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1. Einleitung  

1.1. Motivation 

Präferenzen stellen ein zentrales Element der Ökonomik im konzeptionellen Rahmen der 

Analyse menschlichen Verhaltens dar. Präferenzen beziehen sich auf eine Menge von Annahmen 

die Rangfolge von Wahlmöglichkeiten betreffend. Formal mathematisch wurde das Konzept 

erstmalig von Frisch (1926) formuliert und später von Arrow (1951) perfektioniert. 

Präferenzrelationen mit denen Präferenzen modelliert werden, bilden die Grundlage der Rational-

Choice Theorie. Rational Choice ist definiert durch die Bestimmung der Wahlmöglichkeiten und 

die anschließende Wahl der besten Alternative anhand bestimmter Konsistenzbedingungen. 

Rational-Choice Theorie basiert auf einer stark vereinfachten Beschreibung des Wahlproblems 

(Ziele und Nebenbedingungen). Das Wahlentscheidungen von vielen weiteren Faktoren 

abhängen wird beispielsweise von psychologischen Theorien propagiert und von zahlreichen 

Laborexperimenten unterstützt (Hogarth und Einhorn 1992; Hoffman et al. 1994; Kahneman 

und Frederick 2002, um nur einige zu nennen). Derartige Faktoren beinhalten zum Beispiel die 

Art und die Reihenfolge wie Informationen zur Verfügung gestellt werden. Die empirischen 

Befunde in der Ökonomik und in psychologischen Experimenten welche den Vorhersagen der 

Rational-Choice Theorie widersprechen, haben intensive Forschungen auf dem Gebiet der 

Entscheidungstheorie nach sich gezogen und eine Vielzahl alternativer Verhaltensmodelle wurde 

entwickelt. Das Verstehen individuellen Verhaltens ist eine der grundlegenden Aufgaben 

ökonomischer Forschung. Meine Dissertation trägt zur Bewältigung dieser Aufgabe insofern bei, 

als das die Entstehung bestimmter charakterisierender Merkmale von Präferenzen und deren 

Auswirkung auf das Verhalten ein übergeordnetes Thema der drei konstituierenden Artikel dieser 

Arbeit bildet. Neben diesem verbindenden Themenkomplex, der für mich von zentralem 

Interesse in meiner Forschung ist, ist jeder der Artikel durch eine konkrete Forschungsfrage 

motiviert. Dies wird in den nächsten Abschnitten genauer herausgestellt.  

Der methodologische Individualismus und das Konzept des Homo Oeconomicus bilden die 

Basis der traditionellen ökonomischen Theorie. Präferenzen und der zulässige Handlungsraum 

bestimmen in diesem Rahmen das individuelle Verhalten. Zur Operationalisierung der 

grundlegenden Annahmen der Rationalität und der Eigennutzen-Orientierung wird 

angenommen, dass Präferenzen im Zeitverlauf stabil sind. Zeitinvariante Präferenzen sollen dabei 

allerdings kein deskriptives Modell für real existierende Individuen darstellen. Selbst wenn 

Präferenzen kurzfristig fix wären, stellt sich die Frage wie und warum bestimmte Charakteristika 

wie Altruismus, Risiko- oder Verlustaversion, die sich wiederholt in Experimenten zeigten, in den 

Menschen „eingepflanzt“ wurden. Die evolutionäre Perspektive bietet einen möglichen 

Analyserahmen für die Beantwortung dieser Fragen. Innerhalb dieses Rahmens versuchen 

Ökonomen besondere Aspekte menschlicher Präferenzen zu rationalisieren. Spätestens mit den 

bedeutenden Arbeiten von Fehr und Schmidt (1999) und Bolton und Ockenfels (2000) stellt das 

Konzept der Ungleichheitsaversion als eine Form von Präferenzen, welche die Situation andere 

Individuen in die Bewertung der eigenen mit einbezieht, eine prominente Erklärung für 

zahlreiche empirische und experimentelle Ergebnisse dar, welche von der Vorhersage der 

traditionellen ökonomischen Theorie abweichen. Aufgrund der zunehmenden Bedeutung bedarf 

es einer Rationalisierung derartiger Präferenzen, da sie sonst lediglich eine ad-hoc Anpassung 

herkömmlicher Präferenzen darstellen, um empirische Befunde besser erklären zu können. Güth 

und Napel (2006) weisen darauf hin, dass derartige Präferenzen insbesondere mit der physischen 
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Notwendigkeit nach materielle Bedürfnisbefriedigung in einer Welt knapper Ressourcen 

vereinbar sein sollten. Mit anderen Worten, derartige Präferenzen sollten aus evolutionärer Sicht 

rationalisierbar sein. Die Autoren argumentieren überzeugend, dass jede Art von Untersuchung, 

die sich mit der Evolution von Präferenzen beschäftigt in einem Rahmen ausgeführt werden 

sollte, der alle Klassen menschlicher Interaktion enthält, da sonst spiel-spezifische Ergebnisse 

erzielt werden, deren Verallgemeinerbarkeit zumindest fragwürdig ist. Sie bezeichnen eine solche 

Umwelt als das „game of life“. In dem Artikel ‘The evolution of inequality aversion in a 

simplified game of life’ unternehme ich einen ersten Schritt diese Notwendigkeit zu erfüllen.  

Präferenzen werden jedoch nicht nur durch evolutionäre Kräfte geformt, die langfristig wirken 

und den genetisch fixierten Teil der Präferenzen verändern. Formelle und informelle 

Institutionen ermöglichen und beschränken individuelles Handeln. Werden informelle 

Institutionen internalisiert, so werden sie Teil der Präferenzen eines Individuums. Die 

Internationalisierung sozialer Normen findet in viel kürzerer Frist statt und hängt von 

zahlreichen Faktoren ab. Ich verstehe unter sozialen Normen innere Handlungs“empfehlungen“ 

sich in einer bestimmten Art und Weise zu verhalten. Externe Anreize wie die mit einer 

Handlung verbundenen Kosten und Erträge können sozialen Normen komplementär oder 

substitutiv gegenüberstehen. Diese Kosten und Erträge sind Teil der zuvor erwähnten externen 

Beschränkungen des Handelns. In modernen Volkswirtschaften findet der Großteil menschlicher 

Interaktionen auf Märkten statt. Somit materialisiert sich die Mehrzahl der 

Verhaltensrestriktionen auf Märkten. Durch die Aggregation individuellen Verhaltens, 

aggregieren Märkte auch individuelle externe Effekte. Viele der heutigen Umweltprobleme 

werden durch das Konsumverhalten privater Haushalte verursacht. Individualverkehr, 

Nutzwärme und Nahrungsmittelproduktion tragen substantiell zur Emission von CO2 und 

andere Umweltschadstoffe bei. Die Wahl zwischen mehr oder minder zur Umweltverschmutzung 

beitragender Produkte hängt von der Verfügbarkeit derartiger Produkte und sozialen Normen 

und anderer Institutionen ab. Lösungen von Umweltproblemen hängen somit nicht nur von 

Produktinnovationen sondern auch von den bestehenden sozialen Normen ab, wobei erstere die 

Märkte um nachhaltige Produkte erweitern und letztere nachhaltigen Konsum fördern. In 

Anbetracht des Einflusses sozialer Normen auf individuelle Präferenzen ist es augenscheinlich, 

dass Märkte und soziale Normen nicht getrennt voneinander untersucht werden können. Die 

existierende Literatur enthält zahlreiche Studien über die Wechselwirkungen zwischen Märkten 

und soziale Normen in beide Richtungen – wie soziale Normen Märkte beeinflussen und wie 

Märkte soziale Normen (z.B. Hong und Kacperczyk 2009; Johnson 2004; Ek und Soderholm 

2008; Fehr und Gächter 2001 und Gneezy und Rustichini 2000). Sämtliche dieser Ansätze 

beschränken sich auf die monetären Anreize, die von Märkten gegeben werden und deren 

Regulierung. Dies allerdings reduziert Märkte auf ihre Preis-Mengen-Dimension und 

vernachlässigt völlig deren Innovationskapazität. Die Produktvariationen, die aus 

nachhaltigkeitsrelevanten Innovationen hervorgehen sind ein wichtiges Element in der 

Wechselwirkung zwischen Märkten und Normen. Diese Wechselwirkung steht im Zentrum des 

Artikels “The impact of market innovations on the evolution of social norms: the sustainability 

case”.  

Der Aspekt der Nachhaltigkeit weist auf die allgemeine Klasse sozialer Dilemmata hin. Soziale 

Dilemmata zeichnen sich dadurch aus, dass individuell rationales Verhalten zu kollektiv 

irrationalen Ergebnissen führt. Ökonomen haben in Experimenten (für einen Überblick der 
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Ergebnisse siehe Roth 1995) und Feldbeobachtungen (Fey und Meier 2004; Cunha und 

Augenblick 2014) Kooperation in dem Sinne beobachtet, dass die kollektive Irrationalität 

zumindest teilweise überwunden wird. Aus Sicht der klassischen ökonomischen Perspektive ist 

dies überraschend insbesondere da kooperatives Verhalten auch dann zu beobachten ist, wenn 

jetziges Verhalten keinerlei Auswirkungen auf zukünftige Interaktionen hat (Cooper et al. 1996). 

Die zahlreichen Erklärungsansätze basieren gewöhnlich auf mindestens einer von zwei 

Einschränkungen. Die erste Einschränkung besteht darin, dass Erklärungsversuche strukturierte 

Populationen untersuchen, in denen Interaktionen nicht vollständig anonym sind sondern 

Individuen die Möglichkeit haben Informationen über das Verhalten andere oder deren Identität 

zu sammeln und zu verarbeiten. Die zweite Einschränkung zeigt sich darin, dass 

Erklärungsansätze von der nicht motivierten Fähigkeit sozialer Normen ausgehen, individuelle 

Handlungsräume zu beschränken, insbesondere hinsichtlich des Missbrauchs von 

Bestrafungsmechanismen. Der Artikel “Evolution of cooperation in social dilemmas: signaling 

internalized norms.” präsentiert eine neue Erklärung kooperativen Verhaltens welche ohne beide 

Einschränkungen auskommt.  

1.2. Einordnung der Dissertation: der weite Blickwinkel 

Die drei Artikel, welche meine Dissertation bilden, setzen drei Gebiete der 

Wirtschaftswissenschaften in Beziehung: Verhaltensökonomik, formale Institutionenökonomik 

und evolutionäre Spieltheorie. Die folgende Abbildung veranschaulicht dies grafisch.  
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Verhaltensökonomik: Das Einbeziehen psychologischer, kognitiver und emotionaler Faktoren 

ist das charakterisierende Merkmal der Verhaltensökonomik. Die Verhaltensökonomik versucht 

dadurch den Erklärungsgehalt der Wirtschaftswissenschaften zu erhöhen. Der Versuch die 

Wirtschaftswissenschaften auf eine realistischere psychologische Basis zu stellen impliziert jedoch 

nicht die Ablehnung neoklassischer Ansätze. Tatsächlich werden in den meisten Artikeln auf 

diesem Gebiet nur ein oder zwei Annahmen der Standardtheorie angepasst, um einen größeren 

Grad psychologischen Realismus zu erreichen. Camerer und Loewenstein (2004) weisen darauf 

hin, dass es nichts im Kern neoklassischer Theorie gibt, was besagt, dass Individuen keine 

Rücksicht auf Fairness nehmen oder das riskante Ereignisse linear gewichtet werden sollten. 

Einige der zuvor genannten Modifikationen schwächen diese vereinfachenden Annahmen ab. 

Andere Abwandlungen des neoklassischen Rahmens berücksichtigen kognitive Schranken des 

Menschen. Derartige Annahmen beziehen sich auf das was Herbert Simon „prozedurale 

Rationalität“ nennt (Simon 1976). Unter methodologischen Gesichtspunkt griff die 

Verhaltensökonomik anfänglich vor allem auf experimentelle Ergebnisse zurück. In der jüngeren 

Forschung finden auch Feldexperimente (Gneezy und Rustichini 2004) und 

Computersimulationen (Angeletos et al. 2001) Anwendung.  

Laut Camerer und Loewenstein (2004) kann die behavioristische Forschung zu menschlichen 

Entscheidungen, welche die Hauptquelle der Verhaltensökonomik hinsichtlich relevanter 

psychologischer Aspekte darstellt, in zwei Kategorien klassifiziert werden: Einschätzung und 

Wahl. In der ersten Kategorie geht es im Kern darum wie Menschen 

Wahrscheinlichkeitseinschätzungen treffen. Wie Menschen zwischen verschiedenen Alternativen 

wählen ist Gegenstand der zweiten.  

Der Artikel zum Einfluss von Marktinnovationen lässt psychologische Aspekte in den 

Verbreitungsprozess sozialer Normen einfließen. Nachdem ein Produkt, welches sich durch ein 

relativ hohes Maß an Normkompatibilität auszeichnet, am Markt angeboten wird, verändert sich 

der Verbreitungsprozess in zweierlei Hinsicht. Erstens sind die Marktteilnehmer nun in der Lage 

im Einklang mit der sozialen Norm zu konsumieren, was vor der Innovation nicht möglich war. 

Zweitens ermöglicht die neue Produktvariation soziale Einflüsse wie den Druck zur 

Verhaltenskonformität (Boyd und Richerson 1985) ihre Wirkung zu entfalten.  

Der Artikel zur Evolution von Ungleichheitsaversion beinhaltet verhaltensökonomische 

Elemente da diese Präferenzeigenschaft ein realistischeres Bild menschlichen Verhaltens zeichnet. 

Das Papier liefert eine evolutionäre Grundlage für eine Erklärungsvariable in der 

behavioristischen Forschung zu menschlichen Entscheidungen.  

Evolutionäre Spieltheorie: Bis heute gibt es keine Übereinkunft darüber was genau mit der 

evolutionären Perspektive auf dem Gebiet der Wirtschaftswissenschaften gemeint ist. Witt (2008) 

reflektiert für die Verhaltensökonomik über die drei Ebenen wissenschaftlichen Arbeitens: die 

ontologische, die heuristische und die methodologische Ebene. Im Folgenden werde ich kurz 

seine Erkenntnisse wiedergeben, da dies hilfreich sein wird, die beiden Artikel mit hohem 

evolutionsökonomischen Gehalt einzuordnen. Auf der ontologischen Ebene identifiziert Witt 

(2008) einerseits den monistischen, anderer den dualistische Standpunkt. Im ersten wird 

unterstellt, dass die ökonomische Sphäre und die Nature in Wechselwirkung stehen. Die 

dualistische Betrachtungsweise verneint diese Sichtweise und behandelt die ökonomische und die 

biologische Evolutionsdynamiken als Teil von einander getrennter Sphären der Realität. Auf 
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heuristischer Ebene unterscheidet Witt (2008) die verallgemeinerte darwinistische Heuristik und 

allgemeine evolutionäre Heuristik. Im ersten Fall werden die drei Prinzipien der Evolution, 

welche durch abstrakte Reduktion aus Darwins‘ Theorie zur natürlichen Auslese folgen 

(Variation, Vererbung und Selektion), zur Konzeptualisierung der Evolution von Technologien 

(Ziman 2000), der Wissenschaft (Hull 2001), der Wirtschaft (Nelson 1995) und anderen 

herangezogen. Die allgemeine evolutionäre Heuristik basiert nicht auf einer Analogie zwischen 

ökonomischen und biologischen Evolutionsdynamiken, sondern auf einem allgemeinen 

Evolutionskonzept. Dieses Konzept beschreibt Evolution als einen Prozess der 

Eigentransformation mit der endogenen Erzeugung von Neuheiten und der bedingten 

Verbreitung als konstituierende Merkmale (Witt 2003, Kap. 1). Die zwei ontologischen und die 

zwei heuristischen Standpunkte ermöglichen die Einordnung evolutionsökonomischer Ansätze in 

eine 2x2 Matrix.  

Laut Witt (2008) lassen sich die Anwendungen evolutionärer Spieltheorie auf dem Gebiet der 

Wirtschaftswissenschaften entlang dieser Dimensionen unterscheiden und haben im 

Wesentlichen zwei Interpretationen. In der ersten Interpretation werden Selektionsprozesse 

beschreibende Modelle der Evolutionsbiologie in ökonomischen Kontexten angewandt um 

Lernprozesse abzubilden (siehe Brenner 1999, Kap. 6). Diese Interpretation bedient sich der 

heuristischen Strategie eine Analogie zwischen biologischer Adaption und ökonomischer 

Adaption durch nicht-kognitive Lernprozesse. Aus ontologischer Sicht beantwortet die 

Analogiekonstruktion regelmäßig die Fragen danach ob und wie ökonomische Prozess in 

Verbindung mit der naturalistischen Fundierung menschlichen Verhaltens stehen (Witt  2008). 

Die erste Interpretation entspricht somit der Position in der zuvor erwähnten 2x2 Matrix zur 

Strukturierung der Evolutionsökonomik hinsichtlich des ontologischen Standpunkts und der 

angewendeten heuristischen Strategie, welche der Neo-Schumpeter‘schen Synthese von Nelson 

und Winter (1982) entspricht. Die zweite Interpretation basiert nicht auf einer Analogie sondern 

der biologische Kontext ist dabei von direkter Bedeutung für Anwendungen in den 

Wirtschaftswissenschaften. Autoren die diese Position vertreten gehen davon aus, dass die 

grundlegenden Charakteristika menschlichen Verhaltens genetische verankert sind und somit am 

besten vom Standpunkt der natürlichen Auslese verstanden werden können. Zu diesen 

grundlegenden Eigenschaften menschlichen Verhaltens zählen Altruismus, Fairness und Moral 

(siehe bspw. Güth und Yaari 1992a; Binmore 1998; Gintis 2007). Diese direkte Übertragung von 

der Biologie auf die Wirtschaftswissenschaften setzt offenbar eine monistische Ontologie voraus. 

Witt (2008) argumentiert, dass die heuristische Strategie, welche in der Forschung, die der 

zweiten Interpretation folgt, Anwendung findet, einige Gemeinsamkeiten mit Hayek’s Theorie 

zur gesellschaftlichen Evolution teilt.  

Unter dieser Betrachtung, folgt der Artikel zur Evolution von Ungleichheitsaversion, welcher in 

Kapitel 4 vorgestellt wird, der zweiten Interpretation, wohingegen die Arbeit, die sich mit der 

Signalisierung internalisierter Normen beschäftigt, der ersten folgt. Ich untersuche die Evolution 

von Ungleichheitsaversion in einer Umwelt, die ich als vereinfachtes ‚game of life“ (Güth und 

Napel 2006) bezeichne. Diese Umwelt vereint drei Klassen von Spielen, die repräsentativ für die 

Mehrheit menschlicher Interaktionen sind. Der Artikel zur Evolution von Kooperation 

betrachtet ein konkretes Spiel, das Gefangenendilemma, und untersucht die Signalisierung einer 

Kooperationsnorm als einen Mechanismus zur Förderung von Kooperation.  
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Formelle Institutionenökonomik: Der Begriff der „Institutionsökonomik“ findet für eine 

Vielzahl ökonomischer Ansätze und Schulen Anwendung. In der Regel bezieht er sich auf den 

Bereich der Ökonomik, welcher in der Tradition von Thorstein Veblen, John R. Commons, und 

Wesley Mitchell steht. In den letzten Jahren hat sich der Begriff der „Neuen 

Institutionenökonomik“ etabliert. Dieser Begriff bezieht sich auf ökonomische Forschung in der 

Tradition des Transaktionskostenansatzes von Ronald Coase, Oliver Williamson, und Douglas 

North. In jüngster Vergangenheit wird dieser Begriff oft um spieltheoretische Ansätze zur 

Evolution gesellschaftlicher Konventionen und manchmal auch um Institutionen im Verständnis 

der Österreichischen Schule erweitert (siehe Rutherford 2001). In dieser Dissertation folge ich 

dem spieltheoretischen Ansatz. Um diesen Ansatz von der traditionellen Institutionenökonomik 

und den meist nicht-formalen Ansätzen der Neuen Institutionenökonomik zu unterscheiden, 

bezeichne ich ihn als formelle Institutionenökonomik. In der den spieltheoretischen Rahmen 

anwendenden Literatur können zwei Ansätze zur Definition des Begriffs „Institution“ 

unterschieden werden: der Gleichgewichtsansatz und der Spielregelansatz. Im 

Gleichgewichtsansatz stellt der Gleichgewichtscharakter individuellen Verhaltens das zentrale 

definierende Element von Institutionen dar. Meist übersetzt sich der Gleichgewichtscharakter in 

ein Stabilitätskonzept. Einige Autoren ziehen Konzepte der evolutorischen Spieltheorie (Sugden 

1986; Sugden 1989; Young 1998; Aoki 2000; Bowles 2000), andere die Theorie wiederholter 

Spiele der klassischen Spieltheorie heran (Greif 1989; Greif 1997; Greif 1998, Milgrom et al. 

1990; Calvert 1995). Der Spielregelansatz versteht Institutionen als externe Faktoren, welche den 

Strategienraum und die Auszahlungen des Spiels formen (North 1990; Hurwicz 1993; Hurwicz 

1996). Es besteht eine große Lücke zwischen der weiten Definition in der Neuen 

Institutionenökonomik und der engen Definition innerhalb des Gleichgewichts- und des 

Spielregelansatzes.  

Diese Lücke wird durch den indirekten evolutorischen Ansatz von Güth und Yaari (1992) 

verkleinert. Innerhalb dieses Ansatzes wird zwischen Verhaltenspayoffs und Fitness- oder 

materiellen Payoffs unterschieden. Die Fitnesspayoffs einer bestimmten Verhaltensweise sind 

entscheidend für die Verbreitung dieser innerhalb der Population. Verhaltenspayoffs spiegeln die 

innere Bewertung dieser Fitnesspayoffs wider. Die Verhaltenspayoffs sind relevant für die 

Entscheidungsfindung, haben aber keinen Einfluss auf die Adoptionsrate für diese Strategie 

durch andere Individuen.  

Der indirekte evolutorische Ansatz ermöglicht damit eine komplexere Modellierung von 

Institutionen, die über eine einfache Verhaltensregelmäßigkeit oder die Regeln eines Spiels 

hinausgeht. Insbesondere die informelle Institution einer sozialen Norm kann durch diesen 

Ansatz abgebildet werden. Somit liefert dieser Ansatz einen ersten Schritt um die zuvor erwähnte 

Lücke hinsichtlich der Komplexität unterschiedlicher Definitionen von „Institutionen“ zu 

verringern. Dies ist der Grund dafür, warum dieser Ansatz in den beiden Artikeln, die eine 

evolutorische Perspektive einnehmen, Anwendung findet (Kap. 3 und 4).  

1.3. Einordnung der Dissertation: der enge Blickwinkel 

In diesem Abschnitt werde ich jeden der Artikel in die bestehende Literatur einordnen und die 

Forschungsfragen herausarbeiten. Wie bereits erwähnt bilden „Präferenzen“ das übergreifende 

Thema meiner Dissertation.  
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Ich betrachte soziale Normen als wichtigen individuelle Präferenzen formenden Faktor. Der 

Artikel, der in Kap. 2 vorgestellt wird, untersucht die Wechselwirkung zwischen Märkten und 

dem Verbreitungsprozess von sozialen Normen. Dabei fließt die größere psychologische 

Realitätsnähe der Verhaltensökonomik in den Analyserahmen der formalen 

Institutionenökonomik ein. Darüber hinaus liefert der Artikel Erkenntnisse für die 

industrieökonomische Forschung hinsichtlich der Wirkung sozialer Normen auf Produktmärkte. 

Der Einfluss von sozialen Normen auf Märkte wurde aus theoretischer, empirischer und 

experimenteller Sicht untersucht. Mehrere Versuche wurden unternommen, um norm-

motiviertes Verhalten in die neoklassische Konsumtheorie einzubauen (siehe z.B. Nyborgs et al. 

2006; Brekke et al. 2003). Trotz dieser Bemühungen gibt es keine auf norm-motivierten 

Verhalten basierende allgemeine oder partielle Gleichgewichtstheorie, was ursächlich dafür sein 

könnte, dass die Mehrheit der Forschung auf diesem Gebiet empirischer Natur ist. Wie soziale 

Normen einen bestimmten Typ von Märkten, die Finanzmärkte, beeinflussen, wird durch Hong 

und Kacperczyk (2009) und Johnson (2004) untersucht. Kim (2007) zeigt, dass Normen auch für 

die Märkte privater Eigentumsrechte relevant sind. Eine Reihe von Fehr et al. (1998) 

durchgeführten Experimenten zu Wettbewerbsmärkten und bilateralen Verhandlungen weisen 

darauf hin, dass Wettbewerb nur einen begrenzten Einfluss auf Marktergebnisse hat, wenn die 

Norm der Reziprozität wirksam ist. Die Rolle für die Nachfrage nach „grüner“ Elektrizität des 

psychologischen Bedürfnisses eine positive Selbstwahrnehmung als sozial 

verantwortungsbewusste Person zu erhalten, wurde von Ek und Soderholm (2008) untersucht.  

Die Forschung zum Einfluss von Märkten auf die Evolution von Normen beschäftigt sich 

hauptsächlich mit der Analyse der Beziehungen zwischen normgeleiteter intrinsischer Motivation 

und markt- oder preisgeleiteter extrinsischer Motivation. Es gibt empirische Befunde (Fehr und 

Gächter 2001), welche belegen, dass Anreizverträge reziprozitätsgeleitete freiwillige Kooperation 

verdrängen. Einen Überblick über diesen Teil der Literatur, der sich mit Verdrängungseffekten 

beschäftigt, geben Frey und Jegen (2001). Darüber hinaus gibt es auch theoretische Forschung. 

Benabou und Tirole (2006) entwickeln eine Theorie prosozialen Verhaltens in der Belohnungen 

und Strafen Zweifel über die wahren Motive guter Taten wecken. Dies kann zur teilweisen oder 

völligen Verdrängung prosozialen Verhaltens führen. Die Wechselwirkung zwischen sozialen 

Normen und ökonomischen Anreizen in Unternehmen wird durch Huck et al. (2012) modelliert. 

Die Arbeit von Bohnet et al. (2001) enthält sowohl ein theoretisches Modell als auch 

Beobachtungen aus Laborexperimenten. Sie untersuchen die Verbindung zwischen der 

Durchsetzbarkeit von Verträgen und individueller Leistungserbringung. Ihre Ergebnisse zeigen, 

dass Vertrauenswürdigkeit durch schwache Durchsetzung gefördert und bei mittlerer 

Durchsetzung verdrängt wird. Diesen Ansätzen ist gemein, dass sie sich auf marktinduzierte 

monetäre Anreize beschränken. Dies jedoch reduziert Märkte auf ihren Preis-Mengen Aspekt 

und lässt deren Innovationsvermögen völlig außer Acht. Produktvariationen die durch derartige 

Innovation hervorgebracht werden sind ein wichtiger Baustein der Markt-Norm-Beziehung. 

Diese Forschungslücke hinsichtlich der Wechselwirkung zwischen Produktinnovationen und der 

Verbreitung sozialer Normen wird in Kapitel 2 behandelt.  

Das dritte Kapitel stellt ein Papier vor, welches die Sichtweise der formellen 

Institutionenökonomik auf den Analyserahmen der evolutorischen Spieltheorie überträgt. Es hat 

eine konkrete soziale Norm und deren Potential ein soziales Dilemma zu lösen zum Inhalt, die 

Norm sich kooperativ zu verhalten. Genauer gesagt, beschäftigt sich die Arbeit mit dem Rätsel 
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über die Entstehung von Kooperation in großen, unstrukturierten Populationen in einem Umfeld 

in dem nicht-kooperatives Verhalten individuell rational ist. Die meisten Erklärungsansätze 

weisen eine oder beide von zwei Einschränkungen auf. Entweder werden strukturierte 

Populationen untersucht oder soziale Normen haben die nicht begründete Fähigkeit den 

individuellen Handlungs- oder Strategienraum zu beschränken.  

Bezüglich der ersten Art der Beschränkung verdienen einige Zweige der Literatur eine besondere 

Aufmerksamkeit. Die Theorie der Verwandtenselektion stellt die Kooperation unter Individuen, 

die genetisch in enger Beziehung stehen, ins Zentrum der Betrachtung (Hamilton 1964a, 1964b), 

wohingegen Theorien zur direkten Reziprozität auf Kooperationsanreize egoistischer Individuen 

in wiederholten Interaktionen fokussieren (Trivers 1971; Axelrod 1984). Im Falle unendlicher 

Wiederholung innerhalb einer Gruppe sei auf Taylor (1976) oder Mordecaï (1977) und die Folk-

Theoreme von Rubinstein (1979) oder Fudenberg und Maskin (1986) verwiesen. Im Falle 

unbestimmter Wiederholung, siehe Kreps et al. (1982). Theorien indirekter Reziprozität und 

kostenverursachende Signalisierung zeigen Kooperation in größeren Gruppen entstehen kann, 

falls es den kooperierenden Gruppenmitgliedern gelingt eine Reputation aufzubauen (Nowak and 

Sigmund 1998; Wedekind and Milinski 2000; Gintis et al. 2001). 

Bezüglich der zweiten Einschränkung sei auf die frühen Arbeiten von Hirshleifer und Rasmusen 

(1989) und Witt (1986) verwiesen, welche Bestrafungen nur dann erlauben, wenn eine Norm 

verletzt wurde. Sethi (1996) erlaubt alle möglichen Strategien, die Bestrafung entweder von der 

Missachtung oder der Befolgung einer Norm abhängig machen. Allerdings erfolgt darüber hinaus 

eine exogene Spaltung und damit Strukturierung der Population in Individuen deren Verhalten 

im klassischen Sinne rational ist und in solche, deren Verhalten durch Routinen bestimmt ist, die 

sich langsam an die Umweltzustände anpassen.  

Das Papier zur Evolution von Kooperation in sozialen Dilemmas eröffnet eine alternative 

Erklärung für die Entstehung von Kooperation, die nicht von diesen beiden Restriktionen 

abhängt.  

Während sich Kapitel 3 mit sozialen Dilemmas als wichtige Klasse menschlicher Interaktion 

beschäftigt, untersucht der in Kapitel 4 vorgestellte Artikel die Evolution von 

Ungleichheitsaversion in einer vereinfachten gemischten Umwelt, die drei Klassen menschlicher 

Interaktion vereint: ein soziales Dilemma, ein Koordinationsproblem und ein 

Verteilungsproblem. Das Konzept der Ungleichheitsaversion spielt eine wichtige Rolle in der 

behavioristischen Forschung zu menschlichen Entscheidungen. In Kapitel 4 wird der 

Analyserahmen der evolutorischen Spieltheorie auf diese spezifische Verhaltensdeterminante 

angewandt. In der Vergangenheit wurde die Evolution von Präferenzen in stark vereinfachten 

Umwelten, die durch ein konkretes Spiel beschrieben werden, untersucht (z.B. Huck und 

Oechssler 1999; Koçkesen et al. 2000a, 2000b und Sethi und Somanathan 2001). In jüngerer 

Vergangenheit wurden Versuche unternommen die Evolution von Präferenzen in komplexeren 

Umwelten zu untersuchen. Güth und Napel (2006) analysieren wie das Persönlichkeitsmerkmal 

der Ungleichheitsaversion in einer Umgebung evolviert, welche zwei oft untersuchte Spiele 

vereint: das Ultimatum-Spiel und das Diktator-Spiel. Poulson und Poulson (2006) untersuchen 

die Evolution sozialer Präferenzen in einer Umwelt, die sich aus einem simultanen und einem 

sequentiellen Gefangenendilemma zusammensetzt. Die Ergebnisse dieser Arbeiten wiesen darauf 

hin, dass die Erkenntnisse die auf Untersuchungen von Umwelten basieren, die durch ein 
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einziges Spiel repräsentiert werden, mit Vorbehalt zu bewerten sind, da die Ergebnisse eine 

signifikante Veränderung erfahren können, sobald komplexere Umwelten betrachten werden. 

Dieser Sachverhalt zeigt eine Forschungslücke auf, zu deren Schließung Kapitel 3 beiträgt, indem 

es einen allgemeinen Rahmen zur Analyse der Evolution von Präferenzen vorschlägt und diesen 

auf die soziale Präferenz der Ungleichheitsaversion anwendet.  

Eine Voraussetzung für die Untersuchung der Evolution von Präferenzen im Rahmen des „game 

of life“ ist die Strukturierung der unendlichen Menge an potentiellen Spielen, worin das zweite 

Ziel der Arbeit besteht. Es gibt Grund zur Annahme, dass menschliches Verhalten nicht 

spielspezifisch ist, sondern Gemeinsamkeiten für ganze, sehr allgemeine Klassen von Spielen 

zeigt (siehe Yamagishi et al. 2013; Ashraf et al. 2006; Blanco et al. 2011; Chaudhuri und 

Gangadharan 2007 und Slonim und Garbarino 2008). Dies macht Hoffnung, dass sich für 

evolutionäre Studien zu Präferenzen die überwältigende Komplexität der realen Welt auf diese 

Klassen reduzieren lässt. Zahlreiche Autoren teilen die Ansicht, dass es zwei fundamental 

verschiedene Arten gesellschaftlicher Probleme gibt (siehe bspw. Sugden 1986; Milgrom et al. 

1990), Koordinationsprobleme und soziale Dilemmas. Schotter (1981), Ullmann-Margalit (1977) 

und andere sind der Auffassung, dass es neben diesen beiden Klassen (mindestens) eine dritte Art 

von sozialen Problemen gibt, Verteilungsprobleme. Ein Verteilungsproblem zeichnet sich durch 

eine asymmetrische Verteilung der gleichgewichtigen Auszahlungen aus. Das „game of life“ wie 

ich es vorschlagen werde, umfasst diese drei Klassen von Interaktionen.  

1.4. Wissenschaftlicher Beitrag und zentrale Ergebnisse 

In diesem Abschnitt werden der wissenschaftliche Beitrag und die zentralen Erkenntnisse jedes 

einzelnen Artikels hervorgehoben.  

Kapitel 2 “The impact of market innovations on the evolution of norms: the sustainability case.” 

beschäftigt sich mit der in 1.3 identifizierten Forschungslücke: die Wechselwirkung zwischen 

innovativen Produktinnovationen und der Evolution sozialer Normen. Um diese 

Wechselwirkung zu untersuchen wird in dem Artikel eine neue Dimension der Interaktion von 

Märkten und Normen entwickelt, die über das Wechselspiel monetärer und nicht-monetärer 

Anreize einer bestimmten Handlungsweise zu folgen, hinausgeht: die Innovation materieller 

Güter als Katalysator der Normevolution. Die Katalysatorfunktion der Innovation basiert auf 

zwei psychologische Faktoren, die Teil des Modells zur Normadoption sein werden. Der 

Produktmarkt wird als Cournot-Oligopol modelliert mit einer exogenen Anzahl an Firmen, deren 

Entscheidung darüber die Produktinnovation in ihr Produktionsportfolio mit aufzunehmen 

endogenisiert wird.  

Das Modell zur Normadaption erweitert die bestehende Literatur zur Evolution sozialer Normen 

auf dreierlei Weise. Erstens, das Modell bezieht die Wirkung von Produktinnovationen auf den 

Prozess der Normadoption mit ein. Zweitens, der Artikel wird untersuchen wie ein 

Konformitätsbias im Konsum materieller Güter die Adoption idealistischer Normen beeinflusst. 

Drittens, das Papier wird veranschaulichen wie die Marktstruktur durch ihre Auswirkung auf die 

Marktergebnisse die Normdynamik beeinflusst. Dadurch trägt die Arbeit zum Verständnis 

darüber bei wie die Evolution sozialer Normen von Marktaktivitäten abhängt.  

Zwei Fragen wird nachgegangen: Erstens wird untersucht werden wie eine Innovation, die sich 

durch ihren relativ höheren Grad an Normeinhaltung auszeichnet, die Verbreitung der Norm 
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verändert. Zweitens wird die Wirkung der Markdynamik auf die Evolution der sozialen Norm 

hinsichtlich der Existenz und Multiplizität der Gleichgewichte analysiert. Hinsichtlich der ersten 

Frage wird sich zeigen, dass die Innnovation die Normverbreitung erhöht, wenn (1) der 

Konformitätsbias schwach ist oder genug Individuen bereits vor der Innovation die Norm 

internalisiert hatten und (2) der Anstieg der individuellen Nachfrage nach dem der Norm 

entsprechenden Produkt der aus der Normadoption resultiert den korrespondierenden Effekt auf 

die Nachfrage nach dem die Norm verletzenden Produkt hinreichend stark übersteigt. Diese 

Bedingungen werden restriktiver je weniger Firmen im Markt aktiv sind, da der notwendige 

Gewinnanstieg um ein zusätzliches Unternehmen zum Eintritt in den Markt des innovativen 

Produkts zu bewegen, steigt.  

Bezüglich der zweiten Frage wird die Untersuchung zeigen, dass multiple Gleichgewichte nicht 

nur dann resultieren können, wenn es sich bei der Normadoption um einen frequenzabhängigen 

Meinungsbildungsprozess mit positiver Rückkopplung handelt, sondern das multiple 

Gleichgewichte auch dann in Erscheinung treten können, wenn die Normadoption vom 

beobachteten Marktverhalten, insbesondere vom Anteil des normkompatiblen Konsums, 

abhängt. Die direkte positive Rückkopplung kann schwächer ausfallen, wenn multiple 

Gleichgewichte gleichzeitig durch einen Konformitätsbias im Konsum materieller Güter 

unterstützt werden. Es wird sich zeigen, dass der Effekt der Norm auf die Nachfrage nach dem 

der Norm entsprechenden Produkt im Vergleich zum Effekt auf die Nachfrage nach dem die 

Norm verletzenden Produkt weder zu hoch noch zu niedrig sein darf, damit multiple 

Gleichgewichte entstehen. Im Artikel wird die Marktstruktur als eine zweite Quelle für die 

Multiplizität von Gleichgewichten diskutiert. Die Endlichkeit der Anzahl der im Markt aktiven 

Unternehmen bedingt Unstetigkeiten in der Anzahl der Unternehmen. Dies hat Unstetigkeiten in 

der Markt-Norm-Dynamik zur Folge (siehe Abb.Figure 2-4)). Es wird sich jedoch herausstellen, 

dass diese Rückkopplung bereits bestehende positive Frequenzabhängigkeiten als Quelle für die 

Multiplizität der Gleichgewichte zwar verstärken kann, aber kaum allein multiple Gleichgewichte 

verursachen kann.  

Diese Ergebnisse haben Konsequenzen für Politiker, die als mittelfristiges Ziel auf dem Weg zur 

langfristig angestrebten Reduktion der Umweltverschmutzung auf eine größere Verbreitung 

sozialer Normen abzielen. Unter anderem wird diskutiert werden, dass der Konformitätsbias so 

groß sein kann, dass er die Verbreitung der Norm verhindert. Vorwiegend in diesem Fall 

erscheint die politische Interferenz mit Marktprozessen (und Normbildung) angemessen. Wird 

von politischer Seite eine Multiplizität von Gleichgewichten aufgrund positiver Rückkopplungen 

im Prozess der Normverbreitung vermutet und zeichnet die Struktur des neuen Marktes die Züge 

eines kleinen Oligopol oder gar eines Monopols, dann sollten politische Maßnahmen, die darauf 

abzielen ein Gleichgewicht mit geringer Normverbreitung zu überwinden, umfangreich und 

längerfristig wirksam sein. Politische Maßnahmen, welche den Effekt der Norm auf die 

Nachfrage ändern, sollten nur dann Anwendung finden, wenn die Norm bereits weit verbreitet 

ist. Sollte dies nicht der Fall sein, so wird die Wirkung nicht nur durch die geringe Anzahl an 

Individuen reduziert, die möglichweise auf die politischen Maßnahmen reagieren, sondern auch 

durch die potentielle Wiederbelebung von zumindest einem gewissen Grad an kognitiver 

Dissonanz, die dann entsteht wenn man eine Norm internalisiert hat, aber nicht dieser 

entsprechend konsumiert.  
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Kapitel 3 “Evolution of cooperation in social dilemmas: signaling internalized norms.” leistet 

einen Beitrag zur Erklärung des Phänomens der Kooperation in großen, unstrukturierten 

Gesellschaften (z.B. Axelrod und Hamilton 1981; Fudenberg et al. 2012). Der Beitrag liegt in der 

Entwicklung eines alternativen Mechanismus zur Unterstützung von Kooperation in einer 

Umwelt (Gefangenendilemma), in der nicht-kooperatives Verhalten aus materieller Sicht 

individuell rational ist. In einer solchen Umwelt kann Kooperation weder durch irgendeine Form 

wiederholter Interaktion noch durch soziale Normen herbeigefügt werden, die auf Sanktionen 

basieren, die in zukünftigen Interaktionen auferlegt werden. Selbst internalisierte Normen, d.h. 

Normen, welche den wahrgenommenen Nutzen aus kooperativen oder nicht-kooperativen 

Verhalten beeinflussen, können das Dilemma in unstrukturierten Populationen nicht überwinden, 

es sei denn –und dies ist der alternative Mechanismus– die Individuen sind in der Lage die 

Eigenschaft ein Normträger zu sein, zu signalisieren. Wenn internalisierte Normen einfach 

existieren ohne die Möglichkeit diese zu signalisieren oder bei anderen zu erkennen, dann würden 

diese die Normträger veranlassen zu kooperieren und von anderen ausgenutzt zu werden. Somit 

hätten Normträger einen klaren evolutorischen Nachteil, der zum Verschwinden der Norm 

führen würde. Nur wenn Internalisierung der Norm glaubhaft kommuniziert werden kann, mag 

sich das Bild ändern, da unter diesen Umständen Verhalten auf das erwartete Verhalten anderer 

konditioniert werden kann.  

Ist die Signalisierung kostenlos, so reduziert sie sich zu cheap talk und wird keinen Einfluss auf 

den evolutorischen Nachteil der Normträger haben. Signalisierung wird demnach mit Kosten 

verbunden sein und Individuen, welche die Norm angenommen und solche die nicht, mögen sich 

in den Signalisierungskosten unterscheiden. Im Artikel wird ein Theorem präsentiert, welches 

notwendige und hinreichende Bedingungen für vollständige oder teilweise Kooperation in einem 

stabilen Gleichgewicht angibt. Diese Bedingungen nehmen Bezug auf den Unterschied in den 

Signalisierungskosten zwischen kooperativen und opportunistischen Individuen, auf die Stärke 

der Kooperationsnorm und auf die Modelparameter des Gefangenendilemmas, d.h. der Anreiz 

zu Defektieren und der „sucker’s payoff“. Es ergeben sich mehrere interessante Ergebnisse. 

Erstens, obschon der exakte Wert des Verhaltensparameters, der den internen Bias zugunsten 

gegenseitiger Kooperation misst, nicht relevant hinsichtlich der Konsequenz für das Verhalten 

jedes einzelnen ist, spielt der Wert und dessen Relation zum Defektionsanreiz eine Rolle 

hinsichtlich der Existenz von Gleichgewichten mit teilweiser Kooperation. Genauer gesagt, je 

stärker die innere Motivation für kooperatives Verhalten, desto weniger restriktiv sind die 

Bedingungen für den Unterschied in den Signalisierungskosten. Zweitens, für die Koexistenz von 

kooperativen und defektierenden Individuen in einem stabilen Gleichgewicht ist es nicht 

notwendig, dass die Signalisierungstechnologie vollständig den Defektionsanreiz aufhebt. Da dies 

für viele Ansätze notwendig ist, die auf einer Form unfreiwilliger Umverteilung (z.B. Bestrafung) 

basieren, kann der Anwendung findende Ansatz Kooperation in mehr Fällen motivieren als die 

umverteilungsbasierten. Es wird sich des Weiteren zeigen, dass sich die Spanne an 

Signalisierungskosten der nicht-kooperativen Individuen, welche teilweise oder vollständige 

Kooperation erlaubt, schwach in der Stärke der sozialen Norm gegenseitiger Kooperation 

vergrößert. Schließlich wird sich herausstellen, dass die Menge an Paaren aus 

Signalisierungskosten des nicht-kooperativen Typs und der Stärke der Kooperationsnorm, welche 

teilweise oder vollständige Kooperation ermöglichen, strikt mit den Signalisierungskosten des 

kooperativen Typs wächst und sich strikt mit dem „sucker’s payoff“ und dem Anreiz defektiv auf 

kooperatives Verhalten zu reagieren, verkleinert.  
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Kapitel 4 stellt den Artikel “The evolution of inequality aversion in a simplified game of life.” 

vor. Spätestens mit den grundlegenden Arbeiten von Fehr und Schmidt (1999) und Bolton und 

Ockenfels (2000) avancierte die soziale Präferenz in Form einer Ungleichheitsaversion zu einer 

bedeutende Erklärung zahlreicher empirischer und experimenteller Befunde, die von den 

Vorhersagen der klassischen ökonomischen Theorie abweichen. Die steigende Relevanz als 

Erklärungskonzept verlangt nach einer Rationalisierung derartiger Präferenzen, da sie ansonsten 

als reine ad hoc Anpassung der Präferenzen gewertet werden könnten, um empirische 

Beobachtungen zu erklären. Güth und Napel (2006) weisen darauf hin, dass derartige 

Präferenzen insbesondere mit der physischen Notwendigkeit vereinbar sein sollten, in einer Welt 

die durch Ressourcenknappheit charakterisiert ist, nach materieller Entlohnung zu streben und 

um diese zu kämpfen. Mit anderen Worten, derartige Präferenzen sollten sich aus evolutorischer 

Sicht erklären lassen. Der Argumentation folgend, dass Untersuchungen zur Evolution von 

Präferenzen in einer Umwelt erfolgen sollten, die im besten Fall alle relevanten Klassen von 

Spielen umfasst, werde ich eine bestimmte Struktur eines vereinfachten „game of life“ 

vorschlagen. Wie bereits erwähnt beinhaltet das vereinfachte „game of life“ wie es definieren 

werde, ein symmetrisches Dilemma, ein symmetrisches und striktes Koordinationsproblem und 

ein striktes Verteilungsproblem. Hernach werde ich die Evolution einer konkreten Ausprägung 

sozialer Präferenzen, die der Ungleichheitsaversion, in eine 2x2 vereinfachten „game of life“ 

untersuchen.  

Das vereinfachte „game of life“, welches drei besonders wichtige Klassen menschlicher 

Interaktion beinhaltet, zeigt einerseits wie erwartet eine größere Variation möglicher 

Gleichgewichtsverteilungen im Vergleich zu den ein einzige Spielklasse umfassende Umwelten. 

Insbesondere erfahren die überraschend starken Vorhersagen der Einzelspielbetrachtung eine 

Relativierung. Der globale evolutorische Vorteile ungleichheitsaverser Spieler im Rahmen eines 

Dilemmas und der globale evolutorische Nachteil in fast allen Fällen für ungleichheitsaverse und 

im Verteilungsproblem begünstigte Individuen werden relativiert. Dies gilt insbesondere für den 

Fall, in dem die Wechselwirkung eines Dilemmas und eines Verteilungsproblems ein lokal stabiles 

Gleichgewicht unterstützen, in dem nur ungleichheitsaverse Individuen existieren. Dann 

überträgt sich dies auf das vereinfachte „game of life“, d.h. Ungleichheitsaversion kann sich auch 

unter den im Verteilungsproblem begünstigten Individuen etablieren. Andererseits wird sich 

zeigen, dass die erwartete Stabilisierung innerer Gleichgewichte in denen relative 

ungleichheitsaverse und relativ opportunistische Individuen koexistieren nur dann auftritt, wenn 

diese Stabilisierung bereits im Koordinationsproblem für sich genommen erfolgt.  

Zusammenfassend, meine Dissertation wird sich mit individuellen Präferenzen beschäftigen, dem 

zentralen Konzept in der Ökonomik zur Modellierung menschlichen Verhaltens. Genauer gesagt, 

werden die drei konstituierenden Artikel bestimmte Charakteristika von Präferenzen betrachten, 

die Auswirkungen auf das Verhalten haben können. Zwei Arten der Strukturierung von 

Präferenzen werden untersucht, die soziale Präferenz der Ungleichheitsaversion und Strukturen, 

die aus der Internalisierung sozialer Normen hervorgehen. Meine Dissertation wird die 

Verbreitung und die Auswirkungen dieser Charakteristika untersuchen. Zwei Kräfte, welche für 

die Verbreitung dieser Präferenzmerkmale von Bedeutung sind, werden dabei berücksichtigt: 

evolutionäre und psychologische Kräfte. Meine Arbeit leistet einen Beitrag zum besseren 

Verständnis der Entstehungsbedingungen und der Konsequenzen möglicher Erklärungsansätze 
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für beobachtetes menschliches Verhalten, welche auf bestimmte Strukturen individueller 

Präferenzen zurückgreifen.   
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1. Introduction 

1.1. Motivation 

In Economics preferences are the central concept in the framework to analyze human behavior. 

They refer to the set of assumptions concerned with the ordering of choice-alternatives. These 

alternatives can incorporate aspects of uncertainty or intertemporal issues. A mathematical model 

of preference relations was first written down by Frisch (1926) and brought to perfection by 

Arrow (1951). A preference relation which models preferences is the foundation of rational 

choice theory in economics. Rational choice is defined to mean the process of determining the 

set of options to choose from and then selecting the most preferred one according to some 

consistent criterion. Rational choice theory is based on a rather sparse description of the choice 

problem (objectives and constraints). That choice depends on many more factors is for instance 

proposed by psychological theories and supported by many laboratory experiments (Hogarth and 

Einhorn 1992; Hoffman et al. 1994; Kahneman and Frederick 2002, to name a few). Such factors 

include for instance the way or the order information is presented. The empirical failings of 

rational choice theory in economic and psychological experiments have triggered intense research 

in that field and many alternative models have been proposed. To understand individual behavior 

is one of the fundamental tasks for economic research. My thesis contributes to this research 

agenda. The emergence of certain particularities of preferences and their impact on behavior are 

the overarching theme of the constituting three articles. Beyond this unifying theme, which is of 

central interest for me each of the articles is motivated by a more narrow research question. This 

will be exemplified in the next paragraphs.  

Methodological individualism and the concept of homo oeconomicus form the basis for standard 

economic theory. Preferences and restrictions of the action space determine individual behavior. 

To operationalize the basic assumptions of rationality and narrow self-interest of homo 

oeconomicus preferences are assumed to be stable over time. Stable preferences are not meant to 

be a descriptive model for real individuals though. Even if preferences are stable in the short run, 

the questions arise why and how certain features like altruism, risk aversion, loss aversion, 

repeatedly confirmed in experiments were, “implemented” into humans. The evolutionary 

perspective offers one framework to answer these questions. Within this framework economists 

try to rationalize specific aspects of human preferences. At the latest with the seminal work of 

Fehr and Schmidt (1999) and Bolton and Ockenfels (2000) other-regarding preferences in the 

form of inequality aversion have become a prominent explanation for many empirical and 

experimental findings which deviate from the prediction of standard economic theory. Increasing 

importance of other-regarding preferences in behavioral economics and other fields’ calls for a 

rationalization for such preferences, otherwise it may be regarded as an ad-hoc adjustment of 

preferences to explain empirical results. As Güth and Napel (2006) point out such preferences 

should in particular be compatible with the physical necessity to strive and compete for material 

rewards in an environment characterized by the scarcity in resources. In other words such 

preferences ought to be rationalizable from an evolutionary point of view. The authors 

convincingly argue that any type of study concerned with the evolution of preferences need to be 

carried out in an environment that comprises all of the classes of human interaction since 

otherwise game-specific results are obtained whose generalizability is at least questionable. They 



2 
 

refer to such an environment as the ‘game of life’. In the article ‘The evolution of inequality 

aversion in a simplified game of life’ I make a first step towards fulfilling this requirement.  

However, preferences are not only shaped by evolutionary forces, which work on a long time 

scale and transform the genetically encoded part of preferences. Formal and informal institutions 

enable and constrain actions of individuals. If informal institutions like social norms become 

internalized they become part of the preferences of an individual. The adoption of a social norm 

works on a much shorter time scale and depends on multiple factors. In my understanding social 

norms are inner “recommendation” to act in a certain way. They may be complemented or 

substituted by external incentives like cost and benefits associated with a chosen action. These 

cost and benefits are thus part of the aforementioned external restrictions to behavior. In modern 

economies a large part of human interaction takes place in market environments. Hence most of 

the behavioral constraints materialize in markets. By aggregating individual behavior markets also 

aggregate individual external effects. Many of today’s environmental problems stem from private 

consumption patterns. Individuals consume transportation, heating and food, all of which cause 

substantial emissions of CO2 and other pollutants. Preferences for choosing more or less 

polluting products and services are shaped by their availability as well as by social norms and 

other institutions. Thus, solutions to mitigate environmental problems depend not only on 

product innovation, but also on the presence of social norms, with the former enriching markets 

with sustainable products, and the latter supporting sustainable consumption. When recognizing 

that social norms influence preferences, it becomes apparent that markets and social norms 

cannot be treated separately. The existing literature has widely studied the interrelation between 

markets and social norms in both directions – how social norms affect markets and how markets 

affect social norms (e.g. Hong and Kacperczyk 2009; Johnson 2004; Ek and Soderholm 2008; 

Fehr and Gächter 2001 and Gneezy and Rustichini 2000). All of these approaches are limited to 

monetary incentives provided by markets and their regulation. This, however, reduces markets to 

their price-quantity aspect and completely neglects their innovation capacity. The product 

variation due to such innovations is an important element of the market-norm interaction. It is 

this interrelation that is focused on in the article “The impact of market innovations on the 

evolution of social norms: the sustainability case”.  

The aspect of sustainability points to the more general class of problems of social dilemmas. 

Social dilemmas are characterized by the property that individually rational behavior leads to 

collectively irrational outcomes. Economists however observe in experiments (for a survey see 

Roth 1995) and in the field (Fey and Meier 2004; Cunha and Augenblick 2014) cooperation in the 

sense that this collective irrationality is at least partially circumvent. This is puzzling from the 

traditional economic perspective in particular as cooperative behavior emerges even in the 

absence of any shadow of future interaction (Cooper et al. 1996). Attempts to solve the puzzle 

are abundant but have thus far commonly relied on one or both of two restrictions. The first 

restriction is that explanations have focused on structured populations, in which interactions are 

not completely anonymous but allows individuals to collect and process information about past 

behavior of others and about their identity. The second restriction is that explanations have 

depended on an unexplained ability of social norms to restrict the individuals’ action or strategy 

spaces, in particular, with respect to the abuse of punishment. The article “Evolution of 

cooperation in social dilemmas: signaling internalized norms.” presents a new explanation for 

cooperation that avoids both restrictions.  
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1.2. Positioning of the thesis: the broad perspective 

The three articles constituting my thesis are related to three fields of economics: Behavioral 

Economics, Formal Institutional Economics and Evolutionary Game Theory. Figure 1-1 

illustrates the relation graphically.  

 

Figure 1-1: The fields of economics the articles relate to.  

Behavioral Economics: Incorporating psychological, cognitive and emotional factors is the 

distinctive feature of behavioral economics. It thereby tries to increase the explanatory power of 

economics. The attempt to set the discipline of economics on more realistic psychological 
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psychological realism. As Camerer and Loewenstein (2004) point out there is nothing in core 

neoclassical theory that specifies that people should not take fairness into consideration or that 

they should weight risky outcomes in a linear fashion. Some of the aforementioned modifications 

relax these simplifying assumptions. Other modifications take cognitive limitations of humans 

into account. These assumptions refer to what Herbert Simon calls “procedural rationality” 

(Simon 1976). From a methodological point of view behavioral economics initially made 

primarily use of experimental data. More recently field experiments (Gneezy and Rustichini 2004) 

and computer simulations (Angeletos et al. 2001) have been utilized.  
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The paper on the impact of market innovation incorporates psychological aspects of the 

adoption process of a social norm. After a new product or service which is characterized by a 

relatively high degree of norm compliance has entered the market, the process of norm adoption 

changes in two ways. First, an individual is now able to consume in accordance with his or her 

norm, which could not have happened before the innovation. Second, the new variety allows the 

social influences like the pressure to behave in conformity to others (Boyd and Richerson 1985) 

to enter the scene.  

The paper on the evolution of inequality aversion is related to the field of behavioral economics 

as it is concerned with inequality aversion which is considered to give rise to a more realistic view 

of human behavior. It provides an evolutionary foundation of an explanatory variable in 

behavioral decision research.  

Evolutionary Game Theory: Until today there is no common agreement about what is meant 

by the “evolutionary” viewpoint in economics. Witt (2008) reflects for the field of evolutionary 

economics on the three levels of scientific reasoning, the ontological level, the heuristic level and 

the methodological level and classifies the existing differing views. In what follows I will briefly 

restate his insights which will helpful to position the two articles which carry a strong 

evolutionary notion. With respect to the ontological stance Witt (2008) identifies on the one hand 

the monistic view and on the other the dualistic view. The former assumes that the economic 

sphere and nature are connected spheres with potentially interdependent processes. The latter 

explicitly rejects this view and treats economic and biological evolutionary processes as being part 

of disconnected spheres of reality. On the heuristic level Witt (2008) distinguishes the generalized 

Darwinian heuristic and the generic evolutionary heuristic. The former applies the three 

principles of evolution that follow by abstract reduction from the Darwinian theory of natural 

selection (blind variation, selection, and retention) to conceptualizing the evolution of technology 

(Ziman 2000), science (Hull 2001), the economy (Nelson 1995) and others. The latter is not 

based on an analogy between economic and biological evolutionary processes, but by a generic 

concept of evolution. This concept characterizes evolution as a process of self-transformation 

with the endogenous generation of novelty and its contingent dissemination as its constituting 

elements (Witt 2003, Chap.1). The two ontological stances and the two heuristic strategies allow 

the different approaches in evolutionary economics to be represented in a 2x2 matrix.  

According to Witt (2008) applications of evolutionary game theory to the discipline of economics 

can be distinguished along these dimensions and have essentially two interpretations. In the first 

interpretation models from evolutionary biology which describe the selection process are applied 

to an economic context to model learning processes (see Brenner 1999, Chap.6). This 

interpretation makes use of the heuristic strategy of assuming an analogy between adaption in 

biology and adaption in economics through non-cognitive learning. From an ontological 

perspective the analogy construction typically does explicitly answer the question of whether, and 

how, the economic processes connect to the naturalistic foundation of human behavior (Witt 

2008). Hence it parallels the entry that is beset with the Neo-Schumpeterian synthesis of Nelson 

and Winter (1982) in the aforementioned 2x2 matrix structuring the field of evolutionary 

economics with respect to the ontological stance and the applied heuristic strategy. The second 

interpretation is not based on an analogy but the biological context is directly relevant for the 

application in economics. Authors taking up this position claim that very basic features of human 
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behavior are genetically encoded and can therefore be best understood from the viewpoint of 

natural selection. Among such basic features of human behavior are altruism, fairness or morality 

(see. e.g. Güth and Yaari 1992a; Binmore 1998; Gintis 2007). This direct transfer from biology to 

economics obviously presupposes a monistic ontology. Witt (2008) argues the heuristic strategy 

applied in the research following the second interpretation has some similarities with Hayek’s 

theory of societal evolution.  

In this view the article on the evolution of inequality aversion which is presented in Chapter 4 

follows the second interpretation, whereas the article that deals with the signaling of internalized 

norms follows the first interpretation. I study the evolution of inequality aversion in an 

environment to what I refer as a simplified “game of life” (Güth and Napel 2006). This 

environment comprises three classes of games which are representative for most of human 

interactions. The article on the evolution of cooperation focuses on one particular game, the 

Prisoners’ Dilemma, and studies the signaling of a cooperative norm as a mechanism to foster 

cooperation.  

Formal Institutional Economics: The term “institutional economics” has been applied to a 

variety of economic approaches and schools of thought. Most of the time it refers to economics 

in the tradition of Thorstein Veblen, John R. Commons, and Wesley Mitchell. In recent years the 

term “new institutional economics” has become well-established. This term refers to economics 

in the tradition of the transactions cost approach of Ronald Coase, Oliver Williamson, and 

Douglas North. Nowadays the term is often extended to incorporate game theoretic approaches 

to the evolution of social convention, and sometimes to institutions in the tradition of the 

Austrian School (see Rutherford 2001). In this thesis I follow the game theoretic approach. To 

distinguish it from the traditional institutional economics and the primarily non-formal 

approaches of new institutional economics I refer to it as formal institutional economics. In the 

literature applying a game theoretic framework to institutions two approaches defining the term 

can be distinguished: the equilibrium approach and the rules-of-the-game approach. In the 

equilibrium approach the core defining element of institutions is the equilibrium character of 

individual actions. Most of the time the equilibrium character translates into a notion of stability. 

Some authors rely on concepts of evolutionary game theory (Sugden 1986, 1989; Young 1998; 

Aoki 2000; Bowles 2000), others use the theory of repeated games of standard game theory 

(Greif 1989, 1997, 1998; Milgrom et al. 1990; Calvert 1995). The rules-of-the-game approach 

treats institutions as an external factor shaping the actions spaces and payoffs of the game (North 

1990; Hurwicz 1993, 1996). There is a huge gap between the wide definition in the field of new 

institutional economics and the narrow definition within the equilibrium approach and the rules-

of-the-game approach.  

This gap is narrowed down by the indirect evolutionary approach pioneered by Güth and Yaari 

(1992b). Within the indirect evolutionary approach behavioral and fitness or material payoffs are 

distinguished. Fitness-payoffs of a certain behavior are relevant for the diffusion of that particular 

strategy among individuals. Behavioral payoffs reflect the inner evaluation of those fitness 

payoffs. These payoffs are relevant for decision making but have no influence on the adoption 

rate of that strategy by other agents.  

The indirect evolutionary approach allows to model institutions in a more complex way beyond a 

simple regularity in behavior or the rules of a game. In particular the informal institution of a 
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social norm may be modeled in this way. It thus provides a first step towards reducing the 

aforementioned gap in the complexity of the different definitions. For this reason I will apply the 

indirect evolutionary approach in the two articles that take an evolutionary perspective (Chapter 3 

and 4).  

1.3. Positioning of the thesis: the narrow perspective 

In this section I will briefly relate each of the articles to the existing literature and identify the 

research questions being addressed. As mentioned earlier “preferences” constitute the 

overarching theme of my thesis.  

I consider social norms as important entities shaping individual preferences. The article presented 

in Chapter 2 studies the interdependency of markets and the adoption process of a social norm. 

It applies the psychological realism of behavioral economics to the analytical framework of 

formal institutional economics. Furthermore it provides some insight for the industrial 

organization literature with respect to the impact of social norms on product markets. The 

influence of social norms on markets has been studied from theoretical, empirical and 

experimental perspectives. Several attempts have been made to incorporate norm-motivated 

behavior into neoclassical consumer theory (see e.g. Nyborgs et al. 2006; Brekke et al. 2003). 

Despite these attempts there is no general or partial equilibrium theory based on norm-motivated 

behavior, what may explain why most research in the field is empirical. How social norms 

influence a particular type of market, the financial market is studied by Hong and Kacperczyk 

(2009) and Johnson (2004). Kim (2007) shows that norms are also relevant for markets of private 

property rights. A series of competitive-market and bilateral-bargaining experiments carried out 

by Fehr et al. (1998) indicate that competition has a rather limited effect on market outcomes if 

the norm of reciprocity is operative. The role of the psychological need to maintain a positive 

self-image as a socially responsible person on the demand for “green” electricity is studied by Ek 

and Soderholm (2008).  

The research on the impact of markets on the evolution of norms primarily deals with the 

analysis of the relationship of norm-driven intrinsic motives and market- or price-driven extrinsic 

motives. There is empirical support (Fehr and Gächter 2001) that incentive contracts crowd out 

reciprocity-driven voluntary cooperation. A first survey of this stream of empirical literature on 

crowding-out effects was carried out by Frey and Jegen (2001). There is also theoretical research. 

Benabou and Tirole (2006) provide a theory of pro-social behavior where rewards or 

punishments create doubt about the true motives for which good deeds are performed. 

Consequently this may lead to partial or even total crowding-out of pro-social behavior. The 

interplay of social norms and economic incentives in firms is modeled by Huck et al. (2012). A 

study that provides both a theoretical model and evidence form the laboratory is performed by 

Bohnet et al. (2001). They study the connection between contract enforceability and individual 

performance. The results show that trustworthiness is “crowded in” with weak enforcement and 

“crowded out” with medium enforcement. All of these approaches are limited to monetary 

incentives provided by markets and their regulation. This, however, reduces markets to their 

price-quantity aspect and completely neglects their innovation capacity. The variation due to such 

innovations is an important element of the market-norm interaction. This gap in research on the 

interdependency between innovative variation of products and the evolution of social norms is 

addressed in Chapter 2.  
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Chapter 3 presents a paper that applies the formal institutional economics’ perspective on 

institutions to the framework of evolutionary game theory. It analysis a particular social norm, a 

norm to behave cooperatively, and its potential to resolve social dilemmas. More precisely it deals 

with the puzzle of the emergence of cooperation in large, unstructured societies in an 

environment where non-cooperative behavior is individual rational. As mentioned before most 

attempts rely on one or both of two restrictions. Either it is structured population which is 

analyzed or social norms are given the unmotivated ability to restrict the individuals’ action or 

strategy spaces.  

With respect to the first group of restrictions, some strands of the literature deserve special 

mention. The theory of kin selection focuses on cooperation among individuals who are 

genetically closely related (Hamilton 1964a, 1964b), whereas theories of direct reciprocity focus 

on incentives to cooperate in repeated interactions of self-interested individuals (Trivers 1971; 

Axelrod 1984). For infinite repetition within one group, see Taylor (1976) or Mordecaï (1977) 

and for Folk-Theorem-type of results Rubinstein (1979) or Fudenberg and Maskin (1986). For 

indefinite repetition, see Kreps et al. (1982). The theories of indirect reciprocity and costly 

signaling show how cooperation in larger groups can emerge when those cooperating can build a 

reputation (Nowak and Sigmund 1998; Wedekind and Milinski 2000; Gintis et al. 2001). 

In terms of the second set of exclusions, reference is made to early papers of Hirshleifer and 

Rasmusen (1989) and Witt (1986) that allow for punishment only after a norm has been violated. 

Sethi (1996) allows for all possible strategies which condition punishment on either the violation 

of or compliance with a norm. However, he then adds structure to the society by introducing 

some exogenous division of the population – the behavior of some individuals is rational, and for 

the rest it is determined by routines that are slowly adapted to their environment.  

The article on the evolution of cooperation in social dilemmas offers an alternative explanation 

for the emergence of cooperation that does not depend on these two restrictions.  

Whereas Chapter 3 deals with the important class of human interactions of social dilemmas, the 

article presented in Chapter 4 studies the evolution of inequality aversion in a simplified 

compound environment which comprises three classes of human interaction: a social dilemma, a 

problem of coordination and a problem of distribution. The concept of inequality aversion plays 

an important role in behavioral decision research. In Chapter 4 the framework of evolutionary 

game theory is applied to this particular behavioral determinant. In the past the evolution of 

preferences has been studied in highly artificial single-game environments (e.g. Huck and 

Oechssler 1999; Koçkesen et al. 2000a, 2000b and Sethi and Somanathan 2001). More recently, 

some attempts were made to analyze the evolution of preferences in more complex 

environments. Güth and Napel (2006) analyze how the personal characteristic of inequality 

aversion evolves in a setting containing two well-studied and characteristic games: the Ultimatum 

game and the Dictator game. Poulsen and Poulsen (2006) study the evolution of other-regarding 

preferences in an environment that comprises a simultaneous and a sequential Prisoners’ 

Dilemma. The results of the latter suggest that the results of single-game environments should be 

treated with caution because they demonstrate a significant change in results once more complex 

environments are analyzed. The gap in research being identified, Chapter 3 provides a step 

towards conceptualizing a framework for evolutionary studies of preferences and applies this 

framework to the other-regarding preference of inequality aversion.  
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A prerequisite for the analysis of the evolution of preferences in the game of life is the structuring 

of the infinite set of potential games, which is the second aim of the paper. There is evidence that 

human behavior is not game-specific, but acts of men are similar in entire, quite general classes of 

games (see Yamagishi et al. 2013; Ashraf et al. 2006; Blanco et al. 2011; Chaudhuri and 

Gangadharan 2007 and Slonim and Garbarino 2008). This raises hope that the overwhelming 

complexity of the real world might be reducible to these classes when the evolution of 

preferences is considered. Many authors implicitly or explicitly share and express the view that 

there are two fundamentally different societal problems (see e.g. Sugden 1986; Milgrom et al. 

1990), problems of coordination and social dilemmas. Apart from these two classes, Schotter 

(1981), Ullmann-Margalit (1977) and others share the view that there is (at least) a third type of 

social problems, one of distributive nature. A problem of distribution is characterized by unequal 

payoffs in equilibrium. The notion of a game of life which I will suggest comprises these three 

classes of games.  

1.4. Contributions and main conclusions 

This section highlights the contribution and presents the main conclusions of each of the articles. 

Chapter 2 “The impact of market innovations on the evolution of norms: the sustainability case.” 

is concerned with the gap in research identified in 1.3: the interdependency between innovative 

variation of products and the evolution of social norms. To analyze this interdependency the 

paper will introduce a new dimension to the interaction between markets and norms beyond the 

interplay of monetary and non-monetary incentives to act in a certain way: the innovation of 

material goods as a catalyst of norm evolution. The catalytic function of the innovation is based 

on two psychological forces being incorporated in a model of norm adoption. The product 

market is modeled by a Cournot-oligolpoly with a fixed number of firms which decision whether 

or not to add the innovative product to their production portfolio is endogenized.  

The model extends the existing literature on the evolution of social norms in three ways. First, 

the model incorporates the influence of a product innovation on the process of norm adoption. 

Second, the paper will analyze how a conformity bias in the consumption of material goods 

affects the adoption of idealistic norms. Third, the paper will demonstrate how market structure, 

through its impact on market outcomes, may influence norm dynamics. The paper will thereby 

add to the understanding of how the evolution of norms depends on market activities. 

Two questions will be pursued. First, it will be studied how an innovation that differs with 

respect to the level of norm compliance modifies the dissemination of a norm. Second, it will be 

investigated the effect of market dynamics on the evolution of the norm with respect to the 

existence and stability of the equilibria. Concerning the first question, the innovation increases 

the norm diffusion if (1) the conformity bias is weak or enough individuals already bear the norm 

prior to the innovation and (2) the increase of individual demand for the norm-compliant 

product variant resulting from norm adoption exceeds the corresponding effect on the demand 

for the norm-violating variant by a sufficient degree. These conditions become more restrictive 

when fewer firms are in the market, since then the required increase in profits to induce an 

additional incumbent to produce the innovative product increases.  

With respect to the second question, the analysis will reveal that multiple norm equilibria may not 

only result if norm adoption is a frequency-dependent opinion formation process with direct 
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positive feedback loops. But multiple norm equilibria may also emerge if norm adoption depends 

on observed market behavior, in particular, on the proportion of norm compliant consumption. 

The direct positive feedback loop may be weaker when multiple equilibria are also supported by a 

conformity bias in consumption of material goods. It will turn out that the effect of the norm on 

the demand for the norm-compliant variant may be neither too high nor too low as compared to 

the effect on demand for the norm-violating product for multiplicity to arise. In the paper a 

second possible source of multiplicity of norm equilibria will be discussed, the market structure. 

The number of operating firms in the market being finite introduces discontinuities in the 

number of firms also operating in the market for the innovative product. Consequently the 

market-norm dynamics shows discontinuities what may generate multiple equilibria (see Figure 

2-4). It will turn out, though, that this feedback loop may reinforce already existing positive 

frequency dependency as source of multiplicity of equilibria, and will rarely induce multiple 

equilibria on its own.  

The results have consequences for policy makers aiming at a higher dissemination of the social 

norm as an intermediate goal to ultimately achieving the greater goal of reducing environmental 

pollution. Among others it will be discussed that the conformity bias may be so strong that it 

hinders the dissemination of the innovation. It is mainly in these cases where political 

interference with market forces (and norm formation) is appropriate. If policy suspects the 

existence of multiple equilibria due to positive feedback loops in the norm formation process and 

the market structure on the new market is a small oligopoly or even a monopoly, then policies 

aiming at overcoming equilibria of little norm adoption have to be strong and patient. Political 

measures which alter the effect that the norm imposes on demand should only be implemented 

when norm adoption is already wide spread. If it is not, the effect is not only diminished by the 

small number of individuals who may react to the policy measure, but also by a possible 

reintroduction of at least some cognitive dissonance from having the norm but not complying 

with it.  

Chapter 3 “Evolution of cooperation in social dilemmas: signaling internalized norms.” 

contributes to solving the puzzle of the emergence of cooperation in large, unstructured societies 

(e.g. Axelrod and Hamilton 1981; Fudenberg et al., 2012). It contributes to the literature on the 

emergence of cooperation by offering an alternative mechanism to foster cooperation in an 

environment (Prisoners’ Dilemma) where non-cooperative behavior is materially individual 

rational. In such an environment, cooperation cannot be induced by any form of repeated 

interaction nor by social norms based on sanctions to be inflicted in later interactions. Even 

internalized norms, i.e. norms that alter the perceived utility from acting in a cooperative or 

uncooperative way, will not help to overcome a dilemma in an unstructured society, unless – and 

this is the alternative mechanism – individuals are able to signal their property of being a norm 

bearer. If internalized norms simply exist while lacking the possibility of being signaled or 

screened for, they would induce norm bearers to cooperate and be exploited by others. Hence, 

norm bearers would have a clear evolutionary disadvantage so that norm adoption would vanish. 

Only when internalization of the norm can be communicated in a reliable way, may the scenario 

change, because behavior may then be conditioned on the expected behavior of others.  

If signaling is costless then signaling is reduced to cheap talk and will not alter the evolutionary 

disadvantage of norm-bearers. Thus signaling will be costly and individuals bearing the norm and 
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those who don’t may have different signaling cost. The paper will present a theorem that states 

necessary and sufficient conditions for full or partial cooperation to be prevalent in a stable 

equilibrium. These conditions will refer to the difference in signaling cost between the 

cooperative and the opportunistic type, the extent of the cooperative norm and the model 

parameters of the Prisoners’ Dilemma, i.e. the temptation to defect and the sucker’s payoff. 

Several interesting results will be obtained. First, it is true that the exact size of the behavioral 

parameter measuring the internal bias in favor of mutual cooperation is not important for the 

behavioral consequence for each individual. However, when it comes to the presence of stable 

equilibria characterized by partial cooperation its size and its relation to the incentive to defect do 

become relevant. More precisely, the stronger the inner motive to cooperate is, the less restrictive 

are the conditions on the spread in signaling cost. Second, for cooperative agents to coexist with 

defecting agents in a stable equilibrium, it is not necessary that the signaling technology fully 

cancels the incentive to defect. Since this would be necessary for many corresponding results that 

are based on some sort of involuntary redistribution (e.g. punishment), the applied approach may 

explain cooperation in more cases than the latter approaches. Furthermore, the range of 

signalling cost for the defective individuals allowing for partial or full cooperation is weakly 

increasing in the strength of the social norm for mutual cooperation. Finally, the set of pairs of 

signalling cost for the defective type and level of cooperative norm allowing for partial or full 

cooperation is strictly increasing in signalling cost for the cooperative type and strictly decreasing 

in the sucker’s payoff and the incentive to defect on cooperation. 

Chapter 4 presents the article “The evolution of inequality aversion in a simplified game of life.” 

At the latest since the seminal work of Fehr and Schmidt (1999) and Bolton and Ockenfels 

(2000) an other-regarding preference in the form of inequality aversion has become a prominent 

explanation for many empirical and experimental findings which departure from the prediction of 

standard economic theory. The increasing importance calls for a rationalization for such 

preferences, otherwise it may be regarded as a rather ad-hoc adjustment of preferences to explain 

empirical results. As Güth and Napel (2006) point out such preferences should in particular be 

compatible with the physical necessity to strive and compete for material rewards in an 

environment characterized by the scarcity in resources. In other words such preferences ought to 

be rationalizable from an evolutionary point of view. Following the argument of the necessity to 

analyze the evolution of preference in an environment that comprises at best all relevant classes 

of games individuals engage in, I will suggest a particular notion of a simplified game of life. The 

simplified game of life as I will define it comprises three classes of games: a symmetric dilemma, a 

symmetric and strict problem of coordination and a strict problem of distribution. Then I will 

analyze the evolution of a particular type of other-regarding preference that of inequality aversion 

in the 2x2 simplified game of life.  

The simplified game of life that comprises three major important types of human interaction, on 

the one hand as expected gives rise to a greater variety in potential equilibrium distributions of 

preferences than the single environments. In particular the surprisingly strong predictions for the 

single environments are put into perspective. The global evolutionary advantage of inequality-

averse players in the dilemma and the global disadvantage in almost all cases for inequality-averse 

individuals who are favored in the problem of distribution experience significant qualification. In 

particular whenever the interplay of the dilemma and the problem of distribution allows for a 

locally stable equilibrium with only inequality-averse players then this transfers to the simplified 
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game of life, i.e. inequality aversion may also be present among individuals who are favored in the 

problem of distribution. On the other hand the expected stabilization of inner equilibria in which 

relatively inequality-averse individuals and relatively selfish individuals coexist occurs only if the 

problem of coordination shows the same feature.  

 

In summary my thesis will deal with individual preferences, the central concept in economics to 

model behavior. More precisely the constituting articles will be concerned with certain 

characteristics of preferences which may have behavioral consequences. Two types of structuring 

of preferences will be incorporated, the other-regarding preference of inequality aversion and the 

structures that emerge from the internalization of social norms. My thesis will analyze the 

dissemination and the impact of these characteristics. Two forces relevant for the dissemination 

of these particularities of preferences in a population will be considered: evolutionary and 

psychological forces. The thesis contributes to a better understanding of the conditions of 

emergence and the consequences of potential explanations for observed human behavior which 

rely on certain structures of individual preferences.  
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2. The impact of market innovations on the evolution of norms: 

the sustainability case.  

2.1. Abstract 

It is widely accepted among economists that institutions and in particular social norms as an 

important category of informal institutions do matter. Social norms matter in many economic 

situations, particularly for markets. The economic literature has studied the interrelation between 

markets and social norms in both directions – how social norms affect markets and how markets 

affect social norms. In the latter, markets are reduced to their price-quantity aspect and 

innovation is completely neglected. Our paper introduces a new dimension to the interaction 

between markets and norms beyond the interplay of monetary and non-monetary incentives to 

act in a certain way: the innovation of material goods as a catalyst of norm evolution. We analyze 

how the evolution of a social norm may be affected by product innovation, which adds to the 

variation of products with respect to their level of norm compliance. We derive necessary and 

sufficient conditions for a) a positive impact of the innovation on the level of norm adoption and 

b) for multiplicity of norm equilibria. In concluding, we discuss several policy implications. 

Keywords: Consumer Behavior – Social Norms – Evolutionary Economics – Sustainability – 

Innovation  

JEL Classifications: A13, D02, D11, Q01, Q55 

 

2.2. Introduction 

Many of today’s environmental problems stem from private consumption patterns. Individuals 

consume transportation, heating and food, leaving a significant carbon footprint. Preferences for 

choosing more or less polluting variants of these products and services are shaped by their 

availability as well as social norms and other institutions. Thus, solutions to mitigate 

environmental problems depend not only on product innovation, but also on the presence of 

social norms, with the former enriching markets with sustainable products, and the latter 

supporting sustainable consumption. When recognizing that social norms influence preferences, 

it becomes apparent that markets and social norms cannot be treated separately.  

The existing literature has widely studied the interrelation between markets and social norms in 

both directions – how social norms affect markets and how markets affect social norms. The 

influence of social norms on markets has been studied from theoretical, empirical and 

experimental perspectives. With respect to theory, there have been various attempts to 

incorporate norm-motivated behavior into neoclassical consumer theory (see e.g. Nyborgs et al. 

2006; Brekke et al. 2003). Or social norms are treated as a prerequisite for working market 

systems (e.g. Platteau 1994)1. However, there is no general or partial equilibrium theory based on 

                                                 

1 For a normative theory of social norms in market economies, see Bergsten (1985). 
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norm-motivated behavior2. This may explain why most research in the field is empirical. Hong 

and Kacperczyk (2009) and Johnson (2004) for instance study the impact of norms on financial 

markets. Kim (2007) finds support for the relevance of norms for the market pricing of private 

property rights. A series of competitive-market and bilateral-bargaining experiments carried out 

by Fehr et al. (1998) indicate that competition has a rather limited effect on market outcomes if 

the norm of reciprocity is operative. The impact of wanting to maintain a positive self-image as a 

socially responsible person on the demand for “green” electricity is studied by Ek and Soderholm 

(2008). Johnson (2004) develops a framework using evidence from central Kenya for the 

relationship between gender norms and financial markets, i.e. the demand and access to financial 

services.  

The research on the impact of markets on the evolution of norms primarily deals with the 

analysis of the relationship of norm-driven intrinsic motives and market- or price-driven extrinsic 

motives. Fehr and Gächter (2001) provide empirical support for incentive contracts crowding out 

reciprocity-driven voluntary cooperation. In a similar vein, Gneezy and Rustichini (2000) present 

results from a field study that contradict any deterrence hypothesis. A first survey of this stream 

of empirical literature on crowding-out effects was carried out by Frey and Jegen (2001). With 

respect to theory, Benabou and Tirole (2006) provide a theory of pro-social behavior where 

rewards or punishments create doubt about the true motives for which good deeds are 

performed, and hence, may lead to partial or even total crowding-out of pro-social behavior. 

Huck et al. (2012) provide a model of the interplay of social norms and economic incentives in a 

firm in which crowding-out of social incentives may occur. Bohnet et al. (2001) study the 

connection between contract enforceability and individual performance, both theoretically and in 

the laboratory. They find that trustworthiness is “crowded in” with weak enforcement and 

“crowded out” with medium enforcement. All of these approaches are limited to monetary 

incentives provided by markets and their regulation. This, however, reduces markets to their 

price-quantity aspect and completely neglects their innovation capacity. The variation due to such 

innovations is an important missing element of the market-norm interaction.  

In this paper we try to close that gap by focusing on the interdependence between innovative 

variation of products and the process of norm-adoption. To understand the explanatory potential 

of the interdependence, consider a market where at the pre-innovation stage, the individual 

characteristic of having adopted a specific norm is not observable, neither by observation of the 

individual itself or its general behavior, nor by observation of its consumption behavior. 

Obviously, the latter presupposes that products or services fail to differ with respect to their 

norm compliance. After a new product or service which is characterized by a relatively high 

degree of norm compliance has entered the market, the process of norm adoption changes in two 

ways. First, an individual is now able to consume in accordance with his or her norm, which 

could not have happened before the innovation. The innovation thereby directly facilitates the 

adoption of the norm by reducing potential cognitive dissonances that would occur if a norm 

adopter consumes in contradiction to his or her norm. We call this event cognitive bias. Second, the 

                                                 

2 For a discussion of an extension of Walrasian economics by social norms and psychological dispositions see Bowles 
and Gintis (2000). For a multi-agent simulation model on the psychological factors like need for identity on market 
dynamics, see Janssen and Jager (2001). 
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new variety allows the conformity bias (Boyd and Richerson 1985) and other social influences 

(Cialdini and Goldstein 2004) to enter the scene. The consumption of the (old) norm-violating 

product and of the (new) norm-complying product will hence become more attractive, the more 

other individuals still, or already consume the respective product.  

In our model, we address both of these two elements of the link between product innovation and 

the evolution of social norms. To achieve this goal, we consider a market in which consumers are 

heterogeneous with respect to their norm-dependent and product-specific demand and the 

producers’ product-portfolios heterogeneity evolves endogenously. The equilibrium of this 

market depends on the share of consumers who have adopted the norm to which the new 

product complies. Conversely, the innovation and the equilibrium ratio of norm-complaint to 

norm-violating consumption affects the norm-adoption process via the two biases we introduced 

in the preceding paragraph. Since the equilibria of markets strongly depend on market structure, 

and markets for innovative products are highly susceptible to monopoly or oligopoly power, we 

control for market structure. We do so by opposing the two cases of a discrete number of firms 

and a continuum of producers of the innovative product. 

The link between the process of norm adoption and the market may only be relevant if the 

product or service is sufficiently important for individuals in terms of the time spent with it, 

money spent on it, utility drawn from it, social status connected to it etc. since otherwise, 

cognitive dissonances would be too weak to have a major impact. For our analysis, we therefore 

employ e-mobility as the innovation and sustainable transportation as the norm. In 2010, German 

households spent around two-thirds of their income on the following four categories: housing, 

water, electricity, gas and other fuels (30.8%); transportation (13.2%3); leisure, entertainment and 

culture (11.6%) and food including non-alcoholic beverages (10.4%). Of these four categories, 

only the expenditure for transportation and food reflect the attitude towards sustainable 

consumption in an observable way.4 According to an extensive study on mobility in Germany 

conducted by the infas Institute for Applied Social Sciences and the DLR German Aerospace 

Centre in 2008 (MiD 2008, p.21), a mobile person spent on average 1.5h a day on traveling 

excluding regular travel time associated with a job, e.g. as a bus driver. Almost 60 % of that time 

(about 54 minutes) is assigned to private transportation. In summary, the car is expensive, 

important, omnipresent and relevant for sustainable consumption and therefore a product with a 

high potential for a conformity bias and cognitive dissonances for norm-adopters.  

Our analysis, however, is not limited to this case. We include two other examples that illustrate 

the wider relevance of our approach. Consider first the technological innovation of social networks 

such as Facebook or Twitter and the norm share yourself (opinions, activities, etc.) in opposition to 

the norm protect your privacy. Prior to social networking, individuals willing to share their lives with 

a wider public audience could not live in accordance to their norm. In contrast, privacy-loving 

individuals were able to conceal most of their information. Protect your privacy was the prevalent 

norm in many countries. When internet services such as Facebook or Twitter entered the market, 

some individuals could start living according to their norm, share yourself. The innovation has 

                                                 

3 More than 85% of these expenditures are spent on private transportation. 
4 Exceptions are things like solar panels for the accommodation category or the attendance of a pro-environment 
concert. 
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caused a complete reversal of the social norm. The second example is the innovation of ecological 

food and the norm of sustainable and healthy consumption. Today, almost all large supermarket chains 

include ecological food on their shelves, many being branded directly by the supermarkets 

themselves. With this innovation, people concerned with sustainability, health and also with the 

conditions of livestock breeding can live in accordance to this norm, and have become a large 

minority.  

To make our argument precise, in the remainder of the paper, we proceed as follows. In Section 

2, we introduce the model. Assumptions and notation are presented in 2.1. In 2.2, we derive the 

market equilibrium for a given share of norm-adopters and a given number of firms operating on 

innovative and traditional markets and then deduce the equilibrium number of firms supplying 

the innovative market. We then turn to studying the dynamics of norm adoption in 2.3. Results 

are summarized in Section 3. Policy implications are discussed in Section 4 and Section 5 

concludes.  

 

2.3. The Model 

We consider a market where demand is characterized by a large number of consumers, who 

differ only with respect to their having adopted a particular consumption-related norm. The 

commodity traded on the market may occur in two specifications, one in compliance with the 

norm and one in violation thereof. We base our argument on a specific example, the market for 

automobiles and the norm of sustainable transportation, with electric cars as the norm-compliant 

variant and gasoline cars as the norm-violating variant. However, as we have already argued in the 

introduction, the argument extends to other examples as well. 

To make identification of the two consumer groups easy, we call those consumers who have 

adopted the norm-adopters and those who did not, hedonists.  ,t a h  identifies the type of 

consumers in the natural way, while  ,v e g  identifies the variant of the norm-compliant 

(electric-powered) and, respectively, the norm-violating (gasoline-powered) variant of the 

commodity automobiles. For simplicity, both variants of the commodity are imperfect substitutes 

for each other and the slopes of demand curves as well as substitutability are assumed to be 

independent of the type of the consumer. With the simplification of linearity, and ep  and gp  

denoting the prices of electric and gasoline cars, respectively, demand per consumer can be 

written as 

  ,v e g v v v

t tx p p p p       with  ,v v e g   , 0v

t   and 0   , (2.1) 

for those price combinations which induce strictly positive quantities. For simplicity, we 

concentrate on these combinations and leave other cases to further research: 

Assumption 1          min , , , , , , , 0e e g g e g e e g g e g

a a h hx p p x p p x p p x p p  . 
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We refer to v

t  as the zero-price consumption of variant v  by type t . To reflect that electric cars 

comply with the norm of sustainable transportation to a larger degree than gasoline cars, we state 

the following, 

Assumption 2  If prices of the two variants of the commodity are identical ( e gp p ), 

then the difference between consumption of the norm-compliant variant and of the norm-

violating variant will be larger for the norm-adopters than for the hedonists: 

   , ,e g

a ax p p x p p      , ,e g

h hx p p x p p .  

Corollary e g e g

a a h h      . 

We will later make use of the effect of norm adoption on individual demand for electric cars and for 

gasoline cars, e e e

a h     and g g g

a h    , respectively, where the former is obviously 

larger than the latter due to the Corollary.  

If we normalize the number of consumers to unity and write q  as the proportion of consumers 

who have adopted the norm, market demands for the two product variants is: 

 
   

   

1 1

1 1

e e e e e e g

a h a h

g g g g g g e

a h a h

X qx q x q q p p

X qx q x q q p p

   

   

       

       
 (2.2) 

or equivalently, the system of inverse demand functions:  

 
      

      

2 2

2 2

1 1 1

1 1 1

e e e g g e g

a h a h

g g g e e g e

a h a h

p q q q q X X

p q q q q X X

       
 

       
 

       


       


 (2.3) 

On the supply side, we assume myopic profit maximization5 on a simple Cournot oligopoly 

market for both variants of the commodity with constant marginal production costs of gc  and 
ec  for gasoline-powered and electric cars, respectively. We assume that the number of suppliers 

on the market for gasoline cars is given exogenously by n . The number m  of suppliers on the 

market for electric cars is given by the maximum number of producers who can profitably 

produce for both markets when adding the second production line, entailing a fixed cost of k . 

Note that the oligopoly market may turn into a monopoly market. For consistency with the 

simplifications on the demand side, we exclude by assumption the absence of electric car 

producers.  

We assume that markets find their equilibrium fast enough to neglect the specific dynamics when 

investigating the norm dynamics. In other words, we make use of the method of adiabatic 

                                                 

5 We believe that profits, especially in large incorporations, are the main concerns of decision makers.  
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elimination6 which allows us to include markets into the norm dynamics only by their equilibria, 

which may, of course, depend on the current level of norm adoption. 

Finally, we assume that the dynamics of norm adoption and norm abandonment is a Markov 

process driven by randomly assigned moments in which each individual may adopt or abandon 

the norm. Whether it does may depend on the current state of the society with respect to norm 

adoption and norm-related market behavior. The dynamics of the proportion of individuals 

having adopted the norm, q , is thus given by  

  1 h a a hq q q      (2.4) 

where the transition rates h a   and a h   are the expected number of adoptions and 

abandonments of the norm per individual and per time unit.7 This approximate equation of 

motion is standard in population dynamics8 and is highly intuitive. The change in the share is 

simply the difference in the inflow and outflow. The inflow (outflow) is the product of the share 

of hedonists (norm-adopters) and the rate of transition from hedonists to adopters (adopters to 

hedonists). 

In order to clearly identify the effect of the market innovation on the norm dynamics, we assume 

that norms may not be inferred from consumption behaviour and is not observable when no 

product variant compliant with the norm exists. The transition rates are then independent of the 

current proportion of norm adoption in society and any parameters relating to the (non-existent) 

market for the norm compliant variant of the commodity: 

 o

a h h    and o

h a a   , where 0h   and 0a   are constants. (2.5) 

If the norm-compliant variant of the product enters the market, it will have two effects on the 

transition rates, a cognitive dissonance effect and a conformity bias effect. The former is caused 

by the possibility to behave according to the norm. It makes adopting the norm easier and being 

a norm adopter less repelling. We capture this idea in the formal presentation of the dynamics by 

increasing the norm adoption rate by a factor  1 CB  and lowering the rate by which norm 

holders abandon it by a factor  1 CB , where CB is the reduction in cognitive dissonances from 

having the norm but not complying with it. We assume 1CB   to ensure that the transition rates 

remain positive. 

The conformity bias has a similar effect on norm adoption and norm abandonment. Once the 

norm-compliant variant of the product enters the market, individual consumers may observe 

whether their consumption conforms to the majority of consumers. Acting against the majority 

                                                 

6 The method was introduced under this label by Haken (1977) for the synergetic approach of aggregation of 
dynamics of micro-data to the dynamics of macro-data. It has been introduced to economics e.g. by Weidlich and 
Haag (1983). The basic idea of the method may, however, already be found in Samuelson’s “Foundations” (1947). 
7 Strictly speaking, the transition rates are the limits of the expected number of transitions per second, when we 
consider ever shorter time intervals (similar to the speed of a car being measured in miles per hour, but measured for 
a specific point in time, not for an entire hour). 
8 For example, see Weidlich and Haag (1983). 
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implies dissonances, which will be larger when the majority is larger. An individual is more likely 

to adopt the norm if norm-compliant behavior reflects the consumption pattern of the majority, 

i.e. if the ratio of electric cars to gasoline cars exceeds unity, then the transition rate towards 

norm adoption should increase relative to the pre-innovation level. If the opposite is true with 

respect to 
e

g

X

X
, then the abandonment should be facilitated.9 If  0,1   measures the relative 

weight on the conformity bias, the post-innovation rates of transition can be written as follows:  

    1 1
e

h a a g

X
CB

X
   

 
    

 
 and    1 1

g

a h h e

X
CB

X
   

 
    

 
. (2.6) 

Thus, the dynamics of the proportion of norm-adopters becomes: 

          
pre-innovation dynamics (linear) cognitive bias (linear)

conformity bias (non-linear)

1 1 1 1
e g

a h a h a hg e

X X
q q q CB q q q q

X X
        

 
          

 
. (2.7) 

The market-norm dynamics described in equation (2.7) completes the model. The equilibria for 

the model will be discussed in the following sections. 

2.4. Equilibria 

2.4.1. Market equilibrium 

To find the equilibria of the norm-cum-market system described in the previous section, we first 

determine the market equilibrium and then turn to the dynamic part (Section 2.4.2). 

As oligopolists, each producer  1,2, ,i n  maximizes  ˆmax ,i i  , with ˆ ˆ ˆg g g

i i

g

i p cx x    and 

g g e e g g e e

i i i ii p x p x c x c x k       over his production quantities ˆ g

ix , g

i
x  and e

i
x .  

Proposition 2-1 For each share of norm-adopters  0,1q  and each number  0, ,m n  

of firms producing the innovative product, there is a unique equilibrium in the Cournot oligopoly 
game.  

The proof follows Okuguchi and Szidarovszky (1990) and is given in Appendix A, as are all other 

proofs for this paper. 

Taking the derivatives of i  for m producers of both variants with respect to g

ix  and e

ix  yields 

two first order conditions which entail 

    g g g e e

ix p c p c      and    e e e g g

ix p c p c     . (2.8) 

                                                 

9 We neglect the possibility of having a conformity bias that affects consumption directly. This allows us to 
concentrate on the effects of the conformity bias on norm adoption and abandonment. We conjecture that this has 
no qualitative effects because the conformity bias affecting consumption directly should only reinforce the effects of 
the norm-related conformity bias. 
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Similarly, the derivative of ˆ
i for the n m  producers of gasoline cars only with respect to ˆ g

ix  

yields a first order condition which simplifies to  

   2 2ˆg g g

ix p c      . (2.9) 

Summing up all g

ix  and all e

ix  yields 

 

    
 

   

1

2 2

1 1
ˆ

me e e e g g

ii

m n mg g g g g e e

i ii i

X x m p c p c

n n m
X x x p c m p c

 

 








 

    

 
     



 
 (2.10) 

Inserting ep  and gp  from equation (2.3) and solving for eX  and gX  gives the market 

equilibrium quantities 

  

  
  

  

1
1

1 1
1 1 1

e e e e g

a h

g g g g e e e e g

a h a h

m
X q q c c

m

n n m
X q q c c q q c c

n m n

   


       







    



         

  

(2.11) 

As it is obvious from equations (2.8) and (2.9), the equilibrium is symmetric in the sense that each 

firm of the same type (only conventional cars or both variants of cars) produces the same 

quantities. Indeed from Proposition 1 we know that this equilibrium is unique.  

The market entry equilibrium in terms of the equilibrium number of firms operating in both 

markets is given by the condition of equal payoffs. Due to indivisibility, the equilibrium number 

of firms active also on the market for e-mobility, eqm , corresponds to the integer part of m  

solving 
i i   with ˆ, ,g e g

i i ix x x  given by (2.8) and (2.9) and ep  and gp  by inserting ,e gX X   

from (2.11) into (2.3). eqm  is thus given by:   

    *min , max 0,integerparteq
m n m  where 

 * 1
1 

e ge e

a hq c c
m

k

q  



   
 


 (2.12) 

Note that the condition on eqm  to be of integer value will cause discontinuity in equilibrium 

prices and quantities at levels of q  that induce a change in the value of eqm . The number of 

firms serving both markets in equilibrium is increasing in the weighted willingness to pay for e-

mobility and in the weighted cost differential between conventional cars and electric cars. The 

number of firms is decreasing in fixed costs k . Notably, the equilibrium number of firms 

producing both products is independent of the total number of firms n . We further note the 

following: 

Lemma 2-1 The number of firms m  is monotonically increasing in the share of norm-

adopters if and only if e e

a h  , i.e. if and only if the effect of the norm adoption on individual 

demand for electric cars is positive  0e  .  
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Hence, if the sustainable-transportation norm is accompanied with a reduced overall demand for 

individual mobility, then an increasing share of norm-adopters may induce a larger number of 

producers of electric cars. This is true only if the reduction in the demand for transportation 

exclusively affects the demand for gasoline cars, which has to be partially substituted by an 

increased demand for electric cars. Lemma 2 will be helpful in Section 2.4.2.2 when we study the 

impact of the discontinuity of eqm  on the number of stable equilibria.  

Having derived the number of firms serving both markets, we can now determine the quantities 

emerging if the expansion of firms on the e-mobility market is endogenous as ˆ e e

eqm m
X X




  and 

ˆ g g

eqm m
X X




 . For expositional simplicity, we will heavily make use of the continuous version 

of m  for the moment:  
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 (2.13) 

where the tilde denotes the simplification based on the continuous version of m  and the two 

terms 

 0 0  ande e e g g g g e

h hc c c ck k


   


               (2.14) 

facilitate notation in the remainder of the paper. Before we turn to the analysis of the norm 

dynamics, we briefly study the total demand for private transportation: 
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 (2.15) 

Total demand for individual transportation is a linear function in the share of norm-adopters. 

Neglecting a factor of proportionality close to 1, it increases (decreases) if the effect of norm 
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adoption on the individual demand for electric cars ( e ) is larger (smaller) than the opposite 

effect on the individual demand for conventional cars ( g ).10 The precise condition is:  

 
 

 0  
1

e g

e g

q

X

n

X n





 

 


    

 





.  (2.16) 

2.4.2. Norm equilibrium 

We now turn to the evolution of the share q  in the population carrying a norm to consume in a 

sustainable way. As our model is fully specified, we can refine our research question concerning 

the impact of an innovation of a relative norm-compliant product variant on the evolution of a 

social norm shaping the preference for the good considered. We will address two questions in 

detail. First, what is the impact of an innovation that differs with respect to the level of norm 

compliance on the dissemination of a norm. Second, what is the effect of the market dynamics 

on the evolution of the norm with respect to the existence and stability of equilibria.  

In the pre-innovation stage where transition rates are given by the constants defined in equation 

(2.5), the dynamics of equation (2.4) has an easy-to-calculate stable and unique equilibrium at  

  o

a h aq     . (2.17) 

When the innovation enters the market, transition rates now change depending on the 

equilibrium quantities of the different product variants and as given in equation (2.6). In the 

following paragraphs, we analyse the effects of three phenomena with respect to the two 

aforementioned questions. We first study the interplay of the cognitive dissonance bias and the 

conformity bias, and then turn to the discontinuity resulting from the fact that firms interact in an 

oligopoly. 

 

2.4.2.1. Cognitive Bias and Conformity Bias 

In order to understand the interplay of cognitive dissonance bias and conformity bias, we neglect 

the requirement that the number of firms supplying the norm-compliant variant of the product is 

an integer, and base our argument on the continuous version of the equilibrium number of such 

firms as defined by m  in equation (2.12). Obviously, this requires assuming (for the moment) 

that the demand for electric vehicles by hedonists is large enough to keep eX  as defined by 

equation (2.10) strictly positive. In order to clearly differentiate between the continuous- m  

version of the model from the version with the discrete eqm , we write q  instead of q  whenever 

                                                 

10 Note that 1
1

n

n





 

 for sufficiently large n and if the cross price “elasticity” is sufficiently close to the direct 

price “elasticity”, i.e. if the two types of goods are very close substitutes.  
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we use e
X  and g

X  instead of ˆ e
X  and ˆ g

X  in equation (2.7). To guarantee differentiability of q  

we will further assume that  1,m n .  

This translates into a pair of inequalities: 

           * 1 11, 1, 1, 1,
e

e e e e
m n q n n n

k k k


 

  
          , or equivalently,  

     e e e ek n k k n k              . (2.18) 

We will neglect this condition in the following paragraphs since its inclusion, while 

straightforward, would unnecessarily complicate the notation. So far, the reader should keep in 

mind that the number of firms n  should be sufficiently high and fixed set up cost k should be 

sufficiently small. We will return to this issue in Section 2.6.  

Figure 2-1: market-norm dynamics. 

0.1,  1,  0.75,  0.65,  n 4,  0.8,  1,  0 e g e g

a h                   

Neglecting the conformity bias ( 1  ), inspection of equation (2.7) shows that cognitive bias 

shifts the norm dynamics upwards and turns it counterclockwise, increasing the equilibrium level 

of norm adoption. The conformity bias changes the motion of the norm adoption proportion 

described in equation (2.7) from a linear function to an s-shaped function with at most one 

increasing branch in the middle (see Figure 2-1): 

Lemma 2-2 Assume that e

h  and g

a  are large enough to guarantee that eX  and gX  as 

defined by equation (13) are strictly positive for all  0,1q . Then: 

1.  
0

1 0a
q

q CB 

    and  

1
1 0h

q
q CB 


   ; 

2. Any value of q  is reached for at most three different  0,1q ; and 

3. 
e

e g

g




    implies 

 
0

e g
d X X

dq
 , which in turn implies 0dq

dq
 . 

The intuition behind claims 1 and 2 is simple. Claim 1 is obvious when eX  and gX  are strictly 

positive. Claim 2 follows from the fact that eX  and gX  are linear in q  and thus solving equation 

(2.7) for q  for any given value of q  is tantamount to solving a polynomial of degree three. The 

 0.2 0.4 0.6 0.8 1.0

0.2

0.1

0.1

0.2
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first implication of Claim 3 follows from the fact that the denominator of the derivative 

 e g
d X X

dq
 is strictly positive and the numerator is given by: 

      
1

1

1
1 1

1
1

g g e

e g
g e

e g e e e

g e

e

e g

n n
q

dX dX
X X

dq d

q q
n n n

q

n

n

n

  

 

 

 




         

   
      

    



   

   


 (2.19) 

The second implication of Claim 3 follows from the observation that all three terms summed up 

in 

 

      

 
 

   
2 2

1 1

1

1

1

e g

a h a hg e

e g

g ea h

g e

dq X X
CB CB

dq X X

q q dX dX
X X

dq dqX X

    

 





      


  

 
  

 

  
   
   

 (2.20) 

are negative if 
 

0
e g

d X X

dq
 .  

As a consequence of Claim 1 of Lemma 3, q  must have at least one branch declining in q . Claim 

2 of the lemma then implies that there is at most one increasing branch. Such an increasing 

branch is a necessary condition for multiple inner equilibria of the market-norm dynamics. 

Hence, a direct consequence of Claim 3 is the following: 

Corollary If the market-norm dynamics has multiple (two) stable inner equilibria then 
e gX X  increases strongly in q for all  0,1q , i.e. e g e g    .  

Figure 2-1 illustrates the possibility of multiple equilibria. In the following section, we look at the 

conditions and thereby at the parameter set that gives rise to this phenomenon. With the 

assumption of strictly positive demand, the roots of (2.7) are equivalent to the roots of (2.21).  

 
                

2 2

ˆ

1 1 1 1 1

e g e g

e g

a a h a h

q X X q X X

CB q CB CB q X q X



     

  

        
 (2.21) 

The dynamics given by (2.21) is a polynomial of degree 3 and has two stable inner equilibria in 

the unit interval if and only if it has two extreme points with a negative functional value at the 

minimum and a positive functional value at the maximum. Note that if there are two extreme 

points Low Highq q , then   0  1High Highq q q implies  and   0 0Low Lowq q q  implies  by 
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inspection of (2.7), given strictly positive demand. Given   0Highq q   and   0Lowq q  , the fact 

that    0 0, 1 0q q   implies that Lowq  is the minimum and Highq  is the maximum.  

Hence, only the two conditions with respect to the existence of two extrema and the sign 

condition at the extrema points remain. Since demand is linear in the share of norm-adopters, the 

conditions of positive demand amount to: 0 e gn
 


   and  e e e g gn

  


        . 

The binding constraints are therefore given by:   0Lowq q  ,   0Highq q  , 0 e gn
 


   and

 e e e g gn
  


        . It turns out that only   0Lowq q  ,   0Highq q   and 

 e e g gn
 


       depend on e  and g . 

Figure 2-2: Range of multiple equilibria: blue line:  1 0g
X  ,  1 0g

X   to the right of the blue line; red 

line:  ,e Min g   upper bound of 
e

  allowing for multiple equilibria; yellow line:  ,e Max g   lower bound of 
e

  

allowing for multiple equilibria. 0.1,  1,  =1, 4,  0,  4 5e g

h a
n           . 

Therefore, if we study the parameter region of e  and g  such that multiple equilibria exist, 

only these three conditions are relevant, given that the values for the other parameters satisfy the 

remaining inequalities ( 0 e gn
 


  ). Figure 2-2 gives an illustrative example.  

The intuition behind having an upper and lower limit for e
  is simple. If e

  were too large, 

 e
X q  increases too quickly relative to  g

X q  that  qq  increases at 0q   or the minimum of 

 qq  is above the 0q  -axis. If e
  were too small,  g

X q  declines rapidly relative to  e
X q  

that  qq  never increases or only has a minimum but no maximum, or has a maximum which 

remains below the 0q  -axis. In our application, a relatively large e
  implies that norm adoption 

has such a strong effect on the market equilibrium amount of norm compliant consumption that 

the growth in this consumption (possibly at the cost of norm violating consumption) reinforces 

the norm very quickly. This happens at such a pace that norm adoption is always self-reinforcing 

1.0 0.5 0.5 1.0 1.5 2.0

0.5
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until the number of individuals not having adopted the norm becomes very small. If, on the 

other hand, e
  is very small, then norm adoption has too little of an effect on norm compliant 

consumption to become self-reinforcing. 

In the next section, we derive sufficient conditions for multiple equilibria to exist. If we look at 

Figure 2-2, it appears that these three conditions define a triangular region. In what follows, we 

will derive the vertices of that region and reformulate the two differential equations   0Lowq q  , 

  0Highq q   as differential equation for  e g  . 

Given strictly positive demand (2.7) gives rise to a fixed point equation:  
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 (2.22) 

 

  

. .

.

  =0  ,

, 0

At such that this gives a fixed point equation in :extr extr e g

extr e g

q q q q

q q

  

  
 

We take the total derivative with respect to ,e g   and apply the envelope theorem11.  
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Together with initial conditions:     e, e, 0Maxg q q g      and 

    , , 0e g Min e gq q      the differential equation 
.

.

g g extr g

e e extr e

d q

d q





  


  
 gives rise to two 

boundary functions:    , ,,e Min g e Max g    .  

Definition All  ,e g  pairs that satisfy the following three conditions define the parameter 

region such that multiple equilibria exist: (1)  e e g gn
 


      , (2)  ,e e Min g    , (3) 

 ,e e Max g    . We will refer to this set as the multiple equilibria set (MES).  

Before we continue, we will state some observations based on 
1

1

e

gg

e

d

n Xd

n X n









 that will be 

helpful in the course of our argument:  

(1) The slopes of    , ,,e Min g e Max g     are positive and smaller than the slope of the third 

constraint  e e g gn
 


      .  

(2) By corollary 4 
g g g

e e e

d q

d q





  


  
 is ceteris paribus decreasing in q  

(3) At point A, the relevant constraints have the same slope.  

We are able to determine the coordinates for points A and B (Figure 2-2) analytically. For better 

readability, Table 2-1 below presents the results for 0  . Note that there exist multiple 

equilibria if and only if    
B A

e e   . As mentioned before, the dynamics given by (2.7) consist 

of a linear and nonlinear term, the latter is weighted with 1  . Intuitively, one would expect that 

 , the weight of the linear term, must be sufficiently small so that the nonlinear term dominates 

the dynamics and for some parameter constellations multiple equilibria might arise. It indeed 

turns out that there exists a unique threshold value for  , such that multiple equilibria are 

possible. Its derivation is deferred to Appendix A. The value and its properties are summarized in 

the next lemma.  

Lemma 2-3 For 0 e gn
 


   there exists an unique 

        
   

2 2 2
.

2

1 1 2 1 1 4 1

2 1 1

e e

crit

e

CB n CB n CB

CB n CB

   


 

       


  
, with g en     

such that MES is non-empty if and only if 
.crit  .  
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Furthermore,
. . . . . . .

,
0; 0; 0

e g

crit crit e crit crit crit crit crit

g g e e

a h
fixed

n

n CB 

       

      

      
        

      

which implies: 
. . . . .

0; 0; 0; 0; 0
crit crit crit cri

e g e

t cr

g

h h

it

c c k

    

 

    
    

    
. 

In other words, as long as the weight for the non-linear term is sufficiently large, there will always 

be  ,e g  pairs such that multiple equilibria exist. With respect to partial effects, Lemma 2-3 

states that the required weight for the non-linear term of the dynamics 1   is increasing in 

maximum willingness to pay for electric cars by hedonists e

h  and in the marginal cost for 

gasoline cars 
gc . The required weight decreases in the maximum willingness to pay for gasoline 

cars g

h , the marginal cost for electric cars 
ec  and the fixed setup cost k. The effects with 

respect to parameters measuring the price sensitivity are ambiguous. The weight also decreases in 

the number of firms in the market and in CB measuring the reduction of cognitive dissonances 

from having adopted the norm but not complying with it. 

Point A B C 

q 1Max
q   
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2 22
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Table 2-1: Vertices of multiple equilibria set for 0  . 

The differential equations given by 
.

.

g g extr g

e e extr e

d q

d q





  


  
 cannot be solved for analytically. In the 

following, we present our approximation strategy for 0  , such that we can state explicit 

sufficient conditions for multiple equilibria to exist. Again, the general case can be found in the 

Appendix A. Note that the values for q that corresponds to  ,e g   pairs that are elements of 

the graph of  ,e Max g   range from 
 

   3 4

g e

C

g e g e

n

n n
q

 

  




    
 to 1Aq  . We can use the 

 
B

g  as a lower bound for 
g  and by that, can give a lower bound for q  independent of 

e  

and 
g , i.e. 

 

   

2

2

4 1
4 1 3

e

e g e

n

n
q

n



   




  
. The system   0Cq q  ,   0Cq q   can be 

solved for 
e  and 

g  as a function of q. If we plug in q , we get as point D a  ,e g  pair on 
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the graph of  ,e Max g   that corresponds to a maximum for the dynamics in (7) that equals q . 
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(2.23) 

We approximate the upper and lower boundaries by linear functions intersecting point B and D, 

respectively. Our observation above, that the slope  ,e Min g   is decreasing in q gives us a lower 

bound for the slope by 
e

g




. Figure 2-3 illustrates our approximation procedure. Note that under 

our approach, MES is not empty if and only if the area spanned by  1 0gX   and the two 

approximating linear function is non-empty.  

Figure 2-3: Approximation of MES. Red line: approximation of  ,e Min g  ; yellow line: approximation of 

 ,e Max g  . 0.1,  1,  =1, 4,  0,  4 5e g

h a
n           . 

Lemma 2-4 If 0   and 0 e gn
 


  , 0q   has three solutions if (sufficient condition): 
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The effects of market parameter variations on the location of  q q  and on the number of 

equilibria are best understood by observing that they only enter via e
X  and g

X  into equation 

(2.7). Since 
   

0
e g

dq q dq q

dX dX
  , the derivatives are all straight forward. In particular,

   
0

e g

dq q dq q

d d
 

 
, i.e. the effect of norm adoption on the demand for electric (gasoline) cars 

has a positive (negative) effect on the growth rate of the share of adopters. 

q

q
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Before studying the effect of the cognitive bias and the transition rates ,a h , it is worth 

mentioning that these parameters are not subject to policy measures. They reflect the dynamics 

of norm adoption before the innovation takes place. In particular, the cognitive dissonance from 

having adopted a norm that one cannot comply with is beyond the reach of political measures. 

Discussing these parameters is thus only relevant for understanding the context in which policy is 

formulated. Since the transition rates ,a h  occur in each and every term of the right-hand side of 

equation (2.7), it is only their ratio which is relevant. If a h   is small, there will be only a few 

norm-adopters in the equilibrium before the innovation takes place, in particular, because too 

much cognitive dissonance is implied by having the norm. After the innovation, small values of 

a h   imply that the range of e
  for which multiple equilibria occur shifts upwards and 

stretches along the e
 -axis.  

If the cognitive bias is large, that is, if the innovation removes a lot of cognitive dissonance from 

norm-adopters, then the innovation tends to have a particularly positive effect on norm adoption. 

Starting from the pre-innovation equilibrium value of the rate of norm adoption, 

 o

a h aq      exemplifies the effect of the size of CB and its interplay with the conformity 

bias on which most of our hitherto discussion was concentrated. The following lemma states the 

necessary and sufficient condition for a positive growth rate in norm adoption at the pre-

innovation level.  

Lemma 2-5   2
1

0 0
o o

e g

g e

o

q q q q

X X
CB

X X
q q




 




     (2.24) 

which may be transformed to 
1 1

1 1 1 1

g e
e g

o o

n

n q n q

    


 

   
       

     
, (2.25) 

 where 
 

2
2

21
1

11
CB CB

n

 



 




 
    
   

.  

Equation (2.25) describes a straight and increasing line, above which  o
q q  is positive so that the 

innovation induces a growth of norm adoption, while below this line, norm adoption will decline 

when the innovation occurs. The straight line moves upward if CB or   increase. 

If   0o
q q  , then it implies that the positive cognitive bias is offset by a negative conformity bias 

with a sufficiently large weight  . Obviously, the conformity bias is negative only if at oq , the 

market-equilibrium quantity of the norm-compliant variant of the good is less than the 

corresponding quantity of the norm-violating variant.  

If the quantities of the two variants of the good are hardly affected by the number of norm-

adopters or the quantity of the norm-compliant variant grows only slightly compared to the 

quantity of the norm-violating variant, i.e. if the effects of norm adoption on individual demand 

are small or not too much diverging, then 0q   may hold true for all 
o

q q . However, if the 

effects of norm adoption are strong and induce rapid growth of 
e g

g e

X X

X X
  in q (see (2.24)), then 
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q  may become positive for some  ,1oq q  so that a (second) stable equilibrium with a large 

level of norm adoption is generated by the conformity bias. In the next section, we will enlighten 

the effects that the discontinuity of the number of firms adds to our discussion of the cognitive 

and conformity bias.  

 

2.4.2.2. Discontinuity of Firm Number 

We now drop the simplifying assumption of continuity of the equilibrium number of firms 

producing the norm-compliant variant of the product. We first study the effect of the 

discreteness of this number of firms on the pace at which norm adoption changes and then infer 

consequences for the number and location of equilibria with reference to the structure of the 

market of the innovative good. 

A helpful first insight is the following: 

Lemma 2-6 Except for the discontinuities, where    q q q q  holds true, we have: 

1.    q q q q  and 
   

0edq q dq q

dq dq

     for all q . 

2. Let 1q  and 2q  be two instances of discontinuity of q  with 2 1q q . Then: 

a. 2 1 e

k
q q


 


 where  1,2,  

b.          
1 2

1 2lim lim 0
q q q q

q q q q q q q q
 

     if 0e
   and 

         
1 2

1 2lim lim 0
q q q q

q q q q q q q q
 

     if 0e
  . 

Figure 2-4 visualizes the relationship between 0e
   and  q q  reported in the lemma. 

Figure 2-4: Effects of discontinuity on  q q . Left: 0e  , right 0e  : Additional stable equilibria 

marked by an arrow.  

The discontinuities described in Lemma 2-6 may increase the number of instances at which the 

sign of  q q  changes from positive to negative as q  increases, i.e. the number of stable equilibria. 

It does not reduce this number. The additional stable equilibria may not occur over the entire 
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range of q , but only in those intervals, in which the “jumps” and the slope in the neighborhood 

of the discontinuities are in opposite directions. Only then may the discontinuities result in 

additional sign changes. We state the argument more precisely in the following: 

Corollary Additional stable equilibria due to the discontinuities of  q q  occur if and only if 

the discontinuities entail additional sign changes of  q q . If 0e  , every additional stable 

equilibrium is in one of the intervals in which  q q  is continuous and which has its lower bound 

in one of the decreasing branches of  q q . If 0e  , almost all12 additional stable equilibria 

occur at discontinuities which form the lower bound of a continuity interval of  q q  which is at 

least partly in the increasing branch of  q q . 

We note that this corollary implies that with negative 
e

  and a monotonously decreasing 

function  q q , the discontinuity will never induce additional equilibria. The relevance of this 

insight becomes obvious if one remembers that with negative
e

 , the existence of an increasing 

branch of  q q  is only possible if 
g  is sufficiently smaller than

e
 .  

With more stable equilibria, temporary policies are more likely to induce a permanent shift in 

market structures or market outcomes, but as the larger number of stable equilibria become less 

distant, such permanent effects of temporary policies tend to be smaller. Much of the discussion 

in the following section on policy implications is based on this insight. 

 

2.5. Policy implications 

The policy implications of our model depend to some degree on the definition of policy goals. 

Within the realm of environmental policy in general and traffic-emissions policy in particular, 

policy goals may run the gamut from the dissemination of environment-friendly products over a 

reduction of particularly polluting products to straight emission reductions. Very often, 

environmental sustainability and emission reductions may be the final goal, but political activism 

often involves preliminary targets such as electric cars replacing gasoline cars. General adoption 

of environmental norms, such as the sustainable-transportation norm we have been using as a 

running example in our model, may also serve as one of the more immediate goals.  

All these goals may be affected by innovation such as electric cars with similar consumption 

properties as gasoline cars. If the innovation is unrelated to a norm, or if the adoption and 

abandonment of the norm do not depend on the relative frequency of the consumption of the 

new, norm-compliant product variant, then there would be few arguments for government 

support of the new technology, except for the internalization of external effects. However, if the 

dissemination of the innovation is linked to a norm in the two ways we have described in our 

model, namely both higher valuation of the new product by norm bearers and the feedback of 

                                                 

12 The only case in which an additional equilibrium may be in a continuity interval of  q q  occurs if  q q  has a 

minimum, this minimum is positive, a continuity interval of  q q  embraces this minimum, has an interior minimum 

which is negative and has positive limits at both bounds. 
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norm-compliant consumption on the dissemination of the norm, then the introduction of a 

norm-compliant innovation ceases to have unambiguous effects.  

We have discussed the case that the conformity bias may be so strong that it can hinder the 

dissemination of innovation. In fact, as innovation allows for the observable choice between 

norm-compliant and norm-violating behavior, the innovation may reduce the number of norm-

adopters if it enters the market in small numbers at the beginning, and thereby hinders its own 

further dissemination into the market. In these cases, it is particularly appropriate for political 

interference with market forces (and norm formation!). However, policy measures should be 

carefully chosen. It would be detrimental if policy aimed at (and succeeded in) increasing the 

influence of the normative sphere on the market by strengthening the conformity bias in society. 

Such policy measures would only reinforce the innovation-curbing effects of the conformity bias. 

However, policy should be willing to strongly support innovation in an early stage by improving 

market parameters in order to shift the market-norm system into the region of attraction of the 

high level of norm adoption. Only in the long run should such policies be replaced by supporting 

the conformity bias in order to further shift the “good” equilibrium towards greater norm 

adoption. The reverse order of these measures may have detrimental effects: the system may be 

driven to the “bad” equilibrium if it exists, and this may make later successful market interference 

extremely expensive. 

Among the market parameters to be influenced politically, choices should be made according to 

the dissemination of the norms in the given society. Political measures which alter the effect that 

the norms impose on demand should only be implemented when norm adoption is wide already. 

If it is not, the effect is not only diminished by the small number of individuals who may react to 

the policy measure, but also by a possible reintroduction of at least some cognitive dissonances 

from having the norm but not complying with it, which in our model would be tantamount to 

reducing CB. The effect would be less norm adoption and thus even less effectiveness of the 

political instruments. Policies which affect the valuation for the innovative product of both 

norm-adopters and hedonists in the same way (such as a subsidy for consumption of norm-

compliant behavior) or operate on the supply side (such as cost reductions) will of course also 

have the desired effects, but cannot be tailored to the level of norm adoption.  

If the norm compels individuals to use electric mobility rather than to avoid gasoline cars, i.e. if 

the effect of norm adoption on individual demand for electric cars (
e  in our model) is positive, 

then discontinuity of the number of firms may have to be considered when determining political 

action to support the innovation of electric cars. In particular, if the number of suppliers is small 

due to an initially low demand for such cars, discontinuity effects tend to be large. As a 

consequence, temporary policy measures supporting the innovation are more likely to have 

permanent effects. In addition, the permanence of the effects is triggered faster than if 

multiplicity of the equilibria only stems from positive feedback loops in norm formation (in our 

model, working via the market). However, this permanence cuts both ways. Not only is the 

return to an initial equilibrium with lower consumption of the innovation avoided, but also 

further increases in consumption may be hindered. If additional stable equilibria occur on the 

way from an equilibrium of little consumption to an equilibrium of much consumption, then 

their regions of attraction may trap the system before it can evolve to the region of attraction of 

the “best” equilibrium. Hence, if policy suspects the existence of multiple equilibria due to 
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positive feedback loops in the norm formation process and the market structure on the new 

market is a small oligopoly or even a monopoly, then policies aiming at overcoming equilibria of 

little norm adoption have to be particularly strong and patient.  

 

2.6. Conclusions 

Our paper introduces a new dimension to the interaction between markets and norms beyond 

the interplay of monetary and non-monetary incentives to act in a certain way: innovation of 

material goods as a catalyst of norm evolution. This new dimension allows us to incorporate two 

neglected channels through which markets affect norm evolution. On the one hand, 

consumption may express the normative attitude of an individual, but only if products vary 

sufficiently with respect to compliance of the considered norm. On the other hand, observed 

consumption also exposes an individual to social influence which may reinforce norm adoption 

or norm abandonment. We have condensed these arguments in a model that extends the existing 

literature on the evolution of social norms in three ways. First, our model incorporates the 

influence of a product innovation on the process of norm adoption. Second, we consider how 

conformity bias in the consumption of material goods affects the adoption of idealistic norms. 

Third, we demonstrate how market structure, through its impact on market outcomes, may 

influence norm dynamics. We thereby add to the understanding of how the evolution of norms 

depends on market activities. 

Within our model, we have pursued two questions. First, we studied how an innovation that 

differs with respect to the level of norm compliance modifies the dissemination of a norm. 

Second, we investigated the effect of market dynamics on the evolution of the norm with respect 

to the existence and stability of the equilibria. Concerning the first question, we have derived the 

necessary and sufficient conditions for an innovation to induce an increasing dissemination of the 

social norm. The innovation increases the norm diffusion if (1) the conformity bias is weak or 

enough individuals already bear the norm prior to the innovation and (2) the increase of 

individual demand for the norm-compliant product variant resulting from norm adoption 

exceeds the corresponding demand for the norm-violating variant by a sufficient degree. These 

conditions become more restrictive when fewer firms are in the market, since then the required 

increase in profits to induce an additional incumbent to produce the innovative product 

increases.  

With respect to the second question, we have shown that multiple norm equilibria may not only 

result if norm adoption is a frequency-dependent opinion formation process with direct positive 

feedback loops. But multiplicity may also arise if norm adoption depends on observed market 

behavior, in particular, on the proportion of norm compliant consumption. The direct positive 

feedback loop may be weaker when multiple equilibria are also supported by a conformity bias in 

consumption of material goods. We have further derived sufficient conditions under which the 

positive effect of norm adoption on individual demand induces multiplicity of equilibria. It turns 

out that the effect of the norm on the demand for the norm-compliant variant may be neither 

too high nor too low as compared to the effect on demand for the norm-violating product for 

multiplicity to arise. We have also discussed a second possible source of multiplicity of norm 

equilibria, the market structure. In principle, if more suppliers offer a norm-compliant good, they 

would offer the good at lower prices, thereby facilitating norm compliance and norm adoption. 
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This could in turn increase the demand for the norm-compliant good and thereby allow more 

suppliers to enter the market. It turns out, though, that this feedback loop may reinforce already 

existing positive frequency dependency as source of multiplicity of equilibria, and will rarely 

induce multiple equilibria on its own.  

Based on these results, we have drawn conclusions for policy makers aiming at a higher 

dissemination of the social norm as an intermediate goal to ultimately achieving the greater goal 

of reducing environmental pollution. We have discussed the case that the conformity bias may be 

so strong that it hinders the dissemination of the innovation. It is mainly in these cases where 

political interference with market forces (and norm formation) is appropriate. If policy suspects 

the existence of multiple equilibria due to positive feedback loops in the norm formation process 

and the market structure on the new market is a small oligopoly or even a monopoly, then 

policies aiming at overcoming equilibria of little norm adoption have to be strong and patient. 

Political measures which alter the effect that the norm imposes on demand should only be 

implemented when norm adoption is already wide spread. If it is not, the effect is not only 

diminished by the small number of individuals who may react to the policy measure, but also by a 

possible reintroduction of at least some cognitive dissonance from having the norm but not 

complying with it.  
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3. Evolution of cooperation in social dilemmas: signaling 

internalized norms. 

3.1. Abstract 

Economists have a long tradition of finding that the evolution of cooperation in large, 

unstructured societies is a puzzle. We suggest a new explanation for cooperation that avoids the 

restrictions required in most previous attempts. Our explanation deals with the role of 

internalized norms for cooperation in large unstructured populations. Even internalized norms, 

i.e. norms that alter the perceived utility from acting in a cooperative or uncooperative way, will 

not help to overcome a dilemma in an unstructured society, unless individuals are able to signal 

their property of being a norm bearer. Only when having the norm may be communicated in a 

reliable way, can the picture change. We derive necessary and sufficient conditions for 

cooperation to be part of an asymptotically stable equilibrium of an evolutionary dynamics of 

signaling norm internalization, behavior and norm adoption. These conditions put the signaling 

costs of norm-adopters and non-adopters, the strength of the social norm and two parameters 

measuring the cost of cooperation into relation with each other.  

Keywords: Evolution - Cooperation – Signaling 

JEL Classifications: A13, D02, D21 

 

3.2. Introduction 

Despite the obvious advantages of exploiting the good will of others, human beings often 

cooperate, even in large, unstructured societies. However, cooperation is neither universal nor is 

it easy to explain. Economists have a long tradition of finding that the evolution of cooperation 

in large, unstructured societies is a puzzle (e.g. Axelrod and Hamilton 1981; Fudenberg et al. 

2012); and in explaining cooperation based on some structure within the population.  

Attempts to solve the puzzle are abundant but have thus far commonly relied on one or both of 

two restrictions. The first restriction is that explanations have focused on structured populations, 

in which interactions are not completely anonymous but allows individuals to collect and process 

information about past behavior of others and about their identity. The second restriction is that 

explanations have depended on an unexplained ability of social norms to restrict the individuals’ 

action or strategy spaces, in particular, with respect to the abuse of punishment. 

With respect to the first group of restrictions, some strands of the literature deserve special 

mention.13 The theory of kin selection focuses on cooperation among individuals who are 

genetically closely related (Hamilton 1964a, 1964b), whereas theories of direct reciprocity focus 

on incentives to cooperate in repeated interactions of self-interested individuals (Trivers 1971; 

Axelrod 1984). For infinite repetition within one group, see Taylor (1976) or Mordecaï (1977) 

and for Folk-Theorem-type of results Rubinstein (1979) or Fudenberg and Maskin (1986). For 

                                                 

13 A complete literature review lies outside the scope of an introductory section of a journal article, as it would merit 
a scholarly work in its own right. 
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indefinite repetition, see Kreps et al. (1982). The theories of indirect reciprocity and costly 

signaling show how cooperation in larger groups can emerge when those cooperating can build a 

reputation (Nowak and Sigmund 1998; Wedekind and Milinski 2000; Gintis et al. 2001)14. 

In terms of the second set of exclusions, we point to early papers of Hirshleifer and Rasmusen 

(1989) and Witt (1986) that allow for punishment only after a norm has been violated. Sethi 

(1996) allows for all possible strategies which condition punishment on either the violation of or 

compliance with a norm. However, he then adds structure to the society by introducing some 

exogenous division of the population – the behavior of some individuals is rational, and for the 

rest it is determined by routines that are slowly adapted to their environment.  

We present a new explanation for cooperation that avoids both restrictions. Our explanation 

focuses on cooperation in large unstructured populations of individuals whose incentives to use 

or abuse actions or strategies evolve endogenously from the model. We assume that their 

behavioral routines adapt to the sum of both objective and subjective payoffs and that their 

subjective payoffs – which express internalized norms – slowly evolve according to the objective 

payoffs. This allows us to explain all variation among individuals endogenously and to assume 

absence of any information on the past behavior of other individuals.  

We place our model in an environment that is most unfavorable to cooperation, a completely 

unstructured society where every interaction occurs among strangers. We do this for two reasons. 

The first reason is methodological: we want to isolate the impact of internalized norms from 

other factors that might stabilize cooperation. The other is empirical: we believe that in modern 

societies a non-negligible part of everyday interactions is characterized by cooperation in dilemma 

situations although they actually do take place in an unstructured environment (for a survey on 

experimental evidence see Roth 1995; Cooper et al. 1996). 

In such an environment, cooperation cannot be induced by any form of repeated interaction15 

nor by social norms based on sanctions to be inflicted in later interactions. Even internalized 

norms, i.e. norms that alter the perceived utility from acting in a cooperative or uncooperative 

way, will not help to overcome a dilemma in an unstructured society, unless – and this is the 

thrust of the current paper – individuals are able to signal their property of being a norm bearer16. 

If internalized norms simply exist while lacking the possibility of being signaled or screened for, 

they would induce norm bearers to cooperate and be exploited by others. Hence, norm bearers 

                                                 

14 There are other mechanisms that do not rely on informational aspects. Instead, they are based on restrictions in 
rationality or on extended strategy spaces. In finitely repeated games, cooperation can, for example, result from 
bounded complexity of strategies (Neyman 1985), history-dependent payoffs (Janssen et al. 1997) or bounded 
complexity of beliefs (Harrington, 1987). 
15 Kandori (1992) and Ellison (1994) show that in an environment with similar informational restrictions as in our 
model, contagious strategies may support cooperation in a social dilemma in an extremely indirect way of repeated 
interaction. In such strategies, when one player defects in one period, his opponent of that interaction will start to 
defect from this period onwards, infecting other player who will defect in the future, infecting others and so forth. 
For any given fixed population size, Kandori (1992) and Ellison (1994) show that cooperation can be sustained in a 
sequential equilibrium if individuals exhibit enough patience. However, such contagious strategies may only uphold 
complete cooperation by all individuals in large societies, if patience is nearly infinite. In addition, they are not 
tolerant with respect to behavioral errors. We therefore do not discuss this approach in detail. 
16 For an empirical paper on the role of costly signaling for the promotion of intragroup cooperation, see Soler 
(2012). 
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would have a clear evolutionary disadvantage so that norm adoption would vanish. Only when 

internalization of the norm can be communicated in a reliable way, may the scenario change, 

because behavior may then be conditioned on the expected behavior of others. 

Within this environment, we borrow two elements from the indirect evolutionary approach 

(Güth and Yaari 1992 and Güth 1995): first, the idea that internalized norms are nothing more 

than an internal payoff conditional on the behavior of the individual and its partners, and second, 

the assumption that the adoption of an internalized norm evolves slowly depending on its effects 

on material, external payoffs. Our approach is thus closely related to Güth et al. (2000), who 

analyzes the Game of Trust rather than the Prisoners’ Dilemma. The two games are clearly 

similar since in the Game of Trust, the outcome of the first mover trusting and the second mover 

reciprocating is Pareto-superior to the unique Nash equilibrium. In Güth’s model, evolution 

allows for heterogeneity with respect to the evaluation of the material outcome such that some 

agents will reciprocate and some will exploit trust as second movers. By adding the opportunity 

of partially informative but costly screening of this evaluation to the standard Game of Trust, 

Güth opens the path to equilibria in which the first mover trusts and the second reciprocates. We 

carry this approach over to the Prisoners’ Dilemma and concentrate on signaling, instead of 

screening.  

In addition to these differences with respect to the interaction environment, we depart from the 

standard indirect evolutionary approach in a fundamental way concerning the behavioral 

assumptions. We assume that agents play inherited strategies defining both whether the agents 

signal their norm internalization and whether they cooperate or not. We thus take the stand of 

behavioral economics (as it is often reflected in evolutionary game theory) whereas Güth et al. 

(2000) apply a rational choice approach with agents using Bayesian updating and making rational 

investment decisions with respect to screening. Our model is thus evolutionary with respect to 

both norm internalization and behavior, although the speed of the norm internalization dynamics 

is clearly less than the speed of behavioral adaptation. 

In the field of evolutionary biology it has been argued before that signaling may provide way out 

of social dilemmas where mechanisms such as reputation, reciprocity or assortative matching are 

absent or fail to work sufficiently (e.g. Wright 1999; Smith and Bliege Bird 2000; Leimar and 

Hammerstein 2001). Yet only a few of these approaches incorporate a formal model (Gintis et al. 

2001). The novelty of our approach is the derivation of the full set of behavioral equilibria, i.e. all 

separating, pooling and semi-pooling equilibria of the signaling-extended Prisoners’ Dilemma. 

This would be rather a technical note were it not for the implication of a far richer set of rate-of-

norm-adoption equilibria that can stabilize cooperation. Notably, the interplay of those multiple 

behavioral equilibria may stabilize partial cooperation and dissolves the necessity to introduce 

specific frequency-based evolutionary forces into the dynamics of norm adoption beyond payoff 

monotonicity (e.g. Gintis et al. 2001 rely on the replicator dynamics). 

Sethi (1996) suggests a linkage between his own approach, i.e. mixing optimizing and non-

optimizing behavior in an evolutionary game; and the approach taken by Güth and Yaari (1992) 

and Güth and Kliemt (1994) in which all agents are assumed to optimize given heterogeneous 

preferences. Both authors establish the existence of games in which preferences for cooperation 

or fairness are evolutionary stable. Similarity in results despite differences in methodology suggest 

that the two research approaches are highly complementary Sethi (1996, p. 117). Our results 
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show that the complementarity between these different approaches is limited. We show that there 

is substantial difference between assuming that norms simply fix a certain behavior, and assuming 

that norms only create internal incentives to adhere to this behavior. In our case, the parameter 

measuring the strength of this incentive affects the range of the other parameters for which 

cooperation may emerge.  

The remainder of the paper proceeds as follows. The model is presented in Section 3.3. Since we 

consider a heterogeneous population composed of norm adopters and non-adopters, we first 

derive equilibria in each sub-population for which the stable equilibria are presented in Section 

3.4. Thereafter, we endogenize heterogeneity and consider equilibria of the two subpopulations in 

Section 3.5. Section 3.6 collects and presents the requirements for partial or full cooperation 

being part of a stable evolutionary equilibrium. Section 3.7 concludes. 

 

3.3. The model  

The classical Prisoners’ Dilemma (PD) is the most prominent and best-studied example of a 

social dilemma and serves as the basis for our analysis. The PD is played recurrently in an 

unstructured population. An unstructured population is defined by the anonymity of the interaction, 

i.e. agents process only information on outcomes of their own past interactions. In particular, 

they process no information on the opponent's identity or on outcomes in games in which they 

were not involved. To save space, payoff matrices are given from the row player’s perspective. 

The strategy domain is finite, consisting of two strategies, C – “cooperation” and D – 

“defection”. In conformity with the standard evolutionary model, we assume that individuals are 

randomly matched into pairs with each pair having the same probability in each short time 

period.17 Any pair will engage in a one-shot PD game. Table 3-1 below presents the material 

payoffs of the PD that will be decisive with respect to evolutionary success.  

Material payoffs are given by:  C D 

 C 1   
 D 1   0  

Table 3-1: Prisoners’ Dilemma, where 0, 0 1 and        . 

A common assumption in evolutionary models that explain the presence of cooperative behavior 

is that individuals play inherited strategies that may depart from payoff maximizing behavior. 

Playing non-maximizing strategies in this line of research is then interpreted as norm-guided (e.g. 

Sethi 1996). This line of argument, however, appears incomplete because while showing that such 

strategies can be sustained in equilibrium, it lacks motivation behind why an individual would 

adhere to that particular norm. We believe that individuals will not stick to any behavior that is 

suboptimal in the current environment. We do not claim that individuals will always do what is 

best for them from an objective perspective (e.g. maximizes fitness), but we argue that they will 

                                                 

17 An unstructured population need not necessarily engage in uniform or random matches, but departures from 
those assumptions significantly complicates analysis without changing the qualitative results since we assume that 
population is unstructured and remains unstructured. Non-random or non-uniform matching might however 
increase the chance that structure is introduced into the population.  
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not commit to suboptimal strategies forever. Hence, in our view, any long-lasting departure from 

the behavior that maximizes material payoffs needs to be motivated by a valuation of the 

outcome of behavior that differs from the material payoffs in a substantial way. In other words, 

norm-guided behavior is not equivalent to an unmotivated commitment to a certain behavior, but 

it reflects the subjective valuation of the (physical) outcome of the game. Following this 

reasoning, we rely on (a variant of) the indirect evolutionary approach, pioneered by Güth and 

Yaari (1992)18, i.e. we explicitly model cooperative preferences, which determine behavior, and 

behavior, which in turn determines fitness.  

As a particular internalized norm, we focus on the case of a cooperative norm. Players carrying 

such an internalized preference gain an additional internal payoff if the behavioral outcome of the 

stage game is mutual cooperation, i.e. (C, C). We assume that there are two types in the 

population (high and low types). Let   denote the share of high types in the population and let 

 ,m m m  be their preference parameter measuring the attitude towards cooperation, resulting 

in the internal payoff matrix depicted in Table 3-2 below. As Güth et al. (2000) noted in a 

different setting, the precise level of m is behaviorally irrelevant. All m-types for whom the same 

inequality with respect to   holds, form an equivalence class concerning the implied behavior. 

We therefore normalize 0,m m   .19 The value of m is assumed to be private information of 

the agent. In the tradition of Harsanyi (1967, 1968a, 1968b), beliefs about the opponent’s type are 

common knowledge. Like Güth and Ockenfels (2005), we adopt the natural assumption that 

beliefs correspond to actual frequencies of types. Without communication, the impossibility 

result of Kandori (1992, Proposition 3) applies, which states that the unique equilibrium is 

characterized by full defection, i.e. everybody always defects.  

Communication is modeled as an additional stage prior to the play of the adjusted PD. In that 

stage, agents can simultaneously send one message concerning their inner motive. Without loss of 

generality, we assume the message space to be the same as the type space. The message to be a 

low type corresponds to sending no message and is costless. As in the standard signaling model 

(Spence 1973) we assume the existence of a social technology which enables individuals to signal 

their positive attitude towards cooperation by incurring some costs. Furthermore, agents who 

adopted the norm are supposed to bear lower costs for sending the signal. Let ,k k  denote the 

signaling cost for high types and low types respectively, so that k k . In the current setup, 

strategies are given by signal-dependent behavior and the choice of sending the signal or not, e.g. 

“cooperate if signal is received, deviate if no signal is received and send signal”, denoted CDm . 

In general, a strategy is denoted by a triple XYm , where the first entry denotes behavior in case of 

receiving the signal (C or D), the second denotes behavior in the case of not receiving the signal 

(C or D), and the third signifies whether the signal is sent or not ( m  or m , respectively). 

What might such a signal be? To give an illustrative example, consider a situation where 

individuals elbow their way through a rummage sale. There is a table with one good offered as 

                                                 

18 The indirect evolutionary approach has also been applied in different strategic settings (ultimatum game, Huck and 
Oechssler 1999) or to analyze the evolutionary stability of altruistic preferences (Bester and Güth 1998) or of 
altruistic and spiteful preferences (Possajennikov 2000). 
19 Assuming m  is necessary, since otherwise, defection would still be the dominant strategy for norm-adopters.  
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two variants, goods A and B. There are also two individuals, one preferring good A, the other 

preferring good B. However getting both goods is the first best outcome for both individuals. 

They can behave cooperatively, allowing the other to select their preferred good; or they can try 

to queue-jump and grab both goods, in which case, the other gets none. If both individuals chose 

not to cooperate, they will grab one of the goods by chance, leaving them in expectation with a 

lower utility then in the cooperative state. Hence, this example is structurally equivalent to a PD. 

In this scenario, the signal often used is to make room for the other person. Such a signal is 

costly in terms of time, which usually has some monetary equivalent. If this gesture is received by 

both individuals, this might lead to mutual cooperation. This example is also instructive in 

demonstrating that signaling in our context is rather part of the behavioral strategy than an act of 

rational choice. In the light of this example indeed most acts of courtesy may be understood as a 

signal for a cooperative attitude. The signals are not limited to this aspect though.  

Evaluation of material payoffs is given by: 

 C D 

C 1 m    
D 1   0  

Table 3-2: PD with preference for cooperation. 

Based on the basic behavioral actions C and D, for the high types, there are eight signal-

dependent strategies ,  ,  ,  CCm CDm DCm DDm  and ,  ,  ,  CCm CDm DCm DDm . For the low types, 

since defection is the dominant behavior, there are only two strategies that reflect their signals, 

denoted by ,  Dm Dm . We will denote the share in the subpopulation of high types playing the 

strategy CCm  by CCmp  and accordingly, for any other strategy. Since low types always defect, we 

denote their respective shares by mp  and 
mp . 

In evolutionary game theory, there are two approaches with respect to capturing the dynamical 

aspect of evolution. The first one, due to the work of Smith and Price (1973), centers on the 

concept of an evolutionary stable strategy and is considered as a “static” approach since typically 

no reference is given to the underlying process by which behavior changes in the population. The 

second approach does not attempt to define a particular notion of stability. By explicitly 

modeling the underlying dynamics, all standard stability concepts used in the analysis of 

dynamical systems can be applied. We will follow the second approach by modeling the dynamics 

of the according population shares via payoff-monotone dynamics (see e.g. Bendor and Swistak, 

1998 for definitions), i.e. if the fitness payoff of a certain strategy is larger than the one of 

another, the share of the population following the former will increase faster than the share 

following the latter, or decrease slower. An equilibrium is defined by the dynamics introduced 

above. An equilibrium is a distribution in the shares of the population playing certain strategies, 

such that the dynamical process induces no further adjustments, i.e. an equilibrium is a fixed 

point of the adjustment process. As a stability concept, we will apply the notion of asymptotic 

stability (see. e.g. Samuelson, 1997 for definitions). An equilibrium of that type must be 

reconstituted after a small perturbation, which is arbitrary in terms of the composition of 

mutation-strategies. 
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As mentioned above, there are eight strategies for high types and two for low types. We assume 

that the dynamic accommodation of the population shares playing the various strategies is 

relatively fast compared to the dynamics of the population share of m -types, i.e.  .20 This 

assumption will simplify analysis of the dynamics and is considered adequate since behavior will 

adapt faster to differences in payoffs than socially and culturally transmitted norms. We can 

therefore analyze these processes separately as long as the faster process is stable. More precisely, 

we apply the mathematical tool of quasi-stationary approximation, or ‘adiabatic elimination’ 

(Haken 1977; Weidlich and Haag 1983, used in economics by Samuelson 1947: 320, already) of 

fast variables to solve the coupled differential equations which describe our system. The system 

consists, on the one hand, of the differential equations that describe the fast dynamics of various 

signal-behavior strategies and, on the other hand, of the differential equations that describe the 

slow dynamics of norm-adoption. The eight strategies for high types and the two for low types 

amount to ten differential equations, one per share per strategy, yielding nine independent 

equations since the size of the total population is fixed. Fixing the size of each subpopulation 

while analyzing the dynamics of behavioral strategies within each subpopulation reduces the 

number of independent differential equation by one more, seven for the high types and one for 

low types. We recall that XYmp  and mp  denote the shares of strategies within the subpopulations 

so that 
, ,

1XYmX Y m
p   with  , ,X Y C D  and  ,m m m  and 1m mp p  . 

Given our assumption on the speed of the dynamic processes, we first derive all the behavioral 

equilibria for a given proportion   of individuals with a high internal motivation for (mutual) 

cooperation, and then analyze whether the implied  -dynamics can support a fully or partially 

cooperative state. We call the former equilibria ‘p-equilibria’ and the latter, ‘-equilibria’. If they 

are asymptotically stable with respect to the corresponding p- or  -dynamics, we say that they 

are p-stable and  -stable, respectively. The p-stable equilibria are presented in section 3.4, and 

-stable equilibria are derived in section 3.5.  

 

3.4. Equilibria with Exogenous Proportions of Norm Bearers 

For ease of reading, we present only the equilibria and their stability properties and leave the 

derivation in Appendix B.4 (existence) and B.3 (stability). As in many other cases, we have 

separating and pooling equilibria, depending on the parameters including  . There are one p-

stable separating and three p-stable pooling equilibria. In the separating equilibrium, the 

subpopulations of the two types of individuals (high and low internal motivation for cooperation) 

exhibit homomorphic behavior, whereas behavior of types in the pooling equilibria is 

heteromorphic. However, there is a third type of equilibria where at least one subpopulation 

applies both types of signals, so called semi-pooling equilibria. Table 3-3 reports these equilibria. 

In the following paragraphs, we will take a closer look at the separating and pooling equilibria. 

We will refer to the first of these equilibria as the ‘cooperative separating equilibrium’, to the second as 

the ‘low pooling cooperative equilibrium’, to the third as the ‘low pooling defective equilibrium’ and to the 

                                                 

20 This assumption implies that payoff monotonicity is restricted to the fast and to the slow dynamics, but does not 
comprise the combination of the two. 
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fourth as the ‘high pooling cooperative equilibrium’. It turns out that the semi-pooling equilibria with 

one exception are less important for the implied  -dynamics and are therefore not further 

discussed. The exception is the p-stable semi-pooling equilibrium at 
1

k






 that will be of 

relevance for one of the inner  -stable equilibria. In this semi-pooling equilibrium, high types 

always play CDm and low types are indifferent between sending the signal or not, and therefore  

mp  is undefined. The minor importance of all other p-stable semi-pooling equilibria is partly due 

to their being characterized by strictly negative fitness differentials between high and low types 

and partly to their limited  -support (see Figure 3-1 and Figure 3-2).  

In the cooperative separating equilibrium, the high types recognize each other and cooperate only 

among themselves. The intuition behind the fact that the support of this equilibrium has both a 

lower and an upper is as follows: If there are too few high types, then the cooperative outcome 

among them cannot compensate for the signaling costs. The higher the signaling costs relative to 

the (non-material) reward for a cooperative outcome, the higher the required share of high types 

in the population. If on the other hand, there are too many high types, signaling becomes 

sufficiently profitable for low types. In other words, if there are enough high types that cooperate 

when receiving the cooperative signal, it becomes profitable for low types to incur the signaling 

costs. The higher the signaling cost for low types relative to what can be gained from defection 

against a cooperative opponent, the higher is the share of high types needed for signaling to 

become a profitable strategy for low types. The thresholds for the share of high types have a 

precise economic interpretation. For high types, the cost-benefit ratio from signaling (
1

k

m
) 

must be smaller than the probability to gain the benefit ( ). The reverse holds true for low types, 

i.e. their cost-benefit ratio from signaling must exceed (
1

k


), the likelihood of gaining the 

benefit.  

In the low pooling cooperative equilibrium, nobody signals and high types cooperate. This 

equilibrium exists if there are sufficiently many high types. Only then can they compensate for 

the loss from being cooperative against low types by the cooperative outcome among each other. 

In other words, if the share of high types falls below a certain threshold, then they will start to 

prefer defecting when receiving the low signal. Note that this equilibrium is indeed an equilibrium 

set, since the strategies CCm  and DCm  are equivalent in equilibrium. The share of high types 

required for this to be an equilibrium increases in the sucker’s payoff, since cooperative behavior 

becomes more disadvantageous with increasing (absolute) sucker’s payoffs. This threshold, too, 

has an intuitive meaning. Note that m   (  ) measures the incentive to reciprocate cooperative 

(defective) behavior. In essence, the condition 
m




 


 
, which can be rewritten as 

   1m      , states that the expected gain from reciprocating cooperative behavior must 

exceed the expected gain from reciprocating defective behavior.  
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Table 3-3: p-stable equilibria (p-stable semi-pooling equilibria are referred to Appendix B.2)
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In the low pooling defective equilibrium, nobody sends the cooperative signal and everybody 

defects earning a payoff of zero. Again, due to lack of distinguishability in equilibrium, 

equilibrium is indeed a set where CDm  and DDm  might be played by high types. This set of 

equilibrium reflects the benchmark solution in the underlying game and exists for all population 

compositions between high types and low types.  

In the high pooling cooperative equilibrium, everybody signals and high types cooperate. This 

equilibrium exists if there are sufficiently many high types. If the latter’s proportion is large 

enough, they can compensate for the loss from being cooperative against low types by the 

cooperative outcome among each other. In other words, if the share of high types falls beneath a 

certain threshold, they will then start to prefer to play defective while receiving the low signal. 

Contrary to the low pooling equilibrium, an additional restriction with respect to the share of 

high types will arise, reflecting the incentive compatibility for low types to signal. Note that this 

equilibrium is again an equilibrium set, since the strategies CCm  and CDm  are equivalent in 

equilibrium. The share of high types required for this to be an equilibrium weakly increases in the 

sucker’s payoff and the signaling cost for low types. Since with increasing (absolute) sucker’s 

payoffs, cooperative behavior and sending the signal for low types respectively become more 

disadvantageous. Here, for low types, the reverse logic applies in comparison to the separating 

cooperative equilibrium, i.e. for low types to find it worthwhile to signal, their cost-benefit ratio (

1
k


) must be smaller than the likelihood to profit from signaling (  ). The lower bound 

stemming from incentive constraint for high types bears the same logic as in the low pooling 

cooperative equilibrium.  

 

3.5. Endogenous Proportion of Norm Bearers 

We now analyze the dynamics of the share of high types in the population for which we assume 

that the p-dynamic has reached a stable p-equilibrium, as we assumed that inner motives evolve 

far more slowly than behavioral frequencies. The evolution of the proportion of norm bearers is 

determined by its relative fitness. Fitness is measured by the material payoffs as presented in 

Table 3-1. Thus, any preference parameter measuring the evaluation of material payoffs will be 

neglected when calculating fitness payoffs. Analogous to the derivation of p-equilibria, the 

differentials in these fitness payoffs among high and low types are the driving force for the 

evolution of their respective shares. To ease the understanding of the differentials of fitness 

payoff differentials, we provide some intuition for their size in the relevant p-stable equilibria. 

In the cooperative separating equilibrium, both types defect in all interactions, except when two 

individuals of the high type meet. In this case, they cooperate. The low type will thus always earn 

a fitness payoff of zero, and the high type will earn a fitness payoff of one with probability  , i.e. 

the probability that he interacts with another individual of the high type. Since high types 

unconditionally bear the signaling cost k , their expected payoff in the cooperative separating 

equilibrium is k  , which is also the expected difference of fitness payoffs: 

    Π Π
f

m mCDm m k   . Obviously, this fitness advantage of the high type grows in the 

share of high types in the population. 
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In the two (partially) cooperative pooling equilibria, individuals of the high type cooperate in 

reaction to the signal they send, and all individuals of the low type copy this signal but still 

defect.21 Leaving aside signaling costs for a moment, differences in material payoffs then reflect 

payoffs of unconditional cooperators and defectors in the underlying PD. More precisely, with 

probability  , high types meet their own type and realize the cooperative outcome, earning 1 . 

With the residual probability, they meet a low type and lose  . Low types always defect and only 

earn positive payoffs when matched with high types, which happens with probability   and earns 

them 1  . A fitness differential to the advantage of the high types thus cannot result from 

playing the game itself, but only form sufficiently large differences in signaling cost (see Table 

3-3). Obviously, if no signal is sent, as is the case in the low pooling cooperative equilibrium, the 

fitness payoff of the high type can only be smaller than that of the low type,

       Π Π 1 0
f

m mCCm m         . 

Only in the high pooling cooperative equilibrium, the signaling cost disadvantage of the low type 

may outweigh the disadvantage of the high type from playing cooperatively in the game, so that 

the high type earns a higher fitness payoff than the low type, 

       Π Π 1
f

m mCCm m k k         . 

Obviously, the fitness payoff difference increases (declines) in the share of the high types if 

defection is more (less) tempting against defection than against cooperation, i.e. if   is larger 

(smaller) than  . If the proportion of the high type in the population is too small, it is either not 

worthwhile to mimic the other type, or the chances to meet another high-type individual are so 

low that cooperation ceases to be the best reaction to the signal sent by all individuals. For these 

small shares of the high type in the population, the pooling cooperative equilibria break down 

just like the cooperative separating equilibrium discussed earlier breaks down for shares of the 

high type that are too large. 

In the pooling defective equilibrium, both types always defect without sending signals and thus all 

earn the same fitness (and behavioral) payoff of zero. 

The following two figures depict the differences in material payoffs for the various p-stable 

equilibria (see Table 3-3).   

                                                 

21 This implies that the other signal is never sent, which explains why the high type is indifferent between the two 
behavioural actions C and D to this never-observed signal. 
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Figure 3-1: Differences in material payoffs for 
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Payoff differences for semi-pooling equilibria are neglected since their support lies in the interval 
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 and the difference is strictly negative for all. Hence, their presence will have no 

important implications for the dynamics of the share of high types.  

 

 

 

 

Figure 3-2: Differences in material payoffs for 
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A stable  -equilibrium may be realized around one p-stable equilibrium or by the interplay of 

several such equilibria. We first concentrate on the first case, which we further differentiate into 

corner equilibria (Lemma 3-1) and inner equilibria (Lemma 3-2) and then turn to the second case 

(Lemma 3-3). 

In the first case, the difference in fitness payoffs between high and low types must vanish to 

constitute a stationary point at this particular value of the share of high types  . For stability, in 

the neighborhood of an equilibrium * , high types must earn strictly more than low types for 
*   and strictly less for *  . In terms of Figure 3-1 and Figure 3-2, the stationary point is a 

zero of the linear payoff difference for a certain p-stable equilibrium, and stability is equivalent to 

a negative slope of the payoff difference function. Of course, the requirement with respect to the 

zero and the slope is only relevant for inner equilibria. At the upper bound of the domain, 1  , 

a strictly positive payoff difference in favor of high types at 1    is necessary and sufficient for 

having a corner equilibrium. At the lower bound of the domain, 0  , a strictly negative payoff 

difference at 0   is necessary and sufficient for having a corner equilibrium.  

We first analyze whether  -stable equilibria with full cooperation exist. Since only high types 

may cooperate, this is equivalent to asking whether there is a  -stable equilibrium at 1   with 

cooperating high types. Since high types in the low pooling cooperative equilibrium face an 

evolutionary disadvantage for all population compositions, this p-stable equilibrium cannot 

induce a stable cooperative  -equilibrium (partial or full). Hence, there are two potential 
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candidates left, the separating cooperative equilibrium and the high pooling equilibrium. The 

following lemma states the conditions such that a locally stable equilibrium with only high types 

present in the population who cooperate with each other exists.  

Lemma 3-1 The PD can be fully resolved as a locally  -stable equilibrium only in two ways:  

(1) by the separating cooperative equilibrium if and only if 1k    and 1k    

(2) by the high pooling cooperative equilibrium if and only if 1k    and either k k    

or k k     . 

All proofs are in Appendix B.1. 

The existence of fully cooperative equilibria seems surprising at first glance, but a closer look at 

the stated conditions for their existence reveals how rarely they occur. In the case of the 

separating cooperative equilibrium, the condition corresponds to a scenario where the signaling 

cost for low types are so severe that it will never pay for them to signal. More precisely, in a 

cooperative separating equilibrium with 1  , a single low-type mutant would earn 1   from 

playing the dominant defective strategy at cost k . The second qualification 1k   stems from the 

incentive compatibility constraint for high types, since they could always earn zero by not-

signaling and exhibiting defective behavior. In the case of the high pooling cooperative 

equilibrium, the difference in the signaling cost must exceed the material reward of defecting on a 

cooperative opponent.  

The restrictiveness of Lemma 3-1 draws our attention to inner stable equilibria. The only 

candidate for such a  -equilibrium supported by only one p-stable equilibrium is one associated 

with the high pooling cooperative equilibrium at 1 k k 

 

 



. All other equilibria are 

characterized by either strictly negative or strictly increasing payoff differentials. The high pooling 

cooperative equilibrium exists and is  -stable if 1 k k 

 

 



 is inside the  -support of this 

equilibrium and the fitness differential decreases in  , which is the case if 0   (see Figure 

3-1). Taking these conditions together yields: 

Lemma 3-2 The high pooling cooperative equilibrium constitutes an inner  -stable 

equilibrium at 1 k k 

 

 



 if and only if: m k k

m




 
  

 
 and 

1
1

k k






 


. 

Note that the first condition implies 0   , which guarantees stability. As expected, the 

conditions presented in Lemma 3-2 are less restrictive as compared to the requirements for an 

equilibrium formed only by high types. Looking at the conditions, we observe that the existence 

of inner stable equilibria requires that the costs of signaling for norm adopters must differ 

sufficiently from the corresponding costs of non-adopters.  

What remains to be studied is whether separating  -equilibrium constituted by the interplay of 

several p-equilibria exists. For this to be the case requires: (1) the supports of the p-equilibria 

need to be adjacent, (2) around the point where the supports are adjacent, the differences of 

fitness payoffs of the relevant p-equilibria must be positive for less-than-equilibrium shares of 
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high types and negative for more-than-equilibrium shares of high types, and (3) after   moves 

from the support of one p-equilibrium to the support of another, the behavioral frequencies have 

to be within the basin of attraction of the “new” equilibrium if they have been sufficiently close 

to the “old” equilibrium. In our case, we may have such an equilibrium only at 
1

k






 where 

three equilibria interplay: the separating cooperative equilibrium, a semi-pooling cooperative 

equilibrium (last row in Appendix B.2), and the high pooling cooperative equilibrium. To 

facilitate understanding of this argument, we recommend that the reader views Figure 3-2 while 

reading the following argument. 

Condition (1) requires that 
1

k

m



  


  
 (cf. Table 3-3 and Appendix B). Condition (2) has 

implications for the fitness differences of the p-stable equilibria. For the cooperative separating 

p-equilibrium, the fitness difference is given by     Π Π
f

m mCDm m k    for 
1

k






. This 

difference must be strictly positive at 
1

k






, whence 1 k

k
  . In other words, the relative 

disadvantage for low types in terms of signal costs must exceed the relative incentive to defect 

given the opponent cooperates. Given this inequality and a share of high types sufficiently close 

to, but lower than 
1

k






, the share of the high type increases when the p-dynamics has 

reached the cooperative separating equilibrium. For the high pooling cooperative equilibrium, the 

fitness difference is given by        Π Π 1
f

m mCCm m k k         , which has to be 

negative. Hence, we get 
1 1

k k 

 




 
. 

To see that Condition (3) is satisfied under certain conditions we present our argument in three 

steps. First, we draw the reader’s attention to the fact that for all three of the considered 

equilibria, we have 1CDm CCmp p  . This implies that for 
1

k






 we have: 

 

     

     

      
2

1 1

1 1

max , , \{ , }where

m m

m

m
X

CDm m p k

CCm m k

X X C D m m CDm CCm

  

  

     

      

   

 (3.1) 

where the first inequality is strict if 1mp   and the second inequality requires 

*

1
k

m


 

  
  

  
. Hence, continuity of the payoffs and Lipschitz-continuity of the 

dynamics implies that for all   sufficiently close to * and all sufficiently large 1CDm CCmp p   

we have 1CDm CCmp p  . Hence, once the system is close enough to any of the three relevant p-

stable equilibria, and in particular once 
CDm CCmp p  has become large enough, 

CDm CCmp p  will 

continue to grow for all 
mp . Second, we observe that if 

CDmp  is large enough and the p-dynamics 

is sufficiently fast compared to the  -dynamics, then   will always stay close enough to *  to 
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uphold the validity of the first argument. Third, if 
CDm CCmp p  is large enough and thus increases, 

   Π Πm mCDm CCm  only occurs for ever decreasing ranges of large 
mp . Hence, for every 

payoff-monotone dynamic 
CCmp  will be smaller after every full cycle and will never again reach its 

previous maximum level. Hence, 
CDmp  will eventually be large enough to ensure the validity of 

our second argument. 

Hence, once our full dynamic system is close enough to    and the  -dynamic is slow enough, 

the system will rotate between the separating equilibrium and the high pooling equilibrium in ever 

smaller cycles (note that this does not necessarily imply that a fixed point is reached because a 

limit cycle may exist). We summarize all conditions in the following: 

Lemma 3-3 If 
if = then 
  >1 1

k k

m
 

 

   


 

   
 and 

1
k

k





, an inner  -stable equilibrium 

exists at 
1

k






, in which (1) high-type individuals cooperate among each other but also with 

those low-type individuals who signal to be of the high type and (2) the proportion of low-type 
individuals who signal to be of the high type fluctuates. 

Note that the conditions in Lemma 3-2 and Lemma 3-3 are mutually exclusive, i.e. there is at 

most one stable inner equilibrium. 

We have so far not considered the case of 
1

k

m



  


  
. If there is equality. i.e. 

1
k

m



  


  
, an equilibrium of the type discussed in Lemma 3 still exists at 

1
k







, but it 

is unstable (the argument on condition 3 fails). If the inequality is strict (
1

k

m



  


  
), there 

is a gap between the  -supports of the separating cooperative equilibrium and the high pooling 

cooperative equilibrium (see Figure 3-1). In the interval 
1

,k

m



    

 
 
 

, the defective pooling 

equilibrium is the unique equilibrium. Should the population start at the cooperative separating p-

equilibrium with a positive fitness differential, then it will eventually drive the share of high-type 

individuals beyond the  -support of this equilibrium so that 
mp  starts to grow. Once it grows 

too much, the strategy DDm  yields the largest behavioral payoff to high-type individuals while 

CDm  yields only the second largest. Hence, the share of always defecting high-type individuals 

DDmp  must grow and 
CDmp  must decline because the shares of the other strategies (with even 

lower behavioral payoffs) are already zero. Less cooperation by high-type individuals reduces the 

advantages that low-type individuals accrue from falsely signaling to be of the high type. Hence, 

mp  will eventually decline again. A behavioral equilibrium exists in which only some low-type 

individuals signal the wrong type and only some high-type individuals cooperate after receiving 

the high signal while the others always defect, but this equilibrium is not stable (see Appendix 

B.3). Consequently, 
DDmp  will eventually grow large enough to move the population in the 

attraction region of the defective separating equilibrium, where it will remain. We admit that the 

evolution may become more complex when 
mp  and 

DDmp  both become so large that CDm  
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becomes less profitable than DCm . There may then be payoff monotonic dynamics for which 

DCmp  starts to grow, although slower than 
DDmp . If this happens, false signaling by high types 

may eventually become reasonable. However, as the low pooling equilibrium with cooperation 

only of the high types fails to exist in the interval 
1

,k

m



    

 
 
 

, we conjecture that the 

population will eventually end up in the defective pooling equilibrium as the unique behavioral 

equilibrium. 

Conjecture If 
1

k

m



  


  
, no  -stable inner equilibrium exists at 

1
k







. 

 

Figure 3-3: Parameter region for partial or full cooperation 

Figure 3-3 illustrate the conditions of Lemmas 1 through 3 graphically. For illustrative purposes, 

we assume 0    and 
1

k

m



  


  
 so that all inner equilibria may exist for some 

parameter ranges. In Figure 3-3, areas marked by FC and PC represent parameter combinations 

for which full and partial cooperation occur, respectively. More specifically, the indexes mark 

parameter ranges for which cooperation is induced by the separating cooperative equilibrium 

(SCE), the high pooling cooperative equilibrium (HPCE), or the interplay of the two and a semi-

pooling equilibrium (SCE&HPCE).  

It is worth noting that the strength of the cooperative norm measured by m  has a direct impact 

on the parameter set allowing for  -stable inner equilibria (see Figure 3-3). As m  gets closer to 

the incentive to defect  , the parameter region supporting a separating cooperative equilibrium 

(PCSCE&HPCE) becomes smaller and smaller. Although the exact size of m  is not important for the 

behavioral consequence for each individual as long as m   holds true, the exact size of m  does 

matter for the size of the parameter range for which evolutionary stable equilibria characterized 

by partial cooperation exist. 

 

3.6. Collecting requirements for equilibria with cooperation 

By combining Lemma 3-1 through Lemma 3-3 from the previous section, we deduce a theorem 

on cooperation in an unstructured population: 
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Theorem In an unstructured society, cooperation in a PD may exist and be stable due to the 

possibility of signaling the existence of inner payoffs for (mutual) cooperation, which do not 

affect fitness, if the costs of falsely signaling to have such inner payoffs are sufficiently large. 

These costs must be larger to reach full cooperation than to reach partial cooperation. 

In our model, ‘sufficiently large’ translates to k k    or k k      for full cooperation 

(Lemma 3-1). For partial or full cooperation (Lemmas 1 through 3), ‘sufficiently large’ translates 

to: 

  
for last
term

1 max min , ,
1
k

k k
m

 


  

   
     

     

 if    and to (3.2) 

  1 max min , ,m
k k k

m m

 


   

   
     

      
 if   . (3.3) 

Figure 3-4 and Figure 3-5 illustrate the interrelation between the costs for low types to signal 

falsely and the extent of the inner motive for mutual cooperation. This relation is determined by 

the various inequality conditions for existence of partial or full cooperation stated in the theorem 

above. Figure 3-4 and Figure 3-5 reveal the negative relation between these two parameters, i.e. in 

order to sustain some level of cooperation, lower signalling costs for low-types must be 

compensated by a higher inner motive for mutual cooperation of the high-types. Here, the 

aforementioned interdependence of m  and the presence of cooperative equilibria is directly 

observable. Although the precise level of m  is not decisive with respect to its behavioural 

consequence, its level plays a crucial role with respect to the size of the set of parameters such 

that partial or full cooperation could be sustained as an equilibrium outcome. Furthermore, we 

observe that this set of parameters is strictly decreasing in the signalling cost for the high type. 

Finally, Figure 3-4 and Figure 3-5 show that the chances for cooperation diminish with increasing 

 . In essence, the riskier or more painful cooperation occurs when matched with defective 

behaviour, the higher requirements have to be met with respect to signalling costs for low types 

and the inner motive for mutual cooperation. A mirror argument applies with respect to 

parameter  , measuring the incentive to defect on cooperation in the underlying game. The 

following corollary summarizes these insights.  

Corollary   

(1) The range of signalling cost for the low type allowing for partial or full cooperation is 

weakly increasing in the social norm for mutual cooperation m .  

(2) The set of  ,k m -pairs allowing for partial or full cooperation is strictly increasing in 

signalling cost for the high type k  and strictly decreasing in the Sucker’s payoff   and the 

incentive to defect on cooperation  . 

The theorem reveals that in case of full cooperation, almost always it is only the incentive to 

defect on a cooperative player  relative to the difference in signalling costs that matters. 

Whereas for stable partial cooperation, the relation of   and   is relevant. The loss from playing 

cooperatively on a defective opponent   must be less than what a player could gain from 

defecting on a cooperative player. Intuitively, this explains the edge of defective players over 
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cooperative players for shares of the latter that exceed the equilibrium level and vice versa. 

Reflecting on both incentives in case of a partially cooperative equilibrium is also plausible since 

both behaviors are present in equilibrium, whereas fully cooperative equilibria are characterized 

by solely cooperative actions. In that case, only the price for cooperation given the monomorphic 

cooperative behavior   is relevant.  

Interdependence between the size of the inner motive and the cost to send a false signal  
  

Figure 3-4:    Figure 3-5:    

 

3.7. Conclusion 

In this paper, we analyze an evolutionary model where individuals are able to signal that they 

internalized a particular social norm, namely a norm for mutual cooperation. This preference was 

embedded in a Prisoners’ Dilemma. In section 3.6, we present a theorem that states necessary 

and sufficient conditions for full or partial cooperation to be prevalent in a stable equilibrium. 

These conditions refer to the difference in signaling cost between the cooperative and the 

opportunistic type, the extent of the cooperative norm and the model parameters of the PD, i.e. 

the temptation to defect and the sucker’s payoff. We obtain several interesting results. First, it is 

true that the exact size of the behavioral parameter measuring the internal bias in favor of mutual 

cooperation is not important for the behavioral consequence for each individual.  However, 

when it comes to the presence of stable equilibria characterized by partial cooperation its size and 

its relation to the incentive to defect do become relevant. More precisely, the stronger the inner 

motive to cooperate is, the less restrictive are the conditions on the spread in signaling cost. 

Second, for cooperative agents to coexist with defecting agents in a stable equilibrium, it is not 

necessary that the signaling technology fully cancels the incentive to defect. Since this would be 

necessary for many corresponding results that are based on some sort of involuntary 

redistribution (e.g. punishment), our approach may explain cooperation in more cases than the 

latter approaches. Furthermore, the range of signalling cost for the low-type individuals allowing 

for partial or full cooperation is weakly increasing in the strength of the social norm for mutual 

cooperation. Finally, the set of pairs of signalling cost for the defective type and level of 

cooperative norm allowing for partial or full cooperation is strictly increasing in signalling cost 
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for the high type and strictly decreasing in the sucker’s payoff and the incentive to defect on 

cooperation. 

We achieved these results by analyzing the evolution of norms concerning cooperation in the PD 

with one of the most general class of dynamics considered in evolutionary game theory, namely 

the class of payoff-monotone dynamics. Existing literature has already demonstrated that 

signaling may point a way out of a social dilemma where mechanisms as reputation, reciprocity or 

assortative matching are absent or fail to work sufficiently well. Yet only a few approaches 

incorporate a formal model. The novelty of our approach is the derivation of the full set of 

behavioral equilibria, i.e. all separating, pooling and semi-pooling equilibria of the signaling-

extended PD. This would be only a technical note if it did not induce a richer set of equilibria 

concerning the distribution of an internalized norm that can stabilize cooperation. In particular, it 

is worthwhile to observe the existence of an inner equilibrium, i.e. an equilibrium where norm 

bearers and non-bearers coexist, that is stabilized by the interplay of a separating, a semi-pooling 

and a pooling equilibrium of the evolutionary signaling game. It is exactly this interplay that 

stabilizes the share of norm bearers and dissolves the necessity to introduce evolutionary forces 

into the dynamics of norm adoption beyond payoff monotonicity that are frequency based22.  

Since cooperative equilibria exist when agents may signal their cooperative attitude, large societies 

aiming for more cooperation are not completely limited to the reduction of anonymity in social 

interaction (and hence, giving up some of the advantages of large societies) or the use of formal 

institutions. Politicians may also try to provide hard-to-falsify signals of internal motives to 

cooperate in areas where interaction is rather anonymous. Then, informal institutions may 

spontaneously and easily evolve even in large unstructured interaction environments. Even if 

politics cannot alter the underlying incentives of the social dilemma to the extent that the 

dilemma aspect would indeed vanish, partial reduction of the incentive to defect or partial 

insurance for the suckers’ payoff may be sufficient to allow for cooperation to evolve. The share 

of norm bearers in our model is driven by evolutionary forces that are beyond the scope of any 

policy measure. However, politics might have some leverage on how strong the internal sanctions 

are that support the norm once it is internalized. Hence, strengthening the internalized norms will 

also increase the chance for cooperation.  

If we argue that it is foremost the spontaneous institutions that repel defection in large 

unstructured societies, then these insights lead us to argue that concepts of institutions should 

not require that all individuals adhere to the behavior prescribed by the spontaneous institution. 

Instead, a definition of institutions should allow for a substantial share of the population to 

deviate from its rule. We add a theoretical basis to this insight, which seems obvious from an 

empirical point of view. 

We have not modeled the interplay of different PD situations in a society. Without going into any 

detail here, we conjecture from our signaling model that cooperation in one PD may serve as a 

                                                 

22 Gintis et al. (2001) show in one of the few formal evolutionary signaling models that a stable separating 
equilibrium may exist. However, under general payoff monotonicity, this equilibrium would cease to exist since their 
type that corresponds to our high-types face an evolutionary advantage. As a consequence, their share of the 
population would increase and eventually exceed the threshold beyond which the separating equilibrium breaks 
down. 
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signal to have the internal cooperation in order to fare better in another PD. The temptation to 

defect in the first game would be the cost to falsely signal having the internal motivation to 

cooperate. Hence, the interplay between different PD situations does not allow for scaling up: 

temptation in the first game cannot be larger than in the second game, or cooperation there 

cannot be complete. Further research is needed on the details of the interplay between different 

PD games in an unstructured society.  

The analysis for a more general norm than the one we considered is left open to future research. 

We believe that the size of the parameter measuring the strength of the internalized norm is not 

driven by evolutionary forces, since no fitness payoff differences depend on it. However, the size 

of the parameter does determine the range in which cooperative equilibria exist. Hence, if two 

separate populations with different levels of the internalized norms are considered, the one with 

the higher value is more likely to evolve towards a cooperative state. If in the course of time, 

both populations start interacting with each other, a cooperative population might induce 

cooperation in a defective population and vice versa. To analyze such an environment may be 

relevant for studying migrational effects on cooperation.  
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4. The evolution of inequality aversion in a simplified game of 

life.  

4.1. Abstract 

The increasing prominence of other-regarding preferences as an explanation for empirical and 

experimental findings calls for a rationalization of such preferences from an evolutionary 

perspective. The sensitivity of study results on the evolution of preferences with respect to the 

considered environment calls for an evolutionary approach that considers a compound 

environment, which comprises at best all relevant classes of environments. This paper attempts 

to address these two issues. I suggest a 2x2 simplified game of life that comprises a dilemma 

involving a coordination and distribution problem. An analysis of the separate environments 

makes strong predictions with respect to the advantageousness of inequality aversion. In 

particular, the global advantage in the dilemma and the global disadvantage in the problem of 

distribution are surprising. As expected, the simplified game of life gives rise to a greater variety 

in potential equilibrium distributions of preferences. In particular, the strong predictions for the 

single environments are put into perspective. Surprisingly, the expected stabilization of inner 

equilibria occurs only if the problem of coordination shows the same feature. 

Keywords: inequality aversion – evolution  

JEL Classifications: C72, C73 

 

4.2. Introduction  

At the latest with the seminal work of Fehr and Schmidt (1999) and Bolton and Ockenfels (2000) 

an other-regarding preference in the form of inequality aversion has become a prominent 

explanation for many empirical and experimental findings which departure from the prediction of 

standard economic theory. The increasing importance calls for a rationalization for such 

preferences, otherwise it may be regarded as a rather ad-hoc adjustment of preferences to explain 

empirical results. As Güth and Napel (2006) point out such preferences should in particular be 

compatible with the physical necessity to strive and compete for material rewards in an 

environment characterized by the scarcity in resources. In other words such preferences ought to 

be rationalizable from an evolutionary point of view.  

Analyzing the evolution of preferences offers a unifying framework for traditional 

microeconomic analysis concerned with forward looking agents with fixed preferences on the 

one hand. And on the other, it incorporates evolutionary biology focusing on the interplay of the 

social or biological environment and the success of certain behavioral strategies in that 

environment. In the past the evolution of preferences has been studied in highly artificial single-

game environments (e.g. Huck and Oechssler 1999; Koçkesen et al. 2000a, 2000b and Sethi and 

Somanathan 2001). As a consequence, these studies were inconclusive in explaining the presence 

of certain preferences, because the behavior induced by a certain preference might be 

advantageous in one environment, but disadvantageous in another. The agents’ imperfect mental 

model of the world requires at least some link between the intrinsic motivations in different 

environments. Given this restriction, agents will be limited in the possibility to develop game-

specific or role-specific preferences. Hence, the decentralized results for the single environments 
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need to be combined to a centralized picture in order to explain the success or failure of 

behavioral determinants such as inequality aversion, reciprocity and truthfulness in the complex 

social and biological environment that comprises seemingly endlessly many of those small worlds, 

the ‘game of life’ (Güth and Napel 2006). I therefore in this paper address as a first aim the 

rationalizability of a preference for equality in an environment that contains the major classes of 

games constituting the game of life.  

More recently, some attempts were made to analyze the evolution of preferences in more 

complex environments. Güth and Napel (2006) analyze how the personal characteristic of 

inequality aversion evolves in a setting containing two well-studied and characteristic games: the 

Ultimatum game and the Dictator game. Poulsen and Poulsen (2006) study the evolution of 

other-regarding preferences in an environment that comprises a simultaneous and a sequential 

Prisoners’ Dilemma. Their analysis illustrates that the study of evolution of preferences in a 

compound strategic environment yields more interesting and intuitive results than game-specific 

analysis. However the considered environments are not meant to and indeed aren’t even rough 

approximations of a game of life.  

A prerequisite for the analysis of the evolution of preferences in the game of life is the structuring 

of the infinite set of potential games, which is the second aim of the paper. There is evidence that 

human behavior is not game-specific, but acts of men are similar in entire, quite general classes of 

games (see Yamagishi et al. 2013; Ashraf et al. 2006; Blanco et al. 2011; Chaudhuri and 

Gangadharan 2007 and Slonim and Garbarino 2008). This raises hope that the overwhelming 

complexity of the real world might be reducible to these classes when the evolution of 

preferences is considered. Many authors implicitly or explicitly share and express the view point 

that there are two fundamentally different societal problems (see e.g. Sugden 1986; Milgrom et al. 

1990), problems of coordination and social dilemmas. Apart from these two classes, Schotter 

(1981), Ullmann-Margalit (1977) and others share the view that there is (at least) a third type of 

social problem, one of redistributive nature. A problem of distribution is characterized by 

unequal payoffs in equilibrium. The notion of a game of life I suggest will comprise these three 

classes of games.  

As a first step to achieve the eager first goal I restrict in this paper to the class of 2x2 games. 2x2 

games are omnipresent as they serve as the workhorses in applied game theory and their 

simplicity is their power as they combine remarkable diversity with minimal machinery. The eight 

numbers that represent such a game yield a class of 144 problems of remarkable richness and 

complexity (Robinson and Goforth 2005). Besides, the analysis will reveal that the 2x2 case is 

representative in uncovering the major forces that in their interplay will determine the 

distribution of inequality aversion in the population. Furthermore the purpose of the paper is to 

conduct an analysis for a world that is in some sense complete, i.e. to consider an environment 

that contains representatives of all classes present in my classification. In other words the focus 

of the paper in terms of generality is on completeness within a certain world of games (2x2 

games) rather than on the world of games as such (e.g. all finite games). I consider this as a first 

step to explore the effects of considering a complete world, although restricted in size. I thus 

refine the first question in asking for the rationalizability of inequality aversion in what I will refer 

to as the ‘simplified game of life’. With respect to the second goal although definitions are given 

for the 2x2 case the classification of games readily translates to all finite normal-form games.  
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The remainder of the paper proceeds as follows. In Section 4.3 the precise definitions for the 

games which are comprised in the simplified game of life will be given. The evolution of a 

preference for equality in material outcomes for each of the single-game environments is studied 

in Section 4.4. Thereafter the environment of the simplified game of life is considered in Section 

4.5. Before I conclude in Section 4.7, I discuss the robustness of the results in Section 4.6. 

 

4.3. Definition of terms 

The informal classification of games given above in terms of issues of coordination, dilemma or 

redistribution is based on equilibrium considerations and will therefore depend on the 

equilibrium concept applied. The relevance of the chosen equilibrium concept stems not only 

from its consequences for the classification of games, but also from its implications for the study 

of evolution of preferences. A particular preference may influence the set of equilibrium 

outcomes that differs in accordance with the applied equilibrium concept, differently. As one of 

the standard solution concept, I will apply the notion of Nash equilibrium. The implication of 

applying different concepts is discussed in section 4.6. In the following I will give the formal 

definitions for three social problems for the 2x2 case. Note that the definitions in 4.3.1 and 4.3.2 

readily extent to any finite normal-form game with N  players.  

4.3.1. Dilemma and Problem of coordination  

In Milgrom et al. 1990 the complex institutional structure that facilitates agreements among US 

Congressmen is mentioned. The purpose of those institutions is either to facilitate coordination 

(Banks and Calvert 1989) or to prevent renegotiation on agreements (Weingast and Marshall 

1988). If the conditions of the renegotiation-proofness principle (Hart and Tirole 1988) are 

violated the presence of renegotiation can restrict the set of achievable outcomes and might 

prevent the achievement of a Pareto-superior outcome. This aspect of prevention of Pareto-

improvement is suggestive of what I have in mind talking about a dilemma. It is a non-

cooperative strategic interaction between multiple agents with the property that there exists an 

outcome that is considered as advantageous by all agents but cannot be supported on purely 

egoistic grounds in the sense that once agreed upon a certain collective behavior some agents 

have an incentive to deviate from the implied behavior. In other words this superior outcome is 

not supported as equilibrium. Coordination problems are characterized by a non-dilemma 

situation with multiple equilibria. 

Let  1 2, A A  denote a generic 2x2 game with strategy spaces  1 2 0,1S S S    and payoffs 

 1 1
ijA a  and    2 2 ,  ,ijA a i j S S    for player 1 and 2 respectively. Let S  represent the 

mixed extension of S . Finally I write the expected payoff of player 1 for a pair of mixed strategy 

as      
1

1 1 2 1 1
0 1,

0
, ,  ,n n n

i i j
i

s s a s S   


    and  2 1 2,s s  accordingly. The set of (pure) 

Nash equilibria of  1 2, A A  is denoted by     pureNE NE  . For symmetric games we have 

 1 2 
T

A A A  and I simply write  A . Let      
1 2

, , ,i j i j i j
d a a   measure the absolute level of 
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inequality if player one (two) plays  i j . Finally, let 
 

   
1 2

, ,
, 2

i j i j

i j

a a
AP


  denote the average 

payoff if player one (two) plays  i j . Note that for symmetric games    , ,i j j i
d d  and 

   , ,i j j i
AP AP . 

Definition A game  1 2, A A  is a Dilemma if 

            
* *

, : , , , , , ,1 2 2 1 2 1 2 1 2  1 2n ns s S s s s s n s s NE         

In words, a game constitutes a dilemma if there exists a strategy profile such that the implied 

payoffs strictly Pareto-dominate the payoffs associated with the set of all Nash equilibria. 

Alternatively, in some sense on the other end of the spectrum, one could define a dilemma if 

there exists a Pareto-improvement for at least one Nash equilibrium. In the latter case a dilemma 

is present whenever from the perspective of a particular equilibrium there is a non-equilibrium 

Pareto-improvement. In contrast to such a definition, mine declares game to be a dilemma only if 

this holds for all equilibria, i.e. prior to the equilibrium selection. I consider the ex-ante viewpoint 

as more appropriate as it makes the classification of games and the analysis of the evolution of 

preferences less sensitive to assumptions regarding equilibrium selection. Furthermore, in the 

more general class of finite normal-form games the majority of games would constitute a social 

dilemma following the alternative definition. Consider for instance a game with Pareto-ranked 

equilibria and an inferior equilibrium being Pareto-dominated by some non-equilibrium outcome. 

A classification as a social dilemma appears unintuitive as the problem for this society is rather to 

coordinate on a Pareto-superior equilibrium. As problem of coordination are complementary to 

dilemmas and are characterized by the presence of multiple equilibria I define them as follows.  

Definition A game  1 2, A A  is a problem of coordination if   1NE    and there exists no non-

equilibrium outcome which Pareto-dominates all of these equilibria. 

Before I turn to problems of redistribution being asymmetric in nature I briefly want to elaborate 

on the structure of all symmetric 2x2 games. Note that all symmetric 2x2 games which neither 

constitute a dilemma nor a problem of coordination  are exactly those with a unique equilibrium 

which is not Pareto-dominated by some non-equilibrium outcome. In the world of symmetric 

games such situations appear rather unproblematic since no dilemma, no coordination, and—as 

we will see—no problem of distribution is present. In other words, the set of symmetric games 

can be partitioned into three classes, dilemmas, problem of coordination s and unproblematic 

situations. In a symmetric world considering dilemmas and problem of coordination is thus in 

some sense complete as only unproblematic situations are excluded.  

4.3.2. Problems of distribution 

Before I give a precise definition of a “problem of distribution”, it is necessary to clarify the 

intuition of such problems informally. First of all, any plausible definition of distributional 

concern is related to a notion of asymmetry in payoffs. Again, one could take an ex-ante or an ex-

post point-of-view. With an ex-post point-of-view, a game would constitute a problem of 

distribution if the equilibrium played by the individuals shows asymmetric payoffs. From an ex-
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ante perspective a game would constitute a problem of distribution if all equilibria would show 

asymmetric payoffs, all in favor of the same player. To illustrate the difference consider two 

situations. In the first strong individuals play against weak ones and all equilibria are characterized 

by higher payoffs for the stronger. Such a situation will not only by chance lead to asymmetric 

payoffs but it will do so systematically. In the second two identical individuals play a game with 

multiple equilibria, some of them favoring one individual, some favoring the other. In the latter 

case the game will only occasionally lead to asymmetries and whereas in the former case the game 

implies systematic asymmetries. It is more convincing, and in line with the corresponding 

decision with respect to the definition of social dilemmas, to take the ex-ante point-of-view.  

Definition A game  1 2, A A  is a problem of distribution if   1NE    and

           
* * *

, : , , , ,1 2 1 2 1 21 2   n nn s s s s s s NE       . 

The qualification in the definition for  1 2, A A  to have multiple equilibria is made for simplicity 

only. I will refer to those individuals (dis)favored in the problem of distribution as (low) high 

types.  

4.3.3. Inequality aversion 

In Sections 4.4 and 4.5 on the evolution of inequality aversion, I will make use of the standard 

evolutionary model, which is concerned with a large population. This population is structured by 

personal characteristics and by the way individuals are matched. With respect to the former there 

are two sources of heterogeneity among individuals. The population is on the one hand divided 

into two subpopulations that correspond to the two different roles assigned in the problem of 

distribution. On the other hand there is heterogeneity with respect to the evaluation of payoff 

distributions, i.e. agents show different levels of inequality aversion. Inequality aversion is 

modeled as follows. I will apply the definition suggested by (Fehr and Schmidt 1999) which in a 

2x2 setting amounts to                , , , , , ,max ,0 max ,0 ,   , 0,1n n n n n n n n n n

i j i j i j i j i j i j
u a a a a a          , 

i.e. n  and n  measure the degree of aversion of player n  to inequality which disfavors or, 

respectively, favors him. I make the simplifying assumption that n n n    . The qualitative 

implication of a relaxation of this assumption is discussed in section 4.6. Hence, inequality 

aversion is parameterized by the one dimensional space  0,1 . At time t  agents’ preference 

regarding equality in material payoffs is distributed over  0,1  according to the distribution 

function t

HF  and t

LF  for high types and low types, respectively. Initially, the density functions 

corresponding to t

HF  and t

LF  are assumed to have full support. I will drop the superscript t  to 

represent equilibrium distributions, i.e. , ,li  m t

H L H L
t

F F


 . 

4.3.4. The simplified game of life 

As I will elaborate more deeply in the subsequent analysis, inequality aversion transforms the 

game  1 2, A A  into the game  1 2,U U . The latter and the former may well differ in the set of 

Nash equilibria. To ease reading and interpretation, I will make use of the following definitions.  
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Definition I say that an equilibrium  ,i j  in the game  1 2, A A  is contested by player 1(2) if 

        1 1 2 2
, , , ,i j i j i j i j

u u u u
 

   , i.e. strategy i(j) loses its property of being a best response to strategy 

j(i) in the game  1 2,U U . An equilibrium in the game  1 2, A A  is contestable, if it may be 

contested by at least one player I say that the strategy pair  ,i j is stabilizable if it is an equilibrium 

of  1 2,U U  for some levels of 1  and 2 .  

Note that if an equilibrium is contested by some player it is contested by any player who shows a 

weakly higher degree of inequality aversion.  

To simplify the analysis of the simplified game of life I will restrict the included games in a way 

which ensures that in the game  1 2,U U  no situation with a unique mixed Nash equilibrium 

will occur. Since a unique mixed Nash equilibrium in particular arises if a player who contests all 

pure Nash equilibria is matched with a purely selfish player, I make the following definition.  

Definition A game  1 2, A A  is called strict if there is no player who can contest all 

equilibria.  

The term “strict” as defined in here parallels the concept of strict equilibrium since a player will 

not be able to contest all equilibria if at least one equilibrium is sufficiently strict for him, i.e. the 

material loss from unilateral deviations is sufficiently high. Note that if inequality aversion has a 

leverage on strict games it will do so for games that are not strict. Note further that in general 

finite normal-form games this condition will be satisfied in the majority of the cases. Allowing the 

play of mixed equilibria has interesting consequences on the sharpness of the prediction 

regarding the stable distributions of preferences though. This will be outlined in section 4.6.  

Based on the classifications of social problems in section 4.3.1-4.3.2 and the definition given 

above, I am now able to define an environment that comprises all these classes.  

Definition The simplified game of life is a game that comprises a symmetric dilemma, a strict 

symmetric problem of coordination and a strict problem of distribution.  

The qualification for the dilemma and the problem of coordination to be symmetric is made in 

order to isolate the effects that the asymmetry of the problem of distribution implies. Strictness 

of an arbitrary game  1 2, A A  either implies the existence of multiple equilibria or the unique 

equilibrium in mixed or pure strategies is not contestable. If the unique equilibrium is in mixed 

strategy then no non-equilibrium outcome can be stabilized without contesting the mixed 

equilibrium, hence for strict games no evolutionary pressure that favors or disfavor a preference 

for equality will emerge. If the unique equilibrium is realized in pure strategies then a bilateral 

deviation could be stabilized by inequality-averse players. Essentially this is the only case that is 

excluded by the assumption of multiplicity of equilibria in the definition of a problem of 

distribution. Strictness for the dilemma is not required as this class of games will not show mixed 

play. In 4.3.1 I argued that a classification into dilemmas and problems of coordination is in some 

sense complete by partitioning the set of all symmetric games with their complement reflecting 
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rather unproblematic situations. Requiring strictness for problems of coordination limits to some 

extent this completeness. Problems of coordination that are not strict are thereby excluded from 

analysis. The only difference between strict problems of coordination and such problems that are 

not strict is that in the latter in a match of an individual with a very high degree of inequality 

aversion and an individual with a very low degree of inequality aversion a unique Nash 

equilibrium in mixed strategy exists. I refer the reader again to the discussion in Section 4.6.  

4.3.5. Evolutionary framework 

Before I can start with the evolutionary analysis, the analytical framework needs to be set up. In 

what follows I will state the assumptions I make with respect to informational aspects, the 

matching process, evolutionary dynamics and the applied stability concept.  

I assume that agents can mutually observe their attitude towards unequal payoff distributions. 

This assumption could be weakened to an awareness of the inequality aversion in a positive 

fraction of interactions, the availability of sufficiently accurate signals or sufficiently cheap 

screening technologies (see Güth 1995; Sethi and Somanathan 2001; Güth et al. 2003). With 

respect to matching consider the following procedure. First a random draw selects among the 

three types of games that constitute the simplified game of life. In case of a dilemma or a 

problem of coordination individuals from the total population are randomly matched into pairs 

playing the selected game. Thereby each pair has the same probability in each short period of 

time. The interaction in the problem of distribution will be modeled as a 2-population model (see 

e.g. Weibull 1997), i.e. individuals interact across populations but not within. Again, each pairing 

has the same probability, relative size of the subpopulations of high and low types matters for 

expected payoffs though. If for instance the subpopulation of low types is ten times as large as 

the subpopulation for high types then any high type will play ten times as often as a low type. 

This will however only amplify the advantage or disadvantage of high types over low types. For 

notational simplicity I may thus assume that the two subpopulations are equal in size. Payoffs 

given by 1A  and 
2A  represent the material payoffs of the stage game that will be decisive with 

respect to evolutionary success.  

Whereas the belonging to one of the subpopulations due to role assignment in the problem of 

distribution is exogenous and common knowledge, the distribution of inequality-averse 

individuals in each of the two subpopulations is endogenous. Since inequality aversion reflects a 

particular evaluation of material payoffs, I will apply the indirect evolutionary approach pioneered 

by (Güth and Yaari 1992)23, i.e. preferences determine behavior and behavior in turn determines 

fitness. Fitness measured by material payoffs will determine the evolution of tF . The 

evolutionary process is modeled by payoff monotone selection dynamics24 (see e.g. Weibull 

1997). With respect to stability I will apply the concept of asymptotic stability (see. e.g. 

Samuelson 1997 for definitions). An asymptotically stable equilibrium will be reconstituted as 

                                                 

23 The indirect evolutionary approach has been applied in various strategic settings (ultimatum game, Huck and 
Oechssler 1999) or to analyze the evolutionary stability of altruistic preferences (Bester and Güth 1998) or of 
altruistic and spiteful preferences (Possajennikov 2000). 
24 There are other forces than evolutionary selection shaping individual preferences. Bisin and Verdier (2001) for 
instance study intergenerational cultural transmission mechanisms.  
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time approaches infinity after a small but – in terms of the composition of mutation-strategies – 

arbitrary perturbation.  

Since I am concerned with games that allow for multiple equilibria an assumption with respect to 

equilibrium selection needs to be made. An appropriate equilibrium selection criterion should not 

a priori favor or disfavor a preference for equality with respect to evolutionary success. I therefore 

assume that if  1 2,U U  has multiple pure-strategy Nash equilibria, then players randomize over 

all pure-strategy Nash equilibria with equal probability. It turns out that symmetry of the 

probability distribution over the set of pure Nash equilibria is necessary and sufficient for the 

selection criteria to satisfy the requirement to be neutral with respect to the evolutionary 

advantageousness of inequality aversion for all games considered (see discussion in 4.6.1). Since 

2x2 games show at most two pure Nash equilibria symmetry amounts to uniformity. To clarify, it 

is not the players who randomize over strategies of different pure Nash equilibria independently, 

but pairs of players randomize jointly over the set of pure Nash equilibria. If for instance 

 1 2,U U  has two pure Nash equilibria then a given pair of players will play each of the two 

with probability one-half. To put it differently, individuals are assumed to play the correlated 

equilibrium that is the linear combination with equal weights of the two correlated equilibria that 

correspond to the two pure Nash equilibria (see 4.6.2).  

Let  , sym  denote the set of (symmetric) 2x2 games,  , sym the set of (symmetric) 2x2 

games with neither weakly nor strictly dominated strategies. Games with weakly dominated 

strategies can be treated as the limiting case of games in  . More precisely as  8 4, sym    

the subset of  , sym  containing no weakly dominated strategies is dense in  , sym  according 

to the Euclidean norm. Since the critical level of inequality aversion are continuous in the 

parameters of a game  1 2, A A , the results for any game with weakly dominated strategies are a 

limit case of games in  , sym

25. With this technical note in mind I can concentrate on games 

with no weakly dominated strategies.  

In the next section I will study the evolution of the trait of inequality aversion in each of the three 

games separately. In section 4.5 I will contrast those results with the analysis in the compound 

environment of the simplified game of life. 

 

4.4. Inequality aversion in the separate environments 

Symmetric dilemma Note that for symmetric games there is always an equilibrium in pure 

strategies. Furthermore games with multiple equilibria are free of the dilemma property. To see 

this note that a dilemma requires the existence of a non-equilibrium outcome that Pareto-

dominates all Nash equilibria. That is, such a pair off payoffs must yield higher payoffs than in 

                                                 

25 More precisely the mapping :   which assigns to any game the critical value 
, ,D C R  (see Section 4.4) is 

continuous.  
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any Nash equilibrium. Consider a symmetric games with two pure Nash-equilibria. A necessary 

condition for such a game to constitute a social dilemma would be that there is an outcome in 

pure strategies that gives each player more than the maximum of the two Nash equilibria in pure 

strategies. But the existence of such an outcome violates the Nash-equilibrium property in the 

first place, because in 2x2 games this implies the existence of an alternative reply with higher 

payoffs than in equilibrium. Hence a symmetric social dilemma must be in the set \ sym sym , the 

set of games with weakly or strictly dominated strategies. If a player has a strictly dominant 

strategy then by symmetry his opponent has the same strictly dominant strategy. As a unilateral 

deviation from equilibrium can never lead to a strict Pareto-improvement, only the symmetric 

non-equilibrium outcome realized by bilateral deviation can yield strictly higher payoffs for both 

players. That is in 2x2 games a symmetric dilemma corresponds to the classical Prisoners’ 

Dilemma. Lemma 4-1 summarizes this insight. All proofs are given in Appendix C. 

Lemma 4-1 Let   symA .   A  constitutes a dilemma if and only if   A  is strictly 

dominance-solvable by the unique symmetric Nash equilibrium  * *,i i  and    * * * *, ,i i i i
AP AP

 
 . 

Dominance solvability implies that the only stabilizable outcome is the symmetric non-

equilibrium outcome. Lemma 4-2 states the conditions on the required degree of inequality 

aversion for this to be the case.  

Lemma 4-2 Let   symA  be a social dilemma and  * *,i i  be its unique equilibrium. Then 

the only pair of strategies    * *, ,i j i i  that is stabilizable is  * *,i i  .  * *,i i   is stabilizable if 

and only if 
   

 

 
* * * *

* *

1 , ,

,

2 0, 1,
i i i i

D

i i

a a

d
 

  





   .  

Lemma 4-2 states that whenever two sufficiently inequality-averse players interact, the symmetric 

non-equilibrium outcome in   A  constitutes an equilibrium in  U . The threshold D  has a 

straight forward economic meaning. Since 
   * * * *, ,i i i i

a a
  

  measures the material gain of 

deviating from the non-equilibrium pair of strategies  * *,i i   and 
 * *,i i

d


 measures the implied 

loss in equality induced by such a deviation, D  measures the material price per unit of equality 

gained. Sufficient inequality aversion therefore translates into a sufficient willingness to pay for 

equality. Given the characterization of social dilemmas in Lemma 4-1 and the characterization of 

stabilizable strategy profiles in  U  in Lemma 4-2, Proposition 4-1 characterizes the stable 

distributions of inequality aversion.  

Proposition 4-1 Let   symA  be a social dilemma. If  * *
1 2,s s   is stabilizable, then 

there exists a  0,1D  , such that the globally stable equilibrium is   0DF   ,26 furthermore the 

                                                 

26 As in the dilemma and problem of coordination players role is symmetric, I will in the corresponding subsections 
drop the subscripts reflecting types in the problem of redistribution.  
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material advantage of sufficiently inequality-averse individuals is increasing in the share of 

individuals with D  , i.e.  
  1

sgn 1
D D

DF

   



 


   , where  

  1

D D

DF

   



 


   

denotes the derivative w.r.t.  1 DF  , the share of inequality-averse individuals. Otherwise the 

share of inequality-averse individuals is determined by initial conditions and random shift.  

In the following paragraphs I will give the intuition behind this result. The potential for an 

evolutionary advantage of inequality-averse individuals stems from that fact that a pair of 

sufficiently inequality-averse players will be able to transform the social dilemma into a 

coordination game. In a symmetric dilemma “sufficiently high inequality aversion” translates to 
D  , where D  measures the ratio of the material incentive to deviate from the Pareto-

superior outcome and the potential loss in equality stemming from such a deviation. In other 

words, if both players have an aversion against inequality larger than D , the material gain of an 

deviation from the symmetric diagonal outcome is more than compensated for in utility terms by 

the loss in equality. Thereby a match of two such individuals transforms the dilemma into a 

problem of coordination. By definition of the dilemma the stabilized outcome yields Pareto-

superior payoffs which benefits inequality-averse individuals as they randomize over all pure 

Nash equilibria. 

Symmetric problem of coordination  In games within the set of sym  which show 

multiple pure-strategy Nash equilibria either the two diagonal symmetric payoff-pairs or the two 

off-diagonal asymmetric payoff-pairs constitute the Nash equilibrium payoffs.  

Lemma 4-3 Let   symA .   A  constitutes a problem of coordination if and only if (1) 

     ,pureNE A i i   or (2)      ,pureNE A i j i j   .  

Before I will characterize the stable distribution of inequality aversion in Proposition 4-2, I will 

define a threshold C  which is the equivalent to D  in the symmetric dilemma. However, in the 

symmetric coordination game each of the off-diagonal equilibria of   A  may be contestable for 

both players, hence C  will be the minimum of the two ratios measuring the material price per 

unit of equality gained for player one and two. These prices may differ as equilibria in   A are 

asymmetric and players face different incentives to deviate. Formally,

    

   , ,

,
min

pure

i j i iC

i j NE A

a a

d




  
  

  
, where 

      , , purei j
i j NE A

d d


 . 

Let AP  measure the average payoff of the equilibria in   A , i.e. 
      , , purei j

i j NE A
AP AP


 . For 

ease of readability I will refer to individuals with  C C      as inequality-averse individuals 

and selfish players respectively.  
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Proposition 4-2 Let   symA  be a strict problem of coordination. Then:  

If      ,pureNE A i i   or      ,pureNE A i j i j    and none of the material equilibria is 

contestable then the share of inequality-averse individuals in the population is determined by 

initial conditions and random shift.  

If equilibria are contestable then: 

1. if the destabilized equilibrium is materially favorable for inequality-averse individuals then 

the globally stable equilibrium is characterized by   1CF   , furthermore 

 
  

 
1

sgn 1,0,1
C C

CF

   



 


    . 

2. if the destabilized equilibrium is materially favorable for selfish individuals then the 

globally stable equilibrium is characterized by  
 ,

C C

i i

d
F

AP AP
 


, furthermore 

 
  1

sgn 1
C C

CF

   



 


    . 

where  ,i i
AP  is the average payoff of the outcome that is stabilizable by two sufficiently 

inequality-averse individuals. 

In case (1) of Lemma 4-3 the material equilibria are not contestable as any deviation from 

symmetric material payoffs not only reduces material payoff but also increases inequality. As a 

consequence no evolutionary pressure will emerge favoring or disfavoring inequality aversion. In 

case (2) this is not necessarily true. With respect to utility a deviation from materially asymmetric 

payoffs associated with a gain in equality might outweigh the material loss from deviation. 

Proposition 4-2 reveals that in strict problem of coordination s a strong preference for equality is 

weakly disadvantageous from an evolutionary point of view. Intuitively, strictness of the problem 

of coordination excludes the possibility of both equilibria being destabilized. If one equilibrium is 

contestable then it is destabilized by sufficiently inequality-averse agents. If the destabilized 

equilibrium is materially favorable for inequality-averse individuals then not only they suffer from 

deviating from material equilibrium, but lose relative to more selfish individuals as that 

equilibrium is destabilized where they gain more than selfish players. As a consequence 

individuals with a strong preference for equality face an evolutionary disadvantage and will 

become extinct. If the reverse is true, i.e. the destabilized equilibrium is favorable for selfish 

players then the disadvantage from unilaterally deviating from material equilibria is partially 

compensated by no longer playing a disadvantageous equilibrium and thereby increasing average 

payoffs. However, this effect diminishes as the share of sufficiently inequality-averse agents 

increases. This stabilizes a distribution of preference where selfish and inequality-averse (relative 

to C ) individuals coexist.  

Problem of distribution Lemma 4-4 below characterizes problems of redistribution and 
differentiates two cases which will become relevant in the course of the argument.  
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Lemma 4-4 Let  1 2,A A  .  1 2, A A  constitutes a strict problem of distribution if and 

only if all Nash equilibria favor the same individual and: 

 (1):  1 2, A A  has multiple equilibria which are not Pareto-ranked. 

 (2):  1 2, A A  has multiple equilibria which are Pareto-ranked. 

Let  , ,
R R

H L H L   denote the thresholds for the high and low type respectively such that the more 

(less) equal material equilibrium is destabilized, which requires of course that the considered 

equilibrium may be contested by the player. To give a formal definition requires a lot of 

complicated notation and is not very insightful. The formal definition is given in Appendix C for 

the representative case in the proof of Proposition 4-3. The economic meaning of the thresholds 

is the same as for the thresholds in the problem of coordination or the dilemma. The critical 

values for the inequality aversion of players relate the material incentive and the gain in equality 

induced by an unilateral deviation from an equilibrium, i.e. they measure the price of deviation 

per unit equality gained. Let  , , ,min ,R R R

H L H L H L   , i.e. the type-contingent threshold ,
R

H L  plays 

the same role as D  and C  in the symmetric dilemma and the symmetric problem of 

coordination  respectively, i.e. if the degree of inequality aversion for at least one player exceeds 

,
R

H L  then at least one of the equilibria of  1 2, A A  loses its equilibrium property in  1 2,U U .  

Proposition 4-3 Let  1 2, A A  constitute a strict problem of distribution. 

1. If one of the material equilibria is contestable by low types, the unique globally stable 

equilibrium distribution is characterized by a homomorphic population with only 

inequality-averse individuals.    
  

 
1

0,  sgn 1,0,1
R R
L L

R
H H

R

L L L L
F

F
   


  


     . 

2. If one of the material equilibria is contestable by high types, with one exception the 

globally stable equilibrium distribution is characterized by 

    
  1

1,  sgn 1
R R
L L

R
L L

R

H H H H
F

F
   


  


    . 

The exception arises in case of two Pareto-ranked equilibria (case (2) of Lemma 4-4) with 

the Pareto-inferior equilibrium being contestable for both types. In that case the globally 

stable equilibrium distribution is characterized by

    
  1

0,  sgn 1
R R
L L

R
L L

R

H H H H
F

F
   


  


     . 

Otherwise the distribution is determined by initial conditions and random shift.  

Note that the payoff differences for both types depend on the share of inequality-averse 

individuals in the subpopulation of the other types as there is no interaction within 

subpopulation, but only across them.  

To see the intuition behind Proposition 4-3 I first elaborate on case (1) of Lemma 4-4. In case (1) 

one of the pure strategy equilibria shows strictly less inequality. Hence the more (less) unequally 
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distributed equilibrium is preferred by the high (low) type. It turns out that for the high type the 

less unequally distributed equilibrium is never contestable. As a consequence the condition on the 

problem of distribution to be strict is essentially a condition with respect to the payoffs of the 

low type.  

I first consider the case where the more equally distributed equilibrium is also not destabilized by 

the low type as in the first case of Proposition 4-3. If on the one hand the more unequal 

equilibrium is destabilized by both players, then the more equally distributed equilibrium will 

become the unique equilibrium. In that case such high types will with certainty play the less 

favorable equilibrium of  1 2, A A  and face an evolutionary disadvantage. Furthermore the 

extent of the disadvantage for the high types increases with the share of sufficiently inequality-

averse low types since more and more often they will end up in playing the relative unfavorable 

equilibrium. The reverse argument applies for the low types. If on the other hand the more 

unequal equilibrium is only destabilized by the high type the same argument applies for the high 

types but the disadvantage is now independent of the share of inequality-averse low types as their 

best response behavior is not altered by inequality aversion.  

I second consider the case where the more equal distributed equilibrium is destabilized by the low 

type as in the second case of Proposition 4-3. If high types destabilize the more unequally 

distributed equilibrium then this will result in an evolutionary disadvantage as the relatively less 

favorable equilibrium will be selected. As no player can destabilize all equilibria inequality-averse 

low types will face an evolutionary disadvantage as they destabilize the relative favorable of the 

two pure Nash equilibria in  1 2, A A . In all other cases the distribution of the preference 

parameter is undetermined. The major difference between case (1) and (2) of Lemma 4-4 

responsible for the deviations in equilibrium distribution stems from the following fact. In case 

(1) of Lemma 4-4 the less unequally distributed equilibrium which is relative less favorable for the 

high type was not contestable. In case (2) however it is the Pareto-superior equilibrium which is 

not contestable. In this difference lies the potential for an evolutionary advantage of inequality-

averse individuals among high types.  

Before I turn to the analysis in the simplified game of life I briefly summarize the results obtained 

so far (see also Figure 4-1). The analysis in the separate environments revealed that if inequality 

aversion has a leverage on the set of equilibria played then inequality aversion enjoys a global 

evolutionary advantage over more selfish preferences in a dilemma. In the class of problems of 

coordination inequality aversion surprisingly faces a weak evolutionary disadvantage in the sense 

that at most a stable inner equilibrium exists where relative inequality-averse and relative selfish 

players coexist, in all other cases relative inequality-averse players will eventually disappear. In the 

problem of distribution evolutionary selection dynamics will always favor the preference for 

equality among the disfavored individuals. Among the individuals favored by the problem of 

distribution in all cases except for one inequality aversion will eventually disappear.  
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Dilemma Problem of coordination Problem of distribution 

   

 

Figure 4-1: Differences in material payoffs in the games constituting the simplified game of life. For high types in the 

problem of distribution the blue lines correspond to case A, the red dash-dotted lines to case (2) of Lemma 4-4.  

Note that the three characteristics: the slope, the intercept and having a root in the open unit 

interval gives rise to eight different loci of the linear payoff differences27. Remarkably, the analysis 

so far predicts that for a single environment at most three of them are needed to describe the 

differences in payoffs between inequality-averse and selfish individuals (see Figure 4-1).  

 

4.5. Evolution of inequality aversion in the 2x2 simplified game of life  

In this section we will analyze the interplay of the different types of interaction present in the 

simplified game of life. For ease of exposition I will assume that the thresholds of the single 

environments coincide, i.e. ,
D C R crit

H L      . The profit for an individual in the simplified 

game of life is simply the weighted average of the profits earned in the single environments28, i.e.:  
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Hence payoff differences are given by29:  
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 (4.2) 

Let d  denote the difference in payoffs between relatively inequality-averse and selfish players. 

Equations in  can now be expressed in a more compact way as: 

                                                 

27 The eight cases refer to a positive or negative function that is increasing or decreasing or a function with a root in 
the open unit interval that shows negative or positive slope. 
28 D – dilemma; C – problem of coordination ; R – problem of distribution; S – simplified game of life. 
29 The asterisk in equation  and  refers to the exception in case (2) of Lemma 4-4 in which also among high types 
inequality-averse individuals enjoy an evolutionary advantage.  
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*

, , ,

0 0 : 0 , : 0

 1  1 1 1S D t t C t t R t

H L H L H L H L L H

H L

d d F F d F F d F   

   

    
                 
           

 (4.3) 

Note that whereas the differences in the dilemma and the problem of coordination depend on 

the total share of inequality-averse individuals in population the according difference in payoffs 

for the problem of distribution depends only on the share in the subpopulation of the opposite 

type. Making use of the linearity of the payoffs differences I can write (4.3) in the following way:  
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 (4.4) 

, where ,0, ,D C R

H L    and ,, ,D C R

H L    denote intercepts and slops of ,, ,D C R

H Ld d d    

respectively.  

If in the case with two Pareto-ranked equilibria (case (2) of Lemma 4-4) the Pareto-inferior 

equilibrium is destabilized by the low type, then inequality-averse players are favored also among 

high types. In that case if the problem of coordination is not played too often or involved 

differences in payoffs are comparably small inequality-averse players in both sub-populations face 

an evolutionary advantage. In other words, the globally stable equilibrium distribution will be 

characterized by  , 0crit

H LF   , i.e. population will consist of inequality-averse individuals only. I 

therefore concentrate in the following on the non-exceptional cases with a problem of 

distribution being accompanied with a global disadvantage of inequality-averse players among 

high types. Note that in that case 
R R

H H    (see Figure 4-1). Note further that since low types 

and high types earn the same profits in the dilemma and the problem of coordination a positive 

payoff difference for high types implies a positive difference for low types (see (4.4)). This has 

the immediate consequence that a locally stable equilibrium characterized by 

   0, 1crit crit

H LF F   , i.e. an equilibrium with only inequality-averse high types and only 

selfish low types does not exist in the simplified game of life.  

The following theorem characterizes the equilibria that may emerge in the simplified game of life 

for the predominant case of a problem of distribution which is disadvantageous for inequality-

averse high types. For ease of readability I abbreviate    ,crit crit

H H L LF F F F   . 
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Theorem  Let ,
D C R crit

H L       and 0R

Hd   then the set of equilibrium 

distributions of a preference for equality is characterized by: 

0
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Figure 4-2 illustrates the set of equilibria graphically. Only if the advantage of inequality-averse 

individuals increases or the disadvantage decreases in the share of inequality-averse individuals 

when the dilemma and the problem of coordination are considered alone multiple equilibria may 

arise ( 0D C   ). Inner equilibria with relative inequality-averse and selfish players in 

coexistence may only arise if the reverse is true. In such inner equilibria only in one of the 

subpopulation that correspond to the role assignment in the problem of redistribution inequality-

averse and selfish players may coexist.  

Global stable equilibrium: 0
D C 




  Multiple locally stable equilibria: 0

D C 




  

  

Figure 4-2: set of equilibria,  ,H LF F  for the right column.  

As a consequence of the analysis in the single environments one should expect a tradeoff 

between the advantageous dilemma environment and the disadvantageous distributional problem 

with respect for the evolution of the preference for equality. We saw in Proposition 4-3 that in 

almost all cases a preference for equality above crit  cannot be sustained in equilibrium among 
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high types in the redistribution problem. A particularly interesting question is therefore whether 

there is a stable equilibrium with a positive share of inequality-averse players among high types if 

the simplified game of life is considered, i.e.    0,1crit

HF   . The theorem reveals that this is 

indeed the case. However an inner equilibrium with relatively inequality-averse and relatively 

selfish players can only emerge in the case where the problem of coordination on its own would 

stabilized such a distribution of preferences ( 0 C , see Figure 4-2). If in a population of only 

inequality-averse players selfish individuals would on average face an evolutionary disadvantage 

when only the dilemma and the problem of coordination are considered (   0D C C      ) 

then inequality aversion will be advantageous for high and low types and a stable equilibrium with 

0, 0L HF F   exists. In all other cases the inequality-averse high types are deemed to extinction 

also in the simplified game of life. If the problem of coordination is not too disadvantageous for 

inequality-averse individuals then the advantageousness for the dilemma and the problem of 

distribution carries over to the simplified game of life and a stable equilibrium with only 

inequality-averse players exists. At an intermediate level of disadvantageousness both inequality-

averse and selfish players will coexist in the subpopulation of low types. Finally, if the 

disadvantage in the problem of coordination dominates then in both sub-populations only 

selfishness may be part of a stable distribution of preferences.  

In summary, on the one hand the simplified game of life as expected gives rise to a greater variety 

in potential equilibrium distributions of preferences. In particular the surprisingly strong 

predictions for the single environments are put into perspective. The global advantage of 

inequality-averse players in the dilemma and the global disadvantage for inequality-averse high 

types in almost all cases become subject to some qualification. On the other hand the expected 

stabilization of inner equilibria in which relatively inequality-averse individuals and relatively 

selfish individuals coexist occurs if and only if the single environments show the same feature. 

The reason for this is that advantageousness in the dilemma is increasing and the 

disadvantageousness in the problem of distribution is decreasing in the share of inequality-averse 

players. For an inner equilibrium a decreasing advantageousness that eventually turns into a 

disadvantage is required though.  

 

4.6. Discussion  

In this section I want to discuss the robustness of the results with regard to several issues. These 

issues consider the core assumptions of the paper: the equilibrium-selection criteria, the 

equilibrium concept, the strictness property, and the model of inequality aversion.  

4.6.1. Equilibrium selection 

I now turn to the assumption concerning equilibrium selection that agents jointly randomize over 

the set of pure Nash equilibria with equal weight. I claimed in section 4.3.5 that, lacking a general 

theory of equilibrium selection, the requirement on the selection criteria to a priori be neutral with 

respect to the evolutionary success of inequality aversion amounts to a symmetric probability 

distribution over the set of equilibria. This requirement stems from the fact that I am solely 

interested in the evolutionary forces that follow from the impact of a particular preference on the 

set of Nash equilibria and not in forces that are based on some selection bias. A symmetric 



 

72 
 

probability distribution implies neutrality, because in that case any two matches of pairs of 

individuals with potentially different degrees of inequality aversion will earn the same expected 

material payoff as long as the set of pure Nash equilibria coincide. Symmetry is thus sufficient for 

neutrality. To see necessity, consider the following numerical example of a problem of 

coordination. Table 4-1 below presents the material payoffs of  1 2,A A  and their evaluation.  

 0 1  0 1 

0 
3  4   3  24 2  

3   2   3   12 2  

1 
2  0   

22 2  0  

4  0   
14 2  0  

Table 4-1:Payoffs in  1 2,A A    Payoffs in  1 2,U U . 

In a match of two individuals with inequality aversion 1 2
10
2

    , i.e. preferences of player 

two shows a higher degree of inequality aversion, the set of pure Nash equilibria of  1 2,A A  

and  1 2,U U  coincide. Any asymmetric probability distribution over the set     0,1 , 1,0  will 

(dis)favor the relatively inequality-averse player if a (smaller) larger weight is put on  0,1 . Thus 

an asymmetric distribution gives an evolutionary advantage or disadvantage to the relatively 

inequality-averse player, but is not neutral.  

Next to concerns of some economists about the play of mixed strategies, the assumption that the 

randomization is over the set of pure Nash equilibria and thus excludes the equilibrium in mixed 

strategies from the support of the probability distribution was made for simplicity. Interestingly 

this parallels the application of a coarser equilibrium concept than the notion of Nash 

equilibrium. In that case, average payoffs may only change if this subset of Nash equilibria 

changes. The role of the play of mixed equilibria will be analyzed when the assumption for the 

problems of coordination and distribution to be strict is discussed in section 4.6.3. The results of 

section 4.6.3 and of the discussion of correlated equilibria in 4.6.2 indicate that the finer the 

equilibrium concept, the more sensitive the equilibrium set to changes in preference parameter 

and thus the higher the precision of the prediction characterizing the equilibrium distribution of 

inequality aversion.  

As mentioned before, the assumption of a uniform randomization over the set of pure Nash 

equilibria is equivalent to a play of the correlated equilibrium that assigns equal weights to each of 

the pure Nash equilibria. In other words, if multiple pure Nash equilibria exist individuals play a 

particular correlated equilibrium. The implications of considering not one but the whole set of 

correlated equilibria is discussed in the next section.  

4.6.2. Equilibrium concept 

As pointed out before, not only is the notion of the equilibrium decisive with respect to the 

classification of a game into a dilemma, a problem of coordination or a problem of distribution, 

but it also plays a role in the evolutionary analysis. The reason why a preference for equality may 
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be advantageous or disadvantageous from an evolutionary perspective lies in its leverage on the 

equilibrium set. Changes in the set of equilibria may change average payoffs and thereby generate 

evolutionary pressure. How the set of equilibria is altered by transforming the underlying game in 

material payoffs by preferences evaluating these payoffs may depend on the applied notion of 

equilibrium. Most of applied game theory takes the Nash equilibrium as its reference point and 

deals with finer or coarser equilibrium concepts relative to the Nash-concept. Let me illustrate 

the effects for a concrete alternative, that of correlated equilibria30. This concept not only enlarges 

the set of equilibria and thereby enlarges the class of problems of coordination but it also 

increases the set of achievable payoffs generated by correlated strategies. To make the argument 

precise I will restate some definitions and results of Calvó-Armengol (2006) who studies the set 

of correlated equilibria for 2x2 games. For  1 2, A A  define 1 1 1 1
1 00 10 11 01a a a a     and 

2 2 2 2
2 00 01 11 10a a a a    . In the absence of neither weakly nor strictly dominated strategies 1  

and 2  are well defined and strictly positive. The defined values give rise to three different types 

of games:  

 0 1  0 1  0 1 

0 1 2,   0,0  0 1 2,    0,0  0 1 2,   0,0  

1 0,0  1,1 1 0,0  1, 1   1 0,0  1,1  

   1 2,I   : coordination  1 2,II   : anti-coordination  1 2,III   : competitive 

Table 4-2: Classification of 2x2 games by Calvó-Armengol (2006) 

Lemma 4-5 (Calvó-Armengol 2006, Lemma 1) Let  1 2, A A . Then, for the set of 

correlated equilibria (CE) of  1 2, A A  holds: 

     1 2, ,lCE A A CE    , for some  , ,l I II III .  

The restated result of Calvó-Armengol (2006) proves that the set   of 2x2 games can be 

partitioned into three equivalence classes for the set of correlated equilibrium strategies. It is 

easily verified that      1 2 1 2, ,III IIICE NE      , i.e. the sets of correlated equilibria and 

Nash equilibria coincide and the set consist of a single point in 3 , the 3-dimensional simplex of 

4
. Let  

 0 1 

0 00  01  

1 10  11  

Table 4-3: The canonical representation of a correlated strategy. 

                                                 

30 There is plenty of theoretical and empirical support for the relevance of the concept of correlated equilibrium. 
Aumann (1974) shows that a particular definition of Bayesian rationality generates outcomes identical to the set of 
correlated equilibria. This result was extended by Brandenburger and Dekel (1987) and Tan and da Costa Werlang, 
Sérgio Ribeiro (1988). Nyarko (1994) showed that Bayesian learning leads to correlated equilibria in normal form 
games. In an evolutionary context Lenzo and Sarver (2006) establish the correlated equilibrium as a natural solution 
concept. In particular they show that every interior stationary state, Lyapunov stable state, or limit of an interior 
solution is equivalent to a correlated equilibrium. This result is generalized by Koch (2008). They show for 
boundedly rational agents that a set of signal contingent strategies is asymptotically stable only if it represents a strict 
correlated equilibrium. 
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be the representation of a correlated strategy  00 11 10 01 3, , ,      . 

Lemma 4-6 (Calvó-Armengol 2006, Lemma 2)   1 2,ICE     if and only if 

  1
2

1,IICE   


  
    

  
, where    3 4 1 2, , , x x x x x  for   4

1 2 3 4, , , x x x x .  

Lemma 4-6 reveals that the class of coordination games and the class of anti-coordination games 

are isomorphic to one another. It thus suffices to characterize the set of correlated equilibria for 

one class. I will restate the result for the class of coordination games. A game  1 2,I    of that 

class has three Nash equilibria and two correlated equilibria, the probability measures of which 

are given in Table 4-4.  

 

 

 

(4.5) 

 

 

 

Table 4-4: Probability measures for correlated equilibria and Nash equilibria for a game  1 2,I   . 

Proposition 4-4 relates the 5 vertices given in Table 4-4 and the set of correlated equilibria.  

Proposition 4-4 (Calvó-Armengol 2006, Proposition 1)   1 2,ICE     is a polytope of 

3  with five vertices given in Table 4-4. 

Note that for symmetric games the class of competitive games is empty. By a similar argument as 

given in 4.4 symmetric coordination and anti-coordination games are free of the dilemma 

property. Hence a symmetric social dilemma must be in the set \ sym sym , the set of games with 

weakly or strictly dominated strategies. If a player has a strictly dominant strategy then by 

symmetry his opponent has the same strictly dominant strategy. Two cases can be distinguished. 

The first one corresponds to the classical Prisoners’ Dilemma, i.e. one of the diagonal outcomes 

is the unique correlated equilibrium payoff being Pareto-inferior to the other diagonal outcome. 

The second is given by payoffs where the equilibrium payoff is equal or even Pareto-superior to 

the non-equilibrium diagonal outcome, but where a correlation of out-of-diagonal outcomes 

yields higher payoffs for both players. In other words with respect to symmetric games both 

classes, that of dilemma and that of coordination grow whereas the class of what I referred to as 

unproblematic situations shrinks. Note that any strictly dominated strategy cannot be played with 

strictly positive probability in any correlated equilibrium of a finite game. Hence Lemma 4-2 also 

holds if the concept of correlated equilibria is applied. In particular the definition of the critical 

threshold for the required inequality aversion carries over. If two sufficiently inequality-averse 
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players are matched they play a game 
I  (see Table 4-2). Given the assumption that player 

randomize over the set of all equilibria, the derivation of expected material payoffs for the set of 

correlated equilibria is more involved. Due to the linearity of the inner product, the calculation of 

the expected payoff amounts to the determination of the center of mass of P , the polytope of 

Proposition 4-4. Equation (4.6) states this property formally, where  00 11 10 01, , ,a a a a   

denotes the payoffs associated with the payoff matrix A  of the game.  

 
   

1 1, , , CM

P P

E d d
Vol P Vol P

 

        
 

     (4.6) 

The following Lemma presents the center of mass for the polytope P .  

Lemma 4-7 Let  1 2,I    . Then the center of mass CM  of P  is given by:  

 

  

  

  

1 1 2 2 1 2 1 2 1 2 1 2

00

10 2
2 1 2 1 2 1 2 1 2

01

1
1 1 2 1 2 1 2 1 2

1 1 1 21
1 1 1 1 2 2

1 1 1 1
4 1 1 1 2 2

1 1 1
1 1 1 2 2

CM

CM

CM

           


 
        




        

 
    

         
   

    
                  

  
             

 (4.7) 

Given the center of mass, I can now compare expected profits in matches of individuals with 

potentially different degrees of inequality aversion.  

Proposition 4-5 Let  1 2, A A . Then:  

      1 2 10 01 10 01 2 1 10 010 0 0CM CME E a a a a                (4.8) 

The first equivalence follows from symmetry on the diagonal of the bimatrix representing 

 1 2,A A , i.e. only the weights of off-diagonal outcomes may account for a difference in 

expected material payoffs. Without loss of generality, I will focus on the case where 

 10 01 0a a  . In that case player 1 earns more than his opponent if and only if relatively more 

weight is put on outcome  1,0  that favors player 1. The second equivalence may be less 

obvious, but concerning this matter the vertices of F  and G  presented in Table 4-4 are already 

quite suggestive. Equation (4.7) reveals that this property of the weights 10  and 01  for vertices 

F  and G  respectively carry over to the center of mass.  

As already mentioned, if the concept of correlated equilibrium is applied there is another type of 

dominance solvable game next to the Prisoner’s Dilemma that constitutes a social dilemma. It 

turns out that the qualitative results for the Prisoner’s Dilemma type do not change, but gain in 

precision in the sense that the equilibrium distribution of the preference-parameter measuring the 

degree of inequality aversion can be characterized more precisely. This gain in precision stems 

from the fact that two individuals who are sufficiently inequality-averse to transform the 
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Prisoner’s Dilemma into a coordination-game no longer earn the same expected payoff when the 

concept of correlated equilibrium is applied (see Equation (4.8)). However, in the other case 

where the equilibrium payoff is equal or even Pareto-superior to the non-equilibrium diagonal 

outcome, but where a correlation of out-of-diagonal outcomes yields higher payoffs for both 

players, results change significantly. In particular it is the case that inequality-averse players face a 

global evolutionary disadvantage. I will refer to this case as the non-PD-case.  

Proposition 4-6 Let   symA  be a social dilemma. If  * *
1 2,s s   is stabilizable, then 

there exists a  0,1D  , such that the globally stable equilibrium in case of the Prisoners’ 

Dilemma is characterized by D   for all individuals in the population. In the non-PD-case the 

globally stable equilibrium is characterized by   1DF   .  

In other words, in case of the PD a precise value of inequality aversion is selected by evolutionary 

forces. This value corresponds to the lowest value that suffices to transform the dilemma into a 

coordination-game. In the non-PD-case stabilization of the material non-equilibrium outcome 

implies an evolutionary disadvantage of inequality aversion, i.e. the reverse result. The intuition 

behind this is, that it is relatively advantageous for inequality-averse individuals if a relatively low 

weight is put on the disadvantageous one of the two off-diagonal outcome which on average 

earns higher profits then the unique PD-outcome. In other word it pays off to be relatively 

opportunistic among the inequality-averse players, because than more weight is put on the off-

diagonal outcome which is relatively advantageous. Consequently, while more successful players 

are selected by evolution less weight is put on the off-diagonals, ultimately leading to a 

randomization among the two diagonals. This randomization is advantageous in the PD and 

disadvantageous in the non-PD-case.  

The analysis of the class of social dilemmas reveals that results may change when a different 

concept of equilibrium is applied. With respect to generalizability of the results for the Nash 

equilibrium concept the preliminary results are ambiguous. On the one hand, the results for the 

Nash equilibrium carry over to the correlated equilibrium in case of the Prisoners’ Dilemma. 

Interestingly, I obtained a huge gain in precision with respect to the prediction of the stable 

distribution of preferences. Whereas in the Nash case the distribution could be characterized up a 

threshold, this threshold was picked as the unique equilibrium value in case of correlated 

equilibria. On the other hand, a new case which constitutes a dilemma in case of correlated 

equilibria but not under Nash equilibria emerges. In this case the reverse result with respect to 

the evolutionary advantageousness of inequality aversion was obtained. Thus, the chosen 

equilibrium concept appears to have some impact on the results. A detailed analysis for all classes 

of games is left for future research. However, the effect on the precision of prediction regarding 

equilibrium distribution of preference observed when applying the notion of correlated equilibria 

will to some extent also be present when the play of mixed strategies is allowed. This role of 

randomized play points to the assumption for the problems of coordination and distribution 

respectively to be strict, which is discussed in the next section.  

4.6.3. Strictness  

For agents to apply mixed strategies, players need to be indifferent between the involved pure 

strategies. The involved probabilities equalize the expected payoffs of the pure strategies and are 
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sensitive to marginal changes in payoffs whereas best responses in a strict Nash equilibrium 

change only in a discrete manner. As a consequence the set of equilibria is more elastic with 

respect to changes in the preference parameter when mixed equilibria are considered. To see this, 

consider a symmetric problem of coordination. As mentioned in Section 4.3.4 the requirement 

for such a problem to be strict excludes the case where two players transform the problem of 

coordination into a game with a unique mixed equilibrium given their degree of inequality 

aversion. This is the case if and only if an inequality-averse player who destabilizes both material 

equilibria is matched with a selfish player who destabilizes none of the material equilibria (see 

proof of Proposition 4-2 in Appendix B). The unique mixed equilibrium is given by  *
1 2,E    

for a game  1 2,I    (see Table 4-4 and Lemma 4-6 for a game  1 2,II   ). Note that a game 

of type  1 2,I    is always strict since any degree of inequality aversion will increase the 

strictness of the two symmetric equilibria on the diagonal of  1 2,I   . Hence I concentrate on 

non-strict problems of coordination of type  1 2,II   , i.e. I analyze anti-coordination games 

such that both pure Nash equilibria are contestable by each player individually. If both equilibria 

are contestable by one player, by symmetry they are also contestable by the opponent.  

Proposition 4-7 Let   symA  be a problem of coordination such that both equilibria 

are contestable by one player.  

(1) If the equilibria are less strict for those player who are favored in the equilibria then no 

additional stable equilibria arise. In particular there is no stable distribution of preferences 

that assigns a positive share to players by whom both equilibria are contested. 

(2) If the equilibria are less strict for those player who are disfavored in the equilibria then 

additional stable equilibria arise. In particular there may be a stable distribution of 

preferences only with players by whom both equilibria are contested. Furthermore there 

may be a stable distribution of preferences where player who contest none of the 

equilibria and players who contest both equilibria coexist. No stable equilibrium 

distributions exist with all three types of players, those who contest none equilibrium, 

those who contest one equilibrium and those who contest both equilibria.  

In case (1) of Proposition 4-7 giving up strictness has no consequences with respect to the 

characterization of the stable distribution of preferences. However, in case (2) the results 

presented in Proposition 4-2 experience two qualifications. First, there is a minor qualification 

with respect to the existence of an inner equilibrium where opportunistic and inequality-averse 

individuals coexist. In a non-strict problem of coordination there may also be a stable equilibrium 

with highly inequality-averse players who so far were excluded from analysis and opportunistic 

players. Second, and this is a major qualification, the result implied by Proposition 4-2 that 

inequality-averse individuals may at most partially be present in equilibrium is put into 

perspective. In case (2) of Proposition 4-7 there may be a stable equilibrium with only (highly) 

inequality-averse individuals. However, it still holds for medium inequality-averse individuals, i.e. 

player who contest one equilibrium, that they may at most partially be present in equilibrium. 

Thus, the assumption for problems of coordination to be strict implies that the evolutionary 

success of inequality aversion is underestimated. This transfers to the simplified game of life and 
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introduces another case how inequality aversion could be stabilized among high types in the 

problem of distribution.  

I will now discuss the consequences of relaxing the restriction for problems of distribution to be 

strict. In particular I am interested in whether the strong prediction of an evolutionary 

disadvantage for inequality-averse high types carries over to non-strict problems of distribution. 

Proposition 4-3 revealed that with one exception the distribution of inequality aversion among 

high types is characterized by   1R

H HF   , i.e. only relatively opportunistic players are present in 

equilibrium. This exception occurs if the two pure Nash equilibria are Pareto-ranked. If equilibria 

are not ranked then the distribution always shows the property of an evolutionary disadvantage 

of inequality aversion among high types. In any case, the prerequisite was that one of the material 

equilibria is contestable by high types. Given up strictness now allows both equilibria to be 

contestable by the same player. However, only low types may contest both equilibria since for 

high types in any case at most one equilibrium is contestable. If equilibria are not Pareto-ranked it 

is the more equally distributed equilibrium that is not contestable, if equilibria are ranked it is the 

Pareto-superior equilibrium.  

Proposition 4-8 Let  1 2, A A  constitute a non-strict problem of distribution, such that 

the pure Nash equilibria are not Pareto-ranked. Then the globally stable equilibrium distribution 

is characterized by    1R

H HF   . 

Proposition 4-8 shows that the disadvantage of inequality-averse high types transfers to non-strict 

problems of redistribution if equilibria are not Pareto-ranked. However, next to the two cases 

distinguished in Lemma 4-4 there is a third class of games that may constitute a problem of 

distribution if strictness is given up, namely that of a competitive game (see Table 4-2) with the 

unique Nash equilibrium being in mixed strategies. This case and the one with Pareto-ranked 

equilibria are left for future research. 

4.6.4. Modelling inequality aversion 

Finally, dropping the assumption that individuals care about favorable and unfavorable inequality 

in the same way has interesting consequences. In what follows I will elaborate on the 

consequences of a more complex model of inequality aversion proposed by Fehr and Schmidt 

(1999)31, i.e.                , , , , , ,max ,0 max ,0 ,   , 0,1n n n n n n n n n n

i j i j i j i j i j i j
u a a a a a          . Thus, 

individuals preference for equality is no longer characterized by the single parameter  , but by a 

pair  ,  . Consider again the symmetric prisoners’ dilemma. In this game the Pareto-superior 

outcome can be stabilized by sufficiently inequality-averse players as they devaluate the material 

gain from defecting on a cooperative opponent due to the induced inequality generated by such a 

defection. Hence, in case of a symmetric dilemma not inequality aversion per se but aversion 

against favorable outcomes is required to support cooperation. With respect to problems of 

coordination two cases were distinguished in Proposition 4-2. In the first case, the destabilized 

                                                 

31 Note that the concept of inequality aversion of Bolton and Ockenfels (2000) implies symmetry, but it is left for 
further research whether this notion will change qualitative results of the evolutionary analysis. 
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equilibrium is materially favorable for inequality-averse players. Hence, in that case an aversion 

against favorable inequality is decisive. In the second case the reverse holds, i.e. the destabilized 

equilibrium is materially favorable for selfish individuals. Hence in that case an aversion against 

unfavorable inequality becomes relevant. For problems of distribution there is no such clear 

assignment for the thresholds of Proposition 4-3. To see this, consider the example given in 

Table 4-5 which belongs to the first case in Proposition 4-3. In the example the column player is 

the high type and the row player is the low type. Furthermore the game presented in Table 4-5 

has two pure non-pareto-ranked Nash equilibria on the diagonal. I consider the case where none 

of the equilibria is contestable by high types and the  0,0  is contestable by low types.  

 0 1 

0 

2A A a   

 

2B B b   

 
1a A a   1b B b   

1 

2C C c   2D D d   

1c C c   1d D d   

Table 4-5: , , , ,     A B D C a c d b a d D A        

The  0,0 -equilibrium is contested by a low type if and only if: 

 
1 1a A a c C c       (4.9) 

The example implies that 0A a  , but no relation for C c . If the outcome of playing  1,0  

also favors high types, i.e. 0C c   then (4.9) becomes  

    1 1a A a c C c       (4.10) 

This suggests that if high types are favored no matter which strategies are played, then the 

threshold R

L  in Proposition 4-3 refers to inequality aversion concerning favorable outcomes.  

If however the reverse is true, i.e. 0C c   then (4.9) becomes  

    1 1a A a c c C       (4.11) 

In this case both parameters become relevant and no clear assignment to the thresholds in 

Proposition 4-3 is possible. Rewriting (4.11) as  

 1 1a c c C

A a A a
 

 


 
 (4.12) 

reveals that the threshold R

L  needs to be substituted by a linear condition, described by (4.12) 

when considered as equality, which separates the two dimensional parameter space characterizing 

the preference for equality by  ,  -pairs. Thus, individuals with  ,   located above (below) 

that line can(not) contest the equilibrium. 

2A A a  2A A a 
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A similar argument applies to high types. If the example above is changed in a way such that the 

 0,0 -equilibrium becomes contestable for the high type it again depends on the sign of the 

difference in payoffs of the outcome which is realized if a high type is sufficiently inequality-

averse such that  0,0  is indeed destabilized, i.e. on the sign of B b . If 0B b   then  0,0  is 

destabilized by a high type if and only if    2 2A A a B B b      . Thus, for the example 

R

H  in Proposition 4-3 refers to inequality aversion concerning favorable outcomes. As for low 

types, if the reverse holds, i.e. 0B b  , then both parameters become relevant and R

H  needs to 

be substituted by a linear condition in the fashion of (4.13).  

In summary the thresholds of inequality aversion I derived for a dilemma ( D , see Proposition 

4-1) and a problem of coordination ( C , see Proposition 4-2) still remain valid but will under the 

more complex model of inequality aversion refer to the parameter measuring aversion regarding 

favorable or unfavorable inequality. Thus the precision of the prediction increases as in the more 

complex model statements will refer not only to the level but also to the type of inequality 

aversion. The example for a problem of redistribution indicates that in the  ,  -model of 

inequality aversion the thresholds R

L  and R

H  may transfer to thresholds regarding   for low 

types and   for high types or need to be replaced by a linear condition on the relation of   and 

 . For problems of redistribution a detailed analysis is left for future research. Proposition 4-9 

below summarizes these insights formally.  

Proposition 4-9 Let   symA  be a social dilemma, then D D  . Let   symA  be 

a strict problem of coordination. If equilibria are contestable then: 

1. if the destabilized equilibrium is materially favorable for inequality-averse individuals then 
D D  . 

2. if the destabilized equilibrium is materially favorable for selfish individuals then C C  . 

In summary, with respect to the assumption of an uniform distribution over the set of all pure 

Nash equilibria, it turned out that neutrality of the distribution concerning the evolutionary 

success of inequality aversion implies symmetry and symmetry implies uniformity if 2x2 games 

are considered. With respect to generalizability of the results for the Nash equilibrium concept 

(Proposition 4-1-Proposition 4-3) the preliminary results (Proposition 4-6) are ambiguous and 

further research is needed to fully understand the sensitivity of the results regarding the 

coarseness of the applied equilibrium concept relative to the Nash equilibrium. Concerning the 

assumption on the problem of coordination to be strict, the degree of disadvantageous of 

inequality aversion (Proposition 4-2) is put into perspective as in a non-strict problem of 

coordination there may exist a stable equilibrium with only inequality-avers players. However, this 

requires that the equilibria are less strict for those players who are disfavored in the equilibria (see 

case (2) in Proposition 4-7). If the reverse is true though, no additional equilibria arise if the 

assumption of strictness is relaxed. Proposition 4-8 proofs that the strong prediction of an 

evolutionary disadvantage for inequality-averse high types also holds for non-strict problems of 

distribution if equilibria of  1 2, A A  are not Pareto-ranked (Proposition 4-8). Finally, if a model 
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of preferences is applied that distinguishes between aversion against favorable and unfavorable 

inequality, then the results of Proposition 4-1 (dilemma) and Proposition 4-2 (problem of 

coordination) carry over. However, the parameter measuring inequality aversion in the simplified 

model is replaced by either the parameter for aversion against favorable or by the one for 

unfavorable inequality. For problems of distribution the discussion in 4.6.4 suggests that the 

thresholds of Proposition 4-3 are either replaced by a threshold referring to aversion against 

favorable inequality or by a linear constraint relating the two parameters of the alternative model 

of inequality aversion.  

 

4.7. Conclusion 

The purpose of the paper was twofold. Following the argument for a requirement to analyze the 

evolution of preference in an environment that comprises at best all relevant classes of games 

individuals engage in, I have suggested a particular notion of a simplified game of life. The 

simplified game of life as I have defined it comprises three classes of games: a symmetric 

dilemma, a symmetric and strict problem of coordination and a strict problem of distribution. 

Second I have analyzed the evolution of a particular type of other-regarding preference namely 

that of inequality aversion in the 2x2 simplified game of life.  

The analysis in the separate environments revealed that if inequality aversion has a leverage on 

the set of equilibria played, then inequality aversion enjoys a global evolutionary advantage over 

more selfish preferences in a dilemma. In the class of problems of coordination inequality 

aversion surprisingly faces a weak evolutionary disadvantage in the sense that at most a stable 

inner equilibrium exists where relative inequality-averse and relative selfish players coexist, in all 

other cases relatively inequality-averse players will eventually disappear. In the problem of 

distribution a preference for equality will always be favored by evolutionary selection dynamics 

among those individuals disfavored by the problem. For those individuals favored in the problem 

of distribution in all cases up to one inequality aversion will eventually disappear. I consider these 

predictions in the light of the considered generality as rather strong. Furthermore, due to the 

exemplary variations of assumptions discussed in Section 4.6 these predictions appear quite 

robust. Note that among the eight loci a linear function can take in the unit interval one is 

selected for a dilemma, three for problem of coordination, two for high types in the problem of 

distribution and three for low types.  

The simplified game of life that comprises all three types of interaction, on the one hand as 

expected gives rise to a greater variety in potential equilibrium distributions of preferences. In 

particular the surprisingly strong predictions for the single environments are put into perspective. 

The global advantage of inequality-averse players in the dilemma and the global disadvantage for 

inequality-averse high types in almost all cases experiences significant qualification. In particular 

whenever the interplay of the dilemma and the problem of distribution allows for a locally stable 

equilibrium with only inequality-averse players then this transfers to the simplified game of life, 

i.e. inequality aversion may also be present among high types. On the other hand the expected 

stabilization of inner equilibria in which relatively inequality-averse individuals and relatively 

selfish individuals coexist occurs if and only if the problem of coordination shows the same 

feature, i.e. the coexistence of both types. The reason for this is that advantageousness in the 

dilemma is increasing and the disadvantageousness in the problem of distribution is decreasing in 
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the share of inequality-averse players. For an inner equilibrium a decreasing advantageousness 

that eventually turns into a disadvantage is required though. 

The contribution of the paper is threefold. First, the different results in the single-game 

environments and in the simplified game of life again underpin the necessity to carefully select 

the relevant game environment in any study of the evolution of preferences. Otherwise any 

negative or positive results with respect to the rationalization of a particular preference may only 

point to a potential evolutionary force, which however may not be decisive if all relevant 

environments are considered. Second, the paper contributes methodologically to the field of 

evolutionary economics by making a precise suggestion of an evolutionary framework for the 

study of the evolution of preferences. Third, the paper gives an evolutionary rationale for the 

presence of inequality aversion within the compound environment of the simplified game of life.   
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A. Appendix to Chapter 2 
Proof of Proposition 2-1: The demand system (2.3) in vector notion is given by: 

e e

g g

p X
A b

p X

   
    

   
. According to Okuguchi and Szidarovszky (1990, p.34), given the linear 

structure of the model, negative definiteness of TA A  is sufficient for uniqueness of the Cournot 

equilibrium. Eigenvalues of TA A  are given by 
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inspection.  QED 

Proof of Lemma 2-1: 
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Equilibrium prices of system (2.3) are given by: 
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Proof of Lemma 2-2: The proof is given in the paper. QED 

 

Derivation of vertices of MES:  

The lower left vertex (point A) is given by 
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The upper left vertex (point B) is derived by similar conditions,   0Bq q  ,   0Bq q   and 

 1 0gX  . The first two conditions are reduced to: 
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this value into   0Bq q  . This gives us the third vertex: 
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We can solve for the upper right vertex (point C) only for 0  . It is given by the intersection of 

 ,e Max g   and  ,e Min g  , characterized by solutions to   0Maxq q   and   0Minq q  . It follows that 

such a  ,e g  pair is given by three conditions   0Cq q  ,   0Cq q   and   0Cq q  . We can 

solve for IPq  explicitly: 
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Proof of Lemma 2-3:  

The situation where MES is empty corresponds to the case point A, B and C are equal, i.e. where 

1Max Min IPq q q   ,  1 0q   and  1 0gX  . The latter two conditions provide a solution for g  as 
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, where  g en    . Solving these two equations for   yields the critical value stated in the 

lemma.  QED 
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Proof of Lemma 2-4:  

For 0  , the approximation strategy is described in the paper. We therefore present only the 

general solution for the tangent point D:  
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To find such a point, we apply the following approach: First, we express two of the conditions 

for the inflection point C    0, ' 0q q q q   in terms of  g q . With these two conditions, we can 

solve for e . However, we still have to find a q that will be greater than qIP and independent of 
e  and g . 

For the general case 0  , we again choose q such that we can be sure that it will correspond to a 

point on the graph of  ,e Max g  . This can be achieved by choosing  
B

g  as a lower bound for 

g  and e  as a lower bound for e .  
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This gives us a lower bound for the maxima that correspond to  ,e Max g   independent of e  and 

g . We can then calculate the slope at point D: 
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Proof of Lemma 2-5: Inserting equilibrium quantities given in (2.13) into (2.24) and 

reformulation yields equation (2.25). QED 

Proof of Lemma 2-6:  

(1.) At the discontinuities we have eq
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(2.) The distance between two discontinuities is a natural multiple of e
k   because 

e
dm

dq k




  

and thus m
  reaches the next integer at this frequency. Finally, for 0e  , the lower limit at the 
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Since m
  grows in q , the size of the “jumps” declines in q . For 0e  , exactly the opposite is 

true. QED 

 

Derivation of the partial effects on the critical value .crit : 

            

     

 

    

2 2 2

.

2

2 2 2
1 1 0

22 0

1 1 2 1 1 4 1

2 1 1

1
    

2

e

g e

e g e e g e

g e

cri

x CB

n

e

t

n

y

CB n n CB n n CB

CB n n CB

x y x y CB

CB y x



 

     

  






   

  

         


   

   




 



Appendix to Chapter 2 

95 
 

 

 
     

 

 
  

 
 

 

 
 

.

2
2 2 2 2 2

2 2 2
.

22

2 2
2 2 2 2 2 2 2

2 2 2

22

2 2
2

1. : 0 :

2 ' 1
' 2 1 '

2 1

2

2 ' 1 2
' 2 ' ' ' 1

2 1

2

2 ' 1
2 '

crit

crit

g

g

claim

yy CB
y CB y x x y x y CB CB y

x y CB

CB y x

yy CB CB y x
y CB y x xCB y yCB y CB y x y CB

x y CB

CB y x

yy CB CB y
CB xy














 
 

      
 
  

  


 

 
      

 




 
 



 

 
 

 

         

         

     

   

2 2 2 2

2 2 2

22

' 0
2 2 2 2 2 2 2 2 2 2

0
2 2 2 2 2 2 2 2 2 2

2 2 2 2 2 2

2 2 2 2

2
' 1

2 1
0

2

2 '2 1 2 ' 1 2 '2 1 0

2 1 1 2 1 0

2 1 2 1 0

2 1 2 1

y

x

x
CB y x y CB

x y CB

CB y x

CB xy x y CB yy CB CB y x CB y x y CB

CB x x y CB y CB CB y x CB x y CB

CB x y CB y CB xCB

CB x y CB y





  
 

 


          

          

       

     

       

          

2 2

222 2 2 2 2 2

22 22 2 2 2 2 2 2 2

2 1 2 1

2 1 2 1 1 2 0

CB xCB

CB x y CB y CB xCB

CB x y CB y CB xCB CB x yCB

  

      

         
 



Appendix to Chapter 2 

96 
 

 
      

 

 
 

      

 

 

.

2
2 2 2 2

2 2 2
.

22

2
2 2 2 2 2

2 2 2

22

2
2

2 2

2 ' 2
' 2 1 2 2 '

2 1

2

2 ' 2
' 2 2 1 2 2 '

2 1
0

2

2 ' 2
' 2

2

2. : 0
crit

crit

CB

xx CBy
x CB y x x y x y CB CBy x

x y CB

CB CB y x

xx CBy
x CB y x CB y x x y x y CB CBy x

x y CB

CB y x

xx CBy
x CB y x

x y

claim









       

 


 


        

 
 






 





 
 
 
 

 
         

 
           

 

               

2 2 2

2 2 2 2

2

2
2 2 2 2 2

2 2 2

2 2 2 2 2 2 2 2 2

*2 1

2 2 2 ' 2 2 ' 1 0
1

2 ' 2
2 2 2 ' 2 2 ' 1 0

2 1

2 ' 2 2 2 2 ' 2 1 2 2 ' 2 1 0

2 '

x y CB

CB y x CBy x x y CBy x x y CB

CB

xx CBy
CB y x CBy x y CB x y CBy x x y CB

x y CB

xx CBy CB y x CBy x y CB x y x y CB CBy x x y CB

xx

 

        






          

 

             







         

      

     

      

 

2 2 2 2 2 2

2 2 2 2

:2 , 0

2 2 2 2 2 2 2

2 2 2 2

2 2 2

2 2 2 2 2 ' 2 2 2 ' 2 1

2 2 ' 2 1 0

2 ' 2 2 2 2 2 2 ' 2 2 2 ' 2

2 2 ' 2 1 0

' 2 2

y y

CB y x CBy CB y x CBy x x CBy x y CB

CBy x y CB x y x y CB

xx CB y CBy CB y x CBy x CBy x y CB CBy x y

CBy x y CB x y x y CB

xx CB CBy CB y x CB x



      

      







       

      

        

      

2

2 2 2 2

2 2 ' 2 2 '

2 2 ' 1 0

CBy x y CB CBy x y

CB x y CB x x y CB

  

      

 
  

      

   

      

'
1

2

0, ' 0

2 2 2 2 2 2 2

1 1

2 2 2 2

2 2 2 2 2 2

2 2 2 2

'

' 2 2 2 2 2 ' 1

2 2 ' 1 0

' 2 2 2 2 2 1

2 2 ' 1 0

  
x

x
CB

x

CB CB

xx CB

xx CB CBy CB y x CB x CBy CB CBy x y CB

CB x y CB x x y CB

xx CB CBy CB y x CB x CBy CB CBy xy CB

CB x y CB x x y CB

 


 

  







 
        
 
 

      

       

      



        2 2 2 2 2 2 2

0

2 2 2 2 2 ' 1 0CBy CB xy x CB CB x y CB x x y CB



         

 

In the next step, we first rearrange the term on the left-hand side of the last inequality and 

second, we distinguish two cases to establish the strict positivity of the term.  
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B. Appendix to Chapter 3 

B.1 Proofs 

Proof of Lemma 3-1: Full cooperation can only be achieved with only high-types present in the 

population, i.e. 1  . There are only two equilibria which support cooperation among high-types 

that are supported at 1   under certain conditions and potentially exhibit a fitness advantage for 

high-types (necessary for local stability), the separating cooperative equilibrium and the high 

pooling cooperative equilibrium. With respect to the former, the support condition amounts to 

1 1
1

k
k 


   


, and the fitness condition to 1k   (see Table 3-3). With respect to the latter, 

the support condition amoutns to 1k   , and the fitness condition to 

  0k k k k           . If k k    stability requires a strict positive difference 

in fitness payoffs for high-types for   close to 1 , i.e. 0   . QED 

Proof of Lemma 3-2: The first pair of inequalities m k k
m




 
  

 
 arises from the 

condition of the root (1 k k 

 

 



) of the fitness difference for the high pooling cooperative 

equilibrium to lie in the support of this equilibrium, i.e. 
 

max , 1 1
1

k k k

m

 

    

    
   

     

. Stability requires a negative slope of the fitness difference function, i.e.   . Let us first 

consider 
 1

k

m



  


  
. In this case, the within-support condition amounts to 

1 1k k

m

 

   

 
  

  
, rearranging yields m k k

m




 
  

 
. If on the other hand 

 1
k

m



  


  
 , the within-support condition amounts to 1 1

1
k k k 

  

 
  

 
, rearranging 

yields  
1

k
k k   


    


. Summarizing gives us m k k

m




 
  

 
 and 

 
1

1 1
k

k k k k


   
 


      

 
. Note that m k k

m




 
  

 
 implies that 

0   , because     0
m

m m
m


       

 



       
 

 QED 

Proof of Lemma 3-3: For an inner  -stable equilibrium to exist at 
1

k






 , we need (1) the 

connectivness of the supports of the involved equilibria, (2) a fitness advantage for high-types to 

the left of 
1

k






, (3) a fitness disadvantage for high types to the right of 

1
k







 and finally 

(4) for being an inner equilibrium  0,1
1

k



 


. (1) gives us 

1
k

m



  


  
, (2) yields 

0
1

k
k


 


, (3) amounts to   0

1 1 1
k k k

k k


  
  


      

  
, if high-types and 
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low-types fare equally well at 
1

k






, then for stability, high-types need to earn strictly less to 

the right of 
1

k






. In essense, if 

1 1
k k 

 




 
, then 0   , (4) is equivalent to 1k   . 

(1) and (3) are equivalent to 

if = then 
  >1 1

k k

m
 

 

   


 

   
 (*) 

(2) and (4) are equivalent to  

1
1

k
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 (**) 

Note that (2) and (3) imply (4), hence what remains is: 

if = then 
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1 1
k k
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 and 

1
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B.2 Stable semi-pooling p-equilibria 

 Equilibrium Support Conditions for existence Payoff differentials (superscript “f” 

indicates difference in fitness payoffs) 
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B.3 Stability of p-equilibria 

In this appendix we are concerned with stability of the p-equilibria derived in Appendix A. Before 

we start we will make some comments on the dynamics and on our way of argument. The dynamics 

among high types is described by eight differential equation, seven being independent, one for each 

of the eight signal-dependent strategies  ,  ,  , CCm CDm DCm DDm  and  ,  ,  , CCm CDm DCm DDm . Due to 

the dominance of defection among low types there are only two differential equations, one being 

independent, reflecting the signaling behavior. Since it is assumed that the evolution of the share of 

high types is comparably slow to the evolution of the shares adopting the different strategies these 

seven independent differential equations for high types and the one for low types give rise to a 

coupled system of differential equation which itself consists of the two aforementioned systems 

(high and low types). We are confronted with two types of equilibria, on the one hand equilibrium 

points, i.e. an equilibrium that specifies a precise level for each share    , , , , , ,XYmp m m m X Y C D   

among high types and  , ,mp m m m  among low types. There are on the other hand equilibrium set, 

i.e. non-singleton subsets of 10 . We apply the notion of asymptotical stability as a stability concept. 

An equilibrium point is a fix point 
fp  of the dynamical system     p t F p t  and is said to be 

asymptotically stable if it meets two conditions. First it needs to be Lyapunow-stable, i.e. 

     0, 0: 0 , 0,f fp p p t p t p t                being a trajectory, second it needs to 

be an attractor, i.e. 0:   any trajectory  p t  with  0 fp p    then   0f t
p t p


  . The 

definitions for an equilibrium set are accordingly (see e.g. Samuelson 1997). To proof stability or 

instability of an equilibrium we will rely on phase diagrams. We will proof instability by arguing that 

the system cannot be Lyapunow-stable. In case of an equilibrium point in the interior of the support 

of the equilibrium the involved strategies earn strictly higher payoffs then non-equilibrium strategies. 

Small perturbation will not alter this property. Payoff monotone dynamics will decrease the share of 

the non-equilibrium strategies. Hence for analyzing the stability properties in that case it suffices to 

consider the involved equilibrium strategies and whether the dynamics will reestablish the 

equilibrium values given a small perturbation. At the boundaries of the support of an equilibrium 

point a non-equilibrium strategy will earn the same profits as the equilibrium strategies. In that case 

these strategies needs to be included in the analysis. However with respect to all other strategies the 

previous argument still applies.  

In the first cell of the first row in the following tables equilibrium strategies can be found. In second 

cell the precise values or set conditions are given. The third cell contains the support of the 

equilibrium. The last cell may state some additional conditions concerning the existence of the 

considered equilibrium.  
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1. Separating Equilibria 
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 1 1
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1k m   

This equilibrium is certainly stable in the interior range 
1 1

k k
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 since all inequalities hold strict. At the upper boundary 

1
k







 low types are 

indifferent between sending the signal and not sending. Any deviation from 1mp   would need an decrease in 
CDmp  to reestablish 1mp  . However, for 

small such changes CDm  is still the dominant strategy for high types, hence 1CDmp   persists and there is no force bringing back 1mp  . Hence at 

1
k







 this equilibrium is not stable. At the lower boundary 
1
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m
 


 high types are indifferent between CDm  and DDm :
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 Consider any small increase by random shift in DDmp  , this will lower profits for CDm  and leave profits 

for DDm  unchanged, hence equilibrium will not be restored. In other words at 
1

k

m
 


 this equilibrium is not stable.  
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Hence we obtain the following phase diagram:  

                                                                                As the diagram clearly indicates, this equilibrium is unstable for all   in the support.  

  

 

 
 

 

 

Shifts downwards 

with  

 

 
 

 

 
Shifts upwards with 

 

Note:

 
     1 1

m k k

m

  


     

 
  

     

   1 1
k k

m m m

  

       


  

        

 



Appendix to Chapter 3: Stability of p-equilibria 

103 
 

2. Pooling Equilibria 

,CCm DCm

m  
1CCm DCmp p 

  m




 


   
 

This set of equilibria is stable for 
 m




 


 
 since all inequalities hold strictly, i.e. for any small perturbation the equilibrium strategies earn strictly 

more than any other strategy. Note that not necessarily the pre-perturbation shares are reestablished, but that the sum of their shares equals unity.  

At the boundary 
 m




 


 
 agents become indifferent between /m mCC DC  and /m mCD DD . 

Low types still strictly prefer not to signal.  

           
 

, , 0 1 0m m CCm DCm CDm DDm CCm DCmCC m CD m p p m p p p p
m


    

  
                    

Note that at 
 m




 


 
 a perturbation from 

mCC  towards 
mDD  decreases the  

payoffs for the equilibrium strategies strictly more than for the 
mDD -strategy and decreases  

profits for all other strategies weakly more, i.e. those strategies still earn strictly less than 
mDD , 

 and the share of 
mDD  increases. Hence there is no force reestablishing the equilibrium set.  

As the diagram clearly indicates this equilibrium set is stable for 
 m
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Hence we obtain the following phase diagram:  
 
 

As the diagram clearly indicates, this equilibrium set is stable for all   in the support. 
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Differences depend only on two shares. As the diagram clearly indicates this equilibrium set is 
unstable. 
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Hence we obtain the following phase diagram:  
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and no signaling. As soon as low types start not to signal CDm   

earns strictly higher payoffs than CCm  such that the incentive for low  
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Hence we obtain the following condensed phase diagram:  
As the diagram clearly indicates this equilibrium is unstable.  
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3. Semi-Pooling Equilibria (The denotation of the following equilibria in the first column refers to the corresponding subsection in App. A.) 
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Note that the payoffs for non-signaling high types is independent of their own 
share. However payoffs for all other behavioral strategies strictly increase in the 

share 
CDmp  and weakly decrease in 

DDmp . Hence if the set is perturbed such that 

the equilibrium level for 
CDmp  is exceeded than there is no force bringing it back 

to that level. Hence this set of equilibria is unstable.  
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Note that the payoff for non-signaling high types is independent of 
their own share. However payoffs for all other behavioral strategies 

strictly increase in the share 
CDmp  and weakly decrease in 

DDmp . 

Consider a perturbation such that the equilibrium level for 
CDmp  is 

exceeded and 
DDmp  decreases. Payoffs for signaling high types strictly 

increase and there is no force bringing 
CDmp  back to that level. Hence 

this set of equilibria is unstable. 
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Hence we obtain the following phase diagram:  
 
 
 
 
 
 
 
As the diagram clearly indicates this equilibrium is stable.  
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We obtain the following phase diagram (derivation below):  
 
 
 
 
 
 
 
 
 
 
 
 
 
As the diagram clearly indicates this equilibrium is unstable.  
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Hence we obtain the following phase diagram:  
 
 
 
 
 
 
 
 
 
 
 
 
 
We saw for the previously analyzed equilibrium with strict inequality with respect to the signaling decision among low types that this equilibrium 
is unstable. The question here is whether the indeterminacy of the low types in equilibrium could have a stabilizing effect. It turns out that it 

doesn’t. The reason is that if 
mp  decreases the new intersection of the iso-profit lines (not an equilibrium) lies in the fourth quadrant relative to 

the equilibrium point. We will argue for the most favorite scenario that an adjustment in 
mp  will not stabilize the equilibrium. Consider therefor 

a perturbation of the type indicated by the red arrow. For such an perturbation equilibrium will not be restored in the absence of an adjusting 

mp . What kind of adjustment is most favorable with respect to stabilization? The instability can only be circumvented if the induced shift of the 

intersection point of iso-profit lines and thereby a shift of regions with the depicted dynamics would bring the pertubated point into a region 
with dynamics point at the equilibrium. Most favorable is a strong and fast movement to right at the boundary of the fourth quadrant (indicated 
by the green arrow). It is important to note that even this most favorable movement cannot induce the pertubated point to be pushed into a 

region to the left of the dotted line (unaltered by changes in 
mp ), because than 

mp  would start to increase again. And if this is assumed to be 

fast and strong, than the iso-profit lines will be shifted back towards its equilibrium locations. In other words the only thing that can happen is 
that the population state pointed at by the red arrow is find itself in the area between the    , CD,m mDC m m   -isoline and the dotted line. 

However this will not lead to a reestablishment of equilibrium but to further movement away. The same argument applies to the second 
diagram.  
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We obtain the following phase diagram (derivation above):  
 
 
 
 
 
 
 
 
 
 
 
 
 
As the diagram clearly indicates this equilibrium is unstable.  
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As the diagram clearly indicates this equilibrium is unstable.  
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Hence we obtain the following phase diagram:  
 
 
 
 
 
 
 
 
 
 
 
 
As the diagram clearly indicates this equilibrium is unstable.  
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Hence we obtain the following phase diagram:  
 
As the diagram clearly indicates this equilibrium  
is unstable. If in the course of the dynamics the  
dotted line is crossed, low types start to prefer  
not to signal since signaling is not often enough 
rewarded by CDm -player and too often punished 

by DCm -player. The induced decline in the share  

of signaling low types will shift all three constraints  
downwards.  
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See Appendix B.4  

Hence we obtain the following phase diagram:  
 
 
 
 
 
 
 
 
 
 
 
 
 
We will apply here the same logic as in the case for the equilibrium 4.3.1.2. Consider a perturbation that pushes the population state in the lower 
triangular region (red arrow). Given that low types will strictly prefer not to signal, which in turn shifts the intersection point of the iso-profit 
lines into the first quadrant relative to the equilibrium. As the picture clearly indicates this will not help to stabilize the equilibrium.  
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In comparison to 4.6.1.1. the three lines corresponding to equal profits among the equilibrium strategies shifts such that the equilibrium lies 
below the dotted line, which is constant with respect to changes in the share of signaling low types.  
Hence we obtain the following phase diagram:  
 
 
 
 
 
 
 
 
 
 
 
 
As the diagram clearly indicates this equilibrium is unstable. If in the course of the dynamics the dotted line is crossed, low types start to prefer 

to signal since signaling is often enough rewarded by CDm -player and not too often punished by DCm -player. The induced incline in the share 

of signaling low types will shift all three constraints upwards.  
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Hence we obtain the following phase diagram:  
 
  
 
 
 
 
 
 
 
 
 
 
Since the phase diagram is ambiguous with respect to stability we will study the Eigenvalues of the linearized system.  
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Hence at least one of the Eigenvalues is strictly positive and therefore this equilibrium is unstable.  
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Hence we obtain the following phase diagram:  
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Hence we obtain the following phase diagram:  
 
 
 
 
 
As the diagram clearly indicates this equilibrium is unstable.  
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B.4 Derivation of p-equilibria 

SEPARATING-EQUILIBRIA 

1. High types signal, low types don’t (HSE - high separating equilibrium)  
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For a separating equilibrium where high types send the signal and low types don’t there are only two not dominated strategies left, ,CD m  and ,DD m

, i.e. 1CDm DDmp p  , hence ,CD m  is strictly dominated by ,DD m  in such an equilibrium.  

1.1. Let’s first analyze the case 1,  1CDm mp p   : 

 
m mCD DD , always satisfied            (i) 

 
1m m

k
CD DD

m
 


            (ii) 

1
k

m m 


 


.            (iii) 

Note that since ,  k k m    the lambda support for this equilibrium is not empty. Intuitively there need to be sufficiently many CD players 

such that it is worthwhile to signal for high types, but not too many to deter low types from also signaling.  

1.2. Let’s now analyze the case 1,  1DDm mp p   : 

,DD m  strictly dominates all other strategies, hence such an equilibrium cannot exist.  
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1.3. Finally, 1CDm DDmp p   such that both strategies are played:  
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To summarize:  

equilibrium Lambda-support Conditions for Existence 
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2. High types don’t signal, low types signal (LSE – low separating equilibrium) 

0, 1XYm mp p   (only low types signal) 0 1,m     

                  

                  

               

       

, 1 0 1 0 0 1 ,

, 0 1 1 0 0 1 ,

, 1 0 1 0 0 1 0

, 0 1 1

m CCm CDm DCm DDm m

m CCm CDm DCm DDm m

m CCm CDm DCm DDm

m CCm CDm DCm

k

k

k

CC m p p m p p DC m

CD m m p p p p DD m

DC m p p m p p

DD m m p p p

    

    

   

 





               
 

               
 

             
 

              

                  

                  

               

    

0 0 1 0

, 1 0 1 0 0 1 ,

, 0 1 1 0 0 1 ,

, 1 0 1 0 0 1 0

, 0 1

DDm

m CCm DCm CDm DDm m

m CCm DCm CDm DDm m

m CCm DCm CDm DDm

m CCm

kp

CC m p p m p p DC m

CD m m p p p p DD m

DC m p p m p p

DD m m p

 

    

    

   



     
 

               
 

               
 

            
 

              

        

        

       

           

1 0 0 1 0

1 0 1 0

1 0 1 0

0 1 0 1 0

1 0 1 0 1

DCm CDm DDm

m CCm CDm DCm DDm

m CCm DCm CDm DDm

m DCm DDm

m DCm DDm DCm

p p p

m p p p p k

m p p p p

m p p k k

m p p p

  

  

  

  

    

        
 

         
 

         
 

           
 

          
   

 

m  is strictly dominated for low types implying, that such an equilibrium cannot exist.  
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POOLING_EQUILIBRIA 

1. High types and low types don’t signal (NSPE – no-signal pooling equilibrium) 

0, 1XYm mp p   (all signal m , i.e. nobody signals) 0 1,m     
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Note that in a pooling equilibrium where nobody sends the signal, CC and DC (CD and DD) will always earn the same profits irrespective of the 

chosen signal and the particular composition. Since those pairs are indistinguishable we only have to consider the following cases: 

1.1. Consider first the case  1, 0CCm DCm CDm DDmp p p p    : 

/ /
s

m m m mCC DC CC DC , / /
s

m m m mCD DD CD DD  and 
s

m m  since 0CDmp   
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, since / / /m m m m m mCC DC CD DD CD DD , 
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1.2. Consider now the case  1, 0CDm DDm CCm DCmp p p p    :  
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For this constraint to be binding we need to have: 
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1.3. Consider finally 1CDm DDm CCm DCmp p p p    : 

i.e. all no-signaling strategies earn the same payoff:   
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In this case necessary and sufficient is, that any of the no-signaling strategies is better than any signaling strategy, necessary and 

sufficient for this is:  
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Maximal support:  under the constraint , note that the maximal support is given if 

 has maximal support, i.e.  , consider , then the constraint will always be 

satisfied and we get the support  

To summarize:  
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Lambda-support Equilibrium 
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2. High types and low types signal (SPE – signal pooling equilibrium)  
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Note that in a pooling equilibrium where everybody sends the signal, CC and CD (DC and DD) will always earn the same profits irrespective of the 

chosen signal and the particular composition. Since those pairs are indistinguishable we consider the following cases: 

0, 1XYm mp p  m 0 1,m   
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1.1. Consider first the case : 
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Note that (iv) implies (i); for (iv) to be satisfied a strictly positive share needs to play CD; note further that (ii) and (iv) imply (iii) because 

 and  hence for 

 such an equilibrium exists.  
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i.e. all signaling strategies earn the same payoff, i.e. . In this case necessary and sufficient is, that any of 

the signaling strategies is better than any no-signaling strategy, necessary and sufficient for this is:  
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 Note that (ii) implies (i) and (iv) implies (ii), hence for  such an equilibrium exists. 

To summarize:  
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Equilibrium Lambda-support  
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SEMI-POOLING-EQUILIBRIA 

We will turn to the analysis of equilibria where only parts of high types or low types signal.  

Before we start we will have a closer look on the payoffs for various strategies and their differences. This will significantly simplify the analysis. The 

following table gives the payoffs for each strategy:  

 

It will be useful to calculate differences among strategies with different behavior but the same signal and among strategies with different signals.  
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(1) Within-differences:  

 

(2) Cross-differences:  

 

All other differences can be expressed by the within-differences and the four cross differences above.  
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Observation 1:  

(i) 
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(ii)  

A consequence of (ii) of observation 1 is that whenever low types are indifferent in an equilibrium between signaling and not signaling, high types 

strictly prefer to signal over not to signal given unconditional defective behavior. Put differently, if unconditional defection with and without signal is 

part of an equilibrium, then low types will prefer not to signal in such an equilibrium.  

Observation 2:  

(i)    note that differences depend only on non-signaling shares 

(ii)  

(iii) Corollary:   

Implication:  

If within the 4 signal or 4 non-signal behaviors 3 strategies earn the same profit then all 4 strategies earn the same profit. Hence, as a first 

consequence, there are for each of the cases signal/ no signal only three possibilities: either all 4 strategies earn the same payoff, 2 equal profitable 

strategies earn strictly more than 2 others, or a single strategy earns more than all others.  

If we look at the corollary of observation 2 that the sum of profits for unconditional strategies must equal the sum of profits for conditional strategies, 

then both conditional can only earn the same profits in equilibrium if the two unconditional strategies earn the same profits too, i.e. all 4 strategies 

earn the same, otherwise the two unconditional (conditional) strategies must be dominated by one conditional (unconditional) strategy. Furthermore 

this dominating strategy dominates the second condition (unconditional) strategy. Hence either all strategies earn the same profits or a conditional an 

unconditional strategy earn the same (highest) payoffs or a single conditional/unconditional strategy earns the highest payoff. The following Lemma 

summarizes.  

  

       , ,m m m m km m DD m DD m k     

       , , , ,m m m mCC m CD m DC m DD m   

       , , , ,m m m mCC m CD m DC m DD m   

               , , , ,   ;  , , , ,m m m m m m m mCC m DD m CD m DC m CC m DD m CD m DC m         
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Lemma: For each signaling strategy (signal/ no-signal) the table below gives all possible behavioral combinations that could be part of an equiilbrium. 

 unconditional versus conditional    

1. CC=CD ; DC=DD 1.1. CC=CD=DC=DD 

  1.2.  CC=CD>DC=DD 

  1.3.  CC=CD<DC=DD 

2.  CC>CD ; DC>DD 2.1.  CC=DC 

  2.2.  CC>DC 

  2.3. CC<DC 

3.  CC<CD ; DC<DD 3.1. CD=DD 

  3.2. CD>DD 

  3.3. CD<DD 

Table B-1: possible cases for signaling / no signaling 

Proof: whenever CC and CD have a strict payoff relation, so do DC and DD, hence either CC/DC and CD/DD have a strict payoff relation or all 

four strategies earn the same profit. In the former case there are three possible relations among the dominating pair: either the relation is strict, then 

we have the situation of an unique behavior or they could earn the same payoff. Hence either all behavior earns the same payoff, a pair of conditional 

and unconditional behavior (CC/DC or CD/DD) earn the highest payoff or any unique behavior earns highest payoff.  

If we neglect for a moment that for a given signal all 4 behaviors are part of a semi pooling equilibrium then following the lemma above, the table 

below gives all possible combinations of strategies in a semipooling equilibrium.  

 
      

 

N (2.)  N (2.)    

 

N (7.) N (3.) N (3.)    

 

N (2.) N (3.) N (3.)  N (6.)  

 

N (4.)  N (4.) N (5.)  N (5.) 

 

N (4.)  N (4.) N (5.) N (1.) N (5.) 

 

N (4.)  N (4.) N (5.)  N (5.) 

Table B-2: N – cannot exist; for colored cells low types don’t signal, because either  and  are not played (blue) or  earns highest payoffs (gray) (see 8.-9.)  

,CC m ,DC m , / ,CC m DC m ,CD m ,DD m , / ,CD m DD m

,CC m

,DC m

, / ,CC m DC m

,CD m

,DD m

, / ,CD m DD m

,CD m ,CD m ,DD m
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However, if we have a closer look at the respective differences we can significantly reduce the number of possible combinations.  

  

 

 

 

 

, hence if neither  nor  is played then low types strictly prefer not to 

signal, i.e. . 
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m m CCm DCm

p p

m m CCm DCm CDm DDm m

m m CCm DCm

CC m DC m p p m p p p

CC m DC m p p

CD m DD m p p m p p p

CD m DD m p p

    

    

 

 

                 

      

                 

      

                
0

06. , , 1 1 1
CDmp

m m CDm DCm DDm m kDC m DD m p m p p p    


                  

               

          
        

0

0

7. , , , , , , 1

1

1 1

m

m m m m m m CDm CDm DCm DCm

p

CCm CDm DCm DDm m

DCm DCm DCm

k

k k

DC m CC m CC m CC m CC m DC m m p p p p

p p m p p p

m p p p m

 

    

    





                  

               

               

       
   , , 0

8. , , 0
m mDD m DD m

m m m m km m DD m DD m k
  

      

      9. 1m m CDm CDm DCm DCmm m p p p p k           ,CD m ,CD m
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Observation 3:  

 and  

 

 

Before we turn to the 14 remaining cases of table 2, we check for semi-pooling equilibria that contain all 4 behaviors for at least one signal.  

1. All 8 strategies are played by high types (4 vs. 4) 

Due to  there cannot be an equilibrium such that both equations are 

satisfied, required for an equilibrium where all strategies earn the same profits.  

2. All four signaling strategies earn same profit, i.e.  (4 versus 2/1) 

2.1. , i.e.   (*) 

2.1.1.  

 earn same profits, i.e.  Hence  

cannot be part of the equilibrium, cannot earn the same profits as . Therefor such an equilibrium cannot exist. 

2.1.2. , i.e.   

         , , , , , , , , , , ,m m CCm CDm DCm DDmXY m XZ m f p p p p X Y Z C D m m m Y Z     

         , , , , , , , , , , ,m m CCm CDm DCm DDmYX m ZX m f p p p p X Y Z C D m m m Y Z     

       

       

, , 1

, , 1

m m CDm CDm DCm DCm

m m CDm CDm DCm DCm

k

k

DD m DD m p p p p

CC m CC m m p p p p

 

 





         

          

       , , , ,m m m mCC m CD m DC m DD m   

, / , / , / , . , / ,CC m DC m CD m DD m vs CC m DC m        , , , , 0m m m mCC m CD m DC m DD m    

      , , ,m m mCC m DC m DD m  

, / ,CC m CC m
       

       

0

0

, , 1

, , 1

m m CDm CDm DCm DCm

m m CDm CDm DCm DCm

k

k

CC m CC m m p p p p

DD m DD m p p p p

 

 

  

 

          

         

,DD m

,CC m

   , ,m mCC m DC m  0CCm CDm DDmp p p  
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 is violated if  which is 

necessary for a semi-pooling equilibrium. 

Therefor such an equilibrium cannot exist. 

2.2. , i.e.   

 

(i) 

 

(ii) 

 

(iii) 

2.2.1.  

 

The last equation implies that  and .  

   

 

(i) 

 

(ii) 

 

(iii) 

 

(iv) 

              , , , , 1 0m m m m DCm mCC m CD m DC m DD m p p                  0DCmp 

, / , / , / , . , / ,CC m DC m CD m DD m vs CD m DD m        , , , , 0m m m mCC m CD m DC m DD m     0CCm DCmp p 

                 , , , , 1 0m m m m CCm CDm DCm DDm mCC m CD m DC m DD m p p m p p p                      

                 , , , , 1 0m m m m CCm CDm DCm DDm mCC m DC m CD m DD m p p m p p p                       

                 , , , , 1 0m m m m CCm DCm CDm DDm mCC m CD m DC m DD m p p m p p p                      

   , ,m mDD m CD m 

  0CDm DCmp p    0CDm DCmp p 

0CCm DCmp p 

                 , , , , 1 0m m m m CDm DDm mCC m CD m DC m DD m p m p p                    

                 , , , , 1 0m m m m CCm CDm DCm DDm mCC m DC m CD m DD m p p m p p p                       

              , , , , 1 0m m m m CDm DDm mCC m CD m DC m DD m p p p                  

             , , 1 0m m CCm DCm CDm DDm mCD m DD m p p m p p p                     

 

(iv) 

 

(v) 

             , , 1 0m m CCm DCm CDm DDm mCD m DD m p p m p p p                     

          

      

      0

, , , ,

, ,

1 1

m m m m CDm DCm

m m CDm DCm

CDm DCm CDm DCm k

CD m CD m DD m DD m p p m

CC m CC m p p m

p p m p p
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(v) 

 (iii) is always satisfied in a semi-pooling equilibrium  

2.2.1.1. Eq. for :  

 

(i) 

 

(ii) 

 

(iv) 

 

(v) 

(v) implies  then 
 1CDm

k
p

 



 by (v), 

 
1

1DDm

k m
p

 

   

 
 


 by (i)  and so (ii), (iv) are remaining: given 

that  (ii) and (iv) are equivalent., i.e. those two equation amount to one further condition on the shares among high 

types.  
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, , , ,
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1 1
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, , 1
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                 , , , , 1 0m m m m CDm DDm mCC m CD m DC m DD m p m p p                    
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             , , 1 0m m CCm DCm CDm DDm mCD m DD m p p m p p p                     
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1 1
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In summary the equilibrium set is given by: 
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Note that the condition . On the other hand in a semi-pooling 

equilibrium where high apply both types of signals we must have: 

 

   
10 0 1
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All conditions of the type 

Conditions for existence: 

 

   

 

0,1

10 0 1
1 1

0

1
1

1 ,
11, , 0 0 min ,1

1 1

, <1 reduce to:

(1): 

(2): true

(3): 
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which violates (3), hence  is binding, i.e. <1.

k k k

k

m k
m

m

mk m m m
a

m m m m m

k

m

m

m m

 
 

    

      

               



   

 

    






         

   
         

             

 
 

   




    

 

 

 

1,

1) 1 1 0
1 1 1

false, since i.e. 
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2.2.1.2. Eq. for : 0DDmp   plugged into  

 

(i) 

 

(ii) 

 

(iv) 

 

(v) 

(i) gives us  which for a semi-pooling equilibrium ( ) requires  hence 

 Note that with  (ii) will always be satisfied.  
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1

1: 0
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, by 1.
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2.2.1.2.1.  

 

(*) 

 

 

(*) 

 

(i) 

 

(ii) 

 

(iv) 

 

(v) 

Hence 
 DCm CDm

k k
p p

m  


 

 
 by (*) and (v) and therefor 

      
     

1 1 1
1CDm CDm DCm CDm

k k k kk
p k p p k p

m m
     

       

 
          

    
 by (*)  

and by (i) 
       

1
1 1 1 1m

k k k km k m k
p

m m

  

           

     
                   

. 

Finally, rearrange (i) to:         1 1CDm mp m p              and plug it into (ii): or equivalently 

         
, 1 1

1CCm DCm CDm DDm

k k k kk
p p p p

m m m m

  

             

 
        

        
  

    0m mm m  

       1 0m m CDm CDm DCm DCmm m p p p p k            

        1 0 1 1CDm CDm DCm CDm CDm DCmp p p k p k p p                 

      1 0CDm mp m p            

         1 0CCm CDm DCm DDm mp p m p p p                  

         1 0CCm DCm CDm DDm mp p m p p p                  

    1 1CDm CDm DCmkp m p p        
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Note, that these values imply that (iv) is satisfied :  

In summary equilibrium set is given by 
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Existence: 

All conditions of the type 

         

      

   0

1

1
CCm DCm CDm DDm m

CCm DCm CDm CDm

CCm DCm CDm k k

p p m p p p

p p m p p m

p p p m

    

        

     

              

           

     

         1 1 ,m m CCm DCm CCm DCm m mm p p p p k k DD m                    



Appendix to Chapter 3: Derivation of p-equilibria 

150 
 

 

 

   

 

 

    

  

0,1
0

1 1
1

1

1 1
, , 0 min 1 ,

1

) 0

, <1 reduce to:

(1): true

(2): <

(3): 0 p  

CDm

CDm

CCm DDm DCm CDm

x y

k kk k

k kk k

k k

p p

p

mk
p

m m

m
p p p

m m

a x

 
 

    

  

      














  
    

    

 
      

     
     

  


  



 

    
    

  

 
 

 
 

 

   

   

  

0 1

)

1

1
1 1 1

) 0 1 1
1

2
1

0

1 1
1 1 1 0

1 1

         true

 by 3a)

(4): true

(5): , by 

m

m

k k
k k

k k y

k
c x y

k kk k

x
m

m

m
b y m

m m

m

p

mm k m
p

m m

 




   
   

    




  

  


       

  

  




 

 
 

     
        

    


  



     
               

 

      
   

1 1 0
1

3b)

note: , by 3b) , i.e. (2) is not binding.
k k k k

k k k
k

m m
m m


    

    

 
  


        

    

 



Appendix to Chapter 3: Derivation of p-equilibria 

151 
 

 

Hence we are left with the following conditions for existence:  
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2.2.1.2.2.  
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(*) 

 

(i) 

 

(ii) 
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In summary the equilibrium set is given by: 
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(*) and (iv) remain to be checked: 
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note that the lower bound is always smaller than the upper bound due to
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All conditions of the type 
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Note that for  the necessary condition  gives an nonempty interval if and 

only if , hence the case  can be neglected. It turns out that for the necessary condition 

, the condition 3c) is stronger than 3b) 
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Conditions for existence:  

 

2.2.2.  , i.e.  

        0, , 1m m CDm CDm DCm DCm kDD m DD m p p p p             is violated. 

Therefor such an equilibrium cannot exist. 
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<- 1 1
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Note that the interval defined by 3. is non-empty due to 1.
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k
k
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m
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3. All four non-signaling strategies earn the same payoffs , i.e.   

3.1.  i.e.   

  

 

(i) 

(i) becomes:  and implies that 

 however a semi-pooling equilibrium requires strict positivity for at least one of the shares. 

Therefor such an equilibrium cannot exist. 

3.2.  , i.e.   

3.2.1.  , i.e.   

Then  violates 

  

3.2.2.  , i.e.  

 

       , , , ,m m m mCC m CD m DC m DD m   

, / , / , / , . , / ,CC m DC m CD m DD m vs CC m DC m        , , , , 0m m m mCC m CD m DC m DD m     0CDm DDmp p 

       
0

, , 0 0m m m m mkm m DD m DD m k p



        

                 , , , , 1 0m m m m CCm DCm CDm DDm mCC m DC m CD m DD m p p m p p p                       

          , , , , 0m m m m CCm DCmCC m DC m CD m DD m p p m          

  0CCm DCmp p 

, / , / , / , . , / ,CC m DC m CD m DD m vs CD m DD m        , , , , 0m m m mCC m CD m DC m DD m     0CCm DCmp p 

   , ,m mDD m CD m  0CCm DCm CDmp p p  

          
0

, , , , 0m m m m CDm DCmCD m CD m DD m DD m p p m  



         

     , , ,m m mCD m DD m CD m  

   , ,m mDD m CD m  0CCm DCmp p 

       
0

, , 0 0m m m m mkm m DD m DD m k p
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(i) 

 

(ii) 

 

(iii) 

 

(iv) 

          

      

, , , ,

, , 0
m m m m CDm DCm

m m CDm DCm

CD m CD m DD m DD m p p m

CC m CC m p p m





 

 

  

 

       

     
 

(v) 

 

a) If (iii) holds with equality then the last equality implies that  then (ii) becomes: 

 Hence such a semi-pooling 

equilibrium cannot exist.  

b) If (iii) holds as a strict inequality then  and (ii) becomes  which holds 

only for , i.e. in a pooling but not semi-pooling equilibrium. 

  

                 , , , , 1 0m m m m CCm DCm CDm DDm mCC m CD m DC m DD m p p m p p p                      

                 , , , , 1 0m m m m CCm DCm CDm DDm mCC m DC m CD m DD m p p m p p p                       

        0, , 1m m CDm CDm DCm DCm kDD m DD m p p p p           

                 , , , , 1 0m m m m CCm CDm DCm DDm mCC m CD m DC m DD m p p m p p p                      

0 0CDm DCm CDmp p p   

          , , , , 0 0m m m m DDm DDmCC m DC m CD m DD m p p           

0DDmp        , , 0m m CDmCC m DC m p       

0CDmp 
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4. 1-2 strategies versus 1-2 strategies 

In general there are 36 possible matchings: CC, DC, CC and DC, CD, DD, CD and DD , six for each signaling strategy, however as summarized in 

Table B-3 we excluded 21 of them; in the following we consider the remaining 14 cases:  

 
      

 

N (2.) N (4.1.1) N (2.) (4.1.3.) N (4.1.2.) N (4.1.2.) 

 

N (7.) N (3.) N (3.) (4.2.3.2./4.2.3.3.) N (4.2.1.) N (4.2.2.) 

 

N (2.) N (3.) N (3.) (4.3.1.) N (6.) N (4.3.2.) 

 

N (4.) (4.4.1.) N (4.) N (5.) (4.4.2.) N (5.) 

 

N (4.) N (4.5.) N (4.) N (5.) N (1.) N (5.) 

 

N (4.) (4.6.1.) N (4.) N (5.) (4.6.2.) N (5.) 

Table B-3: Overview of subcases; N: non-existence of the considered equilibrium; number in parenthesis either refers to the list of payoff differences below Table B-2 or subsection 

dealing with the corresponding case.  

4.1.   

4.1.1. and  ( ) 

 

(i) 

 

(ii) 

 

(iii) 

 

(iv) 

 

(v) 

 

,CC m ,DC m , / ,CC m DC m ,CD m ,DD m , / ,CD m DD m

,CC m

,DC m

, / ,CC m DC m

,CD m

,DD m

, / ,CD m DD m

,CC m

,DC m 0mp 

           

               

              

, , , , , ,

1 1 1

1 1 1 1 0

m m m m m m

CDm DCm CDm DCm CCm CDm DCm DDm m

CDm DCm CCm DDm CDm DCm m

k

k

CC m DC m DC m DC m DC m CC m

p p p p m p p m p p p

p m p p m p p p m p

       

       



         

                       

                     

             , , 1 0m m CCm CDm DCm DDm mCC m DC m p p m p p p                     

             , , 1 0m m CCm CDm DCm DDm mCC m CD m p p m p p p                    

             , , 1 0m m CCm DCm CDm DDm mCC m DC m p p m p p p                     

             , , 1 0m m CCm DCm CDm DDm mDC m DD m p p m p p p                    
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(i) 

 

(ii) 

 

(iii) 

 

(iv) 

 

(v) 

By (iii) such a semi-pooling equilibrium cannot exist. 

4.1.2. and  or  ( ) 

 

(i) 

 

(ii) 

 

(iii) 

 

(iv) 

 

(v) 

 

 

(i) 

 

(ii) 

 

(iii) 

 

(iv) 

 

(v) 

By (i) such a semi-pooling equilibrium cannot exist. 

       , , 1 0m m CCm DCm kCC m DC m p m p m            

      , , 0m m CCmCC m DC m p m       

        , , 1 0m m DCmCC m CD m p           

      , , 0m m CCmCC m DC m p m       

        , , 1 0m m DCmDC m DD m p m           

,DD m , / ,CD m DD m 0mp 

             , , 1 0m m CCm DCm CDm DDm mCD m DD m p p m p p p                     

             , , 1 0m m CCm CDm DCm DDm mCC m DC m p p m p p p                     

             , , 1 0m m CCm CDm DCm DDm mCC m CD m p p m p p p                    

             , , 1 0m m CCm DCm CDm DDm mCC m CD m p p m p p p                    

   , , 0m mCC m DD m  

      , , 0m m CCmCD m DD m p m       

      , , 0m m CCmCC m DC m p m       

           , , 1 0m m CDm DDmCC m CD m p m p              

           , , 1 0m m CCm DDmCC m CD m p m p              

   , , 0m mCC m DD m  
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4.1.3. and  

 

(i) 

 

(ii) 

 

(iii) 

 

(iv) 

 

(v) 

 

 

(i) 

 

(ii) 

 

(iii) 

 

(iv) 

 

(v) 

The sum of (ii) and (iii) implies:   

 

(vi) 

 

,CD m

             , , 1 0m m CCm DCm CDm DDm mCD m DD m p p m p p p                     

             , , 1 0m m CCm CDm DCm DDm mCC m DC m p p m p p p                     

             , , 1 0m m CCm CDm DCm DDm mCC m CD m p p m p p p                    

             , , 1 0m m CCm DCm CDm DDm mCC m CD m p p m p p p                    

   

              

         

      

, ,

1 1 1 1

1 1 1

1 1 0

m m

CDm CCm CDm DCm DCm DDm m

CDm DCm DDm m

CDm m

k

k

k

CC m CD m

p m p m p p m p p p

p m p m p p

p m p

       

    

  





 

                    

              

          

          , , 1 0m m CCm mCD m DD m p m p                

          , , 1 0m m CCm mCC m DC m p m p                

          , , 1 0m m CDm mCC m CD m p m p               

          , , 1 0m m CDm mCC m CD m p p               

          , , 1 1 0m m CDm m kCC m CD m p m p               

 m     

        1 1m m CDm CDm DCm DCm CDmm m p p p p k p k               
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 4.1.3.1.  

Then  by (v) and (iii) is satisfied and  by (ii)  

Since  such an equilibrium cannot exist.  

 4.1.3.2.   

 

(iii) 

 

(v) 

 

(vi) 

 

Then  by (v) and (ii) is satisfied.  

Conditions (iii) and (vi) need to be checked.  

   
 

 0 0
1m m CDm m

k
m m p p

 
      



   
, 1

1 1CDm CCm

k k
p p

m m 
  

 

 

 

1
CCmp

m

 

 






   1 1
k k

m  


 

   
 

 0 1
1m m CDm m

k
m m p p

 
      



          , , 1 0m m CDm mCC m CD m p m p               

          , , 1 1 0m m CDm m kCC m CD m p m p               

        1 1 0m m CDm CDm DCm DCm CDmm m p p p p k p k                

 

 

 

 

1 1
, 1

1 1CDm CCm

k k
p p

m m
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It turns out, that (iii) implies (vi), hence we are left with:  

 

Finally all condition of the type:  

 

, hence , hence we need  

 

 

 

 

(ii): 
1

(iii): 1
1

1 1(vi): 1
1

k

k

k

m

m

m
k









 


 









 



 
     

 

 

 

     

 

     

(ii) (iii): max ,1
1 1

,
1 1

1 ,
1 1

k k

k k

k k

m

m

m m

m

m




  

 

   

 

    










  
   

   


    

 
  

    

 0,1
1

0
1

CCm

CCm

k

p p

p

p
m











  

 

, <1 reduce to:

(1): true

(2): 

 

 
max 1 , 1

1 1
k km

m

 


  

   
   

    

1 1
1

k
k m

m
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To summarize:  

Conditions for existence:  

4.1.3.3.   

then  by (vi) and shares for low types are given by (v):  

furthermore by (ii) and (iii):   

 

 

 

 

1 1
1, , 1

1 1m CDm CCm

k k
p p p

m m

   

 

    
    

   

 
   

 
 

 

 

1 1 :   1
1

2. 1 :              1 1
1

k
k

k
k

m
m m

m

m

 
 

  


 

   





   

  


    

  

1. < 

    0m mm m  

   
, 1

1 1CDm CCm

k k
p p

   
  

 

 
 

 

1
1

1 m

k
m
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CCm
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The last inequality is violated; hence such an equilibrium cannot exist.  

4.2.   

4.2.1. and  ( ) 

 

(i) 

 

(ii) 

 

(iii) 

 

(iv) 

 

(v) 

 

 
 
 

   

 
 

 

 
 
 

   

 
 

 

 
 

 
 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

1 1
1

1 1
1 1

1

1 1
1

1 1
1

1 1
1

1 1 1

1 1 1
1 1 1 1

k k

k k

k k

k k

k k

m m
k k

k

m m

m m
k k

k

m m

m m m
k m k k

m m m m
k m k k k

m k

 
 

     

 
 

 
  


   

  


   

   

   





 
   

 
    

  

 
   

 
    

  

  
         

  

   
         

   

     

,DC m

,DD m 0mp 

             , , 1 0m m CCm CDm DCm DDm mCC m DC m p p m p p p                     

             , , 1 0m m CCm CDm DCm DDm mDC m DD m p p m p p p                    

                 , , , , 1 0m m m m CCm DCm CDm DDm mCC m CD m DC m DD m p p m p p p                      

             , , 1 0m m CCm DCm CDm DDm mCD m DD m p p m p p p                     

   , , 0m mDC m DD m  
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B

By (ii) such a semi-pooling equilibrium cannot exist. 

4.2.2. and  

 

(i) 

 

(ii) 

 

(iii) 

 

(iv) 

 

(v) 

 

 

(i) 

 

(ii) 

 

(iii) 

 

(iv) 

 

(v) 

(iv) requires  , i.e.  

 

(*) 

, / ,CD m DD m

             , , 1 0m m CCm CDm DCm DDm mCC m DC m p p m p p p                     

             , , 1 0m m CCm CDm DCm DDm mDC m DD m p p m p p p                    

                 , , , , 1 0m m m m CCm DCm CDm DDm mCC m CD m DC m DD m p p m p p p                      

             , , 1 0m m CCm DCm CDm DDm mCD m DD m p p m p p p                     

   , , 0m mDC m DD m  

         , , 1 0m m DCm mCC m DC m p p            

             , , 1 0m m CDm DDm mDC m DD m p m p p                  

              , , , , 1 0m m m m CDm DDm mCC m CD m DC m DD m p p p                  

         , , 1 0m m DCm mCD m DD m p m p            

               

         

, , , , , , 1

1 0

m m m m m m CDm CDm DCm DCm

CCm CDm DCm DDm m

kDC m DD m DD m DD m DD m DC m p p p p

p p m p p p

 

    

                 

              

0mp 

         1 1 0m m CDm CDm DCm DCm CDm DCmm m p p p p k p p k                     

 

(ii)         , , 1 0m m DDmDC m DD m p           
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(i)and (iii) are always satisfied, note that (*) and (v) violate (ii):  

 by (*) and  by (v) , 

hence  

Hence such a semi-pooling equilibrium cannot exist. 

4.2.3. and  

 

(i) 

 

(ii) 

 

(iii) 

 

(iv) 

 

(v) 

(i)and (iii) are always satisfied 

 

 

 

  1CDm DCmp p k                   
0

1 1 0CDm DCm CDm DDm mkp p p m p p      



                   

         1 0CDm DDm mp m p p               

,CD m

          , , 1 0m m DCm mCC m DC m p p                

             , , 1 0m m CDm DDm mDC m DD m p m p p                  

              , , , , 1 0m m m m CDm mCC m CD m DC m DD m p p                 

          , , 1 0m m DCm mCD m DD m p m p                

           , , , , , , 0m m m m m mDC m CD m CD m CD m CD m DC m         

 

(ii) 

 

(iv) 

 

(v) 

 

(*) 

          , , 1 0m m CDm mDC m DD m p m p               

          , , 1 0m m DCm mCD m DD m p m p                

            , , 1 1 0m m CDm DCm m mkDC m CD m p p m p p                  

      1m m CDm DCmm m p p k        
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4.2.3.1.  

 

 

 

 

(ii) is satisfied; (*) violates (v) because 

 

Hence such a semi-pooling equilibrium cannot exist. 

 4.2.3.2.  

 

 

 

 

 

     
1 11  , 1

1 2 1 2 1CDm DCm CDm DCm

k k k
p p p p

     

   
         

        

 by (*), if we plug in these values in (iv) and (ii)

     (iv) 

    0m mm m  

          0 01 1 0 1 1CDm DCm CDm DCm CDm DCmk k kp p m p p m p p                             

    0m mm m  

 

 

 

   
1 1

1 1 2 1m DCm

m m k
p p

   

     

  
   

    

 

(ii) 

 

(iv) 

 

(v) 

      1 0 1m m CDm DCm mm m p p k p             
(*) 

 

(ii) 

 

(iv) 

 

(v) 

 

(*) 

      , , 0m m CDmDC m DD m p m       

         , , 1 0m m DCmCD m DD m p m            

        , , 1 1 0m m CDm DCm kDC m CD m p p m           

        , , 1 0m m CDm mDC m DD m p m p           

        , , 1 0m m DCm mCD m DD m p m p           

            , , 1 1 0m m CDm DCm m mkDC m CD m p p m p p                  

      
 

1 0
1m m CDm DCm CDm DCm

k
m m p p k p p 
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     (ii) 

Furthermore: 
 

 
 

 

 

   

 

 

1 1 11 1 1 11 1  , 1
1 2 1 1 2 1 1m m m mk k k

m m m
k p p p k p k 

      

        
                                  

 by (v) 

w.r.t. (iv): 

 

w.r.t. (ii): 

 

 

 

   
1 1

1 1 2 1m CDm

m m k
p p
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We observe that (ii) is binding.  

Finally all condition of the type 
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 , 

To summarize:  

     

 

   

 

 

1 11 1 1 1 1 11  , 1 , 1 , 1
2 1 2 1 2 1 1 2 1 1CDm DCm m mk k

m mk k
p p p k p k
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, <1 reduce to:

(1): true

(2): 

(3): true

(4): 

,i.e.  0<

note:  1 k
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Conditions: 

Conditions for existence:  
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           ,i.e. the necessary condition for a non-empty interval a) is weaker than the b)
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 4.2.3.3.  

 

 

 

 

 (v) is satisfied; 
 

 

 

 

1 11 11  , 1
2 1 2 1CDm DCm
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 by (iv),  
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      , , 0m m DCmCD m DD m p m       

        , , 1 0m m CDm mDC m DD m p m p           

        , , 1 0m m DCm mCD m DD m p m p           

            , , 1 1 0m m CDm DCm m mkDC m CD m p p m p p                  
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Finally all condition of the type 
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To summarize:  
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4.3.   

4.3.1.  

 

(i) 

 

(ii) 

 

(iii) 

 

(iv) 

 

(v) 

 

(*) 

 

, / ,CC m DC m

,CD m

             , , 1 0m m CCm CDm DCm DDm mCC m DC m p p m p p p                     

             , , 1 0m m CCm CDm DCm DDm mDC m DD m p p m p p p                    

             , , 1 0m m CCm DCm CDm DDm mCD m DD m p p m p p p                     

                 , , , , 1 0m m m m CCm DCm CDm DDm mCC m CD m DC m DD m p p m p p p                      

           

               

, , , , , ,

1 1 1 0

m m m m m m

CDm DCm CDm DCm CCm CDm DCm DDm mk

CC m CD m CD m CD m CD m CC m

p p m p p p p m p p p       

         

                        

      1m m CDm CDm DCm DCmm m p p p p k          
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(i) 

 

(ii) 

 

(iii) 

 

(iv) 

 

(v) 

 

(*) 

(iv) is always satisfied in a semi-pooling equilibrium, (i) implies (iii) if DC is played by strictly positive share.   

4.3.1.1.  

      1 0 1m m CDm DCm mm m p p k p                  (*) 

    (i) 

        (ii) 

      (iii) 

     (v) 

             , , 1 0m m CCm DCm mCC m DC m p m p p                   

          , , 1 0m m CDm mDC m DD m p m p               

          , , 1 0m m CCm DCm mCD m DD m p p m p                 

              , , , , 1 0m m m m CDm mCC m CD m DC m DD m p p                 

                

         

      

, , 1 1 1

1 1 1

1 1 0

m m DCm CDm CDm m

DCm CDm m

CDm DCm DCm m

k

k

k

CC m CD m p m p p m p

p m p m p

p p m p p

      

   

   

                      

              

            

      1m m CDm CDm DCm DCmm m p p p p k          

    0m mm m  

           , , 1 0m m CCm DCmCC m DC m p m p              

      , , 0m m CDmDC m DD m p m       

      , , 0m m CCm DCmCD m DD m p p m          

      , , 1 0m m CDm DCm DCm kCC m CD m p p m p          
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(*) and (v) imply :   

(i) and (v) give:  
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Given this solution for the respective shares (*) and (iii) need to be checked for.  
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Finally all condition of the type 
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, <1 reduce to:  (derived with mathematica)
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Note that: . 

In summary the equilibrium is given:  

Condition for existence:  

 4.3.1.2.   

     (*) 

    (i) 

      (ii) 

     (iii) 

 

 

 
 

 
 

     

1 12 11
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 (v) 

To summarize:  
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Given this solution for the respective shares (ii) and (iii) need to be checked for.  
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, i.e. (ii) implies (iii). 

Finally all condition of the type 
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, <1 reduce to:

(high types): 

(low types): <min

note:
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conditions for existence:  
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 4.3.1.3.  

       1 0 0m m CDm DCm mm m p p k p                (*) 

    (i) 

    (ii) 

 (v) 

Rewrite (i) and (v) to:  ,  and plug into:   

EQ:   

Finally, check for (*) and (ii) given those values:  

w.r.t. (*): 

    0m mm m  

         , , 0m m CCm DCmCC m DC m p m p          

        , , 1 0m m CDmDC m DD m p m           

        , , 1 1 0m m CDm DCm DCm kCC m CD m p p m p                
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p
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m
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w.r.t. (ii): 

 

To summarize:  

 

Finally all condition of the type  

 

Hence we are left with:  
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Conditions for existence:  
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4.3.2. and   

     (i) 

     (ii) 

     (iii) 

 (iv) 

 

 

     (i) 

   (ii) 

      (iii) 

 (iv) 

 

By (iii) such a semi-pooling equilibrium cannot exist.  

, / , 1mCD m DD m p 

             , , 1 0m m CCm CDm DCm DDm mCC m DC m p p m p p p                     

             , , 1 0m m CCm CDm DCm DDm mDC m DD m p p m p p p                    

             , , 1 0m m CCm DCm CDm DDm mCD m DD m p p m p p p                     

                 , , , , 1 0m m m m CCm DCm CDm DDm mCC m CD m DC m DD m p p m p p p                      

           

               

, , , , , ,

1 1 1 0

m m m m m m

CDm DCm CDm DCm CCm CDm DCm DDm mk

CC m CD m CD m CD m CD m CC m

p p m p p p p m p p p       

         

                        

      1m m CDm CDm DCm DCmm m p p p p k          

         , , 0m m CCm DCmCC m DC m p m p          

           , , 1 0m m CDm DDmDC m DD m p m p              

      , , 0m m CCm DCmCD m DD m p p m        

            , , , , 1 0m m m m CDm DDmCC m CD m DC m DD m p p              

                 , , 1 1 1 0m m DCm CDm CDm DDmkCC m CD m p m p p m p                           
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4.4.   

4.4.1. and  

 (i) 

 (ii) 

 (iii) 

 (iv) 

   (v) 

 

 

 (i) 

 (ii) 

 (iii) 

 (iv) 

,CD m

,DC m

             , , 1 0m m CCm CDm DCm DDm mCC m CD m p p m p p p                    

             , , 1 0m m CCm CDm DCm DDm mCD m DD m p p m p p p                     

             , , 1 0m m CCm DCm CDm DDm mDC m DD m p p m p p p                    

             , , 1 0m m CCm DCm CDm DDm mCC m DC m p p m p p p                     

           , , , , , , 0m m m m m mCD m DC m DC m DC m DC m CD m         

      1m m CDm CDm DCm DCmm m p p p p k          

          , , 1 0m m DCm mCC m CD m p p               

          , , 1 0m m CDm mCD m DD m p m p                

          , , 1 0m m DCm mDC m DD m p m p               

          , , 1 0m m CDm mCC m DC m p p                
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, , , , , , 0

1 1
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m m m m m m
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p p m p m p p

  

     

      





          

        

                  

                      

    1 1 0

m m

CDm DCm m mk

p

p p m p p

 

  

    

            

 (v) 

          (vi) 

(i)and (iv) are always satisfied.  

4.4.1.1.  

      1 0 1m m CDm DCm mm m p p k p               (vi) 

  (ii) 

  (iii) 

  (v) 

EQ: 
 

 

 

 

1 11 1,  
2 2 1 2 2 1DCm CDm

k k
p p

m m

   

 

  
   

 
  

(iii) is always satisfied, (ii) and (vi) need to be checked for:: 

      1m m CDm DCmm m p p k        

    0m mm m  

          , , 1 0m m CDm mCD m DD m p m p                

          , , 1 0m m DCm mDC m DD m p m p               

        , , 1 1 0m m CDm DCm kCD m DC m p p m            
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Finally all conditions of the type  
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, <1 reduce to: 
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Conditions: 
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To summarize:  

EQ: 
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Conditions for existence:  

 

4.4.1.2.   

   (vi) 

   (ii) 

   (iii) 

(v) becomes:  
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2 2 1 2 2 1CDm DCm
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 by (vi) ; 
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m
p k

  

 
   

   

 by (v) and  

Given this solution for the respective shares (ii) and (iii) need to be checked for.  

, i.e. (ii) implies (iii). 

Finally all conditions of the type  

 

Conditions for existence:    
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4.4.1.3.   

      1 0 1m m CDm DCm mm m p p k p              (vi) 

    (ii) 

  (iii) 

 (v) 

EQ:    

(ii) is satisfied, (iii) and (vi) need to be checked for,  

 

  

    0m mm m  
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Finally all conditions of the type: 

 

To summarize: 
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4.4.2. and , 1mDD m p    

 (i) 

 (ii) 

 (iii) 

 (iv) 

  (v) 

 

 (i) 

  (ii) 

 (iii) 

   (iv) 

 

             , , 1 0m m CCm CDm DCm DDm mCC m CD m p p m p p p                    

             , , 1 0m m CCm CDm DCm DDm mCD m DD m p p m p p p                     

             , , 1 0m m CCm DCm CDm DDm mDC m DD m p p m p p p                    

             , , 1 0m m CCm DCm CDm DDm mCD m DD m p p m p p p                     
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EQ: 
 1CDm

k
p

m



 , 1DDm CDmp p   

(i),(ii),(iii) and (iv) are satisfied 

Finally all conditions of the type  

Condition for existence:  

 

however it turns out that this equilibrium is not stable.  

4.5.  and   

 (i) 

 (ii) 

 (iii) 

 (iv) 

  (v) 

 
 

0,1
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k
p p

m
 


, <1 reduce to: 
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k m

 


 

1. 

2. 

,DD m ,DC m 1mp 

             , , 1 0m m CCm CDm DCm DDm mDC m DD m p p m p p p                    

             , , 1 0m m CCm CDm DCm DDm mCD m DD m p p m p p p                     

             , , 1 0m m CCm DCm CDm DDm mDC m DD m p p m p p p                    

             , , 1 0m m CCm DCm CDm DDm mCC m DC m p p m p p p                     

           , , , , , , 0m m m m m mDD m DC m DC m DC m DC m DD m         
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 (i) 

   (ii) 

 (iii) 

   (iv) 

 

By (v) , however this is incompatible with  by (iii) 

Hence such a semi-pooling equilibrium cannot exist. 
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4.6.   

4.6.1. and   

 (i) 

 (ii) 

 (iii) 

 (iv) 

  (v) 

 

   (i) 

 (ii) 

   (iii) 

  (iv) 

, / ,CD m DD m

,DC m

             , , 1 0m m CCm CDm DCm DDm mDC m DD m p p m p p p                    

             , , 1 0m m CCm CDm DCm DDm mCD m DD m p p m p p p                     

             , , 1 0m m CCm DCm CDm DDm mDC m DD m p p m p p p                    

             , , 1 0m m CCm DCm CDm DDm mCC m DC m p p m p p p                     

           , , , , , , 0m m m m m mDD m DC m DC m DC m DC m DD m         

          , , 1 0m m DCm mDC m DD m p p               

             , , 1 0m m CDm DDm mCD m DD m p m p p                   

          , , 1 0m m DCm mDC m DD m p m p               

          , , 1 0m m CDm DDm mCC m DC m p p p                 
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  (v) 

 

In a semi-pooling equilibrium (i) and (iv) will always be satisfied.  

4.6.1.1.   

 0mp      (*) 

 
 (ii) 

      (iii) 

   (v) 

 

EQ: 

   

      

   

    

 
    

   

    

11 , , 1
1 1

11 21 1 1, , 1
1 1 1 1 1 1
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          1m m m m CDm DCmm m m m p p k          

    0m mm m  

      1 0m m CDm DCmm m p p k         

           , , 1 0m m CDm DDmCD m DD m p m p              

      , , 0m m DCmDC m DD m p m       

        , , 1 1 0m m CDm DCm kDD m DC m p p m          
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(iii) is satisfied, (*) needs to be checked for, however this equilibrium is not stable.  

 

Finally all conditions of the type 

 

To summarize  

   

    

 
    

   

    

11 21 1 1, , 1
1 1 1 1 1 1DCm CDm DDm

kk kmm m m
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m m m m m m

      

              

            
       

                      

 

Conditions for existence: 
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(*) reduces to: 

1.  
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4.6.1.2.   

       (0) 

  (ii) 

    (iii) 

   (v) 

EQ: 

     

  

     

  

 

 

            
   

1 1 2 1 1 1 1
, , ,

2 1 2 1

1 2 1 1
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2 1 1
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m m m
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Note, that for the equilibrium values (iii) is satisfied:  

Finally all conditions of the type 
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      1 0m m CDm DCmm m p p k         
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4.6.1.3.           (*) 

      1 0m m CDmm m p k          1mp   

 (ii) 

   (iii) 

 (v) 
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 (ii) 

  (iii) 

  (v) 

(ii) and (v):  

 

 EQ: 
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We need to check for (*) and (iii): 
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Finally all conditions of the type 
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To summarize:  
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adding the upper bound due to (*) we end up with:

1. 
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 note that LHS<RHS due to 

RHS
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, i.e.  is binding.
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Conditions for existence:  

 

4.6.2. and   

 (i) 

 (ii) 

 (iii) 

 (iv) 

    (v) 
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  (ii) 

  (iii) 

      

  

               
  

 
     

 

     
 

1 2 1 1 1 11 2
2 1 2 1

1 1 1 1
1

kk

k

m m m k mm m m

m m

m m m
k

m m
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,DD m 1mp 

             , , 1 0m m CCm CDm DCm DDm mDC m DD m p p m p p p                    

             , , 1 0m m CCm CDm DCm DDm mCD m DD m p p m p p p                     

             , , 1 0m m CCm DCm CDm DDm mDC m DD m p p m p p p                    

             , , 1 0m m CCm DCm CDm DDm mCD m DD m p p m p p p                     

       , , 1 0m m CDm CDm DCm DCm kDD m DD m p p p p            

        , , 1 0m m DDmDC m DD m p           

         , , 0m m CDm DDmCD m DD m p m p          

        , , 1 0m m DDmDC m DD m p           
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   (iv) 

   (v) 

 EQ: 
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 (i), (iii) and (iv) are satisfied.  

Finally all conditions of the type 

 

To summarize:  
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Conditions for existence:  
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Finally we consider semi-pooling equilibria with only low types pooling, i.e. . For 

this equality to hold we necessarily need  or  but not both since this would correspond to a pooling among high types.  

 4.7.  

4.7.1.  , i.e.  
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4.7.1.1.  

 

To summarize:  
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Conditions for existence:  

 

4.7.1.2.  

 

EQ:  

Conditions for existence:  

1CDmp 

 

 

 

 

 

       

1. 
1

2. 1

3. 
1

note that 3. is only binding if:

1
1 1

m

k

k

m
p

m k

m m






 

 

   


      




 







    

     

   , , 0m mCD m DD m  

   

    
 

 

      
 

 

   

   

  

, ,

1
1

0 1
1

1 1
1 1 1

m m

m

CDm m CDm

m CDm m CDm

m

m

CD m DD m

p
p m p p

m

k
m p k m p

p m kk
p

m

  
     

  

 
 

       

       

   

 
          

           



     
  

    

   

   

  

   

  

1 1
, 1 , ,

1 1 1 1 1 1CDm DDm m m

m k m kk k
p p p p

        

         

       
    

     



Appendix to Chapter 3: Derivation of p-equilibria 

215 
 

 

4.7.2.  , i.e.  
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Since  is strictly dominated by unconditional defection such an equilibrium cannot exist.  
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C. Appendix to Chapter 4 
Proof of Lemma 4-1: The argument is given in the paper.  QED 

Proof of Lemma 4-2: By Lemma 4-1  constitutes a dilemma if and only if it is of the 

Prisoners’ dilemma type. W.l.o.g. let  be the unique equilibrium. Since unilateral deviation 

reduces material payoffs and increases inequality  may not be contested by any player. 

However  may be stabilized by two sufficiently inequality-averse players. This is the case if 

and only if for player one  and accordingly 

for player two.  QED 

Proof of Proposition 4-1: A symmetric dilemma can be represented by the following matrix 

 showing the payoffs for the column player. I will refer to the strategies as ‘0’ and ‘1’ 

respectively. Without loss of generality I assume , i.e. ‘1’ is the dominant strategy. 

According to Lemma 4-1 must hold. This implies the following ordering of parameters

. Define . In terms of utility two individuals with inequality aversion 

 and  respectively give rise to the following bimatrix: 

 0 1 

0 
  

  

1   

  

Table C-1: Payoffs in the dilemma . 

In the following I will distinguish two cases. The first case corresponds to a match of two players 

with a degree of inequality aversion above the threshold . In the second case for at least one 

player this condition is violated.  

(i) 1 2, D    

are the two pure Nash equilibria over which individuals randomize with equal weight 

and both gain a material payoff of:   

(ii) 1 2
D     

‘1’ remains for at least one agent the dominant strategy. Hence, both individuals will earn:   

Note that all individuals with  earn the same expected payoff 

, whereas individuals with  earn 

  symA 

 1,1

 1,1

 0,0

           

   

   

1 1
1,0 0,01 1 1 1 2 1 1 1

1,0 1,0 1,0 1,0 0,0 0,0 1 2
1,0 1,0

 
a a

u a a a u a
a a

 


      


a c
A

b d

 
  
 

,   b a d c

a d

b a d c    0,1D b a

b c



 



1 2

a  2b b c 

a  1c b c 

 1c b c  d

 2b b c  d

 1 2,U U

D

   0,0 , 1,1

2
a d 

 
 

 d
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    1
2

D D D a d
F d F    
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. Hence as long as there are some individuals with a degree of 

inequality aversion above  those players face an evolutionary advantage because 

. Hence the globally stable distribution of inequality aversion is 

characterized by . The advantage increases with the share of sufficiently inequality-

averse players, i.e. . QED 

Proof of Lemma 4-3: The argument is given in the paper.  QED 

Proof of Proposition 4-2: A symmetric problem of coordination can be represented by 

. For a game with the Nash equilibria on the diagonal  holds. Hence any 

degree of inequality aversion leaves the set of pure Nash equilibria unchanged. Hence any match 

of two players will generate the same payoff, the average of the two pure Nash equilibria. 

Therefore the distribution of preferences will be determined by initial conditions and random 

shifts. Hence I shall assume for the Nash equilibria to lie on the off-diagonal, i.e. w.l.o.g. 

. In terms of utility two individuals with inequality aversion  and  respectively give 

rise to bimatrix as depicted in Table C-1.  

Define . These thresholds represent the ratio of the 

material incentive to stick to the considered (material) equilibrium and the gain in non-material 

terms from deviation stemming from an increasing equality. A threshold above one represents a 

situation where the maximum gain in equality is smaller than the material loss from deviating 

from (material) equilibrium behavior. In other words no level of inequality aversion can 

destabilize this equilibrium. If for a player  then for this player the equilibrium 

is contestable. In the following (1)-(3) consider the different possible matches 

according to the relation of the thresholds and the involved players’ inequality aversion.  

(1) 
   1 21,0 ,1 0,1 ,2,C C      

, i.e. both equilibria are contestable (by different players) and are indeed destabilized. The 

strategy-tuple  is stabilized. Now two cases can be distinguished. First ‘0’ has 

become the dominant strategy for at least one player (a and c) or  is also stabilized 

(b). 

a) 
       1 20,1 ,1 1,0 ,2 0,1 ,1 1,0 ,2, , 1C C C C          

, i.e.  is not stabilized either because inequality aversion is too weak or the equilibria 

are not contestable by the considered players. In that case ‘0’ becomes the dominant 

strategy and the unique Nash equilibrium is given by .  

b) 
       1 20,1 ,1 1,0 ,2 0,1 ,1 1,0 ,2, , 1C C C C          

, i.e.  also becomes an equilibrium. There are now the two pure Nash equilibria  

and . 

    1
D D DF d F d d       

D
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D D D a d
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,  a b d c 

,  b a d c  1 2

       0,1 ,2 1,0 ,1 0,1 ,1 1,0 ,20,  0C C C Cb a c d

b c b c
   

 
     

 

    0,1 ,2 1,0 ,2
C C  

    0,1 1,0

 0,0

 1,1

 1,1

 0,0  ,a a

 1,1  1,1
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 ,
2 2

a d a d  
 
 

 

c) 
       1 20,1 ,1 0,1 ,1 1,0 ,2 1,0 ,21, 1C C C C            

, i.e. ‘0’ is the dominant strategy for player one and ‘0’ is the best response for player two.  

  

(2) 
       1 21,0 ,1 0,1 ,2 0,1 ,2 1,0 ,1, , 1C C C C          

, i.e.  is not stabilized either because inequality aversion is too weak or the equilibria 

are not contestable by the considered players.  

a) 
       1 20,1 ,1 1,0 ,2 0,1 ,1 1,0 ,2, , 1C C C C          

, i.e.  is not stabilized either because inequality aversion is too weak or the equilibria 

are not contestable by the considered players. The sets of Nash equilibria of  and 

 coincide. ,
2 2

b c b c  
 
 

 

b) 
       1 20,1 ,1 1,0 ,2 0,1 ,1 1,0 ,2, , 1C C C C          

, i.e. both material equilibria are contestable and are indeed destabilized. In that case ‘1’ 

becomes the dominant strategy.  

(3) w.l.o.g.  (player 1 is selfish, player 2 is inequality-

averse), i.e. one players’ inequality aversion makes one equilibrium contestable. 

a) 
   2 1,0 ,2 1,0 ,2 1      

, i.e. this player inequality aversion is either too weak or the remaining equilibrium is not 

contestable by this player. In that case ‘0’ is the dominant strategy of this player. Two 

cases can be distinguished for the remaining player.  

(i) 
   1 0,1 ,1 0,1 ,1 1      

, i.e. this opponents’ inequality aversion is either too weak to or the remaining equilibrium 

is not contestable from this perspective.   

(ii) 
 1 0,1 ,1 1    

, i.e. the remaining equilibrium is also contestable and indeed destabilized.   

b) 
 2 1,0 ,2 1    

, i.e. this player makes both equilibria contestable and indeed both equilibria are 

destabilized.  

(i) 
 1 0,1 ,1 1    

, i.e. ‘1’ becomes the dominant strategy of this player  

(ii) 
   1 0,1 ,1 0,1 ,1 1      

There is a unique mixed equilibrium which is played   

Note that strictness excludes the cases 1b), 1c), 3b). Table C-2 depicts equilibrium payoffs in the 

various matches for the case of , i.e. the case where both equilibria are 

contestable by different players.  

  

 ,a a

 0,0

 1,1

 A

 1 2,U U

 ,d d

       1 21,0 ,1 0,1 ,2 0,1 ,2 1,0 ,1, 1C C C C        

 ,b c

 ,a a

 ,d d

 ,mix mix 

   0,1 ,2 1,0 ,1 1C C C    
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Table C-2: Equilibrium payoffs according to the degree of inequality aversion of the matched players. 

Note that individuals with  earn the same expected payoff , 

whereas individuals with  earn . Hence 

. Note that . If 

, then  and the globally stable equilibrium is characterized 

by . Furthermore . 

If the reverse holds, i.e.  then  and as a consequence there 

exist a globally stable inner equilibria characterized by . Furthermore 

. The case  is analyzed in the analog way 

. With the definitions for  and  in the text the claim follows.  QED 

Proof of Lemma 4-4: The argument is given in the paper.  QED 

Proof of Proposition 4-3:  Let me first consider the case with multiple equilibria which are 

not Pareto-ranked (case A) with 

payoffs given by  and . W.l.o.g. I will consider a game with Nash 

equilibria on the diagonal (relabeling the strategies for one player transforms such a game in a 

game with equilibria on the off-diagonal and vice versa), i.e. ,  and , . 

W.l.o.g. let player two be the type who is favored by the problem of distribution, i.e.  and 

. The assumption that the two pure Nash equilibria are not Pareto-ranked leaves us with 

two possibilities, either  or . W.l.o.g. I will assume the first relations to 

hold. This implies that the equilibrium  is characterized by a strictly lower degree of 

inequality. In terms of utility two individuals with inequality aversion  and  respectively give 

rise to the following bimatrix: 

  

2
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c d
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 0 1 

0   

  

1   

  

Table C-3: Payoffs in the problem of distribution . 

Note that:  

- (i) 2D D d d a c      

- (ii) , because for   and for   

- (iii) A a D d    

Before I analyze the different types of matches, I will define the following thresholds: 

 

Note that due to (ii) , i.e. the equilibrium  is not contestable for player two. Let for all 

other thresholds , i.e. both equilibria are contestable,  only by player 

one,  by both players.  

1.  2 0,0 ,2
R   (‘1’ is the dominant strategy for player 2) 

(1)  1 1,1 ,1
R    

(2)  1 1,1 ,1
R    

2.  2 0,0 ,2
R   

a)  1 0,0 ,1
R   

(1)  1 1,1 ,1
R  : ,  remain both equilibria  

(2)  1 1,1 ,1
R  : ’0’ is the dominant strategy for player 1  

b)  1 0,0 ,1
R   

(1)  1 1,1 ,1
R  : ‘1’ is the dominant strategy for player 1  

(2)  1 1,1 ,1
R  : there is a unique mixed equilibrium  

Note that all other values of threshold can be analyzed via 1. and 2., because for  simply 

the subcase  is left out of the analysis. The same holds for negative values, i.e.  

simply the case  is left out of the analysis. The last statement may need some 

clarification. A negative threshold implies that a deviation from an equilibrium (not only 

decreases the material payoff, but also) increases inequality. In that case for no level of inequality 

aversion a deviation from equilibrium becomes profitable in utility terms. This is equivalent to a 

2A A a  2B B b 

1a A a  1b B b 

2C C c  2D D d 

1c C c  1d D d 

 1 2,U U

2 2D D d C C c      2 0  D C 2 1  d c C C c   

       0,0 ,2 1,1 ,2 0,0 ,1 1,1 ,1, , ,R R R RA B D C a c d b

A a B b D d C c A a C c D d B b
   

   
   

           

 1,1 ,2 1R   1,1

       0,0 ,2 0,0 ,1 1,1 ,1, , 0,1R R R     1,1

 0,0

 ,d D

 ,b B

 0,0  1,1 ,
2 2

a d A D  
 
 

 ,a A

 ,d D

 1 2,mixed mixed 

 , , 1R

i i j
 

 , ,
R

i i j
 

 , , 0R

i i j
 

 , ,
R

i i j
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situation where an equilibrium is contestable but inequality aversion is too weak to indeed 

destabilize the equilibrium, i.e.  is left out. Note that strictness of the problem of 

distribution excludes case 2b (2). Table C-4 depicts equilibrium payoffs in the various matches.  

 
  

 

(1)            

(2)                   

(1)  

(2)  

 
(1)                   (1)  

Table C-4: Equilibrium payoffs according to the degree of inequality aversion of the matched players. 

,  and  being the materially more equal distributed equilibrium 

imply that . Furthermore .  

1.  (materially more unequal distributed equilibrium is not contestable for 

high type) 

Obviously all high types will earn the same payoff. Hence the distribution of inequality aversion 

among high types is determined by initial conditions and random shift. With respect to low types 

let me first consider the case when the materially more unequal distributed equilibrium is 

contestable, i.e. . In that case payoffs for low types are given by  and 

. Hence difference is given by  and the globally stable equilibrium 

is characterized by . Furthermore . I will now turn to the case where 

the materially less unequal equilibrium is contestable for the low type, i.e. . Payoff 

differences is given by . Hence the globally stable equilibrium is 

characterized by . Furthermore . 

Finally if none of the material equilibria is contestable for the low type, the distribution of 

inequality aversion among low types is determined by initial conditions and random shift. 

2. 
   0,0 ,2 0,1R   

Let me first consider the case when the materially more unequal distributed equilibrium is 

contestable for the low type, i.e. . In that case payoffs for low types are given by 

 and , for high types 

 and . Hence differences are 

given by  and . Hence the globally 

 , ,
R

i i j
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stable equilibrium is characterized by . Furthermore 

 and . 

I will now turn to the case where the materially less unequal equilibrium is contestable for the low 

type, i.e. . In that case payoffs are given by  and 

, for high types  and 

. Hence differences are given by  

and . Note that  and 

. Hence the globally stable equilibrium is given by 

. Furthermore  and . 

Finally if none of the material equilibria is contestable for the low type, the distribution of 

inequality aversion among low types is determined by initial conditions and random shift. Payoff 

difference for high types is given by  with 

. Hence the globally stable equilibrium is given by . 

Case (2) of Lemma 4-4: 

Let us now turn to case (2) of Lemma 4-4 with two Pareto-ranked equilibria. Given the 

assumption parallel to case A this leaves us with two possibilities, either  or 

. For ease of comparability to case (1) of Lemma 4-4 I will w.l.o.g. assume 

 to hold. Hence the only relation that has changed in comparison to case (1) is the 

one between parameters  and . Note that inequalities (i) and (ii) still hold. Again, due to (ii) 

, i.e. the equilibrium  is not contestable for player two. That is, in case (2) the Pareto-

superior equilibrium is not contestable for high types. The equilibrium analysis is equivalent to 

case A and equilibrium payoffs correspond to those in Table C-4, their relation to each other may 

have changed though.  

1.  (Pareto-inferior equilibrium is not contestable for high type) 

Parameters  and  are not involved, hence the results are identical to those in case A.  

2. 
   0,0 ,2 0,1R   

Let me first consider the case when the Pareto-inferior equilibrium is contestable for the low 

type, i.e. . Payoffs are equivalent to case (1). Differences in payoffs among low types is 

given by  and by  among high types. 
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Hence the globally stable equilibrium is given by . Furthermore 

 and .  

I will now turn to the case where the Pareto-superior equilibrium is contestable for the low type, 

i.e. . In that case payoffs are given by  and 

, for high types  and 

. Hence differences are given by  

and . Note that  and 

. Hence the globally stable equilibrium is given by 

. Furthermore  and . 

Finally if none of the material equilibria is contestable for the low type, the distribution of 

inequality aversion among low types is determined by initial conditions and random shift. Payoff 

difference for high types is given by  with 

. Hence the globally stable equilibrium is given by . QED 

Proof of Theorem:  Let  and .  implies that .  

Payoff differences are given by 

 (*) 

I will distinguish 3 cases (i) , (ii) 

 and (iii) .  

(i)  0 1D C D C R

H              

(*) can be written as:  

a) 0C  :  

It follows that the intercept of (1) in below one and above the intercept of (2). Given the negative 

slope of (1) essentially 2 cases can be distinguished. The following table depicts the phase 

diagrams which clearly indicate the stable equilibria. The last row states the precise condition for 

the case considered.   
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b) 0C  :  

It follows that the intercept of (1) above one and above the intercept of (2). Given the negative 

slope of (1) essentially 4 cases can be distinguished. The following table depicts the phase 

diagrams which clearly indicate the stable equilibria. The last row states the precise condition for 

the case considered.  

   

   

 

 
 

The same three cases emerge if (1) has a value of below one at . However in that case an 

additional locally stable equilibrium arises, that of . The condition for this is 

.  

  

0,  1H L H LF F F F    0H LF F 

 

 

1
1 0

1

C R

L

D C

D C R

LC

   

 

    




  
  



   


 

 

1
1 0

1

C R

L

D C

D C R

LC

   

 

    




  
  



   


1H LF F  1,  0;  1H L H LF F F F    1,  0H LF F 

 1
1 1

1

C R

L

D C

C R

L

   

 

 
 



  
  



 
 

 
 

1
1 0,1

C R

L

D C

   

 

  
 



 

 

1
1 0

1

C R

L

D C

D C R

LC

   

 

    




  
  



   


1 1t

HF 

0H LF F 

  0D C C     

 

 1 

1 

 
 

 

 1 

1 

 

 

 

 1 

 

 

 
 

 1 

1 

 
 

 

1 

 

 

 1 



Appendix to Chapter 4 

225 
 

(ii)  1 0D C D C R

H              

Note that the slope of (1) is again negative.  

a) 0C  :  

It follows that the intercept of (1) in below one and below the intercept of (2). Given the negative 

slope of (1) essentially 3 cases can be distinguished. The following table depicts the phase 

diagrams which clearly indicate the stable equilibria. The last row states the precise condition for 

the case considered.   

 
 

 

   

 

 
 

 

b) 0C  :  

In this case the intercept of (1) is above one. The following two cases can be distinguished.  
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(iii)  0 1D C D C R

H              

Note that the intercept of (1) is above one.  

a) 0C  :  

It follows that the slope of (1) is positive. Essentially 3 cases can be distinguished.  

 
 

 

  
 

 

 
 

 

b) 0C  :  

In this case the intercept of (1) is below one whereas the intercept of (2) is above one. The 

following two cases can be distinguished. 
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Proof of Lemma 4-7: The center of mass of the polytope given by the vertices presented in 

Table 4-4 can be calculated as the average with relative volume as weights of the centers of mass 

of the two pyramids DCGE and DCFE, i.e. 

DCGE DCFE

CDEFG DCGE DCFE

DCGE DCFE DCGE DCFE

P P

P P P

P P P P

V V
CM CM CM

V V V V
 

 
 .  

The center of mass for these two pyramids is located on the line segment connecting the center 
of the (any) triangular base and the top of the pyramids. Some elementary algebra yields 

     
1 2 1 2

1 1 2 1 2 2 1 2 1 2

1 1,
6 1 1 1 6 1 1 1

 
DCGE DCFEP PV V

   

         
 

       
. 

Furthermore the centers of mass of the two pyramids are given by: 
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Plugging in values and rearranging terms yield the stated equation.  QED 

Proof of Proposition 4-5: Again, let the symmetric dilemma be represented by the following 

matrix . Expected payoffs are then given by: 

1 00 01 10 11 2 00 01 10 11,  E a c b d E a b a d                  and hence the difference by: 

  1 2 10 01E E b c       . Plugging in the values for the center of mass (see Lemma 4-7) 

yields: 

 

  

         

1 2 2 1

1 2

1 1 2 2 1 2 1 2 1 1 2 2 1 2

0

1 1 1
1 1 1 1 1 1

E E b c   

 

             



   

 
              

 QED 

Proof of Proposition 4-6: The line of argument in the proof of Proposition 4-1 is still valid, 

i.e. if and only if two individuals are matched who are sufficiently inequality-averse the set of 

equilibria changes. In case of the concept of correlated equilibria the vertices of the set are given 

in Table 4-4. According to Proposition 4-5 for two such individuals the one with the lower 

a c
A

b d
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degree of inequality-aversion earns higher profits. Furthermore the difference in profits is 

monotonic decreasing in the difference in the degrees of inequality-aversion. Hence the highest 

profits is earned by individuals with D   and the lowest profits such an individual can earn is 

realized when matched with another individual with D  . Again, let the symmetric dilemma 

be represented by the following matrix . W.l.o.g. a d , in that case 1 2
D     

implies 1 2 0    and 00 11 01 10
3 1, , 0
4 4

CM CM CM CM        yielding expected payoff 

3 1
4 4

E a d d     strictly greater than the payoff received by opportunistic individuals. Hence 

the only stable equilibrium that can emerge is the singular distribution with all agents sharing the 

same degree of inequality-aversion.  

I turn now to the non-PD-case. In that case the results with respect to profits for individuals with 
D   also hold. No two different values 1 2,   with 1 2, D    can be part of an equilibrium, 

because both individual earn the same profit when matched with an opportunistic opponent and 

the one with the lower degree of inequality-aversion earns higher profits than the one with the 

higher value in any match with some other agent with D  . Hence only types with D   

could be part of an equilibrium. However the same calculation of expected payoffs as in the PD-

case applies, but in the non-PD-case this amount to a disadvantage because w.l.o.g. 

, , ,
2

   
b c

b a d c d a d


     and thereby 
3 1
4 4

E a d d    . Hence the globally stable 

equilibrium distribution is characterized by   1DF   .  QED 

Proof of Proposition 4-7: Given the definition of thresholds and the derivation of different 

equilibria in the proof of Proposition 4-2, I focus herein on the case where one player alone can 

destabilize both pure Nash equilibria. By symmetry potentially both players can thus destabilize 

all equilibria individually. Again, since inequality aversion has no leverage on coordination games, 

I study anti-coordination games. In other words, I am concerned with games represented by a 

matrix 
a c

A
b d

 
  
 

 such that ,  b a c d  . Both equilibria being contestable is equivalent to 

       0,1 ,2 1,0 ,1 0,1 ,1 1,0 ,2, 1,  , 1C C C C      and 
       0,1 ,2 1,0 ,1 0,1 ,1 1,0 ,2

, ,  
2

, 1,  , 1
, ,  

2

C C C C

b d
c a b c b a c d

a c
b d b c c d b a

   

  
      

  
   

          

. 

I first study the case        0,1 ,2 1,0 ,1 0,1 ,1 1,0 ,2 1C C C C b a

c d
     

 
       

 
. 

Table C-5 below presents the payoffs depending on the two level of inequality aversion being 

matched. I will refer to an individual in lowest interval, medium and high interval as A, B and C-

types respectively.  
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b d
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 A B C 

    2 0,1 ,2 1,0 ,2
C C        20,1 ,2 1,0 ,2

C C     

‘0’ is dominant str. 
    20,1 ,2 1,0 ,2
C C     

   1 1,0 ,1 0,1 ,1 C C     ,
2 2

b c b c  
 
 

  ,b c      1 1 2 2 1 2, , ,mix mix      

   11,0 ,1 0,1 ,1 C C      ,c b   ,a a   ,a a  

    11,0 ,1 0,1 ,1 C C         1 1 2 2 1 2, , ,mix mix       ,a a  ,
2 2

a d a d  
 
 

 

Table C-5: Payoffs in the various matches.  

For the mixed equilibrium: 1 2
1 2

1 2

,   
a b b c a b b c

c b c d c b c d

 
 

 

     
 

     
, and

       0,1 ,2 1,0 ,1 0,1 ,1 1,0 ,21  C C C Cb a

c d
     


      


.  

I will first consider the case b c . Note that in that case B-types destabilize the equilibrium that 

favors them, but not the equilibrium that disfavors them. This suggests an evolutionary 

disadvantage for B-types. Profits if there exists only a mixed Nash equilibrium, i.e. in a match 

between A-types and C-types are given by:   

 
  

   
  

 

   
 

  
 

1 1 2 1 2 1 2 2 1 2 1 2 1 2
1 2 1 2

2 1
1 1 2 2 1 2 1 2

1 2

1 1, ,    ,
1 1 1 1

, , 0
1 1

mix mix

mix mix

a b c d a c b d

b c

           
   

 
     

 

         
   


      

 

 

Consider a match between type A as player one and type C as player two, i.e. player one is 

opportunistic and player two is highly inequality-averse. In that case  

       

1 2 1 2
1 2

1 21 2

2 1 1 2 1 2
b a c d

a b b c a b b c a b b c a b b c

d c b c d c b cc b c d c b c d

a b b c d c b c a b b c d c b c

   
 

  

     
  

           
    

          

             

 

When I considered a strict and symmetric problem of coordination type C player were simply left 

out of analysis. Thus I will focus on equilibria with type C players. Note that there can be no B, C 

equilibrium, because C players would be worse off. For the same reason there cannot be an 

equilibrium with only C players, since B players could successfully invade.  

In an equilibrium with both types A and C present, only players with minimal 

1 1 1 0b a

b c
  

 
   

 
 among A types and those with minimal  2 2 2 1

2
a c

d b c
  


  

 
 can be 

part of the equilibrium, because 
   

   
1 1 2 2

2
1 1 2

,
0

1 1

mix a c b d  

  

   
  

  
 and 

   

  
2 1 2 1

2
2 1 2

,
0

1 1

mix a c b d  

  

   
  

  
. Due to 

  
  1

2
1 1

0
b a c d

b c
b a c d

c d b c



    

 
    

   
 and 
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  2

2
2 2

0
b a c d

b c
b a c d

c d b c



    

 
    

   
 minimal   translate into maximal  . Table C-5 thus 

simplifies to:  

 A B C 

A ,
2 2

b c b c  
 
 

  ,b c  
   22 2

,
3 3

bc a b c d c a b c d

a b c d a b c d

        
        

 

B  ,c b   ,a a   ,a a  

C 
   2 2 2

,
3 3

c a b c d bc a b c d

a b c d a b c d

        
        

  ,a a  ,
2 2

a d a d  
 
 

 

It turns out that type A types earn strictly higher payoffs than type C players, because  

 2

2 1 20,
2 3 2

mix
c a b c da c b c

d b c a b c d
 

     
     

     
 and 

 
1 1 2

2 2
0,

2 3 2
mix

bc a b c da c a d

d b c a b c d
 

     
     

     
. Hence such an equilibrium cannot exist.  

Intuitively, if b c , then weighting the outcome (0,1) and (1,1) less reduced payoffs for player 

two. For the lowest weight payoffs for player two are a weighted average of a  and c , and 

therefore higher than c .  

Finally, I analyze whether there exists a A,B,C equilibrium. It turns out that for the most 

profitable type A player an even stronger inequality holds: 1 1 20,
2

mix a c
a

d b c
 

 
    

  
. Hence 

A-types would earn strictly higher profits than B-types in an A,B,C equilibrium. 

Thus no additional equilibria arise.  

I now turn to the case when b c . To summarize conditions: ,  ,  
2

a c
c d b a b a c d b


       . 

These conditions imply: 
   

  
2 1 2 1

2
2 1 2

,
0

1 1

mix c a d b  

  

   
 

  
 and 

   

   
1 1 2 2

2
1 1 2

,
0

1 1

mix c a d b  

  

   
 

  
. 

Again I focus on equilibria with C types being present. I first consider the case with only C-types 

present in equilibrium. Such a distribution cannot be invaded by B types. The fittest A type is the 

one with maximal 1 , which transfers to a minimal 1 . Note that the profit of the fittest A type is 

independent of the degree of inequality aversion of the C type, 1 1 2,mix b a bc ad

c d b a c d
 

  
   

    
. 

Hence a locally stable equilibrium with only inequality averse players of type C exists if 

2
bc ad a d

b a c d

 


  
.  
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I now study whether there is an equilibrium with A and C types present. Again, this demands 

1 2,b a

c d
 


  


 implying the following profits: 1 1 2,mix b a bc ad

c d b a c d
 

  
   

    
 and 

 2

2 1 2,mix
c a b d cdb a

c d a b c d
 

    
    

    
. Thus Table C-5 simplifies to:  

 A B C 

A ,
2 2

b c b c  
 
 

  ,b c  
 2

,
c a b d cdbc ad

b a c d a b c d

    
        

 

B  ,c b   ,a a   ,a a  

C 
 2

,
c a b d cd bc ad

a b c d b a c d

     
        

  ,a a  ,
2 2

a d a d  
 
 

 

Let A  and C  denote the payoffs of A-types and C-types respectively. Let  F A  denote the 

share of A-types in equilibrium, then     1
2

A b c bc ad
F A F A

b a c d

 
   

  
 and 

 
 

  
2

1
2

C
c a b d cd a d

F A F A
a b c d

    
   

  
.  

An A,C equilibrium exists if and only if 
2

bc ad a d

b a c d

 


  
, because 

 2

2
c a b d cdb c

a b c d

   


  
 

holds. In that case the equilibrium share of A-types is given by 

 
   

 

2 2

22 2

2

2 2

a bc a b c b c d d
F A

a b c d ad bd

     


    
. The equilibrium is locally stable if the profits of B are 

smaller than equilibrium payoffs, given the equilibrium share of A and C-types. Note that a 

parameterization with 
1 10, , , 1
5 3

   a b d c     indeed satisfies all condition, i.e. 

,  ,  
2

a c
c d b a b a c d b


       , 

2
bc ad a d

b a c d

 


  
,    0,1F A  , and B A  , thus such a 

stable equilibrium indeed exists.  

I will finally analyze the existence of an A,B,C equilibrium. Payoffs of the different types are 

given by:         1
2

A b c bc ad
F A F B b F A F B

b a c d

 
     

  
, 

        1B F A c F B a F A F B a      , and 

 
 

      
2

1
2

C
c a b d cd a d

F A F B a F A F A
a b c d

    
     

  
. The two equations A B   and 

B C   imply the following equilibrium values for  F A  and  F B : 

 

   

          

            

2

4 3 2 2 2 3 3

2 2 2 2 3 2 2 2 2 2

2

2 4 3 2 2 5 2

4 3 5 2 11 6 3 2 3 4 3

a b a d a b c d

a b c b c b c b c d b bc c d b c d a b c d

a b bc c b c d d a b b

F A

c d c d c cd d b c cd d

    

             

         



 
 
 


   


 

   
      

  

2 3 2 2
1

a a b c d b c d c d d
F B F A

a d a b c d

      
 

   
.  
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Given the summarizing conditions of this case ,  ,  
2

a c
c d b a b a c d b


       , it turns out that 

for the slopes of the three equation the following ordering holds: 

 

 

 

 

 

 
1 0

A B B C A C

F B F B F B

F A F A F A

     
  

    
  

, where 

 

 

     

  

2 22 3 2
2

A B

F B a b a b c c c d b c d

F A a b b d

 
         


  

, 

 

 

     

  

2 3 2 2
B C

F B a a b c d b c d d c d

F A a d a b c d

 
          


    

, and 

 

 

 

   

22 2

2 2

2 2
2 3 2

A C

F B a b c d ad bd

F A a b a b c d bd c d d

 
     


       

. This gives rise to the following phase diagram.  

 

 

 

 

 

 

 

As the diagram clearly indicates this equilibrium is unstable. 

Proof of Proposition 4-8: The set of equilibrium payoffs can be found in the proof of 

Proposition 4-3. If the two Nash equilibria are not Pareto-ranked then I may w.l.o.g. assume that 

a d D A    (see Table C-3). Two cases with respect to the thresholds for low types may be 

distinguished. I first consider    0,0 ,1 1,1 ,1
R R   

1.    0,0 ,1 1,1 ,10 1R R     

Table C-6 depicts equilibrium payoffs in the various matches.  

 
 0,0 ,2
R   

 

 0,0 ,1
R   ,

2 2
a d A D  

 
 

  ,d D  

   0,0 ,1 1,1 ,1
R R      ,d D   ,d D  

 1,1 ,1
R       1 1 2 2 1 2, , ,mix mix       ,b B  

Table C-6: Equilibrium payoffs:    0,0 ,1 1,1 ,10 1R R    . 

I will refer to individuals with  0,0 ,1
R  ,    0,0 ,1 1,1 ,1

R R    , and  1,1 ,1
R   as A types, B types and C 

types respectively.  

 0,0 ,2
R 
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There can be no equilibrium with B types only as the more opportunistic A type would earn 

strictly higher profits as long as some high types are opportunistic. In an equilibrium with A and 

B types opportunistic high types would earn strictly higher payoffs. I will now consider the case 

of C types, who give rise to the play of a mixed equilibrium when matched with an opportunistic 

high type. I will show that  2 1 2,mix B   , thus in such an equilibrium only opportunistic high 

types can be present.  

Note that         2 1 2 1 2 1 2 1 2 1 2 2, 1 1mix B A C D B A B D B B C                        

Consider first B b , then D B  and hence      1 2 2 2A B D B B C A B B C           .  

Note that 
      

    
2

2

2

2

2 2

1 2

A c d B c C d D a b C D

D C c d D



 

        

     





 if C c . This derivative is negative if 

and only if the numerator is negative which can be written as      2A B d c D C a b B       . 

This term is negative because  0,0 ,2 1 2R a b B     . If C c  then 

      

      
2

2
2

2 2 2

2 2

1 1

A c C d B c d D a b C D

D c d C 



 

        

     





. This derivative is negative if and only if the 

numerator is negative which can be written as      2 2A B d c AD BD D C a b        . Note 

that: 

     
 

    

    

0,0 ,2 1 2
0

0

2 2 0

2 2 2 0

2 0

R a b B

A B d c AD BD D C a b

A B d c AD BD B D C

A B C d c

    





         

        

   

 

This term is negative because C c d   implies   2 0C d c   . Thus 2

2

0,b B









.  

Consider second B b , then D B  because    1,1 ,1

0

1 2R d b D B



     . Hence still 

   2 1 2 2,mix B A B B C         holds. I show that also in this case 2

2

0







 . 

 0,0 ,2 1 2R a b B     . If C c  then 
      

      
2

2
2

2 2 2

2 2

1 1

A c C d B c C d a b C D

D c d C 



 

        

     





. This 

derivative is negative if and only if the numerator is negative which can be written as 

     
0 0, 0

2
C c d

A B c d C a b D C

  

       . Note that:  0,0 ,2 1 0R a b     , hence 2

2

0







 . 

If C c  then 
     

    
2

2

2

2 21

A B c d a b C D

D C c d D



  

    

     





. This derivative is negative if and only if the 

numerator is negative which can be written as      
0 0

A B d c a b D C

 

      . Note that: 

 0,0 ,2 1 0R a b     , hence 2

2

0







 .  

In summary, if    0,0 ,1 1,1 ,10 , 1R R    and one equilibrium is contestable for the high type, i.e. 

 0,0 ,20 1R  , then 2

2

0







 . Note that I did not make use of    0,0 ,1 1,1 ,1

R R  . Hence the result also 
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applies for the second case    1,1 ,1 0,0 ,10 1R R     which will be considered next. Hence 

          

2

2
max

2 1 2 2 2 2 2

0

, 0mix A B
B A B B C A B B C B C B C

D C

D B





     




 
              



 

 

Since the last inequality holds, the claim  2 1 2,mix B    is established.  

2.    1,1 ,1 0,0 ,10 1R R     

In that case Table C-6 becomes:  

 
 0,0 ,2
R   

 

 0,0 ,1
R   ,

2 2
a d A D  

 
 

  ,d D  

   0,0 ,1 1,1 ,1
R R      ,a A   ,b B  

 1,1 ,1
R       1 1 2 2 1 2, , ,mix mix       ,b B  

Table C-7: Equilibrium payoffs:    1,1 ,1 0,0 ,10 1R R    . 

Since  2 1 2,mix B    also holds and since A B  dominance of relative opportunistic players 

among high types is even strict. Thus, also in this case no inequality-averse individuals can be part 

of a stable equilibrium.  QED 

Proof of Proposition 4-9: The argument is given in the paper. QED 

 0,0 ,2
R 


