This ultrafast

effect can open the way to new technical applications of controlling and manipulat-

ing the magnetization on a subpicosecond time scale. For instance, new faster writing

methods in magnetic data storage and memory devices could be developed taking ad-
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vantage of this effect. However, in order that this aim becomes possible it is essential to

elucidate the microscopic mechanisms responsible for the remarkable demagnetization

phenomenon. Unfortunately, the microscopic physics behind this effect is not prop-

erly understood yet. Although different physical pictures have been proposed in the

literature in order to explain this ultrafast demagnetization, a number of fundamen-

tal questions still remain unanswered. These physical pictures and the related open

questions are discussed in the following Section.

1.2 Underlying physics

Several explanations have been raised during the discussion of ultrafast magnetization

dynamics in itinerant 3d TMs. Most of these physical interpretations divide the prob-

lem into three components concerning different degrees of freedom: the translational

and orbital motion of the electron, the spin variables, and the lattice dynamics (see

Figure 1.3). The first of them combines the atomic orbital degrees of freedom and

the electron motion throughout the lattice. Second, the spin subsystem describes the

spin degrees of freedom including local spin fluctuations and collective spin waves. The

third subsystem comprises the motion of the ion cores which form the lattice, usu-

ally characterized in terms of phonons (collective lattice vibrations). According to this

classification, energy (or temperature assuming thermalization) and angular momen-

tum can be transferred between the components. The laser pulse couples with the

electronic degrees of freedom and therefore energy is pumped from the external electric

field into the electron bath. The actual demagnetization corresponds mainly to a de-

crease of spin angular momentum1, which of course implies an increase of the energy of

the spin subsystem. The physical pictures proposed in the literature for different steps

of this ultrafast effect are briefly discussed in the following. In particular, we will focus

our attention on two central questions: Which microscopic processes govern the energy

1The magnetic moment is given by ~µ = −µB~ (~L + 2~S), including in general both orbital angular

momentum ~L and spin ~S. Importantly, in TMs ~L is usually quenched by the crystal field, implying

that ~S yields more than 90% of the sample magnetization. Only in small metallic clusters or in systems

having reduced dimensions (e.g., wires) the quenching of ~L is significantly weaker than in the bulk.

Even if in these cases ~L can contribute appreciably to the total magnetization, it remains in general

less important than the spin moments.
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Figure 1.3: Different degrees of freedom - According to literature [for instance,

Refs. (1) and (9)], the problem can be schematically divided into the electronic transla-

tional, lattice, and electronic spin subsystems. An angular momentum and energy (or

temperature assuming thermalization) are assigned to each component. The double-sided

arrows denote the couplings allowing exchange of energy and angular momentum between

the different subsystems. The bold arrow illustrates the pump laser pulse which couples

only with the electronic translational and orbital degrees of freedom.

and angular momentum transfer between the electronic, spin and lattice systems? And,

at which time scales do these processes take place?

1.2.1 Laser excitation

Upon laser excitation electron-hole pairs are generated almost instantaneously. It is

important to recall that the external laser field cannot directly change by itself the mag-

netization, since the dominant dipolar transitions preserve the spin projection of the

electron involved in the excitation and thus the total spin (13). Consequently, the fast

magnetization decrease following the laser excitation reflects intrinsic dynamical prop-

erties of the excited magnetic metal. It involves spin angular-momentum transfer, since

just after absorption the total spin remains unchanged. A microscopic understanding

of this effect seems therefore far from trivial from a conceptual point of view.
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1.2.2 Nonequilibrium between different degrees of freedom

The laser pulse initially creates a strong-nonequilibrium situation between excited

translational electronic degrees of freedom and nearly non-excited spin and lattice de-

grees of freedom. The overall dynamics depends on the couplings providing exchange of

energy and angular momentum between these three reservoirs, and on the correspond-

ing relaxation times. It is generally accepted that in the considered transition metals

the energy relaxation from the electrons to the lattice takes a few picoseconds (1, 6, 13).

The process of lattice heating occurs via electron-phonon interaction. Concerning the

coupling between spins and lattice, the characteristic times for energy exchange between

the magnetic system and the lattice vibrations are about 10–100 ps (1, 2, 13). The corre-

sponding mechanism is the interaction between the spin waves and the phonons, which

is mediated by spin-orbit coupling (SOC). These considerations clearly show that the

magnetic response (taking place on a timescale of 100 fs) is much faster than the ther-

malization times with the lattice. One concludes that the fs demagnetization cannot

be explained in terms of thermalization effects. In contrast, a strong nonequilibrium,

with the lattice on the one side and the electronic degrees of freedom on the other side,

seems to prevail during the whole ultrafast phenomenon.

1.2.3 Themalization of excited electrons

Before any significant relaxation between the three different kinds of reservoirs takes

place, i.e., subsequently to the laser excitation, the excited electron gas rapidly ther-

malizes its translational degrees of freedom to a Fermi-like distribution due to electron-

electron interactions (1, 2, 6, 13). Since the typical electronic collision time in ordinary

metals is of the order of 10 fs (14), one estimates that a few femtoseconds are enough to

redistribute the absorbed energy within the electronic-translational degrees of freedom

and thus thermalize them. Again, it is important to recall that all electron-electron

collision processes preserve the total spin too. Therefore, after internal thermalization

of the electronic translation and orbital subsystem the total magnetization should be

the same as before absorption. The ultrafast demagnetization seems to be the result

of the relaxation between electronic-orbital and spin degrees of freedom.1

1A demagnetization mechanism within the absorption time of the laser pulse has been proposed in

Ref. (15). However, this theory seems not to apply to a number of more recent experiments showing

that the demagnetization mainly proceeds after the pump pulse is over (6, 7). See also Section 1.4.2.
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1.2.4 Relaxation between electronic orbital and electronic spin de-

grees of freedom

For the spins and the translational electronic subsystem to equilibrate, a mechanism

providing efficient exchange of energy and angular momentum between the correspond-

ing degrees of freedom is essential. This constitutes the key to understanding the ul-

trafast magnetization dynamics. Already in the early stages of this research field, it

has been argued that the electron-phonon interactions are too slow to account for a

transfer of spin ~S to lattice angular momentum ~Llattice at a ∼ 10 fs time scale (6).

Moreover, it is generally accepted that during the demagnetization (τdm ∼ 100 fs) the

lattice temperature does not yet change significantly (13). Therefore, one concluded

that the spin relaxation relies mainly on an electronic mechanism, i.e., without involv-

ing the coupling to phonons in a crucial way. In fact, the spin-orbit interaction was

regarded as the natural mechanism behind the magnetization dynamics. The idea that

the ultrafast demagnetization proceeds on an electronic level was confirmed by Rhie et

al., who found a collapse of the magnetic exchange splitting for the Nickel 3d valence

states with a time constant of τdm ≈ 300 fs (7). They attributed the quenching of

the Ni magnetic moment to energy transfer, mediated by SOC, from hot electrons to

low-energy spin excitations such as Stoner excitations (16) or magnons (17).

However, several years later a mechanism based on electron spin-flip scattering with

phonons has been proposed. In fact, Koopmans et al. explained the demagnetization

effect by assigning a spin-flip probability —induced by SOC— to each electron-phonon

scattering event (18, 19).1 In that way not only electronic interactions but also inter-

actions with phonons were considered as relevant contributions to the sub-picosecond

magnetic response (11). Since then a controversy has arose concerning the question,

whether the ultrafast effect proceeds on a purely electronic level or whether it also

involves the excitation of phonons.

In this context it is worth mentioning that the SOC Hamiltonian is essentially given

by terms of the form ~Lj · ~Sj , where j denotes a single atom. Therefore, the SOC con-

serves the atomic total angular momenta ~Jj = ~Lj + ~Sj . This local angular-momentum

conservation has an important consequence: If SOC alone (a mechanism based on a

purely electronic level) is responsible for the decrease of the spin magnetization, then

1This mechanism is discussed in more detail in Section 1.4.3.
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the decrease of 〈~S〉 should in principle be accompanied by a corresponding increase of

〈~L〉. Stamm et al. investigated precisely this issue by performing time-resolved XMCD

experiments. In a path-breaking work they demonstrated that the spin and orbital

angular momenta are both quenched on a time scale of 120 fs after laser excitation (8).

Inspired by this work, Stamm et al. and many other scientists in this field concluded

that electron orbits do not act as a reservoir for angular momentum. In contrast,

electron spin-flip scattering with phonons or impurities have been considered to be re-

sponsible for the ultrafast demagnetization and the angular-momentum transfer from

the spins to the lattice (20, 21, 22). This is the explanation provided by the popular

microscopic three-temperature model (23).

On the other side, it can be argued that ~L is very rapidly quenched by the electron

motion in the metal and, therefore, the SOC triggered transfer from ~S to ~L cannot

be observed in an experiment with a finite time resolution of about 50 fs. One would

then just observe the decrease of ~S. Assuming this, Carpene et al. proposed a physical

picture, in which the rapid (τdm ∼ 100 fs) demagnetization, and in particular the

observations of Stamm et al. in Ref. (8), can be qualitatively understood on a purely

electronic level, i.e., without involving a direct coupling with the lattice (12). According

to this picture, electron-magnon interactions mediated by the SOC result in a transfer

of spin ~S to orbital angular momentum ~L, while ~L is almost instantaneously quenched

in the lattice due to interatomic electron hoppings. These considerations show that the

combination of these two effects (SOC yielding angular-momentum transfer from ~S to

~L, and the subsequent quenching of ~L in the lattice) may be a possible mechanism of

the fs demagnetization in TMs.

In summary, the driving mechanism for the ultrafast relaxation between electronic

translational and electronic spin subsystems is not yet thoroughly understood. A quan-

titative prediction of the time dependence of the magnetization is still lacking. In par-

ticular, the important question, whether the observed fs magnetization dynamics may

proceed on a purely electronic level, or whether it necessarily involves interactions with

the phonons, has not been answered. Needless to say that understanding the mecha-

nism behind the ultrafast relaxation would allow us to elucidate the nature of the spin

excitations involved in this process. This represents a problem of considerable interest.

In fact, it is not clear if the observed demagnetization is the result of vanishing or
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strongly reduced local magnetic moments, or if it is the result of the excitation of spin

waves and local fluctuations of local moments having almost conserved magnitudes.

1.2.5 Magnetization recovery at the picosecond timescale

For times longer than the demagnetization time (τdm ∼ 100 fs) the electron temperature

associated to the electronic translational and orbital degrees of freedom equilibrates

with the lattice due to electron-phonon interactions (1, 2, 6, 13). As discussed above

(see Section 1.2.2), this typically takes place within a few picoseconds. Similarly, the

spin degrees of freedom come to equilibrium with electronic orbital or translational and

lattice degrees of freedom on a long time scale of about 10–100 ps. The final equilibrium

state is characterized by a recovery of the magnetization, although to somewhat reduced

values due to the additional thermal disorder in the spin system (6).

1.2.6 Some open questions

In conclusion, despite intensive efforts in describing the physics behind the ultrafast

laser-induced demagnetization, several fundamental questions remain open:

• Is this phenomenon a purely electronic effect, or does it necessarily require phonon

excitations to a significant extent?

• Which are the essential microscopic mechanisms responsible for the spin relax-

ation, i.e., for the angular-momentum transfer away from the spin subsystem?

• What is the nature of the involved spin excitations?

In order to understand the complex underlying many-body physics, it is clear that

one needs —besides enlightening experiments— a theory describing the fundamental

microscopic mechanisms. The theoretical approaches proposed so far in the literature

are discussed in Section 1.4. However, prior to this, it is worth comparing the ultrafast

magnetization dynamics in ferromagnetic TMs, which is the subject of the present

thesis, with similar phenomena observed in other materials.
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1.3 Comparison with ultrafast magnetization dynamics in

other materials

In this Section we briefly review the laser-induced ultrafast magnetization dynamics,

which has been observed in materials other than transition metals (24). In addition,

the basic physics behind these observations is compared with that described in the

previous Section 1.2.

First of all, let us recall that the 3d TMs such as Fe, Co and Ni are itinerant fer-

romagnets. This means that the 3d electrons at the Fermi level are at the same time

excited by the optical pulse and responsible for the magnetic properties. The situation

is quite different in magnetic rare-earth metals such as Gd for which ultrafast demag-

netization has been observed in many experiments (25, 26, 27, 28, 29). Gadolinium

can be regarded as a prototype system for a Heisenberg or localized-electron ferromag-

net in the sense that the half-filled 4f shell dominates magnetism. In fact, the large

magnetic moment of 7µB per atom is carried by the strongly localized 4f electrons.

The FM coupling of neighboring 4f magnetic moments is then mediated by the 5d6sp

conduction-band electrons. A small spin polarization of 0.55µB per atom is induced in

the 5d6sp valence band by means of intra-atomic 4f–5d exchange interactions. There-

fore, the physics of magnetism in 3d TMs and in 4f rare-earth metals are fundamentally

different: In the former case, the itinerant electrons having a significant band width

(∼ 5 eV) dominate magnetism, whereas in the latter case strongly localized 4f elec-

trons are responsible for magnetism. This suggests that the physics of magnetization

dynamics is also fundamentally different. Indeed, in the case of Gd the optical pump

pulses excite the conduction electrons in the 5d6sp valence band and not the localized

4f electrons. It is commonly assumed that this excitation weakens the exchange inter-

action of neighboring magnetic moments and thus results in a reduction of magnetic

order (25). Therefore, in order to understand the spin-relaxation mechanisms, it is

indispensable to take into account energy and angular-momentum transfer processes

between the 4f and the 5d6sp electrons (23). It is worth noting the separation of roles

of the relevant electrons in Gd. The 4f electrons are responsible for magnetism, while

the 5d6sp electrons mediate the FM coupling between localized 4f electrons. Moreover,

only the 5d6s electrons interact with the laser field. This contrasts with the situation
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in 3d TMs, where the same 3d electrons play these two roles. This renders the de-

scription of ultrafast demagnetization in Gd quite different from the case of itinerant

ferromagnets such as Ni.

Let us now briefly discuss some experiments on magnetic alloys. For instance,

the ultrafast demagnetization effect has been found in permalloys such as NiFe (30)

and FeRh alloys (31). In particular, numerous works have been devoted to study

the magnetization reversal in GdFeCo, both in thin films (32, 33, 34, 35, 36) and in

small nanostructures (37). The material used in these experiments, GdFeCo, is a rare-

earth – 3d TM ferrimagnetic alloy having two sublattices with opposite magnetization

directions. One of them corresponds to the Gd atoms and the other to the 3d TM atoms

(Fe and Co). It can be regarded as a Heisenberg ferrimagnet, since the magnetization

in the two sublattices has opposite sign and is not compensated. In all these examples,

the distinct sublattices are different in their dynamical and magnetic properties, i.e.,

they have different demagnetization times and magnetic moments. Consequently, the

exchange interaction between the sublattices is essential for understanding the local

and total magnetization dynamics.

Finally, one should mention the rare-earth orthoferrites, which have a strong tempe-

rature-dependent magnetic anisotropy due to their strong spin-orbit interaction. In this

case, experiments have shown a somewhat slower picosecond laser-induced spin reori-

entation (38, 39, 40). Here, the observed magnetization dynamics is usually explained

as the result of an ultrafast change of the magnetic anisotropy axis, which follows from

the excitation and relaxation of both electron and phonon degrees of freedom.

The present brief and by far not exhaustive description of the experimental situa-

tion should already show that the physics of ultrafast magnetization dynamics is very

manifold and the details of the observed behaviors depend on the kind of material

involved in the experiment. In the following we consider only the fundamental case

of ferromagnetic transition metals such as Ni, on which the pioneering experiments

have been performed (1). In our views, understanding the microscopic physics in these

metals should provide a basis for the explanation of ultrafast magnetization dynamics

in other more complex materials.
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1.4 Theoretical approaches

Several approaches to the theoretical description of ultrafast demagnetization in 3d

TMs can be found in the literature. In this Section, we summarize a number of them,

as far as we know, the most important ones. In doing so, we mainly focus on theories

which aim to describe the microscopic mechanism of the spin-relaxation processes.

1.4.1 Phenomenological three-temperature model

In their pioneering work Beaurepaire et al. used a model based on three thermalized

baths: electrons, spins and phonons (1). In this approach the time evolution of the

electron-, spin-, and phonon-temperature is described by three coupled differential rate

equations. It is worth noting that —from a fundamental point of view— the introduc-

tion of a temperature for the spin system, which is far from equilibrium on the fs time

scale, seems quite questionable. Moreover, the interactions between the three baths are

considered in a phenomenological manner. Therefore, this model does not answer the

question about the nature of the dominant electron-spin interaction. In fact, it does

not aim to provide any insight into the microscopic processes involved. In order to

remove this limitation, a number of further theoretical works have been performed on

the description of the corresponding microscopic physics.

1.4.2 Coherent demagnetization

At the early stages of the theoretical discussion of the microscopic origin of ultrafast

demagnetization, it has been debated whether this phenomenon is a coherent or an

incoherent effect. The question is whether the demagnetization occurs coherently with

the exciting laser pulse, or whether it sets in independently of it, after the pulse ab-

sorption is over. In this context Zhang et al. presented a theory which describes the

ultrafast spin dynamics as a coherent and cooperative effect of the external laser field

and the internal SOC (15). The basic idea is that the SOC smears out the original

identity of the triplet and singlet states, while the laser field takes advantage of this

quantum-mechanical mixing as an avenue to induce demagnetization. In order to sup-

port theoretically this picture, Zhang et al. used a quantum-mechanical model including

on-site Coulomb interaction, band structure, SOC and the external electric field repre-

senting the fs laser pulse. Phonons were neglected. By calculating the coherent time
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evolution of the many-electron state and of the magnetic moment, they showed that

a very large reduction of the magnetic moment, more than 40%, is accomplished on a

time scale shorter than 20 fs.

In a later work, Bigot et al. also investigated the coherent ultrafast demagnetiza-

tion induced by femtosecond laser pulses (9). According to their physical picture, the

material polarization induced by the photon field interacts coherently with the spins.

The corresponding mechanism has its origin in relativistic quantum electrodynamics.

However, experiments such as those reported in Ref. (7) showed that the quenching

of the Ni exchange splitting mainly happens after the pump pulse is over. Moreover,

it has been argued that the experimental number of photons involved in the laser field

is not enough to be responsible for a coherent demagnetization (6). Consequently,

a synchronic demagnetization during the absorption of the exciting laser pulse does

not seem plausible. In fact, most of the other theoretical approaches consider the

demagnetization as an incoherent thermal effect whose time scale is mainly determined

by internal equilibration processes (24).

1.4.3 Electron-phonon spin-flip scattering

One of the main open questions in the physics of ultrafast magnetization dynamics is

to understand if this phenomenon is a purely electronic effect, or if it involves to an im-

portant extent phonon excitations and electron-phonon interactions (see Section 1.2.6).

Koopmans et al. considered the latter hypothesis and investigated the potential role

of phonons in the ultrafast demagnetization process (18, 19). They coined the idea of

regarding the lattice vibrations as a sink for angular momentum. The model that they

introduced consists of three subsystems which interact with each other: (i) indepen-

dent spin-less electrons, (ii) the lattice described by an ensemble of harmonic oscillators

obeying Bose-Einstein statistics, and (iii) a spin system described by an ensemble of

identical two-level systems, which obeys Boltzmann statistics and which is treated us-

ing a mean-field Weiss model for ferromagnetism (18). The lattice and spin subsystems

are assumed to stay in internal equilibrium during the entire process. The most novel

aspect of this work is that a finite spin-flip rate αsf induced by the SOC is assigned to

each electron-phonon scattering event. These electron-phonon spin-flip processes have

been introduced following the ideas of Elliott and Yafet, which were very successful in

the context of spin dynamics in semiconductors (41, 42). By solving the Boltzmann
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equation for this simple model, they demonstrated that it is possible to have a demag-

netization process with the proper subpicosecond time scale. This is shorter than the

electron-phonon equilibration time, even though the demagnetization is mediated by

phonon scattering. Consequently, the authors argued that phonon-mediated spin-flip-

scattering in the spirit of the Elliott and Yafet model provides a significant contribution

to the fs magnetic response (18, 19).

The theoretical foundation for this concept has been laid by the group of M.

Fähnle (20, 21, 22). Based on their interpretation of the work of Stamm et al. (8),

they excluded the direct transfer of spin angular momentum to orbital angular mo-

mentum within the electronic degrees of freedom as a fundamental process in the post-

excitation dynamics (see Section 1.2.4). Instead, the transfer of electronic spin angular

momentum to the angular momentum of the lattice is considered as the central spin-

relaxation mechanism. This is achieved through Elliott-Yafet (EY) scattering events,

i.e., through single-particle processes between an excited electron and a phonon. The

group of Fähnle has extended Elliott-Yafet’s theory of spin relaxation, originally for-

mulated for nonmagnetic materials, to ferromagnets (21). In particular, a so-called

EY relation has been derived which relates the spin-relaxation time to the spin-mixing

parameter b2, which measures the degree of spin mixing1 for the involved single-particle

states (20). Indeed, ab initio calculations of b2 give quantitative support for the EY

mechanism in the discussion of ultrafast demagnetization after fs laser-pulse absorption.

This spin-flip scattering mechanism has been successfully used in the microscopic

three-temperature model (M3TM) of Koopmans et al. (23), which extends a previous

model of Koopmans et al. (18). The new model considers the exchange of energy

between three subsystems: electrons, lattice and spins, which separately always stay in

thermal equilibrium. In this model, the spin relaxation is mediated by EY-like processes

with a spin-flip rate αsf for electron-phonon scattering events. The authors derived a

compact differential equation for the magnetization, and phenomenologically described

the overall dynamics of the three subsystems by a set of three coupled rate equations.

In this way, the conservation and transfer of angular momentum was explicitly taken

into account. By means of the M3TM Koopmans et al. succeeded to explain on the

same footing the different demagnetization time scales observed in 3d TMs (e.g., Ni,

Co) and in 4f rare earths like Gd [see Refs. (25, 26)].

1Notice that the spin of the electron is not a good quantum number due to spin-orbit interaction.
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However, despite successful applications based on phonon-mediated spin-flip scat-

tering, some open questions remain. First, within the performed calculations of the

spin-mixing parameter b2 the occupied and unoccupied single-electron states were de-

termined using the effective density functional of the FM ground state at temperature

T = 0. Thus, the change in the electronic structure following the fs laser-induced exci-

tation has not been taken into account. Second, it is not clear if the EY theory can be

applied to discuss ultrafast demagnetization because in these experiments the system

is driven far away from equilibrium. In principle, the EY theory is only valid for a situ-

ation close to equilibrium (20). Third, within this approach electron-phonon scattering

rates are determined by means of Fermi’s golden rule, which considers long transition

times. However, the demagnetization time of 100 fs is short in this regard, since it cor-

responds to less than one oscillation period of a typical phonon in Fe or Ni. Notice that

on such short time scales the measurable energy distribution of the excited phonons

has a very broad width. In other words, the scattered electron does not precisely know

the phonon frequency. Therefore, it is not at all clear that Fermi’s golden rule can be

applied, since the latter implies energy conservation (22). Moreover, recent ab initio

investigations indicate that the contribution of EY electron-phonon spin-flip scattering

is probably too small to account for fs demagnetization in Nickel (43). To summarize,

the applicability of the EY mechanism to the strong-nonequilibrium situation found

during the ultrafast demagnetization remains an open question.

1.4.4 Spin-polarized electron diffusion

Recently, a semiclassical model for fs laser-induced demagnetization has been pro-

posed, which involves spin-polarized excited-electron diffusion in the superdiffusive

regime (44). This mechanism accounts for the experimentally observed demagnetization

within τdm ≈ 200 fs in Ni, without the need to invoke any angular-momentum dissi-

pation channel. The picture here is that the majority spin electrons are diffused from

the thin Ni film toward the Al substrate after laser excitation. However, Schellekens et

al. have recently tested this mechanism by pumping Ni thin films both on insulating

substrates and on conducting buffer layers (45). These experiments have shown that

in simple FM films the laser-induced demagnetization is not dominated by this kind of

spin transport to the substrate. Rather, the authors consider the ultrafast transfer of

angular momentum away from the spin system to be local.
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1.4.5 Further phenomenological models

Besides the three-temperature models, other phenomenological approaches have been

proposed, which assume a thermalized electron subsystem and therefore consider the

latter as a heat bath for the spin system. In this context one should mention the

atomistic model developed by Kazantseva et al. (46, 47). In their approach the spin

dynamics is modeled by using essentially an augmented Landau-Lifshitz-Gilbert (LLG)

equation which accounts for precession and transversal relaxation of the magnetization

vector ~M . An alternative approach along these lines is the micromagnetic Landau-

Lifshitz-Bloch (LLB) model (48, 49, 50), in which the magnetization is averaged over

smaller atomistic scales. Consequently, the magnitude of ~M is not conserved anymore.

In addition to the terms in the LLG equation of the model proposed in Refs. (46, 47),

the LLB equation contains a temperature-dependent term describing the longitudinal

relaxation of ~M , which accounts for intrinsic magnetic fluctuations. Clearly, the lon-

gitudinal relaxation term is the key factor describing the subpicosecond magnetization

dynamics in this approach. From the perspective of the present thesis it is important

to note that these phenomenological models do not intend to explain the origin of

the coupling between electrons and spins. No information on the microscopic spin-flip

mechanism acting on a fs time scale is thus obtained.

1.4.6 Discussion

The previous brief summary clearly shows that a variety of approaches to laser-induced

ultrafast magnetization dynamics has been proposed. Some involve purely electronic de-

grees of freedom and are driven by SOC, others are based on phonon-mediated EY-like

spin-dependent electronic scattering, or even require long-range spin-density diffusion.

However, the central microscopic mechanism of angular-momentum transfer responsi-

ble for the ultrafast decay or decrease of the total electronic spin is not yet thoroughly

understood. In other words, the available theories —despite their success in several

applications— cannot answer the fundamental open questions raised in Section 1.2.6

in a satisfactory manner.

One of the main theoretical difficulties of this problem is the complex many-body

nature of the correlated spin-polarized d-electron system which, to crown it all, is

far from equilibrium in a laser-induced dynamical state. The most popular theoretical
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approaches in this field are based on the EY spin-flip scattering mechanism (20, 21, 22),

which relies on a single-particle band-like or delocalized description of the electronic

states. From our point of view, this appears to be a serious conceptual limitation, since

magnetism in 3d TMs is known to be a true many-body effect, which results from non-

trivial electronic correlations favoring localized electronic states and the formation of

local magnetic moments.1 Therefore, it seems urgent and most interesting to develop a

many-body theory of laser-induced ultrafast demagnetization which takes into account

the important electron correlations.

1.5 Goals of this work

The purpose of this work is to contribute to clarify the very fundamental questions

concerning the microscopic mechanisms, which are responsible for the observed laser-

induced ultrafast demagnetization in ferromagnetic TMs. To this aim, a many-body

theory, which approaches this problem from a local perspective, is developed.

As a first preliminary step, we consider in Chapter 2 the strong-nonequilibrium sit-

uation between the electronic degrees of freedom, having a relatively high temperature

proportional to the absorbed energy, and the spin or magnon degrees of freedom, which

remain essentially in the ground state. This corresponds to the initial stage of the ul-

trafast demagnetization process subsequent to the absorption of an intense femtosecond

laser pulse. The magnetic properties of the metal in this nonequilibrium situation are

investigated. The role of the emerging very high local energy densities on the magnon

dispersion relation and on the stability of local magnetic moments is quantified. In

particular, we aim to understand the nature of the involved spin excitations by answer-

ing the following basic questions: Is the FM order still stable in such nonequilibrium

situations? And, do the local magnetic moments at the 3d atoms remain stable? Do

they vanish or not?

The results of Chapter 2 provide some important clues for the development of the

theory. After this preliminary work, in Chapter 3 we develop our theory of laser-induced

magnetization dynamics in TMs, which constitutes the main part of the thesis. To this

1The role of electronic correlations in the physics of ferromagnetism in 3d transition metals is

discussed in Section 3.1.
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1. INTRODUCTION

aim we consider an electronic many-body Hamiltonian which takes into account inter-

atomic hybridizations, Coulomb interactions and SOC on the same footing. The model

is solved numerically by taking explicitly into account the electron correlations and

the local magnetic degrees of freedom resulting from them (local magnetic moments).

The most common theoretical approaches in this field use a single-particle delocalized

description of the electronic states (see Section 1.4.6). Therefore, the development of a

many-body theory is expected to fill this conceptual gap. Moreover, the present work

complements the more widespread k-space approaches, such as the EY theory (20, 21),

since it applies a local perspective to the problem. Within the proposed many-body

model, the transfer between spin and orbital angular momenta, as well as its inter-

play with the electronic motion in the lattice, are treated exactly by respecting all

microscopic conservation laws. For simplicity, the phonons are not explicitly taken into

account, because we consider that at the fs time scale the electrons can be safely decou-

pled from the much slower lattice dynamics. The following applications of the model

allow us to reveal to what extent a SOC-triggered angular momentum transfer on a

purely electronic level —from the spins to the orbitals, i.e., from ~S to ~L, and from ~L to

the lattice— contributes as central spin-relaxation channel. The ground-state magnetic

properties of the proposed many-body model, which are relevant for the laser-induced

dynamics, are studied in Chapter 4. Subsequently, in Chapter 5, the time propagation

of the excited many-body states is performed, from which the time evolution of the

magnetization and other properties of the metal is obtained.

In summary, this work intends to deepen our understanding of the fundamental mi-

croscopic mechanisms, which are responsible for the angular-momentum transfer and

the laser-induced ultrafast demagnetization. The conclusions drawn from our investi-

gations are summarized in the final Chapter 6.
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2

Spin excitations in the presence

of high local energy densities

The very first consequence of the femtosecond laser pump pulse is the absorption of

energy within the electronic degrees of freedom. As already discussed in the preced-

ing Chapter (see Section 1.2.1), this happens without directly inducing any change in

the magnetization of the FM material. After the short-time excitation, the absorbed

energy is thermalized very rapidly within the electronic-translation and orbital system

during a few femtoseconds, well before any significant thermalization of the spin de-

grees of freedom can take place. In other words, shortly after the excitation through

the fs-laser pulse, we may regard the system as separated in two distinct reservoirs:

first, the electronic-translation and orbital degrees of freedom, which are assumed to

be thermalized to a temperature Te proportional to the absorbed energy, and second,

the spin or magnon degrees of freedom which remain essentially in the ground state.1

This nonequilibrium situation, corresponding to the initial stage of the ultrafast de-

magnetization process, is the subject of this Chapter. We are particularly interested

to see if the changes in the electronic structure due to the changes in occupation of the

electronic translational degrees of freedom in the metal could change the magnon dis-

persion relation in a way that would favor the observed decrease of FM order. A further

important aim of the present Chapter is to identify the nature of the spin excitations

1Phonon degrees of freedom are neglected, because (i) they are too slow to play an important role

in the considered time range of a few femtoseconds after laser-pulse excitation, and (ii) in this Chapter

we focus on the nature of the spin excitations.
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at the various temperatures Te.

As a first step toward these goals, in Section 2.1 we discuss some possible effects

of the initial nonequilibrium situation on the magnetic order. Then, the theoretical

background for these studies is described in Section 2.2. The results1 are given in

Section 2.3, followed by a discussion in view of the ultrafast demagnetization effect in

Section 2.4.

2.1 Role of initial nonequilibrium on the magnetic order

For our purposes, the possible excitations in magnetic materials can be essentially

divided into two categories: the first main source is given by collective spin waves, and

the second one is represented by single-particle electronic excitations.2 The two types

of excitations correspond to complementary perspectives. The first one is a real-space

coherent arrangement of local atomic moments, while the second one is an electronic

excitation in k-space. Within the initial scenario —shortly after the fs laser-pulse

absorption— the electronic system can be regarded as highly excited by temperature-

induced spin-conserving electronic excitations, while the slower collective spin modes

involving the local atomic magnetic moments should remain very weakly excited. The

selection rules show that the electric field of the laser does not induce significant spin-flip

electronic transitions.

It is interesting to notice that the initial strong-nonequilibrium situation with very

high local electronic energy densities has a counterpart in the physics of ultrafast lattice

dynamics: the effect of laser-induced nonthermal melting of Si (52, 53). This remarkable

effect has been explained to be the result of transversal phonon softening in highly

excited Si crystals, which leads to a dramatic change of the potential-energy surface for

the ionic translational degrees of freedom and, thus, to ultrafast nonthermal melting

of the crystal. A comparison with this phenomenon raises the question if, analogously,

a FM metal that is highly excited electronically may suffer a catastrophic change in

the shape of the magnon spectrum, e.g., a strong softening of particular spin waves.

In this case, the high energy density in the electron subsystem could drive a transition

1The work described in this Chapter has been published in Ref. (51).
2Notice that in the literature single-quasiparticle spin-flip excitations are referred to as Stoner

excitations. However, we do not consider this kind of excitation, since the laser-induced electric-dipole

transitions preserve the spin.
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from FM toward noncollinear (NC) or antiferromagnetic (AF) order, leading to a rapid

decrease of the net magnetization.

In other words, it seems a priori possible that in such a strong-nonequilibrium

situation the electronic excitations could have a considerable effect on the stability of

magnetic order. It is therefore very interesting to understand the role of electron-hole

excitations on the magnon modes, since it should provide very useful hints on the

behavior of the spin system under high electronic excitation levels and on the possible

mechanisms of the laser-induced magnetization dynamics. In particular, we intend to

clarify to what extent the FM order and the local atomic magnetic moments are still

stable for different initial nonequilibrium situations between electronic and spin degrees

of freedom.

2.2 Theoretical description

The effects of electron-hole excitations on the magnon spectrum of 3d TMs are investi-

gated by using ab initio density functional theory (DFT). We consider low-dimensional

systems such as Fe, Co and Ni monoatomic wires and the two-dimensional square-

lattice Ni monolayer. This is motivated by the fact that experiments also concern

low-dimensional thin films. In addition, we expect that for lower coordination num-

bers the stability of magnetic order should be weaker than in the fully coordinated

solid. Therefore, the effects of electronic excitations on the magnon spectra should

be stronger. Moreover, there are clear indications for spiral magnetic order in 3d TM

nanowires for some nearest-neighbor (NN) distances (54, 55). Exploring the possibility

of a FM-to-spiral transition with increasing Te is also challenging.

In all these cases, we implicitly consider a two-temperature model, describing the

electron-translation and orbital subsystem on the one side and the spin subsystem on

the other side. This separation of degrees of freedom is explained in more detail in

Subsection 2.2.1. The finite-temperature DFT approach, which is used to compute the

relevant electronic free energy, is described in Subsection 2.2.2. Finally, Subsection 2.2.3

provides a local perspective on the magnetic state.
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2.2.1 Two-temperature view

A two-temperature model is applied in order to describe the initial nonequilibrium

state. The electronic translational and orbital degrees of freedom are thermalized at

a finite electronic temperature Te, while the degrees of freedom associated with the

local magnetic moments are taken into account by considering virtual spin-wave or

magnon states. The very high energy densities induced by the laser absorption result

in relatively high electronic temperatures Te, which would not be meaningful in an

equilibrium situation. For the purpose of calculating the dispersion relation of magnons,

we consider NC spin configurations. These are represented by general spin-density

wave (SDW) states having a wave vector ~q. In this context, let us emphasize that the

consideration of fixed Te and of a single magnon mode ~q implies a separation of spin as

well as electronic translational and orbital degrees of freedom. This is an idealization

valid only just after the absorption, although the two baths remain afterwards in a

nonequilibrium situation.

In the SDW states the local atomic magnetic moments ~µ show a spiral configuration

given by

~µ(~R) = µ0

[
ê1 cos(~q · ~R) + ê2 sin(~q · ~R)

]
(2.1)

(see Figure 2.1). Here, ~R denotes the position of the atoms carrying a local magnetic

moment of magnitude µ0, while ê1 and ê2 are orthogonal unit polarization vectors.1

In this way, all the different FM, AF and spiral states can be described on the same

footing.2 It is important to note that the magnitude µ0 of the local magnetic moments

depends, in general, on Te and ~q. It is one of the goals of the present Chapter to

quantify these dependences.

The SDW configurations are used to determine the magnetic order and the magnon

dispersion relation of the system at a given electronic temperature Te. The dispersion

relations are derived from the electronic free energy Ω as a function of spin-wave vector

~q (56, 57). Special attention is given to the form of the spin-wave spectrum as a function

1Notice that all possible orientations of the orthogonal magnetization unit vectors ê1 and ê2 are

equivalent, since the SOC has not been included neither in the spin model (see Section 2.2.3) nor in

the ab initio DFT calculations. Therefore, the orientation of the spin ~S is completely decoupled from

the orbital degrees of freedom and the geometrical structure of the sample.
2The collinear FM and AF states are included as particular limits. The former corresponds to small

wave vectors (q ' 0), while the latter corresponds to wave vectors at the zone boundary (q ' π/a in

one dimension).
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Figure 2.1: Spin-spiral state - Illustration of a spin wave with wave vector q = 4π/a

for a linear chain having nearest-neighbor distance a. The arrows indicate the local atomic

magnetic moments ~µ.

of ~q and Te, and to the changes in the local magnetic moments and their interatomic

exchange couplings due to electronic excitations.

2.2.2 DFT approach to the electronic free energy

We have chosen a DFT based approach for the purpose of investigating the magnon

dispersion relations at finite temperatures Te, since DFT represents an efficient method

of determining the electronic properties of matter from first principles. Let us first de-

scribe the very basics of this theory. The central point in DFT, as originally formulated

by Hohenberg and Kohn, is that the electron density ρ(~r) replaces the wave function

as the fundamental unknown of the many-body problem (58). Actually, this is a con-

sequence of the existence of a bijective mapping between ground-state densities ρgs(~r)

and the corresponding ground-state wave functions. Practical calculations are usually

based on the Kohn-Sham (KS) scheme which reduces the interacting Ne-electron prob-

lem to a set of self-consistent single-particle equations (59). Within the corresponding

KS auxiliary single-particle system, the electron density ρ(~r) is expressed in terms of

Ne occupied KS orbitals φk(~r) as

ρ(~r) =

Ne∑
k=1

|φk(~r)|2 . (2.2)

All contributions of the non-trivial electronic exchange and correlation energy, as well as

correlation contributions to the kinetic energy, are included in the so-called exchange-

correlation energy functional Exc[ρ]. The ground-state density and other ground-state

properties are then obtained by minimizing the total energy functional E[ρ], including

Exc[ρ], with respect to densities ρ(~r) of the form (2.2). The KS transformation is in

principle exact, thus allowing one to take into account all electronic correlation effects.

Unfortunately, the universal functional Exc[ρ] is unknown. Consequently, the results
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of applications depend on the available approximations. We shall not discuss here the

various proposed approximations to Exc[ρ], since this goes beyond the scope of the

present thesis. The interested reader is referred to the very good introductions to DFT

given in Refs. (60, 61).

DFT has been originally formulated as a ground-state theory, i.e., it is based on the

minimization of the total energy E. However, for Te > 0 it is the electronic free energy

Ω what becomes minimal in the equilibrium state. For this case, Mermin developed

a finite-temperature extension of DFT (62), which we apply in order to calculate Ω

and the magnon dispersion relation. Following Janak’s fractional-occupation number

formulation (63), we express the electronic density as

ρ(~r) =
∑
k

ηk |φk(~r)|2 , (2.3)

where 0 ≤ ηk ≤ 1 are the occupation numbers of the Kohn-Sham orbitals φk(~r). The

electronic free energy1 is given by

Ω[ρ] = E[ρ]− TeSe[ρ]− εµNe , (2.4)

where E[ρ] is the internal electronic-energy functional including the exchange-correlation

functional Exc[ρ], εµ is the chemical potential, Ne =
∑

k ηk is the number of particles,

and Se[ρ] is the electronic entropy, which we approximate by the non-interacting ex-

pression

Se[ρ] = −kB
∑
k

{ηk ln ηk + (1− ηk) ln(1− ηk)} . (2.5)

In other words, the exchange and correlation contributions to Se[ρ] are included in

Exc[ρ]. For each magnetic configuration of the system, which in our case is characterized

by the spin-wave vector ~q, Ω is minimized with respect to ρ(~r) by varying ηk, φk(~r)

and φ∗k(~r) independently. Recalling Janak’s theorem (63), namely, ∂E/∂ηk |{φk} = εk,

where εk refers to the KS eigenvalues, and computing ∂S/∂ηk from Eq. (2.5), one

obtains
∂Ω

∂ηk
= εk − εµ − kBTe ln

(
1− ηk
ηk

)
. (2.6)

1Notice that usually, Ω as given by Eq. (2.4) is called grand potential of the grand-canonical

ensemble. Instead of that, we use the notation of free energy for Ω, since we consider definite numbers

of electrons Ne for the DFT calculations. The reference to the grand-canonical ensemble is justified by

the equivalence between the canonical and the grand-canonical ensembles in the thermodynamic limit.
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This implies that at equilibrium ηk = f(εk), where f(ε) is the Fermi function for the

given εµ. The variation with respect to φ∗k(~r) yields the usual KS equations (59), where

ρ(~r) is given by Eq. (2.3) with the Fermi-Dirac occupation numbers ηk = f(εk). These

equations give the following practical minimization scheme for the free energy Ω. First,

for each ~q the KS equations are solved self-consistently by setting the occupations ηk of

the KS orbitals according to the Fermi distribution at the given electronic temperature

Te. This step can be solved numerically by using a standard DFT program, e.g., the

Vienna ab initio simulation package (VASP) (64, 65) or Wien2K (66, 67). The elec-

tron density ρ(~r) is thereby given by Eq. (2.3). As discussed above, this procedure is

equivalent to a direct minimization of Ω. The internal electronic energy E is obtained

in the same way as in a ground-state calculation. The electronic entropy Se is given

by Eq. (2.5) in terms of the self-consistent occupations ηk. Before discussing the ab

initio results in Section 2.3, it is useful to analyze the ~q-dependence of Ω from a lo-

cal perspective in terms of effective exchange interactions between the local magnetic

moments.

2.2.3 Effective exchange interactions

The local magnetic moments ~µ(~R) are the result of the spin polarization of the 3d elec-

trons, and are therefore essentially localized within the atomic Wigner-Seitz spheres.

This suggests a local interpretation of the free energy Ω(~q) by introducing effective

temperature-dependent exchange interactions J~R,~R′ between neighboring moments. Con-

sequently, we propose a classical Heisenberg-like spin model for the free energy given

by

Ω(~q) = −1

2

∑
~R

∑
δ ~R 6=0

J0,δ ~R µ̂~R · µ̂~R+δ ~R , (2.7)

where δ ~R are lattice vectors to neighboring atoms, µ̂~R denotes the unit vector along

the magnetic moment ~µ(~R) of atom ~R, and J0,δ ~R are the effective exchange couplings.

Notice that any temperature dependence of the magnitude of the local moments is

effectively included in the coupling parameters J0,δ ~R.

For a periodic one-dimensional (1D) chain having interatomic distance a, the dis-

persion relation derived from Eq. (2.7) reads as

Ω(q)

Na
=

Ω0

Na
+

ν∑
δ=1

J0δ [1− cos(δqa)] , (2.8)
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Figure 2.2: Geometry of the 2D Ni square lattice - The numbers indicate the differ-

ent non-equivalent nearest neighbors δ of the atom 0, and a denotes the lattice constant.

The vectors ~q1 and ~q2 illustrate the considered SDW propagation directions along NN and

second-NN bonds, respectively.

where Na stands for the number of atoms in the periodic cell. As we shall see, taking

into account the couplings up to fourth NNs (ν = 4) provides a very accurate description

of all the ab initio dispersion relations. For future reference it is useful to introduce the

exchange free energy ∆ΩX = Ω(π/a)−Ω0, given by the difference in Ω between the AF

and FM configurations. A stable FM configuration is obtained when Ω(q) has a local

minimum at q = 0, while a stable AF configuration corresponds to a local minimum at

q = π/a.

For the calculations on periodic two-dimensional (2D) square lattices we consider

two different SDW propagation directions, namely, ~q1 along a NN bond ~a, and ~q2 along

a second-NN bond ~a′, where a′ =
√

2a (see Figure 2.2). Since the magnetic couplings

J0,δ ~R in Eq. (2.7) vanish for large interatomic distances δ ~R, it is reasonable to restrict

the non-zero couplings to sixth NNs J0δ (δ = 1, ... 6). The free energy Ω(~q) can then

be written as

Ω(~q1)

Na
=

Ω0

Na
+ (J01 + 2J02 + 2J04) (1− cos q1a)

+ (J03 + 2J04 + 2J05) (1− cos 2q1a)

+ J06 (1− cos 3q1a)

(2.9)
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for SDWs along ~a, and as

Ω(~q2)

Na
=

Ω0

Na
+ (2J01 + 2J04)

[
1− cos

(
q2

a√
2

)]
+ (J02 + 2J03)

[
1− cos

(
2q2

a√
2

)]
+ (2J04 + 2J06)

[
1− cos

(
3q2

a√
2

)]
+ J05

[
1− cos

(
4q2

a√
2

)]
(2.10)

for SDWs along ~a′. As we shall see in the following Section, comparison with ab

initio calculations shows that this model is pertinent and that the effective exchange

interactions are indeed short ranged.

2.3 Results

This Section presents the results obtained by using the finite-temperature DFT method

(see Section 2.2). The calculations aim to clarify the role of a high electronic energy

density or large electronic temperature Te, which describes electron-hole excitations,

on the magnon modes. Results are given for representative low-dimensional 3d TMs,

namely, for Fe, Co and Ni monoatomic wires, and for the square-lattice Ni monolayer.

In the following subsections the magnetic properties are discussed as a function of Te.

Special attention is given to the nature of stable magnetic order, to the spin-wave

spectrum, and to the underlying exchange interactions between the local moments.

The main computational details on the ab initio DFT calculations may be found in

Appendix A.

2.3.1 Fe chains

In the case of 1D Fe, two different bond lengths are investigated. First, we consider

the relaxed free-standing distance a = 2.25 Å. The corresponding ground-state mag-

netic order is a spin-spiral state. In addition, we consider also the bulk NN distance

a = 2.48 Å showing a FM ground state, since the systems involved in typical demag-

netization experiments also have FM order.

Figure 2.3 shows the spin-wave spectrum for the relaxed distance a = 2.25 Å. For

different representative electronic temperatures kBTe ≤ 500 meV the free energy Ω
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Figure 2.3: Spin-wave spectrum of the relaxed Fe chain - The electronic free energy

per atom Ω(q)/Na relative to the FM state (q = 0) is shown for 1D Fe wires (NN distance

a = 2.25 Å) as a function of the spin-density wave vector q and electronic temperature

Te. The curves are the fits of ab initio results (symbols) to the classical spin model (2.8).

The inset figure illustrates the corresponding local magnetic moment µ within the atomic

Wigner-Seitz spheres.

relative to the FM case (q = 0) is given as a function of the SDW vector q. The

symbols indicate the DFT results, while the curves represent the fit to a classical

Heisenberg model including up to 4th NN interactions (see Section 2.2.3). The results

for kBTe = 2 meV show that the ground state is a spin-spiral state having a wave

vector qm ' π/5a and an energy around 14 meV per atom lower than the FM one.

The wave vector qm yielding the lowest Ω increases with increasing Te and reaches

qm ' π/2a for kBTe = 500 meV. Moreover, with increasing electronic temperature Te,

the free energy difference between the AF and FM configurations, also referred to as the

exchange free energy, decreases monotonously from ∆ΩX = 326 meV for kBTe = 2 meV

to a nearly vanishing value of ∆ΩX = 8 meV per atom for kBTe = 500 meV. Notice

that this decrease is not caused by a drastic reduction of the magnitude of the local
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Figure 2.4: Effective exchange interactions in the relaxed Fe chain - The exchange

couplings J0δ between a local magnetic moment and its δth NN are given as a function

of the electronic temperature Te. The results correspond to Fe chains having NN distance

a = 2.25 Å. See also Figure 2.3.

magnetic moments µ shown in the inset of Figure 2.3.1 Indeed, µ is only reduced by less

than 12% as one increases q from FM to AF order, or as Te is increased, even for the

largest considered electronic temperatures. The local moments thus show a remarkable

stability. Moreover, the general form of the spectra remains essentially unchanged for

all Te. Therefore, in all cases the spiral SDW represents the most stable configuration.

A more detailed understanding of the magnetic order and spin-wave dispersion

relation is provided by the effective exchange couplings J0δ between a local moment

and its δth nearest neighbor. In Figure 2.4 the temperature dependence of J0δ in

the relaxed Fe chain is shown. One observes that the second NN coupling J02 is not

only negative (opposite to J01) but also quantitatively important at all Te. The ratio

|J02|/J01 ranges from 0.24 at kBTe = 2 meV to 0.64 for kBTe = 400 meV. This leads

to a competition between the FM and AF states which tends to favor the intermediate

NC spiral arrangement. In other words, the spin-spiral configurations are the result of

magnetic frustrations between NN and second NN couplings J01 > 0 and J02 < 0. The

former favor parallel spin alignment between first NNs, while the latter favor antiparallel

alignment between second NNs. The most significant temperature dependence of the

1The DFT results verify that the magnitudes |~µ(~R)| of atomic moments are independent of the

atomic site ~R. This agrees with the model Equation (2.1), and gives us the motivation to consider in

the following µ as the site-independent local-moment magnitude.
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Figure 2.5: Spin-wave spectrum of Fe chains with bulk NN distance - The

electronic free energy Ω(q) is given relative to the FM case (q = 0) for 1D Fe chains

(a = 2.48 Å) as a function of q and Te. The curves are the fits of ab initio results

(symbols) by using a classical Heisenberg spin model [see Eq. (2.8)]. The inset (a) shows

the local magnetic moment µ, while inset (b) shows the magnetic couplings J0δ between a

local moment and its δth NN.

effective exchange interactions is the rapid decrease of J01 with increasing Te. This

reduces the stability of the FM state relative to the AF state, and thus explains the

decrease of ∆ΩX = Ω(π/a)− Ω0 with increasing Te (see Figure 2.3).

As a second example, we consider Fe chains having a larger bond length a = 2.48 Å,

which corresponds to the bulk NN distance. This lattice parameter is close to the one

expected for epitaxial growth on noble metal surfaces. Figure 2.5 shows the correspond-

ing Ω(q) for different electronic temperatures Te. In contrast to the relaxed distance

a = 2.25 Å, the ground-state is here FM over the whole range of studied temperatures.

This can be interpreted in terms of the magnetic couplings J0δ given in the inset (b)

of Figure 2.5. In fact, the AF second NN coupling J02, which is usually at the origin

of the stability of spin-spiral waves, is now negligible in comparison to the large FM
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coupling J01. As for the relaxed bond length (Figure 2.3), the exchange free energy

decreases from ∆ΩX = 253 meV, for kBTe = 10 meV, down to ∆ΩX = 21 meV for

kBTe = 500 meV. Again, this decrease is not related to an important reduction of the

local magnetic moments µ, since these remain almost constant (µ ≈ 3µB) within the

considered temperature range [see the inset (a) of Figure 2.5]. Our results confirm

therefore the idea that the local magnetic moments in 3d TMs preserve their identity,

and that spin-wave excitations, or more generally spin fluctuations, remain the relevant

magnetic excitations even at very high electronic temperatures.

2.3.2 Co and Ni chains

In contrast to Fe, the Co and Ni chains have FM ground states at their respective

relaxed bond lengths a = 2.15 Å and a = 2.17 Å (54, 55, 68). It is therefore interesting

to investigate them in order to quantify to what extent the stability of the FM order

can be modified by increasing the electronic temperature. The results presented in

Figure 2.6 show that Ω(q) remains FM-like in Co and Ni chains as long as the local

magnetic moments µ are not zero. In Co, this is the case for all considered temperatures,

whereas in Ni µ vanishes almost for all q if kBTe ≥ 400 meV [see the insets (a) and (c)

of Figure 2.6]. A vanishing µ implies the absence of magnetism, in which case the value

of q is irrelevant. One concludes that in these chains no magnetic-phase transitions

occur with increasing Te.

In Co the NN magnetic coupling J01 is FM. It dominates clearly over the second NN

coupling J02, as well as over the couplings with further neighbors [see inset (b)]. This

explains that Ω(q) increases monotonously with q. In Ni chains J02 is not negligible.

However, both J01 and J02 are positive [see inset (d)]. Consequently, there are no

frustrations and the dispersion relation is FM-like. It is interesting to note that AF

order (q = π/a) cannot be realized in Ni chains, at least as long as the size of the local

moments is determined self-consistently. Indeed, as shown in the inset (c) of Figure 2.6,

one obtains µ = 0 for q = π/a, even at the lowest Te. One should keep in mind that for

vanishing spin moments µ→ 0 within the Wigner-Seitz spheres the notion of effective

exchange interactions between local moments breaks down. The electronic free energy Ω

would be independent of q and, therefore, the Heisenberg model becomes inappropriate

as a means to fit the ab initio free energies. This is reflected in the somehow artificial

behavior of the Heisenberg fits for low temperatures and large SDW vectors at the AF
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Figure 2.6: Magnon dispersion relation of relaxed Co and Ni chains - The

electronic free energy Ω(q) is given relative to the FM case Ω0 as a function of q and Te.

The considered bond lenghts of the Co and Ni chains are a = 2.15 Å and a = 2.17 Å,

respectively. The curves represent model fits of ab initio results (symbols) according to

Eq. (2.8). The insets (a) and (c) show the corresponding local magnetic moments µ, while

the insets (b) and (d) show the effective magnetic couplings J0δ between the different NNs.
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zone boundary (see the Ni free-energy curves for kBTe ≤ 100 meV and q & 3π/4a in

Figure 2.6). As Te increases beyond kBTe ' 300 meV, one observes that µ vanishes

above a critical value qc, which decreases with increasing Te until µ = 0 for all q. This

behavior is a consequence of the relatively large d-band filling and comparatively small

exchange splitting of the Ni atoms.

Exception made of Ni for large Te and q ' π/a, it is important to observe that

the local magnetic moments are remarkably stable up to considerably large electronic

temperatures. For example in Co (Ni) chains, µ remains almost unaffected by increasing

Te up to kBTe ' 300 meV (200 meV). This corresponds to electronic energy densities

which go far beyond those usually involved in the demagnetization experiments (1, 2,

7, 23). Therefore, the temperature-induced decrease of the FM-AF spin-flip energy

∆ΩX = Ω(π/a) − Ω0 is not a consequence of vanishing µ (e.g., in Co ∆ΩX decreases

from 350 meV for kBTe = 10 meV to 250 meV per atom for kBTe = 200 meV). A

similar behavior has been observed in Fe chains.

2.3.3 Two-dimensional Ni lattices

In the previous Section 2.3.2 we found that in Ni wires the spin excitation energies

decrease significantly with increasing electronic temperature by keeping the FM order

stable. We would like to investigate if similar trends hold in 2D Ni lattices. For this

purpose we consider a free-standing Ni monolayer corresponding to the surface of thin

Ni films grown on Ag(100) (3). In this sense, the considered Ni layer aims to model the

TM films used in a large number of demagnetization experiments. Since Ag has a fcc

structure with lattice constant d = 4.086 Å, the resulting epitaxial (100)-monolayer is

a square lattice with NN distance a = d/
√

2 = 2.89 Å.

In Figure 2.7, the calculated magnon dispersion relation of the Ni monolayer is given

for two different propagation directions of the SDWs, namely, ~q1 along a NN bond ~a

and ~q2 along a second NN bond ~a′. In the latter case the distance of adjacent planes

perpendicular to ~q2 is a/
√

2. Analogously to the 1D chains, the ab initio results for

the electronic free energy Ω(~q) (symbols) are fitted by using a classical Heisenberg-like

spin model described in Section 2.2.3 (curves). Thereby, exchange couplings between

local moments up to sixth NNs are taken into account (see Figure 2.2). The main

conclusion inferred from Figure 2.7 is that for both propagation directions the spin-

wave spectra are qualitatively similar to 1D Ni. The FM order is stable for all electronic
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Figure 2.7: Magnon dispersion relations in the 2D Ni square lattice - For different

electronic temperatures Te the electronic free energy Ω(~q) relative to the FM case is shown

as a function of the SDW vector ~q1, which points along a NN connection. The lattice

parameter of the Ni square lattice is a = 2.89 Å. The curves are fits of ab initio results

(symbols) by using the classical spin model (2.7). The inset (a) shows the SDW spectrum

for ~q2 along second NN connections. In the inset (b) the local magnetic moment µ in the

FM configuration is given as a function of Te.

temperatures Te, as long as the local magnetic moments µ are not vanishing (kBTe ≤
400 meV). See the inset (b) of Figure 2.7, where µ is given for q = 0. This means

that no magnetic-phase transitions seem to be triggered by increasing the electronic

temperature (electron-hole single-particle excitations). Comparison with 1D chains

shows a reduction of the exchange free energy ∆ΩX . In fact, in the Ni monolayer we

find ∆ΩX = Ω(q1 = π/a)−Ω0 = 66 meV and ∆ΩX = Ω(q2 =
√

2π/a)−Ω0 = 109 meV

per atom for the ~q1 and ~q2 propagation directions, whereas ∆ΩX = 165 meV per atom

for the linear chain. This is most probably a consequence of the larger NN distance

a = 2.89 Å of the monolayer corresponding to the Ag(100) substrate, as compared to

the relaxed NN distance a = 2.17 Å of the linear Ni chain.
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Figure 2.8: Effective exchange interactions in the Ni square lattice - The exchange

couplings J0δ between the NN local moments in a Ni monolayer (a = 2.89 Å) are shown

as a function of the electronic temperature Te. See also Figure 2.7.

Figure 2.8 shows the magnetic coupling constants J0δ obtained by applying Eqs. (2.9)

and (2.10) to the spin-wave spectra of Figure 2.7. At low temperatures (e.g., kBTe =

10 meV) the J0δ up to fourth NN are positive, thus adding up constructively to the

increase of Ω(q) with increasing q. Only J05 and J06 are negative. Notice, moreover,

that these couplings almost always contribute to Ω(q) in combination with other pos-

itive couplings, for example as J04 + J06 for the third row perpendicular to ~q2 (see

Figure 2.2). Thus, they do not lead to any significant frustration. One should mention

that for large SDW vectors (q1 ≥ 3π/4a and q2 ≥ 3
√

2π/4a) and low temperatures

(kBTe = 10 meV) the DFT calculations are very difficult to converge quite accurately.

This might be at the origin of the oscillations of Ω(~q) obtained for the Ni monolayer

for large q [see inset (a) in Figure 2.7]. Therefore, the values of the exchange couplings

J0δ with δ = 3–6 derived from the Heisenberg fits are for kBTe = 10 meV not very

reliable and might probably be overestimated. For kBTe ≥ 100 meV, only the first and

second NN couplings are not zero. These results for J0δ explain the FM-like dispersion

relation of the Ni monolayer from a local perspective.
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2.4 Delocalized versus local magnetic excitations during

the ultrafast demagnetization process

In this Chapter, the effects of high levels of electronic excitations on the stability

of the magnetic order and on the magnon spectrum of low-dimensional TMs have

been investigated in the framework of DFT. This physical situation corresponds to the

nonequilibrium state typically found just after the absorption of a strong laser pulse,

where the electronic degrees of freedom have a finite, potentially large temperature Te,

and the collective modes of the local atomic magnetic moments ~µ(~R) are non-excited

or weakly excited. Some important conclusions can now be drawn from the results

given in the previous Section 2.3, in particular concerning the magnetic moments and

the nature of spin excitations during the ultrafast demagnetization process.

The Te dependences of the dispersion relations Ω(q), which have been determined for

Fe, Co and Ni chains, and the Ni monolayer, do not show any signs of a phase transition

or breakdown of the magnetic order: In the case of Co and Ni chains, the FM order is

stable for all Te, except in Ni for kBTe ≥ 400 meV where the local magnetic moments

µ vanish. Fe chains with relaxed equilibrium distance show a NC spiral ground state

already for Te = 0 and for all Te. In the Ni square monolayer the FM order is stable for

all temperatures kBTe . 400–500 meV. Since the general shape of the magnon spectrum

remains essentially unchanged, one concludes that a high level of thermal excitation

of the electronic translational degrees of freedom (electron-hole excitations) does not

result in any breakdown or decrease of the FM order. In other words, a transition from

FM order toward some other type of AF or NC order, which is triggered simply by an

electronic equilibrium state at high energy density or temperature, does not seem to

be a plausible explanation for the observed laser-induced ultrafast demagnetization.

Furthermore, one generally observes for all the considered systems, that the ex-

change free energy ∆ΩX , as measured by the difference in Ω between AF and FM

configurations, decreases with increasing electronic temperature Te. This decrease in

the spin-excitation energies obviously favors the spin-flip processes subsequent to an

ultrafast heating of the electron subsystem. Except for the special case of Ni wires

at very high Te, the decrease in ∆ΩX is not the result of an important reduction of

the local magnetic moments µ. In contrast, the local moments remain quite stable,

even at very high levels of laser-induced energy density (often up to kBTe ' 500 meV).
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Figure 2.9: Illustration of local spin fluctuations during the demagnetization

process - The demagnetized state following laser absorption should be regarded as a

disordered configuration of local atomic magnetic moments, whose magnitude remains

essentially unchanged.

The large stability of µ indicates that in the experimentally used thin TM films, these

local magnetic degrees of freedom should preserve their identity throughout the entire

demagnetization process. This means that spin waves, or more generally spin fluctua-

tions, should be regarded as very important processes in the magnetization dynamics.

In other words, the ultrafast demagnetization in TMs should be regarded as the re-

sult of local spin fluctuations, i.e., disorder in the orientation of the atomic magnetic

moments. This physical picture is illustrated in Figure 2.9.

To summarize, we conclude that the dominant magnetic excitations during the de-

magnetization process should have local character, i.e., they are fluctuations of localized

atomic magnetic moments. Consequently, any successful theory of ultrafast magnetiza-

tion dynamics in TMs should take into account the important local magnetic moments.

However, most of the so far available approaches to this effect are based on delocalized

electronic states, for instance, the EY spin-flip scattering mechanism (20, 21, 22), which

are not designed for describing the local magnetic degrees of freedom. The many-body

approach proposed in the following Chapter 3 aims to take into account the electronic

correlations responsible for the formation of the atomic magnetic moments from the

very beginning.

From a more methodological perspective, we would like to recall that the mag-

netic properties discussed in this Chapter have been obtained in the framework of

finite-temperature DFT by combining a generalized gradient approximation for the

ground-state energy functional (see Appendix A) with the single-particle entropy of

the auxiliary Kohn-Sham non-interacting system. This approach is probably justified
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for weakly correlated systems. However, its application to 3d transition metals may

not be quite accurate, since the magnetically relevant 3d electrons are rather localized

and thus experience strong intra-atomic Coulomb interactions. Still, it is our hope

that the conclusions drawn in this Chapter will remain qualitatively valid under the

light of more sophisticated approaches, thus providing a useful insight on the complex

magnetization dynamics of laser excited TMs.
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3

Many-body theory of

magnetization dynamics

In Chapter 2 the possible magnetic excitations in the initial stage shortly after the laser-

pulse absorption have been investigated from a static point of view. The main goal was

to identify the nature of these excitations. As an important result it has been found that

the atomic magnetic moments remain stable even at extremely high levels of electronic

excitation. Therefore, it is reasonable to expect that after the laser-pulse absorption

they remain stable and their fluctuations represent most relevant spin excitations in the

metal. However, nothing has been said about their dynamics, for instance, about the

underlying mechanisms of the spin-flip processes and the corresponding rates. Actually,

the microscopic mechanism of spin relaxation and the spin-flip rate are of crucial im-

portance: the former can provide a clue as to the fundamental physics behind ultrafast

magnetization dynamics, whereas the latter determines the characteristic time of the

spin relaxation.

These aims motivate a theoretical study of the dynamical aspects of the magnetic

excitations. For this purpose, we make the transition from ab initio DFT calculations

to many-body models. Usually, models are used to describe and to solve a given

problem by considering only the most essential contributions to its physics. This is

also the way how we will proceed in the following: A simple and transparent model

will be proposed, which contains only the most essential microscopic contributions to

the ultrafast magnetization dynamics, and which do not include any phenomenological

terms inducing a spin relaxation. In order to describe the situation of fluctuating
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stable local magnetic moments, it is necessary to consider electronic correlations, which

are responsible for the formation of these important local moments. The many-body

theory developed in this thesis takes into account these correlations from the very

beginning. Thus, it is expected to provide new insights into the physics of laser-induced

magnetization dynamics.

In the present Chapter, we will first discuss the importance of electron correlations

in the magnetism of the considered 3d TMs (see Section 3.1). Section 3.2 describes

the proposed many-body Hamiltonian. A discussion of this model in view of the mag-

netization dynamics is given in Section 3.3. Some relevant model simplifications are

presented and discussed in Section 3.4. These do not affect the fundamental mecha-

nism of the dynamics, since they do not introduce any bias. They are simply meant to

reduce the computational effort involved in the numerical calculations. The simplified

model will be used in the subsequent Chapters 4 and 5. Finally, Section 3.5 gives the

mathematical description of the electric field in the femtosecond laser pulse.

3.1 Role of electron correlations in ferromagnetism of tran-

sition metals

The ferromagnetism in 3d transition metals can be regarded as an effect of electronic

correlations. In order to elaborate their role in more detail, we begin with a brief very

general discussion of correlations in many-body systems.

Let us consider two physical observables Â1 and Â2 of a many-body system, for in-

stance, two local properties. If one makes separate measurements of them, one obtains

information on their probability distributions p1 and p2, and in particular, on their ex-

pectation values 〈Â1〉 and 〈Â2〉 (see Figure 3.1). In many cases including two-particle

interactions, e.g., the present problem of ferromagnetism, the knowledge of these ex-

pectation values is not enough to describe the physical state satisfactorily. In addition,

expectation values of their product 〈Â1Â2〉 need to be taken into account, since they

give us information about the correlation between measurements A1 and A2. If Â1

and Â2 are independent observables, then 〈Â1Â2〉 = 〈Â1〉〈Â2〉. However, in the most

important general case, the expectation value of Â1Â2 is not given simply in terms of

the expectation values 〈A1〉 and 〈A2〉. If

〈Â1Â2〉 6= 〈Â1〉〈Â2〉 , (3.1)
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Figure 3.1: Correlations in many-body systems - The local measurements of two

observables Â1 and Â2, yielding the expectation values 〈Â1〉 and 〈Â2〉, don’t give any

information about the correlation between measurements A1 and A2. As a consequence of

correlations, the expectation value of the product Â1Â2 cannot be given simply in terms

of 〈Â1〉 and 〈Â2〉.

one says that the two observables Â1 and Â2 are correlated.1 The inequality (3.1)

implies that correlations preclude us from extracting the complete information on the

physical state just from separate measurements of local properties. The origin of cor-

relations in many-body systems is always the interaction between particles. Therefore,

they play a crucial role in many-particle systems.

In our work we consider interacting electrons, so that the correlations are driven

by the Coulomb interactions. In this case, an evident example of correlation effects

resulting from the Coulomb repulsion is given by the tendency to increase the distance

between two electrons. This results in a reduced probability of finding the two electrons

at the same position ~r in space. Therefore, the two-electron probability p(~r1, ~r2) of

finding them at two approaching points ~r1 and ~r2 within the extent of the electronic

wave function (i.e., within a region with nonzero single-electron probability p(~r) 6= 0)

satisfies

p(~r1, ~r2) < p(~r1)p(~r2) for ~r1 → ~r2 . (3.2)

Notice that if the probability distributions were uncorrelated, one would have p(~r1, ~r2) =

p(~r1)p(~r2) for all ~r1, ~r2. This means that in the case of interacting electrons, the prob-

1From the point of view of statistics, the relationship between two observables can be described in

terms of conditional probabilities for their simultaneous measurement, such as the probability p(A1|A2)

for an outcome A1 of observable Â1 under the condition that the measurement of Â2 has given the

result A2. If the conditional probabilities and the probability distributions of the corresponding separate

measurements p1 or p2 are equal [i.e., p(A1|A2) = p1(A1)], then the two observables Â1 and Â2 are

independent or uncorrelated. Otherwise, they are correlated and the inequality (3.1) holds.
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ability density p(~r1, ~r2) of finding one particle at point ~r1 and a second particle at ~r2 is

correlated.

Electronic correlations play also an important role in the physics of ferromagnetism

as they allow the formation of local magnetic moments even at temperatures above

the Curie temperature TC , where the net magnetization vanishes. First, we would

like to emphasize that the stability of the local atomic moments can be traced back

to the antisymmetry of the many-electron wave function. This can be already under-

stood by considering the simple example of two electrons in the absence of external

magnetic fields. The Hamiltonian of this problem is independent of the spin variables.

Therefore, the stationary two-particle states can be written as a product of a spatial

and a spin part. Since electrons are fermions, the total wave function must be an-

tisymmetric with respect to a simultaneous interchange of both the spatial and spin

coordinates (~r, σ) of the two particles. This implies that the antisymmetric spin part

(with respect to interchange of σ) corresponds to a symmetric spatial part (with respect

to interchange of ~r) of the wave function, and vice versa. The antisymmetric spatial

wave function corresponding to the triplet state must have a node at ~r1 = ~r2, i.e.,

Ψtriplet(~r, ~r) = 0. In contrast in the symmetric spatial wave function (corresponding to

the singlet) Ψsinglet(~r, ~r) is enhanced. In general, |Ψtriplet(~r1, ~r2)|2 < |Ψsinglet(~r1, ~r2)|2

within a neighborhood of the hypersurface ~r1−~r2 = 0, i.e., exactly in that region where

the Coulomb repulsion ∝ 1/|~r1 − ~r2| between the two electrons is strongest. These ar-

guments explain why the Coulomb interaction energy is lower for the triplet than for

the singlet. Actually, the energy lowering, which is referred to as the exchange energy,

favors parallel alignment of spins (69). In atomic physics, this trend is known as the

first Hund’s rule: within an atomic shell, the electrons preferentially occupy different

spatial orbitals while maximizing the total spin.

In ferromagnetic TMs, this quantum-mechanical exchange interaction results lo-

cally, i.e., at each single atomic site, in a parallel spin alignment or, in other words,

in the formation of local magnetic moments. The existence of the local moments is

incorporated in the physical picture of ferromagnetism. According to this picture, the

magnetic moments ~µj at the different atoms j, which are ferromagnetically ordered

at low temperatures T ≈ 0, start to fluctuate in their orientation with increasing T .

The important point is that these thermally induced fluctuations keep the magnitude

µj of the local magnetic moments almost fixed. Even at the Curie temperature TC ,
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Figure 3.2: Temperature-induced spin fluctuations in ferromagnets - (a) FM

order of the local magnetic moments ~µj at T = 0. The index j denotes the atomic sites.

(b) Illustration of a spin fluctuation with increasing T . The magnetic moments ~µj start

to fluctuate in their orientation keeping their magnitudes µj almost fixed. This kind of

disorder results in the decrease of the magnetization with increasing T .

the local moments µj remain stable, although —due to the contribution of entropy

to the free energy— their directions are completely disordered. In other words, it is

not a reduction of |~µj | but a disorder in the orientations, what yields the decrease of

magnetization with increasing T and the disappearance of magnetization for T → TC .

This interpretation is illustrated in Figure 3.2. On the right-hand side (b) a spin

fluctuation at atom j is depicted. At finite temperatures T > 0 the many-body state is

built up of such spin fluctuations, whose number increases with increasing temperature.

Consequently, with increasing T the spin expectation value 〈~Sj〉 decreases due to spin

fluctuations, while 〈~Sj · ~Sj〉, reflecting the magnitude of the local magnetic moments,

remains quite stable. One realizes that these spin fluctuations represent a correlation

effect, since in that case 〈~Sj · ~Sj〉 > 〈~Sj〉〈~Sj〉. This result of correlations cannot be

properly described by mean-field theories. For instance, the mean-field approximation

〈~Sj · ~Sj〉 = 〈~Sj〉〈~Sj〉 would fail inasmuch as it yields zero for the local magnetic moments

at TC . As a consequence, such theories fail to reproduce the behavior of the atomic

magnetic moments at the Curie point and, in particular, the quantitative value of TC .

To summarize, correlations play an important role for the formation and stability

of the local magnetic moments µj . However, a theoretical description of electronic

correlations is far from trivial. The following Section shows a possible way to take
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them into account.

3.2 Electronic many-body model

In order to understand the fundamental mechanisms behind the laser-induced demag-

netization effect, we propose a many-body model, which is expected to contain, in a

transparent way, the most relevant physical contributions involved in the response of

the magnetic system to an intense ultrashort laser pulse. The aim of transparency im-

plies that the model should be chosen as simple as possible. Therefore, contributions,

which are expected to play minor roles in the ultrafast magnetization dynamics, are

not considered explicitly. In particular, the lattice degrees of freedom and the cou-

pling to phonons are not taken into account, since at the fs time scale the electrons

can be decoupled from the much slower lattice dynamics.1 The model is based on the

purely electronic level by considering the relevant valence electrons in 3d TMs. The

corresponding Hamiltonian

Ĥ = Ĥ0 + ĤC + Ĥext(t) + ĤSO (3.3)

takes into account only the most essential electronic contributions on the same footing:

Ĥ0 describes the single-particle electronic structure in the tight-binding approximation.

ĤC models the electron-electron Coulomb interaction. It is this term what introduces

the important correlation between the electrons and leads to the formation and sta-

bilization of the local magnetic moments ~µj . Ĥext represents the interaction with

time-dependent external fields and describes the initial laser excitation. Finally, ĤSO

is the spin-orbit coupling, which is responsible for the transfer of angular momentum

between spin and orbital degrees of freedom. Importantly, phenomenological terms,

which may a priori induce a spin relaxation, are not included.

Before discussing the various terms of Eq. (3.3) in the following subsections, let us

emphasize that the purpose of the present thesis is to understand the role of purely

electronic mechanisms in the ultrafast demagnetization. We aim to elucidate the funda-

mental physics of this phenomenon. In this sense, in the forthcoming Chapter 5 we will

1In this context, it is worth recalling that the coupling to phonons has been proposed as an im-

portant demagnetization mechanism (18, 19, 20, 21). Nevertheless, for the reasons given above and for

the sake of simplicity we do not consider the electron-phonon coupling within our model. The role of

phonon excitations and electron-phonon interactions will be discussed in the concluding Chapter 6.
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3.2 Electronic many-body model

investigate the dynamical interplay between the electronic contributions in model (3.3),

and see to what extent it can explain the experimental results.

3.2.1 Single-particle electronic structure

In transition metals such as Ni, the most relevant 3d valence band is known to be

relatively narrow. According to the calculations of Wang and Callaway, the 3d band

width of bulk Ni is in the order of 5 eV (70). A narrow band means that the probability

of finding the 3d electrons shows clear peaks around the ions in the solid (16). Therefore,

it is a well established approach to describe the electronic structure of the considered

ferromagnets by means of a tight-binding lattice model, in which the localized character

of 3d orbitals is incorporated by means of a finite set of discrete atomic orbitals.1 The

single-particle term of the Hamiltonian reads

Ĥ0 =
∑
jασ

ε0
αn̂jασ +

∑
jk
j 6=k

∑
αβσ

tαβjk ĉ
†
jασ ĉkβσ . (3.4)

It is responsible for the electron delocalization, band formation and metallic behavior.

Here, ε0
α denotes the energy of the localized atomic orbital α,2 and tαβjk is the hopping

integral between orbital α at atom j and orbital β at atom k (j 6= k). Moreover, ĉ†jασ

(ĉjασ) represent creation (annihilation) operators of an electron at atom j in orbital α

with spin σ, and n̂jασ = ĉ†jασ ĉjασ are the corresponding electron number operators.

It is well known that in TMs the 3d electrons dominate the magnetic properties.

If one is interested in magnetic phenomena, this usually leads to the assumption that

considering only the 3d electrons as relevant valence electrons provides a reasonable ap-

proximation. However, for the description of laser-induced excitations it is not sufficient

to include only the 3d band in our model, since no optical absorption can occur within

a d band. The parity selection rule ∆l = ±1,±3, ... for optical transitions requires the

inclusion of bands with different orbital angular momentum quantum numbers l. We

1Notice that in bulk Ni the finite width of the 3d band (∼ 5 eV) reflects its itinerant character.

However, the probability density of the 3d electrons still has clear distinct maxima around the Ni ions.

The tight-binding ansatz takes into account this atomic structure of the metal in a simple way.
2The basis orbitals α can be chosen as atomic orbitals whose radial and angular parts are usually

characterized by the radial quantum number n and by the quantum numbers {l,m} of orbital angular

momentum as well as its projection on the z axis, respectively. In this case, the angular part, also

referred to as spherical harmonics, is an eigenstate of ~̂L · ~̂L and L̂z.
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3. MANY-BODY THEORY OF MAGNETIZATION DYNAMICS

are certain that the essential dynamics can be described by considering the 3d, 4s and

4p bands within Ĥ.

Let us finally mention that the single-particle electronic structure Hamiltonian does

not depend on the spin σ, since it includes neither external nor effective magnetic fields.

Only the kinetic energy of the valence electrons and their interaction with the lattice

potential are included in Ĥ0. Consequently, the action of Ĥ0 cannot induce any spin-

flip processes. Nevertheless, the hopping integrals tαβjk being of the order of 1 eV play

an important role, since they determine the shortest frequency f & (1 fs)−1 in the

dynamics of the system. Moreover, the hopping elements between different atoms,

tαβjk =

∫
d3r φ∗α(~r − ~Rj)

(
−~2∇2

2me
+ v(~r)

)
φβ(~r − ~Rk) , (3.5)

drive the electron motion in the lattice. Here, φα(~r− ~Rj) denotes the wave function of

single-particle orbital α at atom j, me is the electron mass, and v(~r) is the potential

generated by the ions in the metal. The valence electrons move within the potential

v(~r), which is incorporated in the integrals tαβjk . Therefore, v(~r) and tαβjk reflect the inter-

action between electrons and the lattice. This demonstrates that it is worth studying

the hopping integrals in more detail. To this aim, in Appendix B we discuss some

properties of tαβjk , e.g., symmetry properties, and present the two-center approximation

for their determination (71). The two-center approximation has proven extremely suc-

cessful in the description of the electronic structure of solids (72). For this reason, we

expect that its application allows one to accurately model the electron motion in the

lattice.

3.2.2 Electron-electron Coulomb interaction

The second term in Eq. (3.3) is the electronic Coulomb interaction energy ĤC . It is

responsible for the appearance of ferromagnetism. As discussed in Section 3.1, due to

the antisymmetry of the many-electron wave function the effective Coulomb repulsion

for a pair of electrons with parallel spins is weaker than for antiparallel spins (69).

This is known as the exchange interaction. Therefore, for the purpose of conceiving a

model for the electron-electron interaction, it is indispensable to include the important

exchange interaction. In the following, a model of ĤC is presented, which takes into

account this exchange energy in a natural way and, thus, is suitable for describing

ferromagnetism in transition metals.
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3.2 Electronic many-body model

Before giving an explicit expression for the Hamiltonian ĤC , let us discuss two

further important aspects, which allow us to simplify the form of ĤC . First, in metals

the electric field originated from charges at large distances r is very effectively screened

by the mobile conduction electrons. Consequently, only the intra-atomic interaction

energy needs to be taken explicitly into account. Secondly, it is reasonable to consider

only the Coulomb repulsion among the 3d electrons to describe the electron interaction,

since magnetism in TMs is dominated by the 3d electrons and by the interactions

between them. Actually, the higher atomic 4s and 4p orbitals are much less localized

than the 3d orbitals, so that the Coulomb interactions involving 4s and 4p electrons do

not play a significant role in the magnetic properties. Therefore, they can be regarded

as noninteracting due to their more delocalized character.

The above considerations are incorporated in the transparent model

ĤC =
1

2

∑
j

[
U (n̂jd − ϑ)2 − 2J ~̂Sjd · ~̂Sjd

]
(3.6)

for the electron-electron interaction, by means of which the main magnetic properties

of transition metals can be described. In particular, ĤC includes the important ex-

change interaction, and it takes into account only the intra-atomic interaction-energy

terms and the dominant interactions among 3d electrons. At this point, we will con-

tinue with discussing the effects of the two terms in ĤC , while a detailed derivation

of this model is given in Appendix C. First of all, the operator ĤC is responsible for

the correlation between the d electrons, as it represents a two-particle operator. The

first term in Eq. (3.6) describes the classical Coulomb energy and is specified by the

Coulomb parameter U . Here, n̂jd =
∑

α∈3d,σ n̂jασ denotes the number of interacting 3d

electrons at atom j. This term tends to suppress the charge fluctuations associated to

electron delocalization throughout the lattice. The second term linear in the effective

exchange parameter J provokes the creation and stability of local magnetic moments.

The operator ~̂Sjd denotes the spin at atom j restricted to the 3d electrons. Notice that

in Eq. (3.6) the Coulomb repulsion energy of a uniform 3d-electron density ϑ has been

subtracted.1 Actually, the interaction-energy contribution of ϑ d electrons per atom is

1In a system having Na atoms and nd electrons in the 3d valence band, the uniform 3d-electron

density per atom is given by ϑ = nd/Na. However, in order to definitely determine the parameter

ϑ prior to numerical simulations (which actually yield nd), we simply use ϑ = Ne/Na in the present

thesis. This is equivalent to the assumption that almost all electrons occupy the lowest 3d band.

47
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incorporated as an additional constant in the single-particle energies ε0
α. This leads, as

will be shown in Appendix C, to the effective 3d-electron level

εeff
d = ε0

d +
1

2

[
U (2ϑ− 1) +

1

2
J

]
. (3.7)

The formulations (3.6) and (3.7) will be used in the following Chapters.

Finally, it is important to note that ĤC does not change the total magnetization

of the system, since the total spin ~S commutes with ĤC ([ ~̂S, ĤC ] = 0). This means

that the action of the electron-electron interaction term alone cannot result in spin

relaxation. Actually, spin relaxation is induced exclusively by the spin-orbit coupling

Hamiltonian ĤSO, which will be discussed in Section 3.2.4.

3.2.3 Interaction with external fields

The operator Ĥext(t) in Eq. (3.3) takes into account the interaction with external fields:

Ĥext(t) = ĤE(t) + ĤB = −e~̂r · ~E(t) − ~̂µ · ~B . (3.8)

The first term in this equation, i.e.,

ĤE(t) = −e ~E(t) ·
∑
j

∑
αβ

∑
σ

〈α |~̂r|β 〉 ĉ†jασ ĉjβσ , (3.9)

describes the interaction with the laser electric field by means of the intra-atomic dipole

approximation, which considers a uniform classical field ~E. Here, e (e < 0) is the

electron charge and ~E(t) denotes the time-dependent electric field. The electric-dipole

matrix elements 〈α |~̂r|β 〉 are very simple if one chooses the eigenstates of ~̂L · ~̂L and

L̂z as the single-particle basis of the atomic orbitals, i.e., |α 〉 = |nlm 〉 which are

characterized by the radial quantum number n and by the quantum numbers {lm} of

orbital angular momentum and its projection onto the z axis. The term ĤE describes

the initial laser excitation. Since the direct coupling to the laser light contains only

terms diagonal in the spin variable σ, it is clear that ĤE cannot induce any spin-flip

excitations in the metal.

The effect of ĤE depends in a crucial way on both the time dependence of the electric

field ~E(t) (i.e., the shape of the laser pulse) and the matrix elements 〈nlm |~̂r|n′l′m′ 〉
between the atomic orbitals at the same lattice sites. Section 3.5 gives a mathematical

description of the laser field applied in the present work. Let us now briefly comment
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3.2 Electronic many-body model

on the dipole matrix elements. In order to determine them, it is useful to consider the

symmetry of the angular part | lm 〉. First of all, notice that the parity selection rule

states

〈nlm |~̂r|n′l′m′ 〉 = 0 unless l + l′ + 1 even. (3.10)

Consequently, ĤE allows only 4s–4p and 3d–4p transitions among the considered 3d,

4s and 4p orbitals. By further exploiting symmetry properties and the Wigner-Eckart

theorem (73), it is possible to derive explicit relations between the non-vanishing matrix

elements of ~̂r. This is explicated in Appendix D.

Besides coupling to electric fields, we also consider the coupling ĤB to external

magnetic fields ~B [see last term in Eq. (3.8)]. This term is used for the purpose of

stabilizing a magnetization direction as in the experiment (see Chapter 4). Actually,

the nonzero magnetic moment ~µ is imposed on |Ψ 〉 by including a nonzero magnetic

field ~B 6= 0 and considering the limit ~B → 0.

The description of the coupling to ~B is intra-atomic and Zeeman-like, i.e.,

ĤB = −~̂µ · ~B , (3.11)

where

~̂µ = −µB
~

(
~̂L+ 2 ~̂S

)
(3.12)

is the magnetic moment. Using

~B · ~̂L =
1

2
(Bx + iBy) L̂− +

1

2
(Bx − iBy) L̂+ +BzL̂z (3.13)

and an equivalent relation for ~B · ~̂S, one obtains

ĤB =
µB
2~

(Bx − iBy)
∑
jnl

∑
m,m′

∑
σσ′

[
(L+)nlm,nlm′δσσ′ + 2(S+)σσ′δmm′

]
ĉ†jnlmσ ĉjnlm′σ′

+
µB
2~

(Bx + iBy)
∑
jnl

∑
m,m′

∑
σσ′

[
(L−)nlm,nlm′δσσ′ + 2(S−)σσ′δmm′

]
ĉ†jnlmσ ĉjnlm′σ′

+
µB
~
Bz

∑
jnlmσ

[(Lz)nlm,nlm + 2(Sz)σσ] ĉ†jnlmσ ĉjnlmσ .

(3.14)

The spin matrix elements are given by

(Sz)σσ′ =
~
2
σ δσσ′ , (3.15)

(S+)σσ′ = ~ δσ,↑ δσ′,↓ , and (3.16)

(S−)σσ′ = ~ δσ,↓ δσ′,↑ , (3.17)
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where σ = ±1 for spin ↑ / ↓. The orbital angular-momentum matrix elements are

found by recalling that the operator ~̂L does not act on the radial part of the atomic

orbitals |nlm 〉, but only on their angular part given by the spherical harmonics | l,m 〉.
The action of ~̂L on them can be summarized by

L̂z |n, l,m 〉 = m~ |n, l,m 〉 and (3.18)

L̂± |n, l,m 〉 =
√
l(l + 1)−m(m± 1) ~ |n, l,m± 1 〉 . (3.19)

Using Eqs. (3.18) and (3.19), one obtains

(Lz)nlm,n′l′m′ = δn,n′ δl,l′ δm,m′m~ and (3.20)

(L±)nlm,n′l′m′ = δn,n′ δl,l′ δm,m′±1

√
l(l + 1)−m′m ~ . (3.21)

3.2.4 Spin-orbit coupling

The last term in model (3.3) is the intra-atomic SOC, which arises from relativistic

corrections to the Hamiltonian (69). Physically, the spin-orbit interaction describes the

coupling between the electronic spin ~Sa and the magnetic field created by its own orbital

motion ~La around the nucleus. In first quantization the corresponding Hamiltonian for

a single atom reads

Ĥatom
SO =

∑
a

1

2m2
ec

2

1

r

∂v(r)

∂r
~̂La · ~̂Sa , (3.22)

where the sum is taken over all electrons a, me is the electron mass, r denotes the

distance to the nucleus, and v(r) is the electrostatic potential created by the nucleus

and the remaining core electrons. One can rewrite the atomic spin-orbit Hamiltonian

as

Ĥatom
SO =

∑
a

ξa(r)

~2
~̂La · ~̂Sa (3.23)

in terms of SOC constants ξa(r), which are all positive (ξa(r) > 0 for all r) because

of ∂v(r)/∂r > 0 in the direct neighborhood of the nucleus. The concept of spin-orbit

coupling is easily extended to the bulk by applying the intra-atomic approximation.1

1In the bulk, one would in principle obtain matrix elements of the form 〈φjα |~r×~p 1
r
∂v(r)/∂r |φkβ 〉

between orbitals φjα and φkβ at different atoms j 6= k. However, these interatomic SOC integrals are

very small in comparison with intra-atomic matrix elements. Therefore, they can be neglected, and

the general spin-orbit Hamiltonian ĤSO in the bulk becomes a simple sum over atomic contributions.
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3.2 Electronic many-body model

Using this approximation the general spin-orbit Hamiltonian in second quantization

can be written as

ĤSO =
ξ

~2

∑
j

∑
αβ∈3d

∑
σσ′

(
~L · ~S

)
ασ,βσ′

ĉ†jασ ĉjβσ′ . (3.24)

Here, ξ is the effective spin-orbit constant averaged over the electron-nucleus distance

r, (~L · ~S)ασ,βσ′ denotes the intra-atomic matrix elements of ~̂L · ~̂S with respect to orbitals

α, β and spin σ, σ′. Since the spin-orbit constant ξa(r) is proportional to 1/r ·∂v(r)/∂r,

the SOC plays an essential role only in a small region around the nucleus. This implies

that the spin-orbit interaction ĤSO can be restricted to the most localized orbitals

among the considered valence bands. Consequently, it is only necessary to consider the

SOC within the 3d band (αβ ∈ 3d), where ξ can surely be assumed to be the same for

all d electrons due to their common radial part of the atomic wave function.

Let us now briefly discuss the effects of ĤSO. Because of ξ > 0, a single electron

would try to align the spin antiparallel to its orbital angular momentum in the ground

state. As discussed in Ref. (69), this implies that in atoms having a less than half-filled

outermost d shell, the total ground-state ~L is antiparallel to the total ground-state ~S.

In the opposite case of a more than half-filled d shell, ~L and ~S are parallel aligned in the

ground state.1 This is also known as the third Hund’s rule. Notice that the interesting

TMs Fe, Co and Ni have a more than half-filled d band. As a consequence, we expect

in these metals a parallel alignment of ~L and ~S in the corresponding ground states.

Actually, it is the term ~L · ~S what couples the spin ~S and orbital angular momentum

~L. Very importantly, this coupling breaks the spin rotational invariance. Moreover,

since the orbital motion is directly coupled to the lattice via the electrostatic potential

1The ground-state alignment between atomic ~L and ~S can be understood as follows. In the case

of a less than half-filled outermost d shell, all electrons have the same spin projection σ according to

the first Hund’s rule. The spatial orbitals are occupied beginning with the largest projection m of ~L in

the direction antiparallel to ~S. This yields an antiparallel alignment between ~S and ~L. In the opposite

case of a more than half-filled d shell, first all spatial orbitals are occupied with one particular spin

projection σ. These have zero net orbital angular momentum. Notice that the favored spin-projection

direction gives also the projection direction of the total atomic spin ~S. Then, the remaining electrons

having opposite spin projection −σ occupy spatial orbitals beginning with the largest projection of ~L

in the direction antiparallel to −σ, i.e., parallel to σ. Consequently, in this case ~S and ~L are parallel

aligned.

51



3. MANY-BODY THEORY OF MAGNETIZATION DYNAMICS

of the ions, the SOC results in the magnetic anisotropy (74).1 From the dynamical

point of view, the SOC acts as a channel for the local transfer between ~S and ~L. This

angular-momentum transfer comes along with a coupling of the up- and down-spin

manifolds, which provides equilibration of the spin with the electronic system. In fact,

in the absence of SOC (and external magnetic fields) the total spin ~S is conserved,

since [
~̂S , Ĥ0

]
=
[
~̂S , ĤC

]
=
[
~̂S , ĤE

]
= 0 . (3.25)

For these reasons the SOC represents a key mechanism in the demagnetization process.

In order to determine the matrix elements of ~̂L · ~̂S, it is important to notice that ~̂L

acts only on the spatial part |α 〉 and ~̂S acts only on the spin part |σ 〉 of the single-

particle states. Therefore, the matrix elements can be decomposed as

(~L · ~S)ασ,βσ′ = (~L)αβ · (~S)σσ′ = 〈α |~̂L|β 〉 · 〈σ | ~̂S|σ′ 〉 . (3.26)

Moreover, using the relation

~̂L · ~̂S =
1

2
L̂+Ŝ− +

1

2
L̂−Ŝ+ + L̂zŜz (3.27)

and the expressions (3.15)–(3.17) for the spin matrix elements, one can rewrite Eq. (3.24)

as

ĤSO =
ξ

~
∑
j

∑
αβ∈3d

[
1

2
(L+)αβ ĉ

†
jα↓ĉjβ↑

+
1

2
(L−)αβ ĉ

†
jα↑ĉjβ↓ +

1

2

∑
σ

(Lz)αβ σ ĉ
†
jασ ĉjβσ

]
.

(3.28)

The orbital angular-momentum matrix elements (~L)αβ can be simplified by using the

atomic orbitals |nlm 〉 as the single-particle basis, characterized by the radial quantum

number n and by the quantum numbers {lm} of orbital angular momentum and its

projection onto the z axis. This corresponds to the choice of basis states α in the

previous Section 3.2.3. Finally, the elements 〈nlm |~L|n′l′m′ 〉 are given by Eqs. (3.20)

and (3.21).

1The magnetic anisotropy originated from the SOC is also referred to as magneto-crystalline

anisotropy in order to distinguish it from the shape anisotropy originated from the dipole-dipole inter-

actions.
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3.3 Discussion in view of the magnetization dynamics

To summarize, the model Hamiltonian Ĥ describes the most important microscopic

mechanisms within the valence electron system including the spin degrees of freedom.

It contains the characteristic features of magnetic TMs: electronic hoppings, which

yield the metallic behavior, and Coulomb interactions including the exchange integrals,

which are responsible for the formation of localized magnetic moments. However, from

the point of view of magnetization dynamics, it is important to note that neither the

electron hoppings nor the Coulomb interaction can change the total magnetization of

the system. In other words, the total spin is conserved if one considers only the tight-

binding term Ĥ0 and the electron-electron interaction term ĤC . The same holds for

the interaction ĤE with the external laser electric field: coherent optical transitions

described by dipole matrix elements are spin conserving. The deficiency of Ĥ0, ĤE

and ĤC to induce spin-flip excitations in the metal is reflected by the commutation

relations [
~̂S , Ĥ0

]
=
[
~̂S , ĤC

]
=
[
~̂S , ĤE

]
= 0 . (3.29)

Therefore, in the absence of external noncollinear magnetic fields ~B it is only the spin-

orbit coupling ĤSO, what couples the two spin manifolds. In this sense, the ultrafast

spin dynamics is exclusively triggered by the SOC. This justifies our focus on studying

the separated role of ĤSO in the relaxation between the spin and translational electronic

degrees of freedom subsequently to the excitation of electrons by an ultrashort laser

pulse.

It is worth noting that the SOC describes the transfer of angular momentum between

spin ~S and orbital angular momentum ~L. Actually, ĤSO locally conserves ~Jj = ~Lj+ ~Sj .

The SOC has to be distinguished from the electrostatic spin-conserving interaction

between the electrons and the lattice. The latter is taken into account by Ĥ0, which

describes the motion of electrons in the lattice. This role of Ĥ0 can be understood

by recalling that the spin-independent potential v(~r) generated by the ions in the

lattice is incorporated in the hopping integrals tαβjk [see Eq. (3.5)]. Since Ĥ0 includes

these hoppings, it implicitly takes into account the electrostatic interaction between

the electrons and the fixed ions.

Furthermore, it should be noted that effects, such as spin-polarized electron diffusion

toward the substrate and other couplings to the environment, are not included in the
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present model (3.3). In fact, it has been recently shown that in simple FM films the

laser-induced demagnetization is not dominated by spin transport to the substrate

but rather by an ultrafast local transfer of angular momentum away from the spin

system (45). All further dissipation and relaxation mechanisms, which result from the

coupling to the environment, and which occur on the most interesting timescale of ten

to hundred femtoseconds, conserve the total magnetization of the sample. The same

holds for the valence electron scattering with core electrons. Therefore, we believe that

omitting the coupling to the environment is a reasonable assumption for the ultrafast

fs magnetization dynamics, since these terms do not lead to any spin relaxation.

3.4 Model simplifications

The electronic Hamiltonian (3.3) can in principle be used straightforwardly to deter-

mine the time propagation of any state under the action of external fields. However, an

exact solution requires to include a large number of many-electron basis states, which

increases exponentially with the number of single-particle orbitals. This fact actually

limits the accessible system sizes and the number of orbitals per atom, since the nu-

merical effort needs to remain affordable. For this reason, we propose some model

simplifications. The objective in mind is to simplify the model by keeping the mini-

mum number of degrees of freedom, which are inevitable for the description of electron

motion in the lattice, Coulomb repulsion, spin-orbit interaction and laser excitation on

the same footing.

First, we know that the electronic transitions resulting from light-matter interac-

tions can be described by dipole-transitions between only the 3d orbitals characteristic

for the magnetic properties and the excited 4p orbitals. Since ĤE does not directly

couple the 4s electrons to the most important valence 3d electrons, the 4s band can be

ignored without affecting the ability of ĤE to model the effect of laser-pulse absorption.

This motivates the use of only 3d and 4p orbitals as the restricted single-particle basis

set for the relevant valence electrons. However, a complete treatment of the atomic 3d

and 4p orbitals, i.e., 16 orbitals per atom including spin degeneracy, is still numerically

too demanding. Therefore, we propose a further simplification, namely to reduce the

degree of orbital degeneracy from Nd-orbitals = 5 to Nd-orbitals = 3 for 3d and from

Np-orbitals = 3 to Np-orbitals = 1 for 4p orbitals. This means that the 3d and 4p electrons
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Notation Character Mathem. description Orbital degeneracy

d localized n = 3, l = 1 m = −1, 0,+1

p delocalized n = 4, l = 0 m = 0

Table 3.1: Electronic two-band model approximation - Only four orbitals per atom

are included in the many-body model: the three-fold degenerated localized 3d orbitals and

the delocalized 4p orbitals, which are mathematically described by l = 1 and l = 0 atomic

states, respectively. The electronic Coulomb repulsion and the SOC are considered only

within the localized d orbitals.

are mathematically described by orbital shells having quantum numbers l = 1 and l = 0

respectively. Let us note that by reducing the orbital degeneracy we actually reduce the

number of relaxation channels. Therefore, we should get rather a slower magnetization

dynamics than a faster one in comparison with non-reduced orbital degeneracies.

The above-mentioned two-band approximation (including four orbitals per atom)

yields the minimum number of atomic orbitals, which are necessary for taking into

account the selection rules for optical transitions and subsequent SOC-triggered spin

relaxation: (i) both d and p orbitals are needed for describing the laser-induced optical

transitions, and (ii) three-fold orbital and two-fold spin degeneracies of the localized d

orbitals are needed for the SOC inducing spin-flip processes and angular momentum

transfer between ~S and ~L.1 Since these essential features of the valence electrons in TMs

are included in the above approximation, it is expected to serve as a reliable model for

magnetization dynamics in ferromagnets. In particular, this approximation is intended

to provide an understanding of the processes involved in the ultrafast demagnetization

effect.

Table 3.1 summarizes the model simplification which we apply from now on: Only

four orbitals per atom, namely the three-fold degenerated d band and the p band, are

included in this approximation. Mathematically, the corresponding atomic orbitals are

described by l = 1 (representing the localized 3d electrons) and l = 0 (representing

1It is worth noting that a further reduction in the degree of orbital degeneracy from Nd-orbitals = 3

to Nd-orbitals = 2 for the 3d orbitals is not allowed. Although this reduction would significantly simplify

the model as well as take into account the SOC-induced spin relaxation, the resulting d-p hopping

integrals would not satisfy the 2π-rotation symmetry in space. This is shown in the Appendix B.1,

where the angle dependence of the hopping integrals is discussed.
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Hopping Expression in terms of Slater-Koster integrals

tp0,p0jk (p, p;σ)

tp0,d0
jk λz (p, d;σ)

tp0,d±1
jk ∓ 1√

2
(λx ± iλy) (p, d;σ)

td0,d0
jk λ2

z (d, d;σ) + (1− λ2
z) (d, d;π)

td0,d±1
jk ∓ λz√

2
(λx ± iλy) [(d, d;σ)− (d, d;π)]

td±1,d±1
jk

1
2 [(1− λ2

z) (d, d;σ) + (1 + λ2
z) (d, d;π)]

td+1,d−1
jk −1

2(λx − iλy)2 [(d, d;σ) − (d, d;π)]

Table 3.2: Hopping integrals of the model - Interatomic hoppings tlm,l
′m′

jk in terms of

two-center integrals, as obtained by applying the two-band model (see Table 3.1). Similarly

to Table B.2, the indices λx, λy and λz denote the direction cosines of the connection vector
~Rjk. Notice that the entries not given in the table can be obtained by applying the relation

tαβ(~Rjk) = [tβα(−~Rjk)]∗.

the delocalized 4p electrons) states. The electronic Coulomb interaction and the SOC

are considered only within the localized d orbitals (mathematically, l = 1 states). It is

important to notice that the model parameters need to satisfy the conservation laws

resulting from the lattice symmetry, the local conservation of total atomic angular

momenta in every spin-orbit coupling transition, and the optical selection rules. For

this reason, the interatomic hopping integrals, the orbital angular-momentum matrix

elements and the intra-atomic dipole matrix elements are determined by using the

mathematical description in terms of l = 1 and l = 0 atomic orbitals. The result-

ing expressions for the hopping integrals and the dipole matrix elements are given in

Tables 3.2 and 3.3, while the matrix elements of ~L read

(Lz)p0,p0 = (L±)p0,p0 = (Lz)p0,dm = (L±)p0,dm = 0 , (3.30)

(Lz)dm,dm′ = δm,m′~ , and (3.31)

(L±)dm,dm′ = δm,m′±1

√
2 ~ . (3.32)
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Dipole element Expression given by Wigner-Eckart theorem

〈 d,m |x̂| p, 0 〉 − m√
2
〈 d ||T̂ (1)|| p 〉

〈 d,m |ŷ| p, 0 〉 i√
2
(1− δm,0) 〈 d ||T̂ (1)|| p 〉

〈 d,m |ẑ| p, 0 〉 δm,0 〈 d ||T̂ (1)|| p 〉

Table 3.3: Intra-atomic dipole matrix elements of the model - Interband matrix

elements 〈 d,m |~̂r| p, 0 〉, as obtained by applying the two-band model (see Table 3.1) and

the Wigner-Eckart theorem (see Appendix D).

3.5 Laser pulse

In the present Section we want to consider the femtosecond laser pulse in more detail.

Actually, the whole spin-relaxation dynamics is stimulated by the laser pulse. Its

mathematical description is given in terms of the electric field

~E(t) = E0 ~ε cos(ωt) e
− t2

T2
p . (3.33)

Here, ~ε denotes a dimensionless normalized polarization vector. The term cos(ωt)

represents the electric-field oscillations at a fixed position in space, where the frequency

ω is related to the wave length λ by ω = 2πc/λ (c denotes the speed of light in vacuum).

The Gauss envelope exp
(
−t2/T 2

p

)
is centered around the pump time t = 0 fs. The pulse

duration Tp is defined such that at times t = ±Tp the amplitude of ~E(t) is reduced by

the factor 1/e with respect to t = 0 fs. At t = 0 the electric-field attains its maximal

amplitude E0. The scalar factor E0 is a measure for the intensity of the electric field.

It is related to the fluence F of the pulse (i.e., energy flow per unit area) by

E0 =

(
2

π

)1/4
√

2F

cε0Tp
, (3.34)

where ε0 is the vacuum permittivity. By integrating the time-dependent intensity (field

energy transferred per unit area and time)

I(t) =
1

2
c ε0E

2
0 e
− 2t2

T2
p , (3.35)

averaged over the rapid oscillations, one obtains∫ +∞

−∞
dt I(t) =

√
2

π

F

Tp

∫ +∞

−∞
dt e
− 2t2

T2
p = F . (3.36)
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In most of the following cases, we will consider linearly polarized laser pulses which

are characterized by a real polarization vector ~ε ∈ R3. Then, using Eq. (3.33) the

Hamiltonian ĤE(t) describing the interaction between electrons and laser pulse reads

ĤE(t) = −eE0 cos(ωt) e
− t2

T2
p ~ε · ~̂r , (3.37)

whose matrix elements are given in terms of matrix elements of ~̂r (see Sections 3.2.3

and 3.4). However, for some purposes it is also interesting to study the effect of circu-

larly polarized light on the magnetic system. To this aim, let us consider σ± photons

which carry an angular momentum ±~ along the z quantization axis. We model the

corresponding dipole transitions between the lower d orbitals and the higher p orbital

by means of the modified Hamiltonian

Ĥ
σ±
E (t) = −eE0 cos(ωt) e

− t2

T2
p

{
P̂p (~ε± · ~̂r) P̂d + P̂d (~ε∓ · ~̂r) P̂p

}
. (3.38)

Here, P̂d and P̂p denote projection operators onto the d and p orbitals, respectively,

and the polarization vector ~ε± is now complex. It is given by

~ε± =
1√
2

(êx ± iêy) , (3.39)

where êx (êy) is a unit vector along the x (y) axis. In order to understand the roles

of the two summands in Eq. (3.38) and the differences to Eq. (3.37), let us give their

matrix elements. Assuming the model simplifications of Section 3.4, one obtains

〈 p, 0 |P̂p (~ε± · ~̂r) P̂d| d,m 〉 = ±δ∓1,m 〈 d ||T̂ (1)|| p 〉∗ and (3.40)

〈 d,m |P̂p (~ε± · ~̂r) P̂d| p, 0 〉 = 0 (3.41)

for the first summand. Notice that we have used the notation 〈 d ||T̂ (1)|| p 〉 for the

reduced matrix element of the spherical tensor operator obtained from ~̂r, as introduced

in Appendix D. Since (~ε± · ~̂r)† = ~ε∓ · ~̂r, a simple complex conjugation yields the matrix

elements of the second summand, i.e.,

〈 d,m |P̂d (~ε∓ · ~̂r) P̂p| p, 0 〉 = ±δ∓1,m 〈 d ||T̂ (1)|| p 〉 and (3.42)

〈 p, 0 |P̂d (~ε∓ · ~̂r) P̂p| d,m 〉 = 0 . (3.43)

Equations (3.40) and (3.41) demonstrate that the first summand in Ĥ
σ+

E [see Eq. (3.38)]

describes the absorption of a σ+ photon, which carries an angular momentum +~ to
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3.5 Laser pulse

the electron orbits by inducing an intra-atomic transition from the d-electron local

orbitals to the p-electron local orbital. The second summand in Eq. (3.38) is the

complex adjoint operator which ensures that the Hamiltonian Ĥ
σ+

E remains hermitian.

Physically, it describes the emission of a σ+ photon which comes along with subtraction

of angular momentum +~ from the electron orbits and reverse transition from the p

orbital back to the d orbitals [see Eqs. (3.42) and (3.43)]. Similarly, the operator Ĥ
σ−
E

with the opposite helicity σ− corresponds to the absorption and emission of angular

momentum −~ (i.e., +~ replaced by −~). To summarize, the Hamiltonian Ĥ
σ±
E takes

into account the absorption and emission of only σ+ or σ− circularly-polarized photons,

whereas the Hamiltonian ĤE(t) in Eq. (3.37) considers linear polarizations representing

a superposition of both σ+ and σ− helicities.

Finally, it is worth noting that we have neglected the magnetic field ~B(t) induced

by the time variations of ~E(t). The associated field ~B(t) results from the Maxwell

equation in vacuum

~∇× ~B =
1

c2

∂ ~E

∂t
. (3.44)

In the case of continuous electromagnetic waves in the vacuum, the Maxwell equations

yield

~B =
1

ω
~k × ~E , (3.45)

where ~k is the wave vector of the plane waves. However, since ω = kc, the magnitude

of the magnetic field is of the order | ~B| = 1
c | ~E|. This means that the effect of ~B is

considerably smaller (by a factor of 1/c) than the effect of the electric field ~E. These

considerations give us the motivation for the neglection of ~B. Hence, we consider only

the electric field ~E, which interacts solely with the electronic orbital degrees of freedom

and thus conserves the magnetization.
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4

Static magnetism

In the previous Chapter, an electronic model has been introduced which takes into ac-

count the electron-electron interaction, the spin-orbit coupling and the electron motion

in the lattice on the same footing. Before studying the roles of these different processes

on the magnetization dynamics as well as their interplay, it is important to understand

the magnetism as described by the model from a static perspective. To this aim, first,

the main comments on the model parameters are discussed in Section 4.1. In the subse-

quent Section 4.2 the parameter regimes of ferromagnetic ground states are identified.

Moreover, the stability of the FM order in some representative examples among them

is investigated. These FM ground states will be used in Chapter 5 as initial states for

the purpose of performing an exact time evolution of the magnetization following the

laser-pulse absorption.

4.1 Specific model parameters

The primary aim of the many-electron model proposed in the present thesis is the

description of magnetization dynamics in 3d transition metals. With this objective in

mind, the model parameters must be specified in a way such that they allow us to draw

conclusions from the model dynamics on the dynamics of 3d ferromagnets (e.g., Nickel

films or solids). This implies that, on the one hand, the parameters in Hamiltonian (3.3)

need to be set as realistic as possible, in order that the static magnetic model properties

are similar to the true ones. On the other hand, it is very worthwhile to reduce the

model complexity (for instance, the dimensionality, the system size, etc.) by keeping
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4. STATIC MAGNETISM

the most essential electronic ingredients which are responsible for static magnetism and

magnetization dynamics. In the following these two ideas will guide the specification

of the model parameters.

First of all, let us mention that the elementary electronic transitions involved in the

spin-orbit interaction and laser-pulse absorption, as well as the intra-atomic Coulomb

interactions which are crucial for TM magnetism, are of local nature. Due to their

locality and essentially intra-atomic character we expect that these processes result

basically in the same local physics both in small clusters and in the bulk. Since this

local physics is crucial for the spin relaxation,1 it seems sound to consider small systems,

for which exact numerical results are achievable. The investigation of the ground-state

properties and the laser-induced magnetization dynamics in small systems should allow

us to draw useful conclusions on the behavior in the larger systems of experimental

interest. In this work we consider clusters of Na = 2–4 atoms as applications. Indeed,

the idea of modeling bulk systems by means of solvable small-size clusters has been

already used successfully in the past for describing the photoemission spectra of periodic

systems [see Ref. (75)].

Let us continue with the hopping integrals tαβjk . This quite important set of pa-

rameters reflects the electron dynamics in the lattice. The hopping elements are taken

from tight-binding theory and are expressed in terms of Slater-Koster integrals, where

the two-center approximation is applied (for details see Appendix B). We consider

only first NN Slater integrals to be nonzero, for which we use (d, d;σ) = 0.412 eV,

(d, d;π) = −0.489 eV, (p, p;σ) = 1.516 eV and (p, d;σ) = −0.555 eV. These parameters

imply the following hopping-integral properties: (i) choosing the z axis to be orthogo-

nal to the interatomic connection vector ~Rjk, the Lz non-conserving hopping elements

td+1,d−1
jk dominate within the d band, (ii) the relatively large p–p hopping elements

tp0,p0jk yield very mobile p electrons as it is the case for strongly delocalized electrons

within the 4p band in TMs, and (iii) the interband hopping energy between p and d

electrons is considerably large (see Table 3.2). Therefore, the above choice of Slater-

Koster integrals yields hopping elements which resemble the ones of localized 3d and

delocalized 4p electrons in metallic Ni (76).

1Recall that the nonlocal physics described by the interatomic electron hoppings tαβjk , i.e., the

electron motion in the lattice, does not induce any relaxation of the spins.
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The number of electrons Ne is a further important parameter. It is not specified

at this stage: various values of Ne will be considered in the following investigations.

Nevertheless, it is worth discussing the choice of Ne and its consequences. First, let us

recall that in the case of Fe, Co and Ni, the most narrow valence band, the 3d band, is

more than half-filled. This of course suggests to choose a more than half-filled d band

within the electronic model (3.3). Alternatively, it is also possible to consider holes

instead of electrons in the d band. From the mathematical perspective the unitary

transformation, which transforms all electrons into holes (h) and vice versa, reads

ĉ†jασ = ĥjασ and (4.1)

ĉjασ = ĥ†jασ . (4.2)

Then, all single-particle terms in the Hamiltonian transform as

ĉ†jασ ĉkβσ′ = δjkδαβδσσ′ − ĥ†kβσ′ ĥjασ . (4.3)

One can show that the interaction-energy Hamiltonian ĤC is invariant under this

electron-hole transformation, while the resulting SOC strength ξh for the holes and

the original electron SOC parameter ξe are related by

ξh = −ξe . (4.4)

This opens the possibility to study the spin relaxation in TMs having a more than

half-filled 3d band by considering a less than half-filled d band (holes) together with a

negative SOC constant ξ.1 In fact, we will apply this idea in the present work. However,

the electron-hole transformation (4.1)–(4.3) alone has no significant practical interest,

since it does not reduce the Hilbert-space dimension. In contrast, it is advantageous

to simply consider less than half-filled d bands instead of more than half-filled ones,

keeping the electronic band structure2 and the occupation of the higher p band (empty

or very weakly occupied) unmodified. In other words, we propose the following two

changes:

(i) modeling FM transition metals such as Ni by means of less than half-filled 3d

bands, and simultaneously

1In Section 3.2.4 it has been discussed that ξ > 0 for electrons.
2This means that the same single-particle Hamiltonian Ĥ0, the same electronic levels ε0

α and the

same interatomic hopping integrals tαβjk are used for both electron and hole calculations.
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(ii) changing the sign of ξ.

Indeed, this can significantly reduce the number of many-body basis states, as demon-

strated in the following simple example: Consider Na = 3 atoms, each of them having

ϑ = 5 d electrons. Taking into account the (empty) p band, the system contains 12

orbitals (or 24 including the spin degeneracy) occupied by 15 electrons. Consequently,

the dimension of the Hilbert space is given by
(

2·12
15

)
= 1, 307, 504. However, by con-

sidering 5 holes instead of 5 electrons per atom within the d band, i.e., ϑ = 1 particle

per atom, one obtains a reduced Hilbert-space dimension of
(

2·12
3

)
= 2, 024. Hence,

the transition from more to less than half-filled d bands largely simplifies the practical

diagonalization of the many-body Hamiltonian. Accordingly, in a large part of the

present thesis we will model Ni by approximately one hole per atom in the d band,

i.e., by approximately one carrier per atom.1 This simplification is physically legiti-

mate, since the three fundamental electronic processes or terms in the Hamiltonian,

namely, spin-orbit coupling ĤSO, electron-electron Coulomb interaction ĤC including

the exchange interaction, and the electronic motion in the lattice Ĥ0, are not affected

by the number of fermions. Therefore, we expect that the present choice of the d-band

occupation does not affect the mechanisms involved in the magnetization dynamics

and, thus, does not significantly change the qualitative physics of spin relaxation. In

order to verify this assumption, in the forthcoming Section 5.9 we have investigated the

magnetization dynamics of the model for various d-band occupations. There, it will

be shown that the qualitative behaviors are very similar for both more and less than

half-filled d bands.

Let us now consider the SOC constant ξ, which describes the strength of the coupling

and of the potential angular-momentum transfer between spin and orbital degrees of

freedom. According to Ref. (74), for typical 3d TMs the SOC strengths are in the

range of ξ = 50–100 meV. We have chosen its lowest bound of 50 meV. Moreover, as

discussed above, the sign of ξ has been changed, finally yielding

ξ = −50 meV (4.5)

for the following studies. Since we will use models having a less than half-filled d

band, the negative SOC strength implies a parallel alignment between ~L and ~S (see

1In addition, a variation of Ne will also be considered in the following Chapters in order to inves-

tigate the dependence of magnetization dynamics on the band filling.
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Section 3.2.4). This agrees with the ferromagnets Ni, Co and Fe. However, one could

ask oneself about the physical meaning of a negative SOC strength. In order to address

this question, let us consider the unitary transformation

ĉ†j,m,↑ −→ ĉ†j,−m,↑ and (4.6)

ĉ†j,m,↓ −→ −ĉ
†
j,−m,↓ , (4.7)

where m denotes the orbital angular momentum z-projection quantum number. These

transformations yield a change of sign in the SOC strength, i.e., ξ → −ξ, and the

modifications L̂−Ŝ+ → L̂+Ŝ+ and L̂+Ŝ− → L̂−Ŝ− in the non-diagonal SOC terms.

Consequently, the transformed spin-orbit coupling conserves ~L − ~S instead of ~L + ~S.

This can be interpreted as follows: a change of sign in ξ is equivalent to a spin-orbit

interaction which conserves the angular-momentum difference ~L− ~S. We believe that

this slight difference —i.e., if upon the action of ĤSO the orbital angular momentum ~L

increases or if it decreases with decreasing spin ~S— is not relevant, since, as we shall see,

~L is quenched by the electron motion in the lattice anyway. Therefore, we expect that

the transformation ξ → −ξ does not change the physics of ultrafast angular-momentum

transfer and demagnetization. This assumption is indeed confirmed in Section 5.4,

where the dependence of spin relaxation on the SOC parameter ξ including both signs

is studied in some detail.

Next, we discuss the direct Coulomb integral U , which represents the direct Coulomb

repulsion energy of two d electrons at the same atom. Its value can be obtained from

the photoemission spectrum. Experiments using photoemission of either core or va-

lence electrons have revealed a satellite peak in the spectrum of Ni approximately 6 eV

below the main lines (77, 78, 79). This satellite in the spectrum is attributed to the

emission of electrons from atoms having one 3d hole (before emission), while the main

lines at the Fermi level correspond to the emission from atoms having zero 3d holes.

Therefore, the satellite position with respect to the Fermi level gives an approximation

to the direct Coulomb parameter, i.e., U ≈ 6 eV for Ni (16). In addition, by solving a

four-site d-electron model, Victora and Falicov have proposed a slightly smaller value

of U = 4.3 eV to provide the proper satellite position (75). In the present thesis we use
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a similar value,1 namely,

U = 4.5 eV . (4.8)

It is important to notice that this direct intra-atomic Coulomb parameter is a little bit

larger than the single-particle d-band width in the trimer model (Wd = 1.9 eV). This

implies that in our model the d electrons must be regarded as strongly correlated.

In order to specify the p-electron level ε0
p relative to the effective d-electron level εeff

d ,

let us recall that the p-orbital occupation depends on the ratio between the interband

d-p hopping integrals and the difference ε0
p − εeff

d between atomic d and p levels. This

argument is of course consistent with perturbation theory. In other words, the choice

of ε0
p affects the occupancy of the higher p band and is therefore important. Keeping

this in mind, we have used

ε0
p − εeff

d = 1 eV (4.9)

in the present thesis. This value is appropriate, since it is in the same order of mag-

nitude as the interatomic hoppings including the d-p integrals [(p, d;σ) = −0.555 eV].

Therefore, as we shall see in Section 4.2.2 it results in an intermediate (i.e., small but

not negligible) p-level occupation already in the ground state. This agrees with the

considerable hybridization between the 3d band and higher valence bands in transition

metals.

The remaining important parameter of the model (3.3) is the intra-atomic exchange

Coulomb integral J . It plays an important role, since it determines the stability of the

local magnetic moments. The choice of J is discussed in the following Section. There,

J will be set so as to yield a stable FM ground state.

4.2 Magnetic properties

As a preliminary step toward the investigation of magnetization dynamics in Chap-

ter 5, it is necessary to identify the parameter regimes of stable ferromagnetic ground

states. To this aim, in the present Section the ground-state magnetic order is tested in

terms of model parameters which have not been specified so far: geometrical structure,

number of atoms Na, number of electrons Ne, and exchange parameter J . First, in

1In addition to the direct Coulomb integral U = 4.5 eV, we have also considered the parameters

U = 4, 5 and 6 eV. However, significant differences in the magnetic properties and in the magnetization

dynamics of the model have not been found.
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Subsection 4.2.1 we address solely the question if the ground state of a given system is

FM or not. This allows us to choose a few representative systems, whose ground states

will later be used as initial states for time propagations under the action of external

laser pulses. Then, in Subsection 4.2.2 several ground-state properties of these system

examples, such as the ground-state spin and orbital angular momenta and the magnetic

anisotropy, are investigated. Finally, Subsection 4.2.3 considers the dependence of the

static magnetization on the temperature. This allows us to quantify the stability of

the FM order in the initial state before the laser-pulse action with respect to energy

absorption and subsequent thermalization.

We would like to remark that the present model is applicable to the detailed study

of electronic correlations in a variety of magnetic properties. Although this route is

certainly very interesting in the context of both ground-state and finite-temperature

magnetism, at this point we focus only on such properties which are important for

the laser-induced magnetization dynamics. However, a brief outlook on the various

possibilities of the model is given in the concluding Chapter 6.

4.2.1 Identifying ferromagnetic phases

In order that the many-body model (3.3) can be used to describe the laser-induced

ultrafast demagnetization, it is clear that appropriate band fillings and interaction

parameters must be chosen so that the ground state is ferromagnetic. Otherwise, there

would be no FM order before laser-pulse absorption. Therefore, it is important to find

the FM phases of the model, i.e., the parameter regimes in which the ground state is

ferromagnetically ordered.

To this aim, we first consider the ground-state magnetic order within only the d

band as the relevant valence band. This single-band restriction simplifies the identi-

fication of FM phases. Its physical motivation is that in typical 3d TMs the static

magnetic properties are determined dominantly by the more localized d valence elec-

trons. Consequently, considering only the d band represents a sound approach if one

aims to compute static magnetic properties which do not involve optical transitions

to higher bands. Furthermore, let us recall that ferromagnetism in transition metals

mainly results from the electron-electron Coulomb interaction, while the spin-orbit cou-

pling has little effect on the ground-state spin magnetization but is responsible —from

the static point of view— essentially for orbital magnetism and magnetic anisotropy.
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For this reason, in this first step the SOC is not taken into account (ξ = 0). Then, the

electronic Hamiltonian commutes with the total spin ~̂S and, therefore, all stationary

states can be chosen as eigenstates of ~̂S2 having definite spin quantum number S. Since

the Hamiltonian also commutes with Ŝ+ and Ŝ−, all states having a given quantum

number S have the same energy independent of the spin projection (along an arbitrary

quantization axis). This means that the ground-state quantum number S determines

the maximal spin polarization in the ground state. It is important to notice that the

magnetic order is most sensitive to the exchange parameter J , which is responsible for

the stability of the atomic magnetic moments. In addition, the magnetic order also de-

pends on the structure and band filling, as it is the case in 3d TMs. For these reasons,

we have determined the ground states of several small clusters, having Na = 2–4 atoms

and different geometries, as a function of J and number of electrons Ne. The corre-

sponding static calculations have been performed by applying a Lanczos diagonalization

method (80), whose mathematical description is given in Appendix E. The results are

summarized in Figure 4.1. It shows, for the considered structures, the ground-state

spin quantum number Sd,ξ=0 in terms of J and Ne.
1 In our calculations only exchange

integrals J smaller than the direct Coulomb integral U have been taken into account,

i.e., the parameter J has been varied within the range 0 ≤ J ≤ U = 4.5 eV. A ferromag-

netic ground state exists if Sd,ξ=0 ≥ 1 for Ne even or Sd,ξ=0 ≥ 3/2 for Ne odd. First,

one observes that for most structures and band fillings the ground state has minimal

spin (i.e., Sd,ξ=0 = 0 or 1/2) for J = 0. However, in some cases a degeneracy in the

single-particle spectrum of Ĥ0 leads to Sd,ξ=0 = 1 or 3/2 already for J = 0 (for the

dimer having Ne = 2 and 10 electrons, the Na = 3 linear chain having Ne = 2, 9 and 16

electrons, the triangle having Ne = 6 and 14 electrons, the Na = 4 linear chain having

Ne = 2 and 22 electrons, and the pyramid having Ne = 4, 5, 15 and 22 electrons). For

those numbers of electrons Ne, for which a FM ground-state order is possible, the total

spin quantum number Sd,ξ=0 tends to increase stepwise with increasing parameter J .

In other words, with increasing exchange energy J the tendency toward FM order of the

local magnetic moments increases. Furthermore, whether the ground state is ferromag-

netic or not strongly depends on the band filling. For instance, Figure 4.1 shows that

1The spin quantum number in the d-band system (excluding the SOC) is denoted by Sd,ξ=0, in

order to distinguish it from the corresponding spin quantum number S in the two-band model including

both d and p bands and SOC.
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Figure 4.1: Ground-state spin angular momentum of small clusters - The ground-

state spin quantum number Sd,ξ=0 is shown for several small clusters, having Na = 2–4

atoms and different geometries, as a function of exchange energy J and number of electrons

Ne. In these calculations, only the d band of localized electrons has been included in the

model. Moreover, the spin-orbit coupling has not been taken into account (ξ = 0).
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for half-band filling (Ne = 3Na) the ground states of most of the considered structures

have Sd,ξ=0 = 0 or Sd,ξ=0 = 1/2,1 whereas one electron below or above half-band filling

the ground states are ferromagnetic.

Based on the results given in Figure 4.1 we choose the following structures and band

fillings as applications for the dynamical simulations in Chapter 5:

• Dimer (Na = 2) having Ne = 3 electrons

• Linear chain (Na = 3) having Ne = 5 and 7 electrons

• Triangle (Na = 3) having Ne = 3, 4, 5, 7 and 15 electrons

• Rhombus (Na = 4) having Ne = 5 electrons

These examples show FM order in the ground state for sufficiently large exchange

energies J . They provide a representative selection since band fillings from low to

high band filling Ne and different numbers of atoms Na = 2–4 are considered.2 In

the present thesis a particular focus is set on the isosceles triangle having Ne = 4

electrons as the main system. This structure represents a two-dimensional geometry

similar to the thin films used in the experiments. Its particular occupation by Ne = 4

electrons is appropriate for several reasons: it takes into account the important intra-

atomic Coulomb repulsion between two electrons due to ν = Ne/Na = 4/3 > 1, it

yields a FM ground state with saturated spin Sd,ξ=0 already for rather small exchange

parameters J > 0.5 eV, and it is computationally affordable. The other chosen electron

occupations Ne and geometries (dimer, Na = 3 linear chain, and rhombus) serve as a

comparison in order to elucidate possible dependences of the magnetization dynamics

on the band filling and structure. In fact, we shall see in Section 5.9 that the laser-

induced spin dynamics is qualitatively very similar for all considered structures and

band fillings. These systems show the same physics as long as the corresponding ground

states are ferromagnetic. Therefore, we expect that the detailed choice of the system

1The Na = 3 linear chain is an exception. There, a degeneracy in the single-particle spectrum leads

to Sd,ξ=0 = 3/2 for half-band filling, i.e., Ne = 9, and all considered J .
2Actually, in most of the chosen examples the FM ground states are fully spin polarized for suffi-

ciently large exchange parameters J . They have the maximum spin quantum number Sd,ξ=0 for a given

number of electrons Ne, i.e., Sd,ξ=0 = Ne/2 for Ne ≤ 3Na or Sd,ξ=0 = (6Na − Ne)/2 for Ne > 3Na.

The sole exception is given by the triangle occupied by Ne = 7 electrons. The corresponding ground

states have a non-saturated spin Sd,ξ=0 ≤ 5/2 for J ≤ U = 4.5 eV.
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is not critical for the purpose of investigating the mechanisms involved in the ultrafast

demagnetization.

So far, the SOC has not been considered and only one band, namely the d band of

localized electrons, has been effectively included in the model (3.3). The corresponding

ground states can in principle be used as initial states for studying the laser-induced

magnetization dynamics. However, for the purpose of describing the electronic response

to the laser-pulse absorption, the electron-light interaction and, thus, both the d and

p bands need to be taken into account. In addition, the spin-orbit coupling must be

taken into account in order to allow for spin relaxation. It is clear that the inclusion

of the additional p valence band and spin-orbit interaction represents a change in the

Hamiltonian of the system: from the d-band restricted model excluding SOC to the

two-band model including d and p bands as well as SOC. This can result in some

modifications in the corresponding ground states. Since the most essential magnetic

properties are determined dominantly by the d electrons, one expects that the FM

phases (i.e., the parameter regimes in terms of structure, Ne and J , for which the ground

states are ferromagnetic) of the d-band restricted model should not differ strongly from

the FM phases of the two-band model. Nevertheless, this assumption needs to be

verified explicitly. Therefore, in the following it is demonstrated that the above chosen

structures and band fillings also correspond to high-spin parameter regimes of the two-

band model, for which the ground states have relatively large quantum numbers S.

In order to elaborate the modifications introduced by the transition from the d band

to the two-band model, let us notice that the addition of the higher p band including

finite d-p hopping integrals leads to d-p hybridization. Indeed, in transition metals the

3d band considerably hybridizes with higher valence bands. This change of the system

may have an effect also on the ground-state spin quantum number S. Moreover, the

spin-orbit Hamiltonian ĤSO does not commute with the total spin square ~̂S2. Hence,

by including the spin-orbit interaction, ~S2 is not conserved anymore. In other words,

the ground states cannot always be chosen such that they have definite spin quantum

numbers S. These considerations show that the inclusion of the p band and SOC

results in a modified functional dependence of S on the exchange energy J . In order

to investigate it, both the d and p bands as well as the SOC having a strength of

ξ = −50 meV are now included in the model. The ground states of the above chosen

systems are determined as a function of J , and the results are shown in Figure 4.2.

71



4. STATIC MAGNETISM

0 1 2 3 4

J  [eV]

1

1.2

1.4

1.6

S

0 1 2 3 4

J  [eV]

0

1

2

3

4

S

0 1 2 3 4

J  [eV]

0

1

2

3

4

S

0

1

2

S

0

1

2

S

0

1

2

S

0 1 2 3 4

J  [eV]

0

1

2

S

0 1 2 3 4

J  [eV]

0

1

2

3

S

0 1 2 3 4

J  [eV]

0

1

2

3

S
S

d,ξ=0
 = 3/2

(a) N
a
 = 2  Dimer

(b) N
a
 = 3

Linear chain

N
e
 = 5

5/21/2

N
e
 = 3

3/2

3/2

1/2

N
e
 = 3

7/21/2

3/2 N
e
 = 7

(c) N
a
 = 3  Triangle

1/2

N
e
 = 4

20

1/2 3/2 5/2

N
e
 = 5

1/2 5/2

N
e
 = 7

1/2 3/2

N
e
 = 15

1/2

5/2
3/2

N
e
 = 5

(d) N
a
 = 4  Rhombus

Figure 4.2: Ground-state spin angular momentum of selected systems within

the two-band model - The ground-state spin quantum number S is shown as a function

of exchange energy J for (a) the dimer having Ne = 3 electrons, (b) the Na = 3 linear

chain having Ne = 5 and 7 electrons, (c) the triangle having Ne = 3–5, 7 and 15 electrons,

and (d) the rhombus having Ne = 5 electrons. Here, the two-band model, including both

d and p bands and SOC, has been used. The vertical dotted lines illustrate the parameter

ranges of the ground-state spin Sd,ξ=0 (indicated by numbers) obtained by excluding the

p band and SOC (see Figure 4.1).
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There, the ground-state spin quantum number S, which is now defined in terms of the

expectation value of ~S2, i.e.,

S(S + 1) ~2 =
〈
~̂S2
〉
, (4.10)

is compared with the precise spin quantum number Sd,ξ=0 of the corresponding system

which does not include the p band and SOC (see Figure 4.1). One observes that in

many of the considered examples (namely, the dimer, Na = 3 linear chain having

Ne = 7, triangle having Ne = 7, and rhombus) the dependence of S on J remains

quite unmodified: changes can be seen only within very small intervals around those

critical parameters Jc, for which Figure 4.1 has shown a stepwise transition between two

different discrete ground-state spin quantum numbers Sd,ξ=0. In the other examples

(Na = 3 linear chain having Ne = 5, and triangle having Ne = 3–5 and 15) the critical

parameters Jc decrease by 0.3–0.7 eV after the inclusion of the p band and SOC. This

means that the extent of the high-spin (large quantum number S) parameter regimes

in terms of J increases. Let us also mention the case of the triangle having Ne = 15

electrons. There, due to the addition of the p band the total number of orbitals increases

from 18 to 24 including the two-fold spin degeneracy. Hence, the maximum admissible

spin quantum number of Ne = 15 electrons increases from 3/2 (within the d band only)

to 9/2 (within both d and p bands). This explains why for J ≥ 3 eV the ground-

state spin quantum number within the two-band model S = 7/2 exceeds by far the

corresponding spin Sd,ξ=0 = 3/2 within the d-band restricted model.

Finally, having revealed the functional dependence of S on the exchange energy J ,

which is shown in Figure 4.2, we are now able to choose appropriate parameters J .

Our choices for the selected structures and band fillings are summarized in Table 4.1.

These are set so as to yield stable high-spin ground states. Notice that both saturated

and non-saturated spin states are considered among the ground states of the selected

systems. Indeed, the ground-state spin quantum number S is almost saturated for the

dimer, the Na = 3 linear chain having Ne = 7, the triangle having Ne = 3–5 and the

rhombus, while it is non-saturated for the Na = 3 linear chain having Ne = 5 and the

triangle having Ne = 7 and 15.

In the following the magnetic properties of the chosen examples of structures and

band fillings are investigated in more detail. In particular, Section 4.2.2 considers

several important ground-state properties of these systems including the magnetic
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System size Structure Band filling Exchange integral Spin

Na = 2 Dimer Ne = 3 J = 0.4 eV S = 1.49

Na = 3 Linear chain Ne = 5 J = 0.3 eV S = 1.52

Ne = 7 J = 1.6 eV S = 3.48

Na = 3 Triangle Ne = 3 J = 1.6 eV S = 1.48

Ne = 4 J = 0.8 eV S = 1.99

Ne = 5 J = 3.2 eV S = 2.41

Ne = 7 J = 2.4 eV S = 2.50

Ne = 15 J = 1.0 eV S = 1.47

Na = 4 Rhombus Ne = 5 J = 1.4 eV S = 2.49

Table 4.1: Selected high-spin systems - A selection of small clusters having Na = 2–4

atoms and different structures, band fillings Ne and exchange energies J is shown. The

ground-state spin quantum number S is indicated for each of these systems. Their ground

states are used as initial states for the dynamical studies in Chapter 5.

anisotropy, while Section 4.2.3 addresses the stability of ferromagnetism with respect

to energy absorption.

4.2.2 Ground-state properties of selected high-spin systems

In the previous Section we have chosen several structures and band fillings as repre-

sentative examples. Their ground states will be used as initial states for the dynamical

studies in Chapter 5. Therefore, the ground-state magnetic properties of these systems

are certainly important for the initial stage of the laser-induced magnetization dynam-

ics within the model. For this reason, in the present Section we want to describe the

properties of the selected ground states in more detail.

So far the ground states have been characterized only in terms of the total spin

quantum number S, which is associated to the eigenvalue S(S + 1)~2 of ~̂S2. Actually,

the ground states of all the selected systems satisfy S & 1 for Ne even or S & 3/2

for Ne odd. Therefore, they are regarded as high-spin states. Now, Table 4.2 shows

several further ground-state properties besides S: easy magnetization direction, spin

and orbital angular-momentum projections along the easy magnetization axis, d and

p-band occupations, local magnetic moments, and magnetic-anisotropy energies.
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Structure Ne J S Easy axis/ Seasy Leasy nd np 〈〈~S2
jd〉〉 EMA

(Na) [eV] plane [~] [~] [~2] [meV/at]

Dimer 3 0.4 1.49 z 0.989 0.227 0.022 2.978 1.361 3.3

(Na = 2)

Lin. chain 5 0.3 1.52 z 0.987 0.174 0.796 4.204 1.118 7.1

(Na = 3) 7 1.6 3.48 z 1.988 0.089 0.087 6.913 2.543 0.8

Triangle 3 1.6 1.48 z 1.468 0.799 0.059 2.941 0.762 4.8

(Na = 3) 4 0.8 1.99 z 1.982 0.268 0.238 3.762 1.086 2.8

5 3.2 2.41 z 2.334 0.462 0.041 4.959 1.580 1.5

7 2.4 2.50 xy 1.497 0.070 0.055 6.945 2.544 −0.7

15 1.0 1.47 z 1.457 −0.043 1.151 13.849 1.199 1.0

Rhombus 5 1.4 2.49 z 2.436 0.492 0.207 4.793 1.024 2.4

(Na = 4)

Table 4.2: Ground-state properties of selected structures and band fillings -

Results are given for the selected high-spin clusters (Na = 2–4 atoms) having various

electron occupations Ne and exchange integrals J : total-spin quantum number S, easy

magnetization direction, spin and orbital angular-momentum projections Seasy and Leasy

along the easy axis, d and p-level occupations nd and np, square of the atomic d-electron

spin 〈〈~S2
jd〉〉, and magnetic-anisotropy energy EMA. The considered structures lie within

the xy plane, which implies that the z axis is orthogonal to all interatomic vectors.

First, let us discuss the properties related to the magnetic anisotropy, which orig-

inates from the spin-orbit interaction. Since the SOC breaks the spin-rotational in-

variance of the model, it leads to an anisotropy with respect to the magnetization

direction, i.e., the energy of the state depends on the direction of the vector ~S. In order

to determine this favored direction (easy magnetization axis or easy plane) we have

included external magnetic fields ~B having different orientations in the model. Then,

by minimizing the total energy for a given field ~B, a nonzero magnetic moment ~µ par-

allel to ~B has been imposed on the many-body state. In the next step, we have taken

the limit B → 0 keeping the directions of the magnetic fields unchanged. In this way,

the resulting states keep their magnetization directions, too, i.e., their magnetization

directions are stabilized along the directions of ~B. Finally, the easy magnetization axis

has been identified as the particular spin direction of that state, which has the lowest

energy among the states resulting from the limit ~B → 0 taken in various directions.1

1In practice, we have used only three orthogonal directions of the magnetic field ~B and compared
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The easy magnetization axes for the considered systems are indicated in the fifth row

of Table 4.2. They have been found to be perpendicular to the 1D chains (dimer and

Na = 3 linear chain) or to the 2D planes (triangle and rhombus planes). The sole ex-

ception is given by the triangle having Ne = 7 electrons, where the easy magnetization

direction is inside the triangle plane.

Besides the magnetic anisotropy, the SOC leads to a mixing of the up and down-

spin manifolds. Therefore, in the ground states the maximal spin projection along the

easy magnetization axis Seasy can be significantly smaller than the quantum number S,

or it can even vanish, for example, when ~S and ~L add to yield ~J = ~L+ ~S = 0, in which

case the many-body state is rotationally invariant. This consideration shows that it is

necessary to verify that the ground states of the selected systems can be spin polarized

along the easy axis. To this aim, the sixth row of Table 4.2 shows the ground-state spin

projections Seasy for all the selected structures and band fillings.1 One observes that

for the triangle having Ne = 3–5 and 15 electrons, and for the rhombus, Seasy is almost

equal to S. In these examples including the main triangle system having Ne = 4 elec-

trons, the ground states are almost fully spin polarized, i.e., essentially all the electrons

have the same spin projection. The other selected systems (dimer, Na = 3 linear chain,

and triangle having Ne = 7 electrons) don’t have a saturated spin polarization, since

Seasy is considerably smaller than S. However, for these structures and band fillings

the ground-state spin projection is still finite, i.e., Seasy & ~, which means that the

ground states of these systems also have a significant FM order. In conclusion, for all

the considered systems ground states having considerable spin polarizations can indeed

be stabilized by including magnetic fields ~B along the easy axes and considering the

limit ~B → 0. Hence, these ground states can be regarded as typical FM states, and

therefore are appropriate to serve as initial states for the investigation of the model

magnetization dynamics.

Table 4.2 also shows the orbital angular-momentum projection Leasy along the easy

magnetization axis (seventh row). One can see that Leasy is relatively small with respect

to Seasy, i.e., Leasy ≤ 0.23Seasy, except for the triangle having Ne = 3 electrons. In

particular, for the triangle system having Ne = 4 electrons, one finds Leasy = 0.089~

the ground-state energies of the corresponding models.
1In the corresponding calculations, the direction of the total magnetic moment has been stabilized

by including a magnetic field ~B along the easy axis and considering the limit ~B → 0.
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per atom, while the spin projection is given by Seasy = 0.661~ per atom. In other

words, the orbital angular momentum ~L is very effectively suppressed by interatomic

electron hoppings. Notice that this situation corresponds to the orbital magnetism in

ferromagnetic bulk TMs, in which ~L is almost totally quenched (Leasy ≈ 0.05–0.15~
per atom) due to the electron motion in the lattice (81). Furthermore, one observes

in Table 4.2 that the crossing from less- to more-than half-band filling in the triangle

comes along with a transition from parallel to antiparallel alignment of ~S and ~L. This

behavior reflects the third Hund’s rule.1

In the context of magnetic anisotropy, it is insightful to consider rotations of the

magnetization direction at temperature T = 0. In fact, the differences in energy for

different orientations of the spin ~S can be regarded as a measure for the stability of the

FM order along the easy axis with respect to rotations of the magnetization direction.

Let us recall that for the triangle having Ne = 4 electrons we have found an off-plane

easy axis. In other words, the FM ground state exhibits a magnetic moment along

the off-plane axis (z axis). In the following, the detailed dependence of the energy

on the polar angle θ between the z axis (normal vector to the triangle xy plane) and

the magnetic-moment direction is investigated for the triangle system. To this aim,

Figure 4.3 shows the energy E(θ) as a function of θ, where E(θ) is defined as the

lowest energy of all the states having a magnetic moment ~µ with the given polar angle

θ and the same magnitude as the easy-axis ground-state moment µgs.
2 Notice that the

dependence of E on the in-plane azimuth angle ϕ is not considered, since we are only

interested in computing the energy required to rotate the magnetization vector from

the off-plane to the in-plane direction. One observes that this energy difference, known

as the magnetic-anisotropy energy EMA, is given by EMA = E(π/2)−E(0) = 2.8 meV

per atom. For the other selected systems the magnetic-anisotropy energies have been

computed in a similar way. In the considered one- and two-dimensional structures

1See also Sections 3.2.4 and 4.1, where the effects of the spin-orbit coupling and the consequences

of a negative SOC constant ξ are discussed.
2In practice, different orientations of the magnetic moments ~µ have been stabilized by applying an

external magnetic field ~B along different angles θ and ϕ. For each direction of ~B the magnitude of the

magnetic field is such that the projection of the resulting magnetic moment ~µ on the direction of ~B

is the same as the off-plane ground-state magnetic moment µz. Defining E(θ, ϕ) as the energy of the

corresponding states, where the field energy −~µ · ~B has been subtracted, one ensures that the energies

E(θ, ϕ) for the different moment orientations are comparable. Finally, for a given polar angle θ the

energy E(θ) is given by the minimum in E(θ, ϕ) with respect to the azimuth angle ϕ.
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Figure 4.3: Magnetic anisotropy in the triangle system - Energy E of the triangle

having Ne = 4 electrons is shown as a function of the polar angle θ between the normal

vector to the triangle plane and the magnetic-moment direction. The particular energies

corresponding to the off-plane and in-plane directions of the magnetization are indicated.

The symbols represent numerical results, while the line is a guide to the eyes.

EMA has been determined as the difference in energy between parallel or in-plane spin

orientation and perpendicular spin orientation.1 The results are shown in the last row of

Table 4.2. Notice that the negative sign of EMA for the triangle having Ne = 7 electrons

means that the easy magnetization direction lies within the plane of the triangle. For

all the other considered systems the easy axis is in the perpendicular direction.

Next, the eighth and ninth rows of Table 4.2 give the occupation

nd =
∑
jσ

〈n̂jdσ〉 (4.11)

of the narrow d band and the occupation

np =
∑
jσ

〈n̂jpσ〉 (4.12)

of the higher p valence band. One observes that for all the considered structures and

band fillings np is much smaller than nd, but it is nevertheless finite. These non-

vanishing p-band occupations are the result of considerable interband d-p hybridiza-

tions. We shall discuss in Section 5.8 that the presence of d-p hybridizations in the

1The parallel spin orientation in 1D structures means that ~S is aligned parallel to the dimer or

chain, while in the case of the in-plane spin orientation in 2D structures ~S is oriented within the triangle

or rhombus plane.
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initial state facilitates the laser-induced spin relaxation by enhancing the change in the

total spin.

Finally, let us consider the local magnetic moments. They are known to play an

important role in the ferromagnetism of transition metals. Before in Chapter 5 the

dynamics of these moments after laser-pulse absorption will be investigated, it is useful

to quantify their ground-state magnitudes. To this aim, the tenth row of Table 4.2

shows the square of the atomic d-electron spin

〈〈~S2
jd〉〉 =

1

Na

Na∑
j=1

〈
~̂Sjd · ~̂Sjd

〉
, (4.13)

which can be regarded as a measure for the magnitude or strength of local magnetic

moments. This quantity is defined as the average of squared d-electron spins over Na

atoms.1 Importantly, the particular values of 〈〈~S2
jd〉〉 can be understood as the result

of two main tendencies: first, the d-electron charge fluctuations 〈(n̂jd − 〈n̂jd〉)2〉 are

minimized for a given number of d electrons nd, and second, the square 〈 ~̂Sjd · ~̂Sjd〉 of

the d-electron spin is maximized at each atomic site j. We would like to illustrate

the application of these criteria for the main triangle system having nd = 3.8 ≈ 4 d

electrons (Ne = 4). In this case, assuming nd = 4, the atomic charge fluctuations

〈(n̂jd − 〈n̂jd〉)2〉 are minimized by occupying one atom with two d electrons and the

remaining two atoms with only a single d electron. The 2-1-1 charge configurations have

maximum atomic spin quantum numbers of Sjd ≈ 1, 1/2 and 1/2, respectively. Thus,

the corresponding squares of the local d-electron spins are given by 〈 ~̂Sjd · ~̂Sjd〉 ≈ 2 ~2,

3/4 ~2 and 3/4 ~2, which yields 〈〈~S2
jd〉〉max ≈ 1.167 ~2. Remarkably, the exact numerical

result 〈〈~S2
jd〉〉 = 1.086 ~2 deviates only slightly from the maximum admissible value. For

all the other selected systems one can show analogously that the computed expectation

values 〈〈~S2
jd〉〉 imply maximum atomic spins Sjd under the constraint of minimum charge

fluctuations. This demonstrates that the local magnetic moments in the ground states

of all the selected systems are almost saturated.

1The numerical calculations have verified that the expectation values 〈 ~̂Sjd · ~̂Sjd〉 are independent

of the lattice site j. Therefore, the magnitude of the local magnetic moments can be regarded as

site-independent.
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4.2.3 Temperature dependence of magnetization

The ground states of all the considered systems for the dynamic simulations have been

shown to be ferromagnetic. However, the spin excitations which measure the stability

of the FM order with respect to the level of excitation or temperature have not been

considered at all. A quantification of the stability of the ground-state magnetic order

is important for the forthcoming discussion of spin dynamics. In particular, we expect

that the temperature dependence of the equilibrium magnetization can help to clar-

ify the role of thermalization of absorbed energy in the laser-induced demagnetization

process. With this motivation in mind we address in the present Section the temper-

ature dependence of the magnetization and spin-correlation function. The following

discussions are restricted to the triangle structure having Ne = 4 electrons, since this

system serves as the main application for the investigation of magnetization dynamics

in Chapter 5. Nevertheless, we expect that the conclusions have general validity.

We have computed two important spin observables of the triangle system as a

function of T : (i) the square 〈〈~S2
jd〉〉 of the atomic d-electron spin [see Eq. (4.13)],

which gives the magnitude of the local magnetic moments, and (ii) the nearest-neighbor

d-electron spin correlation

〈〈~Sjd · ~Skd〉〉 =
1

Nnnc

∑
〈j,k〉

〈~Sjd · ~Skd〉 , (4.14)

which measures the correlation between neighboring moments.1 In the above definition

Nnnc is the number of nearest-neighbor connections in the whole lattice, and
∑
〈j,k〉

denotes a sum among NNs j and k. The numerical calculations have been performed

by using the so-called finite-temperature Lanczos method (82), which is described in

Appendix E.2.

Results for these temperature-dependent magnetic properties are shown in Fig-

ure 4.4(a). One observes that the local magnetic moments 〈〈~S2
jd〉〉 remain very stable

for temperatures up to T = 2500 K. This is of course understandable since the local

moments are stabilized by the relatively large exchange-energy parameter J = 0.8 eV.

In contrast, the nearest-neighbor spin correlation 〈〈~Sjd · ~Skd〉〉 decreases significantly in

the temperature range between T = 500 and 2000 K. For low temperatures, T < 500 K,

1Notice that the spin observables ~Sjd and ~Skd are restricted to d electrons only, since they dominate

the magnetic properties of 3d TMs.
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Figure 4.4: Magnetization as a function of temperature in the Ne = 4 triangle

system - (a) Temperature dependence is shown for two spin observables in the triangle

having Ne = 4 electrons: the square 〈〈~S2
jd〉〉 of the atomic d-electron spin, and the nearest-

neighbor d-electron spin correlation 〈〈~Sjd · ~Skd〉〉. In addition, (b) the thermal internal

energy 〈E〉 in equilibrium relative to the ground-state energy Egs is given as a function of

T . The short-range temperature TSR is indicated by a vertical dotted line.

the NN spin correlations are nearly constant and almost equal to the T = 0 values,

whereas for high temperatures, T > 2000 K, they vanish almost completely. This be-

havior is similar to the situation in the bulk, where the long-range magnetization is

finite below and exactly vanishes above the Curie temperature TC . However, two fun-

damental differences between the temperature-dependent magnetism in the bulk and

in the cluster should be mentioned. First, in the solid it is the long-range magnetic

order what vanishes in the paramagnetic phase, while the short-range magnetic order

remains finite even for temperatures well above TC . In small clusters we have no access

to the long-range order since long distances do not exist. Therefore, not the long-

range but rather the short-range magnetic order described by the NN spin correlations

〈〈~Sjd · ~Skd〉〉 is appropriate for characterizing the finite-temperature magnetism in the

considered clusters. Secondly, a clear transition with increasing temperature T from
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the ferromagnetic to the paramagnetic phase, which is typical for FM solids, cannot

take place for small-size systems. For this reason, the temperature above which the

FM order is destroyed cannot be defined in the same way as the Curie temperature in

the bulk. Instead, for the sake of comparison we define the short-range temperature

TSR as the particular temperature what yields a decrease by a factor 1/e = 0.368 in

the NN spin correlations 〈〈~Sjd · ~Skd〉〉T with respect to T = 0. In other words, TSR is

defined by

〈〈~Sjd · ~Skd〉〉T=TSR
= 0.368 〈〈~Sjd · ~Skd〉〉T=0 . (4.15)

In the case of the triangle system having Ne = 4 electrons we have found a short-range

temperature of TSR = 1343 K.

For the purpose of later discussions it is useful to quantify the stability of the

ferromagnetic order with respect to energy absorption. To this aim, we have also

computed the thermal internal energy of the electronic system in equilibrium at T > 0

relative to the ground-state energy, i.e., 〈E〉 − Egs.
1 Its temperature dependence is

illustrated in Figure 4.4(b). The particular thermal energy at TSR is denoted by the

energy

∆ESR = 〈E〉TSR
− Egs . (4.16)

We have found ∆ESR = 50 meV per atom for the triangle system. ∆ESR can be inter-

preted as the average energy needed —assuming thermalization— in order to break the

ground-state short range magnetic correlations and thus to significantly demagnetize

the triangle.

A similar analysis of the temperature dependence of magnetic order has been per-

formed for all the selected structures and band fillings. The resulting energies ∆ESR

are summarized in Table 4.3.

1The internal energy is given by the expectation value 〈E〉 = 〈Ĥ〉 of the Hamiltonian at the

temperature T (canonical ensemble).
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System size Structure Band filling Thermal energy at TSR

Na = 2 Dimer Ne = 3 ∆ESR = 74 meV/atom

Na = 3 Linear chain Ne = 5 ∆ESR = 23 meV/atom

Ne = 7 ∆ESR = 30 meV/atom

Na = 3 Triangle Ne = 3 ∆ESR = 18 meV/atom

Ne = 4 ∆ESR = 50 meV/atom

Ne = 5 ∆ESR = 77 meV/atom

Ne = 7 ∆ESR = 87 meV/atom

Ne = 15 ∆ESR = 118 meV/atom

Na = 4 Rhombus Ne = 5 ∆ESR = 58 meV/atom

Table 4.3: Thermal energies needed to break the short-range magnetic order

in the selected clusters - The energy ∆ESR describing the thermal energy needed in

order to break the short-range magnetic correlations is given for all selected clusters having

Na = 2–4 atoms and different structures and band fillings. ∆ESR represents the energy of

the electronic system in equilibrium at the short-range temperature TSR, which is associated

to the disappearance of short-range magnetic order.
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Magnetization dynamics

In Chapter 4 we have studied the ground-state and finite-temperature magnetic prop-

erties of the electronic model (3.3). The purpose of the present Chapter is to go beyond

static magnetism and to address the challenging topic of magnetization dynamics. To

this aim, we apply the electronic Hamiltonian (3.3) in order to propagate many-body

states in time.

In the first Section 5.1 the choice of laser parameters for the numerical time evo-

lutions is presented. Afterwards, the dynamics of the triangle system is studied in the

second Section 5.2. The following Sections 5.3 and 5.4 address the fundamental prob-

lem of angular-momentum transfer and the central role of the spin-orbit interaction.

In Section 5.5 the magnetization dynamics is analyzed from a spectral point of view,

followed by a discussion about the role of the absorbed energy per atom in Section 5.6.

This will lead, as we shall see, to the conjecture that the ultrafast demagnetization effect

primarily depends on the number of absorbed photons. Arguments for this dependence

are given in Section 5.7, where the role of laser energy absorption is investigated in

more detail. Finally, the last two Sections 5.8 and 5.9 analyze the roles of interband

hybridization, band filling and structure.

5.1 Parameter choice

In the following we focus on the isosceles Ni3 triangle having Ne = 4 electrons, hopping

integrals as described in Section 4.1, SOC constant ξ = −50 meV, Coulomb parameter

U = 4.5 eV, exchange energy J = 0.8 eV and relative p level ε0
p − εeff

d = 1 eV. This set
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5. MAGNETIZATION DYNAMICS

of parameters yields an almost fully spin-polarized FM ground state, which constitutes

the initial state for the time evolution following the laser excitation. The magnetization

in the ground state is oriented perpendicular to the triangle plane (xy plane), since the

magneto-crystalline anisotropy yields an off-plane easy axis (z axis).

The laser excitation is modeled by means of a pump pulse, whose duration is Tp =

5 fs corresponding to the limit of very short pulse durations. The main advantage of

this choice is that in this limit the pump pulse is so short that the relaxation, which

is responsible for the demagnetization effect, sets in not before the laser electric field

is switched off. In contrast, the coherent interaction of electrons with the laser field

takes place during the absorption time. Therefore, the limit Tp → 0 ensures that

these two effects proceed on two different time scales. In particular, it allows us to

study the relaxation dynamics after laser-pulse absorption separated from the effect

of coherent interaction with the laser field. However, our choice Tp = 5 fs is not the

exact experimental case. Usually, in typical demagnetization experiments pump pulses

of 50–100 fs duration have been applied (1, 5, 7, 8, 9, 10, 11, 12). In order to compare

with these experimentally relevant cases, in Section 5.7 we have considered different

pulse durations Tp and investigated the role of Tp in the magnetization dynamics. In

the following, t = 0 refers to the time at which the laser-pulse intensity is maximal. The

laser wave length is λ = 800 nm, which corresponds to the photon energy ~ω = 1.55 eV

used in several experiments (2, 7, 8, 10, 11, 12). The laser-field polarization vector

~ε = êx is aligned parallel to the triangle plane (xy plane), along one of the NN bonds.

This corresponds to an incident linearly polarized laser pulse having wave vector ~k

within the yz plane, i.e., ~ε · ~k = 0.

Let us now discuss the parameters governing the laser-induced electronic dipole

transitions, namely (i) the dipole parameter 〈 d ||T̂ (1)|| p 〉 which determines the matrix

elements of ~r (see Table 3.3), and (ii) the laser fluence F or the maximal amplitude of

the laser electric field E0 which are related to each other by Eq. (3.34). In this context,

it is important to notice that —as we shall argue in the forthcoming Section 5.6— the

maximum admissible demagnetization depends basically on the number of absorbed

photons. For this reason, the parameters 〈 d ||T̂ (1)|| p 〉 and F have been chosen such

that they yield a sufficiently large number of absorbed photons. In fact, it is enough

to consider just one of these parameters (i.e., 〈 d ||T̂ (1)|| p 〉, or F which is a function

of E0) as a free parameter, since only the product ~E · ~̂r enters into the electric-dipole
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5.2 Ultrafast demagnetization in the triangular system

Hamiltonian ĤE . Therefore, in practice we have considered a constant dipole parameter

〈 d ||T̂ (1)|| p 〉 = 0.5 Å, and varied only the fluence F of the laser pulse in order to control

the level of excitation.1 As a result of this variation, we have found that the laser

fluence F = 40 mJ/cm2 gives rise to a sufficiently high level of excitation: it yields a

maximum admissible demagnetization of around 60 %. For this reason, we have chosen

the parameter F = 40 mJ/cm2.

For the purpose of the following investigations, several important model and laser-

field parameters are varied separately with respect to the basic ones listed here. This

will allow us to draw conclusions on the essential processes responsible for the mag-

netization decrease. In particular, the hopping integrals, the SOC strength, the laser

fluence, the electric-field polarization, the wave length, the pulse duration, the band

filling and the structure are varied in order to determine the dependence of the magne-

tization dynamics on them. In doing so, the Ni3 triangle having the basic parameters

given in the present Section serves as a reference system. Let us remark that in the

following dynamical studies, the parameters which are not explicitly mentioned are

chosen as described for this reference triangular system.

The time evolution of the initial state |Ψ 〉 is performed numerically by using the

short-time iterative Lanczos propagation method (83), whose details are described in

Appendix F. The thus obtained time-dependent many-body wave function |Ψ(t) 〉 al-

lows us to compute the expectation value O(t) = 〈Ψ(t) |Ô|Ψ(t) 〉 of basically any

physical observable Ô as a function of time t. Notice that the external magnetic field

has been switched off (i.e., ~B = 0).

5.2 Ultrafast demagnetization in the triangular system

Let us first investigate the magnetization dynamics of the basic reference isosceles

triangle. To this aim, the time evolution of the many-body wave function |Ψ(t) 〉 during

the first picosecond after laser-pulse absorption has been calculated. The most relevant

spin observables are shown in Figure 5.1 as a function of time t. One clearly observes

1Notice that the discrete spectra of the considered small clusters fundamentally differ from the

continuous bulk spectra. Therefore, we expect that, depending on what the laser pulse is acting on

(cluster or bulk), it gives rise to very different energy absorptions. For this reason, it seems not sound

to take the fluence F from experiments, but rather to adjust F so as to obtain a reasonable level of

excitation.
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Figure 5.1: Dynamics of the isosceles triangle subsequent to fs laser-pulse ab-

sorption - Several time-dependent properties of the basic triangular system (Na = 3

atoms) having Ne = 4 electrons are shown subsequent to a Tp = 5 fs laser pulse: (a) off-

plane total spin and d-electron spin angular momenta Sz and Sdz. The rapid oscillations

(magenta curve) indicate the laser field | ~E|. (b) NN d-electron spin correlation 〈〈~Sjd · ~Skd〉〉
and d-electron local moment

√
〈〈~S2

jd〉〉. (c) p-electron occupation np.

that the off-plane spin component Sz along the easy axis decreases from 0.66 ~ down

to 0.32 ~ per atom during the first hundreds of femtoseconds, i.e., well after the laser

pulse.1 This is very remarkable since it demonstrates the ultrafast demagnetization on

a purely electronic level.

In addition, Figure 5.1(a) compares the total spin Sz with the d-electron spin Sdz.

Their time evolutions are very similar. This shows that the decrease in Sz subsequent

to the laser pulse is a d-band intrinsic effect, as of course expected from the fact that

magnetism in 3d TMs is dominated by the 3d electrons. In order to further characterize

1The in-plane components (Sx, Sy) and (Sdx, Sdy) are negligibly small during the simulation time.
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5.2 Ultrafast demagnetization in the triangular system

the demagnetization process it is important to study the behavior of the local magnetic

moments. For this purpose, Figure 5.1(b) shows the average atomic d-electron spin√
〈〈~S2

jd〉〉 [see Eq. (4.13)], which measures the strength of the local moments:
√
〈〈~S2

jd〉〉
decreases only slightly from 1.04 ~ to around 0.98 ~ simultaneously with the laser pulse.

Consequently, the local magnetic moments remain remarkably stable. This stability is a

consequence of the strong Coulomb interactions. Figure 5.1(b) also shows the d-electron

spin correlation 〈〈~Sjd · ~Skd〉〉 between nearest neighbors [see Eq. (4.14)], which decreases

significantly from 0.36 ~2 to 0.22 ~2 within the first 80 fs. The results give us a picture

of the involved spin excitations: during the first picosecond the local moments barely

decrease but fluctuate in their orientations. In other words, local spin fluctuations seem

to be responsible for the demagnetization. Notice that the laser induces electric-dipole

transitions from the d band to the higher p band. Therefore, it is interesting to analyze

these electronic d-p transitions during the interaction time with the laser field. To

this aim, in Figure 5.1(c) the p-electron number np is shown as a function of t. One

observes a small increase from np = 0.08 to np ≈ 0.17 per atom, which is accompanied

by laser-energy absorption. This charge transfer from the d to the p electrons induces

the small decrease in
√
〈〈~S2

jd〉〉 illustrated in Figure 5.1(b).1

Since the spin relaxation takes place basically within the band of localized d elec-

trons, we focus on the d band. Figure 5.2 shows the time dependence of three relevant

observables. First, it shows the average atomic spin quantum number per d electron

〈〈Sjd/njd〉〉 =
1

Na

Na∑
j=1

Sjd
njd

. (5.1)

Here, njd = 〈n̂jd〉 denotes the number of d electrons at atom j, and the atomic d-

electron spin quantum number Sjd is related to the corresponding squared spin 〈~S2
jd〉

by

Sjd(Sjd + 1) ~2 =
〈
~S2
jd

〉
. (5.2)

Second, the relative NN d-electron spin correlation

〈〈~Sjd · ~Skd〉〉rel =
1

Nnnc

∑
〈j,k〉

〈~Sjd · ~Skd〉√
〈~S2
jd〉 〈~S2

kd〉
(5.3)

1See also the discussion of Figure 5.2, where the atomic spin quantum number per d electron,

〈〈Sjd/njd〉〉, is shown as a function of time.
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Figure 5.2: Time-dependent properties of the d electrons - The laser-induced dy-

namics of several d-electron properties in the isosceles triangle model are shown: (a) average

atomic spin quantum number 〈〈Sjd/njd〉〉 per d electron and relative NN d-electron spin

correlation 〈〈~Sjd · ~Skd〉〉rel, (b) interatomic hopping energy 〈Hd,int
0 〉/nd per d electron. The

vertical dotted lines indicate the time at which the exciting laser pulse has its maximum

(Tp = 5 fs).

is shown, where
∑
〈j,k〉 denotes a sum among NNs j and k. Third, we consider the

interatomic hopping energy per d electron

〈Hd,int
0 〉/nd =

1

nd

∑
jk
j 6=k

∑
αβ∈d

∑
σ

tαβjk 〈ĉ
†
jασ ĉkβσ〉 . (5.4)

Here, nd is the total occupation of the d band, i.e., nd =
∑Na

j=1〈n̂jd〉. Notice that the

quantities 〈〈Sjd/njd〉〉 and 〈Hd,int
0 〉/nd are given relative to the number of d electrons,

and 〈〈~Sjd · ~Skd〉〉rel describes the average angle between NN d-electron spins. In this

way, they measure intrinsic properties of d electrons. The time evolutions of 〈〈Sjd/njd〉〉
and 〈〈~Sjd · ~Skd〉〉rel during the first picosecond are shown in Figure 5.2(a). First, one

observes that the local moment per d electron 〈〈Sjd/njd〉〉 remains essentially unaf-

fected by the laser-pulse absorption: it decreases by less than 2%, while at the same
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5.2 Ultrafast demagnetization in the triangular system

time
√
〈〈~S2

jd〉〉 decreases by around 6% (see Figure 5.1). This means that the small

decrease in
√
〈〈~S2

jd〉〉 results mainly from the laser-induced charge transfer from the d

to the p electrons. Thus, the magnetic moment per carrier is even more stable (in-

dependent of the laser excitation) than what the results for
√
〈〈~S2

jd〉〉 (Figure 5.1) let

us a priori expect.1 Second, the relative NN d-electron spin correlation 〈〈~Sjd · ~Skd〉〉rel

significantly decreases by more than 30%, which is in the same order of magnitude as

the decrease in 〈〈~Sjd · ~Skd〉〉 shown in Figure 5.1. These results show that the ultrafast

demagnetization can be understood in terms of fluctuations of local d-electron mag-

netic moments. During the whole demagnetization process the local moments, whose

magnitude is measured by 〈〈Sjd/njd〉〉, remain remarkably stable.

It is interesting to compare the laser-induced changes in the spin observables with

their thermal averages in equilibrium at finite temperatures T > 0.2 We have found

that the equilibrium temperatures, yielding the same expectation values 〈〈Sjd/njd〉〉 and

〈〈~Sjd · ~Skd〉〉rel as obtained in the time-dependent evolution shortly after the laser-pulse

absorption (i.e., for t & 100 fs), are 1230 K and 955 K, respectively. Notice that these

temperatures are below the short-range temperature of the basic triangle system, TSR =

1343 K, which denotes the temperature needed to break the NN magnetic correlations

〈〈~Sjd · ~Skd〉〉. In order to discuss the role of thermalization it is useful to quantify the

thermal internal energy in equilibrium at temperatures between T = 955 and 1230 K.

This thermal energy is given by 〈E〉 − Egs = 20–40 meV per atom relative to the

ground-state energy (see Figure 4.4). On the other side, for the time-propagated state

we have found a total absorbed laser energy of ∆E = 302 meV per atom, which is one

order of magnitude larger. Figure 5.2(b) shows that the largest portion of this energy

is transferred to the degrees of freedom of the electron motion within the d band: one

observes that the interatomic hopping energy 〈Hd,int
0 〉/nd increases by about 200 meV

per d electron. This demonstrates that the spin degrees of freedom can be regarded to

be in a nonequilibrium situation with respect to the highly excited electronic orbital

and translational degrees of freedom, even after a few hundreds of femtoseconds (i.e.,

after the demagnetization is completed). Therefore, one concludes that the femtosecond

1Let us recall that for the basic triangle system we have considered for simplicity a d band filling

below half-band filling. However, we have also done calculations for above half-band filling. There, we

have observed that the d→ p charge transfer induces a slight enhancement of 〈〈Sjd/njd〉〉.
2In this context, we consider the canonical ensemble describing thermal equilibrium. The

temperature-dependent calculations have been performed as explained in Appendix E.2.
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Figure 5.3: Picosecond dynamics of the isosceles triangle - Laser-induced dynamics

of the off-plane spin Sz and NN d-electron spin correlation 〈〈~Sjd · ~Skd〉〉 is shown for the

first 10 picoseconds after laser-pulse absorption. The triangle system and the pump-laser

field have been modeled as in the calculations reported in Figure 5.1.

laser-induced demagnetization does not originate from the thermalization of absorbed

laser energy.

Finally, let us discuss the electronic-model dynamics on the picosecond time scale.

To this aim, Figure 5.3 shows the time dependence of two important spin observables

during the first 10 picoseconds after laser-pulse absorption, i.e., on a time scale which

has been considerably extended in comparison with the one in Figure 5.1. One observes

that both the off-plane spin Sz and NN d-electron spin correlation 〈〈~Sjd · ~Skd〉〉 do not

significantly change after a relaxation time of around 200-300 fs,1 except for oscillations

around a quite constant mean value. This means that even on the longer picosecond

time scale the thermal equilibrium between on the one side spin and on the other

side electronic orbital and translational degrees of freedom is not achieved. The origin

of this nonequilibrium can be explained by the fact that the model (3.3) does not

take into account any interaction with the environment. Thus, dissipation of energy

into the environment is not considered neither, implying that the many-body state

1We shall see in Section 5.4 that this relaxation time is essentially determined by the spin-orbit

interaction strength.
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5.3 Local angular-momentum conservation

|Ψ(t) 〉 propagates only within a subspace of the whole Hilbert space, namely within the

subspace of constant mean energy 〈E〉. Therefore, a thermal equilibrium which results

from the thermal contact with the environment (or bath) cannot be achieved within our

model. This explains why the model remains demagnetized on the 10-ps time scale, and

shows again that the demagnetization is not a heat-driven effect, i.e., it is not the result

of thermalization of absorbed laser energy. Rather, the thermalization between the

electrons and the environment is important essentially for explaining the magnetization

recovery, which has been observed in experiments on 3d TMs a few picoseconds after

the laser-pulse absorption (see also Section 1.2.5). Notice that we are interested only

in the first hundreds of femtoseconds in which the ultrafast demagnetization takes

place. For this purpose, it is not necessary to take into account interactions with the

environment. Therefore, the present model, which does not consider the environment

at all, represents a sound approach which allows us to focus on the electronic response

to the ultrafast laser excitation.

5.3 Local angular-momentum conservation

Let us now address the problem of angular-momentum transfer. In this context it is

important to recall that the spin-orbit coupling, which is the sole direct channel for

the spin relaxation within the present many-body model, acts locally at atomic sites.

Therefore, the total angular momentum ~Jj = ~Lj + ~Sj at each atom j is conserved

upon the action of the SOC Hamiltonian ĤSO, since ĤSO commutes with ~̂Jj for all j.

Consequently, on each electronic transition induced by ĤSO the spin Sjz can decrease

only if angular momentum is transferred locally —by means of ĤSO— from Sjz to Ljz.

However, one can see in Figure 5.4(a) that Lz does not increase as Sz decreases. Over

the considered period of 200 fs after laser excitation the orbital angular momentum Lz

oscillates between 0 and 0.1 ~ per atom.1 The fact that Lz remains very small can be

understood by considering the problem from the lattice perspective. Indeed, the orbital

angular-momentum conservation does not hold for the dynamics in the extended metal

or cluster, since the Hamiltonian Ĥ and in particular Ĥ0 do not commute with ~̂Lj and

L̂jz. Then, the question ”Where is ~S going to?” may arise.

1The in-plane components (Sx, Sy) and (Lx, Ly) are not shown since they have been found to be

almost zero during all the considered simulation time.
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Figure 5.4: Time dependence of total spin and orbital angular momenta - The

time dependences of Sz and Lz are shown for triangles having various hopping integrals:

(a) Relaxation driven by the fs laser pulse, where realistic two-center integrals (d, d;σ),

(d, d;π), (p, p;σ) and (p, d;σ) derived from the Ni bulk band structure (as given in Sec-

tion 4.1) have been used. The magenta oscillating curve indicates the shape of the laser

electric field | ~E|. (b)–(e) Two-center integrals multiplied by αhop. Here, the excited state

of the original αhop = 1 system at t = 15 fs after laser-pulse absorption has been used

as the initial state for the time propagation. The time evolutions start at t = 15 fs as

indicated by vertical dotted lines. For each αhop the corresponding ground-state values of

the spin Sgs
z and orbital angular momentum Lgs

z are illustrated by horizontal dotted lines.
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5.3 Local angular-momentum conservation

In order to find the answer, Figures 5.4(a)–(e) show the angular-momentum transfer

between ~L and ~S for triangles having various hopping integrals tαβjk . In these examples

the two-center integrals (d, d;σ) = 0.412 eV, (d, d;π) = −0.489 eV, (p, p;σ) = 1.516 eV

and (p, d;σ) = −0.555 eV, as given in Section 4.1, have been multiplied by a factor

αhop = 0.001–1.0. Of course, the resulting ground-state angular momenta Lgs
z and Sgs

z

are also modified by this scaling: Lgs
z significantly increases from 0.09 ~ per atom for

αhop = 1 to 0.92 ~ per atom for αhop = 0.001, while at the same time Sgs
z only slightly

decreases from 0.66 ~ to 0.61 ~ per atom. These ground-state values are illustrated by

horizontal dotted lines. In fact, as we reduce the hopping integrals we approach the

atomic limit, where Hund’s rules, in particular the second rule (maximal L), hold. In

all cases, ~Lgs and ~Sgs align parallel to each other in the ground state. The initial state

used for the time propagations in parts (b)–(e) has been chosen as the excited state

of the original αhop = 1 system shortly after the laser excitation, at t = 15 fs.1 This

state is almost fully spin polarized (Sz = 0.6 ~), and has an orbital angular momentum

Lz = 0.07 ~ which is relatively small in comparison with the ground-state values Lgs
z

corresponding to αhop ≤ 0.5. Since the (initial) many-body state Ψ(t=15fs) at t =

15 fs is the same for all considered factors αhop, i.e., for different magnitudes of tαβjk ,

a comparison of the subsequent relaxations of ~L and ~S allows us to identify the role

of the hopping integrals in the laser-induced angular-momentum dynamics. In the

case of small hopping integrals, i.e., αhop = 0.001 and αhop = 0.01 in Figures 5.4(d)

and (e), the transfer between Sz and Lz is visible: Sz and Lz oscillate in time keeping

their sum almost unchanged. The oscillations look very similar to undamped harmonic

oscillations. Importantly, in this case the hopping integrals are one to two orders of

magnitude smaller than the strength ξ = −50 meV of the spin-orbit interaction, whose

action locally conserves ~Lj + ~Sj . For αhop = 0.1 the hopping elements and the SOC

strength are of the same order of magnitude. In this case, the oscillations of Sz and Lz

are still correlated due to the spin-orbit interaction. However, they are damped and

their sum Sz+Lz is not conserved anymore. Finally, for αhop = 0.5 and 1.0 the hopping

integrals tαβjk are much larger than the parameter ξ. Thus, the interatomic electron

motion is more dominant than the spin-orbit interaction. In this case one observes that

1Notice that in Figures 5.4(b)–(e) the time evolutions start at t = 15 fs using the same laser-excited

state, namely the propagated state in the original αhop = 1 triangle at t = 15 fs after laser excitation,

as the initial state for all α = 0.001–0.5.
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the time dependences of Sz and Lz are not correlated anymore. In fact, Lz fluctuates

very rapidly around a relatively small constant mean value, while Sz decreases without

any significant oscillations on a time scale of 100–200 fs. In particular, the sum ~L+ ~S

is not conserved during the relaxation.

One concludes that during the laser-induced relaxation shown in Figure 5.4(a) the

interatomic electron hoppings are responsible for the disappearance of angular mo-

mentum. In other words, subsequently to the SOC-driven local transfer of angular

momentum from ~S to ~L, the latter is rapidly quenched by the electron motion in the

metal, i.e., spread through the nearest neighbors. In this sense, the interatomic electron

motion tends very effectively to damp the oscillations between ~S and ~L, which are medi-

ated by the SOC, and acts as a sink for the electronic angular momentum. As a result,

the intra-atomic transfer between ~S and ~L, which triggers the relaxation of the spin

magnetization, cannot be observed experimentally as an increasing Lz. From a more

fundamental point of view, this can be understood by noticing that ~L is not conserved

in a lattice ([Ĥ0, ~̂L] 6= 0) due to the lack of rotational symmetry. The relatively large

value of the electron hopping integrals of the order of 1 eV implies that Lz is quenched

at a very short time scale of the order of ~/1eV, i.e., within a few femtoseconds. This

also explains the very rapid oscillations in Lz which are noticeable in Figure 5.4(a).

In summary, Figure 5.4 allows us to identify in more detail the main demagnetiza-

tion mechanism within the present model: (i) the SOC yields local angular-momentum

transfer between ~S and ~L, and subsequently, (ii) ~L is very rapidly quenched by the

electron motion in the lattice, such that the electronic orbits do not have enough time

to accumulate the angular momentum which is transferred from ~S. The combination

of these two purely electronic effects results in a decrease of the magnetization within

the time scale of a few femtoseconds.

5.4 Importance of spin-orbit coupling

Since the spin-orbit coupling is responsible for the local angular-momentum transfer

between ~S and ~L, it is interesting to investigate the dependence of the magnetization

dynamics on the SOC strength ξ. Indeed, in the same way as reducing the hopping

integrals removes the quenching of orbital angular momentum and yields a back and

forth transfer of angular momentum between orbital and spin degrees of freedom, we
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Figure 5.5: Magnetization dynamics as a function of the SOC strength - The

time dependence of Sz in an isosceles triangle following a fs laser pulse (full curves) is shown

for different SOC parameters from ξ = 0 to ξ = −100 meV. The dotted curves represent

exponential fits to Sz(t) for each ξ. The oscillating function around t = 0 (magenta curve)

illustrates the exciting laser electric field | ~E|.

expect that reducing ξ would allow us to clarify to what extent the SOC is important

for defining the magnetization relaxation time. To this aim, Figure 5.5 shows the spin

relaxation following the fs laser-pulse absorption for ξ = 0, −20, −50 and −100 meV.

As expected, the initial ground-state spin magnetization S0
z ≈ 0.65–0.67 ~ is quite

independent of ξ, since the stability of S0
z is the result of Coulomb interactions which

concern a much larger energy scale. In contrast, the SOC strongly affects the rate of

demagnetization: The larger the SOC constant |ξ|, the faster the spin-to-orbit angular

momentum transfer proceeds. Moreover, in the limit ξ = 0 the total spin is perfectly

conserved, since in this case the SOC providing spin-flip processes is turned off. This

is not only a very clear indication of the fact that the spin-orbit interaction triggers

the magnetization dynamics but it is also a demonstration of the accuracy of the spin-

rotational invariance in our numerical implementation.

In order to quantify the demagnetization time τdm, the time dependence of Sz has

been fitted for each considered parameter ξ to an exponential function of the form

S̃z(t) = ∆S̃z e−t/τdm +
(
S̃0
z −∆S̃z

)
. (5.5)

Here, S̃0
z denotes the fitted spin at time t = 0, and ∆S̃z is the total decrease in S̃z, i.e.,

∆S̃z = S̃0
z − S̃z(t =∞). The demagnetization time τdm is then defined by the fact that
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Figure 5.6: Demagnetization time τdm and relative magnetization reduction

∆Sz/S
0
z as a function of spin-orbit coupling strength - Characteristic time τdm of

the demagnetization, which follows a fs laser-pulse absorption, is shown for various SOC

strengths ξ. The numerical results (crosses) are obtained by fitting the exact calculated

Sz(t) using the exponential ansatz given by Eq. (5.5) for each ξ. The lines connecting the

points are a guide to the eyes. The inset illustrates the corresponding relative demagneti-

zation ∆Sz/S
0
z .

at t = τdm the difference between S̃z(τdm) and the t → ∞ limit of S̃z is 1/e times the

total magnetization decrease ∆S̃z. The exponential fits are shown for each ξ by means

of dotted curves in Figure 5.5. The demagnetization times τdm obtained by this fitting

procedure are shown in Figure 5.6 as a function of ξ. One can see how τdm decreases

with increasing SOC strength, from τdm = 214 fs for ξ = −20 meV, over τdm = 87 fs

for ξ = −50 meV, to τdm = 19 fs for ξ = −100 meV. These results demonstrate the

importance of the SOC as driving mechanism for the ultrafast demagnetization. In

other words, the SOC strength ξ controls the rate of the ultrafast spin relaxation.

It is also interesting to take a look at the total (long-time) laser-induced demagneti-

zation ∆Sz/S
0
z relative to the initial spin expectation value S0

z , which gives us a measure

for the efficiency of demagnetization. Here, ∆Sz denotes the difference between S0
z and

the fitted t→∞ limit of the spin moment, i.e.,

∆Sz = S0
z − S̃z(t =∞) . (5.6)

The inset in Figure 5.6 shows that ∆Sz/S
0
z monotonously increases with increasing |ξ|

for |ξ| ≤ 50 meV, and that it then remains almost constant, at the value ∆Sz/S
0
z ≈ 0.5,
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Figure 5.7: Spin and orbital angular-momentum dynamics for opposite spin-

orbit couplings - The laser-induced relaxations of Sz and Lz in an isosceles triangle are

shown for two opposite values of the SOC strength ξ = −50 and ξ = +50 meV. The time

t = 0 (vertical dotted line) indicates the time of the fs laser-pulse excitation.

up to the largest considered |ξ| = 100 meV. One concludes that the larger the SOC

strength, the more efficient the demagnetization but only up to a certain value, in

the present case ξ ≈ −50 meV. Further enhancement of ξ does not improve the total

reduction of Sz as if the maximum attainable demagnetization for the given level of

excitation had been reached. However, further increase of ξ does speed up the process.

Roughly speaking τdm is proportional to 1/ξ, and of the order of ~/ξ as one could

expect on the basis of an energy uncertainty relation [see Ref. (69)].

In the context of spin-orbit interaction it is worth noting that in all previous model

calculations the spin ~S couples parallel to the orbital angular momentum ~L. However,

the question arises if the orientation of ~S relative to ~L (parallel or antiparallel) has

a significant effect on the magnetization dynamics. Parallel LS coupling corresponds

to the FM transition metals like Fe, Co and Ni, whose 3d bands are more than half-

filled, while the antiparallel LS coupling is found in TMs having a less-than half-filled

d band.1 In fact, the answer to this question would give us some hints about the

1In Section 3.2.4 it has been discussed that for realistic SOC strengths ξ > 0 the angular momenta
~S and ~L align parallel (antiparallel) for more than (less than) half-filled 3d bands. However, in the

previous model calculations we considered negative SOC parameters ξ < 0, in order to invert the
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dependence of the laser-induced spin relaxation on band filling.1 In order to address

this problem, Figure 5.7 compares the dynamics for two opposite values of the SOC

strength ξ = −50 meV and ξ = +50 meV, which yield parallel and antiparallel coupling

between ~S and ~L, respectively. One can see that during the first 300 fs after laser-pulse

absorption the time dependences of the spin Sz(t) are almost identical for both signs of

ξ. Even on longer time scales t & 300 fs the calculated Sz(t) do not differ significantly

from each other. The qualitative behavior of Lz(t) is also not modified by changing the

sign of ξ, except of course for the direction of ~L with respect to ~S. Moreover, it has

been found that the total absorbed laser energy ∆E = 302 meV per atom is the same

for both values of ξ. One concludes that the laser-induced magnetization dynamics

is quite independent of the sign of ξ and of the alignment between ~S and ~L.2 The

irrelevance of the orientation of ~L can be understood by recalling that ~L is anyway

quenched by the electron motion in the lattice, both before and after the laser-pulse

absorption. Moreover, it is interesting to note that these results imply that it should be

in principle possible to observe the laser-induced demagnetization also in FM metals

having a less-than half-filled valence band, i.e., for systems showing an antiparallel

coupling of ~L and ~S.

5.5 Spectral analysis of the magnetization dynamics

By pumping energy into the electron system the ultrashort laser pulse induces a broad

spectral distribution. It is therefore most interesting to separate the total many-body

state |Ψ(t) 〉 into its spectral parts (SPs) and to analyze their role in the dynamics.

This approach also provides us with useful hints on the properties of the laser-excited

state as a function of absorbed energy.

For this purpose, let us first consider the spectral distribution of |Ψ(t) 〉

DΨ(E) =
∑
k

δ(E − Ek) |〈Φk |Ψ(t) 〉|2 (5.7)

dependence of the alignment between ~S and ~L on band filling. This has been done in order to mimic

the parallel alignment between ~S and ~L for ϑ = Ne/Na = 4/3 electrons per atom (i.e., less than

half-band filling) within the electronic model.
1The dependence of the magnetization dynamics on band filling is discussed in Section 5.9, where

spin relaxations for different numbers of electrons Ne are compared.
2This justifies the transformation ξ → −ξ, which has been introduced in Section 4.1.
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Figure 5.8: Spectral distribution after laser-pulse absorption - Spectral density

DΨ(E) of the propagated many-body state |Ψ(t) 〉 is shown as a function of energy E

relative to the ground-state energy Egs for times well after the laser-pulse action (t & 3Tp).

The three main spectral parts (SPs) α = 0, 1, 2 correspond to the absorption of zero, one

and two photon energies, respectively (~ω = 1.55 eV). For each group of peaks α, integrated

spectral weights Wα and numbers of p electrons n
(α)
p are indicated. The inaccuracy of n

(α)
p

for α ≥ 1 reflects the fluctuations of n
(α)
p in time.

after the laser-pulse action (t & 3Tp). Notice that for t & 3Tp the Hamiltonian Ĥ

given by Eq. (3.3) is time independent, since the laser field ~E is zero. Consequently,

the distribution DΨ(E) is conserved after pulse absorption. In Eq. (5.7) the states

|Φk 〉 denote stationary states of the Hamiltonian Ĥ with ~E = 0, and Ek are the

corresponding eigenenergies. A Krylov-expansion method described in Appendix E.3

has been used in order to compute the spectral density DΨ(E) and the other spectral

properties to be considered in the following.

Before the pump pulse, all spectral weight is of course on the ground state having

energy Egs. As the laser field interacts with the electrons, energy is absorbed and

spectral weight is shifted toward some excited many-body states. Well after the pulse

absorption the spectral distribution DΨ(E) takes the form shown in Figure 5.8: three

main peaks or groups of nearby peaks (SPs) are observed which we denote by α = 0,

1 and 2. They are centered around the excitation energies E − Egs ≈ 0, ~ω and 2~ω,

where ~ω = 1.55 eV is the photon energy. This implies that the SPs α = 0, 1 and 2

can be associated to the net absorption of zero, one and two photons, respectively. For
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each peak α, the spectral weights

Wα =

∫
α

dEDΨ(E) =
∑
k∈SPα

|〈Φk |Ψ(t) 〉|2 (5.8)

are given as numbers in the Figure. Wα represents the spectrum of |Ψ(t) 〉 integrated

over the energy interval containing the peak or group of peaks α. One can see that

the probability of remaining in the initial ground state is W0 = 0.46. The second im-

portant part of the spectral distribution of |Ψ(t) 〉 after pulse absorption is W1 = 0.49,

which corresponds to the absorption of energy ~ω. From a single-particle perspective

one can interpret this part as a linear combination of one-photon electron-hole excita-

tions, although the processes leading to W1 are of course far more complex many-body

processes. Finally, a small weight W2 = 0.05 can be related to the absorption of two

photons. This yields the average number

neh

Na
' 1

Na
(W1 + 2W2) = 0.2 (5.9)

of laser-induced electron-hole excitations per atom. This quantity corresponds to the

ratio between the absorbed energy per atom and the photon energy, i.e.,

neh

Na
=

∆E

Na~ω
. (5.10)

It is remarkable that such a small number of electron-hole excitations is sufficient to

induce a decrease of around 50% in the magnetization.

In order to get an insight into the nature of the excited many-body states belonging

to SPs α = 1 and α = 2, we have calculated the average number of p electrons n
(α)
p

corresponding to each SP α.1 Results are given as numbers in Figure 5.8. There, the

inaccuracies of n
(α)
p for α ≥ 1 reflect the fluctuations of n

(α)
p in time.2 Only the p-band

occupation n
(0)
p (for α = 0) is perfectly conserved for t & 3Tp, since the SP α = 0

represents a single state, namely the ground state of the system. It is clear that for

this SP one finds n
(0)
p = 0.24, which coincides with the number of p electrons in the

1n
(α)
p is obtained by representing the operator n̂p in the basis of stationary states |Φk 〉 as described

below for S
(α)
z . See Eq. (5.11) and the related discussion below.

2Notice that the excited spectral parts α ≥ 1 represent distributions having a finite width over

many stationary states within a narrow energy range. Therefore, the observables within these SPs are

not conserved during the time propagation as it would certainly be the case if one would consider only

one stationary state.
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initial ground state. For the first excited SP α = 1 the p-band occupation increases up

to n
(1)
p ≈ 0.75. Roughly speaking, in these states the p band is occupied by around one

electron, whereas the ground-state SP has an almost unoccupied p band (n
(0)
p = 0.24).

This sheds some light on the excitations within SP α = 1. They can be interpreted

—to a large part— as linear combinations of single d→ p electronic-dipole transitions,

which are induced by the absorption of one photon (of energy ~ω). For the second

excited spectral part α = 2 associated to the absorption of energy 2~ω, one finds again

a relatively small value n
(2)
p ≈ 0.13. This can be explained by two photon absorption

processes: The first photon excites a many-body state within SP α = 1 basically by

inducing a transition from the d to the p band. Then, the second photon excites a

state within SP α = 2 basically by inducing a transition from the p band to some

antibonding d orbital.

Having a physical interpretation of the three main contributions in the spectral

density DΨ(E), it is very instructive to consider the properties of each spectral part

separately. In particular, we would like to investigate the spin relaxation within the

excited SPs α = 1 and 2. This analysis may help us to understand the role of electron-

hole excitations in the ultrafast demagnetization. To this aim, Figure 5.9 shows several

magnetic relevant expectation values for the three main SPs of the many-body state

|Ψ(t) 〉 as a function of time. The off-plane projection of the spin magnetization

S(α)
z (t) =

1

Wα

∫
α

dE sz(E) (5.11)

deserves special attention. S
(α)
z (t) is given by an integral over each SP α, where in

the integrand sz(E) represents the spin-Sz contribution of weights of |Ψ(t) 〉 having an

average energy E. The spectral density sz(E) of the spin Sz is given by

sz(E) =
∑
j,k

δ

(
E − Ej + Ek

2

)
〈Ψ(t) |Φj 〉 〈Φj |Ŝz|Φk 〉 〈Φk |Ψ(t) 〉 (5.12)

and therefore gives us a measure for the magnetization originating from different spec-

tral weights. The upper panel (a) of Figure 5.9 shows that shortly after the excitation

all SPs have roughly the same magnetization as the ground state. As time evolves the

magnetization of the most relevant excited states (α = 1) decreases significantly to

almost zero, while the magnetization in the lowest SP (ground state, α = 0) remains

unchanged. The average atomic d-electron squared spin 〈〈~S2
jd〉〉, which measures the
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Figure 5.9: Spectral analysis of the spin dynamics of the triangle system -

(a) The off-plane spin Sz is shown for the dominant SPs α = 0–2 of the many-body state

|Ψ(t) 〉. The different parts α correspond to the three main groups of peaks in the spectral

distribution given in Figure 5.8. Results are shown for t > 10 fs, i.e., after the passage

of the laser pulse, since the SPs are not physically meaningful while the electric field is

active. The shape of the laser pulse is illustrated by the magenta oscillating curve. The

dotted line coincides with the averaged total magnetization given in Figure 5.1(a). The

inset shows the corresponding spectral separation of the atomic d-electron spin 〈〈~S2
jd〉〉,

which measures the magnitude of the local magnetic moments. (b) The NN d-electron spin

correlations 〈〈~Sjd · ~Skd〉〉 in the different SPs α = 0–2 as a function of t.

magnitude of the atomic magnetic moments, is given in the inset of Figure 5.9(a) for the

main SPs α = 0–2. The results show that the local magnetic moments of the excited

SPs α = 1 and 2 are very little modified with respect to the ground state, and that after

the passage of the laser pulse they remain very stable as a function of time. The largest

change in 〈〈~S2
jd〉〉 is observed for SP α = 1, where the expectation value 〈〈~S2

jd〉〉 is re-

duced by 23% with respect to the ground-state value. Let us recall that in this spectral

part (α = 1), which corresponds to single-photon absorptions, the decrease in 〈〈~S2
jd〉〉

results mainly from the significant d → p charge transitions. See also the p-electron

occupation numbers n
(α)
p shown in Figure 5.8. Therefore, also in this case the local mo-
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ments remain almost saturated. Consequently, the stability of local magnetic moments

implies that the observed laser-induced demagnetization must be intimately related to

important spin fluctuations. Indeed, Figure 5.9(b) shows that in the most important

excited SP α = 1, the NN d-electron spin correlation 〈〈~Sjd · ~Skd〉〉 decreases by 75–80%

with respect to its initial ground-state value. These results confirm the conclusions

drawn in Section 5.2: The ultrafast demagnetization effect is the result of disorder in

the orientation of local magnetic moments, which have very stable magnitudes. In ad-

dition, the present analysis reveals the demagnetization process from a spectral point

of view: Only weights corresponding to excited many-body states (α ≥ 1) relax their

magnetization by means of decreasing the NN spin correlation. In other words, only

when the laser excitation energy is absorbed (within electronic-orbital and interatomic

electron-hopping degrees of freedom) it is possible that the SOC acts as an extremely

efficient angular-momentum transfer channel from the electronic-orbital toward spin

degrees of freedom.

5.6 Discussion about the absorbed energy per atom

Since characterizing the nature of the excitation of electrons is essential for understand-

ing the magnetization dynamics, it is worth discussing the laser-energy absorption in

more detail. As we know, the photon energy is quantized so that the smallest absorbed

energy is ~ω. Consequently, by means of laser-energy absorption spectral weight can

be shifted only toward those excited states which have excitation energies of around

1~ω, 2~ω, ... (see Figure 5.8 in the previous Section). These groups of excited states

correspond to one, two, ... photon absorption processes, respectively. In a macroscopic

system, the smallest amount of excitation energy per atom ~ω/Na can be arbitrarily

small. However, in our numerical simulations we considered systems having a small

number of atoms Na and a discrete spectrum. In this case, the smallest excitation

energy per atom ~ω/Na is finite, and thus the absorption of only a single photon in the

whole system is enough to excite a significant part of the finite-system many-body wave

function |Ψ 〉. This suggests that in small systems, for instance in the Na = 3 triangle,

absorbing a single photon is sufficient to cause a significant spin relaxation, too. In the

following we will state this qualitative suggestion more precisely by showing that the

maximum admissible demagnetization depends on the number of absorbed photons.
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To this aim, let us consider the spectral distribution of the many-body wave function

|Ψ(t) 〉 after the laser-pulse absorption. First, recall that the magnetization in the

ground-state SP (α = 0) of the many-body wave function |Ψ(t) 〉 remains unchanged.

Only spectral parts α ≥ 1 associated to groups of excited states within the spectral

representation of |Ψ(t) 〉 contribute to the spin relaxation. For the purpose of assessing

the maximum admissible demagnetization (∆Sz/S
0
z )max, let us assume these excited

states within SPs α ≥ 1 to be totally demagnetized after the spin relaxation has finished.

Therefore, (∆Sz/S
0
z )max must depend on the amount of spectral weight, which the laser

pulse has removed from the ground state toward excited SPs. This dependence can also

be expressed in terms of the average number of absorbed photons neh. Considering only

the most dominant one-photon absorption processes,1 the spectral density DΨ(E) of

the state |Ψ(t) 〉 consists of only two spectral parts: the ground-state SP (α = 0), and

the excited SP α = 1 corresponding to the excitation energy of around 1 ~ω. Then,

the weight W1 of the excited SP is given simply by the average number of absorbed

photons, i.e., W1 = ∆E
~ω = neh. Therefore, by assuming a total demagnetization for

states within SP α = 1 the maximum admissible demagnetization can be estimated as

(∆Sz/S
0
z )max = W1 = neh, i.e., it depends linearly on neh. In the case of the basic

isosceles triangle, we have used the photon energy ~ω = 1.55 eV and found an average

absorbed laser energy of ∆E = 906 meV (see Section 5.2). This yields the average

number of absorbed photons neh = 0.906 eV
1.55 eV = 0.58, i.e., neh/Na = 0.185 per atom, and

therefore implies that at the most a relative demagnetization of (∆Sz/S
0
z )max = 0.58

would be achievable. Notice that in our simulations we have computed numerically

∆Sz/S
0
z = 0.47, which is only slightly below the maximum value. This demonstrates

the high efficiency of the purely electronic spin-relaxation mechanism revealed in the

present work.

In larger systems having a continuous spectrum the absorption of a single photon

does not lead to any significant excitation. In fact, since in this case the corresponding

excitation energy per atom would be infinitesimal (~ω/Na → 0), the absorption of a

single photon within the whole system is certainly too little to account for relaxation

of the total spin. Rather, in order to excite significantly the many-body wave function,

the excitation energy per atom must be finite and not negligibly small. Importantly,

1In the previous Section 5.5 we have seen that for the basic triangular system the most dominant

laser excitations are given by linear combinations of single-photon absorption processes.
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Figure 5.10: Demagnetization from a single-particle perspective - Scheme of ma-

jority (spin-up) and minority (spin-down) electronic density of states. The spin-relaxation

process is indicated: First, the laser creates a majority electron-hole pair, and second, the

electron above the Fermi level flips its spin by means of the spin-orbit coupling.

because of ~ω/Na → 0 in large systems the spectrum of excited many-body states,

which are attainable by laser-pulse absorption, is a quasi continuous function of energy

per atom. This implies that a significant level of excitation can be achieved by shifting

spectral weight toward SPs having a relatively low energy per atom with respect to

the photon energy ~ω. In other words, in this case the excitation energies per atom of

the relevant laser-excited states in the many-body spectrum are finite but much lower

than ~ω. In contrast, in small clusters the energy per atom of already the lowest laser-

excited states in the spectral representation of |Ψ(t) 〉 is of the order of ~ω, i.e., much

higher than the energies per atom of the relevant laser excitations in the bulk. For

these reasons, in comparison with our model calculations on small clusters we expect in

realistic systems (for instance, in the bulk or thin films) lower absorbed energies ∆E/Na

and smaller numbers of photon absorption neh/Na per atom to yield the same relative

demagnetization ∆Sz/S
0
z as in the considered clusters. Indeed, this expectation agrees

with the experiment of Rhie et al. on thin Ni films, in which spin dynamics after the

absorption of only neh/Na = ∆E
Na ~ω = 0.06 photons per atom (using the same photon

energy ~ω = 1.5 eV as in our simulations) has been observed (7). In contrast, in our

Ni3 model calculations we have found neh/Na = 0.19.

Finally, we would like to present an interpretation of the demagnetization effect from

a single-particle perspective. Since only excited states are involved in the magnetiza-

tion relaxation, we propose the certainly oversimplified picture shown in Figure 5.10:

107



5. MAGNETIZATION DYNAMICS

After the laser-induced creation of electron-hole pairs only the excited majority elec-

trons take advantage of the SOC and flip their spins into the minority band. The fact

that in the present small cluster simulations the excitation energy per atom required

for the demagnetization is larger than in realistic extended systems can now be ex-

plained in terms of the nature of the single-particle spectrum. While in macroscopic

systems the spectrum is continuous, the excitation spectrum of small systems is dis-

crete. In comparison with a discrete spectrum, in the solid the density of many-body

states is very large. Consequently, there are endless possibilities (much more than in

small clusters) for a single electron-hole excitation of finite energy (e.g., ~ω = 1.5 eV)

to decay into electron-hole pairs around the Fermi level. As a result, for a given num-

ber of absorbed photons per atom neh/Na, one expects more electron-hole pairs and,

subsequently, more spin-flip processes involving these excited electrons. This compar-

ison between discrete and continuous spectra demonstrates that in realistic extended

systems a smaller amount of absorbed photons per atom and absorbed laser energy per

atom would suffice in order to induce a comparable demagnetization effect. The present

qualitative discussion about the absorbed energy per atom shows that the absorption

of photon energy plays a central role in the magnetization dynamics. Therefore, in the

following Section we present a quantitative detailed investigation of the dependence of

the magnetization dynamics on the absorbed energy.

5.7 Dependence on the absorbed energy

In Section 5.5 it has been shown that only weights corresponding to excited many-body

states contribute to the ultrafast spin relaxation. This implies that the absorption of

photon energy plays a central role in the demagnetization effect, in particular since the

absorbed energy gives a measure of the spectral weight transfer from the ground state

toward the excited states following the laser pulse. For this reason, it is very interesting

to investigate the dependence of the magnetic response on the absorbed laser energy.

For this purpose, simulations for different laser fluences F = 10–80 mJ/cm2 have

been performed. Figure 5.11 shows the time dependence of Sz following the absorption

of the corresponding laser pulses. As expected, the larger F is, the larger becomes

the total (long-time) demagnetization. This behavior can be of course traced back to

the absorbed energy ∆E, which is indicated in brackets: With increasing fluence the
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Figure 5.11: Magnetization dynamics for different laser fluences - The total spin

Sz relaxation in the Ni3 triangle following a fs laser pulse is shown for different laser

fluences F = 10–80 mJ/cm
2
. The corresponding absorbed pump energy ∆E per atom is

indicated in brackets. The magenta curve around t = 0 illustrates the shape of the laser

pulse (electric field | ~E|).

amount of absorbed energy also increases. A remarkable result is that the demagne-

tization time seems to be almost independent of the laser fluence. Actually, only the

decrease in magnetization ∆Sz increases with increasing F . In order to quantify this

statement, we have fitted the Sz(t) curves to exponential functions of the form (5.5).

The derived relative demagnetizations ∆Sz/S
0
z and demagnetization times τdm are

shown in Figure 5.12 as a function of the average number of absorbed photons per

atom neh/Na = ∆E/(Na~ω). While τdm is almost independent of neh/Na, the relative

demagnetization scales linearly with the number of photon absorptions.

At this stage of discussion, let us note that so far we have used only one particular

set of laser parameters (i.e., laser-pulse polarization, wave length and duration) for

describing the initial excitation. It is clearly important to quantify if the laser param-

eters have an important direct effect on the subsequent magnetization dynamics. To

this aim, different laser-pulse polarizations ~ε, wave lengths λ (or frequencies ω) and

pulse durations Tp are considered in the following. Varying the laser parameters allows

us to control separately the total absorbed energy ∆E, the number of absorbed pho-
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Figure 5.12: Dependence of the relative demagnetization and demagnetization

time on the laser fluence - The relative demagnetization ∆Sz/S
0
z after the fs laser-pulse

absorption (t � τdm) is shown as a function of ∆E/(Na ~ω). The quantity ∆E/(Na ~ω)

can be interpreted as the number of absorbed photons per atom neh/Na = ∆E/(Na ~ω)

resulting from laser-pulse absorption. The crosses are obtained by fitting Sz(t) to an

exponential decay for each fluence F . The dotted line is a linear fit to the discrete points.

The inset shows the corresponding demagnetization times τdm.

tons or initial electron-hole excitations neh, and many-body density of excited states

at energy Egs + n~ω with n = 1, 2, ... . In particular, we would like to reveal the roles

of ∆E and neh in the magnetization dynamics. For instance, if the dynamics would

be dominantly controlled by the absorbed energy, one would expect ∆Sz/S
0
z and τdm

to depend only on ∆E = neh~ω and not on the specific fluence, laser frequency and

number of absorbed photons. In contrast, if the average number of absorbed photons

is the crucial parameter, the different total absorbed energies ∆E should yield similar

∆Sz/S
0
z and τdm provided that neh = ∆E/~ω is the same. In addition, it is also very

interesting to see if maybe other laser parameters can be used to control the subsequent

spin relaxation by keeping ∆E and neh fixed.

In order to investigate the role of the polarization ~ε of the incident laser pulse,

we have considered different electric-field polarizations. Figure 5.13 shows the spin-

and orbital angular-momentum dynamics for linear (in-plane) as well as circular σ+

and σ− polarizations of ~E. Here, the linear polarization corresponds to the reference

set of parameters, which yields the magnetization dynamics reported in Section 5.2.

Let us recall that the linear pulse can be regarded as the superposition of the two
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Figure 5.13: Magnetization dynamics for different laser electric-field polariza-

tions - Laser-induced spin relaxation Sz in the triangle system is shown for linear in-plane

as well as circular σ+ and σ− polarizations of the incident pulse. The vertical dotted lines

represent the times t = 10 fs and t = 50 fs after the passage of the center of the Tp = 5 fs

laser pulse, whose shape is illustrated by the magenta curve around t = 0. Inset (a) shows

the corresponding dynamics of the orbital angular momentum Lz within the first 75 fs

after pulse absorption, while inset (b) shows the relative demagnetization ∆Sz/S
0
z for the

circularly polarized pulses as a function of ∆E/(Na ~ω). There, the straight dotted line

gives the linear approximation taken from Figure 5.12, and the quantity ∆E/(Na ~ω) is

interpreted as the number of absorbed photons per atom neh/Na.

circularly polarized σ+ and σ− light pulses, where the σ+ and σ− photons carry and

angular momentum of +~ and −~ along the out-of plane direction (z quantization axis),

respectively.1 The main Figure shows that the time dependence of Sz is slightly different

for the three considered polarizations. After absorption of the σ− (σ+) pulse the spin

projection decreases faster (slower) than after absorption of the linearly polarized pulse.

Moreover, the demagnetization is largest after excitation with σ− light: At t = 10 fs

after absorption of the Tp = 5 fs pulse, i.e., roughly at the end of the laser-pulse passage,

1Exception made for the polarization of ~E, all other parameters, which have been used for com-

puting the dynamics following the excitation by means of circularly polarized pulses, correspond to the

basic triangle system. In particular, a fluence of F = 40 mJ/cm2 has been used.
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5. MAGNETIZATION DYNAMICS

the difference in Sz is given by Slinear
z −Sσ−z = 0.011 ~ per atom (S

σ+
z −Slinear

z = 0.007 ~

per atom). Subsequently, this difference even increases so that at t = 50 fs after pulse

absorption Slinear
z − Sσ−z = 0.033 ~ per atom (S

σ+
z − Slinear

z = 0.018 ~ per atom).

Let us now discuss the origin of this polarization effect. To this aim, first we focus

our attention on the inset (a) in Figure 5.13, which shows the time dependence of

the orbital angular momentum Lz. One can see that the initially strongly quenched

positive Lz (Lz ' 0.09 ~ per atom parallel to Sz) decreases (increases) by around 0.1–

0.2 ~ per atom during the action of the σ− (σ+) circularly polarized pulses, i.e., on a

time scale of a few femtoseconds. This behavior of Lz can be understood as the result

of transfer of photon angular momentum into electronic orbital angular momentum ~L

by means of the electric-dipole interaction. This is consistent with the fact that σ−

(σ+) light induces m → m − 1 (m → m + 1) transitions. Moreover, inset (b) shows

that in the case of both σ− and σ+ polarized pulses an average number of neh ≈ 0.2

photons per atom has been absorbed. Since each of these photons carry an angular

momentum of −~ or +~ respectively, their absorption leads to the observed changes

in Lz of around ±0.1–0.2 ~ per atom. Therefore, the pulse absorption already causes a

small reduction of the total angular momentum Lz+Sz. In an atom, the photon angular

momentum ±~ initially absorbed within ~L would be —subsequently to the laser-pulse

action— partially transferred to ~S by means of the local SOC, which conserves the total

angular momentum ~L + ~S. In this sense, one could expect that the σ− (σ+) circular

polarization of the laser field ~E might be the origin of the enhancement (reduction) of

the demagnetization effect in the considered triangular system. However, in the lattice

this effect is suppressed by the interatomic electron motion. In fact, the inset (a) shows

that Lz is very rapidly quenched, and that already t = 10 fs after the pulse absorption

the differences in Lz for the considered σ−, σ+ and linear polarizations are smeared out,

while the corresponding differences in Sz evolve on a longer time scale of around 50 fs

(see main Figure 5.13). This means that the laser-induced gain or loss in the orbital

angular momentum Lz is very rapidly quenched by the electron motion in the lattice

so that the SOC does not have enough time to transfer this gain or loss in Lz toward

the spin Sz. In other words, the direct transfer of angular momentum from the photons

to ~L induced by circularly polarized light has very little effect on the magnetization

dynamics following the pulse absorption.
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This conclusion is confirmed by the inset (b) in Figure 5.13 as we shall discuss

in the following. This inset shows the relative demagnetization ∆Sz/S
0
z , obtained by

fitting the Sz(t) curves to Eq. (5.5), as a function of the number of absorbed photons

per atom neh/Na = ∆E/(Na ~ω). One can see that excitation using σ− pulses yields

a larger number neh than excitation using σ+ pulses. The preference of absorbing

σ− photons can be understood as follows: Since the initial state has a small positive

projection Lz ' 0.09 ~ per atom, the number of occupied orbitals having m > 0 is

larger than for m < 0. This implies that absorption of σ− photons, which induces

m → m − 1 electronic transitions, is more probable than absorption of σ+ photons

inducing m → m + 1 transitions. However, the long-time demagnetizations ∆Sz/S
0
z

for σ+ and σ− circularly polarized light are very close to the straight dotted line,

which represents the linear approximation taken from Figure 5.12. Consequently, the

small differences in the spin dynamics and, in particular, in ∆Sz/S
0
z for σ+ and σ−

polarizations of ~E can be explained to a large extent by means of the corresponding

numbers of photon absorption. Hence, the demagnetization effect depends on the

photon helicity basically through the absorbed laser energy. This means that it is not

the spin relaxation itself but the ability of absorbing laser energy what is found to be

a direct function of laser electric-field polarization.

A further important characteristic of the laser field ~E is given by its wave length λ or

the associated frequency ω = 2πc/λ. Therefore, we have calculated the time evolution

of the total spin Sz by considering various wave lengths λ of the pump laser. It is

clear that the ability of absorbing photons strongly depends on the many-body density

of states at energy Egs + ~ω. It also depends on the electric-dipole matrix elements

between the ground state and the excited states. However, we are mainly interested

in elucidating if the ultrafast demagnetization effect can be explained in terms of the

absorbed energy per atom ∆E/Na alone. Figure 5.14 shows for a few examples of λ

the efficiency of demagnetization, i.e., the relative demagnetization ∆Sz/S
0
z , (a) as a

function of ∆E/Na and (b) as a function of the number of absorbed photons per atom

neh/Na = ∆E/(Na ~ω).1 In panel (a) a systematic dependence of ∆Sz/S
0
z on ∆E/Na

cannot be read out clearly. For instance, the simulations for λ = 416 and 1779 nm yield

very similar relative demagnetizations ∆Sz/S
0
z , although the corresponding absorbed

1Besides the wave length λ all other parameters are kept fixed. Notice for comparison that in all

previous simulations we have used λ = 800 nm.
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Figure 5.14: Demagnetization efficiency for various laser wave lengths - The

relative demagnetization ∆Sz/S
0
z in the Ni3 triangle is shown (a) as a function of the

absorbed energy per atom ∆E/Na and (b) as a function of ∆E/(Na ~ω) which can be

interpreted as the number of absorbed photons per atom neh/Na. Results (crosses) are

given for wave lengths λ = 416, 524, 800, 967 and 1779 nm. The straight dotted line in

panel (b) is the linear approximation derived from the results shown in Figure 5.12.

energies ∆E/Na differ from each other by a factor of 4. In contrast, in panel (b) one

observes that the results for ∆Sz/S
0
z are roughly consistent with the linear dependence

on neh/Na (dotted line), which has been previously found by varying the laser fluence

(see Figure 5.12). In particular, the numbers of absorbed photons neh are similar for the

λ = 416 and 1779 nm calculations. Consequently, these results provide evidence that

the ultrafast demagnetization is not directly related to the absorbed energy. Rather, it

can be explained in terms of the number of absorbed photons. This dependence reflects

the fact that the ultrafast spin relaxation is not a heat-driven effect.

Let us close this Section by studying the dependence of spin relaxation on the
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Figure 5.15: Demagnetization efficiency as a function of pulse duration - The

relative demagnetization ∆Sz/S
0
z induced by λ = 800 nm laser pulses is shown as a function

of pulse duration Tp. The laser fluences F have been chosen such that for each considered

Tp the Ni3 triangle always absorbs the same average number of photons neh = ∆E/(~ω) =

0.195 per atom.

pulse duration Tp representing a further characteristic of the laser field. To this aim,

simulations have been performed for the laser wave length λ = 800 nm and various Tp

in the range Tp = 1–100 fs.1 Notice that for λ = 800 nm one femtosecond corresponds

to 0.37 of a single electric-field oscillation. This means that such short pulses have a

very broad distribution of frequencies ω. Thus, varying Tp from 1 to 100 fs corresponds

to changes from very broad to very narrow spectral widths in the frequency domain.

In these calculations the laser fluence F has been varied together with Tp such that

for each Tp one obtains the same number of absorbed photons neh = 0.195 per atom.2

This procedure allows us to suppress the dependence on the average number of absorbed

photons and to identify potential direct effects of the pulse duration on the laser-induced

spin relaxation. Figure 5.15 shows the relative demagnetization ∆Sz/S
0
z as a function

of Tp. One finds that ∆Sz/S
0
z depends only weakly on Tp as long as neh = ∆E/(~ω) is

kept constant. This result again confirms that the ultrafast demagnetization depends

primarily on the number of absorbed photons. Let us finally mention that this renders

1The width Tp is defined such that at the time t = ±Tp the Gauss envelope of the pulse is reduced

by the factor 1/e with respect to its maximum at t = 0.
2Besides Tp and F , all other parameters have been chosen as in the reference Ni3 triangle studied

in Section 5.2.
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the mechanism of photon absorption very central. In the following Section we will

discuss the role of the d-p interband hybridization which, as we shall see, facilitates the

laser-pulse absorption.

5.8 Interband hybridization effects

We have seen that in the present model the demagnetization appears as the result of

photon absorption during fs laser irradiation. Importantly, the absorption of photons

is induced by the electric-dipole interaction with the laser field by means of electronic

transitions between the lower d and the higher p band. This implies that the elementary

electronic d → p transitions resulting from the pulse absorption play a crucial role in

the initial stage of the laser-induced spin relaxation. In other words, they represent a

necessary ingredient of this effect.

One can show that the initial rate of the important laser-induced interband d→ p

electronic transitions is proportional to the d-p hybridization quantified by the inter-

band hopping integrals tp0,dmjk . To this aim, let us write the time derivative of the

p-band occupation np as

d

dt
〈n̂p〉 =

i

~

〈[
Ĥ , n̂p

]〉
=

i

~

〈[
Ĥ0 , n̂p

]〉
+

i

~

〈[
ĤE , n̂p

]〉
. (5.13)

On the right-hand side, the first term describes the contribution of electronic inter-

band hoppings,1 while the second term represents the contribution of the laser pulse.

Actually, only the latter contribution 〈[ĤE , n̂p]〉 determines the laser-induced rate

d 〈n̂p〉Laser/dt of the charge transfer from the d to the p electrons (enhancement of

the p-band occupation). Using Eq. (3.9) one obtains

d

dt
〈n̂p〉Laser =

i

~

〈[
ĤE , n̂p

]〉
= − i

~
e ~E(t) ·

∑
jmσ

{
〈 dm |~̂r| p0 〉

〈
ĉ†jdmσ ĉjp0σ

〉
− 〈 p0 |~̂r| dm 〉

〈
ĉ†jp0σ ĉjdmσ

〉}
,

(5.14)

demonstrating that the enhancement of the p-band occupation depends linearly on the

d-p matrix elements 〈ĉ†jdmσ ĉjp0σ〉 and 〈ĉ†jp0σ ĉjdmσ〉. In the FM ground state these matrix

elements are proportional to the interband hybridization (or hopping integrals tp0,dmjk ).

1This term is zero for the initial FM ground state before the laser pump pulse.
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Figure 5.16: Dependence of spin relaxation on interband hopping integrals -

Spin relaxation of the isosceles Ni3 triangle subsequent to a 5 fs laser-pulse absorption is

shown for various values of the p-d two-center integral (p, d;σ). The time of laser excitation

(t = 0) is indicated by a vertical dotted line. The inset illustrates the relation between

(p, d;σ) and the ground-state p-electron occupation per atom np/Na.

Notice that at the initial time or moment of laser-pulse absorption the many-body

state is given by the ground state. Consequently, Eq. (5.14) implies that at this initial

time the rate d
dt 〈n̂p〉 depends linearly on tp0,dmjk . In this way, the d-p hybridization

determines the strength of the initial push (i.e., the number of photon absorptions

by means of d → p electronic transitions) during the fs laser excitation. If tp0,dmjk = 0,

which is the case for instance in isolated atoms, only the second time derivative d2

dt2
〈n̂p〉

would contribute to the enhancement of the p-band occupation 〈n̂p〉. Thus, the photon-

absorption process would be an effect of second order in time.

In order to numerically verify the important role of interband hybridization in the

laser-induced spin relaxation, Figure 5.16 shows the time evolution of the spin Sz for

various p-d two-center integrals (p, d;σ) = 0 eV, −0.2 eV, −0.4 eV and −0.555 eV. Here,

the latter value corresponds to the parameter of the reference triangle system. One

clearly observes that the larger |(p, d;σ)|, the larger the demagnetization effect. Notice

that the two-center integrals are directly related to the interband hopping elements

tp0,dmjk (see Table 3.2), i.e., the magnitude of the integrals (p, d;σ) determines the d-p

hybridization and thus the d-p matrix elements 〈ĉ†jdmσ ĉjp0σ〉 within the initial state.
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The inset shows the ground-state number of p electrons np as a function of (p, d;σ).

Obviously, the p-band occupation np within the ground state increases with increasing

hybridization |(p, d;σ)|. In fact, in this case np can be regarded as a measure for the

d-p matrix elements 〈ĉ†jdmσ ĉjp0σ〉 within the initial state before the laser irradiation.

Finally, the main Figure 5.16 can be understood as follows: According to Eq. (5.14) d-p

hybridization, which is accompanied by a non-vanishing p-band occupation, accelerates

the absorption of photons in the ground state by means of electric-dipole transitions.

In other words, d-p hybridization increases the initial laser-induced push leading to the

enhancement of np. In this way, it facilitates the demagnetization effect.

5.9 Different band fillings and geometrical structures

In the previous Sections we have extensively studied the laser-induced spin relaxation

in the isosceles triangle having Ne = 3 electrons. Now, the question arises if a similar

magnetization dynamics also appears in the case of different band fillings and in different

geometrical structures.

In order to address this question, we consider first the triangle having various

numbers of electrons Ne = 3, 4, 5, 7 and 15, and, secondly, various structures: one-

dimensional dimer having Ne = 3 electrons, Na = 3 linear chain (Ne = 5, 7), and

two-dimensional rhombus (Na = 4) having Ne = 5 electrons. For each of these sys-

tems, the exchange-energy parameter J and the laser wave length λ have been chosen

such that the ground state is ferromagnetic and the many-body density of states allows

the absorption of the photon energy ~ω. The choices of the exchange integrals J and the

associated wave lengths λ are specified in Table 5.1. All other parameters are the same

as in previous calculations of the spin relaxation in the basic triangle system (see, e.g.

Figure 5.1). In particular, we have used ξ = −50 meV, Tp = 5 fs, F = 40 mJ/cm2, and

electric-field polarization along the dimer/chain or within the triangle/rhombus plane,

respectively. The resulting time dependence of the total spin projection Seasy along the

easy magnetization axis is shown in Figure 5.17.1 Panel (a) of this Figure shows that a

qualitatively similar spin dynamics is induced by fs laser pulses for all considered band

fillings. Moreover, a comparison between the spin relaxations for Ne = 3 and Ne = 15

demonstrates that the essential behavior of magnetization dynamics does not depend

1For each system the easy magnetization axis (or plane) is given in Table 4.2.
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5.9 Different band fillings and geometrical structures

System size Structure Band filling Exchange integral Laser wave length

Na = 2 Dimer Ne = 3 J = 0.4 eV λ = 1240 nm

Na = 3 Linear chain Ne = 5 J = 0.3 eV λ = 428 nm

Ne = 7 J = 1.6 eV λ = 652 nm

Na = 3 Triangle Ne = 3 J = 1.6 eV λ = 463 nm

Ne = 4 J = 0.8 eV λ = 800 nm

Ne = 5 J = 3.2 eV λ = 242 nm

Ne = 7 J = 2.4 eV λ = 320 nm

Ne = 15 J = 1.0 eV λ = 1934 nm

Na = 4 Rhombus Ne = 5 J = 1.4 eV λ = 314 nm

Table 5.1: Laser wave lengths and exchange integrals for selected structures

and band fillings - Wave lengths λ of the laser pump pulse, which have been used for the

spin-dynamics simulations for various structures and band fillings, are listed. In addition,

the choice of the exchange integral J is given for each considered system.

on whether the d band is more than half-filled or it is less than half-filled. This gives us

the legitimation to model Ni by less than half-filled d bands as discussed in Section 4.1.

Furthermore, panel (b) of Figure 5.17 shows that also in different structures the mag-

netization decreases after laser-pulse absorption. Let us notice the oscillations in Seasy,

observed for the dimer and for the Na = 3 chain having Ne = 7 electrons. We have

found that in these cases the spectral representation of the the wave function |Ψ 〉 well

after laser-pulse absorption, i.e., the many-body spectral density DΨ(E), is basically

composed of two states whose energies differ from each other by only 10–20 meV. This

gives rise to Rabi-like oscillations of the spin Sz having a period of around 200–400 fs.

It is clear that this effect can take place only in systems having a discrete spectrum,

and thus represents a finite-size effect. Therefore, these oscillations are not relevant

for the purpose of drawing conclusions on the physics of magnetization dynamics in

realistic thin films or solids. Notice also that in all the other considered simulations the

laser-excited states |Ψ 〉 consist of much more than two states and, thus, oscillations of

the spin projection do not occur.

One concludes that demagnetization is possible for different band fillings, geometries

and dimensions. This can be explained by the local character of the intra-atomic

Coulomb interactions and the elementary electronic transitions involved in the laser

excitation and spin-orbit coupling. Since these mechanisms are local, they yield a

qualitatively similar magnetization dynamics in all considered cases.
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5. MAGNETIZATION DYNAMICS
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Figure 5.17: Spin dynamics for different band fillings and structures - (a) The

laser-induced spin relaxation along the easy magnetization direction is shown for the isosce-

les triangle having various numbers of electrons Ne. (b) Spin dynamics for different geo-

metrical structures: one-dimensional dimer having Ne = 3 electrons, Na = 3 linear chain

(Ne = 5, 7), and two-dimensional rhombus (Na = 4) having Ne = 5 electrons. Notice that

for each system the easy magnetization axis (or plane) is specified in Table 4.2. The laser

excitation time t = 0 is indicated by vertical dotted lines.
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6

Conclusions and outlook

In conclusion, a microscopic explanation of the laser-induced ultrafast demagnetization

effect in ferromagnetic metals has been given. For the purpose of elucidating the

physics of this phenomenon, in a preliminary step the nature of spin excitations has

been studied. The results have shown that shortly after the laser-pulse absorption the

most relevant spin excitations are given by local spin fluctuations, which represent a

disorder of atomic magnetic moments in their orientations. This implies that for a

proper description of ultrafast magnetization dynamics, it is very important to take

into account local magnetic moments. In the present thesis we have addressed this

challenging problem by developing a many-body theory. Its main advantage is that

it includes from the very beginning electronic correlations, which favor the formation

of the local moments. Our primary ansatz was to consider exclusively the electronic

system, which dominates the physics of magnetization dynamics on the femtosecond

time scale since it gives the fastest response to laser excitation. The couplings to the

slower phonons and the environment have not been considered. In order to investigate

the purely electronic processes in the ultrafast demagnetization, we have introduced

an electronic many-body lattice model. The underlying Hamiltonian considers electron

hoppings in the lattice, Coulomb interaction, light-matter interaction and SOC on the

same footing. In this framework the spin relaxation is exclusively triggered by the SOC.

Exact time evolutions of both the initial excitation, i.e., the interaction between

electrons and the fs laser pulse, and the subsequent relaxation dynamics in small Ni

clusters having up to Na = 4 atoms demonstrate that the ultrafast demagnetization

can indeed be explained in terms of a purely electronic mechanism. The results provide
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6. CONCLUSIONS AND OUTLOOK

a novel insight into the microscopic mechanism of this effect: First, the laser pulse

pumps energy into the electronic system and creates a number of excited electrons.

Then, in the excited state the SOC yields a significant spin-to-orbital relaxation, by

means of which angular momentum is transferred locally from the spins to the electron

orbits on a time scale of several tens to hundreds of femtoseconds. The elementary local

transitions involved in the SOC conserve the total angular momentum ~L+ ~S. However,

the electron orbits do not accumulate the angular momentum which is transferred from

~S, since on a time scale of only a few femtoseconds ~L is quenched by the electron motion

in the lattice. In this way, the interatomic electron motion acts as a very effective sink

for the electronic angular momentum. We have found that the combination of these

purely electronic effects, i.e., SOC-triggered angular-momentum transfer from ~S to ~L

and subsequent quenching of ~L in the lattice, results in a demagnetization within a

few hundred femtoseconds. Moreover, we have identified the spin-orbit interaction

as the key factor for the demagnetization rate: the stronger the SOC, the faster the

spin-to-orbit angular momentum transfer proceeds. A further crucial finding is that

the laser-induced decrease in magnetization can be traced back to a decrease in the

nearest-neighbor spin correlations, while the magnitudes of the local magnetic moments

remain very stable. Actually, this confirms the previous conjecture that the ultrafast

demagnetization effect is the result of fluctuations of local moments in their orientations.

In addition to the understanding of the very fundamental mechanisms, the present

studies reveal several further characteristics of the ultrafast process. For instance,

it has been found that after the femtosecond laser excitation the absorbed energy is

stored mainly within the degrees of freedom of the interatomic electron motion. Even

after the entire spin relaxation of the model has been completed, the electronic orbital

and translational degrees of freedom are far from being in thermal equilibrium with

spin degrees of freedom. This implies that the laser-induced demagnetization does

not represent a thermalization effect. In contrast, it is the result of non-adiabatic

dynamical relaxation processes. The same conclusion can be drawn from our small-

cluster findings that the relative demagnetization strength ∆Sz/S
0
z depends almost

exclusively on the number of absorbed photons, rather than on the absorbed laser

energy. This dependence clearly indicates that the ultrafast spin relaxation is not a

heat-driven effect. It is also important to note that we have not found any direct

dependences of ∆Sz/S
0
z on laser-pulse parameters such as electric-field polarization,
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wave length or pulse duration. For instance, even in the case of circularly polarized

pulses carrying angular momentum ±~ toward electronic orbital momentum ~L, the

demagnetization efficiency does not considerably depend on the photon helicity since

~L is very rapidly quenched in the lattice. The essential dependence of the relative

demagnetization strength is the dependence on the ability of the electron system to

absorb photons.

Let us now discuss the impact of our results obtained for small clusters on the de-

bate about the fundamental microscopic physics of ultrafast magnetization dynamics

in ferromagnetic TM solids or thin films. In this context, let us recall that in both the

model and realistic TM samples the essential processes involved in the Coulomb inter-

action, SOC and laser excitation, are local. In fact, the angular-momentum transfer

between ~S and ~L is triggered locally by the SOC at atomic sites. Moreover, the most

dominant intra-atomic Coulomb interactions and the electric-dipole transitions induced

by the laser-pulse absorption have also a local character. For these reasons, we expect

that the same electronic microscopic processes dominate the ultrafast magnetization

dynamics in different system sizes and dimensions: in small ferromagnetic clusters, in

thin films and also in bulk ferromagnets. Good evidence for this expectation is provided

by applications to various structures, namely, to the dimer, the linear chain, the trian-

gle and the rhombus. The corresponding results have shown a qualitatively similar spin

relaxation in all these cases. Therefore, our model approach allows us to compare the

results of exact time evolution, which is restricted to small system sizes (Na . 4 atoms),

with experimental results. Based on this reasoning, the purely electronic mechanism

revealed by the model results explains the ultrafast demagnetization not only in small

clusters but also in realistic metals. In other words, we conclude that also in realistic

FM transition metals it is the combination of (i) SOC-triggered transfer from ~S to ~L

and (ii) quenching of ~L by the electron motion in the metal, what is responsible for the

ultrafast demagnetization.

However, several differences between the considered small clusters and the TM

samples used in experiments deserve a special attention. First, let us mention the

single-particle spectra. In a small cluster the spectrum is discrete, while large systems

have a continuous spectrum. Consequently, the probability for a single laser-induced

electron-hole excitation of finite energy to decay into electron-hole pairs around the

Fermi level is much larger for large systems than for small clusters. This implies that
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6. CONCLUSIONS AND OUTLOOK

in macroscopic systems there would be more excited electrons per atom for a given

number of absorbed photons per atom, than in our model calculations. Since these

excited electrons above the Fermi level take advantage of the SOC and flip their spins

into the minority band, we expect that for the same level of excitation (i.e., number

of absorbed photons per atom) the relative demagnetization ∆Sz/S
0
z is also larger in

macroscopic systems than in small clusters. In other words, we expect that if one

increases the system size, one needs less laser energy absorption per atom in order

to induce a comparable demagnetization. A further difference is given by the d-band

widths Wd. For the basic Ni3 triangular system we have found Wd = 1.9 eV, which

is considerably smaller than the bulk d-band width W b
d ≈ 5 eV. The relatively small

width Wd for the triangle can be explained by its low dimensionality with respect to

the solid. It implies that in the bulk the process of quenching of ~L is expected to take

place even faster than in our model simulations. Importantly, these differences between

small clusters and realistic large systems do not concern the essential spin relaxation

processes and, therefore, do not damage our central conclusions about the fundamental

mechanisms responsible for the magnetization dynamics in ferromagnetic metals.

In the context of quenching of angular momentum, let us notice that it has been

argued that the total angular momentum ~L + ~S of an isolated sample is a constant

of motion. Our findings do not contradict this elemental conservation law, since the

present model does not describe an isolated system. In fact, the quenching of ~L by the

interatomic electron motion can be interpreted as an angular momentum transfer (on

a time scale of ∼ 1 fs) from the electron orbits to the lattice motion via the Coulomb

interaction between valence electrons and ions. In other words, the hopping integrals

tm,m
′

jk with m 6= m′ implicitly allow the transfer of angular momentum between orbital

degrees of freedom and the lattice. However, we are not interested in describing the

lattice rotation, since this would be physically unreasonable as the lattice is of course

fixed within the experimental setup, i.e., coupled to the much larger environment.

Notice that the interactions with the environment and phonons were not considered

in the present work, since they do not lead to any significant spin relaxation on the

femtosecond time scale. However, on the picosecond or even longer time scale the

processes of electron-phonon scattering, spin-polarized electron diffusion toward the

substrate, and energy dissipation to the environment are expected to become important

for describing the time dependence of the magnetization. In particular, they most
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probably lead to the recovery of the sample magnetization. It would be interesting to

investigate in more detail the roles of these processes for the dynamics of the system. To

this aim, our lattice model could be extended by including mean-field like interactions

with the environment and phonons.

Besides extending the electronic many-body model, it can be applied to periodic

boundary conditions. Although in this thesis we have considered exclusively systems

having open boundary conditions, the model is certainly not restricted to them. In

fact, periodic boundary conditions are of particular interest, since they can be used to

model realistic periodic systems such as thin films. However, the important elementary

electronic transitions involved in the spin-orbit interaction and laser excitation, as well

as the most dominant intra-atomic Coulomb repulsion, are local. Therefore, the choice

of boundary conditions is expected to play a minor role in the magnetization dynamics.

Nevertheless, it is worth verifying this expectation. In this sense, applying our model to

systems having periodic boundary conditions would be an interesting route for future

studies.

A further very interesting application of the introduced many-body model is the

detailed investigation of static magnetic properties. For instance, the model opens

the possibility to study the role of the electron correlation in SOC-effects such as the

magnetic anisotropy and orbital magnetism. Future work in this direction could lead

to an important contribution to the understanding of SOC-effects both in ground-state

and finite-temperature magnetism.

Finally, we believe that the electronic explanation of the laser-induced demagneti-

zation in ferromagnetic TMs, which is presented in the present thesis, will enlighten the

microscopic physics behind this effect. Moreover, it is our hope that the present work

will contribute to the future development of theoretical methods for the description

of ultrafast magnetization dynamics. In this context, one could apply the unrestricted

Hartree-Fock approximation to the present model Hamiltonian, which basically includes

the modifications ~̂Sjd · ~̂Sjd → 2〈 ~̂Sjd〉 · ~̂Sjd − 〈 ~̂Sjd〉2 and n̂jdn̂jd → 2〈n̂jd〉n̂jd − 〈n̂jd〉2.

We expect that this would not correctly reproduce the stability of the important local

magnetic moments. However, this approximation does not concern the terms describ-

ing the laser excitation and the relaxation processes related to the electron motion in

the lattice and spin-orbit interaction. Therefore, it would be interesting to apply the
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6. CONCLUSIONS AND OUTLOOK

time-dependent unrestricted Hartree-Fock method in order to see if it accounts for the

experimentally observed spin relaxation after laser-pulse absorption.
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Appendix A

Computational details of DFT

calculations

In the present Appendix the main details of the numerical calculations presented in

Chapter 2 are briefly described. These calculations have been performed in the frame-

work of Hohenberg-Kohn-Sham’s DFT (58, 59), as implemented in the VASP (64, 65).

A spin-polarized generalized gradient approximation to the exchange and correlation

energy functional (84, 85, 86) is used together with a frozen-core all-electron approach,

treating the 3d, 4s and 4p electrons as valence states. The spin-polarized Kohn-Sham

equations are solved in an augmented plane-wave basis set and the interaction between

valence electrons and ionic cores is described by means of the projector-augmented

wave method (87).

For the 1D calculations reported in Sec. 2.3 we consider supercells of length Naa

along the z-direction, where Na ≤ 16 is the number of atoms in the supercell and

a is the NN distance. The corresponding compatible wave vectors are given by ~q =

2πν/(Naa) · êz with ν ∈ Z.1 In general, Na ≤ 8 is enough to get a good picture of

the magnon dispersion relation. However, in some special cases (e.g., Fe) larger cells

have been used in order to explore the behavior for small q in more detail. The width

of the supercell along the x and y directions is 6a, which ensures that the interaction

between the wire images can be neglected. Analogously to the 1D case, for 2D lattices

we consider supercells of length Naa and Naa/
√

2 with Na = 2, 4, 8 along the directions

of a NN bond ~a and a second-NN bond ~a′, respectively. The corresponding SDW

1Translational and inversion symmetries allow the restriction 0 ≤ ν ≤ Na/2.
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Appendix A. Computational details of DFT calculations

vectors are given by ~q1 = 2πν/(Naa) · ê~a and ~q2 = 2
√

2πν/(Naa) · ê~a′ . The widths of

the supercells in the direction perpendicular to the monolayer plane are 6a and 3
√

2a,

respectively.

The spin-spiral structures are modeled by using a noncollinear spin-polarized for-

malism, as implemented in VASP by Hobbs et al., where the fundamental variable

is the spin-dependent density matrix (88). The direction and magnitude of the lo-

cal magnetic moments are obtained by integrating the magnetization density within

the corresponding Wigner-Seitz sphere. Moreover, in order to consider SDWs with a

fixed wave vector ~q, it is necessary to impose constraints on the magnetic moments

at each atom. For this purpose, a penalty function, which forces the atomic moments

to align along the given fixed direction, is added to the energy functional (89, 90). A

detailed description of the penalty-functional method is given in the VASP manual.1

Alternatively, a technique using Lagrange multipliers has also been proposed (91).

The integrations in the Brillouin zone are performed by using the Monkhorst-Pack

scheme (92). The actual number of ~k points and the plane-wave cutoff energy Emax

depend on the geometry and chemical element. For the linear-chain calculations in

Sec. 2.3, a ~k-mesh of 1 × 1 × 30 points and Emax = 450 eV are in general used.

However, in some cases, more demanding values were necessary. For example, in Fe

chains having relaxed bond length we used Emax = 500 eV and a ~k-mesh of 1 × 1 × ν
with ν at least 140/Na. The 2D calculations in Sec. 2.3 are performed with a ~k-mesh of

15×15×1 points and Emax = 450 eV. It has been verified that a further increase of the

number of ~k points and Emax would modify the resulting energies by less than 1 meV

per atom. This value can be regarded as the numerical accuracy of our results, which

is good enough for our conclusions (see Section 2.3). It should be noted, however, that

for large spin-wave vectors ~q (in particular in the AF case) some calculations do not

converge quite well if one considers materials such as Ni, which are intrinsically FM.

In these specific cases the accuracy is estimated to be about 10 meV per atom.

1http://www.vasp.at/
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Appendix B

Interatomic hopping integrals

The form of the single-particle electronic structure Hamiltonian Ĥ0 in Eq. (3.4) shows

that the integrals tαβjk drive the electrons to hop from one atom j to another atom k.

These hopping integrals tαβjk determine the period of the electron motion in the lattice.

Therefore, they are of crucial importance for the electron dynamics. In the following,

we discuss some properties of tαβjk and recall the two-center approximation for their

determination.

B.1 Dependence of hopping integrals on the interatomic

difference vector

Equation (3.5) shows that the parameters tαβjk are the matrix elements of electronic

kinetic energy and lattice potential between different atoms (j 6= k). As a consequence,

keeping the basis orbitals α fixed the hopping integrals in periodic lattices depend

exclusively on the difference vector ~Rjk = ~Rj − ~Rk between the atoms j and k, both

on its magnitude and on its orientation, i.e., tαβjk = tαβ(~Rjk).

Let us first consider the angle dependence. We would like to elaborate the con-

sequences of the 2π-rotation symmetry on our model. For this purpose, suppose the

total system is rotated by the angle ϕ around axis ν̂, which is denoted by the rotation

operator D̂ = D̂(ν̂, ϕ). Notice that D̂ is composed of two contributions: first, the

rotation of atomic positions D̂a, described by a rotation matrix R, and second, the

rotation of electron orbitals D̂e around fixed atomic sites. Therefore, D̂ = D̂aD̂e. The

rotation D̂a implies that all atomic positions and interatomic difference vectors are
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rotated according to ~Rj → R ~Rj and ~Rjk → R ~Rjk, respectively. Now, we want to find

out the relation between the hopping integrals for the rotated interatomic difference

vectors R ~Rjk and the original ones for ~Rjk, i.e., between tαβ(R ~Rjk) and tαβ(~Rjk). To

this aim, we recall that the electron-orbital part of the rotation D̂ is given by

D̂e = D̂e(ν̂, ϕ) = e−
i
~ L̂νϕ , (B.1)

where L̂ν = ~̂L · ν̂ is the projection of orbital angular momentum ~L on the rotation axis.

The operator D̂e acts on atomic wave functions φ(~r) as

D̂eφ(R~r) = φ(~r) . (B.2)

For our purposes, it is sufficient to consider orbitals α, β, which are eigenstates of L̂ν

having eigenvalues mα~ and mβ~. In this case, the relation between tαβ(R ~Rjk) and

tαβ(~Rjk) is quite simple. Using the definition for the hopping parameters in Eq. (3.5),

one obtains

tαβ(R ~Rjk) =

∫
d3r′ φ∗α

(
~r′ −R ~Rj

)−
~2∇2

r′

2me
+ [D̂ev(~r′)]︸ ︷︷ ︸

= v(R−1 ~r′)

φβ

(
~r′ −R ~Rk

)

=

∫
d3r φ∗α

(
R [~r − ~Rj ]

){
−~2∇2

r

2me
+ v(~r)

}
φβ

(
R [~r − ~Rk]

)
︸ ︷︷ ︸
D̂−1
e φβ(~r−~Rk)

= e−i(mα−mβ)ϕ

∫
d3r φ∗α

(
~r − ~Rj

){
−~2∇2

r

2me
+ v(~r)

}
φβ

(
~r − ~Rk

)
= e−i(mα−mβ)ϕ tαβ(~Rjk) .

(B.3)

The resulting relation

tαβ(R ~Rjk) = tαβ(~Rjk) e
−i(mα−mβ)ϕ (B.4)

gives us the angle dependence of the hopping integrals. It is worth noticing that the

2π-rotation symmetry is satisfied only for integer steps ∆m = mα − mβ. In other

words, non-vanishing hopping integrals between model orbitals having on the one hand

integer and on the other hand noninteger quantum numbers of L̂ν violate the rotational

symmetry. In the context of the model simplifications discussed in Section 3.4, this

means that it is not allowed to further reduce the degree of orbital degeneracy of the

3d electrons from Nd-orbitals = 3 to Nd-orbitals = 2, since in that case the model would
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contain both 3d orbitals mathematically described by the noninteger quantum number

l = 1/2 and 4p orbitals described by the integer quantum number l = 0.

Concerning the dependence of tαβjk on the distance Rjk = |~Rjk|, it has been shown

that tαβjk ∝ R−5
jk represents a sound approximation, i.e., the hopping integrals vary as

the inverse fifth power of the interatomic distance (93, 94). Since in the present thesis

we do not consider atomic motion, we will not further discuss this distance dependence.

B.2 Two-center approximation

In this work, we apply the two-center approximation, in which for the purpose of deter-

mining tαβjk the lattice potential v(~r) is assumed to be symmetric around the interatomic

connection axis ζ̂ between the lattice sites j and k (71).1 In other words, in Eq. (3.5)

we make the assumption

v(~r) ≈ vjk(~r) , (B.5)

where the two-center potential vjk(~r) is symmetric with respect to rotations around ζ̂.2

Let us now discuss several important properties resulting from the symmetry of

vjk(~r). First, the symmetry of vjk(~r) with respect to rotations around ζ̂ implies con-

servation of ~L along ~Rjk, i.e., conservation of mζ . Choosing basis states α as spherical

harmonics with definite orbital angular-momentum quantum number l and definite

projection mζ , this conservation law reads

t
nlmζ ;n′l′m′ζ
jk = 0 unless mζ = m′ζ . (B.6)

A second symmetry to take into account is the mirror symmetry with respect to planes

including ~Rjk: The two-center potential vjk(~r) created by the two atoms at ~Rj and ~Rk

1The connection axis ζ̂ is given by the unit vector in the direction of ~Rjk, i.e., ~Rjk = Rjk ζ̂.
2The two-center approximation (B.5) can be motivated by considering Eq. (3.5) for tαβjk . The largest

contributions to these matrix elements originate from small spheres around the lattice sites j and k.

There, the potential v(~r) is dominated by the local potentials vj(r) and vk(r) generated by the two

ions j and k, respectively. These potentials vj(r) and vk(r) are by themselves symmetric with respect

to rotations around the corresponding atomic nuclei. Other ions in the lattice give a contribution to

v(~r), which in first approximation is symmetric within the relevant spheres and thus does not affect the

symmetry of the potential significantly. Consequently, v(~r) can be assumed to be symmetric around

the interatomic connection axis.
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is conserved under such a mirror operation M̂ . Consequently, the operator equality

M̂ †vjk(~r)M̂ = vjk(~r) holds. The mirror operator acts as

M̂φn,l,mζ (~r − ~Rj) = φn,l,−mζ (~r − ~Rj) , (B.7)

where φn,l,mζ (~r− ~Rj) is a single-electron state at atom j having radial quantum number

n as well as angular-momentum quantum numbers l and mζ . Therefore, one obtains

t
n,l,−mζ ;n′,l′,−mζ
jk =

∫
d3r φ∗n,l,−mζ (~r − ~Rj)

(
−~2∇2

2me
+ vjk(~r)

)
φn′,l′,−mζ (~r − ~Rk)

=

∫
d3r φ∗nlmζ (~r − ~Rj) M̂

†
(
−~2∇2

2me
+ vjk(~r)

)
M̂ φn′l′mζ (~r − ~Rk)

=

∫
d3r φ∗nlmζ (~r − ~Rj)

(
−~2∇2

2me
+ vjk(~r)

)
φn′l′mζ (~r − ~Rk)

= t
nlmζ ;n′l′mζ
jk .

(B.8)

The combination of Eqs. (B.6) and (B.8) implies, first, that the hopping integrals

t
nlmζ ;n′l′m′ζ
jk between two atoms j and k are diagonal in the angular-momentum projec-

tion mζ along the interatomic connection axis, and, second, that they depend on the

absolute value |mζ | and not on its sign. Let us finally mention that for homogeneous sys-

tems, i.e., for homonuclear bonds jk, the potential vjk(~r) is symmetric with respect to

inversion Îjk around the center between ~Rj and ~Rk. This means Î†jkvjk(~r)Îjk = vjk(~r).

Since the inversion operator acts as

Îjkφnlmζ (~r − ~Rj) = (−1)lφnlmζ (~r − ~Rk) , (B.9)

one obtains the relation

t
nlmζ ;n′l′mζ
jk =

∫
d3r φ∗nlmζ (~r − ~Rj)

(
−~2∇2

2me
+ vjk(~r)

)
︸ ︷︷ ︸
Î†jk

(
− ~2∇2

2me
+vjk(~r)

)
Îjk

φn′l′mζ (~r − ~Rk)

= (−1)l+l
′
∫

d3r φ∗nlmζ (~r − ~Rk)

(
−~2∇2

2me
+ vjk(~r)

)
φn′l′mζ (~r − ~Rj)

= (−1)l+l
′
t
nlmζ ;n′l′mζ
kj

= (−1)l+l
′
t
n′l′mζ ;nlmζ
jk .

(B.10)
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B.3 Slater-Koster integrals

Slater-Koster integral Matrix element

(l, l′;mζ) t
nlmζ ;n′l′mζ
jk

(s, s;σ) t4s0 ; 4s0
jk

(s, p;σ) t4s0 ; 4p0
jk

(s, d;σ) t4s0 ; 3d0
jk

(p, p;σ) t4p0 ; 4p0
jk

(p, p;π) t4p1 ; 4p1
jk

(p, d;σ) t4p0 ; 3d0
jk

(p, d;π) t4p1 ; 3d1
jk

(d, d;σ) t3d0 ; 3d0
jk

(d, d;π) t3d1 ; 3d1
jk

(d, d; δ) t3d2 ; 3d2
jk

Table B.1: Two-center integrals - Minimum set of Slater-Koster integrals of the two-

center approximation for the description of electron hoppings within the 3d, 4s and 4p

valence bands. The greek letters σ, π and δ stand for the angular-momentum projection

along the interatomic connection axis mζ = 0, 1 and 2, respectively.

In the last step we have used that the matrix element t
nlmζ ;n′l′mζ
kj is real if the involved

orbitals (spherical harmonics) have the same orbital angular-momentum projection

mζ on the interatomic connection axis. One concludes that for homogeneous bonds

interchanging the order of orbital indices nl and n′l′ has no effect on t
nlmζ ;n′l′mζ
jk if the

sum of the parities l+ l′ of the two orbitals is even, but changes the sign if the sum of

the parities is odd.

B.3 Slater-Koster integrals

It has been shown above that within the two-center approximation, the hopping inte-

grals t
nlmζ ;n′l′m′ζ
jk between two atoms j and k are diagonal in the angular-momentum

projection mζ along the interatomic connection axis ζ̂ and do not depend on the sign

of mζ [see Eqs. (B.6) and (B.8)]. These relations demonstrate that —for the purpose

of determining tαβjk with respect to arbitrary sets of basis atomic orbitals α, β— it is

possible te reduce the number of independent integrals to the set of matrix elements

{
(l, l′;mζ) = tnl|mζ | ;n

′l′|mζ |(Rjk)
}
, (B.11)
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Appendix B. Interatomic hopping integrals

which are evaluated for orbitals having definite quantum number l as well as definite

projection mζ of ~L on the interatomic connection axis.1 For example, if one considers

the 3d, 4s and 4p valence bands in transition metals, then there are only 10 independent

integrals (see Table B.1), from which all other hopping elements tαβjk can be derived.

The integrals (l, l′;mζ) are called Slater-Koster or two-center integrals. Notice that

they do not depend on the orientation of ~Rjk.
2 However, (l, l′;mζ) is a function of

the radial part of the involved orbitals and, of course, of the distance Rjk between

the neighboring atoms. The explicit relations between tnlm,n
′l′m′

jk , where ẑ is chosen as

the m-quantization axis, and the Slater-Koster integrals are obtained by reformulating

the relations given in Ref. (71). The results are summarized in Table B.2. There,

the indices λx, λy and λz on the right-hand side denote the direction cosines of the

connection vector ~Rjk = ~Rj − ~Rk, i.e.,

λx =
~Rjk · x̂
Rjk

, λy =
~Rjk · ŷ
Rjk

, and λz =
~Rjk · ẑ
Rjk

. (B.12)

Notice that the expressions for tnlm,n
′l′m′

jk in Table B.2, derived by using the two-center

approximation, correctly satisfy the angle dependence given in Eq. (B.4).

1It is to be realized that for homonuclear bonds the fundamental integrals (l, l′;mζ) and (l′, l;mζ)

are directly related to each other. According to Eq. (B.10), (l, l′;mζ) = (−1)l+l
′
(l′, l;mζ).

2This can be seen as follows: A rotation D̂ of the interatomic connection axis ζ̂ → Rζ̂, where R

is the rotation matrix, acts as D̂φnlmζ (R~r − R~Rj) = φnlmζ (~r − ~Rj). Let us notice that the rotated

orbital D̂φnlmζ is the basis orbital φnlmRζ with respect to the rotated quantization axis Rζ̂. Then, one

obtains

tnlmRζ ;n′l′mRζ (R ~Rjk) =

∫
d3r′ φ∗nlmRζ

(
~r′ −R ~Rj

)−
~2∇2

r′

2me
+ [D̂v(~r′)]︸ ︷︷ ︸

= v(R−1 ~r′)

φn′l′mRζ

(
~r′ −R ~Rk

)

=

∫
d3r φ∗nlmRζ

(
R [~r − ~Rj ]

){
−~2∇2

r

2me
+ v(~r)

}
φn′l′mRζ

(
R [~r − ~Rk]

)
︸ ︷︷ ︸

φn′l′mζ (~r−~Rk)

=

∫
d3r φ∗nlmζ

(
~r − ~Rj

){
−~2∇2

r

2me
+ v(~r)

}
φn′l′mζ

(
~r − ~Rk

)
= tnlmζ ;n′l′mζ (~Rjk) .

This demonstrates that the Slater-Koster integrals (l, l′;mζ) are independent of the orientation of the

interatomic connection vector ~Rjk.
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B.3 Slater-Koster integrals

Hopping Expression in terms of Slater-Koster two-center integrals

t4s0,4s0jk (s, s;σ)

t4s0,4p0jk λz (s, p;σ)

t4s0,4p±1
jk ∓ 1√

2
(λx ± iλy) (s, p;σ)

t4s0,3d0
jk

1
2 (3λ2

z − 1) (s, d;σ)

t4s0,3d±1
jk ∓

√
3
2 λz (λx ± iλy) (s, d;σ)

t4s0,3d±2
jk

1
2

√
3
2 (λx ± iλy)2 (s, d;σ)

t4p0,4p0jk λ2
z (p, p;σ) + (1− λ2

z) (p, p;π)

t4p0,4p±1
jk ∓ λz√

2
(λx ± iλy) [(p, p;σ)− (p, p;π)]

t4p±1,4p±1
jk

1
2 [(1− λ2

z) (p, p;σ) + (1 + λ2
z) (p, p;π)]

t4p+1,4p−1
jk − 1

2 (λx − iλy)2 [(p, p;σ) − (p, p;π)]

t4p0,3d0
jk

λz
2 [(3λ2

z − 1) (p, d;σ) + 2
√

3 (1− λ2
z) (p, d;π)]

t4p0,3d±1
jk ∓ 1√

2
(λx ± iλy) [

√
3λ2

z (p, d;σ) + (1− 2λ2
z) (p, d;π)]

t4p0,3d±2
jk

λz
2
√

2
(λx ± iλy)2 [

√
3 (p, d;σ) − 2 (p, d;π)]

t4p±1,3d0
jk ∓ 1

2
√

2
(λx ∓ iλy) [(3λ2

z − 1) (p, d;σ) − 2
√

3λ2
z (p, d;π)]

t4p±1,3d±1
jk

λz
2 [
√

3 (1− λ2
z) (p, d;σ) + 2λ2

z (p, d;π)]

t4p±1,3d±2
jk ∓ 1

4 (λx ± iλy) [
√

3 (1− λ2
z) (p, d;σ) + 2(1 + λ2

z) (p, d;π)]

t4p±1,3d∓1
jk −λz2 (λx ∓ iλy)2 [

√
3 (p, d;σ) − 2 (p, d;π)]

t4p±1,3d∓2
jk ∓ 1

4 (λx ∓ iλy)3 [
√

3 (p, d;σ) − 2 (p, d;π)]

t3d0,3d0
jk

1
4 (3λ2

z − 1)2 (d, d;σ) + 3λ2
z(1− λ2

z) (d, d;π) + 3
4 (1− λ2

z)
2 (d, d; δ)

t3d0,3d±1
jk ∓λz2

√
3
2 (λx ± iλy) [(3λ2

z − 1) (d, d;σ) + 2(1− 2λ2
z) (d, d;π) − (1− λ2

z) (d, d; δ)]

t3d0,3d±2
jk

1
4

√
3
2 (λx ± iλy)2 [(3λ2

z − 1) (d, d;σ) − 4λ2
z (d, d;π) + (1 + λ2

z) (d, d; δ)]

t3d±1,3d±1
jk

3
2λ

2
z(1− λ2

z) (d, d;σ) + 1
2 (4λ4

z − 3λ2
z + 1) (d, d;π) + 1

2 (1− λ4
z) (d, d; δ)

t3d±1,3d±2
jk ∓λz4 (λx ± iλy) [3(1− λ2

z) (d, d;σ) + 4λ2
z (d, d;π) − (3 + λ2

z) (d, d; δ)]

t3d+1,3d−1
jk − 1

2 (λx − iλy)2 [3λ2
z (d, d;σ) + (1− 4λ2

z) (d, d;π) + (λ2
z − 1) (d, d; δ)]

t3d±1,3d∓2
jk ∓λz4 (λx ∓ iλy)3 [3 (d, d;σ) − 4 (d, d;π) + (d, d; δ)]

t3d±2,3d±2
jk

3
8 (1− λ2

z)
2 (d, d;σ) + 1

2 (1− λ4
z) (d, d;π) + 1

8 (λ4
z + 6λ2

z + 1) (d, d; δ)

t3d+2,3d−2
jk

1
8 (λx − iλy)4 [3 (d, d;σ) − 4 (d, d;π) + (d, d; δ)]

Table B.2: Hopping integrals in terms of two-center integrals - Interatomic hop-

pings tnlm,n
′l′m′

jk within the 3d, 4s and 4p valence bands are derived by using the two-center

approximation. The Slater-Koster integrals (l, l′;mζ) and their definitions are listed in Ta-

ble B.1 The indices λx, λy and λz denote the direction cosines of the connection vector
~Rjk. Notice that the entries not given in the table can be obtained by applying the relation

tαβ(~Rjk) = [tβα(−~Rjk)]∗.

135



Appendix B. Interatomic hopping integrals

136



Appendix C

Electron-electron interaction

model

The electron-electron interaction Hamiltonian ĤC has been introduced in Section 3.2.2.

There, we have used physical intuition in order to motivate its explicit form given by

Eq. (3.6). Now, in the present Appendix, we would like to present a mathematical

derivation for ĤC .

The starting point is the general expression of a two-particle operator

ĤC =
1

2

∑
j

∑
αβγδ∈3d

∑
σσ′

Uαβγδ ĉ
†
jασ ĉ

†
jβσ′ ĉjδσ′ ĉjγσ . (C.1)

Here, we already apply the intra-atomic approximation (ĤC splits in a sum over all the

atoms j in the lattice) and consider only the dominant Coulomb repulsion of the most

localized 3d electrons (αβγδ ∈ 3d). In Section 3.2.2 we have given reasons for these

two simplifications. ĤC is written in terms of Coulomb integrals

Uαβγδ =

∫
d3r

∫
d3r′ φ∗α(~r)φ∗β(~r′)w(|~r − ~r′|)φγ(~r)φδ(~r′) , (C.2)

where w(r) = e2/(4πε0r) denotes the Coulomb repulsion energy of two electrons of

distance r. In the following, the Coulomb interaction Hamiltonian is simplified into

a more demonstrative and compact form, so that it contains only the most essential

contributions in the context of ferromagnetism. To this aim, let us focus only on direct

terms (α = γ, β = δ) and on exchange terms (α = δ, β = γ) of the 3d electrons, i.e.,

only on Uαβ = Uαβαβ and on Jαβ = Uαββα (α 6= β) for α, β ∈ 3d. In this way, the
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Appendix C. Electron-electron interaction model

total orbital angular momentum ~L of the two involved electrons is conserved in each

interaction process.1 As we shall see in Chapter 4, these terms already yield the most

important magnetic properties and, in particular, ferromagnetic ground states in some

parameter regimes. After a straightforward calculation, the interaction Hamiltonian

ĤC takes the form

ĤC =
1

2

∑
j

∑
αβ∈3d

∑
σσ′

[
Uαβ ĉ

†
jασ ĉ

†
jβσ′ ĉjβσ′ ĉjασ + Jαβ(1− δαβ) ĉ†jασ ĉ

†
jβσ′ ĉjασ′ ĉjβσ

]
=

1

4

∑
j

∑
αβ∈3d

[
2Uαβ n̂jα (n̂jβ − δαβ) − Jαβ(1− δαβ)

{
n̂jαn̂jβ + 4 ~̂Sjα · ~̂Sjβ

}]
,

(C.3)

where n̂jα =
∑

σ n̂jασ, and ~Sjα denotes the spin in a single orbital α at atom j.

In the next step we consider the dependence of the integrals Uαβ and Jαβ on the

orbitals α and β. It is known to be important for a quantitative description of the

orbital polarization of the electronic density. However, this dependence is not essential

for describing the total spin polarization within the 3d band. Therefore, we neglect the

orbital dependence of Uαβ and Jαβ, i.e., we set for all α and β

Uαβ = Ũ , and

Jαβ = J (α 6= β) .
(C.4)

This yields

ĤC =
1

2

∑
j

{(
Ũ − J

2

)
n̂jdn̂jd −

(
Ũ − J

)
n̂jd − 2J ~̂Sjd · ~̂Sjd +

4

3
J
∑
α∈3d

~̂Sjα · ~̂Sjα

}
.

(C.5)

Here, n̂jd =
∑

α∈3d,σ n̂jασ denotes the number of interacting 3d electrons at atom

j. Moreover, we have introduced the total 3d-electron spin at atom j, ~Sjd. It is

worth discussing the last two terms in the above equation, which are proportional to

~Sjd · ~Sjd and ~Sjα · ~Sjα, respectively. Both do not affect the spin polarization as they

commute with the total spin ~S. The first of them favors parallel spin alignment of

1The orbital angular-momentum conservation law implies that Uαβγδ = 0 unless

〈α |~̂L|α 〉+ 〈β |~̂L|β 〉 = 〈 γ |~̂L| γ 〉+ 〈 δ |~̂L| δ 〉 ,

where the basis orbitals |α 〉, |β 〉, | γ 〉 and | δ 〉 are localized at atomic sites. The considered direct and

exchange terms Uαβαβ and Uαββα satisfy this conservation law.
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all 3d electrons in an atom. Therefore, it leads to the creation of atomic magnetic

moments and determines their stability. In contrast, the latter term tends to favor

a low-spin configuration at each single orbital (empty or doubly occupied orbitals).1

Consequently, it reduces the stability of ferromagnetism. By comparing these two

spin terms, −J ~̂Sjd · ~̂Sjd and +2
3J
~̂Sjα · ~̂Sjα, one finds that the former tendency toward

ferromagnetism is stronger than the latter tendency toward nonmagnetic states. For

this reason, we do not explicitly take into account the latter term. Its effect can possibly

be incorporated in a reduced exchange-interaction parameter J . Then, defining the

effective Coulomb parameter

U = Ũ − J

2
, (C.6)

the operator ĤC can be simplified into the transparent and simple form

ĤC =
1

2

∑
j

(
Un̂jdn̂jd − 2J ~̂Sjd · ~̂Sjd

)
− 1

2

∑
j

(
U − 1

2
J

)
n̂jd . (C.7)

The first term in this equation, 1
2Un̂jdn̂jd, represents the classical Coulomb repulsion of

electrons at the same atomic site. In some cases, it is useful to substract the Coulomb

energy of a uniform 3d-electron density ϑ from it. Then, Eq. (C.7) can be rewritten as

ĤC =
1

2

∑
j

[
U (n̂jd − ϑ)2 − 2J ~̂Sjd · ~̂Sjd

]
+

1

2

∑
j

[
U(2ϑ− 1) +

1

2
J

]
n̂jd −

1

2

∑
j

Uϑ2 .

(C.8)

Notice that the second sum in this equation is an unimportant double-counting correc-

tion and gives an additional constant in the single-particle energies ε0
α. Therefore, this

interaction-energy contribution can be incorporated by means of an effective 3d-electron

level

εeff
d = ε0

d +
1

2

∑
j

[
U (2ϑ− 1) +

1

2
J

]
. (C.9)

In other words, εeff
d includes the Coulomb repulsion energy of ϑ d electrons per atom.

Then, the effective electron-electron interaction Hamiltonian reads

ĤC =
1

2

∑
j

[
U (n̂jd − ϑ)2 − 2J ~̂Sjd · ~̂Sjd

]
. (C.10)

1The operator ~̂Sjα · ~̂Sjα yields zero when the orbital α is empty or doubly occupied and 3/4

otherwise.
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Appendix C. Electron-electron interaction model

Importantly, the model Hamiltonian ĤC preserves the spin-rotational symmetry of

the electron-electron interaction. The above formulations for ĤC and the effective 3d-

electron level εeff
d are used in the present thesis. They coincide with Eqs. (3.6) and (3.7)

in Section 3.2.2.
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Appendix D

Dipole matrix elements within

the intra-atomic approximation

The purpose of the present Appendix is to derive explicit relations between the intra-

atomic dipole matrix elements 〈nlm |~̂r|n′l′m′ 〉, in terms of which the interaction be-

tween the electron subsystem and the laser pulse is described (see Section 3.2.3). To

this aim, we exploit the Wigner-Eckart theorem (73).

D.1 Wigner-Eckart theorem

The calculation of matrix elements of the cartesian operator ~̂r can be traced back to

matrix elements of the irreducible spherical tensor operator T̂
(k)
q of rank k = 1, which

is obtained from ~̂r as

T̂
(1)
+1 = − 1√

2
(x̂+ iŷ) ,

T̂
(1)
−1 =

1√
2

(x̂− iŷ) ,

T̂
(1)
0 = ẑ .

(D.1)

The matrix elements of T̂
(1)
q between eigenstates |nlm 〉 of the orbital angular mo-

mentum ~̂L2 and L̂z having eigenvalues ~2 l(l + 1) and ~m take a particularly sim-

ple form. Actually, the Wigner-Eckart theorem relates the various matrix elements

〈nlm |T̂ (k)
q |n′l′m′ 〉 of such tensor operators, and states that

〈nlm |T̂ (k)
q |n′l′m′ 〉 = 〈 l′k;m′q | lm 〉 〈nl ||T̂

(k)||n′l′ 〉√
2l′ + 1

. (D.2)
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approximation

Here, 〈nl ||T̂ (k)||n′l′ 〉 is the so-called reduced matrix element, and the scalar products

〈 l′k;m′q | lm 〉 are the Clebsch-Gordan coefficients. The latter are related to the addi-

tion of two angular momenta ~L1 and ~L2 having given quantum numbers l1 and l2. The

Clebsch-Gordan coefficients are defined by the representation

| l1l2; lm 〉 =
∑
m1m2

| l1l2;m1m2 〉〈 l1l2;m1m2 | lm 〉 (D.3)

of the state | lm 〉 = | l1l2; lm 〉, in which the sum ~L = ~L1 ⊕ ~L2 of the two angular

momenta ~L1 and ~L2 has definite quantum numbers l and m. Therefore, the state | lm 〉
satisfies

~̂L2 | lm 〉 = l(l + 1) ~2 | lm 〉 and

L̂z | lm 〉 = m~ | lm 〉 .
(D.4)

In contrast, in the states | l1l2;m1m2 〉 = | l1m1 〉| l2m2 〉 the two angular momenta ~L1

and ~L2 separately have definite z projections m1 and m2, i.e.,

~̂L2
j | l1l2;m1m2 〉 = lj(lj + 1) ~2 | l1l2;m1m2 〉 and

L̂jz | l1l2;m1m2 〉 = mj~ | l1l2;m1m2 〉
(D.5)

for j = 1, 2. The definition (D.3) means that the coefficient 〈 l1l2;m1m2 | lm 〉 represents

the projection of the state | lm 〉 on the state | l1l2;m1m2 〉. Of course, these Clebsch-

Gordan coefficients satisfy

〈 l1l2;m1m2 | lm 〉 = 0 , if m 6= m1 +m2 . (D.6)

Let us now notice two further properties of them. First, they satisfy the recursion

relation

〈 l1l2;m1m2 |L̂±| lm 〉 =
√

(l ∓m)(l ±m+ 1) ~ 〈 l1l2;m1m2 | l,m± 1 〉

=
√

(l1 ±m1)(l1 ∓m1 + 1) ~ 〈 l1l2;m1 ∓ 1,m2 | lm 〉

+
√

(l2 ±m2)(l2 ∓m2 + 1) ~ 〈 l1l2;m1,m2 ∓ 1 | lm 〉

(D.7)

and, second, the normalization condition reads

∑
m1m2

|〈 l1l2;m1m2 | lm 〉|2 = 1 . (D.8)
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D.2 Relations between dipole matrix elements

These two properties can be used for the determination of the Clebsch-Gordan coeffi-

cients. The resulting coefficients are given in many books on quantum mechanics, for

instance in Ref. (73).

The above considerations imply that the coefficient 〈 l′k;m′q | lm 〉 in Eq. (D.2) can

be interpreted as a projection coefficient resulting from the addition of the two angular

momenta ~L′ and ~k to ~L (~L′ ⊕ ~k = ~L). In particular, Eq. (D.6) yields the m-selection

rule

〈nlm |T̂ (k)
q |n′l′m′ 〉 = 0 unless m = m′ + q . (D.9)

This shows that the tensor operator T̂
(k)
q carries an orbital momentum q around the z

axis. Importantly, the Clebsch-Gordan coefficient 〈 l′k;m′q | lm 〉 takes into account all

the angular dependence of the matrix element 〈nlm |T̂ (k)
q |n′l′m′ 〉 on m′, q and m. In

contrast, the reduced matrix element 〈nl ||T̂ (k)||n′l′ 〉 is independent of m′, q and m.

D.2 Relations between dipole matrix elements

The Wigner-Eckart theorem (D.2) is a powerful tool for determining the matrix ele-

ments 〈nlm |T̂ (k)
q |n′l′m′ 〉 of the tensor operator T̂

(k)
q . The required Clebsch-Gordan

coefficients can be easily obtained by starting with the “maximal m” state. For exam-

ple, in the case of 4p–4s transitions (l = 1 and l′ = 0), this is the angular-momentum

state

| l = 1,m = 1 〉 = | l′ = 0, k = 1 ; m′ = 0, q = 1 〉 , (D.10)

where the phase +1 has been used by convention. Consequently, the first coefficients

read

〈 l′ = 0, k = 1 ; m′ = 0, q | l = 1,m = 1 〉 = δq,1 . (D.11)

Then, by applying the recursion relation (D.7), all other coefficients can be obtained

without any ambiguity. The Clebsch-Gordan coefficients for 3d–4p transitions are de-

termined analogously.

In the next step, the relation between T̂
(k)
q and ~̂r, see Eq. (D.1), is used for the

purpose of computing the dipole matrix elements 〈nlm |~̂r|n′l′m′ 〉. The results are

summarized in Table D.1. Notice that the two reduced matrix elements 〈 4p ||T̂ (1)|| 4s 〉
and 〈 3d ||T̂ (1)|| 4p 〉 depend only on the radial part of the 3d, 4s and 4p wave functions.

They are the same for all m and m′. Since the Hamiltonian ĤE is given by a product
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approximation

Dipole element Expression given by Wigner-Eckart theorem

〈 4p,m |x̂| 4s, 0 〉 − m√
2
〈 4p ||T̂ (1)|| 4s 〉

〈 4p,m |ŷ| 4s, 0 〉 i√
2
(1− δm,0) 〈 4p ||T̂ (1)|| 4s 〉

〈 4p,m |ẑ| 4s, 0 〉 δm,0 〈 4p ||T̂ (1)|| 4s 〉

〈 3d,m = ±2 |x̂| 4p,m′ 〉 ∓ 1√
6
δm′,±1 〈 3d ||T̂ (1)|| 4p 〉

〈 3d,m = ±1 |x̂| 4p,m′ 〉 ∓ 1√
12
δm′,0 〈 3d ||T̂ (1)|| 4p 〉

〈 3d,m = 0 |x̂| 4p,m′ 〉 1
6

(
δm′,1 − δm′,−1

)
〈 3d ||T̂ (1)|| 4p 〉

〈 3d,m = ±2 |ŷ| 4p,m′ 〉 i√
6
δm′,±1 〈 3d ||T̂ (1)|| 4p 〉

〈 3d,m = ±1 |ŷ| 4p,m′ 〉 i√
12
δm′,0 〈 3d ||T̂ (1)|| 4p 〉

〈 3d,m = 0 |ŷ| 4p,m′ 〉 i
6

(
δm′,1 + δm′,−1

)
〈 3d ||T̂ (1)|| 4p 〉

〈 3d,m = ±2 |ẑ| 4p,m′ 〉 0

〈 3d,m = ±1 |ẑ| 4p,m′ 〉 1√
6
δm′,±1 〈 3d ||T̂ (1)|| 4p 〉

〈 3d,m = 0 |ẑ| 4p,m′ 〉
√

2
9δm′,0 〈 3d ||T̂

(1)|| 4p 〉

Table D.1: Intra-atomic dipole matrix elements - Matrix elements 〈nlm |~̂r|n′l′m′ 〉
within the 3d, 4s and 4p valence bands as given by the Wigner-Eckart theorem.

of the dipole operator ~̂r and the external field ~E [see Eq. (3.9)], the matrix elements

〈 4p ||T̂ (1)|| 4s 〉 and 〈 3d ||T̂ (1)|| 4p 〉 determine the strength of the coupling between the

electronic degrees of freedom and the electric field. In the context of the present model

they are regarded as parameters.
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Appendix E

Numerical methods for static

calculations

The present Appendix describes the numerical procedure for static calculations. These

calculations can be divided into three types depending on their objectives: ground-state

calculations, finite-temperature calculations, and spectral analysis. In Section E.1 we

consider the Lanczos diagonalization method, which has been applied for the purpose

of computing the many-body ground state of the electronic model (3.3). In Section E.2,

a finite-temperature extension of the Lanczos method is presented. This allows us to

determine important properties of systems in thermal equilibrium. Finally, Section E.3

presents a method for determining the spectral representation of a many-body state and

the properties of the projections of the state on different energy or frequency ranges.

E.1 Lanczos diagonalization method: Ground-state prop-

erties

In many applications, one is primarily interested in properties of the system at very low

temperatures T or even at T = 0. These properties can be directly derived from the

ground state |Ψgs 〉 which denotes the lowest-energy eigenstate of the Hamiltonian Ĥ.

The straightforward method to obtain |Ψgs 〉 is given by the complete diagonalization

of the Hamiltonian yielding not only the ground state but also all other eigenstates of

Ĥ. However, the dimension of a many-body Hilbert space grows exponentially with

the number of sites. For No orbitals and Ne electrons, the number of many-body states
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is given by Nstates =
(
No
Ne

)
, i.e., there are

(
No
Ne

)
possibilities to occupy No orbitals by

Ne electrons. Approximately, matrices of dimension up to 8000 × 8000 are presently

diagonalizable with normal computer facilities. This corresponds to a two-band model

having only Na = 3 atoms and Ne = 3 electrons. Consequently, in large systems a

diagonalization of the full Hamiltonian Ĥ is out of reach. Instead, for the purpose of

computing the ground state, we project Ĥ onto an optimally chosen subspace of the

Hilbert space. Subsequently, we diagonalize the projected Hamiltonian having a greatly

reduced dimension.

The particular subspace, called Krylov space KN , is associated to a given initial

vector |Ψ1 〉. This space KN is obtained by acting with the (time-independent) Hamil-

tonian Ĥ on the state |Ψ1 〉 N − 1 times, i.e., the Krylov space KN is of order N and

is spanned by the states {|Ψ1 〉, Ĥ|Ψ1 〉, ... , ĤN−1|Ψ1 〉}:

KN = span
{
|Ψ1 〉, Ĥ|Ψ1 〉, ... , ĤN−1|Ψ1 〉

}
. (E.1)

However, the set of states {Ĥj |Ψ1 〉} is generally not orthogonal. Therefore, we apply

the so-called Gram-Schmidt orthogonalization method, in which, as each new Krylov

state |Ψj 〉 is constructed it is also orthogonalized to the previous Krylov states (80, 95).

The first basis state is just the arbitrary chosen initial state |Ψ1 〉 itself. The second

basis state, |Ψ2 〉, is determined by acting with Ĥ on |Ψ1 〉, and projecting out the

component along |Ψ1 〉 from Ĥ|Ψ1 〉 so that 〈Ψ1 |Ψ2 〉 = 0:

Ĥ|Ψ1 〉 = α1|Ψ1 〉+ β1|Ψ2 〉 . (E.2)

Employing 〈Ψ1 |Ψ2 〉 = 0, 〈Ψ1 |Ψ1 〉 = 1 and 〈Ψ2 |Ψ2 〉 = 1, we have

α1 = 〈Ψ1 |Ĥ|Ψ1 〉 ∈ R , (E.3)

and

|β1|2 = ‖(Ĥ − α1)|Ψ1 〉‖22 ≥ 0 . (E.4)

For simplicity we assume β1 > 0 and attach the phase in the state (Ĥ − α1)|Ψ1 〉 =

β1|Ψ2 〉 to |Ψ2 〉. Thus, we have

β1 = 〈Ψ2 |Ĥ|Ψ1 〉 =

√
‖(Ĥ − α1)|Ψ1 〉‖22. (E.5)
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E.1 Lanczos diagonalization method: Ground-state properties

The third basis state, |Ψ3 〉, is determined by acting with Ĥ on |Ψ2 〉, and projecting out

the components along |Ψ1 〉 and |Ψ2 〉 from Ĥ|Ψ2 〉 so that 〈Ψ1 |Ψ3 〉 = 〈Ψ2 |Ψ3 〉 = 0:

Ĥ|Ψ2 〉 = β1|Ψ1 〉+ α2|Ψ2 〉+ β2|Ψ3 〉 , (E.6)

where

α2 = 〈Ψ2 |Ĥ|Ψ2 〉 ∈ R (E.7)

and

β2 = 〈Ψ3 |Ĥ|Ψ2 〉 =

√
‖(Ĥ − α2)|Ψ2 〉 − β1|Ψ1 〉‖22 ≥ 0 . (E.8)

For general j ≥ 3 the equation for determining the basis state |Ψj 〉 reads

Ĥ|Ψj−1 〉 = βj−2|Ψj−2 〉+ αj−1|Ψj−1 〉+ βj−1|Ψj 〉 , (E.9)

with coefficients

αj−1 = 〈Ψj−1 |Ĥ|Ψj−1 〉 ∈ R (E.10)

and

βj−1 = 〈Ψj |Ĥ|Ψj−1 〉 =

√
‖(Ĥ − αj−1)|Ψj−1 〉 − βj−2|Ψj−2 〉‖22 ≥ 0 . (E.11)

By applying this method for j = 2, ..., N , one obtains an orthonormal Lanczos basis

{|Ψ1 〉, |Ψ2 〉, ... , |ΨN 〉}, in which the projected Hamiltonian matrix HN is symmetric

and tridiagonal:

HN =



α1 β1 0 · · · · · · · · · 0
β1 α2 β2 0 · · · · · · 0
0 β2 α3 β3 0 · · · 0
0 0 β3 α4 β4 0 0
...

...
. . .

. . .
. . .

. . . 0
0 · · · · · · 0 βN−2 αN−1 βN−1

0 · · · · · · · · · 0 βN−1 αN


. (E.12)

The diagonalization of HN can be easily performed numerically. Moreover, with in-

creasing N the lowest eigenvalue EN1 of HN converges to the ground-state energy Egs
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of the full system.1 In the present work we have used the condition

|EN1 − EN−1
1 | ≤ ε = 10−12 eV (E.13)

as the convergence criterion. The quantity EN1 − E
N−1
1 describes the difference in the

lowest eigenenergies obtained in two successive steps of the Lanczos algorithm. Notice

that energy differences in the order of ε (10−12 eV) are above the arithmetic accuracy

of the computer. In order to test the convergence of the Lanczos calculations, we have

varied the convergence parameter ε and compared the results obtained by starting

with different initial vectors |Ψ1 〉. The convergence has been found to be very good

for all practical purposes.2 Once the Lanczos algorithm has converged, the ground

state |Ψgs 〉 of the many-body problem can be approximated by the lowest eigenvector

(v1, v2, ..., vN )T of the N -step Lanczos representation HN of Ĥ for a sufficiently large

Krylov-space dimension N .3 In other words, the approximation to the many-body

ground state reads

|Ψgs 〉 =
N∑
j=1

vj |Ψj 〉 . (E.14)

Then, all ground-state observables Ô can be obtained by computing the expectation

values

〈Ô〉 = 〈Ψgs |Ô|Ψgs 〉 . (E.15)

A large number of details on the Lanczos method including the reason for convergence,

numerical stability of the method and risk of loss of orthogonality in the Lanczos basis

can be found in Ref. (80).

1Notice that arithmetic rounding errors can result in loss of orthogonality of the numerically ob-

tained Lanczos basis states |Ψj 〉. In this case, difficulties in the convergence, especially for eigenstates

having the smallest absolute values of their eigenenergies, appear. See Ref. (80) for the detailed reason.

Consequently, the best convergence is given for the eigenstate corresponding to the eigenvalue with

largest absolute value. A shift in the single-particle energies ε0
α can be used in order to ensure that this

is the ground state. We have verified that the Lanczos calculations for the systems considered in the

present work converge very well even without such a spectral shift.
2Moreover, for system sizes as those which are considered in the present work, we know from

applications to the Hubbard and Anderson models that the Lanczos method gives very accurate results

for the ground state and its properties.
3The eigenvector (v1, v2, ..., vN )T is assumed to be normalized, i.e.,

∑N
j=1 v

2
j = 1.
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E.2 Finite-temperature properties: thermal equilibrium

The Lanczos diagonalization method described in the previous Section E.1 has been

conceived for the purpose of determining the ground-state properties (corresponding to

T = 0). However, if one needs to go beyond T = 0 it is necessary to consider a thermal

distribution of many-body states, which is of course more demanding than to compute

one single ground state. In this work we apply the so-called finite-temperature Lanczos

method as proposed in Ref. (82) in order to approach the interesting case T > 0 and,

in particular, to determine properties of systems in thermal equilibrium.

In the canonical ensemble the thermal average of some observable Ô in thermal

equilibrium at temperature T > 0 is given by

〈
Ô
〉
T

=
1

Z

Nstates∑
ν=1

〈 ν |e−βĤÔ| ν 〉 =
1

Z

Nstates∑
ν=1

〈 ν |e−
1
2
βĤÔe−

1
2
βĤ | ν 〉 , (E.16)

where β = (kBT )−1, kB is the Boltzman constant, {| ν 〉} is some orthonormal basis of

the Hilbert space, and

Z =

Nstates∑
ν=1

〈 ν |e−βĤ | ν 〉 (E.17)

is the partition function. Usually, one uses energy eigenstates as the particular basis

states | ν 〉. However, similarly to the ground-state minimization problem, a full diago-

nalization is impossible in practice. In order to overcome this limitation one performs

a random sampling of the Hilbert space by R random states | r 〉, as it is described in

Ref. (82). The states | r 〉 are assumed to be normalized, but we do not require them

to be orthogonal to each other. Then, thermal averages can be approximated as

〈
Ô
〉
T
≈ 1

Z

R∑
r=1

〈 r |e−
1
2
βĤÔe−

1
2
βĤ | r 〉 , (E.18)

and

Z ≈
R∑
r=1

〈 r |e−βĤ | r 〉 . (E.19)

In a second step the matrix elements 〈 r |e−
1
2
βĤÔe−

1
2
βĤ | r 〉 and 〈 r |e−βĤ | r 〉 are eval-

uated by projection onto Krylov subspaces. For each random vector | r 〉, an N -

dimensional Krylov subspace

KN
(r) = span

{
| r 〉, Ĥ| r 〉, Ĥ2| r 〉, ... , ĤN−1| r 〉

}
(E.20)
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is considered. The Lanczos basis {|Ψ(r)
j 〉} of the subspace KN

(r) is generated in the same

way as in the ground-state Lanczos diagonalization method described in the previous

Section E.1. For this particular choice of basis states, the Hamiltonian projected onto

KN
(r), denoted by the matrix H

(r)
N , becomes tridiagonal. Then, H

(r)
N is diagonalized,

yielding eigenstates |Φ(r)
j 〉 satisfying 〈Φ(r)

i |Φ
(r)
j 〉 = δij and corresponding eigenenergies

E
(r)
j (j = 1, ... , N). It is important to note that the initial random state | r 〉 is the first

element of the Lanczos basis that it is generating, i.e.,

| r 〉 ∈ KN
(r) = span

{
|Φ(r)

j 〉 ; j = 1, ... , N
}
. (E.21)

Moreover, since KN
(r) contains the states {| r 〉, Ĥ| r 〉, Ĥ2| r 〉, ... , ĤN−1| r 〉}, the state

e−
1
2
βĤ | r 〉 is almost contained within this subspace (in particular, for high temperatures

for which kBT is much larger than the spectral width of the energy distribution in

the state | r 〉). This leads to the idea of projecting the states e−
1
2
βĤ | r 〉 onto their

corresponding Krylov spaces KN
(r) and, therefore, to the approximation

〈
Ô
〉
T
≈ 1

Z

R∑
r=1

N∑
j,k=1

〈 r |e−
1
2
βĤ |Φ(r)

j 〉〈Φ
(r)
j |Ô|Φ

(r)
k 〉〈Φ

(r)
k |e

− 1
2
βĤ | r 〉

=
1

Z

R∑
r=1

N∑
j,k=1

e
−β

2

(
E

(r)
j +E

(r)
k

)
〈 r |Φ(r)

j 〉〈Φ
(r)
j |Ô|Φ

(r)
k 〉〈Φ

(r)
k | r 〉 ,

(E.22)

while the partition function can be written as

Z ≈
R∑
r=1

N∑
j=1

〈 r |Φ(r)
j 〉〈Φ

(r)
j |e

−βĤ | r 〉

=
R∑
r=1

N∑
j=1

e−βE
(r)
j |〈 r |Φ(r)

j 〉|
2 .

(E.23)

Let us now discuss the two opposite limits of high and low temperatures. First, in

the case of T →∞ the thermal equilibrium is a mixed state consisting of a large number

of excited many-body states | ν 〉. Therefore, a large number R of random states | r 〉 is

required to give accurate results. On the other hand, since β → 0, only a few powers

j = 0, ... , N − 1 of Ĥj | r 〉 are necessary for the state e−
1
2
βĤ | r 〉 to be totally included

in KN
(r) = span

{
| r 〉, Ĥ| r 〉, Ĥ2| r 〉, ... , ĤN−1| r 〉

}
. Therefore, in this limit a relatively

small Lanczos basis size N is enough for accurate calculations. In the opposite limit of

T → 0 or β →∞, the contribution of the ground state |Ψgs 〉 to 〈Ô〉 and Z dominate.
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E.3 Method of spectral analysis

This implies that for each random vector | r 〉 the described Lanczos procedure must

yield the ground state (having ground-state energy Egs) as the lowest eigenstate within

KN
(r). Indeed, in this case one obtains

〈
Ô
〉
T→0

→
∑R

r=1 e
−βEgs〈 r |Ψgs 〉〈Ψgs |Ô|Ψgs 〉〈Ψgs | r 〉∑R

r=1 e
−βEgs |〈 r |Ψgs 〉|2

= 〈Ψgs |Ô|Ψgs 〉 , (E.24)

where the statistical fluctuations are canceled out. This means that the T = 0 limit is

correctly reproduced by the present approximation, provided that the Lanczos basis size

N is sufficiently large in order that the ground states of H
(r)
N give a good approximation

to the ground state |Ψgs 〉 of the full Hamiltonian Ĥ. Consequently, a large Lanczos

basis size N is necessary in this limit, whereas small numbers R of random states | r 〉
are enough.

In the present work, we have applied the finite-temperature Lanczos method in

order to determine the dependence of magnetic order on temperature. This dependence

has been used in Chapter 5 for qualitatively revealing the role of energy absorption and

subsequent thermalization in the laser-induced demagnetization process. To this aim, a

high accuracy of the temperature-dependent results is not crucial. Having this in mind,

numerical parameters of N = 50 and only R = 50 have been chosen. We have verified

that this is accurate enough for our purposes and for the considered small clusters

by quantifying the fluctuations in the results for the strength of the local magnetic

moments 〈〈~S2
jd〉〉 and the nearest-neighbor magnetic order 〈〈~Sjd · ~Skd〉〉 [see Eqs. (4.13)

and (4.14)] both at relatively low and high temperatures T = 50 and 2000 K. The

relative discrepancies in these results have been found to be less than 19 %.

E.3 Method of spectral analysis

In this Section we want to present a numerical method to compute the spectral dis-

tribution of a given many-body state |Ψ 〉. Formally, the spectral density of |Ψ 〉 as a

function of many-body energy E is defined by

DΨ(E) =
∑
ν

δ(E − Eν) |〈 ν |Ψ 〉|2 , (E.25)

where {| ν 〉} is an orthonormal set of eigenstates of the Hamiltonian Ĥ having eigenen-

ergies Eν . DΨ(E) represents the weight of states | ν 〉 having energy Eν = E in the
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expansion of |Ψ 〉.1 This formulation is analog to the definition of the local density of

states in a single-particle problem. However, here we replace the local orbital by the

many-body state |Ψ 〉. For its numerical computation we consider the Krylov subspace

KN
Ψ = span

{
|Ψ 〉, Ĥ|Ψ 〉, Ĥ2|Ψ 〉, ... , ĤN−1|Ψ 〉

}
, (E.26)

which |Ψ 〉 will explore in the next future, instead of the full Hilbert space. Notice that

KN
Ψ corresponds to the subspace KN given by Eq. (E.1), whose generation starts with

the initial state |Ψ 〉. As in Section E.2, let

{|Φk 〉 ; k = 1, ... , N} (E.27)

be the orthonormal basis of KN
Ψ , which is built up of eigenstates of the Hamiltonian Ĥ

projected onto KN
Ψ with eigenenergies Ek. These states are the result of the Lanczos

algorithm described in Section E.1 and a subsequent diagonalization of a symmetric

tridiagonal matrix. This yields the approximation

D̃Ψ(E) =
N∑
k=1

δ(E − Ek) |〈Φk |Ψ 〉|2 (E.28)

to the exact spectral distribution DΨ(E) of |Ψ 〉 as given by Eq. (E.25). Since |Ψ 〉 ∈
KN

Ψ , one obtains
N∑
k=1

|Φk 〉〈Φk |Ψ 〉 = |Ψ 〉 (E.29)

and, therefore, the normalization condition∫ +∞

−∞
dE D̃Ψ(E) = 1 . (E.30)

In order to choose a sufficiently large dimension N of the subspace KN
Ψ , we have com-

puted the spectral distribution D̃Ψ(E) of the propagated state |Ψ(t) 〉 for different N

(at times well after the laser-pulse absorption). It has been found that increasing the

Krylov subspace dimension beyond N = 50 does not improve the spectral distribution

1The meaning of DΨ(E) can be illustrated by considering the expansion |Ψ 〉 =
∑
ν aν | ν 〉 of the

many-body state |Ψ 〉 in terms of stationary states | ν 〉. Then, the average energy of |Ψ 〉 is given by

〈Ψ |Ĥ|Ψ 〉 =
∑
ν

|aν |2Eν =

∫
dE

∑
ν

δ(E − Eν)|aν |2E =

∫
dEDΨ(E)E .

This demonstrates that DΨ(E) is the spectral density in the energy distribution for the state |Ψ 〉.
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within a resolution of 100 meV. This width is one order of magnitude smaller than

the energy ~ω = 1.55 eV, which is added to the electron system by absorbing a single

photon. Therefore, the resolution of 100 meV allows us to definitely distinguish be-

tween the different spectral parts in DΨ(E) associated to the absorption of zero, one

and multiple photons (see Section 5.5). For this reason, we have chosen N = 50 in

the present thesis. This subspace size gives sufficiently accurate results for the spectral

densities.

Besides the spectral density of the many-body state |Ψ 〉, we are also interested in

quantifying the contribution of the states | ν 〉 expanding |Ψ 〉 and having energy Eν = E

to the expectation 〈Ψ |Ô|Ψ 〉 of some observable Ô. Notice that if [Ô, Ĥ] 6= 0, the usual

definition 〈Ψ | Ô δ(Ĥ − E) |Ψ 〉 for the spectral density of 〈Ô〉 is not real. Therefore,

we use a different definition for the spectral contribution to 〈Ô〉 as a function of E,

namely

oΨ(E) =
∑
νν′

δ

(
E − Eν + Eν′

2

)
〈Ψ | ν 〉 〈 ν |Ô| ν ′ 〉 〈 ν ′ |Ψ 〉 . (E.31)

Then, similarly to Eq. (E.28), one can use the approximation

õΨ(E) =

N∑
j,k=1

δ

(
E − Ej + Ek

2

)
〈Ψ |Φj 〉 〈Φj |Ô|Φk 〉 〈Φk |Ψ 〉 (E.32)

for the purpose of computing such spectral densities. The definition (E.31) has several

advantages. First, it is real. Second, it satisfies the sum rule∫ +∞

−∞
dE oΨ(E) = 〈Ψ |Ô|Ψ 〉 = 〈Ô〉 . (E.33)

Third, for a given energy E, it allows us to identify the spectral parts (accumulation

of spectral weight) in the spectrum DΨ from which the pairs of states | ν 〉 and | ν 〉′

contributing to oΨ(E) originate:1 If E lies within an accumulation of spectral weight,

then oΨ(E) results from the coupling 〈 ν |Ô| ν ′ 〉 of two states within the same spectral

part, i.e., from states | ν 〉 and | ν 〉′ having very nearby energies Eν and Eν′ , such that

E ≈ Eν ≈ Eν′ . Otherwise, one can conclude that oΨ(E) results from the coupling of

states belonging to two different spectral parts. An important example for spectral

1See Section 5.5 and, in particular, Figure 5.8. There, three spectral parts, which are associated

to the absorption of zero, one and two photons, are shown. The energy gaps between these spectral

parts, i.e., between two successive accumulations of spectral weight, are given by the photon energy

~ω = 1.55 eV.
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densities of observables is given by the spin density sz,Ψ(E) (in z direction), which tells

us how much magnetization Sz = 〈Ψ |Ŝz|Ψ 〉 of the state |Ψ 〉 comes from the pairs

of eigenstates | ν 〉 having an average energy E. We have found that for sz,Ψ(E) the

mixing 〈 ν |Ô| ν ′ 〉 of states | ν 〉, | ν 〉′ originating from different spectral parts is very

weak.

Finally, let us mention that in a continuous spectrum DΨ(E) and oΨ(E) are smooth

functions of E. However, in the present case of a discrete spectrum, they are given by

a discrete sum of delta functions δ(E− ε). In order to visualize D̃Ψ(E) and õΨ(E), the

delta functions are approximated by Gaussians of the form

δ(E − ε) =
1√

2πσ2
e−

(E−ε)2

2σ2 , (E.34)

where σ2 is the variance of the Gauss distribution. In this work we have used σ =

20 meV, since this broadening of the delta peaks facilitates the analysis of spectral

densities such as those shown in Figure 5.8.
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Numerical methods for

dynamical calculations

The time propagation of many-body states represents a true theoretical and numerical

challenge. The purpose of this Appendix is to describe the general concept of the time-

evolution operator as well as the so-called short-iterative Lanczos propagation (SILP)

method which in the present work has been chosen for the numerical calculations (83).

Moreover, the accuracy of the corresponding approximated Lanczos time-evolution op-

erator ÛL is assessed.

F.1 Time-propagation

Let us suppose that the time-dependent Hamiltonian can be separated as

Ĥ(t) = Ĥ0 + v(t) V̂ , (F.1)

where Ĥ0 is time-independent and v(t) is the time-dependent amplitude of some exter-

nal field V̂ (for instance, the laser electric field). A state |Ψ(t0) 〉 given at the initial

time t0 propagates as

|Ψ(t) 〉 = Û(t, t0) |Ψ(t0) 〉 (F.2)

upon the action of the Hamiltonian Ĥ, where the time-evolution operator Û is related

to Ĥ by means of the differential equation

i~
∂

∂t
Û(t, t0) = Ĥ(t) Û(t, t0) . (F.3)
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Its integration yields the integral equation

Û(t, t0) = 1− i

~

∫ t

t0

ds Ĥ(s) Û(s, t0) . (F.4)

The solution of the differential equation (F.3) or the integral equation (F.4) is not

trivial in general. However, in the above integral equation one can iteratively substitute

Û(t, t0) into Û(s, t0) to obtain an alternative representation in terms of the Dyson series1

Û(t, t0) = 1 +
∞∑
ν=1

(
− i
~

)ν ∫ t

t0

ds1

∫ s1

t0

ds2 ...

∫ sν−1

t0

dsν Ĥ(s1) Ĥ(s2) ... Ĥ(sν) . (F.5)

Here, the integrand is time ordered, i.e., t ≥ s1 ≥ s2 ≥ ... ≥ sν ≥ t0. This time order

cannot be changed unless Ĥ(s) commutes with itself at different times s.2

In the present Section, starting from the Dyson series (F.5) the short-iterative

Lanczos approximation ÛL to the time-evolution operator is derived. Its very first

idea is to divide the total time evolution Û(t, t0) in successive propagations over short

time intervals ∆t. The detailed mathematical justification of considering short ∆t is

given in the forthcoming Section F.2, where the accuracy of the method is assessed for

the limit ∆t → 0. In the following the derivation of the approximation ÛL is divided

into three steps. As we shall see, this will be useful for estimating the error introduced

by ÛL.

As a first step, the time-evolution operator Û(t0 + ∆t, t0) is expanded into its

different orders in ∆t. At this stage, let us take explicitly into account only the zeroth

and first orders. Then, the Dyson series (F.5) can be rewritten as

Û(t0 + ∆t, t0) = 1 − i

~

∫ t0+∆t

t0

ds Ĥ(s) + O(∆t2)

= exp

(
− i
~

∫ t0+∆t

t0

ds Ĥ(s)

)
+ O(∆t2) .

(F.6)

This shows that at least up to first order in ∆t the approximation in terms of the

exponential,

Ûe(t0 + ∆t, t0) = exp

(
− i
~

∫ t0+∆t

t0

ds Ĥ(s)

)
= exp

(
− i
~

∆t

[
Ĥ0 + V̂

∫ 1

0
dz v(t0 + z∆t)

])
,

(F.7)

1We assume that the iterative process converges such that the Dyson series (F.5) exists.
2In our applications, we have in general [Ĥ(s), Ĥ(s′)] 6= 0 for different times s 6= s′. This results

from the fact that the field-free Hamilton Ĥ0 does not commute with the external-field operator V̂ .
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is exact.1 In fact, it is for this reason why it is sound to consider successive propagations

over very short time steps ∆t and apply the approximation Ûe to the time-evolution

operator.2 It is interesting to mention that the above approximation Ûe(t0 + ∆t, t0) is

also obtained by replacing the time-dependent field amplitude v(t) in the Hamiltonian

Ĥ(t) = Ĥ0 + v(t)V̂ by its average ∫ 1

0
dz v(t0 + z∆t) (F.8)

over the interval [t0, t0 + ∆t]. Since in this case the time dependence of Ĥ is skipped,

the differential equation (F.3) is simply solved by the exponential (F.7). Notice that

the first mean-value theorem for integration states that a time t̃ ∈ [t0, t0 + ∆t] exists

such that

v(t̃) =

∫ 1

0
dz v(t0 + z∆t) . (F.9)

This means that the propagation from the initial time t0 to the time t0 + ∆t using the

approximation Ûe(t0 + ∆t, t0) corresponds to the action of the Hamiltonian Ĥ = Ĥ(t̃)

frozen at some particular time t̃ within the considered interval [t0, t0 + ∆t].3

A second approximation is involved in the computation of integral (F.8). In this

work, its numerical evaluation is performed by using the Simpson formula (95)

v(t̃) =

∫ 1

0
dz v(t0+z∆t) =

1

6

[
v(t0) + 4v

(
t0 +

∆t

2

)
+ v(t0 + ∆t)

]
+O(∆t4) . (F.10)

In other words, the integral (F.8) is replaced by

vs =
1

6

[
v(t0) + 4v

(
t0 +

∆t

2

)
+ v(t0 + ∆t)

]
. (F.11)

1We shall see later in Eq. (F.35) that Ûe(t0 + ∆t, t0) is exact even up to the order ∆t2.
2Actually, Eq. (F.7) follows from the fact that the time ordering has been neglected. In fact,

there are ν! different and exclusive ways of ordering ν time variables s1, ... sν . Therefore, the multiple

integrals in Eq. (F.5) can be simplified to∫ t

t0

ds1

∫ s1

t0

ds2 ...

∫ sν−1

t0

dsν Ĥ(s1) Ĥ(s2) ... Ĥ(sν)

=
1

ν!

∫ t

t0

ds1

∫ t

t0

ds2 ...

∫ t

t0

dsν Ĥ(s1) Ĥ(s2) ... Ĥ(sν)

=
1

ν!

[∫ t

t0

ds Ĥ(s)

]ν
.

Then, inserting this expression into the Dyson series yields the approximation (F.7).
3Notice that the implicit equation (F.9) can in principle be used to determine t̃. However, an

explicit value for t̃ is not important, since only v(t̃) enters in the approximation (F.7).
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This implies the approximation

Ûs(t0 + ∆t, t0) = exp

(
− i
~

∆t Ĥs

)
(F.12)

to the time-evolution operator, where

Ĥs = Ĥ0 + vs V̂ (F.13)

is the corresponding approximation to the Hamiltonian. Importantly, within each con-

sidered time interval [t0 , t0 + ∆t] the Hamiltonian Ĥs does not depend on the time.

The straightforward way to perform the time propagation

|Ψ(t0 + ∆t) 〉 = Ûs(t0 + ∆t, t0) |Ψ(t0) 〉 (F.14)

would be to diagonalize the Hamiltonian Ĥs and to decompose the initial state |Ψ(t0) 〉
into its spectral parts | ν 〉. The time-evolution operator acts on them as

exp

(
− i
~

∆t Ĥs

)
| ν 〉 = e−

i
~∆tEν | ν 〉 , (F.15)

where Eν denotes the eigenenergy corresponding to the stationary state | ν 〉. However,

as discussed in Section E.1, in most of the systems considered in the present work

the dimension of the Hilbert space renders a full diagonalization of Ĥs impossible.

Therefore, methods of further approximation are inevitable. We have chosen the SILP

method (83). The basic idea of this approach is to represent the time-evolution operator

Ûs(t0 + ∆t, t0) = exp

(
− i
~

∆t Ĥs

)
(F.16)

in some polynomial of the Hamiltonian Ĥs. To this aim, Ĥs is projected onto the

Krylov subspace KN
Ψ(t0) generated by the states{
|Ψ(t0) 〉, Ĥs |Ψ(t0) 〉, ... , ĤN−1

s |Ψ(t0) 〉
}
. (F.17)

Notice that the Krylov space is tailored to include that portion of the Hilbert space

that the wave function |Ψ(t0) 〉 explores in the near future [t0, t0 + ∆t]. Let ĤN denote

the Hamiltonian Ĥs projected onto KN
Ψ(t0). Then, ĤN satisfies

Ĥj
N |Ψ(t0) 〉 = Ĥj

s |Ψ(t0) 〉 (F.18)
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for all j < N . By using the standard Lanczos basis (see Section E.1), the projected

N ×N Hamilton matrix HN becomes tridiagonal and symmetric. The diagonalization

of HN yields

S†NHNSN = DN (F.19)

with a unitary N × N matrix SN and a N × N diagonal matrix DN . Then, the

approximation |ΨL(t0 + ∆t) 〉 to the propagated wave function reads

|ΨL(t0 + ∆t) 〉 = exp

(
− i
~

∆t ĤN

)
|Ψ(t0) 〉

= SN exp

(
− i
~

∆tDN

)
S†N |Ψ(t0) 〉 .

(F.20)

The corresponding approximation ÛL to the time-evolution operator is given by

ÛL(t0 + ∆t, t0) = exp

(
− i
~

∆t ĤN

)
= SN exp

(
− i
~

∆tDN

)
S†N . (F.21)

Notice that in each iteration KN
Ψ(t) is updatet, i.e., a new Krylov subspace is generated

with the current state |Ψ(t) 〉. This implies that in each time step from t to t + ∆t,

the matrices DN and SN involved in the Lanczos propagator ÛL(t + ∆t, t) are also

determined anew.

We shall see in the following Section that the SILP method becomes particularly

efficient in practice if small Krylov spaces KN
Ψ(t) are generated and used for very short

time steps ∆t. According to this we have chosen a dimension N = 4 and a time step

∆t = 0.002 fs in order to perform the dynamical simulations described in Chapter 5.

We have verified that further increasing these numerical parameters does not improve

the accuracy of the resulting time evolution of many-body states.1 The mathematical

foundation of using short time steps ∆t and small Krylov space dimensions N is given

in the following Section, where the accuracy of the Lanczos time-propagation ÛL is

assessed as a function of ∆t.

In this context, it is important to recall that the Lanczos approximation ÛL to the

time-evolution operator comprises essentially two approximations: First, mapping the

relevant physics onto optimally chosen subspaces by means of the Krylov expansion,

and second, freezing the time dependence of the external field v(t) in each considered

1Actually, the absorbed laser energy ∆E per atom has been considered as the criterion for appro-

priate parameters N and ∆t. We have found that increasing these parameters beyond N = 4 and

∆t = 0.002 fs yields only very small modifications not exceeding the sixth significant digit of ∆E.
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time interval [t , t+ ∆t]. The latter, i.e., freezing of v, is equivalent to the application

of electric fields, which are stepwise constant in time. It is clear that none of these

approximations introduces any bias toward spin relaxation. Moreover, they do not

violate any conservation laws of the model. In particular, the properties of the hopping

integrals resulting from the lattice symmetry, the conservation of the total atomic

angular momentum ~Jj = ~Lj+ ~Sj in every spin-orbit coupling transition, and the optical

selection rules for electric-dipole transitions, are not affected at all. For these reasons,

the Lanczos propagation method certainly represents an unbiased sound numerical

approach to investigate the physics of magnetization dynamics.

F.2 Assessing the accuracy of Lanczos propagations

In order to justify the application of the SILP method, it is necessary to assess the accu-

racy of the Lanczos approximation ÛL [see Eq. (F.21)] to the time-evolution operator,

particularly in the limit of small time steps ∆t. The error between propagation with

ÛL and propagation with the exact operator Û has various origins: freezing the time

dependence of Ĥ within short time intervals [t0, t0 + ∆t], the numerical evaluation of

integral (F.8), the Lanczos propagation method within reduced Krylov subspaces, and

general numerical errors such as rounding errors. The first three of them are associated

to the approximations Ûe, Ûs and ÛL as given by Eqs. (F.7), (F.12) and (F.21). It is

the purpose of this Section to demonstrate that with decreasing ∆t these first three

origins of error very rapidly decrease, and thus to demonstrate the high accuracy of

the SILP method in the limit ∆t→ 0. To this aim, we consider separately the associ-

ated approximations Ûe, Ûs and ÛL to the time evolution. In particular, we want to

determine the order (with respect to ∆t) of the errors introduced by them.

As a first step, let us consider the local error after a single iteration. Its upper

bound will be involved afterwards in the estimation of the error after multiple time

steps. We assume |Ψ(t0) 〉 to be the exact solution at the initial time t0. Then, the

160



F.2 Assessing the accuracy of Lanczos propagations

local error at time t0 + ∆t can be decomposed into three parts:

εlocal =
∥∥∥(Û(t0 + ∆t, t0) − ÛL(t0 + ∆t, t0)

)
|Ψ(t0) 〉

∥∥∥
2

≤
∥∥∥(Û(t0 + ∆t, t0) − Ûe(t0 + ∆t, t0)

)
|Ψ(t0) 〉

∥∥∥
2

+
∥∥∥(Ûe(t0 + ∆t, t0) − Ûs(t0 + ∆t, t0)

)
|Ψ(t0) 〉

∥∥∥
2

+
∥∥∥(Ûs(t0 + ∆t, t0) − ÛL(t0 + ∆t, t0)

)
|Ψ(t0) 〉

∥∥∥
2

= εe + εs + εL ,

(F.22)

where the norm ‖.‖2 is as usually defined by
∥∥|Ψ 〉∥∥

2
=
√
〈Ψ |Ψ 〉. Each of these three

contributions is associated to the three steps of approximation described in the previous

Section F.1.

In order to give an upper bound for the first error contribution εe in Eq. (F.22), let

us decompose the Dyson series (F.5) in its various orders ν. The zeroth order (ν = 0)

is simply given by the identity

Û (0)(t0 + ∆t, t0) = 1 , (F.23)

and the first order reads

Û (1)(t0 + ∆t, t0) = − i
~

∫ t0+∆t

t0

ds1 Ĥ(s1)

= − i
~

∆t

(
Ĥ0 + V̂

∫ 1

0
dz v(t0 + z∆t)

)
.

(F.24)

Similarly, the second-order contribution to Û(t0 + ∆t, t0) can be written as

Û (2)(t0 + ∆t, t0) =− 1

~2

∫ t0+∆t

t0

ds1

∫ s1

t0

ds2 Ĥ(s1) Ĥ(s2)

=− ∆t2

2~2
Ĥ2

0 −
∆t2

~2
V̂ 2

∫ 1

0
dz1

∫ z1

0
dz2 v(t0 + z1∆t) v(t0 + z2∆t)︸ ︷︷ ︸

I1

− ∆t2

~2
Ĥ0V̂

∫ 1

0
dz1

∫ z1

0
dz2 v(t0 + z2∆t)︸ ︷︷ ︸
I2

− ∆t2

~2
V̂ Ĥ0︸ ︷︷ ︸

Ĥ0V̂+[V̂ , Ĥ0]

∫ 1

0
dz1 v(t0 + z1∆t)

∫ z1

0
dz2︸ ︷︷ ︸

z1

.

(F.25)
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In order to simplify this expression, the two integrals I1 and I2 are considered in more

detail:

I1 =

∫ 1

0
dz1

∫ z1

0
dz2 v(t0 + z1∆t) v(t0 + z2∆t)

=
1

2

∫ 1

0
dz1

∫ z1

0
dz2 v(t0 + z1∆t) v(t0 + z2∆t)

+
1

2

∫ 1

0
dz2

∫ z2

0
dz1 v(t0 + z2∆t) v(t0 + z1∆t)︸ ︷︷ ︸∫ 1

0 dz1
∫ 1
z1

dz2 v(t0+z1∆t) v(t0+z2∆t)

=
1

2

(∫ 1

0
dz v(t0 + z∆t)

)2

(F.26)

and

I2 =

∫ 1

0
dz1

∫ z1

0
dz2 v(t0 + z2∆t)

=

∫ 1

0
dz2 v(t0 + z2∆t)

∫ 1

z2

dz1

=

∫ 1

0
dz v(t0 + z∆t) · (1− z) .

(F.27)

One therefore obtains

Û (2)(t0 + ∆t, t0) = − ∆t2

2~2

(
Ĥ2

0 + V̂ 2

[∫ 1

0
dz v(t0 + z∆t)

]2
)

− ∆t2

~2
Ĥ0V̂

∫ 1

0
dz v(t0 + z∆t)

− ∆t2

~2
[V̂ , Ĥ0]

∫ 1

0
dz z v(t0 + z∆t)︸ ︷︷ ︸

I3

.

(F.28)

The function v(t0 +z∆t) within the last integral I3 can be expanded into a Taylor series

around an arbitrary z̃ ∈ [0, 1]. We choose z̃ such that it corresponds to the particular

time t̃ satisfying Eq. (F.9), i.e., such that t0 + z̃∆t = t̃. Then,

I3 =

∫ 1

0
dz z

[
v(t̃) +

dv

dt
(t̃) ∆t (z − z̃) +O(∆t2)

]
=

1

2
v(t̃) +

∆t

6

dv

dt
(t̃) (2− 3z̃) + O(∆t2) .

(F.29)
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Finally, using Eq. (F.9) the second-order contribution reads

Û (2)(t0 + ∆t, t0) = − ∆t2

2~2

(
Ĥ2

0 + V̂ 2 v(t̃)2 + 2Ĥ0 V̂ v(t̃) + [V̂ , Ĥ0] v(t̃)
)

− ∆t3

6~2
[V̂ , Ĥ0]

dv

dt
(t̃) (2− 3z̃) + O(∆t4)

=− ∆t2

2~2

(
Ĥ0 + v(t̃) V̂

)2

− ∆t3

6~2
[V̂ , Ĥ0]

dv

dt
(t̃) (2− 3z̃) + O(∆t4) .

(F.30)

The third-order term Û (3) is given by

Û (3)(t0 + ∆t, t0) =

(
− i
~

)3 ∫ t0+∆t

t0

ds1

∫ s1

t0

ds2

∫ s2

t0

ds3 Ĥ(s1) Ĥ(s2) Ĥ(s3)

=

(
− i
~

∆t

)3 ∫ 1

0
dz1

∫ z1

0
dz2

∫ z2

0
dz3

(
Ĥ0 + v(t0 + z1∆t) V̂

)
×

×
(
Ĥ0 + v(t0 + z2∆t) V̂

) (
Ĥ0 + v(t0 + z3∆t) V̂

)
=

(
− i
~

∆t

)3 ∫ 1

0
dz1

∫ z1

0
dz2

∫ z2

0
dz3

(
Ĥ0 + v(t̃) V̂

)3
+ O(∆t4)

=
1

6

(
− i
~

∆t

)3 (
Ĥ0 + v(t̃) V̂

)3
+ O(∆t4) .

(F.31)

Notice that in the third equation we have used the expansion

v(t0 + z∆t) = v(t0 + z̃∆t) +
dv

dt
(t0 + z̃∆t) ∆t (z − z̃) + O(∆t2) (F.32)

of the field amplitude v around z̃ for z ∈ [0, 1].

Combining Eqs. (F.23), (F.24), (F.30) and (F.31), one obtains the exact time-

evolution operator in orders of ∆t:

Û(t0 + ∆t, t0) = Û (0)(t0 + ∆t, t0) + Û (1)(t0 + ∆t, t0)

+ Û (2)(t0 + ∆t, t0) + Û (3)(t0 + ∆t, t0) + ...

= 1 − i

~
∆t
(
Ĥ0 + v(t̃) V̂

)
+

1

2

(
− i
~

∆t

)2 (
Ĥ0 + v(t̃) V̂

)2

+
1

6

(
− i
~

∆t

)3 (
Ĥ0 + v(t̃) V̂

)3

− ∆t3

6~2
[V̂ , Ĥ0]

dv

dt
(t̃) (2− 3z̃) + O(∆t4) .

(F.33)

163



Appendix F. Numerical methods for dynamical calculations

Let us recall that the approximated time-evolution operator Ûe resulting from freezing

the time dependence of Ĥ [see Eq. (F.7)] reads

Ûe(t0 + ∆t, t0) = exp

[
− i
~

∆t
(
Ĥ0 + v(t̃) V̂

)]
. (F.34)

Therefore, this approximation introduces the error

Ûe(t0 + ∆t, t0) − Û(t0 + ∆t, t0) =
∆t3

6~2
[V̂ , Ĥ0]

dv

dt
(t̃) (2− 3z̃) + O(∆t4) . (F.35)

The corresponding local error εe at time t = t0 + ∆t is thus constrained by

εe =
∥∥∥(Û(t0 + ∆t, t0) − Ûe(t0 + ∆t, t0)

)
|Ψ(t0) 〉

∥∥∥
2
≤ Be ∆t3 + O(∆t4) . (F.36)

Here, the parameter

Be =
1

3~2

∥∥∥[V̂ , Ĥ0]
∥∥∥
∞

∥∥∥∥dv

dt

∥∥∥∥
∞,[t0,t0+∆t]

(F.37)

describes the behavior of the error εe for small ∆t, where∥∥∥[V̂ , Ĥ0]
∥∥∥
∞

= max
eigenvalues η of [V̂ , Ĥ0]

|η| (F.38)

and ∥∥∥∥dv

dt

∥∥∥∥
∞,[t0,t0+∆t]

= max
s∈[t0,t0+∆t]

∣∣∣∣dvdt (s)

∣∣∣∣ . (F.39)

The second error contribution εs in Eq. (F.22) is given by the difference between Ûe

and the approximation Ûs [see Eq. (F.12)], where Ûs has been obtained by applying the

Simpson formula for the numerical evaluation of integral (F.8). By means of Eqs. (F.10)

and (F.11), this difference Ûe − Ûs can be estimated as

Ûe(t0 + ∆t, t0) − Ûs(t0 + ∆t, t0) = e−
i
~∆t(Ĥ0+v(t̃)V̂ ) − e−

i
~∆t(Ĥ0+vsV̂ ) = O(∆t5) .

(F.40)

Consequently,

εs =
∥∥∥(Ûe(t0 + ∆t, t0) − Ûs(t0 + ∆t, t0)

)
|Ψ(t0) 〉

∥∥∥
2

= O(∆t5) . (F.41)

Thus, εs can be neglected in comparison with εe which is proportional to ∆t3 [see

Eq. (F.36)].

The third error contribution εL in Eq. (F.22) is given by the error between the

propagation (F.12) and the Lanczos procedure (F.20). In order to estimate εL, let us
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expand the exponentials (i.e., the corresponding time-evolution operators) into Taylor

series:

Ûs(t0 + ∆t, t0) |Ψ(t0) 〉 − ÛL(t0 + ∆t, t0) |Ψ(t0) 〉

= exp

(
− i
~

∆t Ĥs

)
|Ψ(t0) 〉 − exp

(
− i
~

∆t ĤN

)
|Ψ(t0) 〉

=
∞∑
j=0

1

j!

(
− i
~

∆t

)j (
Ĥj
s − Ĥ

j
N

)
|Ψ(t0) 〉

=
N−1∑
j=0

1

j!

(
− i
~

∆t

)j  Ĥj
s︸︷︷︸

Ĥj
N

−Ĥj
N

 |Ψ(t0) 〉

+

∞∑
j=N

1

j!

(
− i
~

∆t

)j (
Ĥj
s − Ĥ

j
N

)
|Ψ(t0) 〉

=
∞∑
j=N

1

j!

(
− i
~

∆t

)j (
Ĥj−N+1
s − Ĥj−N+1

N

)
ĤN−1
s |Ψ(t0) 〉 .

(F.42)

Therefore, the local error εL is bounded as

εL =
∥∥∥(Ûs(t0 + ∆t, t0) − ÛL(t0 + ∆t, t0)

)
|Ψ(t0) 〉

∥∥∥
2

≤ BL ∆tN + O(∆tN+1) ,
(F.43)

where

BL =
1

N ! ~N
∥∥∥Ĥs

∥∥∥N−1

∞

(∥∥∥Ĥs

∥∥∥
∞

+
∥∥∥ĤN

∥∥∥
∞

)
. (F.44)

Finally, the combined local error (F.22) can be written in the form

εlocal ≤ εe + εs + εL + εrounding

≤ Be∆t
3 +O(∆t4) + BL∆tN + O(∆tN+1) + εrounding .

(F.45)

Notice that in comparison with Eq. (F.22) we have now additionally included a rounding

error εrounding which may occur in numerical computation.

Next, we compute the error introduced by the Lanczos propagation method at times

later than the initial time t0. For this purpose, let us recall that usually at some given

time tp the propagated approximation |ΨL(tp) 〉 already differs from the exact solution

|Ψ(tp) 〉 at that time. Then, the local error propagation —obtained by propagating

both |ΨL(tp) 〉 and |Ψ(tp) 〉 with the approximated time-evolution operator ÛL— is
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given by ∥∥∥ÛL(tp + ∆t, tp) |ΨL(tp) 〉 − ÛL(tp + ∆t, tp) |Ψ(tp) 〉
∥∥∥

2

=
∥∥∥ ÛL(tp + ∆t, tp)︸ ︷︷ ︸

unitary

(
|ΨL(tp) 〉 − |Ψ(tp) 〉

) ∥∥∥
2

=
∥∥∥|ΨL(tp) 〉 − |Ψ(tp) 〉

∥∥∥
2
.

(F.46)

This allows us to compute the cumulative error between the propagated approximation

|ΨL(tp + ∆t) 〉 and the exact solution |Ψ(tp + ∆t) 〉 at time tp + ∆t:∥∥∥|ΨL(tp + ∆t) 〉 − |Ψ(tp + ∆t) 〉
∥∥∥

2

≤
∥∥∥ÛL(tp + ∆t, tp) |ΨL(tp) 〉 − ÛL(tp + ∆t, tp) |Ψ(tp) 〉

∥∥∥
2

+
∥∥∥ÛL(tp + ∆t, tp) |Ψ(tp) 〉 − Û(tp + ∆t, tp) |Ψ(tp) 〉

∥∥∥
2

≤
∥∥∥|ΨL(tp) 〉 − |Ψ(tp) 〉

∥∥∥
2

+ εlocal .

(F.47)

So far, we have only considered infinitesimal time steps ∆t. Now, we want to estimate

the error at arbitrary times tj = t0 + j∆t, provided that at time t0 the initial state

used for the approximative propagation ÛL is exact, i.e., |ΨL(t0) 〉 = |Ψ(t0) 〉. Then,

Eq. (F.47) yields for the first time step t1:∥∥∥|ΨL(t1) 〉 − |Ψ(t1) 〉
∥∥∥

2
≤ εlocal . (F.48)

For the time t2 one similarly obtains∥∥∥|ΨL(t2) 〉 − |Ψ(t2) 〉
∥∥∥

2
≤
∥∥∥|ΨL(t1) 〉 − |Ψ(t1) 〉

∥∥∥
2

+ εlocal ≤ 2 εlocal . (F.49)

Finally, induction yields the estimation∥∥∥|ΨL(tj) 〉 − |Ψ(tj) 〉
∥∥∥

2
≤ j εlocal (F.50)

for all j ∈ N. For a particular finite time t = tν = t0 + ν∆t, one finds ν = (t− t0)/∆t

and, therefore, the total error at time t > t0 can be estimated as∥∥∥|ΨL(t) 〉 − |Ψ(t) 〉
∥∥∥

2
≤ t− t0

∆t
εlocal

≤ (t− t0)
(
Be∆t

2 + BL∆tN−1 +
εrounding

∆t

)
+ O(∆t3) + O(∆tN ) .

(F.51)
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F.2 Assessing the accuracy of Lanczos propagations

The contributions Be ∆t2 and O(∆t3) are related to the time dependence of the Hamil-

tonian. If Ĥ is independent of time, then these terms disappear and the dominant part

in the total error is given by BL ∆tN−1. The latter originates from the finite Krylov

spaces used in the SILP-diagonalization method. The last term εrounding/∆t is given by

the machine accuracy. If one neglects εrounding and assumes a time-dependent Hamil-

tonian Ĥ(t), then the total error in the Lanczos propagation method is proportional

to ∆t2 for short time steps ∆t. In this case, increasing the subspace dimension N does

not significantly improve the accuracy. In conclusion, these considerations justify the

application of the SILP method and the use of very short time steps ∆t and small

Krylov subspace sizes N .
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H. Back, Laser-induced generation and quench-

ing of magnetization on FeRh studied with

time-resolved x-ray magnetic circular dichroism,

Phys. Rev. B 81, 104415 (2010). 11

[32] C. D. Stanciu, F. Hansteen, A. V. Kimel, A. Kir-

ilyuk, A. Tsukamoto, A. Itoh, and Th. Rasing,

All-Optical Magnetic Recording with Circularly

Polarized Light, Phys. Rev. Lett. 99, 047601

(2007). 11

[33] I. Radu, K. Vahaplar, C. Stamm, T. Kachel, N.
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