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Zusammenpassung

Fiir groRe Windenergieanlagen werden neue Pitchregler wie Einzelblattregler oder
Turmdampfungsregler entwickelt. Wahrend diese neuen Pitchregler die Elemente der
Windenergieanlagen entlasten, wird das Pitchantriebssystem starker belastet. Die Pitchantriebe
missen weitaus haufiger bei héherer Amplitude arbeiten. Um die neuen Pitchregler nutzen zu
kénnen, muss zunadchst das Problem der Materialermiidung der Pitchantriebssysteme geldst werden.
Das Getriebespiel in Getrieben und zwischen Ritzeln und dem Zahnkranz erhéht die
Materialermiidung in den Pitchantriebssystemen.

In dieser Studie werden als Losung zwei Pitchantriebe pro Blatt vorgeschlagen. Die beiden
Pitchantriebe erzeugen eine Spannung auf dem Pitchantriebssystem und kompensieren das
Getriebespiel. Drehmomentspitzen, die eine Materialermiidung verursachen, treten bei diesem
System mit zwei Pitchmotoren nicht mehr auf. Ein Reglerausgang wird via Drehmomentverteiler auf
die beiden Pitchantriebe tbertragen. Es werden mehrere Methoden verglichen und der
leistungsfahigste Drehmomentverteiler ausgewahlt. Wahrend die Pitchantriebe in Bewegung sind,
andert sich die Spannung auf den Getrieben.

Die neuen Pitchregler verstellen den Pitchwinkel in einer sinusformigen Welle. Der Profilgenerator,
der derzeit als Pitchwinkelregler verwendet wird, kann eine Phasenverzégerung im sinusférmigen
Pitchwinkel verursachen. Zusatzlich erzeugen grofe Windenergieanlagen eine hohe Last, die sich
storend auf die Pitchbewegung auswirkt. Anderungen der viskosen Reibung und Nichtlinearitat der
Gleitreibung bzw. Coulombsche Reibung des Pitchregelsystems erschweren zudem die Entwicklung
eines Pitchwinkelreglers. Es werden zwei robuste Regler (H. und p—synthesis ) vorgestellt und mit
zwei herkdmmlichen Reglern (PD und Kaskadenregler) verglichen.

Zur Erprobung des Pitchantriebssystems und des Pitchwinkelreglers wird eine Prifanordnung
verwendet. Da der Kranz nicht mit einem Positionssensor ausgestattet ist, wird ein
Uberwachungselement entwickelt, das die Kranzposition meldet. Neben den beiden Pitchantrieben
sind zwei Lastmotoren mit dem Kranz verbunden. Uber die beiden Lastmotoren wird das
Drehmoment um die Pitchachse einer Windenergieanlage simuliert.

Das Drehmoment um die Pitchachse setzt sich zusammen aus Schwerkraft, aerodynamischer Kraft,
zentrifugaler Belastung, Reibung aufgrund des Kippmoments und der Beschleunigung bzw.
Verzogerung des Rotorblatts. Das Blatt wird als Zweimassenschwinger modelliert.

GrolRe Windenergieanlagen und neue Pitchregler fur die Anlagen erfordern ein neues
Pitchantriebssystem. Als Hardware-Losung bieten sich zwei Pitchantriebe an mit einem robusten
Regler als Software.




Summary

New pitch controllers such as individual pitch control or tower damping control are developed for
large wind turbines. Whereas the new pitch controllers reduce load on the elements of wind turbines,
more load is added onto the pitch actuation system. Pitch actuators must operate much more
frequently and in higher amplitude. In order to adopt the new pitch controllers, fatigue of the pitch
actuation system has to be solved first. Gear plays in gearboxes and between pinions and blade rings
increases fatigue on pitch actuation systems.

Two pitch actuators per blade were suggested as a solution in the project ‘Lastreduzierende
Regelungssysteme fiir Multimegawatt-Windkraftanlagen im Offshore-Bereich’ [11]. The two pitch
actuators create tension on the pitch actuation system and compensate for gear play. Torque peak,
which causes fatigue, is no longer found with the two-pitch-motor-system. A test rig was made for
the two-motor-pitch-system.

In this research, new pitch angle controllers are developed for the proposed two-motor-pitch-system.
A test rig modeling, parameter estimation and load simulation are performed prior to the controller
design. A controller output is transferred to the two pitch actuators via a torque distributor. Several
methods are compared and the best performing torque distributor is chosen.

A test rig is used for the experimentation of the pitch actuator system and the pitch angle controllers.
Since a position sensor is not equipped on the ring, an observer is designed to provide feedback
regarding the ring position. Besides two pitch actuators, two load motors are connected to the ring.
Simulated torque around the pitch axis on a wind turbine is transferred to the two load motors.

Torque around the pitch axis contains gravity, aerodynamic force, centrifugal loading, friction due to
overturning moment and accelerating and decelerating rotor blade. The blade is modeled as a two-
mass-spring-damper system.

New pitch controllers adjust the pitch angle in sinusoidal wave. The profile generator, which is used
currently as a pitch angle controller, can cause phase delay in sinusoidal shape pitch angle. In
addition, large wind turbines create a large load which interferes with pitch action. Nonlinear
Coulomb/sliding friction and viscous friction change of the pitch actuation system are also hindrance
to making a pitch angle controller. Two robust controllers (H» and p—synthesis ) are suggested to
handle the four problems. The robust controllers are compared with two classical controllers (PD and
cascade). Tracking performances of the pitch angle controllers are verified with root-mean-square
(RMS) of errors between reference and actual angles. In case of a collective pitch control, RMS of
errors is reduced by 49% with a p—synthesis in comparison to a PD-controller. The RMS with a p—
synthesis is 72% less than the RMS with a cascade controller if an individual controller is used as a
pitch controller.

Large wind turbines and new pitch controllers for the turbines require a new pitch actuation system.
The hardware solution is a 2-motor-pitch-system and the software is a robust controller.
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1. Introduction

1.1.Wind turbine control

A wind turbine is a device which converts wind energy to mechanical energy. The mechanical energy
is converted again to electricity in most modern wind turbines. Below rated wind speed, the wind
turbine tries to gain as much energy as can, thus the pitch angle does not vary. Above rated wind
speed, a wind turbine is designed to choose one of the three options: Pitch control, active stall
control and stall control

Pitch control is the mostly used concept in modern wind turbines. Increasing pitching angle reduces
the angle of attack and hence the lift coefficient. Above rated wind speed, pitch control regulates the
aerodynamic power and loads by increasing pitch angle so that design limits of the components such
as generator speed and torque are not exceeded.

Current blade pitch control focuses on limiting generator speed and power. However, as wind
turbine size increases, loads on the elements of the turbine become more critical than generator
power. For example, if power is increased by four times as the rotor diameter doubles, bending
moment on the blade root is increased by eight times.

Several kinds of technologies are developed to reduce load on wind turbines. The technologies are
categorized into a blade profile and a pitch action. Development in the blade profile implies blade

with bend-twist-coupling effect, variable diameter rotor, active flow control, and plasma actuator.
Individual pitch control and tower damping control are the representative pitch action to alleviate
load on wind turbines.

A blade which has bend-twist-coupling effect can be used to reduce load on the blade [3]. The blade
is designed so that the twist distribution changes as the blade bends [4]. The blade is twisted toward
lower angle of attack, thus the load is mitigated.

Variable diameter rotor has a tip blade which is extended in lower wind speed and retracted in
higher wind speed (see Figure 1-1). Excessive load can be avoided in higher wind speed with the
variable diameter rotor.

Active flow control uses various shapes of blade to reduce load. Figure 1-2 shows a compliant wing is
bended up and down.

Individual pitch control and tower damping control are developed for load alleviation with a pitch
control. These are explained in the next section.

Foomse] — S —— =




Figure 1-1: variable diameter rotor [4]

Figure 1-2: adaptive compliant wing for active flow control [4]

1.2.Pitch control for load reduction

1.2.1. Individual pitch control

On large wind turbines, each blade experiences different wind conditions due to gusts, wind shear
and turbulence (see Figure 1-3 for wind shear). Independent control of each blade is an effective
solution to compensate for loads due to asymmetrical wind conditions. The basic idea for individual
pitch control came from helicopter technology. The most significant aerodynamic load takes place
once per revolution, 1P, which is mainly caused by wind shear. Harmonics of the frequency, i.e. 2P,
3P, 4P, etc are to be considered, but their amplitude is smaller than 1P. Harmonics at 3P, 6P and so
on are also significant with three-bladed rotors. The asymmetrical aerodynamic force affects loads on
yaw bearing, shafts and especially blade roots.

Since 1P is the most significant frequency in asymmetrical aerodynamic force, individual pitch
controllers can be simply designed based on the rotor azimuth angle. Tilt and yaw moment at the
rotor center are calculated from flap and edgewise blade root bending moments of three blades.
Cyclic pitch variation with a 120° phase is used to alleviate tilt and yaw moment. This method is
called cyclic pitch control and it is used to reduce loads caused by aerodynamic wind shear, tower
shadow and yaw misalignment [2]. However, this is not useful in practice because wind speed
variation is dominated by stochastic variations due to turbulence [5].

Another way of compensating for loads is measuring asymmetrical loads and feeding back to
controller to build individual pitch controllers. Flap and edgewise blade root bending moment is
transformed into a mean value and variations on two orthogonal axes using “d-q axis transformation”

[2].

Traditional strain gauges are not suitable because of weakness on fatigue and short lifetime.
Advanced sensors such as optical strain gauges and solid strain measurement devices make this
approach feasible [5].

As seen in Figure 1-4, individual pitch control can be operated independently from collective pitch
control and implemented in different hardware platforms which have advantages in signal transfer
and safety [6]. M. Geyler [6] proposed a H. controller as well as a Pl controller with a 1° order low
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pass filter. Both controllers are stable and able to tolerate uncertainty. The flapwise blade bending
moment is diminished by individual pitch control as seen in Figure 1-5. However, larger amplitude
and more reversal of pitch angle increase load on the pitch actuator. Lifetime of the pitch actuation
system has to be considered first before adopting individual pitch controller.

Figure 1-3: Wind shear
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Figure 1-5: flapwise bending moment without (black)/with (red) individual pitch control
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1.2.2. Tower damping control

Wind energy forces not only rotate rotor blades but also to push turbine structure behind. Even
though wind turbine blades are slender, thrust force on the turbine occurs in about 80% of the cases
where a circular plate with the same rotor diameter is equipped [7]. As rotor blades pass in front of
the tower, aerodynamic force is diminished. The variation of aerodynamic force causes tower
vibration in an axial direction. As the turbine moves opposite to wind direction, relative wind speed
and rotor angular speed increase. The wind turbine controller increases pitch angle to reduce rotor
speed. Increasing pitch angle reduces not only rotor speed but also thrust force so that the turbine
moves further to upwind. The process leads to large tower vibration [8] (see Figure 1-6). Tower
vibration affects fatigue on tower bottom.

In order to lessen vibration, an acceleration sensor can be mounted on the nacelle and its signal is
fed back to the wind turbine controller. Signals of the acceleration sensor must pass a filter in order
to avoid interaction with the blade’s natural frequencies. Pitch angles of the three blades can be the
same and it lessens tower bending moment (see Figure 1-7, Figure 1-8).

Figure 1-6: Tower vibration
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2. Overview of the research

The new developed pitch controls for load reduction in section 1.2 require more pitch actions and
reversals to the pitch actuators. Fatigue on the pitch actuation system increases in contrast to that of
other parts, such as blade bearing and main bearing. A two-motor-pitch-system is suggested in this
research to reduce fatigue on the pitch actuation system (see section 2.1).

As the size of the wind turbine increases, nonlinear friction on the blade bearing and external load
such as gravity increase, too. The suggested two-motor-pitch-system also makes pitch angle control
design hard because of increased sliding friction. Uncertainty of viscous friction coefficient in the
pitch actuation system is another hindrance to pitch angle control. Robust controllers are designed to
overcome these difficulties (see section 2.2).

2.1.Fatigue on the pitch actuation system

2.1.1. Problem statement

An electrical motor or a hydraulic cylinder is used for pitch action (see Figure 2-1). A hydraulic drive
was commonly used in early wind turbines. A pitch actuator controlled all the blades and an electric
motor with mechanical links was relatively complex and cost-intensive [9]. However, as the size of
wind turbine increases, shaft brakes for central electrical drives become more expensive. It can be
avoided by adopting separate actuators per blade. Separate actuators guarantee safety since two
actuators can provide enough aerodynamic braking torque even if one motor fails.

17



Figure 2-1: Hydraulic actuator and electric actuator [1]

Electric motors rotate fast with low torque compared to required pitching characteristics on blades,
so a gearbox is mounted between the motor and blade bearing. The gearbox is composed of many
gear teeth which have gear play. Gear play is a gap between a gear tooth and mating gear tooth.
Gear play is essential for lubricant oil which is located in the gap and prevents excessive heat and
wear. In addition, gear play gives a mechanical tolerance and allows thermal expansion. Gear play
interferes with accurate positioning and induces high torque as gear teeth ‘hit’ each other when the
direction of rotation changes. Gear play exists also between the gear ring and pinion.

Gear play is not so important if a machine normally rotates in one direction. A precise positioning
application such as a robot changes its direction frequently so that high torque is experienced in the
element. It increases fatigue and reduces its lifetime. Current wind turbine control operates only in
high wind speed. However, new pitch controls in section 1.2 requires pitch action also in low wind
speed. In addition, pitching direction changes to a great degree with the new pitch control. Figure 2-2
shows pitch rate with different controllers. As pitch rate passes zero, pitching direction changes and
torque peak occurs in the gearbox. In particular, individual pitch control results in very frequent pitch
direction change and it leads to fatigue increase.

Gear play cannot be neglected anymore. A new method has to be designed to avoid torque peak and
fatigue due to gear play.
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Figure 2-2: Pitch rate — baseline (black), individual pitch (red), tower damping (green) control

2.1.2. State of the art

Gear play in section 2.1.1 raises large torque peak when pitch direction changes. The large torque
increases fatigue which reduces lifetime of the pitch actuation system. With the current control
system, pitching action is performed only above the rated wind speed. However, new developing
individual pitch control and tower damping control require steady pitch actions in the whole wind
speed range. Fatigue of the pitch actuation system is the inevitable problem if the individual pitch
control or tower damping control is used for the wind turbines.

About gear play or backlash compensation, most of the scientific researches focused on tracking
problem e.g. [17], [18]. The studies help designing controllers, but cannot avoid torque peak on the
gear teeth.

The following two inventions are designed for other purposes, but they can also reduce or avoid
torque peak.

The first invention is on the emergency pitch actuation system for a wind turbine by P. Rogall et al.
[16]. Beside a pitch drive, an additional emergency drive is mounted on a blade root (see Figure 2-3).
The emergency drive is driven by spring force in order to enhance safety. Number 8 of the figure
refers to the spring. It would be complex if the spring is equipped in a pitch drive which works in
normal conditions. An electric motor with battery backup for emergency is fault-prone in case of
damage to electrical parts, thus the spring is used as a drive force. He mentioned a hydraulic element
may substitute for spring for mechanical energy storage. The risk that the emergency drive cannot
operate because of gearbox failure in the pitch drive can be avoided. As one or more emergency
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drives are equipped, the requirements for the pitch drive do not need to be very high. A small failure
in the pitch drive is acceptable.

Whereas P. Rogall et. al. invented the pitch actuation system to avoid failure in emergency, this
invention compensates for gear play additionally. The spring gives a steady torque to the blade
bearing and the pitch motor gives torque to overcome the spring torque. Gear play compensation
was not written in his report.

9\@9 GBX
Y

6
Figure 2-3: Pitch drive system by P.Rogall et.al [16]

Another method to avoid torque peak was invented for vehicles by M. Hackl at Robert Bosch GmbH
[13]. The invention is designed for a “steer-by-wire” steering drive mechanism. In the classical way, a
vehicle is steered by the force which a driver gives the handle. Modern vehicles are steered by a
motor with the “steer-by-wire” system. The motor torque is amplified by a gearbox. Because a
gearbox has a gear play, gear teeth are bumped against each other every time the handling direction
changes. The invention compensates for gear play using two motors with the opposite torque
direction (see Figure 2-4). M. Hackl invented the system in order to reduce noise which is occurred
on the gear play whereas the purpose of this research is to lengthen the lifetime of the pitch
actuation system.

M. Hackl mentioned that the braking moment may be adapted according to different types of driving
or road conditions. He suggested a method to reduce vibrations which arise from elasticity in motors
and gears as:

Fo=F+K- (0, ~ o)
F, =F, —K-(0, — o)

! !

in which £ and F, are the actual forces of the motor-1and 2. F, and F, are the original force

component of the motor-1 and 2. @, and @, are rotary speeds of the motors and K is an
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amplification factor. Since such a two-motor-system reduces fatigue, a gearbox with larger
tolerances can be used. Hence the cost for the gearbox can be saved [13].

Figure 2-4: Method for actuating a steer-by-wire steering device [13]

The following two inventions do not handle gear play compensation. However, these inventions use
two or more motors in a blade thus the suggested solution in this research should consider the
following studies.

A. Wobben [14] invented a pitch actuation system which is composed of at least two motors in a
rotor blade. A large pitching torque can be fulfilled with several small motors. If three motors are
equipped for a blade, each motor has only to bring one third of the required power. Even though one
motor fails, the wind turbine does not need to be stopped because the other two motors can
perform pitch action. The maximum power of each motor has to be set by considering the scenario
that one motor is out of order. The motors are situated the same distance from one another in order
not to damage the rotor blades. Because directions of torque out of motors are the same, gear play
cannot be compensated for.

The invention was also developed by using a case to connect at least two motors [15] (see Figure 2-5).
The purpose is to enlarge output torque by means of several motors. By using several motors, length
of the motors can be shortened and their moments of inertias decrease. An additional gearbox to the
set of motors and gearbox can be built in order to increase gear ratio. As seen in Figure 2-5, a cooling
system is enough for the two motors. It reduces weight and cost in comparison with two separate
cooling systems. Since the two motors rotate in an opposite direction to each other, the gear teeth
are designed to consider their directions. As only one gearbox is equipped in a blade, gear play is not
compensated for.
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Figure 2-5: Pitch drive system with two motors in a case [15]

2.1.3. Suggested solution in this research

Since the gear play is the place where large torque peak takes place, gear play has to be eliminated
or reduced. Gear play can be compensated for by replacing one pitch motor with two motors which
generate tension on each other (see Figure 2-6). This idea was invented by M. Hackl [13] on steering
mechanism in order to reduce noise. His idea was applied to wind turbine pitch actuators in the
project ‘Lastreduzierende Regelungssysteme fiir Multimegawatt-Windkraftanlagen im Offshore-
Bereich’ [11]. However, the aim of the application in this project is not noise alleviation but fatigue
reduction. A test rig was built to test the invention in the project. Parameters for the test rig are
measured later in this research.

With a two-motor-pitch-system, large torque peak is also avoided because the gear play is eliminated.
Since their torque direction is opposite, one motor attaches its right gear surface to the blade root
bearing and the other motor attaches its left gear surface. Even though pitch direction changes, the
gear surfaces are not detached. Thus neither gear play nor torque peak occur with a two-motor-
pitch-system.

Figure 2-7 compares a 1- and two-motor-pitch-system. One-motor-pitch-system shows torque peak
shortly after the torque direction changes. As the torque direction changes, gear teeth are detached
in a short time and ‘hit’ each other. The torque soars on the point as seen at 0.3 seconds and 2.2
seconds of the figure. Two-motor-pitch-system does not have a gear play in the gearbox. Thus two-
motor-pitch-system does not include torque peak which is seen in the one-motor-pitch-system.
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Figure 2-6: current pitch actuation system (left) and the suggested pitch actuation system (right)
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Figure 2-7: Motor torque with one- and two-motor-pitch-system (measured in the test rig)

As the two-motor-pitch-system eliminates torque peaks, lifetime of the pitch actuation system
increases. Gear teeth in the gearbox, pinion and ring may have larger tolerance, thus the
manufacturer can save cost by use of the two-motor-pitch-system. On the other hand, sliding friction
due to tension (see section 4.3.1), the additional inertia and additional Coulomb and viscous friction
require more electricity consumption. Let the pitch torque is T(t) , the energy consumption is
determined as:

E=]"

4

7(t)at

23



In case of the two-motor-pitch system, the pitch torque, T(t), is determined from the torque sum of
the two motors. Figure 2-8 shows simulated pitch power of one- and two-motor-pitch-system if the
reference signal is the same as Figure 6-47. The energy consumption in this period is 143Nms and
318Nms in one- and two-motor-pitch-system. Thus the two-motor-pitch-system requires around two
times more energy than the current one-motor-pitch-system.
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Figure 2-8: Demanded power with one- and two-motor-pitch-system (simulation)
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Since two motors are used in a closed-loop-system, a torque distributor is necessary to control the
two motors. The two-motor-pitch-system is made as a test rig in section 4.

2.2.Pitch angle controller

2.2.1. Problem statement

A wind turbine controller is composed of a torque controller and a pitch controller. A torque
controller adjusts generator speed and torque to obtain the maximum power from wind. A pitch
controller is active above rated wind speed to limit generator speed and power. A pitch controller
operates also in case of starting at low wind speed or emergency stop.

The pitch angle from the pitch controller is not transferred directly to the pitch motor. The pitch
angle is changed to the pitch moment which drives the pitch actuator. This process is performed by a
pitch angle controller (see Figure 2-9). The currently used pitch angle controller is profile generator.

In the profile generator, acceleration is limited and the shape of the velocity graph becomes
trapezoid if a reference pitch angle is stepwise [10]. The profile generator performs well for collective
pitch control, but is not suitable for individual pitch control or tower damping control because of
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phase delay (see Figure 2-11). As the reference pitch angle changes all the time with individual pitch

control or tower damping control, pitch angle controller does not settle but track the reference pitch
angle. Instead of a profile generator, another pitch angle controller has to be designed for individual

pitch control or tower damping control.

Designing of a pitch angle controller should consider pitch actuation system characteristics. The pitch
actuation system consists of the motor, gearbox, pinion and ring which is connected to a blade. The
pitch actuation system can be modeled with linear parameters, e.g. moment of inertia, viscous
friction, damping and stiffness. However, the four effects make control design difficult — sinusoidal
reference value, blade’s load around pitch axis, Coulomb and sliding friction, and viscous friction
coefficient change.

Pitch controller reference pitch motor

enerator speed/ itch [ . . .
> péa,er Iimitatioz IPC pe ange= Pitch angle controller moment > Wind turbine

™0 actual |_> —|
pitch angle

Figure 2-9: Pitch angle controller

Sinusoidal reference value

A profile generator is used currently for the pitch angle controller. The profile generator controls
servo motor position by limiting acceleration. Velocity and position are decided by the acceleration
characteristic, which is either rectangular or trapezoid [10]. Figure 2-10 shows acceleration, velocity
and position graphs of emergency stops where pitch position is increased from 0° to 90°. The pitch
position graph approaches reference position smoothly.

However, if the reference position is sinusoidal, the phase shift is found in the position of the profile
generator [11] (see Figure 2-11). Individual pitch control or tower damping control uses sinusoidal
functions as reference positions. Thus, the profile generator is not suitable for individual pitch control
or tower damping control.
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Figure 2-10: acceleration, velocity and position with profile generator
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Figure 2-11: sine position with profile generator

Blade’s load around pitch axis

Gravity, aerodynamic force, centrifugal force, and friction due to overturning moment of the blade
make pitch control challenging (see section 5 for detail). The biggest load is friction due to
overturning moment [30]. A long and heavy blade is mounted to a ring bearing and the blade’s load,
such as gravity or thrust force, is transferred to the overturning moment on the bearing.
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The forces have been neglected in the pitch angle controller design due to large gear ratio of the
pitch actuation system. However, large wind turbines are developed and load increase is higher than
power increase as the turbine size grows. Thus the loads on the blade have to be considered in the
designing of pitch angle controller.

Nonlinearities of the pitch actuation system

Coulomb friction is constant, thus is nonlinear and cannot be contained in a linear model (see section
4.3.1 for more in detail). In two-motor-pitch-system, if two motors operate in opposite directions,
more torque is needed than if only one motor is active. The increment is called sliding friction and
has the same effect as Coulomb friction. The sum of Coulomb and sliding friction may not be
neglected in a two-motor-pitch-system.

Viscous friction coefficient change

The viscous friction coefficient changes dependent on temperature in the gearbox. The viscous
friction coefficient is high in low temperatures and low in high temperatures. Although the viscous
friction is linear, its changes interfere with control design. Viscous friction coefficient change is seen
in Figure 4-16 of section 4.3.1.

2.2.2. State of the art

A profile generator is currently used as the pitch angle controller. Since the profile generator is not
suitable for individual pitch control or tower damping control, a new pitch angle controller has to be
developed. The following four problems in designing the pitch angle controller were researched
separately in literatures.

Sinusoidal reference value

D. Limon et. al. [48] suggested a model predictive control for a reference signal which is periodic and
whose period is known. The proposed model predictive controller has the future sequence of inputs
and an artificial reference as decision variables. The controlled system with the model predictive
control is asymptotically stable and converges to the best possible reachable trajectory.

A feed-forward (Ho(s) in Figure 2-12) is appropriate in the case when the reference is fairly arbitrary
[49]. Reference input is incorporated into the feed-back controller (C(s) in Figure 2-12). This method
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generates good tracking only for slowly changing references. Feed-forward improves performance
significantly as seen in Figure 2-13.

B To(9)
Figure 2-12: Feed-forward control concept [49]
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Figure 2-13: reference tracking with and without feed-forward control [49]

Blade’s load around pitch axis

There is no controller developed for blade’s load around pitch axis. Blade’s load is composed of
several forces such as gravity, aerodynamic force, centrifugal force and friction due to overturning
moment (see section 5 for detail).

Blade’s load around pitch axis can be regarded as disturbance in control design. Robust control
includes disturbance in the model [50], so that the disturbance does not interfere with stability of the
controller. Robust control seeks the “best” control which stabilizes the perturbation with limited
effort and seeks the “maximally malevolent” disturbance [53].

E. Elisante et al. [51] proposed a robust controller with disturbances. A multivariable nonlinear
system is considered in the study:
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x = f(x)+g(x)u+w(x)d
y =h(x)

Where xis the state variable, u is the manipulated input, d is the disturbance input and y is the
output vector. The author distinguished the process depending on the measurability of the
disturbance. If the disturbance is measured, the disturbance inputs are included in the control law. If
none or not all disturbances are measurable, the disturbance inputs are used as a constant vector or
treated as uncertainty.

A disturbance compensating model predictive control (DC-MPC) is proposed by Z. Li [52]. He applied
the DC-MPC to ship heading control in the presence of wave disturbances. The disturbance
compensation control Au satisfies the following optimization problem:

min||CBAu + Caxk -1}

AueR

Where d)(k—l) is a disturbance of the previous time step k-1. Suppose the optimal solution of the

previous equation is Au’ . In case of aA)(k —1):0, Au” =0, which leads to the standard MPC.

Input to the system is the sum of the input of the standard MPC and the input of the disturbance
compensation as:

u(k)=u" (k| k)+Au

Coulomb and sliding friction

The effect of Coulomb friction can be alleviated by means of a feed-forward friction compensator
(see Figure 2-14) [40]. A friction torque out of the friction compensator is added to the input torque
as an offset to the input signal for the motor. In ideal case, this offset is the same as Coulomb friction.
However, real Coulomb friction is compensated partly in practice in order to avoid instabilities. The
additional feed-back element provides a compensation for viscous friction.

F. Altpeter [41] suggested the feed-forward friction compensator with an adaptation process. The
adaptation process is used to reduce the risk of instability (see Figure 2-15). Y. Zhu et. al. [43] also
added static friction compensator in an adaptive controller as:

~

r=M(q)d, +C(a,9)d, +d(q)+F,d, +F.sgn(d,)-A,e,

Where 7 is the vector of generalized input forces, g is the generalized position vector, ﬁv and ﬁc are
the estimates of viscous and Coulomb friction forces, I\h,é(q,d),é(q) are the estimates of mass

matrix, centrifugal matrix and gravity vector. g, =9, —A,e, e,=9g—q,, e=q-q,, A,, A are

positive definite gain matrices. ﬁc sgn(c'],) term shows the Coulomb friction is estimated and

feedbacked in the controller.
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Friction compensation by means of a friction observer is also presented by C. Canudas de Wit [42]
(see Figure 2-16). More friction compensation methods are found in robotics such as [44], [45].

Studies on control or compensation of sliding friction are not found.

Feed-forward
Friction
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Figure 2-14: Feed-forward and feed-back friction compensators [40]
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Figure 2-15: Feed-forward friction compensator with adaptation [41]
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Figure 2-16: Friction compensation using a friction observer [42]

Viscous friction coefficient change

Ji-Ho Park et. al. [46] proposed an adaptive control for time-varying parameters. Stiffness and
damping coefficients are changed due to aging effect of the machine. Adaptive control divides
parameters into nominal and time-varying coefficients such as:
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k(t)=k + Ak(t)
b(t)=b+ Ab(t)

Where k and b are nominal stiffness and damping coefficients and Ak(t) and Ab(t) are time-varying

parameters in the range of:

Ak(t)e [Akmin 4 Akmax ]
Ab(t)e[Ab,,, ,Ab

max ]

A state space equation is represented with a nominal state matrix A* and a time-varying matrix
AA(t) as:

x(t)=(a" + AA(t)x(t)+ Bult)

Such a nominal model reference control method is employed as:

g(t)=F<(t)+ar(t)

with a nominal state variable £, r a nominal input, F a nominal state matrix and G a input matrix.

F must be stable, thus all the eigenvalues have negative real values. The nominal reference control
method reduces the error which is defined as:

A Lyapunov stability theory is used to determine the controller. The Lyapunov function is defined as:

V(t)=e' (t)Pe(t)

The matrix P must be positive definite in order to make V(t) positive. The error has to converge, so

the derivative of the Lyapunov function must be negative as:
V(t)=é"(t)Pe(t)+e"(t)Pe(t)<0

The adaptation process estimates the time-varying coefficients because of aging effect enough fast.
However viscous friction change due to temperature increase happens much faster than aging effect.
The question of if an adaptive controller changes parameters quickly enough for exact modeling is
still open.

A robust controller which considers a viscous friction change is not found, but a robust controller for
general time-varying parameters is suggested by C. Pirie [47]. This research deals with a trajectory
tracking of a linear time-varying (LTV) model which arises from linearization of a nonlinear model. A
linear time-invariant (LTI) model is obtained with linearization of a nonlinear model around an
equilibrium point. Variations of the parameters are regarded as uncertainties, which are contained in
the structured uncertainty matrix A . The structured uncertainty matrix is found in Figure 2-17 in the
form of:
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Figure 2-17: Structured uncertainty matrix for a robust control design [47]

2.2.3. Suggested solution in this research

A new controller has to handle the four problems — sinusoidal reference value, blade’s load around
pitch axis, nonlinearities of the pitch actuation system, and viscous friction coefficient change. A
robust controller shows good performance and stability in the presence of disturbances and
uncertainties.

The four problems are dealt in the robust control design as:

e Blade’s load around pitch axis — disturbance weighting function (Wd)

¢ Nonlinearities of the pitch actuation system — disturbance weighting function (Wd)
e Viscous friction change — uncertainty block

e Sinusoidal reference value — reference model and the weighting functions (Wp, Wu)

Magnitudes and frequencies of the disturbances are included in Wd-block (see a red triangle block in
Figure 2-18). The range of parameter uncertainty such as viscous friction change is defined in the
uncertainty-block (see a sky-blue rectangular block in Figure 2-18). By introducing a reference model
in the controller design, the closed-loop system behaves similar to the reference model. Designing of
the weighting functions and the reference model is explained in section 6.3.3.

Several kinds of robust controllers are listed in section 6.3. H,, and p—synthesis are chosen in this
research. The two robust controllers are supported by the Robust Control Toolbox of Matlab.

Cascade control is also robust against disturbance and relatively easy to design because it is based on
simple PD-control. . A PD-controller is tested as a baseline.
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As a test rig is built in section 4 for the two-motor-pitch-system, the load simulation for the test rig is
written in section 5. The pitch angle controllers are suggested and compared in section 6 by means of
the test rig and the load simulation.

Uncertainty

disturbance

wd
Plant

Reference
Model

Controller ‘ @

reference
position

Figure 2-18: Structure of robust Hs controller
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3. Two-Motor-Pitch-System

In this research, two motors are equipped in each blade to compensate for gear play and eliminate
torque peaks. Depending on directions and amplitudes of torques, the operation can be divided into
four modes. The four modes are explained in section 3.1. In section 3.2, several methods are
suggested and compared to distribute reference torque to the two motors.

3.1.0perating modes

Stop mode

If pitch angle stays, the pitch motor has to be braked. The brake moment must be larger than
external torque by gravity, aerodynamic force and centrifugal force. A mechanical brake is located on
the end of the motor and fastens the motor spindle automatically when no electric current is
transferred to the motor. This motor brake can be also used for a two-motor-system. Since the
gearbox amplifies the torque, a small brake is enough for fixing a large blade.

However, if the brake is operated when the pitch motor stops just in a short time, it is difficult to
apply rapid pitch actions. The problem can be solved by imposing the same amplitude and opposite-
direction torques on the two motors (see Figure 3-1). Because of sliding friction (see section 4.3.1),
the pitch angle stops despite of external torque. As the motor torque increases, the sliding friction
increases, too. The friction has to be larger than the external torque. The amplitude of motor torque
has to be chosen to resist the external torque.

Figure 3-1: Stop mode

Normal operating mode
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In order to rotate a blade around the pitch axis, one motor applies more torque than the other motor
(see Figure 3-2). The torque directions of the two motors are the opposite. One motor with larger
torque leads the pitch action and the other motor gives a tension to compensate for the gear play. In
the figure, the left motor gives a torque counterclockwise and the right motor applies a torque
clockwise. If the torque of the left motor is larger than that of the right motor, the ring rotates
counterclockwise. If the torque of the right motor is larger, then the direction is clockwise. The
amplitudes of the torques change, but the direction of each torque stays unchanged.

The torque difference leads to pitch action. Because of sliding friction, the torque difference of the
two motors has to be larger than torque out of the one-motor-system. In addition, moment of inertia
of the motor is doubled with the two-motor-pitch-system. The tension moment is fed back, but the
sliding friction and added moment of inertia requires more motor torque in the two-motor-pitch-
system. Thus the proposed two-motor-pitch-system requires more electricity than the current one-
motor-pitch-system. The disadvantage can be covered fully by extending life span of the pitch
actuation system.

Figure 3-2: Normal operating mode

Emergency mode

In an emergency, pitch action should be applied quickly. Pitch rate with 10°/sec is triggered for the
emergency shutdown [19]. Rapid pitch action requires a large pitch moment so that both motors
drive moments in the same direction (see Figure 3-3). Gear play is not compensated for, but
emergency cases do not happen frequently. Thus, this strategy is more economical than using large
and expensive motors.
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Figure 3-3: Emergency mode

One-motor mode

Current wind turbines with one pitch motor per each blade stop their operation if one motor is out of
order. In offshore wind turbines, harsh weather conditions often prohibit technical experts from
accessing the turbines and it leads to economical loss of the wind turbine operator. However if one
motor is out of order in a two-motor-pitch-system-turbine, another motor can drive like a one-
motor-pitch-system (see Figure 3-4). The wind turbine does not need to stop. Gear play is not
compensated for in this case, but this is an extraordinary case which seldom happens.

.

Figure 3-4: One-motor mode

3.2.Torque distributor

3.2.1. Modes of torque distributor

In order to provide tension on the blade root bearing, two motors have to drive in the opposite
direction. Different torque in two motors requires two pitch angle controllers as in the upper graph
of Figure 3-5. Torquel and TorqueZ2 in the graph must have the opposite sign in the normal operating
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mode. If the amount of Torquel is higher than the amount of Torque2, the pitch motor 1 ‘drives’ the
blade rotation and the pitch motor 2 ‘gives tension’ on the blade root bearing. The two pitch
controllers act differently depending on the situation. Whereas the pitch angle controller of the
‘driving’ pitch motor acts like the current pitch angle controller, the pitch angle controller of the
‘tension’ pitch motor may order a small torque. This method leads to more variable control
operations, but the two controllers can interact with each other and it makes control design difficult.

One pitch controller with a torque distributor can replace two pitch angle controllers (see lower
graph in Figure 3-5). Pitch angle controllers can be built like current one-motor-pitch-systems. The
torque distributor determines the reference torques of the two motors. The sum of Torquel and
Torque?2 is the same as the input of the torque distributor. In a normal condition, the outputs of the
torque distributor have the opposite sign. Although this method requires an additional torque
distributor, the pitch angle controller can be designed as the existing ways. Thus this method is
chosen in this research.

Torque distributors have the following 3 modes:

e Both motors active
e One motor out of order
e Both motors out of order

The mode both motors active corresponds to stop mode, normal operating mode and emergency
mode in section 3.1. The mode one motor out of order is the same as the one-motor-system. If both
motors are out of order, stopping the turbine is the only option.
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Figure 3-5: Pitch actuation system without and with torque distributor

3.2.2. Maximum torque and stationary torque

The maximum torque of a torque distributor is chosen based on the motor and gearbox. The smaller
value between maximum torque of the motor and gearbox is selected as the maximum torque of a

torque distributor.

Figure 3-6 shows rated torque out of the motor is 34.3Nm. Rated torque of the gearbox is written in
Figure 3-7. In the figure, | can choose the lowest time span because our experiment does not take
much time. Torque on the motor side is obtained by dividing output torque into gear ratio, 63.2. The
maximum output torque is 1.2 times the rated torque [20] and gearbox efficiency is assumed to be
90%. 1.25 is recommended as the safety factor of a power transmission [21].

The allowed input torque of the gearbox is:

gearbbox —

63.2-1.

2000-1.2

25.09

38




which is slightly less than rated torque of the motor. Thus the maximum torque of a torque
distributor is decided to be 34Nm.

Figure 3-6: rated torque out of the motor

301L

Ms2 [Nm]

i
' nz-h nz-h nz-h nz-h nz-h nz-h

1: 10000 | 25000 | 50000 | 100 000 | 500 00O |1 00O 00O

| | 632 | 2000 2000 1750 1700 1350 1100

Figure 3-7: rated torque of the gearbox [20]

Stationary torque is the torque of a motor which gives torque in the opposite direction of the
rotation. In stop mode of section 3.1, amplitude of the torque out of each motor is the stationary
torque. Figure 3-8 shows an example where the stationary torque is 5Nm.

Stationary torque increases sliding friction which helps to withstands external loads. Higher
stationary torque resists more external loads but requires more electricity consumption. The
amplitude of the stationary torque has to be chosen based on turbulent wind conditions.
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Figure 3-8: stationary torque = 5Nm

3.2.3. Art of torque distributors

As seen in the lower graph of Figure 3-5, reference torque is divided to torque-1 and torque-2 in the
torque distributor. The main purpose of the torque distributor is that the two output torques must
work in the opposite direction in case of the normal mode in section 3.1.

Three kinds of torque distributors are suggested in Figure 3-9, Figure 3-10 and Figure 3-11. Torque
distributor-1 and 2 were presented by M. Hackl [13]. Stationary torque is chosen to be 5Nm for the
test.

Maximum torque of each motor is limited to 34Nm (see (3-1)) in the torque distributors. In order to
compare the effect of torque distributors, a torque distributor-base is also suggested (see Figure
3-12). Torque out of motor-1 is the same as motor-2 with a torque distributor-base. Gear play is not
compensated for in this case.

The horizontal axes in the Figure 3-9 - Figure 3-12 are input torque of the torque distributor. The
input torque is the same as the sum of the torques out of motor-1 and 2. The vertical axes are torque
of motor-1 and 2. For example in Figure 3-12, total torque of 20Nm is distributed equally to the two
motors, thus each motor receives 10Nm. Since the torques of the both motors have the same sign,
no tension is applied in this case. On the other hand, outputs of the torque distributor-1 are 25Nm
and -5Nm, which act in the opposite direction each other and compensate with gear play.

All the torque distributors pass points where torque of a motor is zero (see red circles in Figure 3-9 -
Figure 3-11). On the points, one motor does not give torque, thus gear play is not compensated for.
The point has to be as far as possible from the zero point.
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Figure 3-9: Torque distributor-1
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Figure 3-10: Torque distributor-2
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Figure 3-11: Torque distributor-3
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Figure 3-12: Torque distributor-base

Maximum torque is achieved if two motors give torques in the same direction. Larger maximum

torque ensures better performance in emergency cases.
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Total torque if a motor gives no torque and the maximum total torque with four torque distributors
are written in Table 3-1. Torque distributor-1 wins the maximum values in both cases.

Total torque if a motor gives no Maximum total torque
torque
Torque distributor-1 34 Nm 68 Nm
Torque distributor-2 10 Nm 58 Nm
Torque distributor-3 8.7 Nm 68 Nm
Torque distributor-base ONm 68 Nm

Table 3-1: total torque if a motor gives no torque, maximum total torque

3.2.4. Comparison of torque distributors

As shown in Table 3-1, torque distributor-1 can hold more tension than other distributors. If total
torque is bigger than 10Nm and smaller than 34Nm, only torque distributor-1 can avoid gear play. It
is tested in the test rig. The second and third graphs in Figure 3-13 show that only torque distributor-
1 does not have vibrations. Other torque distributors have torque peaks after the torque graphs pass
0 Nm. For example, torque distributor-base (TD-base) passes a point of zero torque at 0.7 second
and vibration occurs at 0.8 second. Torque is measured with a torque sensor between the motor and
gearbox (see the golden cylinder in Figure 3-14). The surface, where gear teeth meet, is changed as
the sign of torque is changed.

The reference torque of torque distributor-1 is the biggest and torque distributor-base is the smallest
in the lowest graph of Figure 3-13. Large tension between two motors increases sliding friction so
that total torque is increased also. Sliding friction, which is explained in section 4.3.1, is a torque-
dependent friction.

Simulations and experiments in the later sections are done with torque distributor-1. Reference
torque is limited to 29Nm in normal operating mode to ensure tension. In the case, one motor has
34Nm and the other has -5Nm. In emergency mode, the torque limit is increased to 68Nm.
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Figure 3-13: Torque distributor comparison, test rig

Figure 3-14: Torque sensor
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4. Testrig

4.1.Composition of test rig

The pitch actuation system consists of several components. Characteristics of each component have
to be determined for modeling of the system. The main characteristics are moment of inertia, spring,
and damper. The characteristics primarily influence speed and torques of the system. The three
elements determine the natural frequencies of the system.

Motor

\

Spring,
Damper

Moment
of inertia

Figure 4-1: Motor model

The servo motor, used in the test rig, is composed of a rotor, stator, power electronics, and torque
controller. Electrical parts are not necessary to be modeled because input of the motor is not current
but torque. An inverter is connected between the motor and the pitch angle controller. The inverter
converts the reference torque to current. As long as the current limits of the inverter are not reached,
the electrical model is not required since the process runs much faster than the mechanical
movement.

Mechanical characteristics, e.g. moment of inertia, spring, and damper, are needed for the modeling
(see Figure 4-1). Moment of inertia causes the system to act slowly. The model with moment of
inertia is shown in Figure 4-2. The spring and damper are related to differences of position or speed
(See Figure 4-3).
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Figure 4-2: model with motor moment of inertia
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Figure 4-3: model with spring and damper

Clutch and shaft

The maximum torque is limited by the pitch angle controller and load simulator. However, mistakes
can happen while designing the controller or simulator. In the test rig, we set up clutches (see Figure
4-4) only to the motors connected to the pitch angle controller because the pitch angle controller
usually gives more torque than the load simulator. The clutches are attached to the motor in order to
protect the gears, the weakest component in the test rig. The maximum torques are limited as
software by the pitch angle controller and as hardware by the clutch. The maximum torque out of
the pitch angle controller is set to be lower than that of clutch in order to avoid clutch release.

If the torque exceeds the limit, balls in the clutch leave the form and power stops being transmitted.
When the torque is reduced, balls go back to the ball bed again after they slip for a short time around
the ball bed. The power train is reconnected (see Figure 4-5).

S-R flipflop is used in the model to decide whether the clutch is connected or not. S-R means Set-
Reset. Figure 4-6 shows the connection, departing, and reconnecting processes. !Q=1 ! means that
the clutch is connected and !Q =0is disconnected.
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Figure 4-4: Clutch

Usual case Overloaded case

Figure 4-5: Behavior of clutch in usual and overloaded case [23]

T=Tmax T=Trest 0=0szlip
S 0 1 0 0
R 1 0 0 1
1Q 1 0 0 1

Figure 4-6: Process of S-R flipflop and output [23]

The shaft is the component where most of the deformation occurs. Especially the shaft on the pitch
actuation system has a rubber (see red part in Figure 4-10), the shaft on the pitch actuation system
bends more than that on the load simulator. The spring and damping effect of the whole system is
mainly affected by the shaft.

Gearbox

A simple gear system is shown in Figure 4-7. Gear play and torsion stiffness are ignored for simplicity.
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Figure 4-7: Simple gear model

The differential equation on the left axis is

L8, +b8, +T, =T,

(4-1)

where T is the generated torque of a motor and T; is torque transmitted to the right axis.

The right axis has a similar equation.

T,=50, +b,%, +T,

where T, is an output torque.

Work transferred from left to right axis is the same. Thus

T9,=T,0, or T, =iT, or U,

where i:&

Nl
Equation (4-1)and (4-2) can be combined as follows.

.. . 1
JogUs +b,,0, =T, _TTL
With
1 1
'qu:'ll +_2‘12 , beq:b1+_2b2

i i

(4-2)

(4-3)

A gear needs a gap to place lubricating oil. The gap is called gear play, clearance, or backlash.

Tolerance during production is also a reason for gear play. Gear play of the gearbox in the test rig is

about 60° on the fast side. In the simulation using Matlab/Simulink, gear play is not modeled with

backlash but with lookup-table because the input value has to be a position difference.

Pinion
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A pinion (see Figure 4-8) itself has only moment of inertia. The gear mesh between the pinion and
ring has friction and gear play. Gear play between pinion and ring is very small, but it is enlarged to
around 30° at the motor position due to gear ratio.

Ring

Mechanical characteristics of the gear mesh between the pinion and ring are contained in the pinion
model. The ring (see Figure 4-8) has only moment of inertia and friction. Moment of inertia of the
ring is divided by a square of the gear ratio to compare the value in the motor side. Thus the
parameters of the ring have a small influence in spite of its large diameter and heavy mass.

4.2.Pitch actuation system modeling

Six kinds of models

A controller has to be errorless and designed to run the test rig in a stable manner. The controller is
made based on a model of the test rig. We predict the behavior of a real system and prevent errors
by the use of simulation, which also requires a model.

A model is a simplification of a system. Mass, spring, and damper are typical elements of mechanical
system models. Friction is also added in this study.
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Motor, clutch, gear, pinion, and ring are essential parts for modeling of the test rig. The model can be
simplified by combining two or more parts together. Detailed models, e.g. complete model or
intermediate model of Figure 4-9, represent the real system precisely. On the other hand, a simple
model helps designing controllers and reduces difficulties in obtaining parameters.

Two things are to be considered as a model is chosen. The first thing is if the model represents
enough well dynamic characteristics of the real test rig. It means the output of the model acts the
same as the real test rig if the input is the same. In this research, motor torque is the input and ring
position is the output.

The second thing to consider is if the model parameters can be obtained with small uncertainties.
Mechanical parameters such as moment of inertia, friction and stiffness are not offered except
motor. Numerical estimation is also difficult because of complex shape of the components. The
gearbox is enclosed by a case and its detail drawing is not available. Pinion and ring have gear teeth
whose moment of inertia is difficult to be estimated. Thus experiment is the only way to estimate
parameters. Motor has to be connected in order to get the dynamic characteristics. Because of the
shape, it is difficult to connect each part directly to a motor. Uncertainty of the each component is
accumulated as parameters of a part are measured if the part is not connected to motor directly. For
example, if complete model is chosen, uncertainty of the parameters in ring part is influenced by
uncertainties of motor, clutch, gearbox and pinion.

The second thing is the reason why a simple model is chosen in this research. The first thing is
confirmed in section 4.4.

Three simple models are presented in Figure 4-9. The main part of stiffness is an interface between
the clutch and gearbox because the part is composed of rubber. The red component in Figure 4-10 is
rubber, thus simple model-3 is chosen.

A clutch is not equipped in M3 and M4. Instead, a hollow shaft is the main part of stiffness. Models of
M1&M2 and M3&M4 should be built differently. The exact model becomes Figure 4-11.
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Complete Model

Motor feeest Clutch fee=sd GearbOX jmsss=el Pinion f==== Ring

Intermediate Model

Motor + Clutch pu GearboX pmss=sd Pinion === Ring
Plain Model

Motor + Clutch + Gearbox pummsl  Pinion ===  Ring
Simple Model - 1

Motor + Clutch + Gearbox — Pinion + Ring

Simple Model - 2

Motor + Clutch + Gearbox + Pinion ) Ring

Simple Model - 3

Motor + Clutch fr— Gearbox + Pinion + Ring

Figure 4-9: six kinds of models (partly from [23])

Figure 4-10: Two kinds of shaft
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Motor + Clutch I—I
Motor + Clutch I—
Motor I—

Motor I—I

Figure 4-11: precise model of simple model-3

Gearbox + Pinion + Ring

Linear model

Although nonlinear controllers have been developed in the last decades, linear controllers are still
the main stream of the controller design. The suggested controllers in this research are also linear
controllers, thus a linear model has to be designed first.

The simple model-3 can be written in a linear state equation like (4-4). The linear model is a basic to
build a nonlinear model in Simulink. The controllers in this research are also designed based on the

linear model.
X=Ax + Bu
(4-4)
y=Cx+Du
with
x=10,,0,,05,0,,0,,0,,0,,05,6,,6.]
[0 0 0 0 0 1 0 0 0 0 i
0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 1
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B= {0,0,0,0,0,%,0,0,0,0

1

1

c=/0,0,0,0,—
i

,0,0,0,0,0}
D=0

where k;,d;,l; are i-th stiffness, damping and moment of inertia. r is viscous friction added on the
ring. Viscous friction varies depending on temperature in the gearbox, so a mean value is used for
viscous friction parameter in the modeling. i is the total gear ratio of the gearbox and pinion. 0,,19,

are the angle and speed of i-th motor and ring.

Two motors operate as pitch actuators, but one reference value is originally given and transferred to
two motors via torque distributors. The controller has to be designed as if only one motor is active,
thus matrix B has only one column.

Nonlinear model in Simulink

Figure 4-12, Figure 4-13 and Figure 4-14 show a model of the test rig. The model is built in
Matlab/Simulink. Nonlinearities such as Coulomb friction or gear play are contained in the model.
The controllers are designed based on the linear model, but they are tested in the nonlinear model to
validate their performances.
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Figure 4-12: model of the test rig
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Figure 4-13: M1234 of Figure 4-12
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Figure 4-14: M-12 of Figure 4-13

4.3.Parameter estimation

The mechanical characteristics, e.g. friction, moment of inertia, stiffness and damper, are required
not only to simulate the test rig similarly but also to build a suitable controller. Both friction and
damper are the same regarding that both dissipate kinetic energy and are functions of rotational
speeds in the system. The difference in the system is that friction is a function of absolute speed of
each element and damper is a function of relative speed of the connecting point.

The importance of parameter estimation is not damaged though a robust controller is designed.
Precise parameters enhance the stability and performance of the controller by reducing parameter
uncertainties.

4.3.1. Friction

Friction is representative characteristics in a moving system. It causes tracking error and undesired
motion. Coulomb friction occurs between two surfaces and is also called “dry friction”. Whereas
Coulomb friction is indifferent from speed, viscous friction is proportional to speed. The two frictions
are enough for describing most frictions in a mechanical system. However, load-dependent sliding
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friction is important as well in this research because all the four motors drive separately and create
different loads on gear teeth. There are several more friction models such as Stribeck, Dahl’s and

LuGre model, but they are not dealt with in this research because the models focus on the very low
speed.

Coulomb and viscous friction

Coulomb friction is constant and acts in the opposite direction of velocity. Viscous friction increases
linearly as velocity increases. Due to linearity, viscous friction can be easily used for designing a
controller. In very high speeds, viscous friction increases with a power of 2, but such an exponential
increment is not seen in the test rig since maximum speed in the motor is limited to 3000 rpm.
Friction equation with Coulomb ( F.) and viscous ( F, ) friction coefficients is defined as:

F=F -sign(a))+ F, o

@ is a rotational speed. The friction equation is also illustrated in Figure 4-15.

Fc

\

Figure 4-15: Coulomb and viscous friction

A problem with viscous friction is that the viscosity of the fluid in the gearbox is largely influenced by
temperature. Figure 4-16 shows that the speed increases in spite of the constant torque. Viscous
friction decreases as the temperature increases. A sensor is not equipped in the gearbox, thus the
average viscous friction coefficient is used for building models and controllers. Minimum and
maximum viscous friction coefficients are added in designing robust control.
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Figure 4-16: Speed increment with the same torque
Sliding friction

Sliding friction is caused by slippage between gear teeth. Minimizing the sliding friction is one of the
main considerations of tooth profile design. Kuria et al. showed sliding friction occupies 98% of
power loss for gear trains at low speeds (less than 2000 rpm) [24]. Sliding friction is referred to by
different names, e.g. tooth friction loss [25], mechanical power loss [26] and gear friction loss [27].

The equation for power loss due to sliding friction is written by Martins et al. [27]:

Pfr :kl 'Pin 'I"lm
where k; is a constant, P, isinput power and u,, is the sliding friction coefficient. By dividing the
equation with velocity:

Ms/[ding = kl ' Min ' I’lm

where M is sliding friction, M,, is input torque. If ester oil is used as a lubricant in the gearbox,

sliding

sliding friction coefficient u,, is defined as [27]:

F 0.0945
u,, =0.048 -k, ( b%j

where k;is a constant, F,, is tooth normal force and V is entraining speed.
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As tooth normal force is proportional to input torque and entraining speed can be replaced by
rotational speed, sliding friction can be expressed as:

0.0945
M.
Msliding = k ( l%)j ’ Min

where k is a constant number and w is rotational speed.

Since four motors with gears are used, the total sliding friction is:

oy 0.0945
Msliding =k- 2( m%) ' Min,i (4-5)

i=1

Figure 4-17 shows sliding friction decreases as motor speed increases and high torque induces high
sliding friction. The rotational speed and torque are measured by experiment in the test rig. The
sliding friction is determined according to (4-5). The coefficient k is not known, thus an arbitrary
constant is given. The relationship between torque and sliding friction with constant rotational speed
is also expressed in Figure 4-18. If rotational speed is constant, large torque induces large sliding
friction.

sliding friction [Nm)

: : —+— M1 M2 +HM3 +HRA=EMm
| SR U . W1 +M2+03 +hA4=ENm
: : —— M1 +M2+W3+H4=10Nm
: ; —+— M1 +HAZ2 +HA3+HA=12Mm
0 50 100 150 200 250
rotational speed [rad/zec)
Figure 4-17: rotational speed vs. sliding friction
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Friction equation

The friction equation is expressed as:

Friction= Coulombfriction+ viscousfriction+sliding friction
velocity (4-6)

— coulomb-
coutom |velocity|

+ f,1sc0us (temperature)-velocity + f, ... (torque, velocity)

The parameters are gained with the least-square-method. In case the sum of torque is fixed, sliding
friction comprises a larger percentage if each torque varies greatly like the left bar in Figure 4-19.
This means less deviation of each torque induces low sliding friction and hence, high speed. The
viscous friction coefficient is regarded to be fixed. Coefficient k in sliding friction is not known, thus
sliding friction in the figure is not directly calculated. Sliding friction is regarded as the remaining
torque after viscous and Coulomb frictions are subtracted from total torque.
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Figure 4-19: Components of friction — coulomb, viscous and sliding friction, total torque=12Nm

Alternative to the sliding friction

Figure 4-20 shows three cases where torque direction differs. The torque sum indicates friction. The
friction graphs of the three cases are roughly parallel. The difference is sliding friction and it is
constant if the tension between two motors is fixed. The constant sliding friction can be regarded as

an added coulomb friction.

Thus the new friction equation is:

) velocity

2
Friction = Z[ F-outoms (tENSION, J + £ iscous (temperature ) - velocity (4-7)

Py ' |velocity|

with

tension =—min(| M, |,IM, |)-sign(min(| M, |,IM, |))
tension, =—min(| M, |, IM, |)-sign(min(| M, |,IM, |))

where M, is torque out of motor-i.

M| =M,

In case M; =5Nm, M, =-5Nm and either M, =-5Nm, , then

M| <|M,| or M, =—5Nm,

both tension; and tension, are 5Nm. Figure 4-21 shows speed and torque in this case. The sum of
Coulomb and sliding friction is determined as the graph is extended to the zero velocity. The slope is
the viscous friction coefficient. The minimum and maximum coefficients are:

Friction coefficient value
Minimum viscous friction coefficient [ Nm-sec/ rad ] 0.0628
Maximum viscous friction coefficient [ Nm-sec/ rad ] 0.2990
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Minimum sum of Coulomb and sliding friction [ Nm] 7.837

Maximum sum of Coulomb and sliding friction [ Nm] 8.6099

Table 4-1: Viscous friction coefficient and sum of Coulomb and sliding friction
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Figure 4-21: Friction graph

4.3.2. Moment of inertia of the whole test rig
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Moment of inertia is the most important parameter in servo systems. The numerical way is not
suitable because the structure of the gearbox is unknown and the shape of gear teeth in the pinion
and ring is too complex to calculate. Thus, the moment of inertia of the test rig has to be calculated
by means of measurement.

The main obstacle in measuring the moment of inertia is friction. As mentioned in section 4.3.1, the
viscous friction changes according to the gearbox temperature. | must design a method which
determines the moment of inertia even though friction is unknown. In this section, four kinds of
methods are suggested to determine the moment of inertia of the whole test rig. +1Nm is given for
tension in the system (see Table 4-2). If all the motors work in the same direction, only the parts near
the motors are measured. That is not expected in this experiment.

Title 12Nm 15Nm 18Nm
before after before after before after
M1=M3 7 1 8.5 1 10 1
M2=M4 -1 -7 -1 -8.5 -1 -10

Table 4-2: Given torques for estimation of the moment of inertia

The moment of inertia of each motor set is not measured directly but estimated by means of the
stiffness coefficient and the natural frequency. The natural frequency of the test rig is important for
controller making so that moment of inertia of each motor set should be gained with natural
frequency. The moment of inertia of the ring can be determined by subtracting the moment of
inertia from four motor sets from that of the whole test rig.

Current method

Acceleration in each step and friction subtracted from input torque are used to draw moment of
inertia in a conventional way (see Figure 4-22).

T=l-a+f(o)
where T is driving torque, | is moment of inertia, « is acceleration, and f(a)) friction.

Due to the vibrations in Figure 4-23, large deviation of the moment of inertia is seen (see Table 4-3).

63




200

)
@
(2]
3

£ 0
o
@
@
o
[%2]

-200

0

-500

-1000

acceleration [rad/secz]

time [sec]

20 | |
15 R R
10} - ‘ ——_
torque (12Nm)
5l friction (12Nm) | |
torque (15Nm)
% oL friction (15Nm) ||
- torque (18Nm)
5+ friction (18Nm) |+
_10\4 ,,,,,,,, i,,,,
1 Asp-
-20 1 1
0 2 4
time [sec]

Figure 4-22: Lines for moment of inertia calculation
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Figure 4-23: Moment of inertia over time

[Nmsec2/rad] mean min Max
. 0.0156 0.0622
Total test rig 0.0355 (-55.9%) (+75.3%)

Table 4-3: Moment of inertia with the current method without friction estimation (difference from mean)
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Proposed method-1

Friction is compensated for on the two points where the speed sign is opposite and the magnitude is
the same. The slope of the line which connects the two points is the acceleration. From the
acceleration and torque, moment of inertia can be gained as:

- ﬁg(ﬁ) (T(Qt,)-T@QE)) , Qt,)=-0f)

a
o

speed [rad/sec]
o

-50
0.9 1 11 12 13 14 15 16 17
time [sec]
T T T T T
— O RERES IR - .
E | | | | |
E | | | | |
g O e
=2
S 1 1 1 1 1
@] | | | | |
T A0 - iatatetelsiulstuiets - F---1

time [sec]

Figure 4-24: Lines for the moment of inertia calculation

Figure 4-24 shows the speed characteristic curve where the total torque changes from 12Nm to -
12Nm. The slopes of the lines decrease as the magnitude of the points increases. The slope indicates
acceleration and is inversely proportional to the moment of inertia. Thus the moment of inertia
increases as the pair of points move farther from the point with zero velocity (See Figure 4-25).
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Figure 4-25: Moment of inertia over speed difference

The moment of inertia is obtained with several experiments and summarized in Table 4-4.

[Nmsec2/rad] mean min Max
. 0.0275 0.1135
Total test rig 0.0493 (-44.2%) (+130.1%)

Table 4-4: Moment of inertia with method-1 without friction estimation (difference from mean)

Proposed method-2

In Figure 4-24, the magnitude of the velocity decreases quickly to zero but increases slowly to a
constant value. The reason is that friction helps velocity decrease and obstructs velocity increment.
Choosing two points which are an equal distance apart from a time of zero velocity can be a good
alternative to the previous method. The equation of moment of inertia is:

- m (T(Q,))-T(Q)) | % .t

The speed graph passes zero at 1.09 seconds in Figure 4-26. The black line in the figure connects the
point at 1.09-0.04 seconds and 1.09+0.04 seconds. The moment of inertia with this method is listed
in Table 4-5. The deviation of moment of inertia with this method is much smaller than with method-
1 (see Figure 4-27).
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Table 4-5: Moment of inertia with method-2 without friction estimation (difference from mean)
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Proposed method-3

In a constant speed, the speed is only dependent on friction. However, if a machine is in motion and
its speed is changing, the current speed is not decided by the current friction but the friction
accumulation from zero speed. The two points are chosen where areas of speed over time are the

same (See Figure 4-28). The moment of inertia is determined as:

iinls (T(Q(t,)-T(Q()) J:O Otpt = _J:Q(t)jt

' ak,)-06)

The moment of inertia is drawn and written in Figure 4-29 and Table 4-6.

speed [rad/sec]

torque [Nm]

50
0
-50
0.9 1 11 12 13 14 15 16 17
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0.9 11 12 13 14 15 16 17
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Figure 4-28: Lines for moment of inertia calculation
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Figure 4-29: Moment of inertia over speed difference
[Nmsec2/rad] mean min Max
0.0241 0.0334
Total i .
otal test rig 0.0303 (-20.5%) (+10.4%)

Table 4-6: Moment of inertia with method-3 without friction estimation (difference from mean)

Proposed method-4

As the friction changes at different temperatures in the gearbox but the temperature is hard to
measure, moment of inertia varies at different temperatures. If the torque changes when the speed
is constant, the difference between current and former torque is used for acceleration. At the instant
of torque change, magnitude of the acceleration soars and is reduced to zero (see Figure 4-30).

The moment of inertia with this method is:

peak

where J is moment of inertia, T, is current torque, T, is former torque, and a ., is acceleration on

pea

the peak.
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Figure 4-30: Lines for moment of inertia calculation
[Nmsec2/rad] mean min Max
. 0.0281 0.0288
Total test rig 0.0286 (-1.5%) (+0.9%)
-1, 0 . 0

Table 4-7: Moment of inertia with method-4 without friction estimation (difference from mean)

Comparison of the five methods by means of simulations in Simulink

Five methods (one current method and four proposed methods) are presented to measure moment
of inertia. The best method to determine moment of inertia can be decided by simulations. Three
kinds of simulations are performed to determine moment of inertia:

e Moment of inertia and viscous friction are modeled.
e Moment of inertia, viscous and Coulomb friction are modeled.
e  Moment of inertia, viscous and Coulomb friction and viscous friction change are modeled.

The Simulink model for the comparison is shown in Figure 4-31. Since viscous friction change is
difficult to measure in the test rig, the scope is designed to observe only Coulomb and viscous friction.
Figure 4-32 shows torque, speed and friction graphs where Coulomb and viscous friction and viscous
friction change are considered. The moment of inertia in the simulation is 1.
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Figure 4-31: Simulink-model to determine moment of inertia
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Figure 4-32: Torque, speed and friction in the simulation to determine moment of inertia

Figure 4-33, Figure 4-34 and Figure 4-35 show moment of inertia out of the three simulations. In the
event that only viscous friction is modeled, current method, method-3, and method-4 draw
satisfactory value. As Coulomb friction is added, values by current method and method-3 scatter.
Viscous friction change causes current method to no longer be valid. The value for current method
goes to negative. Method-4 in all cases possesses a very close value to the given moment of inertia.
Its maximum tolerance of moment of inertia is 0.5%.
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Figure 4-33: moment of inertia from simulation with viscous friction
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Figure 4-34: moment of inertia from simulation with viscous and Coulomb friction
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Figure 4-35: moment of inertia from simulation with viscous, Coulomb friction and viscous friction change

Despite method-4 inducing the most correct value, other methods are not useless and can be used as
references. Figure 4-36 shows the moment of inertia with current and three methods. If the speed
difference is small, moment of inertia with method-1 is close to the given value. The moment of
inertia with method-2 at a small time difference is near 1. Similar to method-1, method-3 has the
correct value at a low speed difference. The moment of inertia by current method can be used only
near the point where torque changes.
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Figure 4-36: moment of inertia
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Summary - moment of inertia

Current method induces a large deviation, making it unreliable. Method-1 and 2 are relatively easy to
use. Method-3 is physically more precise than the first two methods. Method-4 is the best way to
determine moment of inertia because it minimizes the effect of friction on determining moment of
inertia. The moment of inertia with the six methods is listed together in Figure 4-37. In the figure,
method-4 has the least deviation.

Moment of inertia [Nm*seczlrad]

0.12

S ———————

0.08) - T ETTT T

o R

0.04f

0.02F -t -

0

current method method-1 method-2 method-3 method-4

Figure 4-37: summary — moment of inertia

4.3.3. Parameters of each motor set

Stiffness coefficient, damping coefficient and moment of inertia are the essential mechanical
parameters in each motor set. In designing a controller, the most important factor is the natural
frequency, which is decided by the three parameters.

There are two ways to obtain the parameters. In both methods, natural frequency remains the same.
The first way is:

1. Stiffness (K )determination by measurement
2. Logarithmic decrement (6 ) and damping ratio (¢ ) from position and torque

3. Damped natural frequency ( f,) from position and torque measurement
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4. Undamped natural frequency ( f, ) by means of damped natural frequency ( f,) and damping
ratio (7 )

5. Moment of inertia (J) from stiffness coefficient (K ) and undamped natural frequency ( f,)

6. Damping coefficient ( ¢ ) from damping ratio (¢ ), undamped natural frequency ( f, ) and

moment of inertia (J)
The other way is:

Moment of inertia ( J Jdetermination by measurement
Logarithmic decrement (6 ) and damping ratio (¢ ) from position and torque

1

2

3. Damped natural frequency ( f,) from position and torque measurement

4. Undamped natural frequency ( f,) by means of damped natural frequency ( f,) and damping
ratio (¢ )

5. Damping coefficient ( ¢ ) from damping ratio (¢ ), undamped natural frequency ( f,) and

moment of inertia (J)
6. Stiffness (K ) from moment of inertia (J) and undamped natural frequency ( f,)

With the first method, stiffness is obtained directly from measurement. However, friction interferes
with movement in a stiffness test. In particular, sliding friction hinders measurement because it
increases as the counter tension increases. Ways to compensate for friction in the stiffness test have
not been developed. Thus, stiffness cannot be measured correctly.

The second method is chosen to get the parameters. In the previous section, several methods are
suggested to compensate for friction while the moment of inertia is determined.

Moment of inertia

In the second method, the moment of inertia of the motor and clutch is measured because the
connecting point of the clutch and shaft is the main part of stiffness. The material of the connecting
point is rubber, thus it deflects much more than other parts. The next important part of stiffness is
the shaft. Whereas M1 and M2 equip clutches, M3 and M4 connect motors directly to shafts (see
Figure 4-10). The moment of inertia written on the motor is used for M3 and M4 (see Figure 4-39).

In section 4.3.2, method-4 is chosen as the best and other methods are correct in a restricted region.
Unlike the acceleration graph of the whole test rig in Figure 4-22, the acceleration with a motor and
clutch vibrates greatly (see Figure 4-38). Thus, method-4 is not appropriate in this case. The next best
methods are method-2 as seen in Figure 4-37. Method-2 is used to determine the moment of inertia
of a motor and clutch which is listed in Table 4-8. Since clutches are equipped in M1 and M2, the
moment of inertia of M1&M2 is bigger than that of M3&M4.
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Figure 4-38: Speed, acceleration and torque of M2
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Figure 4-39: Moment of inertia of a motor

Moment of inertia (J) [Nm-sec?/rad]

Motor set -

mean min max
M1 & M2 0.00649 0.00593 0.00715
M3 & M4 0.00467 0.00467 0.00467

Table 4-8: Moment of inertia of M1&M2 and M3&M4

The moment of inertia of the ring part is calculated by using Table 4-7 and Table 4-8. Moment of

inertia of the ring contains only the uncertainty of the whole test rig.
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Moment of inertia (J

) INm-sec?/rad]

ring
mean min max
Ring 0.0063 0.0058 0.0065

Table 4-9: Moment of inertia of ring

Natural frequency

Logarithmic decrement and damping ratio are gained from the magnitude of peaks in the position

graph. (See Figure 4-40)

Actual Position [deq]

—— g4 - -

HE--+F---

Figure 4-40: position and torque for damping measurement

The logarithmic decrement is defined:

where X;and X, are the magnitudes of the 1°t and 2" peaks.

Damping ratio, 7 , is gained from the logarithmic decrement as:
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6

Nar? +6°

The damping ratio in Table 4-10 is less than 1, thus the system is underdamped. It can be noticed also

in Figure 4-40.

Damped natural frequency is found from the duration between the first and second peaks. The
values are listed in Table 4-11.

Damping ratio (¢ ) [.]

Motor set

mean min max
M1 & M2 0.25 0.23 0.33
M3 & M4 0.24 0.22 0.31

Table 4-10: damping ratio of M1&M2 and M3&M4
Damped natural frequenc Hz

Motor set P q. y (fo) 1H2]

mean min max
M1 & M2 8.03 7.14 10.10
M3 & M4 10.39 9.55 11.11

Table 4-11: damped natural frequency of M1&M2 and M3&M4
Undamped natural frequency ( f,,) is calculated with the help of the damping ratio (¢ ):
__f
fn - 2
1-¢
where f,is the damped natural frequency in Hz.
Undamped natural frequency ( f,) [Hz]

Motor set -

mean min max
M1 & M2 8.31 7.39 10.45
M3 & M4 10.71 9.84 11.45

Damping coefficient

The critical damping coefficient, ¢

Table 4-12: undamped natural frequency of M1&M2 and M3&M4

cr?

is defined as:

€, =2Jw,=2-J-f, 21
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where J is the moment of inertia of M1&M2 and M3&M4. w, and f, are the undamped natural

frequency in radian and Hz.

The damping coefficient is calculated by means of the critical damping coefficient ( c,, ) and damping

ratio (¢ ):
C=C, Z

The damping coefficient is listed in Table 4-13. Because M1&M?2 have rubber in the connecting point
of the clutch and shaft, the damping coefficients of M1&M2 are bigger than that of M3&M4. M.
Abdulhadi [28] presented damping force of rubber has linear relation with the rate of displacement.

Motor set Damping coefficient (F ) [INm-sec/rad]

mean min max
M1 & M2 0.17 0.15 0.22
M3 & M4 0.15 0.14 0.19

Table 4-13: damping coefficient of M1&M2 and M3&M4

Stiffness coefficient
Since harmonic vibration occurs due to stiffness and moment of inertia, the stiffness, K, is obtained
as:

K, =J,-(27-f,)%,i=1,2,3,4

The stiffness coefficient is seen in Table 4-14. The rubber in M1&M2 is soft, thus M1&M2 have a
smaller stiffness coefficient than that of M3&M4.

Stiffness coefficient (K ) [Nm/rad]
Motor set -
mean min max
M1 & M2 17.69 13.98 27.95
M3 & M4 21.13 17.85 27.95

Table 4-14: stiffness coefficient of M1&M2 and M3&M4

4.4.Simulation vs. Experiment

A simulation must fully represent the dynamics of the real system. Figure 4-41 and Figure 4-42 show
the motor position and speed of the step response in experiment and simulation. The brief shapes of
both tests are the same, but vibration does not disappear in the experiment speed graph. The
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difference is not based on the damping coefficient. If the damping coefficient was incorrect, the
vibration would have had to vanish after 536 seconds in the figure. However, the vibration
amplitudes are not diminished in a steady state. The vibration in the steady state occurs due to
differing friction. Rough surfaces, differing distribution of lubricating oil and small errors in the design
of gear teeth may cause differing friction. Such differing friction stimulates vibration in a steady state.
A small amount of vibration in the speed graph can be disregarded because it has little effect on the
position graph. Positions and speeds in the figures are the absolute values.
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Figure 4-41: Position of four motors in experiment and simulation without controller
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Speed of M2

'€ 1000F-—-————--—----- T L ——
8 L
S 500L--- M2-Experiment
3::_ M2-Simulation
n 0 ‘
534 536
Time [sec]
Experiment in the test rig
'€ 1000f - e —
e. |
S 5000 ' M1-Experiment
93)_ M2-Experiment
« 234 M3-Experiment
Time [sec] M4-Experiment
Simulation
€ 1000F-—--—---"-""""F——————— e
E M1-Simulation
- 500F--------"-"-"- T ) )
8 M2-Simulation
7] 0 M3-Simulation
534 M4-Simulation

Time [sec]

Figure 4-42: Speed of four motors in experiment and simulation without controller

As the input is sinusoidal-shaped, the position (Figure 4-43) and speed (Figure 4-44) in the simulation
are nearly the same as in the experiment. The position graph is sinusoidal-shaped, but the speed
graph is no longer smooth when speed passes zero. Such a non-differentiable point occurs due to the
nonlinearity of Coulomb friction. Without Coulomb friction, the shape of the speed graph would be a
cosine curve.
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Figure 4-43: Position of four motors in experiment and simulation without controller
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Figure 4-44: Speed of four motors in experiment and simulation without controller
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Whereas the motors are driven directly in the figures above, Figure 4-45 - Figure 4-48 show the
graphs where the test rig follows the reference positions. A PD controller in the section 6.1 is used
for the following figures. The step response is seen in Figure 4-45. In the transient state, a small
difference is found which is affordable as the model represents the test rig.
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Figure 4-45: Position of four motors in experiment and simulation with controller

In case the reference position is sinusoidal form, the position and speed are compared in Figure 4-46
and Figure 4-47. Unlike the speed graph without controller in Figure 4-44, the speed graph in Figure
4-47 is complicated. The model represents the test rig enough well.
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Figure 4-46: Position of four motors in experiment and simulation with controller
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Figure 4-47: Speed of four motors in experiment and simulation with controller

A reference pitch angle is set as an individual pitch controller is used in a turbulent wind condition.
Like the upper figures, experiment and simulation graphs are very similar (see Figure 4-48).
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Figure 4-48: Position of four motors in experiment and simulation with reference input

4.5.Position calculator

In wind turbines, a position sensor is located on each blade root (see left graph in Figure 4-49). Pitch
angle is measured by the position sensor and is fed back to the pitch angle controller. However, the
test rig does not equip such a sensor on the ring (see right graph in Figure 4-49). The ring position
has to be estimated by using the four motor positions.
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Figure 4-49: position sensor in a wind turbine and test rig

A simple way to guess the ring position is using the average value of either two pitch motor positions
or four motor positions.

A better way is to estimate the ring position with an observer. The observer compensates for errors
of ring position by means of motor positions, speeds and inputs. When gear play is not compensated
for, gear teeth are not attached when rotational direction changes. The ring is not connected on the
moment, thus both the moment of inertia and especially stiffness are reduced in a short time. The
error of ring position can become very large and it is hard for the observer to correct the error.
Therefore, the observer can only be used when gear play is compensated for.

As seen in (4-4) of section 4.2, the test rig is modeled as:

X =Ax+Bu
y=Cx+Du
with
x=[0,,0,,0,,0,,0,,6,,6,,0,,6,,6,]
[0 0 0 0 0 1 0 0 0 0 i
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;
B= {0,0,0,0,0, Il ,0,0,0,0}

1

C

0,0,0,0,%,0,0,0,0,0}
i

D=0

where k;,d;,l; are stiffness, damping and moment of inertia of the i-th motor set. r is viscous friction.

i is the total gear ratio of the gearbox and pinion. 19i,19, are the position and angular speed of the i-

th motor sets and the ring.

The output y is ring position. The controller aims to locate ring position the same as reference
position. An observer contains estimation error terms to compensate. The mathematical model of
the Luenberger observer is defined as:

X=AX +Bu+K,(C,p.X—y)
Bobs =B
Cobs =C

where X is the estimated state and K, is a weighting matrix to compensate for estimation error.

However, the output y is the ring position to be observed. It is a paradox to observe ring position by
means of ring position. The problem can be solved by changing matrix C_,,. The matrix C,,, is

changed to:

X =A% +B,,u+K,(CpX—y)
B, =B

(4-9)

obs

obs
1
0
0
0
0
0
0
0

O O O O O O +—» O
o O O O O r» O O
o O O O O O O
O O O O O O o o
o O O b O O O O
OO O kb O O O O O
O B O O O O O o
R O O O O O o o
O O O O O o o o

The outputs of the observer become the positions and speeds of the 4 motors as follows:
. . . . T
y= [91 0, 0, 0, 0, 0, 0, ‘94]

Note that the matrix C,,, in (4-9) is used only for making an observer. For the design of linear

controllers, the original matrix C is used. The Simulink model of the observer is illustrated in Figure
4-50.
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Figure 4-50: Simulink model of the observer

As the system is X =Ax+Bu and the observer is X = A% +B,, .u+K,(C,,.X —y) , the difference

between the real state and observed state is:

e(t)=x(t)-Xt)
and observer error is:

e=A-(x=X)=K, -(Cpps - X —Cpps - X)

=(A+K,-C,, )e

obs *

The matrix K, must be chosen to make the matrix A+K, -C,, stable.

The observation matrix K, is chosen as:

1
|

K, =-100-

O O O Fr O OO0 O o o
O O P OO OO O o o
O P O OO OO o o o

O O O O O O O O O Bk
O O O O o oo o+ o
O O O OO oo r oo
O O O OO o O o o
O O O O r O O O o o

Eigenvalues of A+K, -C_,. are:
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-57.02 + 54.46i
-113.98 + 81.99i
-113.1 +50.54i
-114.33 £ 54.73i

-116.06 + 65.32i
Since all the real components of the eigenvalues are less than zero, the matrix A+K, -C,, is stable.

The system has only one input in (4-9). Therefore, matrix B, has 10 times 1 matrix. The test rig

actually has four inputs, but two are not controllable and the other two are connected via a torque
distributor. The controller can give only one reference torque. However, all four inputs can be
considered in designing an observer. The B,,, matrices of the two observers are listed in Table 4-15.

S
The Tyiter in observer-1 is the same as T1+T; in observer-2 because Ty is divided into T, and T, via
the torque distributor.

Observer-1 ‘ Observer-2

X=AX +B,,u+K,(C,,X—y)

o 0O 0 0 O
0 0O 0 0 O
0 0O 0 0 0
0 0O 0 0 O ;
0 0O 0 0 0 Tl
B, = , INput=Tpic B, = 0 0 0 | input=|’
b % p pitch b }//1 p T,
! 0 0 0
0 }’/z Ta
8 0 0 },/3 0
0 0 0
. Vo
0O 0 0 0

I
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o 0 0 O 0 1 0 0 0 0 ]

o 0 0 o 0 o 1 0 0 0

o 0 0 O 0 0 0 1 0 0

o 0 0 o 0 0o 0 0 1 0

o 0 0 O 0 0 0 0 0 1

O R T S S B B a4

h I I I,

A=0—k—20 0 ks O_d_ZO 0 d,

I l, I, l,

0 0o %o Ll 0 0o % g ds

I3 I3 I3 Iy

0 o0 o ko ok 4 4 o 9 s

Iy Iy l, I

4 4

P D L B R AP v

I A B I [ I I Lo
10 00000O0O0O0 O]
0100000O0O0O
0010000000
. _|[0001000000
7100000010000
0000O0O0T1000
0000O0O0O0OT100
000000O0GO010
100000 0 O]
01000000
00100000
00010000
0000O0O0TO 0O

K, =-100-

00001000
000007100
0000O0O0T1O0
0000O0O0TO 011
000O0O0GOO0 O

Table 4-15: Two kinds of observers

Actual ring position cannot be measured in the test rig because a position sensor is not equipped on
the ring, thus performance of the position calculator has to be estimated in simulation. In the
previous section, it is shown that the simulation with Simulink represents the dynamics of the test rig
well. Figure 4-51 and Figure 4-52 show ring position in simulation. Ring position is estimated with an
average of two pitch motors (simple), observer of one input (observer-1) and observer of four inputs
(observer-2). Estimation errors of the three methods are less than 0.1°. The observers calculate the
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position more accurately than average (simple). Observer-2 is a little closer to the actual position
than observer-1. The estimation error of observer-2 is 0.05°.

Real wind turbines equip position sensors on the blade roots, thus position calculation is required
only in the test rig. Both 0.05° and 0.1° estimation errors may be acceptable since they are not a
crucial part of this research.

without load simulation with load simulation
20 ‘ ‘ ‘ 80 e
£ | M1 T 20 -
z O T M2 | 2 T M2
‘ — M3
& O0f--—--- Lo M4l | 5 OF-——-}F---1 | ‘M4
= ! [ = [ [
-10 1 1 | 20k o ]
8 8.5 9 9.5 10 0 1 2 3 4
Time [sec] Time [sec]
without load simulation with load simulation
30 0.8 ‘
= actual = |
2 observer-1 2 06 ——————:L
= 20 -2+ = |
;% obsener-2 g oal ¥ 4 ctual
5 5 obsenver-1
_5 10 _5 0.2F-----4-— o!oserver-z
D = simple
g g of--—t-t— ‘
0 ! . ‘
0 1 2 3 4
Time [sec] Time [sec]

Figure 4-51: Ring position without/with observer in simulation of step input
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Figure 4-52: Ring position without/with observer in simulation of sine input
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5. Load simulation

Gravity, centrifugal force, rotational and thrust force are the main sources of load on pitch bearings
of a wind turbine. These forces affect pitching action by increasing:

e Torque about the pitch axis
e Friction of the pitch bearing
e Moment of inertia of the blade about the pitch axis

The load around the pitch axis can be written in an equation:

Load :Torque(Fg F Ft,FC)+Friction(Fg F Ft,FC)-sign(9)+MomentOfln ertia(Fg F Ft’Fc)-é

Ir, Ir, Ir,

where F,,F. F. F.are gravity, rotational force, thrust force and centrifugal force. 8 , 9 are speed and

acceleration of pitch angle in radian. The Matlab/Simulink model of the load simulation is illustrated
in Figure 5-1. Friction changes according to the sign of the pitch rate. Torque about pitch axis is a
function of the pitch angle and the rotor position. Inertia force is a multiplication of blade’s moment
of inertia and pitch acceleration. Since the load disturbs the pitch action, -1 is multiplied at the end of
the figure.

Load on the pitch bearing changes according to the pitch angle (see Figure 5-2). Friction due to
overturning moment and gravity are the main source of load. Torque about the pitch axis is
composed of gravity, aerodynamic force and centrifugal loading. Aerodynamic force and centrifugal
loading are neglected because they are small and parameters to calculate the forces are insufficient.

Friction, which is one of the biggest parts of load, is validated with measured data in a previous
research [33]. Details are explained in the section 5.2.

Pitch actions in case of load simulation are tested in section 6.4. The rotational speed is determined
under assumption that tip speed ratio (tsr ) is 7, wind speed (V,,,;) is 12m, hub length (h) is 2m,
blade length (L) is 40m. Thus the rotational speed is:
tsr-V. . .
w:“_»/:mf.i_ﬂ.i:o_ggm

Lo 2w g 2 2m
2 2
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Figure 5-1: Simulink block of load simulation
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Figure 5-2: Pitch angle and load around pitch axis

5.1.Torque about the pitch axis

5.1.1. Gravity

95



Blade self-weight causes not only edgewise/flapwise bending moment but also torsional moment
about the pitch axis. The frequency of the gravity loading corresponds to the rotation & of the blade
as indicated in Figure 5-3. Torque due to gravity is canceled if the pitch axis is designed to be the
same as the center of gravity.

Assuming that the center of gravity is located on the chord, the torque about the pitch axis is:

n
T, :Zm, -d;-g-sin(a+ B;)sin@ (5-1)
i=1
where
e m,:mass of the element i
e d,:distance between center of gravity and pitch axis in the element J
e :pitchangle
e B :twist angle of the element J

e O:azimuth angle of the blade from the top
e n:number of sections in a blade

Figure 5-3: Torque due to gravity

The blade data gained from Risg [28] specifies that the center of gravity is located on the same point
with pitch axis. Therefore, d;is zero and the torque due to gravity is also zero. In order to add gravity,
the distance between pitch axis and center of gravity is shifted in the load simulation. The amplitude
of gravity is almost the same as that of friction in the measurement of a real wind turbine [33]. Thus
gravity in this research is set to be the same as the friction. As seen in Figure 5-4, torque due to
gravity has maximum value if the azimuth angle, 8, is around 90° or 270° and zero at = around 0°
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or 180°. Because of twist angles, 8;, the azimuth angles for maximum or zero are shifted. Gravity

increases as the pitch angle increases as expected in Figure 5-3.

Torque due to Gravity

4 T T T | |
| 0° pitch
3L L NN\ - ] 10° pitch |
| 20° pitch
2 NN\ ] 30° pitch ||
90° pitch

1 1 1
0 50 100 150 200 250 300 350
Rotor azimuth angle []

Figure 5-4: torque due to gravity

5.1.2. Aerodynamic force - rotational and thrust forces

Forces on a blade can be calculated with the sum of forces on aerofoil sections. The two forces on a
two-dimensional aerofoil section are lift and drag forces (see left graph of Figure 5-5). Aerodynamic
force is the vector sum of lift and drag forces and it can be divided as rotational and thrust forces as
in Figure 5-5. Rotational force acts parallel to the plane of rotation and thrust force faces downwind
(see Figure 5-6).

Aerodynamic force is distributed on the surface of aerofoil sections. Regarding a point where no
torsional force is applied, the point is usually not the same as the pitch axis. Torque around the pitch
axis due to aerodynamic force is:

T, ZZFA .x-coscp=Z{L-COS((p+5)+D'Sin((P+5)}‘X

i=1 i=1
where

e F,:aerodynamic force
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L : lift force
D : drag force

1) :atantgj
L

n : number of sections in a blade
X : distance between pitch axis and a point where torsional moment due to aerodynamic
forces is compensated

@ : angle of aerodynamic force

Rotational
force

\ Aerodynamic

force

'/"Aerodynamic
' force

_ Thrust
~, force

Figure 5-5: aerodynamic force on an aerofoil section

98



Figure 5-6: thrust (left) and rotational forces (right)

Bossanyi et al. [30] assert that the aerodynamic pitching moment is difficult to predict as
aerodynamic data may be incomplete over the range of incidence of interest. M. Geyler [33] did not
consider the aerodynamic moment based on measurement. Torque due to aerodynamic force is
simulated to be relatively small in comparison with friction due to the overturning moment in section
5.2. The distance between the pitch axis and the center of torsional moment due to aerodynamic
forces, x, could not be obtained in the blade data. Aerodynamic moment is not considered in this
research.

5.1.3. Centrifugal loading

A rotating blade experiences an outward force away from the center of rotation as shown in Figure
5-7. The outward force, referred to as centrifugal force, causes blades to deflect upwind whereas
thrust force results in the blade bending downwind. Thus, centrifugal force alleviates flapwise
bending moment caused by thrust force. It is known as centrifugal relief. Bossanyi et al. [30]
mentioned that centrifugal loading is small.

Torque due to centrifugal loading is:

T, =ZC-a~cosB=Z{w2r,mi5r}~a-c056 (5-2)

i=1 i=1

where

e (:centrifugal force
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a : distance between pitch axis and a point where torsional moment due to centrifugal force
is canceled

e W :rotational speed in radian

e r,:distance of aerofoil from blade root
e m,:mass of section i

e Or: thickness of an aerofoil section

e 6:90°- pitch angle

The value a is not known in the blade data and centrifugal loading influences torque about pitch axis
small in comparison to friction due to overturning moment. Centrifugal loading is not contained in
the load simulation.

Figure 5-7: centrifugal force

5.2.Friction due to overturning moment

Gravity, aerodynamic and centrifugal loads influence the overturning moment on the blade root. The
overturning moment in Figure 5-8 affects friction of the bearing, which obstructs pitching action. The
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vector sum of Mx and My in Figure 5-9 also corresponds to the overturning moment. Bossanyi et al.
[30] mentioned that friction torque is extremely significant and has a dominant influence on actuator

demand.

blade

hub

Figure 5-8: overturning moment

The overturning moment, M is a vector sum of the edgewise bending moment, G;., and

xyB 7

flapwise bending moment, G;;. Thus:

[~ 2 2
MxyB: Gye" +Gye

Friction around the pitch axis is calculated with the Hoesch-Rothe-Erde-Formula [32].

|| -D, +22-F, 5D, 173+ M, (5-3)

xyB xyB

U
Mfriction = E (44 ‘M

p and M, , is given by the manufacturer. F,; and F, ; are forces in the z and xy-direction of the

fric,
blade’s local coordinate as seen in Figure 5-9. F,5 and F.ys are negligibly small compared to the

overturning moment, so these terms may be ignored [33].

M. Geyler [33] proposed an easier and more precise way of calculating friction on the bearing around

the pitch axis:

M =constant (5-4)

friction
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Through several measurements with wind turbines by M. Geyler [33], this new friction equation was
determined to be more precise than the Hoesch-Rothe-Erde-Formula. He tested collective pitch
control in a few above rated wind speeds and individual pitch control in a few below rated wind
speeds. The constant friction value is found through least-square-approximation.

Figure 5-9: coordinate for blade load [34]

5.3.Blade’s moment of inertia around pitch axis

Gravity, aerodynamic force and centrifugal force cause blades to bend in flapwise and edgewise
directions. Bossanyi et al. [30] found that a blade’s moment of inertia around the pitch axis is
increased by 44% due to deflection. Blade inertia may be 1/10 of pitch motor inertia because inertia
is proportional to the square of the gear ratio [30].

Blade’s moment of inertia around pitch axis is determined with flapwise/edgewise/torsional
deflections. Modeling a blade with dozens of sections is challenging for a personal computer. A
multibody model is a good option to represent blade properties and reduce complexity. Moment of
inertia with a multibody model is formulated in (5-25) and (5-26) in section 5.3.3.

Blade data is obtained from the data sheet of a test HAWC in Ris@ [29]. The information consists of
24 sets of mass, radius, modulus of elasticity, second moment of inertia, etc. By the use of modal
analysis, the blade is modeled with a 2-mass-spring-damper-system.

Blade’s natural frequencies are determined in section 5.3.1. The natural frequencies are used to get
the mechanical parameters of the multibody model. This process is written in section 5.3.2. By means
of the mechanical parameters, moment of inertia around pitch axis is calculated in section 5.3.3.
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5.3.1. Blade’s natural frequencies and mode shapes

Natural frequencies in flapwise, edgewise and torsional directions are required to model a multibody
system. Natural frequencies and mode shapes are computed using the finite element method. A
multibody system is designed to have the most similar mode shape at the first natural frequency.

Blade-bending vibrations occur in flapwise and edgewise directions. The directions are also called
weak and strong principal axes. The weak principal axis is usually regarded to be in the plane of
rotation; however, this is not the case with a twist-coupled blade. Twist-coupled blades make the
flexure about the two principal axes interact together and change natural frequencies in both
directions.

Torsional vibration is generally ignored because of high torsional stiffness. However, increasing the
turbine size requires light and soft blades, so torsional natural frequencies are not so large any more
as to be neglected. In addition, the project mainly deals with processes during fast pitching. Torsional
natural frequencies are to be considered to build a safe and precise controller.

Finite element method

The finite element method is a useful numerical technique for the calculation of natural frequencies
and mode shapes. Several commercial finite element codes, e.g. ANSYS or ABAQUS, are available.
However, a simple example such as a bar can be solved with programming languages such as
MATLAB or C. The finite element method consists of two distinct ways; discretization and connection.
A model is first divided into small parts which are called finite elements. The endpoints of each
element are called nodes. The partial differential equation for each finite element is solved and
assembled together, resulting in mass and stiffness matrices which describe the vibration of the
structure as a whole.

The mass matrix for the blade element is [34]:

M, 0 0
M=l0 M, O
0 0 M,

where
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6 \1 2

156 -22/ 54 131
v g M2 4 13 -3
BB 400 54 —131 156 221
131 =312 221 4)?

(2 1
MT:“&( ]

In the equations, L is a mass per unit length and pmx is @ moment of inertia about the torsional axis. /

represents for a length of each finite element.

The global stiffness matrix is

K, 0 0
K,=| 0 K, O
0 0 K,

where

12 -6/ -12 -6l

B | -6/ 41> 6 2°
v op-12 6 12 6l
-6/ 21> 6 4l*
12 -6/ -12 -6l
B | -6l 4% 6 2
Bl-12 6 12 6l
-6l 21> 6 4I°

The stiffness values written in the matrices are:

¢ Bending stiffness in the plane of rotation B, =E£/,, I, = Izsz
A

e Bending stiffness perpendicular to the plane of rotation B, =£l, I, = Iysz
A

7’

e Torsional stiffness B, =GI, I, is a polar moment of inertia about the pitch axis.

p

’

The matrices are used for the differential equation

MX+Kx=p
with loads on the system p.
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Each element is bent in a different amount about the principal axis. With the transformation matrix T,
the equation (5-5) is changed as:

TTMTx+TKTk=TTp (5-6)
where x is a variable based on the principal axis, whereas x is a local coordinate starting from the
bent axis.

Elements share variables with their neighborhoods. Equation (5-6) of each element is coupled by
means of the index table written in Table 5-1. The numbers in the table are named according to
Figure 5-10. The global equation of the entire beam is then:

M,Xx +K,X=p (5-7)
Wo,i Bo,i Wy, By,
Element 1 0 0 1 2
Element 2 1 2 3 4
Element 3 3 4 5 6
Element 4 5 6 7 8

Table 5-1: Index table for coupling elements

SRR IR
T 7T

uf T

U5 'j?

us us

Figure 5-10: variable numbers for the index table

The blade data is gained from a 2 MW test HAWC in Risg [28]. The first and second natural
frequencies have to be computed to model a 2-mass-spring-damper-system. The determined static
natural frequencies and mode shapes are shown in Table 5-2 and Figure 5-11. Since the blade is
flexible in flapwise and stiff in edgewise, the natural frequencies in flapwise are lower than those in
edgewise.

1%t natural frequency 2" natural frequency
flapwise 1.12Hz 3.04 Hz
edgewise 1.71 Hz 5.62 Hz
Torsion 34.76 Hz 60.11 Hz

Table 5-2: determined static natural frequencies from FEM
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1st eigenmode in flapwise 1.1164 Hz 1st eigenmode in edgewise 1.7126 Hz
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Figure 5-11: Mode shapes
Stodola method

Static natural frequencies determined with FEM can be confirmed by using the Stodola method. The
method observes mode shapes caused by arbitrary inertia loads. After repetition, the mode shape
converges and the first natural frequency is found from the formula [37]:

_\/ Tip deflection input to the last iteration
.

Tip deflection output from the last iteration

The second natural frequency is calculated in the same manner, but the orthogonality condition has
to be added. Without the condition, the mode converges to the first eigenmode. Details of the
method can be found in Clough and Penzien (1993) [36] and in section 5.3.2 which is derived from
Hansen (2000) [37].

The static natural frequencies computed by the Stodola method are presented in Table 5-3. 2"
natural frequency in edgewise direction is not listed since the value becomes a complex number after
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6% iteration. The natural frequencies by means of FEM and Stodola method are close as seen in the
table. Therefore, the natural frequencies obtained by the Stodola can guarantee the values with FEM.

1% natural frequency 2" natural frequency
FEM Stodola FEM Stodola
flapwise 1.12Hz 1.11Hz 3.04 Hz 3.14 Hz
edgewise 1.71Hz 1.73 Hz 5.62 Hz -
Torsion 34.76 Hz 31.53 Hz 60.11 Hz 60.35 Hz

Table 5-3: determined static natural frequencies by FEM and Stodola method

Natural frequencies during operation

The natural frequencies are checked in sections 5.3.1 when a wind turbine is at a standstill. However,
most of the control problems occur during operation and the natural frequencies during operation
are different from those at a standstill.

When a wind turbine rotates, the blades deflect in flapwise and edgewise directions due to the
thrust and lift forces. Simultaneously, centrifugal force on the blade conducts energy in the opposite
direction. The centrifugal force makes the blade stiff and thereby increases natural frequencies [1] .
The effect is called centrifugal stiffening.

In contrast to the increment of the natural frequencies in flapwise and edgewise directions, natural
frequencies in the torsional direction decrease during operation. One reason is blade deflection
which increases the moment of inertia in the torsional direction. A more important reason is that a
blade root in a torsional direction is not fastened during pitch actions. A blade root is connected to a
bearing which is fixed in all degrees of freedom except the torsional direction. The bearing is also
coupled to a gearbox and a motor. The natural frequencies in the torsional direction during operation
are determined by the mechanical characteristics of the blade, bearing, gearbox, and motor. Limited
mass and stiffness of the bearing, gearbox, and motor cause the natural frequencies during operation
to be smaller than those at a standstill.

However, the difference of natural frequencies in standstill and during operation is relatively small.
Thus it is not worth to modify parameters of the blade model in every rotor speed or load condition.
Thus the natural frequencies in static condition are used for the blade modeling.

5.3.2. Modeling the blade with multibody system and comparison to
FEM
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Multibody model

Calculated eigenmodes in section 5.3.1 are used for constructing a multibody system. While a large
number of bodies allows the multibody system to be similar to the real system, a small number of
bodies helps the developer to build a controller with less complexity. A compromise should be found
in-between: a system with two multibodies is selected in the research.

A bending point of the multibody system is determined where the deviation area between the mode
shape of the finite element model and multibody model is minimized [39]. Deflections at the root,
bending point, and tip are identical as seen in Figure 5-12. Note that the bars for calculating a
bending point are shorter than the length of the multibody system which will be used for simulation,
but the difference is negligible. Whereas the bending point in flapwise direction is 12" point, the
point in edgewise is 117 point where the deviation area is the smallest. Since flapwise deflection is
larger than edgewise bending, flapwise bending effect is more important in the load simulation. Thus
the multibody blade model has a joint at the 12t point.

Moment of inertia is determined by the blade information and the bending point. Eigenfrequencies
are used to calculate stiffness and damping coefficients.

1st eigenmode in flapwise 1.1164 Hz , bended at 12th point

Figure 5-12: Mode shape of the multibody (MB) model and finite elements model (FEM) at the first eigenmode in
flapwise and edgewise
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Figure 5-13: Multibody model of the blade

The multibody system of Figure 5-13 can be designed with the Lagrange equation of the second kind:

d| oL oL &swW
— = | = (5-8)
dt\ og, oq;, 6q;

The virtual work, denoted 6W , is the work done in causing the virtual displacement. Lagrangian, L, is
the difference between the kinetic and the potential energies.

From the kinetic energy,

T:%Jflé?lz +%mlL126'?12 +%J§2922 +%m2 (L36'?1 sin, + L,0, siné, )2 +%m2(L36'?1 cosé, +L,0, cosb, )2

1/, o 1. . . _ _
:E(Jll +myL? +m2L32)912 +§(122 + m2L22)1922 +myL,L,0,0,(cos b, cos b, +siné, sind, )

the potential energy,

u :%Kﬁlz +%K2 (92 - 91)2

The Lagrange function is
L=T-U

2%11912 +%12922 +J129192 cos(91 _'92)_%/(1912 _%Kz(‘gz _‘91)2

Partial derivative of the Lagrange function is
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%{%} 1+ iy oS0, — 0,)— 1,6, — 6, sin(0, ~ 0,)
%(:Tf] 1,0, + 1,6, c05(0, ~ 0, )~ sy (6, — 6, sin(0, — 0,)
aa_;l =—K,0,+K, (60, -6,)

%:—Kz(a2 -0,

The virtual work and its derivatives are

W =-D,6,56, - D, (6, - 6,) 56, - 56,)
%:—Dlél +0,(6,-6,)
% =-D, (‘92 - ‘91)

By assuming 91and Hzare small, such terms are simplified like:

sin(6, - 6,)=6, -0,
cos(6, —6?2)=1
0,0, = 6,0, = 6,6, = 0,0, =0

Thus, the equation (5-8) is linearised as follows:
s I, é | [b+D, =D, |6 | [K,+K, —K,]|8& 0
RN RN R 20| [T R 2| 1| (5.9)
where

o S =) +mlL’+m,L’

*  Jp=mylyl,

J;* is the moment of inertia of the part on the root side about the center of gravity, s;, and J;? is that

on the tip side about the s,. L3=0 leads to J;,=0 in the torsional direction.

J, J D,+D, -D K, +K, —K 0.
Let the matrix M=| + , D= ! 2 2 , K= v >l and x=| ° ,
J, 4, -D, D, -K, K, 17

2

so that stiffness parameters in K can be found from the undamped natural frequency in section 5.3.1.
To compute stiffness parameters, let the vector X in equation (5-9) be replaced with:
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1
x=M 2q

1
and multiplying the resulting equation by M 2. This yields:

IG+Dg+Kg =0 (5-10)
1 1 1 1

where [ is a unit matrix, D=M 2DM ? , K=M 2kM 2.

Since undamped static natural frequencies from FEM are applied, consider D = 0 first. The solution
g can be assumed with g(t)=ve’™" where v is a vector of constants. This substitution yields from
equation (5-10):

Kv=w’v=A2Av (5-11)

. . 2 .
as assuming the eigenvalues A=w" and eigenvectors v =0 .

1
Since M=M" , M 2 can be described like:

Then,

b | -k, K, |b ¢
| @’k +d’k,—2abK, +b*K,  abK,+abK, —b’K, —acK, +bcK,
abK; +abk, —b K, —ack, +bcK,  b?K, +b’K, —2bcK, +c’K,

From equation (5-11), the determinant is:

det(/ll—l?)

= 2 —|(a? +b7 ), +{a—b) +(b—c)2 ), |2+ {abk, + (a—b)b—c)K, > +{a?k, +(a—b)K, %K, +(b—cPK, |

Let the first two static natural frequencies in radian @, and @,, then,

(@®+67k, { ) +(b- c)} =o, +,

{abK1+(a—b)(b—c) NG +{a Kl+(a—b)2K2}{b2Kl+(b—c)2K2}=co1w2

Stiffness parameters K;and K, are determined by the following two equations.
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(a—b)2+(b—c)2 g2 _DtD @, 0
a’® +b? 2 a?+b% % o’ +b* —2ab%c
(a—b)2+(b—c)2 @, + .

== a’ +b? K2+a;+b§

A damping matrix Dis computed from a decoupled modal equation:

I¥ +P"DPi+P KPr=0 (5-12)

where P is the matrix composed of eigenvector V in equation (5-11). As the P"DP becomes

b, 0) . . _
o b |0 and D, are the same as 2{;w, and 2{,w,, where { represents the modal damping
2

ratio.

As the user defines a modal damping ratio, e.g. 0.05 in the research, D, and D, are found after some

steps. In fact, the modal damping ratio is dependent on the natural frequencies such as the following
expression. However, the modal damping ratios are often regarded as constant for easy calculation.

a 6w, .
{, =——+—=- with a, 6 : constant

2w,

The damped static natural frequencies are written in Table 5-4 and compared with undamped static
natural frequencies. The resulting parameters for damping and stiffness matrices follow in Table 5-5.

1*t undamped 1%t damped 2" undamped 2" damped
natural frequency | natural frequency | natural frequency | natural frequency
flapwise 1.12 Hz 1.12 Hz 3.04 Hz 3.03 Hz
edgewise 1.71 Hz 1.71 Hz 5.62 Hz 5.61 Hz
torsion 34.76 Hz 34.72 Hz 60.11 Hz 60.03 Hz
Table 5-4: undamped and damped static natural frequencies
J1 [kg-m] J2 [kg-m] D1 [N-s] D2 [N-s] K1 [N] K [N]
flapwise 1.64-10° 1.30-10° 9.71-10° 8.56-10* 1.63-108 1.48-107
edgewise 1.64-10° 1.30-10° 1.94-10° 2.39-10° 3.19-108 6.09-107
torsion 1.32-10* 1.53-10° 4.94-10° 3.36-10° 1.87-10° 7.37-10°

Table 5-5: Parameters of the multibody system

Comparison of multibody model to FEM
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Parameters of the multibody system are calculated from the blade's natural frequencies gained from
FEM. One way to find whether a 2-body-model represents FEM sufficiently or not is to check static
deflection. External loads and reactions are distributed gravity in this case. Forces and moments
acting within the member are gained from equation (5-13) and (5-14). The blade is assumed to be
located parallel to the horizontal surface.

dT,
= g(2) (5-13)
dgz* =T, (5-14)

Figure 5-14: a discrete blade model

G

Tyi+1 Mxi+1 Myxi Tyi

Az

Figure 5-15: Force and moment of the blade element

Shear force T, is computed by integrating gravity g(z) and used to calculate the bending moment

M

.
Gravity in Figure 5-14 between two points is assumed to vary linearly as:

g(f) :Mf—i_gi (5-15)
Az

where 7 is the distance from point i and Azis the distance between points i andi—1 as sketched in
Figure 5-15.
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T, is computed from the tip (N) to the root (1) since T, is zero.

The shear force Ty due to the distributed load is:

ay g'_l —g; 2 A
T,(2)=T,, +—’2Az L7 +g,2 (5-16)
Ty’i_l is computed by inserting Z = Az as:
T,4=T, +%Az (5-17)

Since the bending moment at M, , =0, M, is also calculated from N to 1.

Integration of equation (5-14) yields:

A A 0i1-0; .3 1
M (2)=M,, +T,,z +#z3 + Egizz (5-18)
Zz = Azin equation (5-18) yields:
1 1 )
M, =M, +T, Az + PR (Az) (5-19)

The angular deformation ¥, and deflection w, are expressed in equation (5-20) and (5-21) regarding

each blade element as a beam.

dd,(z) M,
——=—" (5-20)
dz El,
d
w,(2) =9, (2) (5-21)
dz

where E is Young's modulus and /, is the moment of inertia of the cross-sectional area with respect

to the x axis. 9,and w, are calculated from 1 to N since 9,, =w,, =0.

Integrating equation (5-20) and inserting z = Az yields:

1 M, M .
9., =0, +—(#+1 +¢jAz (5-22)
2\ Ealrn El

i+1"x,i+1

In the same way, w, is computed by using equation (5-21) and (5-22):
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6Elya 3EI,

i+1" x,i+1

1 M. 1M,
WH1=W[+I9,-AZ+[— Lic BN L J(Az)2 (5-23)

State-space representation of the multibody system is written by adding gravity in the Lagrange
equation of the second kind in section 5.3.2.

{Jl le} &, +[Dl+02 —DZ} 9, +|:K1+K2 —KZ}[ﬁl}:[(mlLﬁrng)g} 520
J, 4]0, -D, D, |9, —K; Ky 19, m,L,9

Parameters of the multibody model are validated in case of a static deflection. Figure 5-16 shows the
static deflection of FEM and a multibody system while gravity forces are distributed on the blade.
Since the joint of multibody model is chosen considering the flapwise eigenmode, the multibody
model shows more similar behavior to the FEM model in flapwise deflection than in edgewise
bending. Edgewise bending is illustrated with a negative sign in order to avoid overlapping with the
flapwise graphs. Thus signs of the deflection in the graph have no meaning.

static deflection in flap/edgewise

! | | | | | | |
0.8 FEM-flapwise Tttt T T T
061 Multibody-flapwise | 71 777777 l 777777 l 77777 o
' —— — FEM-edgewise ! ! ! !
0.4/ — — Multibody-edgewise | . ____ . T, o |

0.2 77777777777777‘7 77777777777777 Jf,f—"";';;77:7;77;7777:7777777: 7777777
| N — =T | | |
Ofb——r - I U U U LR
| I I e | | |
| | =
0.2 ------ S P o H HE - b
| | | | | | T -
04 | | | | | | |
0 5 10 15 20 25 30 35 40

Figure 5-16: static deflection of FEM and multibody system

5.3.3. Calculation of moment of inertia around pitch axis

A blade’s moment of inertia around the pitch axis is affected by edgewise/flapwise/torsional
moment of inertia, so that:

intchz'jE +Je +(JlT +'IZT) (5-25)
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where J;; and J,; are J; and J,in torsional direction in Table 5-5 in section 5.3.2. Test HAWC in
Risg [29] is used for blade data.

Moments of inertia due to edgewise and flapwise deflections about the pitch axis are:

Jo=my(L,sind, ) +m, (L3 sind, +1,sind,, )2
(5-26)
J

 =my (L, sin®y, ) +m, (L, sindy, +L, sind,; )’

E and F indicate edgewise and flapwise directions. U,z and U, are found by equation (5-28) and

Uy and U, are obtained by equation (5-31).

Edgewise deflection angles due to gravity and rotational force

Gravity is responsible for edgewise bending moment. It causes tensile and compressive stresses on
the bearing of the blade root. Aerodynamic force is divided into rotational and thrust force.
Rotational force also induces edgewise bending moment.

The blade is not a uniform bar but a sum of complete aerofoil shapes. The finite element method is
generally used to investigate blade characteristics. However, dozens of parts in a blade are hard to
simulate, so a blade is divided into two sections. The way to divide parts is discussed in section 5.3.2.

Each part of a blade has mass, spring and damping characteristics. In the edgewise direction, gravity
and rotational force are implied as shown in Figure 5-17.

Figure 5-17: Edgewise deflection angles due to gravity and rotational moment
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A Lagrange equation of the second kind is used to determine load on the blade root in an edgewise

direction:
d( oL oL &wW
— |- (5-27)
dt\oq, ) 0q, 6q;
where
L=T-U
with kinetic energy T and potential energy U .
The kinetic energy is calculated as:
1 ., 1 ., ..
T=2h6 +5 020, + 60, cos(4, - 6,)
The potential energy is:
1 » 1 2 . . . . .
U:EKlal +EK2(192 ~8, ) —m,gsin(a)L, sin(®¥,) —ngsm(a){L3 sin(¥,)+L, 5|n(192)}
Dissipation and implied force or moment are included in virtual work,
5W =-D,8,60, D, (8, -8, |69, — 60, )+ M,80, + M, (69, —69,)
and by assuming U;and 3, are small, such a linear equation is derived:
{Jl Ju} &, +[D1 +D, —Dz} 9, _{Kl +K, —KZ}{OI}
-llz -lz 52 _Dz Dz 192 _Kz Kz '-92
(5-28)

M -M, - (m,L, —m,L, )gsin(a)cos(d,)
- M, —m,gsin(a)L, cos(3,)

where

o J = +m1L12 +m2L32

° Jp=mbl,

J;' is the moment of inertia of the part on the root side about the center of gravity, si, and J;* is that
on the tip side about the s. Section 5.3.2 explains more in detail how J,,J,,J;, are calculated. The

parameters are listed also in Table 5-5 of section 5.3.2.

The edgewise angles, U;and U, , in (5-28) are used for U and U, in (5-26).
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Flapwise deflection angles due to gravity, thrust and centrifugal forces

Depending on blade position, gravity applies not only to the edgewise bending moment but also the
flapwise bending moment. If the azimuth angle is zero or 180°, the edgewise bending moment is
canceled, but the flapwise bending moment is affected by gravity (see Figure 5-18 and Figure 5-19).
Likewise, if the azimuth angle is 90° or 270°, the flapwise bending moment is not influenced by
gravity. The thrust force of aerodynamic force and centrifugal force also have an impact on the
flapwise bending moment.

K1, D1

Wind

Figure 5-18: Flapwise deflection angles due to thrust and centrifugal forces with 180° azimuth angle (view from side)
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Figure 5-19: Flapwise deflection angles due to thrust and centrifugal forces with 90° azimuth angle (view from top)

As in the previous section, to determine edgewise bending moment, flapwise bending moment is
calculated with a Lagrange equation of the second kind.

Given that the azimuth angle= a, the effect of gravity on flapwise bending moment is influenced by
-m,g -cos(a),i=1,2

A Lagrange equation of the second kind is used also for flapwise direction:

d(&] oL sW
= (5-29)

dt\og, | oq, 6q,

where

L=T-U
with kinetic energy T and potential energy U .
The kinetic energy is calculated as:

T =%11912 +%126}22 +J;,6,6, cos(6, ~6,)

And the potential energy is:

U=%K11?12 +%K2 (8, -9, ) —m,gcos(a)L, sin(¥,) —m,g cos(@){L, sin(®,) +L, sin(3,)}

Dissipation and implied force are included in virtual work,
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SW =—-D,6,50, — D, (6, — 6, 50, — 50,)+ Fy,L, cos(6,) - 56,
+ FpoL, cos (0, — 6, )06, — 56, )— FL, sin(6,)- 66, — F.,L, sin(8, — 8, 58, — 56,)

and by assuming ﬁland t?zare small, such a linear equation is derived:

{Jl le}{él}r[oﬁoz —DZ}{QI}{KHKZ —Kﬂ{ﬁl}
J12 ‘IZ éz _DZ D2 92 _KZ KZ 02
{F;,L, cos(6,) — F;,L, cos (B, — 6, )— FyL, sin(6;) + Fe,L, sin(0, — 6;) (5-30)

—(myLy, — my,L, )g cos( ) cos( 6;)}
AFy,L, cos (0, — 6,)— Fq,L, sin(6, — 0, )— m,g cos( )L, cos(H,)}

where

o J =t +mlL’+m,lL’
o« L=i2+mlL’

o J,=mbll,

J7'is the moment of inertia of the part on the root side about the center of gravity, si, and J;* is that

on the tip side about the s,. Derivation of the equations is explained in section 5.3.2 in detail. The
parameters are listed in Table 5-5 of section 5.3.2.

Unlike the edgewise bending, flapwise bending behavior is largely influenced by an aerodynamic
damping. The aerodynamic damping is illustrated in Figure 5-20. In the second figure, tower top
moves toward the wind direction. Then the relative wind speed on the blade is reduced and the
angle of attack is also decreased. A smaller angle of attack leads to lower lift force and drag force.
The thrust force is reduced by dA in the figure. Since the tower top moves downwind, reduction of
the thrust force means the movement of the wind turbine is disturbed. Likewise the movement of a
nacelle upwind increases the angle of attack and the thrust force (see the fourth figure). Thus the
nacelle is forced to decelerate. Such phenomena are called aerodynamic damping.
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Figure 5-20: aerodynamic damping [31]

As 91 = 92 = él = éz =0, the equation (5-30) can be simple forms such as:

0.1 Tki+K, —K,T° {Fr1L, cos( 6;) — Fy oL, cos (8, — 6, )— FeiLy sin( 6;)
[0 }={ K K } + Fol, sin(6’2 —Hl)—(m L, —m Lg)gcos(a)cos( 6,)} (5-31)
2 2 2 {Fr,L,cos (8, —6,)—F.,L,sin %«92 —6,)—m,gcos(a)L, cos(8,)}

The flapwise deflection angles, J;and U,, in (5-29) are used for ¥;; and ¥, in (5-26).
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6. Pitch angle controller

Pitch controller adjusts pitch angles according to the states of a wind turbine. Limiting generator
speed and power is the basic function of the pitch controller. It also reduces load on the components
such as blade and tower. The output of the pitch controller is transferred to the pitch angle controller.
The pitch angle controller receives a reference pitch angle from the pitch controller and an actual
pitch angle from the wind turbine (see Figure 6-1). The pitch angle controller determines the pitch
motor torque and sends it to the pitch motors in the wind turbine. The aim of the pitch angle
controller is precise tracking of the reference pitch angle by controlling pitch motor moment.

The currently used pitch angle controller is a profile generator. However, a profile generator is not
suitable for individual pitch control or tower damping control because of phase delay. The alternative
for the profile generator has to be found and it should consider the four effects: sinusoidal reference
value, blade’s load around pitch axis, Coulomb and sliding friction, and viscous friction coefficient
change. These are mentioned in section 2.2.1.

The first problem is sinusoidal reference value which is typical in individual pitch control or tower
damping control. Large phase delay in tracking sinusoidal reference value may cause unexpected
effect such as instability. Blade’s load around pitch axis, the second problem, obstructs pitch angle
tracking. The main sources of blade’s load are friction due to overturning moment and gravity of a
blade. The third problem is Coulomb and sliding friction of the pitch actuation system. The nonlinear
frictions are hard to be controlled with a linear controller. The last problem is viscous friction
coefficient change. Temperature in the gearbox varies during wind turbine operations and it affects
viscosity of lubricant oil in the gearbox. Thus the viscous friction coefficient is not constant.

Various methods are suggested in section 2.2.2 to handle each of the four problems. All the four
problems can be solved all together by means of a robust controller. Robust controller can regard
blade’s load and Coulomb/sliding frictions as disturbance and viscous friction coefficient change as
uncertainty. Tracking sinusoidal reference pitch angle is dealt with by means of a reference model
and a weighting function.

To compare effects of the robust controller, a classical controller (PD-controller) is suggested as a
baseline. A cascade controller is also proposed because it can be easily designed and is known to be
robust against disturbances. Whereas a robust controller considers disturbance and uncertainties in
the designing step, the classical controllers have to use time domain simulation to validate their
robustness.

Pitch controller reference pitch motor

enerator speed/ itch | . . .
pcssver Iimitatio’; IPC pre ange= Pitch angle controller moment > Wind turbine

TDC) actual |_> —|
pitch angle

Figure 6-1: Pitch angle controller
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6.1.PD controller as a baseline

A PD controller is tested as a baseline. In order to design a PD controller, a linear model of the test rig

is required (see (4-4) in section 4.2).

Controller parameters are determined by means of a bode diagram (see Figure 6-2). The phase

margin is chosen to be larger than 45° in order to prevent large overshoot. The best parameters are

chosen after fine-tuning in the test rig. The integral coefficient can be zero and the PD-controller is

designed. The parameters of the PD-controller are:

K, =2000,K, =200

Bode Diagram

|

|

|
[

|

|

|

|
T

open loop w ith PD-control

open plant

(gp) apnyubep (Bap) aseyd

10

10

Frequency (rad/sec)

Figure 6-2: Bode diagram with PD controller

Step response in the test rig is seen in Figure 6-3. The stationary error found in the graph is explained

as follows.

The linear state space model in section 4.2 is converted to a transfer function with:
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P(s)= bysg + bgSg -+ b;s, + by

S1p +0gSg -+ 0,5, + 0
The plant has a numerator with 9th order and a denominator with 10th order. The parameters
by,bg, - by,a,,,04, -0, are real numbers. As the PD controller is connected to the plant like Figure

6-4, the connected transfer function of the controller and the plant is:

(rs+1)r,s+1)-(ros+1)
®(ps+1)ps+ 1) (Pys+1)

G(s)= (Kp + de) P(s)=k
where ¢, ,1,...7,,,p,--p,, are positive numbers. With the PD control, the numerator and the
denominator of the transfer function have the same order.

Steady state error is found like:

R(s)

€ =lim elt)=lims-£(s)=lim 5

Since the Laplace function of step input is }/ ,

. S . s 1 1 1
e, =lim———R(s)=lim —= =
s~01+G(s) s~01+G(s) s 1+G(0) 1+kK,

The constant K, can be increased by increasing K, of the PD controller. Thus, increasing K, of the

PD controller reduces the steady state error in the system.

Step response

‘ ‘ [ [
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1200 -~ ro----- oo - a-ooee- T Simulation
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F) : : | | | | | |
B 800F---“4--—---—- I S AN [ [ [FI [ [—
B l l l l l l l l
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£ 600 ---d—————— i1 I [ [ J______ 1 __ Lo ___ [
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Figure 6-3: Step response with PD controller (experiment)
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Figure 6-4: Block diagram with PD-controller

6.2.Cascade controller

A cascade controller is a combination of two PID controllers. An outer loop controller controls pitch
position while an inner loop controller handles pitch speed (see Figure 6-5). The biggest advantage of
a cascade controller is robustness against disturbance. However, a cascade controller acts generally
slower than a single PID controller. Parameters of the controller are determined by use of a Bode
diagram in Figure 6-6 so that the PD- and Pl-controller are chosen as the outer and inner controller.
The parameters of the controller are:

control place Parameter
outer ring — position control K, =300, k, =30
inner ring — velocity control K, =3, K, =5

Table 6-1: Parameters of cascade controller

Step response is seen in Figure 6-7. The actual position reaches to the reference later than PD control,
but the steady state error is reduced.

——pp{du/dt
Derivative
A O—
reference
position '_>
actual
position

PD-Controller PI-Controller
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Figure 6-5: Cascade controller

Bode Diagram
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Figure 6-6: Bode diagram with cascade controller
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Figure 6-7: Step response with cascade controller (experiment)
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Since an inner loop controller is composed of a Pl-controller and the maximum motor moment is
limited, anti-windup must be added as in Figure 6-8. Let the anti-windup L,,,, the derivative of U, is
like:

u, =K, 'e'H-AW'(u_”G):K/ 'e‘H-AW'(u_“/ —Kp ’e):_LAW'“/ +(K/ _LAWKP)e‘H-AW'u

In order to make u, independent from the input e, anti-windup is designed like:

Then the error term is exclueded from the differential equation like:

u ==Ly, -u +L,,-u

-C- > U_P
< 1 >
- Inl Product 3
Y UG |-
4 »
Saturation
7l x u_l
-C- ».
Product 2 u
K_I dot_U_I KTs
z-1
'v Discrete-Time
X = Integrator
L_AW
Anti -Windup | X
AA ~
4

Figure 6-8: Pl-controller with Anti-Windup

6.3.Robust controller

6.3.1. Introduction of robust controller

Robust control is a method to ensure stability and performance even though the system implies
parameter uncertainties or experiences an outer impulse such as disturbance or noise. Parameter
uncertainties and outer impulses are bounded to design a robust controller. Whereas adaptive
control is dynamic, robust control is static because system variations are not adapted. Instead, robust
control is designed in assumption that certain variables are unknown but bounded.

Robust control includes the five considerations [54]:
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e Tracking performance

e Disturbance rejection

e Sensitivity to modeling errors
e Stability margin

e Sensitivity to sensor noise

H. control and p—synthesis are studied in this research. These are most well-known robust
controllers and are implied in the Robust Control Toolbox of Matlab. Thus users have only to
designate weighting factors and a reference model. Users do not need to program complex iteration
process to build a robust controller.

H. - Loop shaping is also widely used and can be performed with the Robust Control Toolbox. H, -
Loop shaping can solve the restrictions on the number of right-half plane poles and is free from pole-
zero cancellation between the model and controller [50]. However the controller requires a
precompensator and/or a postcompensator (see K; in Figure 6-9) in addition to a feedback controller
(see K> in Figure 6-9). The compensators may enhance performance and stability, but choosing
parameters for the compensators in a relative complex system is challenging.

¥ U
— ol » K —+>’g>—> GS y+-—-%‘?—> pl | Z,
+ 2
K> =
" M,

Figure 6-9: H» - Loop shaping configuration [50]

An emerging area of robust control is sliding mode control (see Figure 6-10). Sliding mode control is a
particular class of variable structure control. It is useful for a wide class of systems including
nonlinear, uncertain and time-delayed systems [56]. However, sliding mode control is not contained
in the Robust Control Toolbox. Learning and programming sliding mode control might require much
time and effort. Thus the controller is not dealt with in this research.
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Figure 6-10: sliding mode control [59]

Ho control

H., control was introduced in the late 1970s and early 1980s. The name H., control comes from H.,
and H., norm. Ho, is the space of functions in the right-half of the complex plane. H, norm is the
maximum singular value of the function over that space and is the maximum gain in any direction
and at any frequency. H., control searches for a controller to reduce H,, norm of transfer functions
from reference, disturbance and noise to imaginary outputs (e, and e, in Figure 6-14). The singular
values must be less than 1. There are two methods for H. controller: One is based on Riccati
equations and the other uses linear matrix inequalities [55]. H, control achieves robust stability
against unstructured perturbation and nominal performance. Robust performance can be obtained
by means of weighting functions [50].

Good tracking and energy limitation are considered for an example with the following mixed
sensitivity function:

(1+GK)™

6-1
K(I+GK)™* (e

K

0

The reference tracking is depicted as h; and control signal energy is shown as h; in Figure 6-11. Then
the matrix in (6-1) can be written as:

Fer F, hr

F

h,r

=min
K

min
K

ur|leo

o0

F,,and F, mean the closed-loop function from reference (r) to error (e) and control signal (u).
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reference

Figure 6-11: Addition of two outputs for a mixed sensitivity consideration

The block diagram in Figure 6-11 can be recast into a standard configuration like Figure 6-12. All the
signals are grouped into sets of two inputs and two outputs. Two inputs are external input and
control signal. Two outputs are output to the controller and the rest output. The rest output, h,
denotes the output signals to be minimized as equation (6-1). The objective is to find a controller, K,
to minimize the output, h. Since w=r and h = (hs, h), it is equivalent to minimize the H, norm of the
transfer function from w to h.

w h
—> —
P(s)

u y
K(s)

Figure 6-12: standard H.. configuration for Figure 6-11
Since the generalized plant, P, has two inputs (w,u) and two outputs (h,y), it can be modeled with 2x2
matrix as:

_ Pu(s) Po(s)

0| ) o)

The transfer function from w to h is expressed as:

h= [Pn + P12K(/ _PzzK)71P21}"/
=F,(P,K)w

where F,(P,K) is the lower linear fractional transformation of P and K. The design objective in

equation (6-1) can be written as:
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mKin||FL (P k)|,

Inputs and outputs in Figure 6-11 and Figure 6-12 are linked as:

w=r,h= =| |,y=e,u=u
h, u

Since the error e is difference between the reference and the actual value, the output y and the error

eare:
y=e=w—-G6G-'u

Therefore, the generalized plant, P, has:

I -G
PllzofPlZ: | P =1,Pp=—G

The generalized plant P becomes:

I -G
P=0 |
-G

In practical design, weighting function is included for H. control. As the weighting functions (W;, W>)
are added to the outputs as seen in Figure 6-13, the mixed sensitivity matrix is made as:

w, (1 +GK)™

6-2
W,K (I +GK)™ (62

K
)

The generalized plant P has new outputs as:
hh=W,-e=W;-w—-W;G-u
h, =W, -u
y=e=w—-G6G-'u

Therefore, the generalized plant P implies the weighting functions as:

W, -WG
P=| 0 W,
I -G
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h1

W1
reference L > > -
h2
W2
r
e u
—P e u

Figure 6-13: block diagram with weighting functions

The current research considers also disturbance and noise. Thus the standard H., configuration for
this research has a complex structure as seen in Figure 6-14.

A
V Z
reference —p ' > Sy
Plant
disturbance ——» P Eu
u y
Controller 4_(")4— noise
Yc

Figure 6-14: standard H.. configuration for the current research

p -synthesis (dk-iteration)

The feedback controller is usually designed based on a nominal plant model. In case perturbation is
found in the plant, the performance of the closed-loop system can be unsatisfactory. Robust
performance is the criterion to determine performance of a system in the presence of perturbation.
In Figure 6-15, uncertainty is contained in the system. z and v are the input and output signals of the
uncertainty block. w denotes the exogenous input including reference signal, disturbance, noise. h
designates the output consisting of tracking error and actuator signal. System performance is
decided by transfer function from w to h. Let Q be partitioned as:
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o= ozl

The closed-loop system is defined with the input w and the output h as:
h = [Qz2 + Q21K — Q1K) ™' Q12]w
= Fu(Q' A)W

Robust stability means stability of the system with respect to the perturbation A. Robust stability is
set as:

(2], <1

Robust performance is a performance in the presence of the perturbation A. Robust performance is
defined as:

lal, <1

where p is a structured singular value of the system. Thus the maximum magnitude of Q has to be
less than 1.

_‘ )

Figure 6-15: standard Q-A configuration for robust performance

For controller design, the transfer function Q is divided into a plant (P) and the controller (K) (see
Figure 6-16). The plant P is connected to three inputs (v, w, u) and three outputs (z, h, y). The plant P
may be partitioned as:

Py Py P
P=|Py P, Py
Py Py Py

K(I — P33K)71[P, P.
Pl R Pl (T O A
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For robust stability and robust performance, the following equation has to be satisfied with a
controller, K:

sup(FL (P,K)) <1
weR
A
v z
w h
E ———_— P —
u y
K

Figure 6-16: standard Q-A configuration where Q is divided into a plant and a controller

DK-iteration is used to enhance the performance of p -synthesis. A controller must satisfy:

sup(D, -F,(P,K)-D,)<1 (6:3)

weR

where D, and Dg are the scaling matrix on the left and right side (see Figure 6-17).

As the scaling matrix, D, corresponds to D; and D in Figure 6-17, the DK-iteration is performed in
several steps.

Step 1: D is given first. Usually D=I.
Step 2: Fix D and calculate K with H., control

Step 3: Fix K and solve D at each frequency, where sup(D, -F,(P,k)-D,) IS minimized

weR
Step 4: Curve fit D to get a stable and minimum-phase D.
Step 2-4 are repeated until a pre-specified convergence tolerance or equation (6-3) is achieved.

DK-iteration’s convergence is not proven yet. However, the method needs only a few steps to find an
optimal controller in practical applications [55].
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A
v z
—>
reference —p»- Plant
disturbance =———
y
u
Controller noise
Yc

Figure 6-17: standard of p-synthesis configuration for the current research

H., procedure achieves robust stability and nominal performance [50]. Robust performance is not
handled in H. procedure, but user can obtain robust performance by applying appropriate weighting
functions. On the contrary, p —synthesis achieves robust performance in the designing step [50]. p—
synthesis takes structured uncertainty into account in order to reduce conservativeness of Hy
procedure [57]. pw—synthesis is robust to a more realistic class of perturbation, thus p —synthesis is
less conservative and has more flexibility for control performance [58].

However, p —synthesis requires a detailed control plant with structured uncertainty knowledge [58].
Since p —synthesis generates a high-order controller, the order has to be reduced if a low
performance computer is used. The controller finding process requires iterative cycles, thus it takes
longer time to get the optimum solution in comparison to H. procedure.

6.3.2. Modeling of the test rig for robust controller

State space with unstructured uncertainty

The test rig is modeled with the moment of inertia, J, damping of the shaft, d , stiffness of the shaft,
k, viscous friction, f,, and disturbance, 7. The subscript,1-4, is the number of the motor sets and r is
ring. A single input torque is divided into two torques in the torque distributor, so the input torque,
u, is linked only to the first motor set even if two motors act as pitch motors. The differential
equation of the test rig is written as:
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1,6, +dl(9'1 —6'?,)+k1(91 —0.)+7,=u

L, +dy(6,— 6, )+ k, (6, -6, )+ 7, =0
505+, (65— 0, )+ ky(0,- 0, )+ 7, =0
3, +d,(0, -6, )+k,(0,-0,)+ 7, =0

4
16. +Z{d,(9, —9,)+k,(0, —0,)}+fr 0 +7,=0
=)

[, 0 0 0 0][4] O(’)l : 8 g :Zl 6,
0 L 0 0 0106, 0 02 d, 0 —d2 %
I R I I ] o I S S T
0 0 0 J 0|4 Yt e
0 0 0 0 J|[4| |-dh ~d —dy —dy Dd+f||4
L% ] n Lo
ko 000~k 61 [-1] [-1 0 0 0 O[7]
8 ’B? : 8 :ZZ g, |0 0 -1 0 0 O0f]|r
3 16|+ 0 fu=0 0 -1 0 O]z
o 0 0 K ‘4"4 6, |0 0 0 0 -1 0|z,
—k —k, —ky —k, Yk |lo] o] |o o 0o 0 -1]|r |
i=1
SM-O+N-O+P-O+G-u=T-d (6-4)
with
[6,] [, 0 0 0 O] g 0 0 0 4
0, 0 J, 0 0 O 0 d 0 0 4,
®=6,,M=[0 0 J, 0O O|N= 0 0 4 0 ~ 4 )
0, 0o 0 0 J O o 0 0 4 4_d4
1 6, | |10 0 0 0 J | —d, —d, -d; -d, Zdi+—fr
i=1
o 000k 1] [-1 0 0o 0 O] [z]
g k02 : g :ZZ 0 0 -1 0 0 O 7,
pP= 3 *,G=|0|T=/{0 0 -1 0 O |d=|z
0 0 0 K ‘4’(4 0 0 0 0 -1 0 7,
—k -k, —k; —k4 k; | 0] |10 0 0 0 -1j |7, ]
i=1

Equation (6-4) can be expressed in a block diagram as Figure 6-18. Since the matrix, M, is invertible,
the equation (6-4) can be changed as:

O=-MNO-MPO-MGu+MTd
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U —p

Let [X1 X, X3 X, X5]T =0 and [X6 X; X3 Xg XlO]T =0, the following state space is made:

[ ()5x5

1x
~M7P —M7N | xg

Figure 6-18: block diagram of the test rig model

P

l5x5

05x1
M™Gu

-t

il

05x1

M7Td

(6-5)

Uncertainty block has to be separated for robust controller design as seen in Figure 6-14 and Figure

6-17. Moment of inertia is divided into normal parameter J. and uncertainty 6, as:

i

The moment of inertia matrix M can be written as:

J=3-+p, -8, )i=1234,r
6, |<1
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L+p,5,) 0 0 0 0 ]
0 5,+p,5,) 0 0 0
M=| 0 0 L{+p,5,) 0 0
0 0 0 Jl+p,5,) 0
0 0 0 0 7l+p,5,)
(5, 0 0 0 O] [4p, O 0 0 0 |[s, 0 0 0 0] (&6
0J, 00 0|| 0 Jwp O 0 0o |0 s 0 0 O
=0 0 7, 0 0|+ O 0 J-p, O 0o |/o 0 5 o0 0
0001 0|0 0 0 J-p, 0 [|O 0O 0 & O
0000 7J|]| O 0 0 0 Jp|l0 0O 0 0 g
=M+M, -A,,

with the nominal matrix M and uncertainty matrix A,,. The matrix M, limits range of the uncertainty.

Since the magnitude of 5,1 , is limited to be smaller than 1, the size of the uncertainty is decided by
p, . Uncertainties of moment of inertia coefficient are set based on Table 4-8 and Table 4-9. As the
mean, minimum, and maximum moment of inertia are J J Jaxi 1 the factor, [ is

mean,i ? “min,i ?

determined by:

max,i Jmeun,i Jmean,i - Jmin,i ]

pj/v :max[ ’ _/

mean,i mean,i

And J is used as J; . Thus:

mean ,i

p, =p, =0.1017

,013 = p14 =0
p, =0.0794

Because the moments of inertia of the two load motors (J;, J, ) are obtained from the technical

specification of the motor (see Figure 4-39), P, and p, arezero.

In the same way, damping coefficient and friction matrix in (6-5) are also divided as:

[ d(1+p,5,) 0 0 0 ~d,(1+p,5,) T

0 d,(1+p,,5,, ) 0 0 ~d,1+p,5,)

0 0 d,(+p, 5, ) 0 —d,(1+p, 5, )

N= 3 78 _ o 3 03
0 0 0 d,(1+p,.5, ) ~d,[L+p,.5,,)
4

~d(+p,5,) ~d+p,0,) ~dl+p,s,) ~dlrp,s,) Ddlip,s, )+ 0,8,
L i=1 _
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d 0 0 0 —d,
0 d, 0 0 —d,
0o 0 d o0 —d,
1o o o 4,  -d
4
-d, -d, -d; -d, lec_i, +f,
d,-p, O 0 o |[6, 0 0 0 0][1 00 0 -1]
0 d,-p, 0 0 o 5, 0 0 0]j0100 -1
+ 0 0 ds-p, 0 o [0 0 4 0 O0[/0010 -1
0 0 0 dy,p, O o 0 0 g, 0[|00O01 -1
_d_l'pdl C7z'lf’dz _:a'pul3 C74'pd4 f, Py, | 00 0 0 46 ][0000 1]
=N+N,-A.-N,

with the nominal matrix N and uncertainty matrix A.. The matrix N; and N, determine range of the
uncertainty.

The stiffness matrix is also divided into nominal and uncertainty matrices as:

[ k(+p.5,) 0 0 0 ~k+p.5, )]
0 k+p,5,) 0 0 ~k+p,5,)
”_ 0 0 kl+p.5,) 0 ~kL+p, 5, )
0 0 0 kl+p.s,) -kl+p.5,.)
4
ko) ~kl+rp.d,) ~kl+pd,) ~kl+p.s.) Ykl+ps,)
L i=1 i
'k, 0 0 0 k|
O k, 0O 0 -k
|0 0 k 0 -k N
0 0 0 k -k
4
-k —ky —ky kg Dk
k- 0 0 0 |
1opk1/? X o |[% 0 0 01000 -1
IO o ]9 g o ofjo100
) o ot o [Joo g ofloo1o
_ _ _ “Petlo 0o 0 g |lo0o01 -1
kb, —kap, —kstpy kb, |
=P+P,-A,-P,
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with the nominal matrix P and uncertainty matrix Ap. The matrix P; and P, determine range of the
uncertainty.

The uncertainty range of damping coefficient and spring coefficient can be determined as:

p, =max dmax,i - dmean,i ) dmean,i - dmin,i ,i _ 1,2’3’4
mean,i dmean,i

p, =max kmax,i _kmean,i ) kmean,i B kmin,i ,i=1234
mean,i kmean,i

The damping coefficient and spring coefficient have such uncertainties according to Table 4-13 and
Table 4-14:

P4, =Py, =0.2941
P4, =Py, =0.2667
Py, = Py, = 0.5800
Py, = Py, =0.3228

The nominal damping coefficient and spring coefficient are determined as:

=d
k

i=1,2,34
i=1,2,34

mean,i?

d,
r

mean,i’

Amplitude of the uncertainty elements, 6,,6,,6, ,6; , are smaller than 1. The viscous friction

coefficient varies greatly depending on temperature as described in section 4.3.1, so nominal and
range of the viscous friction is:

fr,max + fr
2

,min :1.5961'104,,0]:’ _ fr,max _fr

min —0.6528

fr,max r,min

fri=
where fr,max’fr,min are the maximum and minimum viscous friction coefficients in Table 4-1.

The equation (6-5) is described with uncertainties (A,,, A.,A,) as:

X5 | _ 05,5 55 X5
X6 _(M+MP'AM)_1(E+P1'AP'P2) _(/\7+MP'AM)_1(N+N1'AC'N2) Xg
: . (6-7)

_ 05)(1 + 05x1
(M+M,-Ay)'Gu| |(M+M,-A, ) Td
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Block diagram in Figure 6-18 is modified with uncertainty as in Figure 6-19.

'y

T
S S
U——-G (M+mA, ) o > | © ,
N +N,A N, ——

P+PA,P, ——

Figure 6-19: block diagram of the test rig model with unstructured uncertainty

State space with structured uncertainty

State space for the test rig is made with uncertainties (A,,, A-,A,) in equation (6-7). However, the

uncertainties have to be isolated in order to design a robust controller like the uncertainty block A
and plant block in Figure 6-14 and Figure 6-17.

Uncertainty in the inversed moment of inertia can be separated as seen in Figure 6-20. The output,

®, is expressed with a temporary input, x._,as:

in?

6= (T +M,A,, ) x,

n

As the matrix, M,, and the uncertainty, A,,, is feedbacked like the right diagram in Figure 6-20, the

output, ® , is modified as:
6 =mM"(x, -M,A,,6)
—M X, M M,A,0
0= (1+ M™M,A,, )711W‘1x,.n
=M+ MM, ) X,
=(M +M,A,, ) x,,

| 6 | it
Moy (V +M,A,, fl

Mp |— Ay

Figure 6-20: inversed moment of inertia block with unstructured uncertainty (left) and with structured uncertainty
(right)
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Uncertainties in the damping and stiffness blocks in Figure 6-19 can be separated in an easy way like
Figure 6-21.

<— N+N,AN,¢—

<4—P+PA,P, [+

P, ‘4—‘ Ao M P,

Figure 6-21: damping and stiffness blocks with unstructured uncertainty (left) and with structured uncertainty (right)

-

Let the outputs of the plant to the uncertainty z,, z., z,and the inputs of the plant from the

uncertainty v,,v,,V,, uncertainties (A,,, A-,A,) in Figure 6-19 are separated as seen in Figure 6-22.

-

|

— Ap — P; lg—
VK ZK
Figure 6-22: block diagram of the test rig model with structured uncertainty

From the block diagram in Figure 6-22, the following equations can be drawn:
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0= /\7*1(— M, ~N®-Ny, —PO®—-Pyv, -Gt + Td)
=M PO-MNO-M*M,v,—~M Ny, —M *Pv, —M ‘Gu+M*Td

z,=0 (62)
=M PO-MNO-M*M,v,~-M Ny, -M Py, —M 'Gu+M"1d

zZ, = N2®

z, =P,0

Let the state space variables [xl X, X3 X4 XS]T =0, [X6 X; Xg X xlO]T :®, and the ring
position defined as the output of the model asy = 8, = x;, the equation (6-8) and y can be expressed

with the state space variables as:
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EANEN

X3 X7

X3 |=| Xg

X, Xq
X5 | | w0 |
[ Xg | x| [ Xg |
X7 X3 X7

Xg |=—M 7P| x3 |[-MN| x3 |[-M *M,v, - M *Nyv, —M Py, + M 'Td —M *Gu

X10 | X5 | | X10 |
] _X6_
X3 X7
— 1] v — —1 —_ —_ —
2, =—M"P| x3 |-MN| x4 |-MM,v, ~M Ny, —-M Py, + M Td - M Gu
| X5 | | X10 |
_ (6-9)
X
X7
zc =N,| Xg
Xq
| X10
_Xl_
X3
Zy =P, X3
Xy
Xg
X,
X3
y=[0 0 0 0 1] x
Xy
| X5 |

The equation (6-9) of the plant is described with a 30x25 matrix as follows.
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o
. 05><5
B -mp
).(6
g v
X |_|~MTP
- 05><5
z, P,

z, —
Zc | 10,0001

LY ]

The state space of the plant in equation (6-10) and uncertainty block is expressed in Figure 6-23.

Is.s

Figure 6-23: uncertainty and plant blocks for robust control design

05><6

05><6
O4><6

01><6

Uncertainty

Vk
—|

V
_C>

E—
Vy

d —p
u ——p

Plant

Zk

Zc

Zy

' y

6.3.3. Robust controller design

(6-10)

A control path must be modeled first to design a controller. Parameters of the control path model
such as moment of inertia, stiffness and damping are measured, but the value is not always correct.
In particular, viscous friction coefficient changes greatly according to temperature in the gearbox
(see section 4.3.1 in detail), thus exact parameters cannot be obtained. A robust controller handles
the parameter uncertainties in the Uncertainty-block of Figure 6-24. Coulomb and sliding friction as
well as blade load are considered in the Wd-block. Noise is filtered through the Wn-block. Motor
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torque is limited with the Wu-block. The Wp-block controls performance by comparing the reference
model and actual outputs.

Uncertainty

disturbance

wd
Plant
Reference
Model
u y_c T
Controller ] @
reference
position
.
e_u

Figure 6-24: Structure of H.. controller

Uncertainty

disturbance

wa ¢, <« (3)

Wn

Reference
Model

o e ()
Controller @

reference
position
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Figure 6-25: Structure of p-synthesis

By use of the weighting functions and a reference model, a closed-loop system of Figure 6-24 and
Figure 6-25 can be written as:

K K

. WP( © —M] w—Cw, —w, - | [ ref
vl T\+ek 1+GK 1+GK " || gist 6.11)
K Wy _KG

o W, | | noise

“1+GK “1+GK “1+GK

The structures of Hs, control and p—synthesis have three inputs — reference position, disturbance,
noise —and two outputs - e, and e, . Their frequency area must be taken into account in making the

reference model and four weighting functions -Wp, Wu, Wd, Wn. The four blocks — D, Dg, D.*}, Dg’%-
in u—synthesis are determined automatically by Robust Control Toolbox in Matlab.

The first input is reference position. The shape of reference position is a combination of constant,
ramp and harmonic form. The frequency of the harmonic signal can be 1P, 2P, 3P, ..., but 1P and 3P
are usually used for individual pitch control and tower damping control. P means periodic loading. 1P
is calculated from rotational speed. The rotational speed is determined by means of tip speed ratio,
blade length, hub radius and rated wind speed. Tip speed ratio is assumed to be 7 and the wind
speed at rated generator speed is assumed to be 12m/s. 40m blade in Risg [29] is used in this
research and hub radius is set to be 1m. The rotational speed, 1P, is determined as:

712 1

= -—~0.33Hz
40+1 2«

3P is three times of 1P, thus around 1Hz. The frequency range is used to design the reference model,
M.

The second input is disturbance. Disturbance contains nonlinear frictions and load simulation. The
nonlinear friction is Coulomb and sliding frictions, which change if sign of pitch rate changes. Thus
the frequency range for nonlinear friction is the same as that of actual pitch angles. Another part of
disturbance is load simulation. As written in section 5, load simulation is composed of gravity,
aerodynamic force, centrifugal loading, friction due to overturning moment and blade’s moment of
inertia. Gravity, aerodynamic force and centrifugal loading are influence by actual pitch angle. Pitch
angle is found in the equations of gravity and centrifugal loading (see (5-1), (5-2)). Aerodynamic force
is determined by lift and drag forces, which rely on pitch angle. Blade’s moment of inertia is affected
by gravity, aerodynamic force and centrifugal loading, thus it is also influenced by actual pitch angle.
Friction due to overturning moment is changed when sign of the actual pitch rate changes. Assuming
vibrations of the actual pitch angle are negligible in high frequency, the frequency range of the actual
pitch angle is the same as that of the reference pitch angle. Thus the disturbance weighting function -
Wd — can be designed with the frequency of the reference pitch angle. The amplitudes of nonlinear
friction and load simulation are used to determine the gains of Wd.
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The third input is sensor noise. Unlike the previous two inputs, sensor noise is not related to the
reference pitch angle. The frequency and amplitude of sensor noise are obtained from
measurements in the test rig.

The rest two weighting functions - Wp, Wu — are not related directly to the inputs. The two weighting
functions are designed to increase tracking performance, make robust against noise and disturbance
and limit the motor torque as long as the two outputs stay less than 1 in equation (6-11). Since the
sensor noise has little influence on the outputs in the simulation, frequencies of Wp and Wu are also
coupled with those of the two inputs- reference position and disturbance. The gains of Wp and Wu
are determined only by means of closed loop functions such as sensitivity or complementary
sensitivity.

User designates the reference model -M- and four weighting functions -Wp, Wu, Wd, Wn. Then the
robust control toolbox in Matlab searches for the best controller with the weighting functions and
the reference model. Robust control design must adequately attenuate noise and reduce disturbance
effects in the presence of parameter uncertainties.

Sensor noise weighting function

Whn defines frequency and amplitude of sensor noise. As shown in Figure 6-24, sensor noise is added
to output of the plant. Noise exists in high frequencies, so noise weighting function is determined to
be a high-pass filter (see Figure 6-26). The signals of the test rig are transferred in every 0.01 second
with the minimum resolution of position 0.001°. In case torque sum of the four motors are around
zero, motors do not rotate and motor positions are constant. No vibration is found in the transferred
data. Thus either frequency of the sensor noise is higher than 100Hz or magnitude of the noise is
lower than 0.001°. Noise weighting function has a gain=0.001° and frequency in numerator = 100Hz.
Since the noise weighting function is a high-pass filter, the frequency in denominator is larger than
100Hz. 1000Hz is chosen in this research. i is gear ratio.

1
7 1 271000
W, =0001 7.1 27
180 s+1
27-1000
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Sensor noise weight
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Figure 6-26: Noise weighting function

Reference model

The reference model is designed as a second order system like the equation.

2
Dy

s? +20wys + 0,

M,

The damping ratio, £ , is assumed 1/\/5 for critical damping. The undamped natural frequency, @,,

is chosen to be 4 Hz according to its settling time. Settling time is determined as:

n(0.02) 3.9

¢ wg L 4-2m

\/E( )
Modal frequency response of the reference model is expressed in Figure 6-27. Settling time is
defined as the time required for the step response (see Figure 6-28) to reach within a range of
certain percentage (usually 5% or 2%) of the final value. As the sine signal is given as an input, the
actual value follows the reference value 0.02 seconds later, thus the phase angle is 0.02 sec/3

= 0.22sec

settle

sec=2.4°.

149



Reference model (MO)

Frequency (rad/sec)
Figure 6-27: Modal frequency response of reference model
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Figure 6-28: step response of reference model
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Figure 6-29: sinusoidal response of reference model

Disturbance weighting function

Friction is simulated in the blade ring. Whereas viscous friction is taken into account in uncertainty
block, Coulomb and sliding frictions are nonlinear and are contained in the disturbance matrix.
Simulated load on the blade is transferred to the load motors. The maximum sum of Coulomb and
sliding friction is 8.6099Nm in section 4.3.1. 9Nm is applied in the disturbance weighting function.

The maximum load is 29Nm because the maximum torque of a motor is 34Nm and another load
motor gives tension with 5Nm. This value is used as a gain of one of the load motors. Since the two
load motors are coupled together, one value is enough for describing two torques of the load motors.

Gravity, aerodynamic force, centrifugal load and blade’s moment of inertia are dependent on the
pitch angle. Friction changes due to the sign of pitch rate. As the individual pitch control or tower
damping control is used, loads on the pitch actuation system are dominated by 1P or 3P.

Disturbance due to load simulation exists in frequency less than 1P and 3P. In this research, 2Hz is
chosen as the cutoff frequency, which is a little higher than 3P=1Hz.

Unlike the sensor noise weighing function, disturbance weight has a square in the transfer function.
This ensures steep drop around the cutoff frequency. The frictions and load act in low-frequency
areas, thus the disturbance weight is also a low-pass filter as in Figure 6-30.

00 0 00 2
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00000(1s+1j
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Figure 6-30: Disturbance weighting function
(Disturbances in 1% pitch motor, 2" pitch motor and 2" load motor are zero.)

Control weighting function

The control weighting function constrains motor torque. Different from disturbance and the noise
weighting functions, the control weighting function is attached to the output node. Control output is
limited to be lower than the inverse control weighting function, thus the control weighting function is
a high-pass filter (see Figure 6-31). Since pitch angle change is less than 1P or 3P, the cutoff
frequency is chosen to be 2Hz. Motor behavior is inactive above 100Hz. Gain of the control weighting
function is determined to make the imaginary output, e, less than 1. At first the baseline PD

controller or the cascade controller is used for K in equation (6-11) to determine the gain of Wu.
After several tries and errors, 10~* is chosen for the gain.

s+1
w,=10". 222
u 1
——s+1
27-100

152



Control weighting functions, (Wu)

-2
e s g I
,,,,,,,,,,, T |
:::::::::::;::::::::::q
O L K
g e e e B
=T | S S PR
(@)] T ]
© __r-_---—-—-—-—”-”-Z J-C
= I
10_4 4 1 2 10 — 2 ;4 6
10 10 10 10 10 10
Frequency (rad/sec)
4 Inverse Control weighting functions, (\Nu'l)
10 :::::::::::t::::::::::j:::Vif'if::;;;\;;;;;;;;;;;;;;;;;;;;;;;
L:::::::::::
TIZIZIICIZo]
o) ]
L L a N ]
2 1
c ZZzZ=z=z=z=zzzfz=zzz=zz=z=zz:=73
()] T
] “-I--C
= 1 I
102 | | | |
10" 107 10° 10° 10" 10°

Frequency (rad/sec)

Figure 6-31: Control weighting function and its inverse

Performance weighting function

The performance weighting function restrains the difference between the reference model and the
test rig in low-frequency areas, thus the inverse performance weighting function has to be a high-
pass filter. Like the disturbance and control weighting functions, 2Hz is chosen for the cutoff
frequency. In the frequency less than 2Hz, the complementary sensitivity is similar to the reference
model and the system is robust against disturbance and noise.

Gain of the performance weighting function of p-synthesis is adjusted to make the singular value of
the three criteria less than 1 - nominal performance, robust stability and robust performance. As

shown in (6-11), large gain in W, means that the closed loop behaves similar to the reference model
and is robust against disturbance and noise. Since gain in p-synthesis is 100 times larger than H., an

improved performance is expected with p-synthesis.
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Figure 6-32: Performance weighting function and its inverse

6.3.4. Performance of the robust controller

A robust controller must satisfy the following three criteria — nominal performance, robust stability
and robust performance. “Nominal performance” determines if all the singular values of the nominal
transfer functions are less than 1. Uncertainty is not considered in this step. “Robust stability”
distinguishes stability of the plant with uncertainty. “Robust performance” is the harshest of the
three criteria. The singular values of all the transfer functions with uncertainty must be less than 1.

Nominal performance

Regard a closed-loop system with a controller (K), a plant (Grom), @ weighting function (W;). The plant
does not imply uncertainties.
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reference

disturbance

wi

Figure 6-33: An example block diagram with a weighting function, W;

Nominal performance is defined as:

/

— <1 6-12
Y146, K (6-12)

[e e}

(/ + Gm,mK)fl is the output sensitivity function, which indicates the effect of disturbance to the error.

It also denotes the transfer function from reference to error. The equation (6-12)(6-11) can be

written as:

nom

[+ o, > 4],

This equation is illustrated graphically in Figure 6-34. The Nyquist plot of G,,om(ia))K(ia)) has to avoid

a circle with center -1 and radius Wl(la))
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Gnom(iW)K(iW)

Figure 6-34: Nyquist plot for describing nominal performance

The model in this research has three inputs and two outputs as seen in equation (6-11). Thus 3x2
matrix is used for nominal performance determination. The singular value of the nominal plant

model, G has to be less than 1. The weighting functions and a reference model must be

nom ?

designed to satisfy the following criterion.

G __K G G __K
Wp ( nom _ MJ WP nom Wd _ Wp nom Wn
I+G,,.K 1+G,,.K 1+G,,.K <1 (6-13)
w—K Koy gy K
“I+G, K “I+G, K ¢ “I+G, K "

o0

Robust stability

Robust stability means a system is not only stable for the nominal plat but also for the real plant,
whose parameters are somewhat different from the nominal plant. As the magnitude of uncertainty
() is limited to W,(®) , then |A(iw)|. <W, (). The radius of a circle at the frequency @in Figure

6-35 is W, (@)|G,,om (i0)K(iw)|. -

For the stability of a system with uncertainties, the distance between -1 and the nominal system has
to be farther than the radius of a circle on the nominal system. This is written as:

|+ G o (0K (i) > W, ()G o (i K (i) (6-14)
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Wa(w)| Grom(iw)K(iw))|

Gnom(iW) K(IW)

Figure 6-35: Nyquist plot for describing robust stability

Robust performance

Robust performance is a performance of a perturbed feedback loop. Based on the nominal system in
Figure 6-33, an uncertainty block is added in Figure 6-36.

Uncertainty

reference

disturbance

w1l

Figure 6-36: An example block diagram with uncertainty and a weighting function
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A necessary and sufficient condition for robust performance is [55]:

H|W151|+|W252 moo <1 (6-15)

Where S, is a sensitivity function and S, is a complementary sensitivity function as:

/ G,mK

= ’52 =
1+G,, K2 1+G, K

Sl
Equation (6-15) can be written as:

| |+W2 G, K
14 GpomK| | 214G pomk

nom

<1

o0

(6-16)

& WA+ WoG k], <1+ Gk,

nom nom

The left side of the equation (6-16) is the sum of radius of the two circles in Figure 6-37 and the right
side is the distance between -1 and the nominal system. Thus the two circles do not cross if robust
performance is satisfied.

[Wa(iw)]
[1+Grom(iW)K (iw)|

WZ(W) | Gnom(iW) K(lW)l

G(iw)K (iw)

Figure 6-37: Nyquist plot for describing robust performance
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Like the nominal performance, robust performance must satisfy the 3x2 matrix criterion. The model
contains uncertainty, therefore G =F, (Gnam,A). Robust performance of the perturbed system in this

research is:

Wp( GK _M) w. G W, -w GK

P P n

I+ Gg /+I§5é< I+KGK <1 1)
-W —Ww., -W —

“11+GK “IrGK @ “I+GK "

o0

Performance of H.. controller and p-synthesis

Singular values of the three criteria are:

He u-synthesis
Nominal performance 0.005 0.822
Robust stability 0.695 0.795
Robust performance 0.699 0.826

Table 6-2: singular values of nominal performance, robust stability and robust performance

All the three criteria of H. robust controller and p-synthesis is smaller than 1. Figure 6-38 shows the
magnitude of each term in the nominal performance matrix in (6-13). of p-synthesis reaches its
maximum in low frequency in the upper middle figure. It means robustness against disturbance is
challenging. Nominal performance of H. robust controller is very small in comparison to p-synthesis.

Nominal performance, robust stability and robust performance in frequency domain are seen in
Figure 6-39, Figure 6-40 and Figure 6-41. The nominal performance of the p-synthesis declines
between 2 and 30 rad/s. The robust stability graphs of both controllers soar around at 20 rad/s.
Robust performance is a mixture of nominal performance and robust stability. The robust
performance graphs with the two controllers are similar to the combination of the upper two graphs.
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Figure 6-41: Singular values of the robust performance over frequency

10"
Figure 6-42 and Figure 6-43 show the closed-loop transient response in simulation and experiment.

p-synthesis reacts faster than H. controller.
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Figure 6-42: closed-loop transient response, H-. robust controller
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Figure 6-43: closed-loop transient response, p-synthesis

Experimental setup

following pitch controllers as:

Collective pitch control

6.4.Comparison of the four pitch angle controllers

Four pitch angle controllers (PD-base, cascade, H. controller and p-synthesis) were proposed in the
section 6.1, 6.2 and 6.3. The suggested pitch angle controllers are compared in the test rig with the
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e Individual pitch control
e Tower damping control

Collective pitch control is currently used control whereas individual pitch control and tower damping
control represent for new developing control for load reduction (see section 1.2 for more in detail).

The criterion to compare the four pitch angle controllers is tracking performance. It is tested how
good the pitch angle controllers track the reference signal in the presence of the following
hindrances: sinusoidal reference value, blade’s load around pitch axis, nonlinearities of the pitch
actuation system, and viscous friction coefficient change. The tracking performance is determined by

calculating root-mean-square ( errory,, ) of the errors between the reference pitch angles (9,,;;) and

ref ,i

the actual pitch angles (3, ;) as:

act,i

ns:gnals (

ljref,i ljar:l',i )z

n

i=1

errorpy,s =

signals

where n is the number of signals. Root-mean-square of the errors is one of the most widely

signals
used assessment of misfit/fit [60]. Because its approximate distributional properties are known, it is
possible to obrain parametric confidence intervals [60]. Root-mean-square (RMS) of the errors is
preferred to mean-square of the errors as it is on the same scale as the data. Mean-square (MS) of
the errors is written as:

n

signals

5

(ﬁref,i - 6act Wi )2

n

1

I

errorMS =
signals

Mean-absolute (MA) of the errors is another accuracy measure as:

ns/‘gnals

-0

ref ,i act,i

i=1

errory,, =

nsignals

RMS is more sensitive to outliers than mean-absolute [61]. For example, pitch angles travel as Figure
6-44. Whereas the actual-A is departed from reference pitch angles by 2 degrees, distances between
the actual-B and the references vary in 1 and 3 degrees. Whereas mean-absolute values of the errors
of both cases are the same, root-mean-square of errors of actual-B is larger than that of actual-A (see
Table 6-3). Since large deviation is weighted more with root-mean-square than with mean-absolute,
root-mean-square deals with worst cases better than mean-absolute.
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Figure 6-44: example to compare mean-absolute and root-mean-square of errors

Mean-absolute Root-mean-square
actual-A 2 2
actual-B 2 2.24

Table 6-3: Mean-absolute and root-mean-square of the errors between reference and actual signals

For the study, a turbulence wind with 12m/s average speed is simulated. Pitch angles corresponding
to the wind speed are obtained from the Bladed simulation with a 5MW wind turbine. Bladed is the
most well-known software program for wind turbine simulation. Its simulation results are used for
certification. Whereas the rotational frequency of the 5SMW turbine rotor in rated wind is 0.25Hz, the
frequency of the used Risg [28] blade is 0.33Hz. The rotational frequency, which is also called 1P, is
also the frequency of the cycles with individual pitch control. The frequency of the cycle with tower
damping control is 3 times larger than individual pitch control with a three-blade-turbine. The
frequency is called 3P. The two robust controllers are designed in consideration of 1P and 3P. Gravity
in the load simulation is changed in 1P cycle. Thus the pitch angles from Bladed software are
compressed to 0.25/0.33 times of the time axis. While the pitch angles are adjusted to the cycles in
individual pitch control and tower damping control, the pitch angles in collective pitch control are
also compressed. Thus the compressed pitch angles are the same as the case with 12m/s wind speed
and higher turbulence than the original Bladed simulation.

Tracking performances of the pitch angle controllers

Root-mean-square (RMS) of the errors between the reference signals and the actual signals are listed
in Table 6-4 and Figure 6-45. The pitch angles with collective pitch control are found in Figure 6-46.
As the RMS of the PD-controller is set to be 100%, the values of the cascade, the H., controller and
the p-synthesis are 71.6%, 70.2% and 51.0%. Thus the p-synthesis shows the best tracking
performance. The cascade and the H. controller tracks the reference signals of the collective pitch
control more precisely than the PD-controller.
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Pitch angles of the individual pitch control are seen in Figure 6-47. RMS of the PD-controller is 0.2937
which is 64.3% larger than the PD-controller with collective pitch control. RMS of the other three
pitch angle controllers are also larger with individual pitch control than collective pitch control.
Individual pitch control requires frequent change of pitch angles. As the sign of pitch rate changes,
the friction on the blade root is changed. Friction change is simulated and given to the test rig via the
load motors and it prohibits pitch angle controllers to track the reference signal. Frequent change of
pitch angles leads to frequent change of the nonlinear friction in the pitch actuation system. In
addition, the reference signal of individual pitch control is composed of signals of collective pitch
control and a sinusoidal signal. Since the H. controller and p-synthesis imply consideration of
sinusoidal reference signal, blade’s load around pitch axis, and nonlinearities of the pitch actuation
system, increase of errors of the two robust controllers is less than the two classical controllers. The
increases are 0.1150 with the PD-controller, 0.2519 with the cascade controller, 0.0458 with the H.,
controller and 0.0134 with p-synthesis. Therefore, the tracking performances of the robust
controllers are proved more obviously in the experiments with individual pitch control. RMS of the
H. controller and p-synthesis are 58.3% and 35.6% in comparison to the PD-controller with individual
pitch control.

Cascade controller shows a worse tracking performance than PD-controller in the experiment with
individual pitch controller. The pitch angles of the individual pitch control change in 1P cycle and the
1P is 0.33Hz (=2.1 rad/s) in this research. The phase angle of the PD-controller in 1P is around -100°
and that of the cascade controller is around -130° (see Figure 6-2 and Figure 6-6). Since the phase
angle of the cascade controller in 1P is nearer to -180°, it is concluded that the cascade controller
performs worse than PD-controller with individual pitch control.

Figure 6-48 shows the pitch angles with tower damping control. RMS of the PD-controller with tower
damping control is 5.8% more than that with collective pitch control. The pitch angles of tower
damping control do not vary so much as individual pitch control, thus the error with tower damping
control is less than the error with individual pitch control. RMS of the two robust controllers are 71.7%
and 51.5% of the RMS of the PD-controller with tower damping control. The percentages of the two
robust controllers are similar to the cases with collective pitch control.

PD-controller Cascade H.. controller p-synthesis
Co”iztr']‘é‘:orl"“h 0.1787 (100%) | 0.1280(71.6%) | 0.1255(70.2%) | 0.0912 (51.0%)
Individual pitch
”d"é':r?;oﬁ"tc 0.2937 (164.4%) | 0.3799 (212.6%) | 0.1713(95.9%) | 0.1046 (58.5%)
= .
OWi;:;Ep'”g 0.1890 (105.8%) | 0.1730(96.8%) | 0.1356(75.9%) | 0.0974 (54.5%)

Table 6-4: root-mean-square of the errors between reference and actual signals
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Collective pitch control

B PD-base
Individual pitch control B cascade

B H-infinitive
B p-synthesis
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0 50 100 150 200 250

Figure 6-45: root-mean-square of the errors between reference and actual signals, collective pitch control with PD-base is
set to be 100%.
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Figure 6-46: Pitch angle, collective pitch control, 12m/s turbulence, with load simulation
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Figure 6-47: Pitch angle, individual pitch control, 12m/s turbulence, with load simulation
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Figure 6-48: Pitch angle, tower damping control, 12m/s turbulence, with load simulation

Experiments without load simulation

It is worth to find how much the four problems among sinusoidal reference value, blade’s load
around pitch axis, nonlinearities of the pitch actuation system, and viscous friction coefficient affect
the tracking performances of the pitch angle controller. Sinusoidal reference value is one of the
reasons that the tracking performances of the two robust controllers are good with individual pitch
control. Coulomb/sliding friction and viscous friction change is implied in the test rig, so these effects
cannot be excluded in the test rig. In contrast, blade’s load around pitch axis is given to the two load
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motors in the test rig. Thus load simulation is excluded and the performances of the four controllers
are tested. Since the two load motor sets have gear play, they are tensed with £5Nm.

Table 6-5 shows that the errors between reference and actual signals are reduced regardless of the
pitch angle controllers and the pitch controllers. These are also shown in Figure 6-49 for collective
pitch control and Figure 6-50 for individual pitch control. RMS of PD-controller with collective pitch
control and load simulation is defined as 100% and the other RMSs are calibrated to the default value.
Because the tracking performances with tower damping control is similar to with collective pitch
control, only collective pitch control and individual pitch control without load simulation are tested.

In Figure 6-49, the RMS of error for collective pitch control is decreased in the order of PD-controller,
cascade controller, H-infinitive and u-synthesis. In all the four pitch angle controllers, the RMS

without load simulation is smaller than that with load simulation. The difference is between 3.1% in
H. controller and 34.5% in cascade controller.

The changes in case of no load simulation are found obviously with individual pitch control (see
Figure 6-50). The position errors of base PD-controller and cascade controller are reduced from
0.2937 and 0.3799 to 0.1809 and 0.2376. This, in reverse, indicates that the blade’s load around pitch
axis takes 37.5-38.4% of the RMS. The effects of the blade’s load around pitch axis in the Ho
controller and the p-synthesis are 22.4% and 32.0%. Therefore, it is found that the blade’s load
around pitch axis is an important hindrance to the pitch angle controllers. Because the difference is
less than 50% and the effects of the other three problems are not known, blade’s load cannot be
decided to be the biggest hindrance to the pitch angle controllers.

All the pitch angles for collective and individual pitch control without load simulations are found in
Figure 6-51 and Figure 6-52.

PD-controller Cascade H. controller p-synthesis
with load 0.1787 0.1280 0.1255 0.0912
simulation
Collective pitch without
control load 0.1638 0.0839 0.1216 0.0696
simulation
difference 0.0149 (8.3%) | 0.0441 (34.5%) | 0.0039 (3.1%) | 0.0216 (23.7%)
with load 0.2937 0.3799 0.1713 0.1046
simulation
Individual pitch without
control load 0.1809 0.2376 0.1329 0.0711
simulation
difference | 0.1128 (38.4%) | 0.1423 (37.5%) | 0.0384 (22.4%) | 0.0335 (32.0%)

Table 6-5: root-mean-square of the errors between reference and actual signals
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Figure 6-49: root-mean-square of the errors between reference and actual signals, collective pitch control, PD-controller
with load simulation is 100%
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Figure 6-50: root-mean-square of the errors between reference and actual signals, individual pitch control, PD-controller
with load simulation and collective pitch control is 100%
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Figure 6-51: Pitch angle, collective pitch control, 12m/s turbulence, without load simulation
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Figure 6-52: Pitch angle, individual pitch control, 12m/s turbulence, without load simulation

Discussion

The H. controller and p-synthesis track the reference signal more precisely than the PD-controller
and the cascade controller regardless of the pitch controllers and load simulations. The differences in
tracking performance are found especially in individual pitch control case because the problems such
as sinusoidal reference value, blade’s load around pitch axis, and nonlinearities of the pitch actuation
system are applied especially in individual pitch control. PD-base and cascade controllers are
designed on a linear model and only a few parameters can be adjusted. The four problems can be
considered in simulations or experiments after the classical controller is designed. Instead, robust
controller takes the four problems into account in the designing step. The tracking performances of
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the robust controllers are seen obviously especially with individual pitch control because sinusoidal
reference value, blade’s load around pitch axis, and nonlinearities of the pitch actuation system are
applied more strongly with individual pitch control.

By comparing the experiments with and without load simulation, it is found that blade’s load around
pitch axis is one of the main hindrances to the tracking performances of the controllers.

Two-motor-pitch-system is developed for new developing pitch controllers, especially for individual
pitch control. With the experiments in this chapter, it is concluded that the pitch actuation system
shows the best tracking performance in case the two-motor-pitch-system is combined with a robust
pitch angle controller.
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7. Conclusion and further studies

In the development of large wind turbines, a great load on their elements has to be taken into
account. In order to alleviate this load, new pitch control strategies are required such as individual
pitch control or tower damping control. Whereas the new pitch controllers lessen load on the
elements, e.g. main bearing or blade root bearing, load on the pitch actuation system increases
because pitch action is performed also in low wind speed and pitch reversal occurs much more
frequently. Since the gear play in the gearbox and between the pinion and ring causes fatigue
increment, a two-motor-pitch-system is proposed to compensate for gear play. Three methods are
compared to distribute torque into the two pitch motors.

A profile generator is currently used as a pitch angle controller. However the profile generator is not
suitable for individual pitch control because of phase delay at sinusoidal reference values. As an
alternative, two robust controllers are suggested and compared to PD and cascade controllers.

A test rig is built to test the two-motor-pitch-system and the pitch angle controller. Since no sensor is
equipped on the ring of the test rig, an observer is used to calculate the ring position. However, the
ring position itself is an output of the test rig model. Thus the proposed observer designates its
output in a different way from the Luenberger observer.

Large wind turbines endure great loads. New pitch controllers increase load on the pitch actuation
system. A two-motor-pitch-system and robust control are hardware and software which guarantee a
long lifetime and good performance of large wind turbines.

7.1.Fatigue on the pitch actuation system

As the pitch angle direction changes, gear teeth hit each other and torque soars with a one-motor-
pitch-system. The torque peak does not occur with a two-motor-pitch-system. Because torque peak
increases fatigue, a two-motor-pitch-system alleviates fatigue on the pitch actuation system.

Advantages of the two-motor-pitch-system are:

e Lifetime of the pitch actuation system increases. Thus maintenance and replacement cost
can be saved.

e Gear teeth in the gearbox, pinion and ring may have larger tolerance, thus the manufacturer
can save cost.

Disadvantages of the two-motor-pitch-system are:

e Pitch action requires energy not only to rotate blade but also to overcome friction and
inertia of the pitch actuator. The two-motor-pitch-system has larger inertia and
Coulomb/viscous friction in comparison to the one-motor-pitch-system. Thus the two-
motor-pitch-system leads to more energy consumption.
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e Inthe two-motor-pitch-system, torques of the two motors are applied in the opposite
direction. It causes the sliding friction to increase. Thus more electricity is consumed.

e Two pitch actuators are equipped instead of one, thus manufacturing cost for pitch
actuation system increases.

It is not known if the total cost inclusive manufacturing cost, maintenance cost, replacement cost and
electricity can be saved. This is explained in section 7.3 in detail.

7.2.Pitch angle controller

A large overturning moment is given to a large wind turbine. Nonlinear friction due to the
overturning moment and gravity force of a blade mass are hindrances to pitch action. Pitch actuation
system itself has also nonlinear frictions. Mechanical characteristics such as viscous friction
coefficient vary during pitch action. Tracking sinusoidal reference value requires an additional
consideration in controller design. The proposed two robust controllers show satisfactory results in
comparison to a PD and cascade controllers.

Advantages of the two robust controllers in comparison to PD and cascade controllers are:

e Arobust controller guarantees robust performance in the situation of blade load simulation
and nonlinear frictions.

e Estimated parameters of the model may have some tolerances. Viscous friction coefficient is
not fixed, thus the parameter does not exist as a constant but in a range. Robust controllers
operate sufficiently well in the range of certain parameter uncertainties.

® The user designates amplitudes and frequencies of disturbance, noise, performance and
control weighting functions. A reference model is also designed by the user. Thus several
criteria e.g. robustness against disturbance, robustness against uncertainty, tracking
performance and energy consumption can be satisfied at the controller design step.

However, the robust controllers in this study have also a few disadvantages compared to cascade
and PD controllers:

® A robust controller requires many weighting functions. In this study, 4 weighting functions
and one reference model are designed. The user should have a thorough understanding of
the system. It requires much more effort and time than designing PD or cascade controller.

® Since a robust controller is made based on the model, the model has to be correct. Small
errors in the model can harm performance and stability of the closed-loop system.

® A robust controller is in high order. The PLC in the test rig can support a controller with 20
orders of the H., controller and 60 orders of the p-synthesis, but the computing duration can
be longer than the time interval in a computer with low performance. The order of a
controller can be reduced, but it may cause unsatisfactory performance.
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® The structure and parameters of the robust controllers are not straightforward. Thus the
robust controllers are not preferred in technical fields.

7.3.Further studies

Two advantages and three disadvantages of two-motor-pitch-system are written in section 7.1.
However, it is not known if the total cost can be saved and how much. This can be solved with the
electricity consumption and price, maintenance and replacement cost for pitch actuator, the price
data of the components in the pitch actuation system and the lifetime calculation. The lifetime
calculation can be performed by means of a simulation code. Fatigue load cases such as dlc1.2 and
dlc6.4 in GL certification are used to calculate fatigue on the pitch actuation system.

H., control and p—synthesis are studied in this research. For further studies, another robust controller
such as H., - Loop shaping or sliding mode control can be designed. Adding a feed-forward controller
besides a feed-back controller may enhance tracking performance of sinusoidal reference values. A
combination of an adaptive control and a robust control is also reported [62]. Viscous friction
coefficient change may be adapted with a robust adaptive control.

The blade root bearing diameter of a large wind turbine ranges up to 3.2m for 6MW wind turbine
[63]. However, the diameter of the ring in the test rig is less than 1m. Thus, gearboxes with high gear
ratio are used in the real wind turbines in comparison to the test rig. Parameters of the controllers in
this research must be tuned for the real wind turbines.

Load on the pitch bearing is simulated and transferred to the two load motors. Their inertia and
friction have influence on the load simulation. An algorithm can be made to extract the influences. A
field test does not require the load motors, so that it is another option.
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