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Summary

The main goal of this thesis is to discuss the determination of homological
invariants of polynomial ideals. Thereby we consider different coordinate systems
and analyze their meaning for the computation of certain invariants. In particular,
we provide an algorithm that transforms any ideal into strongly stable position if
chark = 0. With a slight modification, this algorithm can also be used to achieve
a stable or quasi-stable position. If our field has positive characteristic, the Borel-
fixed position is the maximum we can obtain with our method. Further, we present
some applications of Pommaret bases, where we focus on how to directly read off
invariants from this basis.

In the second half of this dissertation we take a closer look at another homo-
logical invariant, namely the (absolute) reduction number. It is a known fact that
one immediately receives the reduction number from the basis of the generic initial
ideal. However, we show that it is not possible to formulate an algorithm – based
on analyzing only the leading ideal – that transforms an ideal into a position,
which allows us to directly receive this invariant from the leading ideal. So in
general we can not read off the reduction number of a Pommaret basis. This re-
sult motivates a deeper investigation of which properties a coordinate system must
possess so that we can determine the reduction number easily, i.e. by analyzing
the leading ideal. This approach leads to the introduction of some generalized
versions of the mentioned stable positions, such as the weakly D-stable or weakly
D-minimal stable position. The latter represents a coordinate system that allows
to determine the reduction number without any further computations. Finally,
we introduce the notion of β-maximal position, which provides lots of interesting
algebraic properties. In particular, this position is in combination with weakly
D-stable sufficient for the weakly D-minimal stable position and so possesses a
connection to the reduction number.

Keywords: (Strongly) Stable Ideals, Quasi-stable Ideals, Borel-fixed Ideals,
Pommaret Basis, Reduction Number, Weakly D-Minimal Stable
Ideals, weakly D-stable, β-Maximality
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Notations

k infinite field

Gl(n,k) general linear group of degree n over k

P the polynomial ring k[x1, . . . , xn] in n variables

m the maximal homogeneous ideal 〈x1, . . . , xn〉C P

Hi
m(M) ith local cohomology of M with respect to m

xµ xµ11 · · · xµnn , µ ∈ Nn

T {xµ | µ ∈ Nn}, set of all terms

I homogeneous polynomial ideal

dim(P/I) Krull dimension of P/I

dimk k-vector space dimension

Iq set of all homogeneous elements of I with degree q

I : Ĩ, I : f ideal quotient,
I : Ĩ = {f ∈ P | f Ĩ ⊆ I}, I : f = I : 〈f〉

I : Ĩ∞
⋃
k

I : Ĩk

≺ degree reverse lexicographical term order,
see Chapter 1 on page 5

≺revlex reverse lexicographical order,
see Definition 2.2.7 on page 20
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see Definition 6.1.3 on page 92
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leading coefficient of a polynomial f
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(e.g. supp(
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CHAPTER 0

Introduction

Commutative algebra is an area of mathematics that focuses mainly on the
study of commutative rings and their ideals. The special case of polynomial ideals
will be in the center of our attention throughout this thesis. In order to analyze,
characterize and compare given ideals one considers homological invariants. These
invariants can be interpreted as a kind of complexity measure. To understand
what “complexity measure” means in this context one has to consider a given
ideal I as a module. As free modules present the simplest class of modules one
can say that the more a module differs from being a free module the higher is its
complexity. To measure the “distance” from I to a free module one takes a look
at the minimal free resolution. In Section 1.1 we provide a short review of the
concept of free resolutions, in particular we repeat the fact that any module we
consider in this thesis has a unique minimal free resolution. In Remark 1.1.3 we
also offer a brief insight into a method to construct a free resolution. This already
gives a first impression on how costly it is to compute the minimal free resolution.
However, the determination of the minimal free resolution is a classical method
to retrieve to already mentioned homological invariants. Well-known examples of
such invariants are the Castelnuovo-Mumford regularity, the projective dimension
and the depth. While the first two can directly be read off from the minimal free
resolution, the latter one can be derived indirectly. Therefore one uses a famous
result from Auslander and Buchsbaum that the sum of the projective dimension
and the depth equals the number of variables of the considered polynomial ring.
Hence the determination of one of those two invariants immediately yields to the
other one. An alternative computation of the depth is based on the determination
of several Ext-modules that we describe in Remark 1.1.13. Unfortunately, it is not
possible to predict whether either the projective dimension or the depth is easier
to determine in general.

Anyway this is not the approach we want to consider in this thesis. We rather
would like to investigate another ansatz that is motivated by some properties of the
generic initial ideal gin I, which was introduced by Galligo and Bayer/Stillman1.
Thereby we consider the fact that the determination of the mentioned invariants

1 Green’s article [Gre98] offers a summary for the various attributes of the generic initial
ideal.

1



2 0. INTRODUCTION

becomes trivial whenever the chosen coordinate system is in gin-position, i.e. the
leading ideal of I equals gin I. Bayer and Stillman showed that in this case a lot of
invariants of I coincide with those of gin I and can directly be read off the minimal
monomial basis of gin I as formulated in Theorem 1.3.9. For the computation of
gin I there exist mainly two different approaches, which are both rather expensive.

The first one is based on performing a random change of coordinates. It is
a theoretical result of probability theory that then after this transformation the
leading ideal of our considered ideal is gin I. This method is even used by some
computer algebra systems such as CoCoA . As this approach is not a deterministic
but a probabilistic method it would be interesting to verify the final result, but
there is no ansatz known that provides this opportunity. Further, a random co-
ordinate change leads to dense polynomials, which obviously cause a more costly
computation especially when computing a Gröbner basis.

The second approach is to compute a Gröbner system2 of I, which was intro-
duced by Weispfenning [Wei92] in the context of his research on comprehensive
Gröbner basis. This ansatz represents – contrary to the method above – a deter-
ministic way to compute gin I so that a verification of the result is not necessary.
However, the determination of a Gröbner system requires parametric computa-
tions, which makes this method even more expensive than the first one.

Hence we want to discover alternative coordinate systems that might be easier
respectively cheaper to reach but still provide properties similar to a coordinate
system in gin-position. To implement this plan we start with the consideration
of ideals in quasi-stable, stable and strongly stable position. In Algorithm 1 we
provide – as one of the main results of this dissertation – a deterministic way
to put any ideal into strongly stable position. Thereby we use sparse coordinate
changes so that in most cases this method is much cheaper than transforming
into gin-position. With slight modifications this algorithm can also be used to
achieve a quasi-stable or stable position. Especially the quasi-stable position is of
great interest since ideals in this position possess a finite Pommaret basis, which
is a special kind of involutive bases. Seiler shows in [Sei09b] that the above
mentioned invariants can be read off the Pommaret basis and so he generalizes
some results of Bayer/Stillman concerning the generic initial ideal.

However, in the reduction number we found an invariant that in general can not
be obtained from the Pommaret basis. The main focus of the second half of this
dissertation will lie on the study of this invariant. As another important result we
even prove that it is not possible to formulate a simple algorithm that transforms
a given ideal into a position from which the reduction number can be determined
easily. Thereby we call an algorithm simple if it is based on analyzing only the
leading ideal. This result motivates to develop generalized versions of the stable

2 We recall its definition in Definition 2.1.1



0. INTRODUCTION 3

positions, in order to construct a position that allows a simple determination of
the reduction number. In this context we establish the theory of β-maximality as
the final highlight of this thesis. As we are able to directly derive the reduction
number from ideals in β-maximal position under certain assumptions, this ideal
class represent a generalization of the generic position in the considered context.

Most of the results of this thesis have already been published in the papers
[HSS12] and [HSS14]. A third paper with the same authors and the title De-
terministic Genericity for Polynomial Ideals is already in preparation but was not
published at the date of submitting this dissertation.

We now present short summaries of every chapter of this thesis:

Chapter 1. We repeat the definition of the minimal free resolution of an ideal
and show its relation to the homological invariants Castelnuovo-Mumford regu-
larity, projective dimension and depth. Further, we compare the invariants of an
ideal with the one of its leading ideal and introduce the generic initial ideal gin I.

Chapter 2. We present a way to deterministically compute gin I via Gröbner
systems. Then different stable positions are introduced and – as one of the main
results of this thesis – Algorithm 1 describes a method to put any ideal into one
of the stable positions under the assumption chark = 0. Afterwards we discuss
the case chark > 0, where a slightly modified version of the mentioned algorithm
leads at least to a Borel-fixed position.

Chapter 3. We provide a short overview of the theory of Pommaret basis –
which are a special kind of involutive basis – and explain its relation to quasi-
stability. Afterwards we repeat some results of [Sei09b], concerning how to read
off several invariants of a Pommaret basis. We are able to deliver more such invari-
ants before we present further applications of Pommaret bases. Thereby another
stable position – which we call componentwise quasi-stable – is introduced. For
this position the component ideals I〈q〉 for all integers q ≥ 0 are considered.

Chapter 4. We study the reduction number and present an algorithm for its
computation. An example provided by Green [Gre98] shows us that this invari-
ant can not be read off a Pommaret basis in general. Even more, it is another
consequence of this example that it is not possible to transform an ideal into a
coordinate system, from which the reduction number can be determined by ana-
lyzing the corresponding leading ideal, with a simple3 algorithm.

3See explanation above.



4 0. INTRODUCTION

Chapter 5. In this chapter we establish some generalized versions of the quasi-
stable and stable position. Thereby we especially outline the weakly D-stable and
weakly D-quasi-stable position. Weakly D-stable ideals are monomial ideals with
the property that their reduction number can be read off their monomial basis.
This position plays also a decisive role when we introduce the notion of weakly
D-minimal stable, which describes a position with properties similar to the gin-
position in terms of the reduction number. Further, we are able to provide an al-
ternative definition of the well-known Noether position by showing its equivalence
to weakly D-quasi-stable position. Remarkably, we thereby present a combinato-
rial characterization of Noether position. Moreover, since weakly D-quasi-stable
position is achievable by a modified version of Algorithm 1, we thus deliver a de-
terministic algorithm that transforms a given ideal into Noether position.

Chapter 6. With the concept of β-maximal position we introduce another class
of ideals that possesses interesting algebraic properties. For example, we will see
that in this position the length of the Pommaret basis is minimal under the restric-
tion that we only consider polynomial rings with at most three variables. Further,
we also have a connection to the reduction number since β-maximality implies
weak D-minimal stability if we assume that the considered ideal is in weakly D-
stable position.

Chapter 7. Finally, we provide several examples that allow us to clearly sepa-
rate all of the discussed positions and enables us to draw the map of positions.



CHAPTER 1

Preliminaries

At the beginning of this thesis we repeat some well-known facts that are a re-
quired for the following chapters. Thereby we denote throughout this dissertation
by I a homogeneous ideal of the polynomial ring P = k[x1, . . . , xn] in n variables
over an infinite field k. Further, we use the multi-index notation xµ = xµ11 · · · xµnn ,
where µ ∈ Nn is a n-tuple. As term order ≺ we use the degree reverse lexicograph-
ical1 order defined by xµ ≺ xν , if and only if deg xµ < deg xν or µm > νm with
m = max{i | µi 6= νi} (compare [LA94, Def. 1.4.4]) . In particular, we denote by
lt I the leading ideal of I with respect to the term order ≺.

As most of the invariants that we want to analyze in this thesis are related to
the minimal free resolution, we first present a short overview of the most important
results, which are associated with this concept. Afterwards we will talk about the
difference between the invariants of an ideal I and its leading ideal lt I, before we
finally take a closer look at the notion of genericity.

1.1. Free Resolution

In the following M will denote a finitely generated graded P-module.

Definition 1.1.1.
A free resolution of M is an exact sequence

· · ·
ϕi+1 // Fi

ϕi // Fi−1

ϕi−1 // · · · ϕ2 // F1
ϕ1 // F0

ϕ0 //M // 0

where the Fi are free graded P-Modules of the form

Fi =
⊕
j

P(−j)ri,j

with P(−j) =
⊕

ν Pν−j and ϕi are graded homomorphisms with ϕi((Fi)r) ⊆ Pr.
If there is an index ` such that F` 6= 0 and Fj = 0 for all j > `, we call the
resolution finite. If the smallest ` with this property is denoted by `0, the length
of the resolution is `0 + 1. The resolution is called minimal if the maps ϕi satisfy
imϕi ⊆ m

⊕
j P(−j)ri,j−1, where m = 〈x1, . . . , xn〉 is the maximal graded ideal.

1 As we often cite the references [Sei09a], [Sei09b], [Sei10], [Sei12] and [HSS12], we want
to mention that in these papers the degree reverse lexicographical ordering is defined by xµ ≺ xν ,
if and only if degxµ < degxν or µm > νm with m = min{i | µi 6= νi}.

5



6 1. PRELIMINARIES

In this case the ranks ri,j are the graded Betti numbers βMi,j . Finally, we define the

(total) Betti numbers βMi by βMi =
∑

j β
M
i,j .

Theorem 1.1.2 (Graded Hilbert Syzygy Theorem ([Eis95, Thm. 1.13])).
Every finitely generated graded P-module has a finite graded free resolution of
length at most n.

Remark 1.1.3 ([Sei10, Prop. B.2.31, et. seq.]).
One way to construct a free resolution of M is based on the fact that any
P-module is finitely presented, i.e. there is a P-module M0 and an integer r0

such that

0 //M0
// Pr0 //M // 0

is an exact sequence. Indeed, if {m1, . . . ,m`} is a generating set of M we can

define a homomorphism ϕ : P` →M by ϕ(f1, . . . , f`) =
∑`

i=1 fimi so that a finite
presentation of M is given by:

0 // kerϕ �
� // P` ϕ //M // 0

Now, as the P-module M0 = kerϕ is also finitely presented, we find another
P-module M1 and an integer r1 such that

0 //M1
// Pr1 //M0

// 0

is an exact sequence. Going on like this leads to free resolution of M as the
following diagram demonstrates:

0

""

0

M1

<<

""
· · · //

!!

Pr2 //

<<

Pr1 //

""

Pr0 //M // 0

M2

<<

""

M0

<<

""
0

<<

0 0

<<

0

Theorem 1.1.4 ([Eis95, Thm. 20.2]).
The minimal free resolution of M is unique up to isomorphism.
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Remark 1.1.5 ([GP08, Rem. 2.5.2, et. seq.]).
Let the following sequence be the minimal free resolution of the module M:

(1.1) 0 // F`
ϕ` // F`−1

ϕ`−1 // · · · ϕ2 // F1
ϕ1 // F0

ϕ0 //M // 0

Then we should note that the number of minimal generators of the P-module
kerϕi is βMi and βMi,j is the number of minimal generators of kerϕi in degree i+ j.
In the literature kerϕi is called the ith module of syzygies of M and denoted by
Syzi(M). Thereby we understand under a syzygy of k elements f1, . . . , fk ∈ M a

k-tuple (g1, . . . , gk) ∈ Pk with
∑k

i=0 gifi = 0.

Definition 1.1.6 ([HH11, p.48]).
The Castelnuovo-Mumford regularity reg(M) of M is defined by

reg(M) = max{j | βMi,i+j 6= 0 for some i}.

Remark 1.1.7 ([Cha07, §1]).
An alternative definition that connects reg(M) with the ith local cohomology
Hi

m(M) of M with respect to m is

reg(M) = max{ai(M) + i | i ≥ 0},
where ai(M) = max{q | Hi

m(M)q 6= 0}.

Definition 1.1.8 ([HH11, p.48]).
The projective dimension pd(M) of M is defined by

pd(M) = max{i | βMi,j 6= 0 for some j}.

With other words, pd(M) is the length of the minimal free resolution of M.

Remark 1.1.9 ([Eis05, page 7, et. seq.]).
If again (1.1) is the minimal free resolution of M the tabular

pd(M)
q

0 1 · · · `
...

...
...

...
...

0 0 0 0 0 · · ·
j βM0,j βM1,1+j · · · βM`,`+j 0 · · ·

j + 1 βM0,j+1 βM1,1+j+1 · · · βM`,`+j+1 0 · · ·
...

...
...

...
...

reg(M) = j + k βM0,j+k βM1,1+j+k · · · βM`,`+j+k 0 · · ·
0 0 0 0 0 · · ·
...

...
...

...
...

is called the Betti diagram of M. Thereby is j the smallest degree of a minimal
generator of M.
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It is clear that we can determine the entries of this diagram by computing
the minimal free resolution. But, as Albert, Fetzer, Saenz-de-Cabezon and Seiler
showed in [MFdCS15], it also possible to compute the Betti numbers without
explicitly determine the minimal free resolution. Further, we see that knowing
reg(M) and pd(M) leads to a first rough description of the Betti diagram as they
provide certain bounds.

Definition 1.1.10.
We say that the elements r1, . . . , rd ∈ P form a M-regular sequence if
M 6= 〈r1, . . . , rd〉M and if ri is a nonzero divisor in M/〈r1, . . . , ri−1〉M for all
i ∈ {1, . . . , d}.

Further, we say that a M-regular sequence r1, . . . , rd ∈ P is maximal if it is
impossible to find an element rd+1 ∈ P such that r1, . . . , rd+1 form a M-regular
sequence.

Theorem 1.1.11 ([Sha01, Thm. 16.13]).
All maximal M-regular sequences are of the same length.

Definition 1.1.12 ([Sha01, Rem. 16.16]).
The length of a maximal M-regular sequence is called the depth of M and is
denoted by depth(M).

Remark 1.1.13 ([Eis05, Thm. A2.14.]).
Two alternative definitions that connect depth(M) with Ext-modules2 respectively
local cohomology are presented in the following:

depth(M) = min{i | ExtiP(P/m,M) 6= 0} = min{i | Hi
m(M) 6= 0}

The following famous result of Auslander-Buchsbaum shows the relationship
between projective dimension and depth.

Theorem 1.1.14 (Auslander-Buchsbaum Formula ([Eis95, Thm. 19.9])).
pd(M) + depth(M) = n

Hence in practice it is enough to determine only one of those two invariants
since one receives to other one immediately by this formula. In general, it is not
predictable whether the computation of the projective dimension or the one of
the depth is cheaper. The classical method to determine pd(M) is to compute
the minimal free resolution while depth(M) is received by computing the Ext-
modules described in Remark 1.1.13. If pd(M) � depth(M), then only a few
syzygy modules have to be computed to receive the projective dimension while the
determination of the depth costs several Ext-computations, hence in this case it is
recommended to compute pd(M) instead of depth(M). Analogously, we can argue
that mostly it should be cheaper to compute depth(M) if depth(M)� pd(M).

2 Recall that the ith Ext-module of given P-modules M,N is defined by ExtiP(M,N ) =
Ri HomP(M,−)(N ), where Ri HomP(M,−) denotes the ith right derivative of the Hom functor
(see e.g. [Eis95, A3.11]).
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Remark 1.1.15.
We consider in this thesis only the two casesM = I andM = P/I, where I CP
is a homogeneous ideal. The relation between those two cases, in terms of the
considered invariants, is presented in the following:

� depth(I) = depth(P/I) + 1
� pd(I) = pd(P/I)− 1
� reg(I) = reg(P/I) + 1

� βIi,j = β
P/I
i+1,j

This is a simple consequence of the fact that if

0 // F`
ϕ` // · · · ϕ2 // F1

ϕ1 // F0
ϕ0 // I // 0

is the minimal free resolution of I, then

0 // F`
ϕ` // · · · ϕ1 // F0

ϕ0 // P π // P/I // 0

is the minimal free resolution of P/I (where π denotes the canonical projection).

1.2. Invariants of I and lt I

Before we present a theorem that delivers a decisive description of the rela-
tionship between the invariants of I and lt I, we first should discuss why we are
interested in comparing them. The most important and obvious difference between
these two ideals is that lt I is monomial while I is assumed to be a polynomial
ideal. Since monomial ideals are combinatorial objects, they are much easier to
handle in terms of computing invariants. So knowing the connection between the
invariants of I and lt I allows us to reduce the computation of the invariants of
the polynomial ideal I to the case of the monomial ideal lt I.

Theorem 1.2.1 ([HH11, Thm. 3.3.4]).
For a polynomial ideal I the following holds:

� reg(I) ≤ reg(lt I)
� pd(I) ≤ pd(lt I)
� depth(I) ≥ depth(lt I)

Thereby the assertions of Theorem 1.2.1 are a consequence of the following
proposition.

Proposition 1.2.2 ([HH11, Cor. 3.3.3]).
Let I be a polynomial ideal then βIi,j ≤ βlt I

i,j .
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Example 1.2.3.
Let I = 〈x2

1, x1x2+x2
3〉 be an ideal in k[x1, x2, x3]. Then its minimal free resolution

is

0 // P(−4) // P(−2)2 // I // 0 ,

while the minimal free resolution of lt I = 〈x2
1, x1x2, x1x

2
3, x

4
3〉 is

0 // P(−5) // P(−3)⊕ P(−4)2 ⊕ P(−5) // P(−2)2 ⊕ P(−3)⊕ P(−4) // lt I // 0 .

The two corresponding Betti diagrams are presented in the following:

0 1

2 βI0,2 = 2 βI1,3 = 0
3 βI0,3 = 0 βI1,4 = 1

0 1 2

2 βlt I
0,2 = 2 βlt I

1,3 = 1 βlt I
2,4 = 0

3 βlt I
0,3 = 1 βlt I

1,4 = 2 βlt I
2,5 = 1

4 βlt I
0,4 = 1 βlt I

1,5 = 1 βlt I
2,6 = 0

With this information we can now directly derive that:

reg(I) = 3 < 4 = reg(lt I)

pd(I) = 1 < 2 = pd(lt I)

depth(I) = 2 > 1 = depth(lt I)

βI1,3 = 0 < 1 = βlt I
1,3

This explicitly shows that the considered invariants of an ideal can differ from
those of its leading ideal.

Theorem 1.2.1 delivers two important aspects. On the one hand we see that the
invariants of the leading ideal provide an upper respectively lower bound for those
of the ideal itself. On the other hand a new question arises from these statements:

Under which circumstances do the invariants of I coincide with those of lt I?

1.3. Genericity

The answer to this question lies in the notion of genericity. Since the concept
of genericity is used in many different contexts in the literature, we give a concrete
explanation of what we mean by a generic property. Therefore we firstly recall
the definition of the well-known Zariski topology. Since it is enough to describe a
topology by naming its closed sets, we only have to remember that a set X ⊆ kn
is Zariski closed if there exists an ideal ICP such that X equals the variety V(I).

Definition 1.3.1.
We call a property generic if it holds on a nonempty Zariski open set.
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Remark 1.3.2.
Let us consider the case k = Q.

Then, in sense of measure theory, a generic property is one that holds almost
everywhere. Further, a property holds almost everywhere if the set of elements
for which the property does not hold is a set of Lebesgue measure zero. Since
proper Zariski closed sets have a dimension lower than the whole space, they are
of measure zero. So this definition is equivalent to the one above.

In probability theory the to “almost everywhere” equivalent concept is almost
surely. Thereby a property holds almost surely if it happens with probability one.

Notation 1.3.3.
Let I = 〈f1, . . . , f`〉 C P . We will use the following two different notations for
performing a coordinate transformation on I.

� Let A = (aij) ∈ Gl(n,k) then we define the following notations:

� A · xµ = (
n∑
j=1

a1jxj)
µ1 · · · (

n∑
j=1

anjxj)
µn

� A ·
∑
µ

Cµx
µ =

∑
µ

Cµ(A · xµ), Cµ ∈ k

� A · {f1, . . . , f`} = {A · f1, . . . , A · f`}
� A · I = 〈A · f1, . . . , A · f`〉

� Let a1, . . . , an ∈ k then we understand under Ψ : (xj 7→ xj +
∑

i6=j aixi)

a coordinate transformation that maps xj to (xj +
∑

i6=j aixi) and xi to
xi for all i 6= j. Therefore:

� Ψ(xµ) = (xj +
∑
i6=j

aixi)
µj
∏
i6=j

xµii

� Ψ(
∑
µ

Cµx
µ) =

∑
µ

CµΨ(xµ), Cµ ∈ k

� Ψ({f1, . . . , f`}) = {Ψ(f1), . . . ,Ψ(f`)}
� Ψ(I) = 〈Ψ(f1), . . . ,Ψ(f`)〉

The next theorem illustrates the for us most important statement in the context
of genericity.

Theorem 1.3.4 (Galligo, Bayer-Stillman ([Gre98, Thm. 1.27])).
There exists an open Zariski subset U ⊆ Gl(n,k) and a monomial ideal J C P
such that for all A ∈ U :

lt(A · I) = J
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Proof. For some integer q we consider 〈Iq〉k as k-linear subspace of Pq.
Let B = {t1, . . . , ts} be the monomial basis of Pq with t1 � · · · � ts, then
s = dimk(Pq) =

(
n−1+q

q

)
. Further, let r = dimk(〈Iq〉k) and we define the r × s

matrix M(Iq) = (mij) such that the set{
s∑
j=1

mijtj | 1 ≤ i ≤ r

}

is a k-basis of 〈Iq〉k. If Mk(Iq) is the submatrix of M(Iq) consisting of the first k
columns, then

(1.2) dimk(〈(lt I)q〉k ∩ 〈t1, . . . , tk〉k) = rank(Mk(Iq)).

Since the rank is the size of the largest minor having a nonzero determinant, there
exists for every k a Zariski open subset Uqk ⊂ Gl(n,k) such that rank(Mk((A·I)q))
is constant for all A ∈ Uqk. Hence by (1.2) 〈(lt(A · I))q〉k is constant for all A from
the Zariski open set Uq = Uq1 ∩ . . . ∩ Uqs. We set U ′0 = U0 and U ′q+1 = Uq ∩ Uq+1

for all q ≥ 0 and so consequently U ′q+1 ⊆ U ′q. Now the homogeneous component
(lt(A · I))q of the ideal lt(A · I) is constant for any A ∈ U ′q so that we can define
an ideal J by Jq = (lt(A · I))q. As the ideal J is generated by a finite set F we
can set q̂ = degF . The Zariski open set with the desired property is U ′q̂. �

Remark 1.3.5.
We showed in the proof of Theorem 1.3.4 that there is an integer c such that:

(1.3) rank(Mk((A · I)q)) = c, for all A ∈ Uqk

As we will use this fact in the proof of Proposition 6.1.13, we want to note here
that it is not only constant, but also maximal with respect to all A ∈ Gl(n,k).
This is a consequence of the semicontinuity3 of rank. To understand this argument
we assume that there is a matrix A1 such that:

rank(Mk((A1 · I)q)) > c
q
c1

Now choose ε > 0 such that ε < c1 − c. It follows from the semicontinuity that
there exits a neighborhood W of A1 such that:

(1.4) rank(Mk((B · I)q)) ≥ c1 − ε, for all B ∈ W

3 Let X be a topological space and f : X → R a function. Then f is lower semicontinuous
at x0 ∈ X if for every ε > 0 there exists a neighborhood W of x0 such that f(x) ≥ f(x0)− ε for
all x ∈ W.
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Since Uqk is Zariski open, the intersection Uqk∩W is nonempty. So let A2 ∈ Uqk∩W
then

rank(Mk((A2 · I)q))
(1.4)

≥ c1 − ε,
q (1.3)

c

which leads to a contradiction to the choice of ε.

Definition 1.3.6.
The ideal J from Theorem 1.3.4 above is called generic initial ideal of I and is
denoted by gin I. If I is an ideal such that lt I = gin I, then we say that I is in
gin-position.

Notation 1.3.7.
We denote the (maximal) index of a term, polynomial and finite set of polynomials
as follows:

� m(xµ) = max{i | µi 6= 0}
� m(f) = m(lt f) for all f ∈ P \ {0}
� m(F ) = max{m(f) | f ∈ F} for all finite sets F ⊆ P \ {0}

Remark 1.3.8 ([Sei10, Lem. A.1.8]).
The degree reverse lexicographic term order ≺ is index respecting. This means that
if xµ,xν ∈ T are two terms with deg xµ = deg xν and xµ � xν then m(xµ) ≤ m(xν).
Moreover, for two terms xλ,xκ ∈ T with xλ|xκ, we also have m(xλ) ≤ m(xκ).

Now we can come back the question of the last section. Analogous to
Theorem 1.2.1 we present the following assertion:

Theorem 1.3.9 (Bayer-Stillman ([Eis95, Cor. 19.11, Cor. 20.21]).
Let H be the minimal monomial basis of gin I. Then:

� reg(I) = reg(gin I) = degH
� pd(I) = pd(gin I) = m(H)− 1
� depth(I) = depth(gin I) = n−m(H) + 1

This theorem does not only show that if our ideal is in gin-position the invari-
ants of I and lt I coincide, but also that they can directly be read off the basis of
gin I without any further computation.





CHAPTER 2

gin-Position vs. stable Positions

We have seen in Theorem 1.3.9 that the gin-position provides several useful
properties. Naturally, it is our next step to investigate how we can put a given ideal
I into this position or alternatively how we can compute gin I. This investigation
will be done in the first section of this chapter, while the following sections discuss
different notions of stable positions. Thereby we will develop an algorithm that
allows us to put any ideal into strongly stable position if chark = 0. Further, we
examine possible strategies for the implementation of this algorithm and consider
the case of positive characteristic.

2.1. Gröbner System

Following Weispfenning [Wei92]1, we denote by P̂ = k[a,x] a parametric
polynomial ring where a = a1, . . . , am represents the parameters and x = x1, . . . , xn
the variables. Let ≺x (resp. ≺a) be a term order for the power products of the
variables xi (resp. the parameters ai). Then we introduce the block elimination
term order ≺x,a in the usual manner:

For all κ, µ ∈ Nn
0 and all λ, ν ∈ Nm

0 , we define aνxµ ≺x,a aλxκ if either xµ ≺x xκ

or xµ = xκ and aν ≺a aλ.
Further, we call a homomorphism σ : k[a] → k with σ|k = idk a specialization2

of P̂ . So any specialization is uniquely determined by its restriction to k and the
images σ(ai) of the parameters in k[a].

Definition 2.1.1.
A finite set of triples

{
(Ĝi, Ni,Wi)

}`
i=1

with finite sets Ĝi ⊆ P̂ and Ni,Wi ⊆ k[a]

is a Gröbner system for a parametric ideal Î C P̂ with respect to the block order
≺x,a if for every index 1 ≤ i ≤ ` and every specialization σ of P̂ with

(i) ∀g ∈ Ni : σ(g) = 0
(ii) ∀h ∈ Wi : σ(h) 6= 0

σ(Ĝi) is a Gröbner basis of σ(Î)C P with respect to the order ≺x and if for any
point p ∈ km an index 1 ≤ i ≤ ` exists such that p ∈ V(Ni) \ V(

∏
h∈Wi

h).

1 Weispfenning introduced the notion of Gröbner system in the context of his research on
comprehensive Gröbner bases.

2 σ has a canonical extension σ : P̂ = k[a,x]→ k[x].

15
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Remark 2.1.2.
A Gröbner systems yields a Gröbner basis for all possible values of the parameters
a. Basically every algorithm (in particular the algorithm3 used by us) produces

Gröbner systems such that given one specific triple (Ĝi, Ni,Wi) all specializations

σ satisfying (2.1.1) yield the same leading terms ltσ(Ĝi). Hence we can speak of
a monomial ideal LiCP determined by the conditions (Ni,Wi). In the sequel, we
will always assume that a Gröbner system with this property is used.

Theorem 2.1.3 ([Wei92, Theorem 2.7]).

Every parametric ideal Î C P̂ possesses a Gröbner system.

To get a better feeling for these abstract definitions, we now explain to concept
of Gröbner systems based on a pretty simple example.

Example 2.1.4.
Let I = 〈x3〉C k[x1, x2, x3] and A = (aij) a parametric 3× 3 matrix. We consider
the parametric ideal

Î = A · I = 〈a31x1 + a32x2 + a33x3〉C k[a11, a12, a13, . . . , a31, a32, a33, x1, x2, x3].

With the notations of Definition 2.1.1 and Remark 2.1.2 we get:

i Li Ni Wi

1 〈x1〉 {} {a31}
2 〈x2〉 {a31} {a32}
3 〈x3〉 {a31, a32} {a33}
4 〈0〉 {a31, a32, a33} {}

Finally, we have to verify whether the equation

k9 =
⋃
i

V(Ni) \ V(
∏
h∈Wi

h)

= 4 k9 \ V(a31) ∪ V(a31) \ V(a32) ∪ V(a3,1, a32) \ V(a33) ∪ V(a31, a32, a33)

holds. Therefore we choose a point p = (a11, a12, a13, . . . , a31, a32, a33) ∈ k9. The
following case distinction shows the above equation:

a31 6= 0 ⇒ p ∈ k9 \ V(a31)
a31 = 0 ∧ a32 6= 0 ⇒ p ∈ V(a31) \ V(a32)

a31 = 0 ∧ a32 = 0 ∧ a33 6= 0 ⇒ p ∈ V(a31, a32) \ V(a33)
a31 = 0 ∧ a32 = 0 ∧ a33 = 0 ⇒ p ∈ V(a31, a32, a33)

3 Weispfenning [Wei92] provided a first algorithm for computing Gröbner systems. Subse-
quently, improvements and alternatives were presented by many authors [KSW10, KSW13,
Mon02, MW10, SS06]. Our calculations were done using a Maple implementation of the
DisPGB algorithm of Montes which is available at http://amirhashemi.iut.ac.ir/softwares

4 Remember that by convention
∏
h∈{} h = 1 and V(1) = ∅.

http://amirhashemi.iut.ac.ir/softwares
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Remark 2.1.5.
Gröbner systems are defined for parametric ideals. In this thesis we will always
construct these ideals by transforming a given ideal I C P with a parametric
matrix, as we have done it in the preceding example. So for us the case i = 4 of
this example is not relevant, since then the matrix A is singular and so it does not
represent a coordinate change.

Remark 2.1.6.
Every Gröbner system

{
(Ĝi, Ni,Wi)

}`
i=1

has one branch j with Nj = {} and so
V(Nj) = km. Otherwise it would not be possible to find a finite number of tuples
(Ni,Wi) with

km =
⋃
i

V(Ni) \ V(
∏
h∈Wi

h).

This branch j is called generic branch and the set V(Nj) \ V(
∏

h∈Wj
h) is Zariski

open.
If we now compute the generic branch j of the parametric ideal A · I Ck[a,x],

where A is a n× n parametric matrix, then

Lj = ltσ(Ĝj) = gin I.

If (b11, . . . , b1n, b21, . . . , b2n, . . . , bn1, . . . , bnn) is an element of the Zariski open set

kn
2 \ V(

∏
h∈Wj

h) such that B = (bij) ∈ Gl(n,k), then we have lt(B · I) = gin I.

With other words B transforms I into gin-position.

Now we know a way to determine the generic initial ideal. But as we have to
compute a Gröbner basis of a parametric ideal with n2 parameters this method is
obviously rather expensive. The next lemma brings a slight optimization to this
problem by reducing the number of parameters from n2 to n2−n

2
.

Lemma 2.1.7.
Let I C P be an ideal and A ∈ Gl(n,k) matrix. There exists a matrix L with
lt(A · I) = lt(L · I) and

(2.1) L =


1 0 · · · 0

l21
. . . . . .

...
...

. . . . . . 0
ln1 · · · ln,n−1 1

 .

Proof. Indeed, any regular matrix A can be written as a product5 A = UDL
where L is a lower triangular, U an upper triangular and D a diagonal matrix
and where both L and U have only ones on the diagonal. As we are considering

5Classically, one uses decompositions A = LDU . But such a decomposition for the inverse
A−1 yields immediately a decomposition of our form for A.
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a polynomial ring over a field the transformation induced by D does trivially not
change the leading term of any polynomial for arbitrary term orders, i.e.:

(2.2) lt(D · I ′) = lt I ′, for any I ′ C P

Now we want to analyze the effect of the matrix U on the leading terms. Let s ∈ T
be a term then it follows from the definition of the reverse lexicographic order that
s � r for any r ∈ supp(U · s). In particular, for any polynomial f ∈ P we have
lt(U · f) = lt f so that:

(2.3) lt(U · I ′) = lt I ′, for any I ′ C P

Hence also the transformation induced by U does not affect any leading term and
we can finally conclude:

lt (A · I) = lt(U(DL · I))
(2.3)
= lt(D(L · I))

(2.2)
= lt (L · I)

�

As already mentioned it is a consequence of this lemma that we can reduce
the number of parameters to determine gin I compared to the method described
in Remark 2.1.6. Since instead of using a full parametric n × n matrix A it is
enough to consider a parametric matrix of the form (2.1) that contains only n2−n

2
parameters.

Remark 2.1.8.
In practice, one tries to avoid such expensive parametric computations by using
a different ansatz to determine gin I. For example the computer algebra system
CoCoA has a function called Gin, which is described in the manual as follows:

These functions return the [probabilistic] gin (generic initial ideal) of
the ideal I. It is obtained by computing the leading term ideal of g(I),
where g is a random change of coordinates. While Gin uses integer
coefficients in [-Range, Range], with default value [-100, 100] (repeated
until 4 consecutive random changes of coordinates give the same re-
sult)(. . . )6

This approach leads to a probabilistic algorithm (Monte Carlo algorithm) which
is based on the following idea. We have seen in Theorem 1.3.4 that there is an
Zariski open set U such that lt(A · I) = gin I for every A ∈ U . Further, we know
by Remark 1.3.27 that a randomly chosen matrix lies almost surely in this set U .

6 See http://cocoa.dima.unige.it/download/CoCoAManual/html/cmdGinGin5.html for
more details.

7CoCoA uses k = Q by default.

http://cocoa.dima.unige.it/download/CoCoAManual/html/cmdGinGin5.html
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2.2. Quasi-stable, stable and strongly stable Ideals

So far we studied the gin-position and presented its interesting properties con-
cerning homological invariants in Theorem 1.3.9. Furthermore, we found in the
previous section a deterministic method to compute the generic initial ideal gin I
by using the theory of Gröbner systems (see Remark 2.1.6).

In this section we will take a look at certain combinatorial properties that
ideals can have. These different properties are summarized under the term “sta-
ble-positions” which will be in the center of our attention for the rest of this
dissertation. Thereby we now deliver a deterministic algorithm that allows us to
put any ideal into a desired stable position (if the characteristic of the considered
field k is zero).

Definition 2.2.1.
Let J be a monomial ideal and B its minimal basis.

� J is quasi-stable if for every term xµ ∈ J and all i < k = m(xµ) the

term xdegB
i

xµ

x
µk
k

also lies in J .

� J is stable if for every term xµ ∈ J and all i < k = m(xµ) the term xi
xµ

xk
also lies in J .

� J is strongly stable if for every term xµ ∈ J , all indices j with µj > 0
and all i < j the term xi

xµ

xj
also lies in J .

Remark 2.2.2.
We can directly derive from this definition the following hierarchy:

J strongly stable ⇒ J stable ⇒ J quasi-stable

Example 2.2.3.
Let J1 = 〈x2

1, x
2
2〉, J2 = 〈x2

1, x1x2, x
2
2, x2x3〉, J3 = 〈x2

1, x1x2, x1x3〉Ck[x1, x2, x3].
Then J1 is quasi-stable but not stable since x1x2 /∈ J1, J2 is stable but not strongly
stable since x1x3 /∈ J2 and finally J3 represents an example of a strongly stable
ideal.

Lemma 2.2.4 ([HH11, Lem. 4.2.3]).
To verify, whether an ideal has one of the properties defined in Definition 2.2.1, it
is enough to check if the elements of the minimal basis fulfill the desired property.

Proof. We will show this only for the case of strong stability, since the proof
for the other notions is similar. So let us assume that every element of the minimal
basis B of a monomial ideal J fulfills the property for strongly stable. Further let
xµ ∈ J be a term with µj > 0 for some index j. Since there must be an element
t ∈ B that divides xµ, we can write xµ = st for some s ∈ T. Therefore either s
or t must be divisible by xj. In the first case s

xj
∈ T and so s

xj
t = xµ

xj
∈ J , hence

xi
xµ

xj
∈ J for all indices i. In the second case it follows by our assumption that

xi
t
xj
∈ J for all i < j. But then of course the same holds for xi

st
xj

= xi
xµ

xj
. �
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Definition 2.2.5.
We say that a polynomial ideal is in quasi-stable/stable/strongly stable position if
its leading ideal is quasi-stable/stable/strongly stable.

Remark 2.2.6.
By Lemma 2.2.4 we can see that it is very easy to verify whether an ideal is in one
of the positions described in Definition 2.2.1. This is an important difference to
the gin-position for which there exists no simple test to verify that one has really
obtained this position.

Analogous to Remark 2.1.6 it is natural to ask whether we are able to put an
ideal into one of the stable positions. Indeed, for the case chark = 0, we can
present an algorithm in the following that outputs a coordinate transformation Ψ
such that Ψ(I) is strongly stable. Before we are able to present this algorithm
we must first define a special type of a list of terms and an associated ordering
on these lists. This definition will play a fundamental role when we prove the
termination of the mentioned algorithm.

Definition 2.2.7.
Let F ⊆ P be a finite set of polynomials with ltF = {t1, . . . , t`} where the terms ti
are ordered by the reverse lexicographical8 ordering such that
t1 �revlex · · · �revlex t`. Then we define:

L (F ) = (t1, . . . , t`)

Let F, F̃ ⊆ P be two finite sets of polynomials with L (F ) = (t1, . . . , t`) and
L (F̃ ) = (t̃1, . . . , t̃˜̀). We define:

L (F ) ≺L L (F̃ ) if

{
∃j < min(`, ˜̀),∀i < j : ti = t̃i and tj ≺revlex t̃j or

∀j ≤ min(`, ˜̀) : tj = t̃j and ` < ˜̀.

8 Following [LA94, Sec. 1.4] we set xµ ≺revlex xν , if and only if µm > νm with
m = max{i | µi 6= νi}.
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Algorithm 1 SS-Trafo: Transformation to strongly stable position in chark = 0

Input: Reduced Gröbner basis G of homogeneous ideal I C P
Output: a linear change of coordinates Ψ such that lt Ψ(I) is strongly stable

1: Ψ := id;
2: while ∃ g ∈ G, 1 ≤ j ≤ n, 1 ≤ i < j : xj| lt g ∧ xi lt g

xj
/∈ 〈ltG〉 do

3: ψ := (xj 7→ xj + xi); Ψ = ψ ◦Ψ;

4: G̃ := ReducedGröbnerBasis
(
ψ(G)

)
;

5: while L (G) �L L (G̃) do
6: ψ := (xj 7→ xj + xi); Ψ = ψ ◦Ψ;

7: G̃ := ReducedGröbnerBasis
(
ψ(G̃)

)
;

8: end while
9: G := G̃;

10: end while
11: return Ψ

Remark 2.2.8.
Line 2 of Algorithm 1 reflects the definition of strongly stable. We will see later
(in Remark 2.2.17) that replacing it by the corresponding condition for quasi-
stable/stable leads to a coordinate transformation Ψ that puts the ideal in quasi-
stable/stable position. In particular, we will discuss in Section 2.4 that for quasi-
stability a slightly modified version of this algorithm also works if the considered
field9 k has positive characteristic (see Theorem 2.4.11).

Example 2.2.9.
In this example we want to perform Algorithm 1 on the ideal I = 〈x3

1, x
3
2, x

2
2x3〉C

k[x1, x2, x3]. I is not strongly stable since x1
x22x3
x3

= x1x
2
2 /∈ I. So according to the

algorithm we perform a coordinate transformation Ψ1 : (x3 7→ x3 + x1) and get

lt Ψ1(I) = 〈x3
1, x1x

2
2, x

3
2, x

2
2x

2
3〉.

As (x3
1, x

3
2, x

2
2x3) ≺L (x3

1, x1x
2
2, x

3
2, x

2
2x

2
3), we do not enter the while loop of line

5. But lt Ψ1(I) is still not strongly stable since x1
x1x22
x2

= x2
1x2 /∈ lt(Ψ1(I)). So we

transform the coordinates again, this time by Ψ2 : (x2 7→ x2 + x1) which leads to

lt Ψ2(Ψ1(I)) = 〈x3
1, x

2
1x2, x1x

2
2, x

4
2, x

2
1x

3
3〉.

Again we do not enter the while loop of line 5 since:

(x3
1, x1x

2
2, x

3
2, x

2
2x

2
3) ≺L (x3

1, x
2
1x2, x1x

2
2, x

4
2, x

2
1x

3
3)

9 Remember that throughout this thesis, we assume k to be an infinite field if nothing
different is mentioned.
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Now there are no obstructions10 left, i.e. lt Ψ2(Ψ1(I)) is strongly stable (in this
case we even have lt Ψ2(Ψ1(I)) = gin I).

The next example will show that the result of Algorithm 1 is not unique, i.e.
there may exist more than one transformation Ψ that transforms an ideal into
strongly stable position.

Example 2.2.10.
Let I = 〈x2

1, x1x2, x2x3, x
3
2〉C k[x1, x2, x3]. Since both terms x1

x2x3
x2

= x1x3 and

x2
x2x3
x3

= x2
2 are not in I, we have the choice to perform either Ψ1 : (x2 7→ x2 +x1)

or Ψ2 : (x3 7→ x3 + x1). Because

lt Ψ1(I) = 〈x2
1, x1x2, x1x3, x

3
2, x

2
2x3〉

lt Ψ2(I) = 〈x2
1, x1x2, x

2
2, x2x

2
3〉

we see that applying Ψ1 directly leads to a strongly stable ideal, while lt Ψ2(I) is

still not strongly stable since x1
x2x23
x2

= x1x
2
3 does not lie in lt Ψ2(I). However,

lt Ψ1(Ψ2(I)) = 〈x2
1, x1x2, x

2
2, x1x

2
3〉

is strongly stable but nevertheless not equal to lt Ψ1(I).

The termination of Algorithm 1 is one of the main results of this thesis and we
will have to do a lot of preparation before we are able to deliver the corresponding
proof at the end of this section.

Definition 2.2.11.
Let F = {f1, . . . , f`} ⊆ P be a set of polynomials.

� We call F completely autoreduced if for every index i holds:

∀t ∈ supp(fi) ∀j 6= i : lt fj - t
� We call F head autoreduced if for every index i holds:

∀j 6= i : lt fj - lt fi

We denote the complete autoreduction of F by FN and the head autoreduction by
F4.

Remark 2.2.12.
We will in the following often use the expression:

for a generic choice of a ∈ k
According to our definition of generic (see Definition 1.3.1) this expressions means
that we choose the element a ∈ k from a Zariski open set, or with other words we
choose a ∈ k such that it does not lie on a variety. In this context it becomes more
clear why we have assumed our field k to be infinite. Because then the concept of
generic choice means that the desired property holds for almost all choices.

10 By obstructions we always mean elements of the ideal that cause an obstruction to strong
stability (resp. quasi-stability/stability).
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Indeed one could generalize the following assertions by using a “sufficiently
large” field such that there exits an element a ∈ k with the requested property.

Lemma 2.2.13.
Let F ⊆ P be a finite and completely autoreduced set of polynomials. Further, let
Ψ : (xj 7→ xj + axi) be a coordinate transformation with i < j and a ∈ k. Then
for a generic choice of a ∈ k holds

L (F ) �L L (Ψ(F )4).

Proof. Before we start with the proof we want to introduce a notation that
we will use in the following. For a polynomial f ∈ P and t ∈ supp(f) we denote
the coefficient of t in f with Cf (t).

Let F = {f1, . . . , f`} with lt fk ≺revlex lt fl if k > l. Further, let tk = lt fk
and sk = lt Ψ(fk) for each k. Without loss of generality suppose that lc fk = 1
for each k. It is easy to see that tk �revlex sk for all k. If tk = sk for all k, then
there is nothing to prove since then ltF = lt Ψ(F ) = lt Ψ(F )∆ and consequently
L (F ) = L (Ψ(F )4). Otherwise, let α be minimal such that tα 6= sα. In other
words:

tk = sk ∀k < α
tα ≺revlex sα
tk �revlex sk ∀k > α

Let hα be the remainder of Ψ(fα) after reducing it by the set {Ψ(f1), . . . ,Ψ(fα−1)}
– note that this set is head autoreduced, but in general not completely autore-
duced. As a first step we want to show that tα is still in the support of hα since
then lthα �revlex tα holds.

Claim 1: tα ∈ supp(hα).
If hα = Ψ(fα) we are done since tα ∈ supp(Ψ(fα)), otherwise there is an index
β < α such that sβ = tβ divides sα. So the question is whether tα remains in the
support of

hβ = Ψ(fα)−
CΨ(fα)(sα)sα
CΨ(fβ)(tβ)tβ

Ψ(fβ)

or not.

Claim 1.1: tα ∈ supp(hβ).
Let us assume that this is not the case. Hence there must be a monomial mβ =
CΨ(fβ)(tmβ)tmβ in Ψ(fβ) that causes the cancellation of tα. This means the following
equation must hold:

CΨ(fα)(tα)tα =
CΨ(fα)(sα)sα
CΨ(fβ)(tβ)tβ

CΨ(fβ)(tmβ)tmβ

⇔ CΨ(fα)(tα)CΨ(fβ)(tβ)tαtβ = CΨ(fα)(sα)CΨ(fβ)(tmβ)sαtmβ(2.4)
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Let us now have a look at the coefficients which we can interpret as elements of k[a],
i.e. polynomials in the parameter a. Because of the form of the transformation Ψ
we have 1 ∈ supp(CΨ(fβ)(tα)), supp(CΨ(fβ)(tβ)) and hence

1 ∈ supp(CΨ(fα)(tα)CΨ(fβ)(tβ)).

But since sα �revlex tα it follows that 1 /∈ supp(CΨ(fα)(sα)) and therefore

1 /∈ supp(CΨ(fα)(sα)CΨ(fβ)(tmβ)).

This shows that the polynomials CΨ(fα)(tα)CΨ(fβ)(tβ) and CΨ(fα)(sα)CΨ(fβ)(tmβ) are
not equal. For any element p of the Zariski open set

(2.5) k \ V(CΨ(fα)(tα)CΨ(fβ)(tβ)− CΨ(fα)(sα)CΨ(fβ)(tmβ))

obviously holds
(
CΨ(fα)(tα)CΨ(fβ)(tβ)

)
(p) 6=

(
CΨ(fα)(sα)CΨ(fβ)(tmβ)

)
(p). As the pa-

rameter a is chosen generically, we know from Remark 2.2.12, that a is chosen from
a Zariski open set. Since two nonempty Zariski open sets always have a nonempty
intersection, we may assume that a is an element of the set presented in (2.5).
Therefore equation (2.4) does not hold in this case which leads to a contradiction
of our assumption that tα /∈ supp(hβ). Hence claim 1.1 is true.

Additionally we can also see that the coefficient of tα in hβ is:

Chβ(tα) = CΨ(fα)(tα)−
CΨ(fα)(sα)

CΨ(fβ)(tβ)
CΨ(fβ)(tmβ)

⇔ CΨ(fβ)(tβ)Chβ(tα) = CΨ(fβ)(tβ)CΨ(fα)(tα)− CΨ(fα)(sα)CΨ(fβ)(tmβ)

With the arguments from above we have 1 ∈ supp(CΨ(fβ)(tβ)Chβ(tα)) and therefore

(2.6) 1 ∈ supp(Chβ(tα)).

If now already hβ = hα holds then immediately claim 1 follows, otherwise there is
an index γ < α such that the term sγ = tγ divides lthβ = thβ . The existence of such
a divisor shows that thβ can not be equal to tα since F is a completely autoreduced
set – note that we could not argue like this if F was only head autoreduced – and
therefore

(2.7) thβ �revlex tα.

As above we want to check whether tα remains in the support of

hγ = hβ −
Chβ(thβ)thβ
CΨ(fγ)(tγ)tγ

Ψ(fγ)

or not.
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Claim 1.2: tα ∈ supp(hγ).
Let us assume that this is not the case. Hence there is a monomial
mγ = CΨ(fγ)(tmγ )tmγ in Ψ(fγ) such that:

Chβ(tα)tα =
Chβ(thβ)thβ
CΨ(fγ)(tγ)tγ

CΨ(fγ)(tmγ )tmγ

⇔ Chβ(tα)CΨ(fγ)(tγ)tαtγ = Chβ(thβ)CΨ(fγ)(tmγ )thβ tmγ(2.8)

Let us now again have a look at the coefficients. As above we immediately get
1 ∈ supp(CΨ(fγ)(tγ)) because of the form of Ψ. In (2.6) we already saw that
1 ∈ supp(Chβ(tα)), hence 1 ∈ supp(Chβ(tα)CΨ(fγ)(tγ)).
We are done if we are able to show that

(2.9) 1 /∈ supp(Chβ(thβ)).

Because then 1 /∈ supp(Chβ(thβ)CΨ(fγ)(tmγ )) and so equation (2.8) does not hold
for a generic choice of the parameter a. This would finally lead to a contradiction
of our assumption that tα /∈ supp(hγ).
To show (2.9) we should remember the construction of hβ:

hβ = Ψ(fα)−
CΨ(fα)(sα)sα
CΨ(fβ)(tβ)tβ

Ψ(fβ)

From this we can derive:

Chβ(thβ) = CΨ(fα)(thβ)−
CΨ(fα)(sa)

CΨ(fβ)(tβ)
CΨ(fβ)(thβ)

⇔ Chβ(thβ)CΨ(fβ)(tβ) = CΨ(fα)(thβ)CΨ(fβ)(tβ)− CΨ(fα)(sa)CΨ(fβ)(thβ)(2.10)

On the one hand we should notice that 1 /∈ supp(CΨ(fα)(t)) for all terms
t ∈ supp(Ψ(fα)) with t �revlex tα. So, since thβ �revlex tα by (2.7), we can fol-
low that if thβ ∈ supp(Ψ(fα)) then 1 /∈ supp(CΨ(fα)(thβ)) and therefore

1 /∈ supp(CΨ(fα)(thβ)CΨ(fβ)(tβ))

On the other hand we have already seen above that 1 /∈ supp(CΨ(fα)(sα)) and so:

1 /∈ supp(CΨ(fα)(sa)CΨ(fβ)(thβ))

Since at least one of the coefficients CΨ(fα)(thβ) and CΨ(fβ)(thβ) must be nonzero
(otherwise thβ would not occur in the support of hβ), we can follow from (2.10) that
1 /∈ supp(Chβ(thβ)CΨ(fβ)(tβ)). Now (2.9) follows from the fact that
1 ∈ supp(CΨ(fβ)(tβ)) and so we proved claim 1.2.

We can repeat this procedure until we end up at hα and with the arguments
from above we know that tα ∈ supp(hα), which finally proves claim 1.

This means either tα ≺revlex lthα = thα or tα = thα .
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Case I: tα ≺revlex thα.
It is not clear that the set

{Ψ(f1), . . . ,Ψ(fα−1), hα}

is head autoreduced since it could happen that there is an index δ < α such that
thα divides sδ = tδ. Since thα 6= tδ by the construction of hα, we know that,
thα �revlex tδ. In this case we check whether the set {Ψ(f1), . . . ,Ψ(fδ−1), hα} is
head autoreduced or not. If it is not, then there is an index ε < δ such that thα
divides sε = tε. Again we check whether the set {Ψ(f1), . . . ,Ψ(fε−1), hα} is head
autoreduced or not and go on like this, until we reach an index ζ < ε such that
the set {Ψ(f1), . . . ,Ψ(fζ−1), hα} is head autoreduced. Still it is not clear if this set
is a subset of Ψ(F )∆, but we know that lt fζ ≺revlex lthα and so

L (f1, . . . , fζ) ≺L L (Ψ(f1), . . . ,Ψ(fζ−1), hα).

Let Ψ(F )∆ = {f̂1, . . . f̂m̂} then of course

L (Ψ(f1), . . . ,Ψ(fζ−1), hα) �L L (f̂1, . . . , f̂ζ),

which proves the lemma since then L (F ) ≺L L (Ψ(F )∆).

Case II: tα = thα.
In this case we have to look for the smallest index α′ > α such that tα′ 6= sα′ .
Then we reduce Ψ(fα′) by the set

(2.11) {Ψ(f1), . . . ,Ψ(fα−1), hα,Ψ(fα+1), . . . ,Ψ(fα′−1)}

to hα′ in the same way as above – note that (2.11) is head autoreduced since the
leading terms did not change in comparison to the completely autoreduced set
F . It is clear that if we go on like this we will either end up by Ψ(F )∆ with

lt f̂k = lt fk for all k, which would mean that L (F ) = L (Ψ(F )∆) or we find a hω
with tω ≺revlex lthω which would lead us back to case I. �

Lemma 2.2.14.
Let I CP be an ideal and G its reduced Gröbner basis. Let Ψ : (xj 7→ xj + axi) be

a coordinate transformation with i < j and a ∈ k. Further, let G̃ be the reduced
Gröbner basis of Ψ(I). Then, for a generic choice of a ∈ k, we have

L (Ψ(G)∆) �L L (G̃).

Proof. Suppose that L (Ψ(G)∆) = (t1, . . . , t`) and L (G̃) = (t̃1, . . . , t̃˜̀). Since

tk ∈ lt Ψ(G)∆ ⊆ lt〈Ψ(G)∆〉 = lt Ψ(I) = 〈lt G̃〉

for all k, there is a g̃k ∈ G̃ such that lt g̃k divides tk and therefore lt g̃k �revlex tk.
Now we start to compare the two lists beginning with the first entry.
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Let lt g̃1 = t̃α, if α > 1 we are done because then

t̃1 �revlex t̃α = lt g̃1 �revlex t1.

So we assume lt g̃1 = t̃1. Of course we are done if t̃1 �revlex t1, so we additionally
assume that t1 = t̃1 and go on with the next entry.
First we should mention that g̃1 6= g̃2 since otherwise t1 = t̃1 = lt g̃1 = lt g̃2 divides
t2 which is a contradiction to Ψ(G)∆ being head autoreduced. Now we have to
check which position lt g̃2 = t̃β has in the list L (G̃). Since G̃ is reduced lt g̃1 6= lt g̃2

and therefore β > 1. If β > 2 we have – analogous to above – the situation

t̃2 �revlex t̃β = lt g̃2 �revlex t2

and hence we are done. Otherwise β = 2 and so either t̃2 �revlex t2 or t̃2 = t2. In
the first case our assertion follows and in the second one, we go on with the next
entry. So sooner or later we either find an index ω with t̃ω �revlex tω, which shows
that L (Ψ(G)∆) ≺L L (G̃), or we have

(2.12) t̃k = tk for all k ≤ min(˜̀, `).

In the first case we are done so let us assume that (2.12) holds. Since G̃ is a
Gröbner basis of 〈Ψ(G)∆〉 and both Ψ(G)∆ and G̃ are reduced sets we must have

` ≤ ˜̀. Hence it follows from the definitions of ≺L that:

L (Ψ(G)∆) = L (G̃), if ` = ˜̀

L (Ψ(G)∆) ≺L L (G̃), if ` < ˜̀

�

Until now we did not have to care about the characteristic of our field k. But
the following Lemma clearly shows its importance and will also play a decisive role
in Section 2.4.

Lemma 2.2.15.
Let f ∈ P be a polynomial and Ψ : (xj 7→ xj + axi) a coordinate transformation
with i < j and a ∈ k \ {0}. Further, let xµ ∈ supp(f) be a term such that µj > 0.
Then for a generic choice of a ∈ k holds:

x
µj−u
i

xµ

x
µj−u
j

∈ supp(Ψ(f)),

for all integers u with

{ (
µj
u

)
6= 0, if chark = 0(

µj
u

)
6≡ 0 mod p, if chark = p > 0

.
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Proof. Let Cµ ∈ k be the coefficient of xµ in f and g = f − Cµx
µ. Then

Ψ(f) = Ψ(Cµx
µ) + Ψ(g) and

Ψ(Cµx
µ) = Cµ(xj + axi)

µj
xµ

x
µj
j

= Cµ

(
µj∑
u=0

(
µj
u

)
xuj (axi)

µj−u

)
xµ

x
µj
j

= Cµ

µj∑
u=0

(
µj
u

)
aµj−ux

µj−u
i

xµ

x
µj−u
j

So we see that every term tu = x
µj−u
i

xµ

x
µj−u
j

lies in the support Ψ(Cµx
µ) if

(
µj
u

)
is nonzero. Now we have to clarify whether these terms can be cancelled out by
Ψ(g).
Since tµj = xµ /∈ supp(g) we see that if xµ lies in supp(Ψ(g)) it must have a
coefficient that can be interpreted as an element of k[a] \ k. But the coefficient of
tµj in Ψ(Cµx

µ) is Cµ – which is an element of k – and so, because of the generic
choice of a, this term can not be deleted by a term of g (for more details see our
argumentation in the proof of Lemma 2.2.13). Therefore we have

tµj ∈ supp(Ψ(f)).

Now we consider the terms tu with u < µj. Every one of them has a coefficient
in k[a] \ k. Let us now assume that tu /∈ supp(Ψ(f)) then tu must be removed
by a term of Ψ(g) that does not appear in g. Because – as a consequence of
the form of Ψ – other terms of Ψ(g) can not have a coefficient in k[a] \ k. So

let xν
(1)
, . . . ,xν

(`) ∈ supp(g) with tu ∈ supp(Ψ(xν
(k)

)) for all k = 1, . . . , `. The

elements of supp(Ψ(xν
(k)

)) are of the form:

s(k)
v = x

ν
(k)
j −v
i

xν
(k)

x
ν
(k)
j −v
j

, 0 ≤ v ≤ ν
(k)
j , 1 ≤ k ≤ `

So for each k there must be a ṽk such that s
(k)
ṽk

= tu. Since the exponent of xj is v

in s
(k)
v and u in tu it follows that ṽk = u for every k. In particular, s

(k)
u = tu and

so:

(2.13) ν
(k)
j + ν

(k)
i = µj + µi and ν

(k)
l = µl for all l 6= i, j.

If Cν(k) ∈ k denotes the coefficient of xν
(k)

in g it follows from our assumption that

(2.14)
∑̀
k=1

Cν(k)

(
ν

(k)
j

u

)
aν

(k)
j −u = Cµ

(
µj
u

)
aµj−u
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since the left-hand side is the coefficient of tu in Ψ(g) while the right-hand side is
the coefficient of tu in Ψ(Cµx

µ). Because Cν(k) and Cµ are not in k[a], it follows

from (2.14) that ν
(k)
j = µj for all k. Hence ν(k) = µ for all k by (2.13) but this is

a contradiction since xµ /∈ supp(g) by construction of g and so we have

tu ∈ supp(Ψ(f))

for all u < µj. �

Proposition 2.2.16.
Let I CP be an ideal. Further, let G be the reduced Gröbner basis of I and g ∈ G
with lt g = xµ. Assume there are indices i, j with i < j and µj > 0 so that

(2.15) x
µj−ũ
i

lt g

x
µj−ũ
j

/∈ lt I

for an integers ũ with

{ (
µj
ũ

)
6= 0, if chark = 0(

µj
ũ

)
6≡ 0 mod p, if chark = p > 0

.

Further, let Ψ : (xj 7→ xj + axi) be a coordinate transformation and G̃ the reduced
Gröbner basis of Ψ(I). Then for a generic choice of a ∈ k, we have

L (G) ≺L L (G̃).

Proof. From the Lemmas 2.2.13 and 2.2.14 we can see that

L (G) �L L (Ψ(G)∆) �L L (G̃)

To prove our assertion we will now show that (2.15) causes the inequality
L (G) 6= L (Ψ(G)∆). Let us assume that this was not the case. Further, let
G = {g1, . . . , g`} and Ψ(G)∆ = {ĝ1, . . . , ĝ`} - note that #G = #Ψ(G)∆ since both
sets are reduced. Without loss of generality suppose that lt gk ≺revlex lt gl and
lt ĝk ≺revlex lt ĝl if k > l. By our assumption follows:

(2.16) lt gk = lt ĝk, k ≤ `

There must be an index r such that g = gr and so lt gr = xµ. Let tu = x
µj−u
i

lt gr

x
µj−u
j

then tµj = lt gr ∈ lt I and so it follows from (2.15) that ũ < µj. Hence because of
the reverse lexicographical ordering:

(2.17) lt gr ≺revlex tũ

We know from Lemma 2.2.15 that every term tu, where
(
µj
u

)
does not vanish, is

in the support of Ψ(gr), so in particular tũ ∈ supp(Ψ(gr)). Since lt gr = lt ĝr by
(2.16), we know that every term of Ψ(gr) that is greater than lt gr will be reduced.
Since tũ is one of these terms because of (2.17), there must be an element in
{lt g1, . . . , lt g`} that divides tũ. But this means that tũ ∈ 〈lt g1, . . . , lt g`〉 = lt I
which is a contradiction to (2.15). �
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Remark 2.2.17.
Proposition 2.2.16 formulates the central point for our termination proof and – as
already mentioned before – we will now discuss that we can also use this result to
achieve a stable or quasi-stable position.

Stability . By Definition 2.2.1 an obstruction to stability caused by a monomial
xµ ∈ I has the form xi

xµ

xk
with k = m(xµ) and i < k. But this corresponds to

(2.15) with ũ = µk − 1.
Quasi-Stability . In the quasi-stable case we have an obstruction if xµ ∈ lt I

but t = xdegB
i

xµ

x
µk
k

/∈ lt I with k = m(xµ), i < k and B denotes the minimal basis

of lt I. But if the term t is not contained in the leading ideal, then of course the
same holds for its divisor xµki

xµ

x
µk
k

which is again corresponds to (2.15) with ũ = 0.

In the preceding statements we always assumed the choice of the parameter a
to be generic. To make this concept clearer we now want to provide an example
that shows the effect of a nongeneric choice.

Example 2.2.18.
Let I = 〈x2

1−x1x2, x
3
2〉Ck[x1, x2] and Ψ : (x2 7→ x2 +ax1). For a = 1 the reduced

Gröbner basis of I is G = {x2
1−x1x2, x

3
2} and G̃ = {x1x2, x

3
1 +x3

2, x
4
2} is the one

of Ψ(I). Therefore

L (G) = (x2
1, x

3
2) �L (x3

1, x1x2, x
4
2) = L (G̃).

So obviously a = 1 is not a generic choice which can easily be seen if one considers
a is a parameter and takes a look at Ψ(I)C k[a, x1, x2]:

Ψ(I) = 〈(1− a)x2
1 − x1x2, a

3x3
1 + 3a2x2

1x2 + 3ax1x
2
2 + x3

2〉
Now we can see that a = 1 ∈ V(1−a) is a root of a “leading coefficient polynomial”
of the first generator and therefore not a generic choice.

Finally, we are now able to prove the termination and correctness of Algorithm
1 which is the main result of this chapter.

Theorem 2.2.19.
If chark = 0 Algorithm 1 terminates in finitely many steps and returns a coordi-
nate transformation Ψ so that Ψ(I) is in strongly stable position.

Proof. Let I be the given homogeneous ideal and G its reduced Gröbner
basis. Further, let A = (aij) ∈ Gl(n,k) be a matrix. We interpret the elements of

A as parameters and compute a Gröbner system {(Ĝi, Ni,Wi)}`i=1 of the parametric
ideal A · I C k[a,x]. According to Remark 2.1.2, we denote by Li the monomial
ideals that are determined by Ni and Wi. This means that the set L = {Li}`i=1

contains all leading ideals of I under any possible coordinate transformations. Let
Bi be the monomial basis of Li and without loss of generality we assume:

L (B1) ≺L · · · ≺L L (B`)
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In particular, there must be an index α ≤ ` such that lt I = Lα ∈ L and – since
G is the reduced Gröbner basis – we have ltG = Bα so that L (G) = L (Bα).
If lt I is not strongly stable, there exists a polynomial g ∈ G and integers
i, j ∈ {1, . . . , n} with i < j such that xj divides lt g = xµ and

xi
lt g

xj
= x

µj−(µj−1)
i

xµ

x
µj−(µj−1)
j

/∈ lt I.

Let Ψ1 : (xj 7→ xj + xi) and Ĝ1 the reduced Gröbner basis of Ψ1(I). There is

an index β ≤ ` such that lt Ψ1(I) = Lβ ∈ L and so L (Ĝ1) = L (Bβ). Now if
a = 1 is a generic choice, we know by Proposition 2.2.16 that α < β. Otherwise,
we enter the while loop of line 5 and perform again the same transformation Ψ1,
which is altogether equivalent to the transformation (xj 7→ xj + 2xi). We know
from Proposition 2.2.16 that the list of monomials must increase if we choose a
generic value for a. As there are only finitely many nongeneric values for a, we will
reach a generic one after a finite number of iterations. Hence there is an integer r
such that for the reduced Gröbner basis Ĝr of Ψr

1(I) holds L (Ĝr) = L (Bγ) with
α < γ ≤ `.
Since L is finite, it is clear that we can not repeat this process infinitely many
times. This means that after a finite number of steps we end up at an ideal

I(ω) = Ψrω
ω · · ·Ψ

r1
1 (I)

with reduced Gröbner basis Ĝω that does not contain an element which causes an
obstruction to strong stability. In particular, I(ω) is strongly stable. �

The last thing we want to mention in this section is that once we have trans-
formed an ideal into strongly stable position, doing another coordinate change of
the form Ψ : (xj 7→ xj + axi) can result in a leading ideal that is not strongly
stable although the new list of generators has increased with respect to ≺L . This
effect is illustrated in the next example.

Example 2.2.20.
Let I = 〈x3

1, x
2
1x2 + x1x

2
2 + x1x

2
3, x

2
1x3, x

2
1x4〉C k[x1, x2, x3, x4] then

lt I = 〈x3
1, x

2
1x2, x

2
1x3, x

2
1x4, x1x

3
2, x1x

2
2x3, x1x

2
2x4〉

is strongly stable. If we perform the transformation Ψ : (x3 7→ x3 + x2) then

lt Ψ(I) = 〈x3
1, x

2
1x2, x1x

2
2, x

2
1x4, x

2
1x

2
3〉

is not strongly stable since x3
x21x4
x4

= x2
1x3 /∈ lt Ψ(I). However:

(x3
1, x

2
1x2, x

2
1x3, x

2
1x4, x1x

3
2, x1x

2
2x3, x1x

2
2x4) ≺L (x3

1, x
2
1x2, x1x

2
2, x

2
1x4, x

2
1x

2
3)
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2.3. Some thoughts about Efficiency

Although we will not discuss the implementation of Algorithm 1 in this thesis,
we now want to take a short look at possible strategies to implement line 2 of the
algorithm. Thereby we focus on approaches that could possibly decrease either
the number of checks for obstructions or the number of transformations we have
to apply to our ideal until it is in strongly stable position.

Reduce Number of Obstruction-Checks.
Degree-by-Degree. The strategy of the degree-by-degree method is to remove

all obstructions starting in the lowest respectively highest degree that occurs in
the basis of the leading ideal. Afterwards one continues with the next higher
respectively lower degree without checking the lower respectively higher degrees
for obstructions. Obviously, this method would reduce the number of obstruction-
checks since every degree is only considered once.
The following two examples show that this procedure is not working in general
since it can happen that after removing all obstructions in one degree another one
in a lower respectively higher degree can appear.

Example 2.3.1 (Starting from the bottom).
Let I = 〈x3

1, x
2
1x2 + x3

2, x
2
1x3〉C k[x1, x2, x3] then

lt I = 〈x3
1, x

2
1x2, x

2
1x3, x1x

3
2, x

3
2x3, x

5
2〉

has no obstruction in degree 3, which is the lowest degree of a minimal generator.

But since x2
x32x3
x3

= x4
2 /∈ lt I there is one in degree 4. We can remove this obstruc-

tion by applying the transformation Ψ : (x3 7→ x3 + x2) to I. The new leading
ideal

lt Ψ(I) = 〈x3
1, x

2
1x2, x

3
2, x

2
1x

3
3〉

has no obstruction in degree 4 or 5, which is the highest degree of a minimal

generator. But lt Ψ(I) is not strongly stable since x1
x32
x2

= x1x
2
2 /∈ lt Ψ(I).

Example 2.3.2 (Starting from the top).
Let I = 〈x3, x

2
1〉 C k[x1, x2, x3]. I has no obstruction in degree 2, but there are

some in degree 1 since x1
x3
x3

= x1 and x2
x3
x3

= x2 are not in lt I. If we apply

the transformation Ψ : (x3 7→ x3 + x1) to I, the new leading ideal lt Ψ(I) =
〈x1, x

2
3〉 has no obstruction in degree 1. But lt Ψ(I) is still not strongly stable since

x2
x23
x3

= x2x3 /∈ lt Ψ(I).

Index-by-Index. Analogous to the above idea, the index-by-index method elim-
inates all obstructions that appear in one index and then moves on to the next
higher respectively lower index. Again it is clear that this strategy leads to a re-
duction of obstruction-checks since every index is considered only once.
If we start with the lowest index, we will see in the following example that remov-
ing obstructions in one index can cause the occurrence of an obstruction in a lower
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index. So we have to conclude that this strategy is also not working in general.

Example 2.3.3 (From low to high index).
Let I = 〈x2x3〉 C k[x1, x2, x3]. Since I has only one minimal generator, this
generator provides the lowest (and highest) occurring index of the monomial basis
of I. The generator x2x3 causes 3 obstructions since x1

x2x3
x3

= x1x2, x2
x2x3
x3

= x2
2

and x1
x2x3
x2

= x1x3 are not in I. Following the prescribed strategy, we would

transform the ideal I either by Ψ1 : (x3 7→ x3 + x1) or by Ψ2 : (x3 7→ x3 + x2)
so that no obstruction with index 3 is left. But both of the new leading ideals
lt Ψ1(I) = 〈x1x2〉 and lt Ψ2(I) = 〈x2

2〉 are not strongly stable. As 3 is the maximal
possible index that can appear in k[x1, x2, x3], we do not check further indices
according to our strategy.

The next example shows that beginning with the highest index can also cause
the appearance of obstructions in higher indices at least during single steps. We
can not deliver a counter example for this case but Example 2.3.4 makes clear that
it is nontrivial to verify whether this method provides a real optimization. To give
a final answer to this question a more detailed investigation would be necessary.

Example 2.3.4.
Let

I = 〈 x2
1x2x3, x1x

2
2x3, x1x2x

2
3, x1x2x3x4 + x1x

2
3x4

x5
1, x

5
2, x

3
1x

2
3, x

2
1x

3
3, x1x

4
3, x

5
3 〉C k[x1, x2, x3, x4]

then
lt I = 〈 x2

1x2x3, x1x
2
2x3, x1x2x

2
3, x1x2x3x4,

x5
1, x

5
2, x

3
1x

2
3, x

2
1x

3
3, x1x

4
3, x

5
3, x

2
1x

2
3x4, x1x

3
3x4 〉

has no obstruction with index 4. But there are many obstructions with index 3,

for example x1
x21x2x3
x3

= x3
1x2, x2

x21x2x3
x3

= x2
1x

2
2, x1

x21x2x3
x2

= x3
1x3 /∈ lt I. Applying

the transformations Ψ1 : (x3 7→ x3 + x1) and Ψ2 : (x3 7→ x3 + x2) to I leads to the
leading ideal

lt Ψ2(Ψ1(I)) = 〈 x3
1x2, x

2
1x

2
2, x

2
1x2x3, x

3
1x4, x

5
1, x1x

4
2, x

5
2, x

4
1x3, x

4
2x3, x

3
1x

2
3,

x1x
3
2x

2
3, x

3
2x

3
3, x

2
1x

4
3, x1x

2
2x

4
3, x

2
2x

5
3, x1x2x

6
3, x2x

7
3, x1x

8
3, x

9
3 〉

which has no obstruction with index 3. Nevertheless there is one with index 4 now,

since x1
x31x4
x4

= x4
1 /∈ lt Ψ2(Ψ1(I)). However, if we go on and search for obstructions

with index 2 we find x1
x31x2
x2

= x4
1 /∈ lt Ψ1(I). After performing the coordinate

change Ψ3 : (x2 7→ x2 + x1), we finally arrive at the strongly stable ideal

lt Ψ3(Ψ2(Ψ1(I))) = 〈 x4
1, x

3
1x2, x

3
1x3, x

3
1x4,

x2
1x

3
2, x1x

4
2, x

5
2, x

2
1x

2
2x3, x1x

3
2x3, x

2
1x2x

2
3, x

2
1x

2
2x4, x

2
1x2x3x4,

x4
2x

2
3, x1x

2
2x

3
3, x

2
1x

4
3, x

3
2x

4
3, x1x2x

5
3, x

2
2x

6
3, x1x

7
3, x2x

8
3, x

9
3 〉

and so particularly there are no obstructions with index 4 left.
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Reduce Number of Transformations. In order to investigate a strategy
that reduces the number of transformations, we first state that we always choose
our coordinate changes such that j is minimal. Looking for example at the simple
ideal I = 〈x3〉 one immediately realizes that this postulation does make sense
since the transformation Ψ : (x3 7→ x3 + x1) directly puts I in to strongly stable
position while Ψ : (x3 7→ x3 + x2) does not.
Under this assumption the question is, whether it is better (in the sense of reduc-
ing the number of transformations) to start removing the obstructions caused by
generators with the highest or lowest index. Again we can provide examples to
illustrate that this question can not be answered in general.

Example 2.3.5.
Let I = 〈x2

3, x4x5〉+ 〈x1, x2, x3, x4, x5〉3Ck[x1, x2, x3, x4, x5]. If we begin to delete
the obstructions induced by the minimal generator x2

3, we would first transform I
by Ψ1 : (x3 7→ x3 + x1). Afterwards we could remove the obstructions caused by
x4x5 with the transformations Ψ2 : (x5 7→ x5 + x1) and Ψ3 : (x4 7→ x4 + x2). After
this three transformations we arrive at the strongly stable ideal

lt Ψ3(Ψ2(Ψ1(I))) = 〈x2
1, x1x2〉+ 〈x1, x2, x3, x4, x5〉3.

While starting with the generator of highest index, namely x4x5, would force us
to do four transformations. At first we have to apply Ψ̃1 : (x5 7→ x5 + x1) and
Ψ̃2 : (x4 7→ x4 + x2). Then, considering now the generator x2

3, we have to perform
Ψ̃3 : (x3 7→ x3 + x1) and Ψ̃4 : (x3 7→ x3 + x2) until we have:

lt Ψ̃4(Ψ̃3(Ψ̃2(Ψ̃1(I)))) = lt Ψ3(Ψ2(Ψ1(I)))

Example 2.3.6.
Let I = 〈x1x3, x

2
4〉 + 〈x1, x2, x3, x4〉3 C k[x1, x2, x3, x4]. As above we first consider

the generator with lowest index which is x1x3. To remove its induced obstructions
we perform Ψ1 : (x3 7→ x3 + x1) on I. Now we eliminate the obstructions that are
produced by the generator x2

4 with the coordinate changes Ψ2 : (x4 7→ x4 + x1)
and Ψ3 : (x4 7→ x4 + x2) so that we finally arrive at the strongly stable ideal

lt Ψ3(Ψ2(Ψ1(I))) = 〈x2
1, x1x2〉+ 〈x1, x2, x3, x4〉3.

Compared to the previous example it is this time better to begin with the generator
of highest index. Because if we first transform I by Ψ̃1 : (x4 7→ x4 + x1) and then
– in order to manage the obstructions induced by x1x3 – perform the coordinate
change Ψ̃2 : (x3 7→ x3 + x2), we already reach the leading ideal

lt Ψ̃2(Ψ̃1(I)) = lt Ψ3(Ψ2(Ψ1(I)))

with only two transformations.
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Conclusion and Alternatives. In summary we must notice that in the ma-
jority of the considered cases we could provide a counter example so that non of
the discussed strategies does seem to work in general. The only way to get an
answer to the question which one of these methods is (at least mostly) better is to
do a larger experimental research.

Further strategies that would be interesting to analyze are on the one hand
performing all transformation that are induced by obstruction at once and on the
other hand optimizing the Gröbner basis computation in line 4 by considering that
we started with a reduced Gröbner basis and performed only a sparse transforma-
tion. Unfortunately, the investigation of these ideas would go beyond the scope of
this dissertation.

2.4. Borel-fixed and positive Characteristic

For the last section of this chapter we want to draw our attention to the case
of positive characteristic. In this context another position, which is called Borel-
fixed, gains more importance and will be introduced in the following. Finally, we
discuss how to modify Algorithm 1 so that we can also use it if chark > 0.

Definition 2.4.1.
The subgroup B ⊆ Gl(n,k) consisting of all lower triangular invertible n × n
matrices is called Borel group.
A matrix A = (aij) ∈ B is called lower elementary matrix, if aii = 1 for all i and
if there exists integers 1 ≤ l < k ≤ n such that akl 6= 0 while aij = 0 for all i 6= j
with {i, j} 6= {k, l}. Recall from linear algebra that the subgroup of all nonsingular
diagonal matrices together with the set of all lower elementary matrices generates
B.

Remark 2.4.2.
Every coordinate transformation of the form Ψ : (xj 7→ xj + axi) with i < j cor-
responds to a transformation by a lower elementary matrix (see Notations 1.3.3).

Definition 2.4.3.
A monomial ideal J is Borel-fixed if J = A · J for all A ∈ B. We say that a
polynomial ideal I is in Borel-fixed position if lt I is Borel-fixed.

Theorem 2.4.4 ([HH11, Thm. 4.2.1, Prop. 4.2.4, Prop. 4.2.6, Cor. 4.2.7,
Thm. 4.2.10]).
The following assertions hold for arbitrary characteristic:

(i) gin I is Borel-fixed.
(ii) If I is in Borel-fixed position, then I is in quasi-stable position.

(iii) If I is in strongly stable position, then I is in Borel-fixed position.
(iv) gin I = I, if and only if I is monomial and Borel-fixed.
(v) gin(gin I) = gin I.



36 2. gin-POSITION VS. STABLE POSITIONS

Proposition 2.4.5 ([HH11, Prop. 4.2.6]).
If chark = 0 then an ideal is strongly stable, if and only if it is Borel-fixed.

The previous proposition makes clear that in the characteristic zero case we
can use Algorithm 1 to put an ideal into Borel-fixed position. To analyze the
positive characteristic case we need an alternative definition of Borel-fixed which
is presented in the next proposition. The form of this characterization is similar
to our definition of strongly stable and is therefore essential in order to adapt
Algorithm 1 to the case of positive characteristic.

Proposition 2.4.6 ([Eis95, Thm. 15.23]).
Let chark = p > 0, J a monomial ideal and B its monomial basis then the
following statements are equivalent:

(i) J is Borel-fixed.
(ii) For every xµ ∈ B and all indices i, j with µj > 0 and i < j the term

x
µj−u
i

xµ

x
µj−u
j

also lies in J for all integers u that satisfy
(
µj
u

)
6≡ 0 mod p.

Example 2.4.7.
The ideal J = 〈xp1, x

p
2〉 C k[x1, x2] with chark = p > 0 is not stable since

x1
xp2
x2

= x1x
p−1
2 /∈ J and so in particular not strongly stable. But it is Borel-

fixed because

(2.18)

(
p

u

)
≡ 0 mod p, for all integer u with u /∈ {0, p}

and so we only have to verify that the two terms xp1
xp2
xp2

= xp1, x0
1
xp2
x02

= xp2 lie in

J . By the definition of Borel-fixed and Remark 2.4.2 we know that J does not
change under any coordinate transformation of the from (xj 7→ xj + axi) with
i < j. Hence we can not transform J into strongly stable or stable position. In
particular, if Ψ : (x2 7→ x2 + ax1), then:

Ψ(J ) = 〈xp1, (x2 + ax1)p〉 = 〈xp1,
p∑

u=0

(
p

u

)
xp−u2 (ax1)u〉 (2.18)

= 〈xp1, x
p
2 + (ax1)p〉 = J

So this example clearly shows that we can not use Algorithm 1 to transform
every ideal into strongly stable or stable position if chark > 0. However, we will
now present two corollaries to Proposition 2.2.16 and with their help we are able
to formulate the corresponding analogons to Theorem 2.2.19 for Borel-fixed and
quasi-stable position.
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Corollary 2.4.8.
Let chark = p > 0 and I C P be an ideal. Further, let G be the reduced Gröbner
basis of I and g ∈ G with lt g = xµ. Assume there are indices i, j with i < j and
µj > 0 so that

(2.19) x
µj
i

xµ

x
µj
j

/∈ lt I.

Further, let Ψ : (xj 7→ xj + axi) be a coordinate transformation and G̃ the reduced
Gröbner basis of Ψ(I). Then for a generic choice of a ∈ k, we have

L (G) ≺L L (G̃).

Proof. This assertion is a simple consequence of Proposition 2.2.16 and the
fact that: (

µj
0

)
= 1 6≡ 0 mod p, for all p ≥ 0

�

Corollary 2.4.9.
Let ICP be an ideal and L1, . . . ,L`CP the monomial ideals according to Remark
2.1.2 received from the Gröbner system of the ideal A · I C P̂ = k[a,x] where A is
a n × n parametric matrix. Further, let Bi be the monomial basis of Li. If m is
the index such that L (Bm) is maximal with respect to ≺L , then Lm is Borel-fixed.

Proof. Let Am ∈ Gl(n,k) be a matrix such that for the reduced Gröbner
basis Gm of Am · I holds ltGm = Bm.
Now let us assume that Lm is not Borel-fixed. By Proposition 2.4.6 there must
be an obstruction of the form (2.15) and so it follows from Proposition 2.2.16
that there exists a coordinate transformation Ψ : (xj 7→ xj + axi) such that

L (Gm) ≺L L (G̃m), where G̃m is the reduced Gröbner basis of Ψ(Am · I). But
again by Remark 2.1.2 there must be an index l with Ll = 〈lt G̃m〉. Hence

L (Bm) = L (Gm) ≺L L (G̃m) = L (Bl),

which is a contradiction to the choice of the index m. �

Summarizing the above results we can now present a modified version of Algo-
rithm 1 that transforms a given ideal into Borel-fixed position if chark = p > 0.
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Algorithm 2 BF-Trafo: Transformation to Borel-fixed position in
chark = p > 0

Input: Reduced Gröbner basis G of homogeneous ideal I C P
Output: a linear change of coordinates Ψ such that lt Ψ(I) is Borel-fixed

1: Ψ := id;
2: while ∃ g ∈ G, 1 ≤ j ≤ n, 1 ≤ i < j, 1 ≤ u ≤ µj :

xj| lt g = xµ ∧
(
µj
u

)
6≡ 0 mod p ∧ xi

lt g

xj
/∈ 〈ltG〉 do

3: ψ := (xj 7→ xj + axi) with a ∈ k randomly chosen; Ψ = ψ ◦Ψ;

4: G̃ := ReducedGröbnerBasis
(
ψ(G)

)
;

5: while L (G) �L L (G̃) do
6: ψ := (xj 7→ xj + axi)with a ∈ k randomly chosen; Ψ = ψ ◦Ψ;

7: G̃ := ReducedGröbnerBasis
(
ψ(G̃)

)
;

8: end while
9: G := G̃;

10: end while
11: return Ψ

Theorem 2.4.10.
If chark = p > 0 Algorithm 2 terminates in finitely many steps and returns a
coordinate transformation Ψ so that Ψ(I) is in Borel-fixed position.

Proof. Compared to the proof of Theorem 2.2.19, we only have to change
the way we look for a generic value for the coefficient a ∈ k of the coordinate
transformation. Since k is infinite we know that a generic value for a does exist.
But – as chark > 0 – there is no canonical way to reach all elements of k by
simply adding 1 to the current coefficient11. So in this case, we use the strategy of
random choice (see Line 3 and 6) to achieve a generic value for a. �

Theorem 2.4.11.
Let chark = p > 0. Replacing line 2 of Algorithm 2 by

while ∃ g ∈ G, 1 ≤ i < j = m(g) : xdegG
i

lt g

x
µj
j

/∈ 〈ltG〉with lt g = xµ do

leads to an algorithm that terminates in finitely many steps and returns a coordi-
nate transformation Ψ so that Ψ(I) is in quasi-stable position.

Proof. Mainly, we can use the proofs of the Theorems 2.2.19 and 2.4.10.
Thereby we have to note that whenever Proposition 2.2.16 occurs in these proofs
we have to replace it by Proposition 2.4.8. �

11 This is basically what we did in the proof of Theorem 2.2.19 by transforming iteratively
with (xj 7→ xj + xi).



CHAPTER 3

Pommaret Basis

Theorem 1.3.9 motivated us to take a closer look at the generic initial ideal
gin I. Hence we were particularly interested in methods to compute gin I and saw
that one possible approach is provided by the concept of Gröbner systems which
we introduced in Section 2.1 of the preceding chapter. Because of the parametric
computations the determination of gin I is obviously very expensive and so it is
worth to search for possible alternatives. One can be found by investigating a
special generating set of quasi-stable ideals which is called Pommaret basis. With
the help of this basis we are able to present an alternative version of Theorem 1.3.9
that does not require the computation of gin I.

Afterwards we provide a short overview of some applications of Pommaret basis
in the areas of free resolutions, componentwise linearity, linear quotients and local
cohomology.

3.1. The Main Feature of Quasi-Stability

We now give a brief introduction to the theory of Pommaret basis. Thereby
we especially examine its connection to quasi-stable position.

Definition 3.1.1.
Let F ⊆ P be a set of polynomials. We define the Pommaret span of F as the
k-linear space

〈F 〉P =
⊕
f∈F

k[xm(f), . . . , xn] · f.

Further, for a polynomial f ∈ F , we call the set k[xm(f), . . . , xn] · f the Pommaret
cone of f .

Definition 3.1.2.
� Let H ⊆ P be a set of terms. H is a Pommaret basis of the monomial

ideal J = 〈H〉 if 〈H〉P = J .

� Let H ⊆ P be a set of polynomials. H is a Pommaret basis of the
polynomial ideal I = 〈H〉 if all elements of H possess distinct leading
terms and ltH forms a Pommaret basis of lt I.

Pommaret bases are a special form of involutive bases. A general survey can
be found in [Sei09a]. The algebraic theory of Pommaret bases was developed in
[Sei09b] (see also [Sei10, Chpts. 3-5]).

39
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In the following we will see a criterion for the existence of a finite Pommaret
basis1. Further, we present a proposition concerning its uniqueness and describe
how a finite Pommaret basis can be determined.

Theorem 3.1.3 ([Sei09b, Def. 4.3, Prop. 4.4]).
An ideal ICP possesses a finite Pommaret basis, if and only if lt I is quasi-stable.

Definition 3.1.4.
We say that xµ is a Pommaret divisor of another term xν if xµ | xν and
xν−µ ∈ k[xm(xµ), . . . , xn]. In this case we write xµ|

P
xν .

A set F ⊆ P is Pommaret autoreduced if no polynomial f ∈ F contains a term
xµ ∈ supp(f) such that another polynomial f ′ ∈ F \ {f} exits with lt f ′|

P
xµ.

Remark 3.1.5.
Let I be an ideal in quasi-stable position and H its Pommaret basis. Then any
term of lt I has a unique Pommaret divisor in ltH. In particular, any Pommaret
basis is a Gröbner basis and any two distinct elements of H have disjoint Pommaret
cones.

Proposition 3.1.6 ([Sei09a, Prop. 2.11, Prop. 5.16]).
The Pommaret basis of a monomial ideal is unique. In particular, different Pom-
maret basis of a polynomial ideal have the same number of elements.

Further, the Pommaret basis of a polynomial ideal is unique if it is monic and
Pommaret autoreduced.

Proposition 3.1.7.
Let H ⊆ P be a set of terms. H is a Pommaret basis of the monomial ideal
J = 〈H〉 if xjh ∈ 〈H〉P for all h ∈ H and all j < m(h).

Remark 3.1.8.
The criterion described in Proposition 3.1.7 is called local involution (see [Sei09a,
Def. 6.1, Prop. 6.3, Lem. 6.4] for more details).

We know by Remark 2.2.17 that a modified version of Algorithm 1 let us put
any ideal in quasi-stable position. Once we are in this position, we can determine
a Pommaret basis by using Proposition 3.1.7 in the following way:

Let G be the reduced Gröbner basis of I. Then we first verify whether ltG is
already a Pommaret basis of lt I by checking if xj lt g ∈ 〈ltG〉P for all g ∈ G and
j < m(g). If this is the case then H = G is a Pommaret basis of I. Otherwise,
there is a polynomial g ∈ G and an index j < m(g) with xj lt g /∈ 〈ltG〉P . We
then set H = G ∪ {xjg} and repeat this until xj lth ∈ 〈ltH〉P for all h ∈ H and
j < m(h) (see [Sei10, Alg. 4.5] for more details).

1 Whenever we talk about the existence of a Pommaret basis, we always mean the existence
of a finite Pommaret basis.
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Example 3.1.9.
Let J = 〈x1x2〉 C k[x1, x2] then J is not quasi-stable since x1

x1x2
x2

= x2
1 /∈ J .

To determine the Pommaret basis of J , we follow the above description and
set H1 = {x1x2} ∪ {x1x

2
2} since x1x

2
2 /∈ 〈x1x2〉P . As x1x

3
2 /∈ 〈H1〉P we define

H2 = H1 ∪ {x1x
3
2}. Going on like this leads to the infinite Pommaret basis

H = {xk1x2 | k ≥ 0} of J with:

〈H〉P =
⊕
k≥0

k[x2] · xk1x2 = J

Analogous to Algorithm 1 we apply the transformation Ψ : (x2 7→ x2 + x1)
to J in order to make J quasi-stable. This leads to the quasi-stable ideal
Ψ(J ) = 〈x2

1 + x1x2〉 and because of

〈lt{x2
1 + x1x2}〉P = k[x1, x2] · x2

1 = 〈x2
1〉 = lt Ψ(J ),

the Pommaret basis of Ψ(J ) is the finite set {x2
1 + x1x2}.

Theorem 3.1.10 ([Sei09b, Prop. 2.20, Thm. 8.11, Prop. 9.2]).
Let H be a finite Pommaret basis of I. Then:

� reg(I) = reg(lt I) = degH
� pd(I) = pd(lt I) = m(H)− 1
� depth(I) = depth(lt I) = n−m(H) + 1

The statements of this theorem are similar to the ones of Theorem 1.3.9, but
instead off computing gin I we only need to determine a finite Pommaret basis
of I. So we can avoid the costly parametric computations without loosing the
possibility to directly read off the considered invariants from a generating set of
lt I.

Example 3.1.11.
Let J = 〈x1x

2
2, x

4
1〉 C k[x1, x2]. J is quasi-stable, but {x1x

2
2, x

4
1} is not a Pom-

maret basis of J since for example x1 · x1x
2
2 /∈ 〈x1x

2
2, x

4
1〉P . However, the set

H = {x1x
2
2, x

2
1x

2
2, x

3
1x

2
2, x

4
1} is a Pommaret basis of J and therefore we can

immediately derive from the theorem above:

reg(J ) = 5, pd(J ) = 2− 2 + 1 = 1, depth(J ) = 2− 1 = 1

Indeed, the minimal free resolution of J and its Betti diagram is:

0 // P(−6) // P(−3)⊕ P(−4) // J // 0 ,

0 1

3 βJ0,3 = 1 βJ1,4 = 0
4 βJ0,4 = 1 βJ1,5 = 0
5 βJ0,5 = 0 βJ1,6 = 1
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3.2. Further Properties

After presenting some well-known basic results, we will define the Pommaret
resolution, which describes a free resolution of quasi-stable ideals. Further, we
consider a necessary condition for the minimality of this resolution that called
componentwise linear. This property induces a new kind of stable position, the
componentwise quasi-stable position. Also for this position we are able to provide
a corresponding transformation algorithm analogous to Algorithm 1. Finally, we
introduce the P-graph and the P-ordering in the context of linear quotients,
before we end this section with a short excursion to local cohomology.

Basics.

Lemma 3.2.1.
Any zero-dimensional ideal possesses a finite Pommaret basis.

Proof. It is enough to show that any zero-dimensional ideal is in quasi-stable
position because then the assertion follows from Theorem 3.1.3.

Let I be a zero-dimensional ideal. It is a well-known fact that in this case lt I
contains a pure power of any variable (see e.g. [KR00, Prop. 3.7.1, Def. 3.7.2]).
Assume that lt I is not quasi-stable. Hence there is a monomial xµ ∈ lt I and an
index i < k = m(xµ) such that t = xdegB

i
xµ

x
µk
k

/∈ lt I, where B denotes the monomial

basis of lt I. But this is not possible since lt I contains a pure power of xi and
so there is an integer e ≤ degB such that xei ∈ B, which is a divisor of the term
t. �

Proposition 3.2.2 ([Sei09a, Thm. 5.4]).
The finite set H ⊆ I is a Pommaret basis of the ideal I C P, if and only if every
polynomial 0 6= f ∈ I possesses a unique involutive standard representation

f =
∑
h∈H

Phh,

where each nonzero coefficient Ph ∈ k[xm(h), . . . , xn] satisfies lt (Phh) � lt f .

Lemma 3.2.3 ([Mal98, Lemma 2.13] ,[Sei10, Prop. 5.5.6]).
A monomial ideal is stable, if and only if its minimal basis is a Pommaret basis.

Lemma 3.2.4.
Let I be in quasi-stable position and H its Pommaret basis. If we denote by β

(k)
0

the number of generators h ∈ H with m(h) = k, then β
(k)
0 > 0 for all k ≤ m(H).

Proof. It follows from the definition of m(H) that β
(m(H))
0 > 0. Assume

now that there is an integer k < m(H) such that β
(k)
0 = 0. Let h ∈ H with

m(h) = m(H) and lth = xµ. Then

t = x
(m(H)−k) degH
k

xµ

x
µk+1

k+1 · · · x
µm(H)

m(H)

∈ lt I
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since lt I is quasi-stable. Hence there must be an element h′ ∈ H \ {h} such that
t ∈ k[xm(h′), . . . , xn] · lth′. As a consequence of m(t) = k and our assumption,
we must have m(h′) < k. But this means that lth′ is a Pommaret divisor of

xµ

x
µk+1
k+1 ···x

µm(H)
m(H)

and therefore a Pommaret divisor of xµ = lth, which leads by Remark

3.1.5 to a contradiction since h and h′ are distinct elements of the Pommaret basis
H. �

Free Resolution. Eliahou and Kervaire provided in [EK90] an explicit rep-
resentation of the minimal free resolution of monomial ideals in stable position.
Analogously, we will now define the Pommaret resolution for polynomial ideals in
quasi-stable position in the following theorem.

Theorem 3.2.5 ([Sei09b, Thm. 6.1]).

Let H be a Pommaret basis of the ideal I ⊆ P. If we denote by β
(k)
0 the number

of generators h ∈ H with m(h) = k and set d = n−m(H) + 1, then I possesses a
finite free resolution

(3.1) 0 −→ Prn−d −→ · · · −→ Pr1 −→ Pr0 −→ I −→ 0

of length n− d where the ranks of the free modules are given by

(3.2) ri =
n−i∑
k=d

(
n− k
i

)
β

(n−k+1)
0 .

We call the resolution presented in (3.1) Pommaret resolution.

Note that a Pommaret resolution is not minimal in general, which the following
example shows.

Example 3.2.6.
Let J = 〈x2

1, x
2
2〉C k[x1, x2] then H = {x2

1, x1x
2
2, x

2
2} is a Pommaret basis of J .

With the notations of Theorem 3.2.5 we have d = 2 − 2 + 1 = 1, β
(1)
0 = 1 and

β
(2)
0 = 2. Hence we have

r0 =

(
2− 1

0

)
β

(2−1+1)
0 +

(
2− 2

0

)
β

(2−2+1)
0 = 3

r1 =

(
2− 1

1

)
β

(2−1+1)
0 = 2

and therefore J possesses a free resolution of the form:

0 −→ P2 −→ P3 −→ J −→ 0

However, the minimal free resolution of J is:

0 −→ P1 −→ P2 −→ J −→ 0
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Notation 3.2.7.
Let H = {h1, . . . , h`} be a Pommaret basis of I. Then xjhα ∈ I for all
j < m(hα) and so, by Proposition 3.2.2, there exists a unique involutive stan-

dard representation xjhα =
∑̀
β=1

P
(α,j)
β hβ with P

(α,j)
β ∈ k[xm(hβ), . . . , xn]. We define

the syzygy2 S(α,j) by

(3.3) S(α,j) = xjeα −
∑̀
β=1

P
(α,j)
β eβ ∈ P`,

where e1, . . . , e` denotes the standard basis of P`. Further, we call S(α,j) free of

constant terms if P
(α,j)
β /∈ k for all β.

Lemma 3.2.8 ([Sei09b, Lem. 8.1]).
The resolution (3.1) is minimal, if and only if all syzygies S(α,j) are free of constant
terms.

Example 3.2.9.
Recalling Example 3.2.6, the Pommaret resolution of the ideal J = 〈x2

1, x
2
2〉

is not minimal. If H = {h1, h2, h3} denotes the Pommaret basis of J with
h1 = x2

1, h2 = x1x
2
2, h3 = x2

2, then we have the involutive standard representation
x1h3 = x1x

2
2 = h2 which entails that:

S(3,1) = x1e3 − (0 · e1 + 1 · e2 + 0 · e3) =

 0
−1
x1


Therefore the syzygy S(3,1) is obviously not free of constant terms.

Theorem 3.2.10 ([Sei09b, Thm. 8.9]).
Let J CP be a monomial, quasi-stable ideal. Then the resolution (3.1) is minimal,
if and only if J is stable.

Example 3.2.11.
Let I = 〈h1, . . . , h5〉 C k[x1, x2, x3] with h1 = x2

1 + x2x3, h2 = x1x2 − x1x3,
h3 = x2

2 + x1x3, h4 = x1x
2
3, h5 = x2x

2
3. Then H = {h1, . . . , h5} is a Pommaret

basis of I and x1h2 = (−x2 + x3)h1 + x3h3 − h4 − h5, so that the syzygy

S(2,1) = x1e2 − ((−x2 + x3)e1 + x3e3 − e4 − e5) =


x2 − x3

x1

−x3

1
1


2 To understand the analogy to Remark 1.1.5, we should note that the right hand side of

(3.3) vanishes if one substitutes eβ by hβ for all β.
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contains constant terms. Hence the Pommaret resolution of I is not minimal
by Lemma 3.2.8. On the other hand it follows from Theorem 3.2.10 that the
Pommaret resolution of lt I is minimal since the leading ideal

lt I = 〈x2
1, x1x2, x

2
2, x1x

2
3, x2x

2
3〉

is stable. Indeed, since x1 lth2 = x2
1x2 = x2 lth1 the corresponding syzygy of the

leading ideal is x1e2 − x2e1 and therefore free of constant terms.

Lemma 3.2.12.
Let I CP be in quasi-stable position and H its Pommaret basis. Then all syzygies
of ltH are free of constant terms if all syzygies of H are free of constant terms.

Proof. Assume that there is a syzygies S(α,j) of ltH that contains a constant

term. This means that the coefficient P̂
(α,j)

β̂
of the involutive standard represen-

tation xj lthα = P̂
(α,j)

β̂
lthβ̂ lies in k. Considering now the involutive standard

representation xjhα =
∑`

β=1 P
(α,j)
β hβ leads to:

P̂
(α,j)

β̂
lthβ̂ = xj lthα = lt(xjhα) = lt

(∑̀
β=1

P
(α,j)
β hβ

)
= ltP

(α,j)

β̂
lthβ̂

So ltP
(α,j)

β̂
= P̂

(α,j)

β̂
∈ k, which implies P

(α,j)

β̂
∈ k and thus leads to a contradiction

since we know that the syzygies of H are free of constant terms. �

Remark 3.2.13.
To formulate the graded version of Theorem 3.2.5, we first provide the graded
analogon the (3.1):

0 −→
⊕
j

P(−j)rn−d,j −→ · · · −→
⊕
j

P(−j)r1,j −→
⊕
j

P(−j)r0,j −→ I −→ 0

Using the arguments that lead to Theorem 3.2.5 degree by degree it is trivial to
derive that the ranks of the free modules are given by

(3.4) ri,j =
n−i∑
k=d

(
n− k
i

)
β

(n−k+1)
0,j−i ,

where β
(k)
0,j denotes the number of generators h ∈ H with m(h) = k and deg h = j.

The next corollary is a classical result [Gre98, Cor. 1.33] for which we provide
an alternative proof.

Corollary 3.2.14 ([HSS12, Cor. 15]).
Let I C P be an ideal. Then all graded Betti numbers satisfy the inequality:

β
P/I
i,j ≤ β

P/ gin I
i,j
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Proof. First we should note that the Betti numbers are invariant under co-
ordinate transformation, so β

P/I
i,j = β

P/A·I
i,j for all A ∈ Gl(n,k). We know from

Remark 2.1.6 that there is a matrix B ∈ Gl(n,k) such that lt(B · I) = gin I.
Hence

β
P/I
i,j = β

P/B·I
i,j ≤ β

P/ lt(B·I)
i,j = β

P/ gin I
i,j ,

where the inequality is a consequence of Proposition 1.2.2 and Remark 1.1.15. �

Example 3.2.15.
Let I = 〈x2

1, x1x2 + x2
2〉C k[x1, x2], then its minimal free resolution is

0 // P(−4) // P(−2)2 // P // P/I // 0 .

Further, the minimal free resolution of lt I = 〈x2
1, x1x2, x

3
2〉 = gin I is

0 // P(−3)⊕ P(−4) // P(−2)2 ⊕ P(−3) // P // P/ gin I // 0 .

The corresponding Betti diagrams are of the following form:

0 1 2

0 β
P/I
0,0 = 1 β

P/I
1,1 = 0 β

P/I
2,2 = 0

1 β
P/I
0,1 = 0 β

P/I
1,2 = 2 β

P/I
2,3 = 0

2 β
P/I
0,2 = 0 β

P/I
1,3 = 0 β

P/I
2,4 = 1

0 1 2

0 β
P/ gin I
0,0 = 1 β

P/ gin I
1,1 = 0 β

P/ gin I
2,2 = 0

1 β
P/ gin I
0,1 = 0 β

P/ gin I
1,2 = 2 β

P/ gin I
2,3 = 1

2 β
P/ gin I
0,2 = 0 β

P/ gin I
1,3 = 1 β

P/ gin I
2,4 = 1

Hence we can conclude that although the ideal I is in gin-position some of the

graded Betti numbers do not coincide, e.g. β
P/I
1,3 = 0 < 1 = β

P/ gin I
1,3 .

Componentwise Linear Ideals. Given an ideal I C P , we denote by
I〈q〉 = 〈Iq〉 the ideal generated by the homogeneous component Iq of degree q.
Herzog and Hibi [HH99] called I componentwise linear if for every degree q ≥ 0
the ideal I〈q〉 = 〈Iq〉 has a linear resolution3. For a connection with Pommaret
bases, we need a refinement of quasi-stability.

Definition 3.2.16.
An ideal I is in componentwise quasi-stable position if all ideals I〈q〉 for q ≥ 0 are
in quasi-stable position.

3We have a linear resolution if there exists a value q̂ such that the jth module of the minimal
resolution is generated in degree q̂ + j.
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Example 3.2.17.
A simple example for an ideal that is in quasi-stable but not in componentwise
quasi-stable position is the zero-dimensional ideal J = 〈x2, x

2
1〉C k[x1, x2]. Since

obviously J〈2〉 = 〈x2〉 is not quasi-stable.

Remark 3.2.18.
Briefly, we now want discuss the difference between a component ideal I〈q〉 and a
truncated ideal I≥q =

⊕
p≥q Ip. Considering for example the ideal I = 〈x2, x

2
1〉 it

is easy to see that I〈1〉 = 〈x2〉 6= I = I≥1. Hence for arbitrary values of q we can
not assume that I〈q〉 and I≥q are equal. But if F is a head autoreduced generating
set of I, then we have:

(3.5) I〈q〉 = I≥q, for all q ≥ degF

In particular, (3.5) holds for all q ≥ reg(I) since degF ≤ reg(I) by [BS07, Thm.
16.3.1].

Lemma 3.2.19 ([Sei09b, Lem. 2.2]4).
Let I C P be an ideal and q ≥ reg(I). Then I is in quasi-stable position, if and
only if the ideal I≥q is in quasi-stable position.

Proposition 3.2.20.
Let I C P be an ideal such that I〈q〉 is in quasi-stable position for all q ≤ reg(I).
Then I is in componentwise quasi-stable position.

Proof. By assumption I〈reg(I)〉 is in quasi-stable position, hence by Lemma
3.2.19 and Remark 3.2.18 I itself is in quasi-stable position. Using Lemma 3.2.19
again, we can now derive that I〈q〉 is in quasi-stable position for all q ≥ reg(I). �

This proposition shows that for the definition of componentwise quasi-stability
it suffices to consider the finitely many degrees q ≤ reg(I). The following modified
version of Algorithm 1 allows us to put any ideal into componentwise quasi-stable
position.

4Indeed, it follows from its proof that this lemma also holds for all q ≥ 0 (compare Lemma
3.2.24)
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Algorithm 3 CQS-Trafo: Transformation to componentwise quasi-stable po-
sition for chark = 0

Input: Reduced Gröbner bases Gq of homogeneous ideals I〈q〉 C P for all
q ≤ reg(I)

Output: a linear change of coordinates Ψ such that lt Ψ(I) is componentwise
quasi-stable

1: Ψ := id;

2: while ∃ q ≤ reg(I), g ∈ Gq, 1 ≤ i < j = m(g) : x
degGq
i

lt g

x
µj
j

/∈
〈ltGq〉with lt g = xµ do

3: ψ := (xj 7→ xj + xi); Ψ = ψ ◦Ψ;
4: for α = 0 to reg(I) do
5: G̃α := ReducedGröbnerBasis

(
ψ(Gα)

)
;

6: end for
7: while (∃ β ≤ reg(I) : L (Gβ) �L L (G̃β)) or (L (Gq) = L (G̃q)) do
8: ψ := (xj 7→ xj + xi); Ψ = ψ ◦Ψ;
9: for α = 0 to reg(I) do

10: G̃α := ReducedGröbnerBasis
(
ψ(Gα)

)
;

11: end for
12: end while
13: for q = 0 to reg(I) do
14: Gq := G̃q;
15: end for
16: end while
17: return Ψ

Theorem 3.2.21.
Algorithm 3 terminates in finitely many steps and returns a coordinate transfor-
mation Ψ so that Ψ(I) is in componentwise quasi-stable position.

Proof. The main structure of the algorithm is close to Algorithm 1 and we
already know from Theorem 2.2.19/2.4.11, that we can transform any ideal into
quasi-stable position. So if we choose a q1 ≤ reg(I), we can determine a trans-
formation Ψ1 such that Ψ1(I〈q1〉) is in quasi-stable position. But now the ques-
tion arises, which effect this transformation might have for the other component
ideals. With other words let I〈q2〉 be already in quasi-stable position for some
q1 6= q2 ≤ reg(I), it is not clear whether Ψ1(I〈q2〉) is still in this position or not.

Therefore we first ensure with the while loop in line 7 that we perform a
transformation ψ : (xj 7→ xj + axi) where a ∈ k is of generic choice for all Gα.
The existence of such an element a is clear, since for every set Gq with q ≤ reg(I),
there are only finitely many nongeneric values for a and so – as our field is infinite
– we will find an integer a that is generic for every Gα.
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So we will leave the while loop of line 2 at the latest when every Gα has
reached its maximum with respect to ≺L . Since then we know by Corollary 2.4.9
and Theorem 2.4.4(ii) that every Gα is quasi-stable. �

Remark 3.2.22.
It is possible to make Algorithm 3 work for arbitrary characteristic. Therefore we
have to replace the transformation ψ := (xj 7→ xj + xi) of Line 3 and 8 with:

ψ := (xj 7→ xj + axi) with a ∈ k randomly chosen

We already discussed the reason for that in the proof of Theorem 2.4.10.

One disadvantage of Algorithm 3 is that one has to compute a reduced Gröbner
basis for each component ideal I〈q〉, which is rather expensive. Therefore we now
develop a sufficient criterion for an ideal I to be in componentwise quasi-stable
position which does not require the consideration of the component ideals I〈q〉.
Assuming that the ideal I is already in quasi-stable position, we can derive such
a criterion based on the first syzygies of I.

Before we start we want to introduce another notation that we use in the
following:

I[q] = 〈
⋃
p≤q

Ip〉

Lemma 3.2.23.
Let I C P be an ideal and q ≥ 0. Then I〈q〉 = (I[q])≥q.

Proof. This assertion is a simple consequence of:

I〈q〉 = 〈Iq〉≥q = 〈
⋃
p≤q

Ip〉≥q = (I[q])≥q

�

Lemma 3.2.24.
If an ideal I is in quasi-stable/stable/strongly stable position, then I≥q is in quasi-
stable/stable/strongly stable position for any q ≥ 0.

Conversely, if I≥q is in quasi-stable position for some q ≥ 0, then already I is
in quasi-stable position.

Proof. Firstly, let I be in quasi-stable/stable/strongly stable position and
assume that I≥q̂ is not in quasi-stable/stable/strongly stable position for some
integer q̂ ≥ 0. Then there is a monomial xµ ∈ lt(I≥q̂) ⊆ lt I that causes an
obstruction to the respective position, i.e. there is some monomial t – induced by
xµ – that is “missing” in lt(I≥q̂). However, as by assumption I is in the respective
position we know that

(3.6) t ∈ lt I.
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We saw in Lemma 2.2.4 that it is enough to verify the condition for the desired
position on the elements of the corresponding monomial basis. Hence without
loss of generality we may assume that xµ ∈ B, where B is the monomial basis
of lt(I≥q̂). Now5 the definition of quasi-stable/stable/strongly stable entails that
deg t ≥ deg xµ = q̂ = degB and so by (3.6) t ∈ (lt I)≥q̂ = lt(I≥q̂). This contradicts
our assumption and shows the first half of the lemma.

Now let I≥q̂ be in quasi-stable position for some q̂ ≥ 0. Assume I was not in
quasi-stable position. Hence there is a monomial xµ ∈ lt I such that

(3.7) xdegB
i

xµ

xµkk
/∈ lt I

for some i < k = m(xµ), where B is the monomial basis of lt I. Let deg xµ = p
and f ∈ I with lt f = xµ. Then obviously f ∈ Ip and therefore f ∈ I≥q for all
q ≤ p. In particular, f causes an obstruction to quasi-stability in I≥q̂ if q̂ ≤ p,
which contradicts our assumption that I≥q̂ is in quasi-stable position. So let q̂ > p

but then obviously xq̂−pk f lies in I≥q̂ and lt(xq̂−pk f) = xq̂−pk xµ. Since I≥q̂ is in
quasi-stable position the term

xdegB
i

xq̂−pk xµ

xq̂−pk xµkk
= xdegB

i

xµ

xµkk

lies in lt(I≥q̂) ⊆ lt I, which again leads to a contradiction because of (3.7). �

The following example shows that the “converse”-part of Lemma 3.2.24 is not
true for (strongly) stable position.

Example 3.2.25.
Let J = 〈x2

1, x
2
2〉Ck[x1, x2]. Then H = {x2

1, x
2
2, x1x

2
2} is a Pommaret basis of J

and so reg(J ) = 3 by Theorem 3.1.10. Hence

J≥3
Rem. 3.2.18

= J〈3〉 = 〈x3
1, x

2
1x2, x1x

2
2, x

3
2〉

so that it is easy to see that J≥3 is strongly stable. However, J is not (strongly)

stable since x1
x22
x2

= x1x2 /∈ J .

From Lemma 3.2.23 and Lemma 3.2.24 we can immediately derive the following
corollary:

Corollary 3.2.26.
Let I CP be an ideal and q ≥ 0. Then I〈q〉 is in quasi-stable position, if and only
if I[q] is in quasi-stable position.

5 In the stable or strongly stable case we have deg t = degxµ. For quasi-stability we need
the assumption that degxµ ≤ degB to ensure that deg t can not be less than degxµ.
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If the set H = {h1, . . . , h`} is a Pommaret basis of I, then by
Proposition 3.2.2 the product xjhα with j < m(hα) possesses a unique involu-
tive standard representation

(3.8) xjhα =
∑̀
β=1

P
(α,j)
β hβ,

where each nonvanishing coefficient P
(α,j)
β ∈ k[xm(hβ), . . . , xn] satisfies

lt (P
(α,j)
β hβ) � ltxjhα. Given a degree q ≥ 0 such that Iq 6= 0, we introduce

two subsets of the Pommaret basis H:

(3.9) H(q) = {h ∈ H | deg h ≤ q}, Ĥ(q) = {ĥ ∈ H | ∃h ∈ H(q) : lth| lt ĥ}

Proposition 3.2.27.
Let I CP be a homogeneous ideal in quasi-stable position and q ≥ 0 a degree such
that Iq 6= 0. The ideal I[q] is in quasi-stable position if in every involutive standard

representation (3.8) with hα ∈ Ĥ(q) all generators hβ with P
(α,j)
β 6= 0 also lie in

Ĥ(q). In this case, Ĥ(q) is the Pommaret basis of I[q].

Proof. We first note that since 〈H〉 = I we obviously have:

(3.10) 〈H(q)〉 = I[q]

By our assumption, any element of the ideal Î = 〈Ĥ(q)〉 possesses an involutive

standard representation with respect to Ĥ(q). Hence it follows from

Proposition 3.2.2 that Ĥ(q) is the Pommaret basis of Î. Now the assertion imme-
diately follows if we prove the following claim:

Claim: I[q] = Î.
Since obviously H(q) ⊆ Ĥ(q) we consequently have I[q]

(3.10)
= 〈H(q)〉 ⊆ 〈Ĥ(q)〉 = Î.

If we now assume that I[q] is a proper subset of Î, then there must exist a generator

ĥ ∈ Ĥ(q) which is not contained in I[q]. Let ĥ be among all such generators the
one with the smallest leading term with respect to the used term order, i.e.:

(3.11) h′ ∈ I[q], for all h′ ∈ Ĥ(q) with lth′ ≺ lt ĥ

Since ĥ ∈ Ĥ(q), there exists h ∈ H(q) such that lt ĥ = xν lth for some term

xν . We consider the polynomial g = lch · ĥ − lc ĥ · xνh ∈ Î. It possesses an
involutive standard representation with respect to the Pommaret basis Ĥ(q) of

the form g =
∑

f̂∈Ĥ(q) Pf̂ f̂ . Every generator f̂ with Pf̂ 6= 0 must have a leading

term smaller than ĥ as it follows from the construction of g that:

lt f̂ � lt(Pf̂ f̂) � lt g ≺ lt ĥ
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Thus all of these polynomials f̂ must lie in I[q] according to (3.11). But this

implies that g ∈ I[q] and – as h ∈ H(q) ⊆ I[q] – therefore ĥ ∈ I[q] contradicting
our assumption. �

Remark 3.2.28.
By Lemma 3.2.24 we can replace in the assertion of Proposition 3.2.27 both ap-
pearances of “quasi-stable” with “(strongly) stable”. The criterion itself does not
change. As in this case the leading terms ltH form even the minimal basis of lt I,
we find that Ĥ(q) = H(q) which simplifies the application of the criterion.

We now present two examples where the first one proves that the criterion
described in Proposition 3.2.27 is not necessary for an ideal to be in componentwise
quasi-stable position. With the second example we just check that the criterion is
not satisfied for an ideal which is not in componentwise quasi-stable position.

Example 3.2.29.
Let J = 〈x5

1, x1x
4
2, x

3
1x

3
2〉 C k[x1, x2]. Then J is quasi-stable and a Pommaret

basis is given by:

H = {h1 = x5
1, h2 = x1x

4
2, h3 = x3

1x
3
2, h4 = x2

1x
4
2, h5 = x4

1x
3
2}

According to (3.9) we have H(5) = {h1, h2}, Ĥ(5) = {h1, h2, h4}. Now let us
consider the involutive standard representation of x1h4:

x1h4 = x3
1x

4
2 = x2h3

We should note that the bold marked element h3 is not in Ĥ(5) and therefore the
criterion described in Proposition 3.2.27 is not fulfilled. However,
J〈5〉 = J[5] = 〈x5

1, x1x
4
2〉 is in quasi-stable position.

Example 3.2.30.
Let I = 〈x2

1, x1x2+x2x3, x
3
2, x

2
2x3〉Ck[x1, x2, x3]. Then lt I = 〈x2

1, x1x2, x
3
2, x

2
2x3, x2x

2
3〉

is stable and therefore

H = {h1 = x2
1, h2 = x1x2 + x2x3, h3 = x3

2, h4 = x2
2x3, h5 = x2x

2
3}

is a Pommaret basis of I by Lemma 3.2.3. Further, lt I〈2〉 = 〈x2
1, x1x2, x2x

2
3〉

is not quasi-stable since x3
2
x2x23
x23

= x4
2 /∈ lt I〈2〉. Hence the criterion described in

Proposition 3.2.27 is not fulfilled.
According to (3.9) we have H(2) = {h1, h2} = Ĥ(2). Now let us consider the

involutive standard representation of x1h2:

x1h2 = x2
1x2 + x1x2x3 = x2h1 + x3h2 − h5

Indeed, we can see that – in consistence with Proposition 3.2.27 – the bold marked
element h5 does not lie in Ĥ(2).
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Theorem 3.2.31 ([Sei09b, Thm. 8.2, Thm. 9.12]).
Let ICP be an ideal in quasi-stable position and H its Pommaret basis. Then the
following statements are equivalent:

(i) I is componentwise linear and in componentwise quasi-stable position.
(ii) The free resolution (3.1) of I induced by the Pommaret basis H is min-

imal and the Betti numbers of I are given by (3.2).

As a corollary, we obtain a simple proof of an estimate given by Aramova et
al. [AHH00, Cor. 1.5] (based on [HK84, Thm. 2]).

Corollary 3.2.32 ([HSS12, Cor. 21]).
Let ICP be a componentwise linear ideal with pd(I) = p. Then the Betti numbers
satisfy βIi ≥

(
p+1
i+1

)
.

Proof. Let I be in componentwise quasi-stable position, H its Pommaret
basis and d = n−m(H) + 1. By Theorem 3.2.31, (3.1) is the minimal resolution
of I and hence βIi is given by (3.2). Further, p = n − d by Theorem 3.1.10. We

know from Lemma 3.2.4 that β
(k)
0 > 0 for all 1 ≤ k ≤ n− d+ 1. Now we compute

βIi =
n−i∑
k=d

(
n− k
i

)
β

(n−k+1)
0 =6

n−d∑
l=i

(
n− d− l + i

i

)
β

(n−d−l+i+1)
0

=
n−d∑
l=i

(
l

i

)
β

(l+1)
0 ≥

p∑
l=i

(
l

i

)

=

(
p+ 1

i+ 1

)
by a well-known identity for binomial coefficients. �

The estimate in Corollary 3.2.32 is sharp. Equality is realized by any compo-

nentwise linear ideal whose Pommaret basis satisfies β
(k)
0 = 0 for k > n − d + 1

and β
(k)
0 = 1 for k ≤ n− d+ 1.

Example 3.2.33.
As a simple monomial example, consider the ideal J = 〈x2

1, x1x2〉 C k[x1, x2].
Since J is stable H = {x2

1, x1x2} is indeed simultaneously the Pommaret and the
minimal basis of J (compare Lemma 3.2.3). Hence in this case d = 1, n = 2,

β
(1)
0 = β

(2)
0 = 1 and so:

βJ0 =

(
1

0

)
β

(2)
0 +

(
0

0

)
β

(1)
0 = 2 =

(
1 + 1

0 + 1

)
βJ1 =

(
1

1

)
β

(1)
0 = 1 =

(
1 + 1

1 + 1

)
6In this step we substitute k with d+ l − i.
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Recently, Nagel and Römer [NR15, Thm. 2.5] provided some criteria for com-
ponentwise linearity based on gin I (see also [AHH00, Thm 1.1] where the case
chark = 0 is treated). We will now show that again gin I may be replaced by
lt I if it is in componentwise quasi-stable position. Furthermore, our proof is
considerably simpler than the one by Nagel and Römer.

Theorem 3.2.34 ([HSS12, Thm. 23]).
Let the ideal I CP be in componentwise quasi-stable position. Then the following
statements are equivalent:

(i) I is componentwise linear.
(ii) lt I is stable and all graded Betti numbers βIi,j and βlt I

i,j coincide.

(iii) lt I is stable and all total Betti numbers βIi and βlt I
i coincide.

(iv) lt I is stable and βI0 and βlt I
0 coincide.

Proof.
“(i)⇒ (ii)”.

Since I is in componentwise quasi-stable position the resolution (3.1) of I is min-
imal by assumption (i) and Theorem 3.2.31. This implies immediately (compare
Lemma 3.2.8, Lemma 3.2.12) that the resolution (3.1) of lt I is minimal. Therefore
lt I is stable by Theorem 3.2.10 and componentwise linear by Theorem 3.2.31. So
we know from Remark 3.2.13 that βIi,j and βlt I

i,j are obtained from equation (3.4).

As the numbers β
(n−k+1)
0,j−i of the formula (3.4) do only depend on the leading terms

of the corresponding Pommaret basis, there is no difference whether we consider
I or lt I. Hence all graded Betti numbers βIi,j and βlt I

i,j must coincide.
The implications “(ii)⇒ (iii)” and “(iii)⇒ (iv)” are trivial. Thus there only

remains to prove:
“(iv)⇒ (i)”.

Let H be the Pommaret basis of I. Since lt I is stable by assumption, ltH is its
minimal basis by Lemma 3.2.3 and so by Remark 1.1.5/1.1.3

βlt I
0 = #(ltH) = #H.

Hence the assumption that βI0 and βlt I
0 are equal implies that H is a minimal7

generating system of I. Let xjh
′ be a polynomial with h′ ∈ H and j < m(h′). Now

let us assume its involutive standard representation xjh
′ =

∑
h∈H Phh contains a

coefficient Pĥ that lies in k\{0}. Hence ĥ = 1
Pĥ

(xjh
′−
∑

h∈H\{ĥ} Phh) ∈ 〈H \{ĥ}〉
and so 〈H \ {ĥ}〉 = 〈H〉 = I which is a contradiction to the minimality of H.
Therefore none of the syzygies may contain a nonvanishing constant coefficient.
By Lemma 3.2.8, this observation implies that the resolution (3.1) induced by H
is minimal and so the ideal I is componentwise linear by Theorem 3.2.31. �

7 With minimal generating system we mean minimal with respect to inclusion, i.e. for all

ĥ ∈ H holds 〈H \ {ĥ}〉 6= I.
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Linear Quotients. Linear quotients were introduced by Herzog and Takayama
[HT02] in the context of constructing iteratively a free resolution via mapping
cones. As a special case, they considered monomial ideals where certain colon
ideals defined by an ordered minimal basis are generated by variables. Their defi-
nition was generalized by Sharifan and Varabaro [SV08] to arbitrary ideals.

Definition 3.2.35.
Let I = 〈F 〉 C P be an ideal with F = {f1, . . . , f`} ⊆ P . Then I has linear
quotients with respect to F if for each 1 < k ≤ ` the ideal 〈f1, . . . , fk−1〉 : fk is
generated by a subset of {x1, . . . , xn}.

We show first that in the monomial case this concept captures the essence
of a Pommaret basis. For this purpose, we “invert” some notions introduced in
[Sei09b]. We associate with a monomial Pommaret basis H a directed graph, its
P-graph. Its vertices are the elements of H. For every term xjh, where h ∈ H
is a generator and j < m(h), there exists a unique Pommaret divisor ĥ ∈ H (see

Remark 3.1.5) and we include a directed edge from h to ĥ.
An ordering of the elements of H is called an inverse P-ordering, if α > β

whenever the P-graph contains a path from hα to hβ. It is straightforward to
describe explicitly an inverse P-ordering: we set α > β, if m(hα) > m(hβ) or if
m(hα) = m(hβ) and hα ≺lex hβ, i. e. we sort the generators hα first by their index
and then within each index lexicographically. One easily verifies that this defines
an inverse P-ordering.

Example 3.2.36.
Consider the monomial ideal J Ck[x1, x2, x3] generated by the six terms h1 = x2

1,
h2 = x1x2, h3 = x2

2, h4 = x1x3, h5 = x2x3 and h6 = x2
3. It is easy to see that J is

stable and therefore these terms form a Pommaret basis of J by Lemma 3.2.3.
The P-graph in (3.12) shows that the generators are already inversely P-

ordered, according to the description above.

(3.12)

h5
4 //

3   

h3

7
��

h6

2

>>

1

  

h2

8
��

h4 5
//

6
>>

h1

1: h4|Px1h6 5: h1|Px1h4

2: h5|Px2h6 6: h2|Px2h4

3: h2|Px1h5 7: h2|Px1h3

4: h3|Px2h5 8: h1|Px1h2
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Proposition 3.2.37 ([HSS12, Prop. 26]).
Let H = {h1, . . . , h`} be an inversely P-ordered monomial Pommaret basis of the
quasi-stable monomial ideal J C P. Then the ideal J possesses linear quotients
with respect to the basis H and

(3.13) 〈h1, . . . , hk−1〉 : hk = 〈x1, . . . , xm(hk)−1〉 k = 2, . . . , ` .

Conversely, assume that H = {h1, . . . , h`} with m(h1) = 1 is a monomial gener-
ating set of the monomial ideal J C P such that (3.13) is satisfied. Then J is
quasi-stable and H its Pommaret basis.

Proof. Since H is a Pommaret basis the product xjhk with j < m(hk) pos-
sesses a Pommaret divisor hi ∈ H (see Remark 3.1.5) and therefore xj ∈ 〈hi〉 : hk.
By definition, it also follows that the P-graph of H contains an edge from k to
i and so i < k because H is inversely P-ordered. Thus xj ∈ 〈h1, . . . , hk−1〉 : hk
which proves the inclusion “⊇”.

The following argument shows that the inclusion cannot be strict. Consider a
term t /∈ 〈x1, . . . , xm(hk)−1〉, i.e. t ∈ k[xm(hk), . . . , xn] and assume:

Assumption: thk ∈ 〈h1, . . . , hk−1〉.
Hence thk = s1hi1 – recall that every hi is monomial – for some term s1 ∈
k[x1, . . . , xn] and some index i1 < k. By definition of a Pommaret basis we must
have s1 /∈ k[xm(hi1 ), . . . , xn] since otherwise the Pommaret cones k[xm(hi1 ), . . . , xn] ·
hi1 and k[xm(hk), . . . , xn] · hk would intersect (see Remark 3.1.5). So there is an
index j1 < m(hi1) such that xj1|s1. Let hi2 be the Pommaret divisor of xj1hi1 ,
this implies on the one hand that there is a term s2 ∈ k[xm(hi2 ), . . . , xn] with
xj1hi1 = s2hi2 and on the other hand that m(hi2) ≤ m(hi1). Because of the P-
ordering and since i1 6= i2 we have i1 > i2. We can not repeat this procedure
infinitely many times since the sequence i1 > i2 > · · · is strictly decreasing and
m(h1) = 18. Hence after a finite number of iterations we arrive at a representation

thk =
s1

xj1
xj1hi1 =

s1

xj1
s2hi2 = · · · = ŝhiω

where ŝ ∈ k[xm(hiω ), . . . , xn]. This leads to a contradiction by Remark 3.1.5 since
then the Pommaret cones of hk and hiω would intersect, which is not possible as
H is a Pommaret basis.

For the converse, we show by a finite induction over k that every product xjhk
with j < m(hk) possesses a Pommaret divisor hi with i < k which implies our
assertion by Proposition 3.1.7 and Theorem 3.1.3.

k = 2.
For k = 2 it follows from (3.13) that xjh2 ∈ 〈h1〉. This implies that h1 is a
Pommaret divisor of xjh2 since m(h1) = 1.

8Any Pommaret basis contains an element of index 1 (see Lemma 3.2.4). Because of the
P-ordering it must be h1 in this case.
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(k− 1)→ k.
Assume now that our claim was true for h2, h3, . . . , hk−1. Because of (3.13) xjhk ∈
〈h1, . . . , hk−1〉, so we may write xjhk = t1hi1 for some t1 ∈ P and i1 < k. If
t1 ∈ k[xm(hi1 ), . . . , xn] we are done because then hi1 is the Pommaret divisor of hk.
Otherwise, there exists an index j1 < m(hi1) such that xj1|t1. By our induction
assumption, xj1hi1 has a Pommaret divisor hi2 with i2 < i1 and so there is a
t2 ∈ k[xm(hi2 ), . . . , xn] such that xj1hi1 = t2hi2 . With the same arguments like
above, we find after finitely many steps a representation

xjhk =
t1
xj1

xj1hi1 =
t1
xj1

t2hi2 = · · · = t̂hiω

where hiω is the Pommaret divisor of xjhk. �

In general, we cannot expect that the second part of Proposition 3.2.37 remains
true, when we consider arbitrary polynomial ideals. However, for the first part we
find the following variation of [SV08, Thm. 2.3].

Proposition 3.2.38 ([HSS12, Prop. 28]).
Let H be a Pommaret basis of the polynomial ideal ICP and h′ ∈ P a polynomial
with lth′ /∈ ltH. If I : h′ = 〈x1, . . . , xm(h′)−1〉, then H ′ = H ∪ {h′} is a Pommaret
basis of I ′ = I + 〈h′〉. If furthermore I is in componentwise quasi-stable position,
componentwise linear and H ′ is a minimal basis9 of I ′, then I ′ is componentwise
linear, too.

Proof. If I : h′ = 〈x1, . . . , xm(h′)−1〉, then all products of xjh
′ with

j < m(h′) lie in I = 〈H〉P ⊆ 〈H ′〉P . This immediately implies the first assertion
by Proposition 3.1.7.

Let xjhα be a product with hα ∈ H and j < m(hα). Further, let

xjhα =
∑

h∈H P
(α,j)
h h be the involutive standard representation of xjhα. We know

from Theorem 3.2.5 that the Pommaret resolution is minimal since I is compo-
nentwise linear and in componentwise quasi-stable position. Hence all syzygies
S(α,j) are free of constant coefficients by Lemma 3.2.8. Let us now assume that
there is an index j < m(h′) such that the involutive standard representation of the
product xjh

′ =
∑

h∈H P
′
hh contains a constant coefficient P ′

ĥ
∈ k \ {0}. But this

means that

ĥ =
1

P ′
ĥ

xjh′ − ∑
h∈H\{ĥ}

Phh

 ∈ 〈H ′ \ {ĥ}〉

9 With minimal basis we mean minimal with respect to inclusion, i.e. for all ĥ ∈ H ′ holds

〈H ′ \ {ĥ}〉 6= I ′.
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and so I ′ = 〈H ′〉 = 〈H ′ \ {ĥ}〉, which is a contradiction to the minimality of
H ′. Therefore all syzygies obtained from products xjh

′ with j < m(h′) are free
of constant terms. Finally, we can again conclude with Lemma 3.2.8 that the
resolution of I ′ induced by H ′ is minimal and I ′ componentwise linear by Theorem
3.2.31. �

Local Cohomology. Finally, a last application field of Pommaret bases we
want to consider is induced by some results of Trung [Tru01] related to invariants
that are connected to local cohomology. Using Pommaret basis we are able to
generalize these results.

Further, we provide an alternative proof for Grothendieck’s results concerning
the vanishing and nonvanishing of local cohomology.

Proposition 3.2.39 ([HSS12, Prop. 9]).
Let I C P be an ideal in quasi-stable position. If H denotes the corresponding
Pommaret basis and

H(i) = {h ∈ H | m(h) = i} ⊆ H

the subset of generators of index i, then the number

(3.14) qn−i+1 = max
{
q | (〈I, xn−i+2, . . . , xn〉 : xn−i+1)q 6= 〈I, xn−i+2, . . . , xn〉q

}
satisfies qn−i+1 = degH(n−i+1)−1 (with the convention that deg ∅ = max ∅ = −∞).

Proof. Set P̂ = k[x1, . . . , xn−i+1] and Î = I|xn−i+2=···=xn=0 C P̂ . Then it is

easy to see that qn−i+1 = max {q | (Î : xn−i+1)q 6= Îq}. It follows from [Sei12,

Lemma 3.1] that the Pommaret basis of Î is given by:

Ĥ = {h|xn−i+2=···=xn=0 | h ∈ H ∧m(h) < n− i+ 2}

We should note that obviously deg Ĥ(n−i+1) = degH(n−i+1).
Case I: Ĥ(n−i+1) = ∅.

For this case we will now show that (Î : xn−i+1) = Î. Therefore let

f̂α ∈ (Î : xn−i+1) be a polynomial and xn−i+1f̂α =
∑

ĥ∈Ĥ P
(α)

ĥ
ĥ ∈ Î its invo-

lutive standard representation with respect to Ĥ. Then one immediately sees that

all P
(α)

ĥ
ĥ must lie in 〈xn−i+1〉 and since we assumed that any element of Ĥ has an

index lower than n−i+1 we must have P
(α)

ĥ
∈ 〈xn−i+1〉. Hence f̂α =

∑
ĥ∈Ĥ

P
(α)

h̃

xn−i+1
ĥ,

is an involutive standard representation, which implies f̂α ∈ Î by Proposition 3.2.2.
Thus (Î : xn−i+1) = Î and therefore qn−i+1 = −∞ = deg Ĥ(n−i+1) − 1.
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Case II: Ĥ(n−i+1) 6= ∅.
In this case we can choose a generator ĥmax ∈ Ĥ(n−i+1) of maximal degree, i.e.
deg ĥmax = deg Ĥ(n−i+1). Obviously, we find ĥmax ∈ 〈xn−i+1〉 and hence may write

ĥmax = xn−i+1ĝ for some ĝ ∈ P̂ . By definition of a Pommaret basis ĝ /∈ Î since

otherwise ĝ would be a Pommaret divisor of ĥmax. Hence ĝ ∈ (Î : xn−i+1) \ Î and

so (Î : xn−i+1)deg ĝ 6= Îdeg ĝ. Thus qn−i+1 ≥ deg ĝ = deg Ĥ(n−i+1) − 1.

Assume now that qn−i+1 > deg Ĥ(n−i+1) − 1 then (Î : xn−i+1)deg Ĥ(n−i+1) 6=
Îdeg Ĥ(n−i+1) . So there is a polynomial f̂β ∈ (Î : xn−i+1)deg Ĥ(n−i+1) with

f̂β /∈ Î. Consider the involutive standard representation xn−i+1f̂β =
∑

ĥ∈Ĥ P
(β)

ĥ
ĥ

with respect to Ĥ. Analogous to above we have P
(β)

ĥ
ĥ ∈ 〈xn−i+1〉. If

m(ĥ) < n− i+1, then we must have P
(β)

ĥ
∈ 〈xn−i+1〉. If m(ĥ) = n− i+1, then the

definition of the involutive standard representation entails that P
(β)

ĥ
∈ k[xn−i+1].

Since deg (xn−i+1f̂β) = deg Ĥ(n−i+1) + 1 > deg Ĥ(n−i+1), any nonvanishing co-

efficient P
(β)

ĥ
must be of positive degree in this case. Thus we can conclude

that in both cases all nonvanishing coefficients P
(β)

ĥ
lie in 〈xn−i+1〉. But then

f̂β =
∑

ĥ∈Ĥ
P

(β)

ĥ

xn−i+1
ĥ is an involutive standard representation of f̂β itself so that,

f̂β ∈ Î by Proposition 3.2.2 in contradiction to the assumptions we made. �

Consider the following invariants related to Hi
m, the local cohomology of P/I

with respect to the maximal graded ideal m = 〈x1, . . . , xn〉:

ai(P/I) = max {q | Hi
m(P/I)q 6= 0} , 0 ≤ i ≤ dim (P/I) ,

regt (P/I) = max {ai(P/I) + i | 0 ≤ i ≤ t} , 0 ≤ t ≤ dim (P/I) ,

a∗t (P/I) = max {ai(P/I) | 0 ≤ i ≤ t} , 0 ≤ t ≤ dim (P/I) .

Trung [Tru01, Thm. 2.4] related them for monomial Borel-fixed ideals and
chark = 0 to the degrees of the minimal generators. We can now generalize
this result to arbitrary homogeneous polynomial ideals.

Corollary 3.2.40 ([HSS12, Cor. 10]).
Let I C P be an ideal in quasi-stable position. Denote again by H(i) the subset
of the Pommaret basis H of I consisting of the generators of index i and set
qi = degH(i) − 1. Then

regt (P/I) = max {qn−t, qn−t+1, . . . , qn} , 0 ≤ t ≤ dim (P/I) ,

a∗t (P/I) = max {qn−t − t, qn−(t−1) − (t− 1), . . . , qn} , 0 ≤ t ≤ dim (P/I) .

Proof. This follows immediately from [Tru01, Thm. 1.1] and Proposition 3.2.39.
�
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Grothendieck’s vanishing and nonvanishing theorems10 present a very famous
result in the theory of local cohomology. The assertion of these theorems are on
the one hand that

Hi
m(P/I) = 0, if i < depth(P/I) or i > dim(P/I)

and on the other hand that

Hi
m(P/I) 6= 0, if i = depth(P/I) or i = dim(P/I).

With the results from above we can now present an alternative proof for those
statements concerning depth(P/I).

Proposition 3.2.41.
Let I C P be an ideal and d = depth(P/I), then:

(i) Hi
m(P/I) = 0 for all i < d

(ii) Hd
m(P/I) 6= 0

Proof. We know from the previous chapter11 that we can transform any ideal
into quasi-stable position. Since Hi

m(P/I) is invariant under coordinate transfor-
mation, we can assume without loss of generality that I is already in quasi-stable
position. Further, let H be its Pommaret basis and qi = degH(i) − 1.

Since H(i) = ∅ for all i > m(H) it follows that qm(H)+1, . . . , qn = −∞ and
so a∗n−m(H)−1(P/I) = −∞ by Corollary 3.2.40. Hence ai(P/I) = −∞ for all

0 ≤ i ≤ n − m(H) − 1 by definition of a∗t (P/I). Therefore Hi
m(P/I) = 0 for

all 0 ≤ i ≤ n − m(H) − 1. Since Theorem 3.1.10 and Remark 1.1.15 entail that
d = n−m(H), we have already proven (i).

Obviously, H(m(H)) 6= ∅ and so qm(H) = qn−d 6= −∞. Hence with the arguments
from above

ad(P/I) = a∗d(P/I) = qn−d 6= −∞,
which finally proves (ii). �

10 See for example Proposition A1.16 in the appendix of [Eis05].
11See Remark 2.2.17 and Theorem 2.4.11.



CHAPTER 4

The Reduction Number

In the first part of this thesis we saw that the costs for the determination of
certain invariants depend on the coordinate system. In particular, we presented in
Theorem 1.3.9 that the invariants reg(I), pd(I) and depth(I) are easy to deter-
mine whenever the considered ideal I is in gin-position. As a next step we took a
look at Seiler’s generalized version of this results in Theorem 3.1.10. Thereby he
makes use of Pommaret bases which only require that I is in quasi-stable position.
With the intention to find further homological invariants that are easy to compute
not only in gin-position but also in quasi-stable position we will now introduce
and analyze the absolute reduction number.

Furthermore, we give a brief overview of the big reduction number – which is
related to the absolute reduction number – and consider two different methods to
compute it.

4.1. Computing the absolute Reduction Number

After presenting its definition, our main goal of this section will be to introduce
an algorithm to compute the absolute reduction number. Thereby we do not care
about the given coordinate system, since this will be discussed in more detail in
Section 4.3.

Definition 4.1.1.
Let I C P be an ideal and y1, . . . , y` linear forms. We call R = I + 〈y1, . . . , y`〉 a
reduction of I if dim(P/R) = 0. In particular, a reduction R of I is minimal if
` = dim(P/I).

Definition 4.1.2.
Let R be a minimal reduction of an ideal I, then

rR(P/I) = max{q | (P/R)q 6= 0}

is the reduction number of I with respect to R. Further, we denote the set of all
reduction numbers by

rSet(P/I) = {rR(P/I) | R minimal reduction of I}.

Finally, we define the absolute reduction number of I by

r(P/I) = min rSet(P/I).

61
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Lemma 4.1.3.
Let R C P a zero-dimensional ideal, then reg(P/R) = max {q | (P/R)q 6= 0}. In
particular, if R is a minimal reduction of an ideal I, then rR(P/I) = reg(P/R).

Proof. First we should remember that P is Noetherian by Hilbert’s Basis
Theorem. Further, P/R is Artinian since dim(P/R) = 0 (see e.g.[AM69, Thm.
8.5]). Hence the P-module P/R is of finite length by [Eis95, Cor. 2.17] and so as
a consequence of [Eis05, Cor. A1.5] we have:

Hi
m(P/R) = 0 for all i > 0(4.1)

H0
m(P/R) = P/R(4.2)

With the notations of Remark 1.1.7 we can now conclude:

reg(P/R)
Rem. 1.1.7

= max {ai(P/R) + i | i ≥ 0}
(4.1)
= a0(P/R)

(4.2)
= max {q | (P/R)q 6= 0}

Def. 4.1.2
= rR(P/I)

�

We present now Algorithm 4 for the computation of r(P/I). Instead of a
coordinate transformation, it is based on a parametric computation. The main
point will be to keep the number of parameters as small as possible.

Algorithm 4 RedNum: (Absolute) Reduction Number

Input: Gröbner basis G of a homogeneous ideal I C P
Output: the absolute reduction number r(P/I)

1: D := dim(P/I)

2: G̃ := G with xn−D+i replaced by −
∑n−D

j=1 bijxj for all i = 1, . . . , D

3: R̃ := 〈G̃〉P̃
4: H := PommaretBasis (R̃)
5: return degH − 1

The algorithm simply adds D = dim(P/I) linear forms zi of the special form

zi = xn−D+i +
n−D∑
j=1

bijxj.

The occurring coefficients bij are then considered as undetermined parameters.

Replacing in the ideal I every variable xn−D+i with i > 0 by −
∑n−D

j=1 bijxj, we

obtain a new homogeneous ideal R̃ in the polynomial ring P̃ = k(b)[x1, . . . , xn−D]
over the field of rational functions in the D(n − D) parameters bij and compute
its Pommaret basis.
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In order to prove the correctness of Algorithm 4 we have to recall some results
of Trung first.

Theorem 4.1.4 ([Tru03, Thm. 1.2][Tru01, Lem. 4.2]).

Let R̂ = I + 〈y1, . . . , yD〉C P̂ = k(a)[x1, . . . , xn] be an ideal with yi =
∑n

j=1 aijxj

for i = 1, . . . , D. Then R̂ is a minimal reduction of the ideal Î C P̂ obtained by
considering I in P̂ and

rR̂(P̂/Î) = r(P/I).

Corollary 4.1.5 ([Tru03, Cor. 1.3]).
Let ICP be an ideal. Further, let R̃CP̃ = k(b)[x1, . . . , xn−D] be the ideal obtained

by substituting every variable xn−D+i with −
∑n−D

j=1 bijxj for all i > 0 in the ideal
I . Then

r(P/I) = max{q | (P̃/R̃)q 6= 0}.

Theorem 4.1.6 ([HSS14, Thm. 5.6]).
Algorithm 4 correctly determines r(P/I).

Proof. Using the notations of Corollary 4.1.5, the only thing we have to prove
is that:

(4.3) dim(P̃/R̃) = 0

Because then R̃ possesses a finite Pommaret basis H by Lemma 3.2.1 and as a
consequence of Corollary 4.1.5, Lemma 4.1.3, Remark 1.1.15 and Theorem 3.1.10
we get:

r(P/I) = reg(P̃/R̃) = reg(R̃)− 1 = degH − 1

To prove (4.3) we consider the ideal R̂ = I+〈y1, . . . , yD〉 in the polynomial ring

P̂ = k(a)[x1, . . . , xn], where the yi =
∑n

j=1 aijxj for i = 1, . . . , D = dim(P/I) are

generic linear forms. It follows from Theorem 4.1.4 that R̂ is a minimal reduction
of the ideal Î C P̂ , which we obtain by considering I in P̂ . Therefore

(4.4) dim(P̂/R̂) = 0.

Now consider the D × n matrix (aij): as we consider the aij as parameters, the
determinant of the submatrix composed of the last D columns does not vanish.
Then by a Gaussian elimination we obtain a set of linear forms zi in the “reduced”
triangular form

zi = xn−D+i +
n−D∑
j=1

bijxj, bij ∈ k(a)

such that R̂ = I + 〈z1, . . . , zD〉C P̂ . Therefore P̃/R̃ ∼= P̂/R̂ and so (4.3) follows
from (4.4). �
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Example 4.1.7.
The homogenized Weispfenning94 ideal I C k[x1, x2, x3, x4] is generated by the
polynomials

f1 = x4
2 + x1x

2
2x3 + x2

1x
2
4 − 2x1x2x

2
4 + x2

2x
2
4 + x2

3x
2
4 ,

f2 = x1x
4
2 + x2x

4
3 − 2x2

1x2x
2
4 − 3x5

4 ,

f3 = −x3
1x

2
2 + x1x2x

3
3 + x4

2x4 + x1x
2
2x3x4 − 2x1x2x

3
4 .

Here dim(P/I) = 2 and we replace x4 by −(b41x1 + b42x2) and x3 by
−(b31x1 + b32x2) in I to obtain the new ideal R̃ C k(b31, b32, b41, b42)[x1, x2]. We
compute a Pommaret basis H of R̃ and get as leading terms

ltH =
{
x4

1, x
3
1x

2
2, x

2
1x

3
2, x1x

5
2, x

6
2

}
.

Therefore r(P/I) = degH − 1 = 5.

4.2. Computing the big Reduction Number

Analogous to Trungs paper [Tru03] we will now investigate the big reduction
number which is related to absolute reduction number that we got to know in the
previous section. In particular, we provide an alternative method for its compu-
tation and compare it with the one of Trung by performing each method on the
same example.

Theorem 4.2.1 ([HSS14, Thm. 6.2]).
Let I C P be a homogeneous ideal. Then its reduction number set rSet(P/I) is
finite.

Proof. By definition, any minimal reduction of I is induced byD = dim(P/I)
linear forms

(4.5) yi =
n∑
j=1

aijxj , i = 1, . . . , D

with aij ∈ k such thatR = I+〈y1, . . . , yD〉 is a zero-dimensional ideal. Considering
the coefficients aij as parameters, we may identify R with a parametric ideal

R̂Ck(a)[x1, . . . , xn]. Let
{

(Ĝi, Ni,Wi)
}`
i=1

be a Gröbner system1 for R̂. Without

loss of generality, we may assume that for the first s triples the ideals 〈Ĝi〉 C P
are zero-dimensional, whereas all other triples lead to ideals of positive dimension.
Hence precisely the parameter values satisfying one of the conditions (Ni,Wi)
with 1 ≤ i ≤ s define minimal reductions. Let di = r〈Ĝi〉(P/I) then it follows that

rSet(P/I) = {d1, . . . , ds}. �

1 Recall that any parametric ideal possess a finite Gröbner system (see Theorem 2.1.3).
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As our field k is infinite it is clear that for any ideal I C P there is an infinite
number of minimal reductions. But – as we have seen in the proof of Theorem 4.2.1
– these minimal reductions lead only to finitely many different reduction numbers.

Trung showed that a generic minimal reduction leads to the absolute reduction
number (see Theorem 4.1.4). Since almost all choices of the parameters aij induce
a generic minimal reduction of the form

I + 〈
n∑
j=1

a1jxj, . . . ,

n∑
j=1

aDjxj〉,

for almost all minimal reductions R we find rR(P/I) = r(P/I) (see [Tru03,
Cor. 2.2]).

Definition 4.2.2.
We define the big reduction number of I by:

br(P/I) = max rSet(P/I)

The proof of Theorem 4.2.1 describes a method to determine rSet(P/I). It is
based on computing a Gröbner system for the parametric ideal:

I + 〈
n∑
j=1

a1jxj, . . . ,
n∑
j=1

aDjxj〉C k(a)[x1, . . . , xn]

Any branch of this Gröbner system that yields to a zero-dimensional ideal leads
us to an element of rSet(P/I). Once we have determined the whole rSet(P/I) we
can directly read off the big reduction number br(P/I).

Example 4.2.3.
Consider the ideal I = 〈x2

1, x1x2 + x2
2, x1x3〉 C k[x1, x2, x3] introduced by Green

[Gre98]. Since dim(P/I) = 1 we set:

R̂ = I + 〈a1x1 + a2x2 + a3x3〉C k(a1, a2, a3)[x1, x2, x3]

The Gröbner system for R̂ consists of 4 triples. For simplicity, we present in the
following list for each branch as first entry only the corresponding2 leading ideal
Li; the other two entries are the equations Ni and the inequations Wi, respectively.

i Li Ni Wi

1 〈x1, x
2
2, x2x3, x

2
3〉 {} {a1, a2, a1 − a2}

2 〈x1, x
2
2, x2x3, x

2
3〉 {a1 − a2} {a2}

3 〈x1, x
2
2, x

2
3〉 {a2} {a1}

4 〈x2, x
2
1, x1x3, x

2
3〉 {a1} {}

2 Compare Remark 2.1.2.
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We observe that all four branches lead to zero-dimensional leading ideals which are
therefore quasi-stable. As L1 = L2 is even stable its monomial basis
H1 = {x1, x2

2, x2x3, x2
3} represents simultaneously the Pommaret basis by

Lemma 3.2.3. Moreover, H3 = {x1, x
2
2, x

2
3, x2x

2
3} is the Pommaret basis of

L3 while H4 = {x2, x
2
1, x1x2, x1x3, x

2
3} is the one of L4. As degH1 = degH4 = 2

and degH3 = 3 we have rSet(P/I) = {1, 2} according to Algorithm 4 and so
br(P/I) = 2.

Remark 4.2.4.
For comparison, we briefly outline Trung’s constructive characterization [Tru03]
of the big reduction number of an ideal. He also takes D = dim(P/I) lin-
ear forms (4.5) with undetermined coefficients aij and proceeds with the ideal

R̂ = I + 〈y1, . . . , yD〉C k[a, x1, . . . , xn]. Then he introduces the matrix Mq of the

coefficients of the generators in a k-linear basis of R̂q (which are elements in k[a]).
Let Vq be the variety of the ideal generated in k[a] by all the minors of Mq of the
size of the number of terms of degree q, i.e. the

(
q+n−1
n−1

)
×
(
q+n−1
n−1

)
minors. Then,

br(P/I) is the largest q such that Vq 6= Vq+1 [Tru03, Cor. 2.3].
Note, however that a priori it is unclear how to detect that one has obtained

the largest q with this property. Thus his approach becomes truly algorithmic only
by combining it with another result of his, namely that br(P/I) + 1 is bounded
by the Castelnuovo-Mumford regularity reg(I) [Tru87, Prop. 3.2]. Now one can
check all degrees q until reg(I) – which has to be computed first – and then finally
decide on the value of br(P/I).

Example 4.2.5.
Using the same ideal as in Example 4.2.3 we now want to determine br(P/I) with
the method of Trung described in Remark 4.2.4.

So let I = 〈f1, f2, f3〉Ck[x1, x2, x3] with f1 = x2
1, f2 = x1x2 +x2

2 and f3 = x1x3.
Further, let y = a1x1 + a2x2 + a3x3 be a parametric linear form in k[a,x] and

R̂ = I+〈y〉Ck[a1, a2, a3, x1, x2, x3]. According to Trung we now have to determine

the matrix M2. Therefore we must consider the k-linear basis of R̂2:

x2
1 x1x2 x2

2 x1x3 x2x3 x2
3

f1 1 0 0 0 0 0
f2 0 1 1 0 0 0
f3 0 0 0 1 0 0
x1y a1 a2 0 a3 0 0
x2y 0 a1 a2 0 a3 0
x3y 0 0 0 a1 a2 a3

 M2 =


1 0 0 0 0 0
0 1 1 0 0 0
0 0 0 1 0 0
a1 a2 0 a3 0 0
0 a1 a2 0 a3 0
0 0 0 a1 a2 a3


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Then V2 = V(a2a
2
3) since

(
2+3−1

3−1

)
= 6 and a2a

2
3 is the 6× 6 minor of M2. Going on

to degree 3 leads to:

x3
1 x2

1x2 x1x
2
2 x3

2 x2
1x3 x1x2x3 x2

2x3 x1x
2
3 x2x

2
3 x3

3

x1f1 1 0 0 0 0 0 0 0 0 0
x2f1 0 1 0 0 0 0 0 0 0 0
x3f1 0 0 0 0 1 0 0 0 0 0
x1f2 0 1 1 0 0 0 0 0 0 0
x2f2 0 0 1 1 0 0 0 0 0 0
x3f2 0 0 0 0 0 1 1 0 0 0
x1f3 0 0 0 0 1 0 0 0 0 0
x2f3 0 0 0 0 0 1 0 0 0 0
x3f3 0 0 0 0 0 0 0 1 0 0
x2

1y a1 a2 0 0 a3 0 0 0 0 0
x1x2y 0 a1 a2 0 0 a3 0 0 0 0
x2

2y 0 0 a1 a2 0 0 a3 0 0 0
x1x3y 0 0 0 0 a1 a2 0 a3 0 0
x2x3y 0 0 0 0 0 a1 a2 0 a3 0
x2

3y 0 0 0 0 0 0 0 a1 a2 a3

Bringing the resulting matrix M3 in the reduced row echelon form3, yields to the
following

(
3+3−1

3−1

)
= 10× 10 matrix M̃3:

M̃3 =



1 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 a3 0
0 0 0 0 0 0 0 0 a2 a3


Hence V3 = V(a2

3) 6= V(a2a
2
3) = V2 showing that br(P/I) = 2 since reg(I) = 3.

The considered example is pretty simple, since it is “nearly” monomial and
generated in one degree, which leads to sparsely populated matrices Mi. So a final
answer whether Trungs or our method to compute br(P/I) is better can not be
given on the basis of this example. But although the computation of a Gröbner
system is surely a rather expensive operation, we strongly believe that it is much
more efficient than the determination and subsequent analysis of large determi-
nantal ideals. Furthermore, our approach yields directly all possible values for the

3 By performing the row operations we should observe that the parameters might possibly
stand for 0. Therefore one has to check which operations are allowed under this circumstances.
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reduction number, whereas Trung must consider one determinantal ideal after the
other (of increasing size).

Finally, we note that Trung [Tru03] proved that br(P/I) ≤ br(P/ lt I) if P/I
is Cohen-Macaulay, i.e. depth(P/I) = dim(P/I). He also claimed that generally
one cannot compare br(P/I) and br(P/ lt I). However, he did not provide a
concrete example where the above inequality is violated – which we will do now.

Example 4.2.6.
Consider the ideal I C k[x1, x2, x3] with

I = 〈x3
1 − x1x

2
2, x

2
1x2 + x1x

2
2, x

3
2 + x2

2x3, x
2
1x3 + x1x2x3, x1x

5
3, x

2
2x

5
3〉.

The given generators form already a Gröbner basis and lt I is quasi-stable. So we
find a Pommaret basis H of I with

ltH = {x3
1, x

2
1x2, x

3
2, x

2
1x3, x1x

3
2, x1x

5
3, x1x2x

5
3, x

2
2x

5
3, x1x

2
2x

5
3}.

Therefore depth(P/I) = 0 by Theorem 3.1.10 and Remark 1.1.15. Hence P/I is
not Cohen-Macaulay since dim(P/I) = 1. To compute br(P/I), we set

R̂ = I+〈a1x1+a2x2+a3x3〉Ck(a)[x1, x2, x3]. From the zero-dimensional branches
of the Gröbner system of this ideal we can derive that rSet(P/I) = {3, 5, 6} and
therefore br(P/I) = 6.

The following table lists a possible choice for the coefficients a1, a2, a3 that leads
to the mentioned reduction numbers. Thereby σ : k[a] → k is a specialization

homomorphism that evaluates the parameters ai so that R = σ(R̂) is an ideal of
P .

(a1, a2, a3) lt (PommaretBasis (R)) rR(P/I)

(0, 0, 1) {x3, x1x3, x2x3, x31, x21x2, x32, x21x3, x1x2x3, x22x3, x1x32, x1x22x3} 3
(1, 2, 1) {x1, x

3
2, x

2
2x3, x2x

2
3, x

6
3} 5

(1, 1, 1) {x1, x
3
2, x

2
2x3, x2x

2
3, x

7
3} 6

On the other hand, we set R̂′ = lt I + 〈a1x1 + a2x2 + a3x3〉 and compute its
Gröbner system. Only three branches are zero-dimensional and they all have as
reduction number 3 (e.g. if you choose a1 = a2 = a3 = 1 the set of leading terms

of the Pommaret basis of σ(R̂′) is {x1, x
3
2, x

2
2x3, x2x

2
3, x

4
3}). This shows that

br(P/ lt I) = 3 < 6 = br(P/I).
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4.3. Relation with strong Stability

Now we continue to study the absolute reduction number. We will see in this
section that although this invariant shows parallels to our previously discussed
invariants, we can only find an ansatz to directly read off the absolute reduction
number in the monomial case. Moreover, an example provided by Green even
shows that it is not possible to formulate a statement similar to Theorem 3.1.10
for this invariant.

But first we want to have a look at the following results provided by Trung
and Conca concerning the relationship between ideal and leading ideal in terms of
the absolute reduction number.

Theorem 4.3.1 ([Con02, Thm. 1.1], [Tru03, Cor. 3.4]).
For any ideal I C P the inequality r(P/I) ≤ r(P/ lt I) holds.

Theorem 4.3.2 ([Tru01, Thm. 4.3]).
For any ideal I C P we always find r(P/I) = r(P/ gin I).

Since these results are similar to the ones of Theorem 1.2.1 and Theorem 1.3.9 it
appears that the absolute reduction number also behaves like the other invariants
which we discussed in the first half of this thesis.

The next question that arises is how we can find a minimal reduction that
leads to the absolute reduction number. We already saw in Theorem 4.1.4 that a
generic minimal reduction does yield to the absolute reduction number. Another
characterization of the different minimal reductions is presented in the following
lemma.

Lemma 4.3.3 ([BH99, Lem. 5]).
Let J C P be a monomial ideal such that the variables xn−D+1, . . . , xn induce
a minimal reduction, where D = dim(P/J ). Then every minimal reduction is
induced by linear forms

(4.6) zi = xn−D+i +
n−D∑
j=1

bijxj , bij ∈ k .

If the ideal J from the above Lemma is quasi-stable, then we will see later
(Proposition 5.1.10) that J contains a power of xi for all i ≤ n − D. Hence
R = J + 〈xn−D+1, . . . , xn〉 is a minimal reduction of J since obviously4

dim(P/R) = 0.
The following theorem from Bresinsky and Hoa shows, how to read off the

absolute reduction number from a strongly stable monomial ideal.

4See for example [KR00, Prop. 3.7.1, Def. 3.7.2].



70 4. THE REDUCTION NUMBER

Theorem 4.3.4 ([BH99, Thm. 11]).
Let J C P be a Borel-fixed monomial ideal and D = dim(P/J ). Then J has a
minimal generator xsn−D and r(P/J ) = rR(P/J ) for any minimal reduction R of
J . Moreover, if J is strongly stable we have r(P/J ) = s− 1.

Remark 4.3.5.
A combination of Trungs Theorem 4.3.2 and the above theorem from Bresinsky
and Hoa delivers a way to directly read off the absolute reduction number under
the in the following described conditions.

Let ICP be an ideal that is in gin-position and chark = 0. Hence lt I = gin I
is strongly stable5 and it follows from Theorem 4.3.4 that there is an integer s such
that xsn−D is a minimal generator of lt I. Finally, r(P/I) = r(P/ lt I) = s− 1 by
Theorem 4.3.2 and Theorem 4.3.4.

Example 4.3.6.
Let us consider again Green’s Example 4.2.3. Since lt I = 〈x2

1, x1x2, x1x3, x
3
2, x

2
2x3〉

is strongly stable and dim(P/I) = 1, we can use Theorem 4.3.4 to receive
r(P/ lt I) = 3 − 1 = 2. But since gin I = 〈x2

1, x1x2, x
2
2, x1x

2
3〉 it follows from

Theorem 4.3.2 that:

(4.7) r(P/I) = r(P/ gin I) = 2− 1 = 1 < r(P/ lt I)

Remark 4.3.7.
Example 4.2.3 shows that there can not exist an algorithm for the computation of
the absolute reduction number that is based on the analysis of the leading ideal.
Because if we set I ′ = lt I, then we have two distinct ideals I and I ′ with the
same leading ideal, however (4.7) shows that they have different absolute reduction
numbers.

5 As chark = 0 gin I is strongly stable by Proposition 2.4.5 and Theorem 2.4.4.



CHAPTER 5

Generalization of stable Positions

We discussed in Remark 4.3.7 that the absolute reduction number behaves
differently than the other invariants we considered in the first part of this the-
sis. This motivated us to search for a generalized version of Bresinsky and Hoa’s
Theorem 4.3.4. This intention leads to several new variants of the different stable
positions from Definition 2.2.1 which we will introduce in this chapter. So that we
are finally able to present the desired generalization of the result of Bresinsky/Hoa
in Theorem 5.2.17.

Afterwards we turn our attention to the Borel-fixed position, which – as already
described in Section 2.4 – is especially relevant in the case of positive characteristic,
and generalize this position analogues to the stable ones.

5.1. DQS-Test and an alternative Characterization of Noether Position

The first position we want to generalize is the quasi-stable position. Thereby
we illustrate its connection to Noether position, which will be defined in Definition
5.1.7. Further, we provide an algorithm that checks whether a given ideal is in one
of the generalized quasi-stable positions.

Definition 5.1.1.
Let J be a monomial ideal, B its minimal basis and 0 ≤ ` < n an integer.

� J is `-quasi-stable if for every term xµ ∈ J with m(xµ) = k ≥ n− ` and

all i < k the term xdegB
i

xµ

x
µk
k

also lies in J .

� J is weakly `-quasi-stable if for every term xµ ∈ J with m(xµ) = k ≥
n− ` and every i ≤ n− ` the term xdegB

i
xµ

x
µk
k

also lies in J .

Further, we call J (weakly) D-quasi-stable if J is (weakly) dim(P/J )-quasi-stable.
Finally, a polynomial ideal is in (weakly) `-quasi-stable position if its leading ideal
is (weakly) `-quasi-stable.

Remark 5.1.2.
It is easy to derive the following hierarchy immediately from the definition:

J quasi-stable ⇒ J `-quasi-stable ⇒ J weakly `-quasi-stable

With the same arguments of the proof of Lemma 2.2.4, we see that it is enough
to check the defining condition on the elements of the minimal basis of the ideal.

71
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Before we begin to analyze the properties of the (weakly) `-quasi-stable posi-
tion, we first want to recall some well-known statements that are equivalent to the
notion quasi-stable.

Proposition 5.1.3 ([BG06, Prop. 3.2],[HPV03, Prop. 2.2],[Sei09b, Prop.
4.4],[Sei12, Lem. 3.4]).
Let J C P be a monomial ideal, B its minimal basis and dim(P/J ) = D. Then
the following statements are equivalent:

(i) J is quasi-stable.
(ii) Let xµ ∈ J with µj > 0 for some 1 < j ≤ n, then for each r ≤ µj and

i < j an integer s ≥ 0 exists such that xsi
xµ

xrj
lies in J .

(iii) For all 0 ≤ j ≤ n− 1 holds:

(5.1) J : x∞n−j = J : 〈x1, . . . , xn−j〉∞

(iv) xn is not a zero divisor on P/(J : m∞) and xn−j is not a zero divisor
on P/(〈J , xn, . . . , xn−j+1〉 : m∞) for all 0 < j < D.

(v) J : x∞n = J : m∞ and for all 0 < j < D holds:

(5.2) 〈J , xn, . . . , xn−j+1〉 : x∞n−j = 〈J , xn, . . . , xn−j+1〉 : m∞

Proof. For the equivalences (i)− (iv) see the citations from above. To prove
the equivalence between (v) and the other four statements, we will now show that
“(iii)⇒ (v)” and “(v)⇒ (iv)”.

“(iii)⇒ (v)”.
Let f ∈ P with fxsn−j ∈ 〈J , xn, . . . , xn−j+1〉 for some integer s > 0 and 0 < j < D.
If m(f) > n − j then by the definition of the degree reverse lexicographic term
order we have m(t) > n− j for all t ∈ supp(f), so that obviously:

f ∈ 〈xn, . . . , xn−j+1〉 ⊆ 〈J , xn, . . . , xn−j+1〉 ⊆ 〈J , xn, . . . , xn−j+1〉 : m∞

Otherwise, fxsn−j ∈ J and so f ∈ J : x∞n−j = J : 〈x1, . . . , xn−j〉∞ by (iii). Hence
in both cases we have f ∈ 〈J , xn, . . . , xn−j+1〉 : m∞ which shows (v).

“(v)⇒ (iv)”.
Assume that xn−j is a zero divisor on P/(〈J , xn, . . . , xn−j+1〉 : m∞) for some
0 < j < D . This means that there exists an element

f ∈ P \ (〈J , xn, . . . , xn−j+1〉 : m∞)

such that xn−jf ∈ 〈J , xn, . . . , xn−j+1〉 : m∞. Hence there is an integer s such that
xs+1
n−jf ∈ 〈J , xn, . . . , xn−j+1〉. This entails by (v) that

f ∈ 〈J , xn, . . . , xn−j+1〉 : x∞n−j = 〈J , xn, . . . , xn−j+1〉 : m∞,

which is a contradiction to the choice of f . Analogously, we can show that xn is
not a zero divisor of P/(J : m∞) if J : x∞n = J : m∞. �
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Now we are going to present the corresponding version of this proposition for
the notions `-quasi-stable and weakly `-quasi-stable.

Proposition 5.1.4.
Let J C P be a monomial ideal, B its minimal basis and ` an integer. Then the
following statements are equivalent:

(i) J is `-quasi-stable.
(ii) Let xµ ∈ J with m(xµ) ≥ n− ` and µj > 0 for some n− ` ≤ j ≤ n, then

for each r ≤ µj and i < j an integer s ≥ 0 exists such that xsi
xµ

xrj
lies in

J .
(iii) For all 0 ≤ j ≤ ` holds:

(5.3) J : x∞n−j = J : 〈x1, . . . , xn−j〉∞

Proof.
“(i)⇒ (ii)”.

Assume first that J is `-quasi-stable. Let xµ ∈ J be a term with µj > 0 for some
n− ` ≤ j ≤ n, hence k = m(xµ) ≥ j. Further, let r be an integer with r ≤ µj. We
want to prove (ii) by showing that for all integers i < j there is a term xν ∈ J
which divides xdegB

i
xµ

xrj
. By the definition of `-quasi-stability xdegB

i
xµ

x
µk
k

∈ J for

i < k. Therefore there is a term xν
(1) ∈ B with

(5.4) xν
(1) | xdegB

i

xµ

xµkk

and so k1 = m(xν
(1)

) ≤ m(xdegB
i

xµ

x
µk
k

) < k. Obviously, ν
(1)
α ≤ µα for all i 6= α < k

and ν
(1)
i ≤ µi + degB. If k1 ≤ i, then xν

(1)
divides xdegB

i
xµ

x
µi+1
i+1 ···x

µk
k

, but since the

latter monomial is a divisor of xdegB
i

xµ

xrj
, we are already done in this case. Otherwise,

we know by `-quasi-stability that xdegB
i

xν
(1)

x
ν
(1)
k1
k1

∈ J and so there is a term xν
(2) ∈ B

with xν
(2) | xdegB

i
xν

(1)

x
ν
(1)
k1
k1

and m(xν
(2)

) = k2 < k1. Therefore xν
(2) | x2·degB

i
xµ

x
ν
(1)
k1
k1

x
µk
k

since by (5.4):

xν
(2) |

xdegB
i

x
ν
(1)
k1
k1

xν
(1) |

xdegB
i

x
ν
(1)
k1
k1

xdegB
i

xµ

xµkk
= x2·degB

i

xµ

x
ν
(1)
k1
k1
xµkk

This entails that

(5.5) xν
(2) | xdegB

i

xµ

x
µk2+1

k2+1 · · · x
µk
k
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because deg xν
(2) ≤ degB and m(xν

(2)
) = k2. We go on like this until we end up

at a term xν
(ω) ∈ B with xν

(ω) | xdegB
i

xν
(ω−1)

x
ν
(ω−1)
kω−1
kω−1

and m(xν
(ω)

) = kω < · · · < k1 < k

such that kω < j. Then the following holds:

� ν
(ω)
α = 0 for all α ≥ j > kω

� ν
(ω)
α ≤ ν

(ω−1)
α ≤ · · · ≤ ν

(1)
α ≤ µα for all i 6= α < kω < j

� ν
(ω)
i ≤ ν

(ω−1)
i ≤ · · · ≤ ν

(1)
i ≤ µi + degB

Again with same arguments like above we are immediately done if kω ≤ i, so we
may assume kω > i and analogous to (5.4) and (5.5) we get:

xν
(ω) | xdegB

i

xµ

x
µkω+1

kω+1 · · · x
µk
k

Since kω < j ≤ k this entails that xdegB
i

xµ

x
µkω+1
kω+1 ···x

µk
k

divides xdegB
i

xµ

xrj
and so in

particular xν
(ω)

divides xdegB
i

xµ

xrj
.

“(ii)⇒ (iii)”.
Now remember that J : x∞n−j is a monomial ideal (see e.g [HH11, Prop. 1.2.2/1.2.3])
and let B′ be its monomial basis. Let statement (ii) hold and let t be an element
of B′, i.e. xrn−jt ∈ J for some integer r. Since m(xrn−jt) ≥ n− j ≥ n− ` assertion
(ii) entails that for all i < n − j ≤ m(xrn−jt) there is an integer si such that the

term xsii
xrn−jt

xrn−j
= xsii t lies in J . Hence t〈x1, . . . , xn−j〉(s1+···+sn−j−1+r)(n−j) ⊆ J and

so t ∈ J : 〈x1, . . . , xn−j〉∞ which shows (iii).
“(iii)⇒ (i)”.

Finally, assume (5.3) holds and consider a term1 xµ ∈ J such that m(xµ) = n− j
with j ≤ `. Because of (5.3), we have xµ

x
µn−j
n−j

∈ J : x∞n−j = J : 〈x1, . . . , xn−j〉∞.

Hence there is an integer s such that xµ

x
µn−j
n−j
〈x1, . . . , xn−j〉s ⊆ J , but this means

that xsi
xµ

x
µn−j
n−j
∈ J for all i < n−j. Hence there is a minimal generator xν of J that

divides xsi
xµ

x
µn−j
n−j

. Because of νi ≤ degB it is clear that we may choose s ≤ degB

which finally shows that J is `-quasi-stable and finishes our proof. �

1 If such a term does not exist, then any term of J has an index less than n− `. Hence J
is obviously `-quasi-stable.
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Corollary 5.1.5.
Let JCP be a monomial and `-quasi-stable ideal with dim(P/J ) = D. If ` ≥ D−1
then J is quasi-stable.

Proof. The assertion follows from Proposition 5.1.4 and Proposition 5.1.3,
since for any integer j the equation J : x∞n−j = J : 〈x1, . . . , xn−j〉∞ implies the
equation 〈J , xn, . . . , xn−j+1〉 : x∞n−j = 〈J , xn, . . . , xn−j+1〉 : m∞ (compare proof of
Proposition 5.1.3). �

Proposition 5.1.6.
Let J C P be a monomial ideal, B its minimal basis and ` an integer. Then the
following statements are equivalent:

(i) J is weakly `-quasi-stable.
(ii) Let xµ ∈ J with m(xµ) ≥ n− ` and µj > 0 for some n− ` ≤ j ≤ n, then

for each r ≤ µj and i ≤ n− ` an integer s ≥ 0 exists such that xsi
xµ

xrj
lies

in J .
(iii) For all 0 ≤ j ≤ ` holds:

(5.6) J : x∞n−j ⊆ J : 〈x1, . . . , xn−`〉∞

The following proof of Proposition 5.1.6 is essentially equal to the one of Propo-
sition 5.1.4. We only have to do some minor adaptations, which are based on the
difference between the definitions of `-quasi-stable and weakly `-quasi-stable con-
cerning the index i.

Proof.
“(i)⇒ (ii)”.

Assume first that J is weakly `-quasi-stable. Let xµ ∈ J be a term with µj > 0
for some n − ` ≤ j ≤ n, hence k = m(xµ) ≥ j. Further, let r be an integer with
r ≤ µj. We want to prove (ii) by showing that for all integers i ≤ n − ` there is

a term xν ∈ J which divides xdegB
i

xµ

xrj
. By the definition of weak `-quasi-stability

xdegB
i

xµ

x
µk
k

∈ J for i ≤ n− `. Therefore there is a term xν
(1) ∈ B with

(5.7) xν
(1) | xdegB

i

xµ

xµkk

and so k1 = m(xν
(1)

) ≤ m(xdegB
i

xµ

x
µk
k

) < k. Obviously, ν
(1)
α ≤ µα for all i 6= α < k

and ν
(1)
i ≤ µi + degB. If k1 ≤ i, then xν

(1)
divides xdegB

i
xµ

x
µi+1
i+1 ···x

µk
k

, but since

the latter monomial is a divisor of xdegB
i

xµ

xrj
, we are already done in this case.

Otherwise, we know by weak `-quasi-stability, that xdegB
i

xν
(1)

x
ν
(1)
k1
k1

∈ J and so there

is a term xν
(2) ∈ B with xν

(2) | xdegB
i

xν
(1)

x
ν
(1)
k1
k1

and m(xν
(2)

) = k2 < k1. Therefore
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xν
(2) | x2·degB

i
xµ

x
ν
(1)
k1
k1

x
µk
k

since by (5.7):

xν
(2) |

xdegB
i

x
ν
(1)
k1
k1

xν
(1) |

xdegB
i

x
ν
(1)
k1
k1

xdegB
i

xµ

xµkk
= x2·degB

i

xµ

x
ν
(1)
k1
k1
xµkk

This entails that

(5.8) xν
(2) | xdegB

i

xµ

x
µk1
k1
· · · xµkk

because deg xν
(2) ≤ degB and m(xν

(2)
) = k2. We go on like this until we end up

at a term xν
(ω) ∈ B with xν

(ω) | xdegB
i

xν
(ω−1)

x
ν
(ω−1)
kω−1
kω−1

and m(xν
(ω)

) = kω < · · · < k1 < k

such that kω < j. Then the following holds:

� ν
(ω)
α = 0 for all α ≥ j > kω

� ν
(ω)
α ≤ ν

(ω−1)
α ≤ · · · ≤ ν

(1)
α ≤ µα for all i 6= α < kω < j

� ν
(ω)
i ≤ ν

(ω−1)
i ≤ · · · ≤ ν

(1)
i ≤ µi + degB

Again with same arguments like above we are immediately done if kω ≤ i, so we
may assume kω > i and analogous to (5.7) and (5.8) we get:

xν
(ω) | xdegB

i

xµ

x
µkω+1

kω+1 · · · x
µk
k

Since kω < j ≤ k this entails that xdegB
i

xµ

x
µkω+1
kω+1 ···x

µk
k

divides xdegB
i

xµ

xrj
and so in

particular xν
(ω)

divides xdegB
i

xµ

xrj
.

“(ii)⇒ (iii)”.
Now remember that J : x∞n−j is a monomial ideal (see e.g. [HH11, Prop.
1.2.2/1.2.3]) and let B′ be its monomial basis. Let statement (ii) hold and let t be
an element of B′, i.e. xrn−jt ∈ J for some integer r. Since m(xrn−jt) ≥ n−j ≥ n−`
assertion (ii) entails that for all i ≤ n−` ≤ m(xrn−jt) there is an integer si such that

the term xsii
xrn−jt

xrn−j
= xsii t lies in J . Hence t〈x1, . . . , xn−`〉(s1+···+sn−`−1+r)(n−`) ⊆ J

and so t ∈ J : 〈x1, . . . , xn−`〉∞ which shows (iii).
“(iii)⇒ (i)”.

Finally, assume (5.6) holds and consider a term2 xµ ∈ J such that m(xµ) = n− j
with j ≤ `. Because of (5.6), we have xµ

x
µn−j
n−j

∈ J : x∞n−j ⊆ J : 〈x1, . . . , xn−`〉∞.

Hence there is an integer s such that xµ

x
µn−j
n−j
〈x1, . . . , xn−`〉s ⊆ J , but this means that

xsi
xµ

x
µn−j
n−j

∈ J for all i ≤ n − `. Hence there is a minimal generator xν of J that

2 If such a term does not exist, then any term of J has an index less than n− `. Hence J
is obviously weakly `-quasi-stable.
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divides xsi
xµ

x
µn−j
n−j

. Because of νi ≤ degB it is clear that we may choose s ≤ degB

which finally shows that J is weakly `-quasi-stable and finishes our proof. �

Definition 5.1.7.
An ideal ICP with dim(P/I) = D is in Noether position if k[xn−D+1, . . . , xn] is a
Noether normalization of P/I, i.e. P/I is a finitely generated k[xn−D+1, . . . , xn]-
module.

Lemma 5.1.8 ([BG01, Lem. 4.1]).
Let I C P be an ideal with dim(P/I) = D. Then the following statements are
equivalent:

(i) I is in Noether position.
(ii) There are integers si such that xsii ∈ lt I for all i ≤ n−D.

(iii) dim(P/(〈I, xn, . . . , xn−D+1〉)) = 0.
(iv) dim(P/(〈lt I, xn, . . . , xn−D+1〉)) = 0.

Remark 5.1.9.
Assume that the monomial ideal J with minimal basis B is weakly `-quasi-stable
for some ` and that xµ ∈ J . It follows immediately from Definition 5.1.1 that
any term of the form xµ1+ν1

1 · · · xµn−`+νn−`n−` is also contained in J , where every
νi is either zero or a multiple of degB and ν1 + · · · + νn−` = k · degB, where
k = #{µj | j > n− ` and µj > 0}.

Proposition 5.1.10.
The monomial ideal J CP is weakly D-quasi-stable, if and only if it is in Noether
position.

Proof. Let J be weakly D-quasi-stable and assume that there exists a term
xµ ∈ J ∩ k[xn−D+1, . . . , xn], i.e. in particular µ1 = · · · = µn−D = 0. Then
Remark 5.1.9 immediately implies that there is an integer s such that xsi ∈ J for
all i ≤ n−D and we are done by Lemma 5.1.8.
If J ∩k[xn−D+1, . . . , xn] = ∅, then the D-dimensional cone k[xn−D+1, . . . , xn]·1 lies
completely in P/J . Assume that for some i ≤ n−D no power of xi was contained
in J . It is not possible that the (D+ 1)-dimensional cone k[xi, xn−D+1, . . . , xn] · 1
lies completely in P/J , since then obviously dim(P/J ) > D. Thus we must have
J ∩k[xi, xn−D+1, . . . , xn] 6= ∅. But if a term xµ lies in this intersection, then again
by Remark 5.1.9 there is an integer s such that xsi ∈ J in contradiction to our
assumption.

Now let J be in Noether position. By Lemma 5.1.8 there are integers si
such that xsii is in J for all i ≤ n − D. Hence 〈x1, . . . , xn−D〉s(n−D) ⊆ J with
s = maxi si and therefore J : 〈x1, . . . , xn−D〉∞ = P . This implies of course,
that J : x∞n−j ⊆ J : 〈x1, . . . , xn−D〉∞ for any j and we are done by Proposition
5.1.6. �
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Remark 5.1.11.
With an appropriate adaptation of line 2 it is easy to provide a weakly D-stable
version of Algorithm 1. Hence using Proposition 5.1.10 we are able to deliver a de-
terministic method to put any ideal directly in Noether position, which represents
an alternative to the approach described in [Rob09].

Furthermore, it is another notable consequence of Proposition 5.1.10 that now
we are able to give a combinatorial characterization of the notion Noether position.

The following Algorithm 5 verifies whether a given monomial ideal is D-quasi-
stable without a priori knowledge of the dimension D of P/J .

Algorithm 5 DQS-Test: Test for D-quasi-stability

Input: minimal basis B = {t1, . . . , tr} of monomial ideal J C P
Output: The answer to: is J D-quasi-stable?

1: ` := smallest j such that xdegB
α ∈ J for α = 1, . . . , n− j

2: for all xµ ∈ B with k := m(xµ) ≥ n− ` do
3: for i = 1, . . . , k − 1 do
4: if xdegB

i
xµ

x
µk
k

/∈ 〈B〉 then

5: return false
6: end if
7: end for
8: end for
9: return true

For showing its correctness, we want to distinguish between the following three
cases:

Case I: J is D-quasi-stable
Case II: J is not D-quasi-stable but in Noether position
Case III: J is neither D-quasi-stable nor in Noether position

In Case I we know by Proposition 5.1.10 that J is in Noether position. Hence the
number ` computed in Line 1 equals D by Lemma 5.1.8. So by Definition 5.1.1 of
D-quasi-stability we never get to Line 5.

If the second case is true, we get again ` = D by the same argument. But as
J is not D-quasi-stable there must be an obstruction that leads us correctly to
Line 5.

In the last case ` is greater3 than D. Since J is not D-quasi-stable there exists
a term xµ ∈ B with k = m(xµ) ≥ n−D > n− ` such that xdegB

i
xµ

x
µk
k

/∈ J for some

i < k. Our algorithm will detect this obstruction and thus gives the right answer.

3 We know that ` 6= D since J is not in Noether position. The assumption ` < D leads to
a contradiction because then dim(P/J ) ≤ n− (n− `) = ` < D.
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This algorithm can be used to optimize the while loop in line 2 of the quasi-
stable version of Algorithm 1. We know from Corollary 5.1.5 that instead of
transforming to quasi-stable position, it is enough to achieve a D-quasi-stable
position. So a combination of the quasi-stable version of Algorithm 1 and the
DQS-Test, for which an a priori determination of D is not necessary, leads to a
further ansatz to put an ideal into quasi-stable position.

5.2. Associating weakly D-stable Ideals with the Reduction Number

In this section we will now present some generalizations of the stable position
and discuss their properties which correspond to the results of the previous section.
Subsequently we will introduce the notion weakly D-minimal stable that leads us
to a generalized version of Theorem 4.3.4.

Definition 5.2.1.
Let J be a monomial ideal and 0 ≤ ` < n an integer.

� J is `-stable if for every term xµ ∈ J with m(xµ) = k ≥ n− ` and every
i < k the term xi

xµ

xk
also lies in J .

� J is weakly `-stable if for every term xµ ∈ J with m(xµ) = k ≥ n − `
and every i ≤ n− ` the term xi

xµ

xk
also lies in J .

Further, we call J (weakly) D-stable if J is (weakly) dim(P/J )-stable. Finally,
a polynomial ideal is in (weakly) `-stable position if its leading ideal is (weakly)
`-stable.

Remark 5.2.2.
It is easy to derive the following hierarchy immediately from the definition:

J stable ⇒ J `-stable ⇒ J weakly `-stable

Compared with Definition 5.1.1 it is also clear that any (weakly) `-stable ideal is
(weakly) `-quasi-stable. Again we can argue analogous to Lemma 2.2.4 to see that
it is enough to verify the definition on the elements of the minimal basis of the
ideal.

Example 5.2.3.
We consider the ideal J1 C k[x1, . . . , x6] with

J1 = 〈 x1, x
2
2, x2x3, x2x4, x3x4, x

2
4, x

3
3, x

2
3x5, x2x

2
5, x3x

2
5, x4x

2
5, x

3
5,

x2
3x

2
6, x2x5x

2
6, x3x5x

2
6, x4x5x

2
6, x

2
5x

2
6, x2x

4
6, x3x

4
6, x4x

4
6, x5x

4
6, x

6
6 〉 ,

which is the leading ideal of the fifth Katsura ideal. One can easily see that here
dim(P/J1) = 0 and that J1 is D-stable since the defining property holds for the
generators containing x6. However, J1 is not stable, as for example x3x4 ∈ J1 but
x3

x3x4
x4

= x2
3 /∈ J1.
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Consider now the monomial ideal J2 C k[x1, . . . , x5] with

J2 = 〈 x2
1, x1x

2
2, x

3
2, x1x2x

2
3, x

2
3x

2
2, x1x

4
3, x2x

4
3, x

5
3, x1x

3
3x

2
4, x2x

3
3x

2
4, x

4
3x

2
4,

x1x2x3x
4
4, x

2
2x3x

4
4, x1x

2
3x

4
4, x2x

2
3x

4
4, x

3
3x

4
4, x1x2x

6
4, x

2
2x

6
4, x1x3x

6
4,

x1x2x3x
3
4x

2
5, x1x2x

5
4x

2
5, x

2
2x

5
4x

2
5, x1x3x

5
4x

3
5, x

2
2x3x

3
4x

4
5,

x1x
2
3x

3
4x

5
5, x2x

2
3x

3
4x

5
5, x1x2x

4
4x

6
5, x1x

6
4x

5
5, x

2
2x

4
4x

7
5, x2x3x

5
4x

7
5 〉 .

Since here dim(P/J2) = 2, we must check the defining property of a weakly D-
stable ideal only for the terms containing x3, x4, x5 and one readily verifies that
J2 is weakly D-stable. However, it is not D-stable because x1x

6
4x

5
5 ∈ J2 but

x4
x1x64x

5
5

x5
= x1x

7
4x

4
5 /∈ J2.

Proposition 5.2.4 ([HSS14, Prop. 3.5]).
The monomial ideal J C P is `-stable, if and only if it satisfies J : xn = J : m
and for all 0 < j ≤ `

(5.9) 〈J , xn, . . . , xn−j+1〉 : xn−j = 〈J , xn, . . . , xn−j+1〉 : m .

Proof. Assume first that J is `-stable and let t be a term such that xnt ∈ J .
Then by the definition of `-stable xi

xnt
xn

= xit ∈ J for all i < n and therefore
tm ⊆ J , hence J : xn = J : m. Further, let now t be a term such that

(5.10) xn−jt ∈ 〈J , xn, . . . , xn−j+1〉
for some j ≤ `. If m(t) > n−j, then t ∈ 〈xn, . . . , xn−j+1〉 ⊆ 〈J , xn, . . . , xn−j+1〉 : m
and we are done. Otherwise, m(xn−jt) = n − j ≥ n − ` and then (5.10) entails

xn−jt ∈ J . Because of the `-stability, we have xi
xn−jt
xn−j

= xit ∈ J for all i < n− j.
Hence t〈x1, . . . , xn−j〉 ⊆ J implying tm ⊆ 〈J , xn, . . . , xn−j+1〉, which shows (5.9).

For the converse consider a term t ∈ J with m(t) = n− j ≥ n− `. So if j = 0
it follows from our assumption that t

xn
∈ J : xn = J : m. Hence xi

t
xn
∈ J for all

i < n. Otherwise, 0 < j ≤ ` and because of (5.9), we have:

t

xn−j
∈ J : xn−j ⊆ 〈J , xn, . . . , xn−j+1〉 : xn−j = 〈J , xn, . . . , xn−j+1〉 : m

Hence xi
t

xn−j
∈ 〈J , xn, . . . , xn−j+1〉 for all i ≤ n. If i < n − j, then

m(xi
t

xn−j
) ≤ n − j and thus we must have xi

t
xn−j

∈ J showing that J is

`-stable. �

Corollary 5.2.5 ([HSS14, Cor. 3.6]).
Let J C P be a monomial ideal. Then J is quasi-stable, if it is D-stable.

Proof. According to the previous proposition, we have J : xn = J : m and
(5.9) holds for all 0 < j ≤ D. By Proposition 5.1.3 it is enough to show that for
all 0 < j < D the following equation hold:

(5.11) 〈J , xn, . . . , xn−j+1〉 : x∞n−j = 〈J , xn, . . . , xn−j+1〉 : m∞ .
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Indeed, if a term t lies in the ideal on the left hand side, then an integer s exists
such that xsn−jt ∈ 〈J , xn, . . . , xn−j+1〉 and therefore by (5.9):

xs−1
n−jt ∈ 〈J , xn, . . . , xn−j+1〉 : xn−j = 〈J , xn, . . . , xn−j+1〉 : m

Applying this argument a second time yields:

xs−2
n−jt ∈

(
〈J , xn, . . . , xn−j+1〉 : m

)
: xn−j

=
(
〈J , xn, . . . , xn−j+1〉 : xn−j

)
: m

= 〈J , xn, . . . , xn−j+1〉 : m2

Thus we find by iteration that t ∈ 〈J , xn, . . . , xn−j+1〉 : ms proving (5.11).
�

Example 5.2.6.
Weak D-stability is not sufficient for quasi-stability, as one can see from the ideal
J1 = 〈x2

1, x1x3〉Ck[x1, x2, x3] where D = dim(P/J1) = 2. One easily verifies that
it is weakly D-stable but not quasi-stable since x2

2
x1x3
x3

= x1x
2
2 /∈ J1.

And the ideal J2 = 〈x1x2, x
3
1〉C k[x1, x2, x3] where again D = dim(P/J2) = 2

shows that the converse of Corollary 5.2.5 does not hold, as it is quasi-stable but
not (weakly) D-stable since x1

x1x2
x2

= x2
1 /∈ J2.

Proposition 5.2.7.
Let J C P be a monomial ideal. If J is weakly `-stable, then it satisfies:

(5.12) 〈J , xn, . . . , xn−`+1〉 : xn−` = 〈J , xn, . . . , xn−`+1〉 : m

Conversely, J is weakly `-stable if it satisfies for all 0 ≤ j ≤ `:

(5.13) J : xn−j ⊆ J : 〈x1, . . . , xn−`〉
Proof. Assume first that J is weakly `-stable and let t be a term such

that xn−`t ∈ 〈J , xn, . . . , xn−`+1〉. If m(t) > n − `, then t ∈ 〈xn, . . . , xn−`+1〉 ⊆
〈J , xn, . . . , xn−`+1〉 : m and we are done. Otherwise, m(xn−`t) = n−` and we have
xn−`t ∈ J . Because of the weak `-stability, this entails that xi

xn−`t
xn−`

= xit ∈ J for

all i ≤ n− `. Hence t〈x1, . . . , xn−`〉 ⊆ J implying tm ⊆ 〈J , xn, . . . , xn−`+1〉, which
shows (5.12).

For the converse consider a term t ∈ J with m(t) = n − j ≥ n − `. Because
of (5.13), we have t

xn−j
∈ J : xn−j ⊆ J : 〈x1, . . . , xn−`〉. Hence xi

t
xn−j
∈ J for all

i ≤ n− ` so that J is weakly `-stable. �

The following example shows that the converse of the second part of
Proposition 5.2.7 is not true:

Example 5.2.8.
Let us consider the ideal J = 〈x3

1, x
2
1x2, x1x

2
2, x

3
2, x1x2x3〉 C k[x1, x2, x3]. J is

weakly 1-stable, but equation (5.13) does not hold for j = 1 since:

J : x2 = 〈x2
1, x1x2, x

2
2, x1x3〉 * 〈x2

1, x1x2, x
2
2〉 = J : 〈x1, x2〉
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However, equation (5.12) does hold, since:

〈J , x3〉 : x2 = 〈x3, x
2
1, x1x2, x

2
2〉 = 〈J , x3〉 : m

Corollary 5.2.9 ([HSS14, Prop. 3.9]).
Any weakly D-stable ideal is in Noether position.

Proof. Since a weakly D-stable ideal is always weakly D-quasi-stable, the
assertion follows from Proposition 5.1.10. �

The following Algorithm 6 verifies, whether a given monomial ideal is weakly
D-stable without a priori knowledge of the dimension D of P/I.

Algorithm 6 WDS-Test: Test for weak D-stability

Input: minimal basis B = {t1, . . . , tr} of monomial ideal J C P
Output: The answer to: is J weakly D-stable?

1: ` := smallest j such that xdegB
α ∈ J for α = 1, . . . , n− j

2: for all xµ ∈ B with k := m(xµ) ≥ n− ` do
3: for i = 1, . . . , n− ` do
4: if xi

xµ

xk
/∈ 〈B〉 then

5: return false
6: end if
7: end for
8: end for
9: return true

For showing its correctness, we want to distinguish between the following three
cases:

Case I: J is weakly D-stable
Case II: J is not weakly D-stable but in Noether position
Case III: J is neither weakly D-stable nor in Noether position

In Case I we know by Corollary 5.2.9 that J is in Noether position. Hence the
number ` computed in Line 1 equals D by Lemma 5.1.8. So by Definition 5.2.1 of
weak D-stability we never get to Line 5.

If the second case is true, we get again ` = D by the same argument. But as
J is not weakly D-stable there must be an obstruction that leads us correctly to
Line 5.

In the last case ` is greater4 than D. Since J is not weakly D-stable there
exists a term xµ ∈ B with k = m(xµ) ≥ n − D > n − ` such that xi

xµ

xk
/∈ J for

some i ≤ n− `. Our algorithm will detect this obstruction and thus gives the right
answer.

4 We know that ` 6= D since J is not in Noether position. The assumption ` < D leads to
a contradiction because then dim(P/J ) ≤ n− (n− `) = ` < D.
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Remark 5.2.10.
Assume that the monomial ideal J is weakly `-stable for some ` and that xµ ∈ J .
It follows immediately from Definition 5.2.1 that any term of the form xµ1+ν1

1 · · · xµn−`+νn−`n−`
with ν1 + · · · + νn−` = µn−`+1 + · · · + µn is also contained in J . If we introduce
for 1 ≤ j ≤ ` the homogeneous polynomials

gj =
∑

ν
(j)
1 +···+ν(j)n−`=µn−`+j

a
(j)

ν
(j)
1 ,...,ν

(j)
n−`
x
ν
(j)
1

1 · · · xν
(j)
n−`
n−`

with arbitrary coefficients a
(j)

ν
(j)
1 ,...,ν

(j)
n−`
∈ k, then it follows from the observation

above that the polynomial

fµ = xµ11 · · · x
µn−`
n−` g1 · · · g`

also lies in J . Since each term in its support is of the form xµ1+ν1
1 · · · xµn−`+νn−`n−`

with ν1 + · · ·+ νn−` = deg(g1 · · · g`) = deg g1 + · · ·+ deg g` = µn−`+1 + · · ·+ µn.

Theorem 5.2.11 ([HSS14, Thm. 5.1]).
Let J CP be a weakly D-stable monomial ideal. Then J has a minimal generator
xsn−D and r(P/J ) = rR(P/J ) = s− 1 for any minimal reduction R of J .

Proof. Since J is assumed to be weakly D-stable, it follows from Corollary
5.2.9 and Lemma 5.1.8 that there are integers si such that:

(5.14) xsii ∈ J for all i ≤ n−D

Hence xn−D+1, . . . , xn induce a minimal reduction5 of J . We can apply Lemma
4.3.3 which shows that any minimal reduction is induced by D linear forms
zi = xn−D+i +

∑n−D
j=1 bijxj with 1 ≤ i ≤ D and arbitrary coefficients bij ∈ k.

Let R1 = J + 〈z1, . . . , zD〉 and R2 = J + 〈xn−D+1, . . . , xn〉. We want to prove
that any minimal reduction leads to the same reduction number.

Claim 1: rR1(P/J ) = rR2(P/J ).
It is enough to show the identity J1 = J2 where P/R1

∼= k[x1, . . . , xn−D]/J1 and
P/R2

∼= k[x1, . . . , xn−D]/J2. Thereby we interpret J1 C k[x1, . . . , xn−D] as the

ideal that arises by replacing xn−D+i with −
∑n−D

j=1 bijxj for all 1 ≤ i ≤ D in any

element of J and – as one easily sees – we have J2 = J ∩ k[x1, . . . , xn−D]. Thus
trivially J2 ⊆ J1, since the elements of J , which do not involve the variables
xn−D+1, . . . , xn remain in J1.

For the converse inclusion J1 ⊆ J2 we should note that every element fµ ∈ J1

is induced by a term xµ ∈ J such that fµ is of the form fµ = xµ11 · · · x
µn−D
n−D g1 · · · gD

with gj = (−bj1x1 − · · · − bj(n−D)xn−D)µn−D+j . It follows from Remark 5.2.10 that
fµ lies in J and – as obviously fµ ∈ k[x1, . . . , xn−D] – we thus have fµ ∈ J2 proving
Claim 1.

5 Since dim(P/〈J , xn−D+1, . . . , xn〉) = 0 by [KR00, Prop. 3.7.1, Def. 3.7.2].
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By (5.14) we know that J contains a power of xn−D. Let s be minimal such
that xsn−D ∈ J .

Claim 2: rR2(P/J ) = s− 1.
Since xsn−D is a minimal generator of J , we have xs−1

n−D /∈ R2 and so in particular
(P/R2)s−1 6= 0 showing that rR2(P/J ) ≥ s− 1.

On the other hand xsn−D ∈ J implies – because of the weak D-stability
of J – that any term xµ11 · · · x

µn−D
n−D with µ1 + · · · + µn−D = s also belongs to

J . Thus (P/R2)s = 0 since xn−D+1, . . . , xn ∈ R2 by construction. Therefore
rR2(P/J ) ≤ s− 1 which finally entails that rR2(P/J ) = s− 1. �

We have thus identified a class of monomial ideals, the weakly D-stable ideals,
for which it is particularly simple to determine their reduction number. Given a
polynomial ideal I, we may use the weakly D-stable version of Algorithm 1 to
render it and obtain then immediately the reduction number of its leading ideal
lt I. According to Theorem 4.3.1, this number gives us an upper bound for r(P/I).
We introduce now a more specialized class of ideals for which we can guarantee
that I and lt I have the same reduction number.

Notation 5.2.12.
We denote in the following for a monomial ideal J by

degxk J = max{s | xsk divides a minimal generator of J }

the maximal xk-degree of a minimal generator of J .

Definition 5.2.13.
Let 0 ≤ ` < n be an integer. The homogeneous ideal I C P is weakly `-minimal
stable if its leading ideal lt I is weakly `-stable and if for any linear change of
coordinates A ∈ GL(n,k) such that lt (A · I) is still weakly `-stable, we have
degxn−` lt I ≤ degxn−` lt (A · I).

Proposition 5.2.14.
Let chark = 0, then an ideal I is weakly D-minimal stable if it is in gin-position.

Proof. gin I is weakly D-stable by Theorem 2.4.4 and Proposition 2.4.5, since
we assumed chark = 0. Further, let A ∈ GL(n,k) be a linear change of coordinates
such that lt (A · I) is also weakly D-stable. Hence it follows from Theorem 5.2.11,
Theorem 4.3.2 and Theorem 4.3.1 that:

degxn−D gin I = r(P/ gin I) = r(P/I) ≤ r(P/ lt(A · I)) = degxn−D lt(A · I)

�

We will see in Example 5.2.16 that the converse of Proposition 5.2.14 is not true.
But before we want to clarify the importance of the assumption chark = 0 in this
context. Therefore the next example will show us that in positive characteristic
even gin-position does not imply weak D-stability.
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Example 5.2.15.
Let J = 〈x2

1, x
2
2〉C k[x1, x2] and chark = 2. Then J is Borel-fixed (see Example

2.4.7) and therefore J = ginJ by Theorem 2.4.4. However, J is not weakly

D-stable since x1
x22
x2

= x1x2 /∈ J and so in particular not weakly D-minimal stable.

Example 5.2.16.
We consider for n = 4 the ideal

I = 〈x1x4 − x2x3, x
3
2 − x1x

2
3, x

2
2x4 − x3

1〉

which represents the special case a = 2, b = 3 of [BH99, Example 15]. Here D = 2
and the ideal I is not in weakly D-stable position since:

x1
x2x3

x3

= x1x2 /∈ lt I = 〈x2x3, x
3
1, x

3
2, x1x

3
3〉

The linear change of coordinates Ψ : (x2 7→ x1 + x2, x3 7→ x1 + x3) transforms I
into a weakly D-stable (in fact, even strongly stable) ideal Ĩ = Ψ(I) with leading
ideal

lt Ĩ = 〈x2
1, x1x

2
2, x

3
2, x1x2x

2
3, x1x

3
3, x

2
2x

3
3, x2x

4
3〉 .

Note that although this leading ideal is different from

gin I = 〈x2
1, x1x

2
2, x

3
2, x1x2x

2
3, x

2
2x

2
3, x1x

4
3, x2x

4
3〉 ,

both ideals have the same minimal generator x3
2. Thus Ĩ is weakly D-minimal

stable and we see that in this example the set of transformations leading to weakly
D-minimal position is strictly larger than the one leading to the generic initial
ideal.

Theorem 5.2.17 ([HSS14, Thm. 5.5]).
Let chark = 0 and I CP be a weakly D-minimal stable homogeneous ideal. Then
lt I has a minimal generator xsn−D and

r(P/I) = r(P/ lt I) = degxn−D lt I − 1 = s− 1.

Proof. Since lt I is weakly D-stable, it possesses a minimal generator xsn−D
and r(P/ lt I) = s − 1 by Proposition 5.2.11. As chark = 0 gin I is also weakly
D-stable and thus has a minimal generator xs

′
n−D. As I and gin I are both weakly

D-minimal stable we must have s = s′. Hence r(P/I) = r(P/ gin I) = s − 1 by
Theorem 4.3.2 and Proposition 5.2.11. �

Remark 5.2.18.
Unfortunately, Theorem 5.2.17 is mainly of theoretical interest, as we are not able
to provide a simple deterministic algorithm for the construction of a change of
coordinates leading to a weakly D-minimal stable position.
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If we consider again Example 4.2.3, we see that the leading ideal
lt I = 〈x2

1, x1x2, x1x3, x
3
2, x

2
2x3〉 is even strongly stable and thus of course weakly

D-stable (with D = 1 here). However, I is not weakly D-minimal stable, as
gin I = 〈x2

1, x1x2, x
2
2, x1x

2
3〉 and thus degx2 gin I = 2 < 3 = degx2 lt I. Hence

analogous to Remark 4.3.7 it is not enough to analyze the leading ideal in order
to verify whether I is weakly D-minimal stable or not.

Remark 5.2.19.
Analogous to Remark 2.2.8 it is clear that any ideal can be put in (weakly)
`-quasi-stable or (weakly) `-stable position by using the corresponding version of
Algorithm 1. However, we should note that this algorithm only works if chark = 0.

5.3. Generalization of Borel-fixed Position

As a final step of our “generalization procedure”, we will now have a look at
the Borel-fixed position, which we introduced in Section 2.4. Especially if the
considered field has positive characteristic this position becomes more important.

With the same method of the preceding sections we are now able to connect
the newly defined (weakly) `-quasi-stable position with a position we call (weakly)
`-Borel-fixed. Therefore we have to refine the Borel group B of Definition 2.4.1.
Furthermore, using another new stable position allows us the formulation of a
correspondingly adapted version of certain results we presented in Section 2.4.

The weakly `-Borel-fixed Position.

Definition 5.3.1.
The subgroup Bw

` = {A = (aij) ∈ B | aij = 0 if j > n− ` or i < n− `} ⊆ Gl(n,k)
is called weak `-Borel group.

So a matrix A ∈ Bw
` of the weak `-Borel group is of the form

A =

 11 0 0
an−`,1 · · · an−`,n−`−1 1 0 · · · 0

a 12

 ,

where 11 ∈ Gl(n− `− 1,k), 12 ∈ Gl(`,k) are identity matrices and a is a `×n− `
matrix of the form:

a =

 an−`+1,1 · · · an−`+1,n−`
...

...
an,1 · · · an,n−`


Definition 5.3.2.

A monomial ideal J is weakly `-Borel-fixed if J = A · J for all A ∈ Bw
` . We

say that a polynomial ideal I is in weakly Borel-fixed position if lt I is weakly
`-Borel-fixed.
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Analogous to Proposition 2.4.6 we receive the following proposition considering
the notion weakly `-Borel-fixed.

Proposition 5.3.3.
Let J a monomial ideal and B its monomial basis then the following statements
are equivalent:

(i) J is weakly `-Borel-fixed.
(ii) For every xµ ∈ B with m(xµ) ≥ n− `, every j ≥ n− ` with µj > 0 and

every i ≤ n− ` the term x
µj−u
i

xµ

x
µj−u
j

also lies in J for all integers u that

satisfy:

(5.15)

(
µj
u

)
6= 0, if chark = 0(

µj
u

)
6≡ 0 mod p, if chark = p > 0

The following proof of this proposition is inspired by the proof of [Eis95, Thm.
15.23].

Proof. Let A = (akl) be a n×n matrix with akk = 1 for all k and aji = a 6= 0
for some integers i < j such that i ≤ n − ` ≤ j. Further, let akl = 0 for all k 6= l
and (k, l) 6= (j, i). Then we have:

(5.16) A · xµ = (xj + axi)
µj

xµ

x
µj
j

=

µj∑
u=0

(
µj
u

)
aµj−ux

µj−u
i

xµ

x
µj−u
j

The weak `-Borel group is generated by nonsingular diagonal matrices and matrices
of the form of A. Since any monomial ideal is invariant under transformations
induced by diagonal matrices (see [Eis95, Thm. 15.23]), it is enough to show that
J is weakly `-Borel-fixed, if and only if it is invariant under A. Now let xµ ∈ B
be a term that is affected by the transformation A, i.e. µj > 0 (in particular we
have in this case m(xµ) ≥ j ≥ n− `). Since a polynomial lies in a monomial ideal,
if and only if every term of its support lies in the ideal, we can derive by (5.16):

A · xµ ∈ J ⇔ x
µj−u
i

xµ

x
µj−u
j

∈ J for all integer u that satisfy (5.15)

�

Introducing another stable position, we can formulate a generalized version of
Proposition 2.4.5 and Theorem 2.4.4.

Definition 5.3.4.
Let J be a monomial ideal and 0 ≤ ` < n an integer. J is weakly `-strongly stable,
if for every term xµ ∈ J with m(xµ) ≥ n − `, every j ≥ n − ` with µj > 0 and
every i ≤ n− ` the term xi

xµ

xj
also lies in J .
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Corollary 5.3.5.
Let J C P be a monomial ideal. Then J is weakly `-Borel-fixed if it is weakly
`-strongly stable.

Conversely, if J is weakly `-Borel-fixed and chark = 0, then J is weakly
`-strongly stable.

Proof. This is a direct consequence of Definition 5.3.4 and Proposition 5.3.3.
�

Example 5.3.6.
Let chark = 2 and J = 〈x2

1, x
2
2, x

2
4〉 C k[x1, x2, x3, x4] be a monomial ideal. We

now want to verify that J is weakly 2-Borel-fixed. According to Proposition 5.3.3
it is enough to check the generators x2

2 and x2
4. Further, since

(
2
u

)
6≡ 0 mod 2

holds for u = 0 or u = 2, we only consider the case u = 0 as the other case is
“uninteresting”. Hence J is weakly 2-Borel-fixed because of:

x2
1

x2
2

x2
2

= x2
1 ∈ J , x2

1

x2
4

x2
4

= x2
1 ∈ J , x2

2

x2
4

x2
4

= x2
2 ∈ J

However, J is not weakly 2-strongly stable since x1
x24
x4

= x1x4 /∈ J .

Corollary 5.3.7.
Any weakly `-Borel-fixed ideal is weakly `-quasi-stable.

Proof. Let J be a monomial weakly `-Borel-fixed ideal and B its monomial
basis. Further, let xµ ∈ B with m(xµ) = k ≥ n− `. Since the binomial coefficient(
µk
0

)
is equal to 1, it is nonzero in any characteristic. Therefore by Proposition 5.3.3

the term xµki
xµ

x
µk
k

lies in J for every i ≤ n− `. Hence any element of B and so by

Remark 5.1.2 any element of J fulfills the condition for weak `-quasi-stability. �

Obviously, it follows from Proposition 5.1.10 that any weakly D-Borel-fixed
ideal is in Noether position. Hence we can generalize the first part of
Theorem 4.3.4 from Bresinsky and Hoa, so that we only have to assume an ideal
to be in weakly D-Borel-fixed position in order to follow that it contains a power
of xn−D.

The `-Borel-fixed Position.

Definition 5.3.8.
The subgroup B` = {A = (aij) ∈ B | aij = 0 if j < n− ` and i 6= j} ⊆ Gl(n,k) is
called `-Borel group.



5.3. GENERALIZATION OF BOREL-FIXED POSITION 89

So a matrix A ∈ B` of the `-Borel group is of the form A =

(
a1 0
a2 1

)
,

where 1 ∈ Gl(`,k) is the identity matrices and a1 respectively a2 are n− `×n− `
respectively `× n− ` matrices of the form:

a1 =


1 0 · · · 0

a2,1 1
. . .

...
...

. . . . . .
0

an−`,1 · · · an−`,n−`−1 1

 , a2 =

 an−`+1,1 · · · an−`+1,n−`
...

...
an,1 · · · an,n−`



Definition 5.3.9.
A monomial ideal J is `-Borel-fixed if J = A · J for all A ∈ B`. We say that a
polynomial ideal I is in Borel-fixed position if lt I is `-Borel-fixed.

Proposition 5.3.10.
Let J a monomial ideal and B its monomial basis then the following statements
are equivalent:

(i) J is `-Borel-fixed.
(ii) For every xµ ∈ B with m(xµ) ≥ n − `, every j ≥ n − ` with µj > 0

and every i < j the term x
µj−u
i

xµ

x
µj−u
j

also lies in J for all integers u that

satisfy:

(5.17)

(
µj
u

)
6= 0, if chark = 0(

µj
u

)
6≡ 0 mod p, if chark = p > 0

We leave out the proof for this proposition since it is essentially equal to the
one of Proposition 5.3.3.

Again we can introduce another stable position analogous to Definition 5.3.4
that allows us to formulate a generalized version of Proposition 2.4.5 and Theorem
2.4.4 concerning the notion `-Borel-fixed.

Definition 5.3.11.
Let J be a monomial ideal and 0 ≤ ` < n an integer. J is `-strongly stable, if for
every term xµ ∈ J with m(xµ) ≥ n − `, every j ≥ n − ` with µj > 0 and every
i < j the term xi

xµ

xj
also lies in J .

Corollary 5.3.12 ([HSS14, Prop. 3.4]).
Let J CP be a monomial ideal. Then J is `-Borel-fixed, if it is `-strongly stable.
Conversely, if J is `-Borel-fixed and chark = 0, then J is `-strongly stable.

Proof. This is a direct consequence of Definition 5.3.11 and Proposition
5.3.10. �
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In summary, it is easy to derive the following hierarchy immediately from the
Propositions 2.4.6, 5.3.3 and 5.3.10, the Definitions 2.2.1, 5.3.4 and 5.3.11 as well
as Proposition 2.4.5 and the Corollaries 5.3.5 and 5.3.12:

J Borel-fixed ⇒ J `-Borel-fixed ⇒ J weakly `-Borel-fixed
⇑ (⇓)6 ⇑ (⇓)6 ⇑ (⇓)6

J strongly stable ⇒ J `-strongly stable ⇒ J weakly `-strongly stable

Example 5.3.13.
Let chark = 3 and J = 〈x1x2, x

3
1, x

3
2, x

3
3〉Ck[x1, x2, x3] be a monomial ideal. We

now want to verify that J is 0-Borel-fixed. According to Proposition 5.3.10 it is
enough to check the generator x3

3. Further, since
(

3
u

)
6≡ 0 mod 3 holds for u = 0

or u = 3, we only consider the case u = 0 as the other case is “uninteresting”.
Hence J is 0-Borel-fixed because of:

x3
1

x3
3

x3
3

= x3
1 ∈ J , x3

2

x3
3

x3
3

= x3
2 ∈ J

However, J is not 0-strongly stable since x1
x33
x3

= x1x
2
3 /∈ J . Moreover,

x1
x1x2
x2

= x2
1 /∈ J causing that J is also not Borel-fixed by Proposition 2.4.6.

Example 5.3.14.
In Example 5.3.6 we saw that the ideal J = 〈x2

1, x
2
2, x

2
4〉Ck[x1, x2, x3, x4] is weakly

2-Borel-fixed under the assumption that chark = 2. However, it is easy to verify

that J is not 2-Borel-fixed since x2
3
x24
x24

= x2
3 /∈ J .

Analogous to Corollary 5.3.7 the next corollary is a consequence of the Propo-
sitions 5.3.10 and the fact that the binomial coefficient

(
µk
0

)
is nonzero in any

characteristic.

Corollary 5.3.15.
Any `-Borel-fixed ideal is `-quasi-stable.

Finally, we note that with an appropriate7 adaptation of the condition of the
while loop in line 2 resulting from Proposition 5.3.3 respectively 5.3.10, we can
use Algorithm 2 to put any ideal in weakly `-Borel-fixed respectively `-Borel-fixed
position. Analogously, a suitably8 modified version of Algorithm 1 let us transform
a given ideal into (weakly) `-strongly stable position.

6This implication only holds if chark = 0.
7Compare with Theorem 2.4.11.
8Recall the discussion in Remark 2.2.17.



CHAPTER 6

β-maximal Ideals

In the context of computing the reduction number we saw in Remark 4.3.5 how
to obtain this invariant of ideals that are in gin-position by using results of Trung
and Bresinsky/Hoa. As a next step we defined the notion weakly D-minimal stable
in Section 5.2 that induced a generalization of this method.

Looking for further alternatives we will introduce the concept of β-maximal
ideals in this chapter. Unfortunately, we will see that β-maximality does not de-
liver any improvements concerning the determination of the reduction number, as
this property combined with weak D-stability delivers only a sufficient criterion for
weak D-minimal stability (see Proposition 6.3.1). However, β-maximal ideals pos-
sess several remarkable algebraic properties that motivate a deeper investigation,
especially in relation to Pommaret bases.

6.1. Connection to Pommaret Basis

To figure out the relation between β-maximality and quasi-stability, we make
use of the Hilbert function of Pommaret cones that we associate with the corre-
sponding β-vector. Afterwards we describe a technique to verify, whether a given
ideal is in β-maximal position or not.

Definition 6.1.1.
Let I be an ideal, then we set Bq(I) = (lt I)q ∩T. Further, we define the β-vector
of I in degree q by

βq(I) = (β(1)
q (I), . . . , β(n)

q (I)),

where β
(k)
q (I) = #{t ∈ Bq(I) | m(t) = k}.

Remark 6.1.2.
In the following we list some simple facts concerning the notations from the above
definition:

� Bq(I) is the monomial basis of the ideal 〈Bq(I)〉 = 〈(lt I)q〉

�

n∑
k=1

β(k)
q (I) = #Bq(I) = dimk(〈Bq(I)〉)q

� #Bq(I) = #Bq(A · I) for any A ∈ Gl(n,k)

91
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Definition 6.1.3.
We call an ideal I in β-maximal position if for every A ∈ Gl(n,k) and all q > 0
holds:

βq(I) �lex βq(A · I)

Thereby ≺lex denotes the lexicographical1 term ordering.

Notation 6.1.4.
An important and well-known function in algebraic geometry is the Hilbert func-
tion. For a given ideal 〈F 〉 = I C P it is defined by:

hI : N→ N, s 7→ dimk(Is)

Analogous to [Sei10, 4.3] we use for s ≥ 0 the notation:

hF,P(s) = dimk(〈F 〉P)s

Remark 6.1.5.
Let 〈F 〉 = I C P denote a polynomial ideal where F is autoreduced. Some prop-
erties of the Hilbert function are presented below:

First we should note that the Hilbert function is invariant under
coordinate transformation, i.e. hI(s) = hA·I(s) for any A ∈ Gl(n,k) since
dimk(Is) = dimk(A · I)s. Also there is no difference between the Hilbert func-
tion of I and the one of its leading ideal lt I.

Especially if one considers degrees s ≤ degF , it is worth to mention that
dimk(Is) = dimk(〈Is−1〉s) + #Fs, where Fs denotes the set of those elements
contained in F that are of degree s.

Further, by the definition of the Pommaret span (see Definition 3.1.1), we know
that 〈F 〉P ⊆ 〈F 〉 implying hF,P(s) ≤ hI(s). Obviously, hF,P(s) = hI(s) if F is a
Pommaret basis of I since then 〈F 〉P = I. Moreover, if hF,P(s) = hI(s) we have
(〈F 〉P)s = (〈F 〉)s.

Finally, let q ≥ reg(lt I), r ≥ 0 and β
(k)
Fq

= #{f ∈ Fq | m(f) = k}. Then

following [Sei10, Rem. 4.3.7] there are coefficients Cik ∈ k such that:

(6.1) hF,P(q + r) =
n−1∑
i=0

(
n−1∑
k=i

Cikβ
(n−k)
Fq

)
ri

The explicit formula for these coefficients is Cik =
s
(k)
k−i(0)

k!
, where s

(k)
k−i(0) denotes

the modified Stirling numbers (see [Sei10, A.4] for more details). Therefore the
coefficients Cik are positive and invariant under coordinate transformations. Of
course hF,P itself does change under coordinate transformation, as the following
example shows.

1 Following [LA94, Def. 1.4.2] we set xµ ≺lex xν , if and only if µm < νm with
m = min{i | µi 6= νi}.
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Example 6.1.6.
Let J = 〈x1x2〉 C k[x1, x2], then reg(J ) = 2 and hJ (3) = 2. As J is not quasi-
stable, it is clear that F = {x1x2} is not a Pommaret basis of J . Hence we must
have hF,P(3) < hJ (3). Indeed, formula (6.1) delivers:

hF,P(2 + 1) = C00β
(2)
F2

+ C01β
(1)
F2

+ C11β
(1)
F2

=
s

(0)
0 (0)

0!
· 1 +

s
(1)
1 (0)

1!
· 0 +

s
(1)
0 (0)

1!
· 0 =2 1

Performing the coordinate transformation Ψ : (x2 7→ x2 + x1) on J , yields to
the ideal J̃ = Ψ(J ) = 〈x2

1 + x1x2〉, which is in quasi-stable position. Further,
F̃ = {x2

1 + x1x2} is a Pommaret basis of J̃ (compare Example 3.1.9), so that now
hF̃ ,P(3) = hJ̃ (3) = hJ (3) since

hF̃ ,P(2 + 1) = C00β
(2)

F̃2
+ C01β

(1)

F̃2
+ C11β

(1)

F̃2
=
s

(0)
0 (0)

0!
· 0 +

s
(1)
1 (0)

1!
· 1 +

s
(1)
0 (0)

1!
· 1 =2 2.

In the following we investigate how the maximality of the β-vector βq(I) with
respect to ≺lex correlates with hF,P(q+r) being maximal under coordinate change.

Therefore we want to ensure the appearance of β
(k)
q (I) in formula (6.1). Since

obviously β
(k)
Fq

= β
(k)
q (I) if F = Bq(I), we now turn our attention to the ideal

〈Bq(I)〉 and summarize some facts referring to this ideal in the next remark.

Remark 6.1.7.
The first thing we should note is that hI(s) = dimk(Is) = h〈Bq(I)〉(s) for all s ≥ q.
So in terms of the Hilbert function it does not make a difference whether we
consider I or 〈Bq(I)〉 as long as we look at degrees higher than q − 1.

Analogous to (6.1) we can formulate the following equation containing the
entries of the β-vector βq(I):

(6.2) hBq(I),P(q + r) =
n−1∑
i=0

(
n−1∑
k=i

Cikβ
(n−k)
q (I)

)
ri

Further, if q1 ≤ q2 and s ≥ q2 we have:

(6.3) (〈Bq1(I)〉P)s ⊆ (〈Bq2(I)〉P)s

To prove (6.3), let us consider a term ts ∈ (〈Bq1(I)〉P)s. There is a term
tq1 ∈ Bq1(I) and xν ∈ k[xm(tq1 ), . . . , xn] such that xνtq1 = ts and deg xν = s − q1.
But tq1 also lies in (lt I)q1 and hence:

(6.4) xµtq1 ∈ (lt I)q2 for all µ with deg xµ = q2 − q1

As s ≥ q2, we can choose an exponent µ̂ that fulfills (6.4) and xµ̂|Pxν . This finally
entails that xµ̂tq1 ∈ Bq2(I) is a Pommaret divisor of xνtq1 = ts and so in particular
ts ∈ 〈Bq2(I)〉P .

2 It follows from (A.40) and (A.42b) of [Sei10, A.4] that s
(0)
0 (0) = s

(1)
1 (0) = s

(1)
0 (0) = 1.
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Before we are able to present an important result of this section we need to for-
mulate a slightly modified version of the Lemmas 3.2.19 and 3.2.24 from [Sei09b].
Thereby we should recall that by Remark 3.2.18:

(lt I)≥q = (lt I)〈q〉 = 〈(lt I)q〉 = 〈Bq(I)〉, if q ≥ reg(lt I)

Proposition 6.1.8 ([Sei09b, Lem. 2.2,Prop. 9.6]).
If the ideal I is in quasi-stable position, then for any degree q ≥ reg(lt I) the ideal
〈Bq(I)〉 is stable.

Conversely, if for any degree q ≥ reg(lt I) the ideal 〈Bq(I)〉 is quasi-stable,
then so is lt I.

Corollary 6.1.9.
Let ICP be an ideal and q ≥ reg(lt I) then the following statements are equivalent:

(i) lt I is quasi-stable
(ii) For all integers s > q holds: hBq(I),P(s) = hI(s)

(iii) There is an integer ŝ > q such that: hBq(I),P(ŝ) = hI(ŝ)

Proof.
“(i)⇒ (ii)”.

Let us first assume that lt I is quasi-stable then the ideal 〈Bq(I)〉 is stable by
Proposition 6.1.8 and it follows from Lemma 3.2.3 that Bq(I) is its Pommaret
basis. But this means that 〈Bq(I)〉P = 〈Bq(I)〉 and therefore hBq(I),P(s) = hI(s)
for all s > q.

Since (ii) trivially implies (iii), we assume now that (iii) holds.
“(iii)⇒ (i)”.

So if (iii) holds, we can derive:

(〈Bq(I)〉)ŝ
(iii)
=

Rem. 6.1.5
(〈Bq(I)〉P)ŝ

(6.3)

⊆ (〈Bŝ−1(I)〉P)ŝ ⊆ (〈Bŝ−1(I)〉)ŝ = (〈Bq(I)〉)ŝ

This entails that (〈Bŝ−1(I)〉P)ŝ = (〈Bŝ−1(I)〉)ŝ and so xjt ∈ 〈Bŝ−1(I)〉P for all
indices j and all t ∈ Bŝ−1(I). Hence Bŝ−1(I) is a Pommaret basis of 〈Bŝ−1(I)〉
by Proposition 3.1.7. Finally, it follows from Theorem 3.1.3 and Proposition 6.1.8
that lt I is quasi-stable since ŝ− 1 ≥ q ≥ reg(I), which finishes our proof. �

Proposition 6.1.10.
An ideal I is in quasi-stable position, if and only if for every A ∈ Gl(n,k) and all
q ≥ reg(lt I) holds:

βq(I) �lex βq(A · I)
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Proof. Let us assume there is an integer q ≥ reg(lt I) and a matrix
A ∈ Gl(n,k) such that βq(I) ≺lex βq(A · I). Then by the definition of the lexi-

cographic term order there is an integer ˆ̀ such that β
(n−ˆ̀)
q (I) < β

(n−ˆ̀)
q (A · I) and

β
(n−`)
q (I) = β

(n−`)
q (A · I) for all ` > ˆ̀. Let us use the notation

bIi =
n−1∑
k=i

Cikβ
(n−k)
q (I)

such that – analogous to equation (6.2) – hBq(I),P(q + r) =
∑n−1

i=0 b
I
i r

i. The
coefficients Cik are positive and invariant under coordinate transformation – as
we already mentioned in Remark 6.1.5 – so that bIˆ̀ < bA·Iˆ̀ and bI` = bA·I` for all

` > ˆ̀. In particular, this entails (bI0 , . . . , b
I
n−1) ≺lex (bA·I0 , . . . , bA·In−1). If r � 0, then∑n−1

i=0 b
I
i r

i <
∑n−1

i=0 b
A·I
i ri, if and only if (bI0 , . . . , b

I
n−1) ≺lex (bA·I0 , . . . , bA·In−1). Hence

for r � 0 we can follow – using again Remark 6.1.5 – that

hBq(I),P(q + r) < hBq(A·I),P(q + r) ≤ hA·I(q + r) = hI(q + r)

and so by Corollary 6.1.9 (¬(ii)⇒ ¬(i)) lt I is not quasi-stable.
For the converse let us assume that lt I is not quasi-stable. Let q ≥ reg(lt I)

then by Corollary 6.1.9 (¬(i) ⇒ ¬(iii)) hBq(I),P(s) < hI(s) for all s > q. Let
A ∈ Gl(n,k) be a transformation matrix such that A ·I is in quasi-stable position.
We can use Corollary 6.1.9 ((i)⇒ (ii)) again to see that

hBq(A·I),P(s) = hA·I(s)
Rem.6.1.5

= hI(s) > hBq(I),P(s)

for all s > q. If s� q it follows analogous to the above argumentation that there

must be an integer ˆ̀such that β
(n−ˆ̀)
q (I) < β

(n−ˆ̀)
q (A·I) and β

(n−`)
q (I) = β

(n−`)
q (A·I)

for all ` > ˆ̀. Since this is equivalent to βq(I) ≺lex βq(A · I) we are done. �

Corollary 6.1.11.
Any ideal that is in β-maximal position, is in quasi-stable position.

The converse of the corollary above is not true, as we can see in the next
example.

Example 6.1.12.
Let J = 〈x2

1, x
2
2, x

2
3〉 C k[x1, x2, x3], then J is quasi-stable since it is zero-

dimensional (see Lemma 3.2.1 and Theorem 3.1.3). But J is not in β-maximal
position since ginJ = 〈x2

1, x1x2, x
2
2, x1x

2
3, x2x

2
3, x

4
3〉 and therefore:

β2(J ) = (1, 1, 1) ≺lex (1, 2, 0) = β2(ginJ )
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Proposition 6.1.13.
An ideal I is in β-maximal position if it is in gin-position. In particular, if I is
in β-maximal position then βq(gin I) = βq(I) for all q ≥ 0.

Proof. To proof this assertion we should recall Theorem 1.3.4 and the fact
that the term order we use is index respecting by Remark 1.3.8.

Indeed, in the proof of Theorem 1.3.4 we construct a Zariski open set U such
that lt(A · I) = gin I for all A ∈ U . Thereby we choose U such that for any A ∈ U
(6.5) Vq,k(A) = dimk(〈(lt(A · I))q〉k ∩ 〈t1, . . . , tk〉k)

is maximal3 in every degree q and all k ≤ s = dimk(Pq), where {t1, . . . , ts} is
a k-basis of Pq with t1 � · · · � ts. Now let L (Bq(gin I)) = (t̃1, . . . , t̃`) and
L (Bq(A

′ · I)) = (t̂1, . . . , t̂`) for some arbitrary A′ ∈ Gl(n,k) Thereby we should
note that it follows from Remark 6.1.2 that ` = #Bq(gin I) = #Bq(A

′ · I). Then
the maximality4 of (6.5) entails that:

(6.6) t̃i � t̂i for all i

Since our term order ≺ is index respecting it follows from (6.6) that:

(6.7) m(t̃i) ≤ m(t̂i) for all i

If m(t̃i) = m(t̂i) for all i, then of course βq(gin I) = βq(A
′ · I). Otherwise, we find

an index j such that k̃ = m(t̃j) < m(t̂j). Choosing j minimal leads together with

(6.7) to the situation that β
(k̃)
q (gin I) > β

(k̃)
q (A′ ·I) and β

(i)
q (gin I) = β

(i)
q (A′ ·I) for

all i < k̃. Thus it follows by the definition of the lexicographical term order that
βq(gin I) �lex βq(A

′ · I). Hence we finally showed that βq(gin I) �lex βq(A
′ · I) for

all q ≥ 0 and all A′ ∈ Gl(n,k). �

Remark 6.1.14.
Combining some results of this section, we can now formulate a procedure to verify
whether a given ideal I is in β-maximal position or not.

At first we check if I is in quasi-stable position, since if this is not the case
we know by Corollary 6.1.11 that I can not be in β-maximal position. Otherwise,
if the ideal is in quasi-stable position, then it follows from Proposition 6.1.10 and
Proposition 6.1.13 that:

(6.8) βq(gin I) = βq(I), for all q ≥ reg(I)

As a further consequence of Proposition 6.1.13 we know that I is in β-maximal
position, if and only if the β-vectors of I coincide with the one of gin I. So by
(6.8) we only have to compare the finitely many β-vectors of I and gin I for all
degrees lower than reg(I).

3 Recall Remark 1.3.5 and note that if B /∈ U , then for at least some values of q and k we
have dimk Vq,k(B) < dimk Vq,k(A) for any A ∈ U .

4 Note that the maximality holds for any choice of k.
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Using the method described in Remark 6.1.14, we can now present an example
which shows that β-maximal position does not imply gin-position. Hence the
converse of Proposition 6.1.13 is not true.

Example 6.1.15.
Let us consider the ideal J = 〈x2

1, x
2
2〉 C k[x1, x2]. J is quasi-stable and as

ginJ = 〈x2
1, x1x2, x

3
2〉, we know that reg(J ) = 3 (see Theorem 1.3.9). Hence we

only have to compare the β-vectors of degree 2 in order to check whether J is in
β-maximal position or not. As β2(J ) = (1, 1) = β2(ginJ ), we can immediately
follow that J is in β-maximal position.

6.2. Criterion for minimal Length of Pommaret bases in three
Variables

We know from Proposition 3.1.6 that the number of elements a Pommaret basis
of a given ideal has is unique. This number – which we call length of a Pommaret
basis – will be investigated in the following section.

Considering polynomial rings with at most three variables, we will prove in this
section a one-to-one correspondence between β-maximal position and Pommaret
bases of minimal length.

Proposition 6.2.1.
Let I C k[x1, . . . , xn] an ideal and n ≤ 3. Further, let I be in quasi-stable position
and A ∈ Gl(n,k) such that Ĩ = A · I is also in quasi-stable position. Let H be
a Pommaret basis of I, H̃ a Pommaret basis of Ĩ and q < reg(I) be an integer,
then the following statements are equivalent:

(i) hBq(I),P(q + 1) < hBq(Ĩ),P(q + 1)

(ii) βq(I) ≺lex βq(Ĩ)

(iii) #Hq+1 > #H̃q+1, using the notation Hi = {h ∈ H | deg h = i}
Further, the equivalence is preserved if one replaces the inequality signs of (i)−(iii)
by equality signs.

Proof.
“(i)⇔ (ii)”.

We only consider the case n = 3 since the proof for n = 1, 2 is similar.

Since lt I and lt Ĩ are quasi-stable, we must have β
(1)
q (I) = β

(1)
q (Ĩ) = 1 by

Lemma 3.2.4. So let βq(I) = (1, a, b) and βq(Ĩ) = (1, c, d) for some

a, b, c, d ∈ N. By Remark 6.1.2
∑3

k=1 β
(k)
q (I) = #Bq(I) = #Bq(Ĩ) =

∑3
k=1 β

(k)
q (Ĩ)

and therefore:

(6.9) a+ b = c+ d
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Now we consider hBq(I),P(q+1), which presents the number of elements of Bq+1(I)
that have a Pommaret divisor in Bq(I). Those elements are of the form xjt, where
t ∈ Bq(I) and j ≥ m(t). Hence we get:

hBq(I),P(q + 1) = #{xjt | t ∈ Bq(I), m(t) ≤ j ≤ n}

=
n∑
k=1

#{j | k ≤ j ≤ n} ·#{t ∈ Bq(I) | m(t) = k}

=
n∑
k=1

(n− k + 1) · β(k)
q (I)

This entails for our situation:

(6.10) hBq(I),P(q + 1) = 3 + 2a+ b, hBq(Ĩ),P(q + 1) = 3 + 2c+ d

Now we can derive that statement (i) is by (6.10) equivalent to

3 + 2a+ b < 3 + 2c+ d
⇔ a < c+ (c+ d)− (a+ b)

(6.9)⇔ a < c

On the other side statement (ii)

βq(I) = (1, a, b) ≺lex (1, c, d) = βq(Ĩ)

is equivalent to either a < c or a = c and b < d. As the second case is impossible
because of (6.9), we see that both statements are equivalent to a < c, which
proves the assertion. Analogously, it is easy to see that both of the statements
hBq(I),P(q + 1) = hBq(Ĩ),P(q + 1) and βq(I) = βq(Ĩ) are equivalent to a = c.

“(i)⇔ (iii)”.
Since we assume that 〈ltH〉P = lt I and 〈lt H̃〉P = lt Ĩ Remark 6.1.5 implies on
the one hand that hH,P = hI = hĨ = hH̃,P and on the other hand:

hH,P(q + 1) = dimk(〈H〉P)q+1

= dimk(〈(〈H〉P)q〉P)q+1 + #Hq+1

= dimk(〈(〈ltH〉P)q ∩ T〉P)q+1 + #Hq+1

= dimk(〈(lt I)q ∩ T〉P)q+1 + #Hq+1

= hBq(I),P(q + 1) + #Hq+1

Combining those two results delivers the following decisive equation:

hBq(I),P(q + 1) + #Hq+1 = hBq(Ĩ),P(q + 1) + #H̃q+1

Consequently, #Hq+1 > #H̃q+1 is equivalent to hBq(I),P(q + 1) < hBq(Ĩ),P(q + 1)

as well as #Hq+1 = #H̃q+1 is equivalent to hBq(I),P(q + 1) = hBq(Ĩ),P(q + 1). �
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In the following we present an example which shows that it is not possible to
extend Proposition 6.2.1 to the case n = 4.

Example 6.2.2.
Let I = 〈x4

1, x
3
1x2−x3

1x3, x
4
2, x

4
3, x

2
1x2x4, x1x

2
2x4〉+〈x1, x2, x3, x4〉6Ck[x1, x2, x3, x4]

and Ψ1 : (x3 7→ x3 + x2), Ψ2 : (x4 7→ x4 + x3) coordinate transformations. Then
the leading ideal of I is

lt I = 〈x4
1, x

3
1x2, x

4
2, x

4
3, x

2
1x2x4, x1x

2
2x4, x

3
1x3x4〉+ 〈x1, x2, x3, x4〉6

and if we set Ĩ = Ψ2(Ψ1(I)), then its leading ideal is

lt Ĩ = 〈x4
1, x

4
2, x

3
1x3, x

2
1x2x3, x1x

2
2x3, x

3
2x3, x1x2x

3
3, x

2
2x

3
3, x

3
1x2x4〉+〈x1, x2, x3, x4〉6.

Obviously, reg(I) = 6 and for the β-vectors in degree 4 we have the following
relationship:

(6.11) β4(Ĩ) = (1, 1, 4, 0) ≺lex (1, 2, 1, 2) = β4(I)

Since dim(P/I) = dim(P/Ĩ) = 0 we know by Lemma 3.2.1 that I and Ĩ are
quasi-stable and hence they have a finite Pommaret basis. So let H denote the
Pommaret basis of I. As we are only interested in the number of elements of Hi

it is enough to consider the elements of (ltH)i:

i (ltH)i

4 x4
1, x

3
1x2, x

4
2, x

4
3, x

2
1x2x4, x1x

2
2x4

5 x1x
4
2, x1x

4
3, x2x

4
3, x

2
1x

2
2x4, x1x

3
2x4, x

3
1x3x4, x

2
1x2x3x4, x1x

2
2x3x4

6 x2
1x

4
2, x

2
1x

3
2x3, x

2
1x

2
2x

2
3, x1x

3
2x

2
3, x

3
1x

3
3, x

2
1x2x

3
3, x1x

2
2x

3
3, x

3
2x

3
3, x

2
1x

4
3, x1x2x

4
3,

x2
2x

4
3, x

2
1x

3
2x4, x

2
1x

2
2x3x4, x1x

3
2x3x4, x

3
1x

2
3x4, x

2
1x2x

2
3x4, x1x

2
2x

2
3x4,

x3
2x

2
3x4, x

2
1x

3
3x4, x1x2x

3
3x4, x

2
2x

3
3x4, x

3
2x3x

2
4, x

2
1x

2
3x

2
4, x1x2x

2
3x

2
4, x

2
2x

2
3x

2
4,

x1x
3
3x

2
4, x2x

3
3x

2
4, x

3
1x

3
4, x

3
2x

3
4, x

2
1x3x

3
4, x1x2x3x

3
4, x

2
2x3x

3
4, x1x

2
3x

3
4, x2x

2
3x

3
4,

x3
3x

3
4, x

2
1x

4
4, x1x2x

4
4, x

2
2x

4
4, x1x3x

4
4, x2x3x

4
4, x

2
3x

4
4, x1x

5
4, x2x

5
4, x3x

5
4, x

6
4

The elements that are not minimal generators are marked bold.
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Analogously, let H̃ be the Pommaret basis of Ĩ then:

i (lt H̃)i

4 x4
1, x

4
2, x

3
1x3, x

2
1x2x3, x1x

2
2x3, x

3
2x3

5 x1x
4
2, x

3
1x2x3, x

2
1x

2
2x3, x1x

3
2x3, x1x2x

3
3, x

2
2x

3
3, x

3
1x2x4

6 x3
1x

3
2, x

2
1x

4
2, x

3
1x

2
2x3, x

2
1x

3
2x3, x

2
1x

4
3, x1x

5
3, x2x

5
3, x

6
3, x

3
1x

2
2x4, x

2
1x

3
2x4,

x2
1x

3
3x4, x1x

4
3x4, x2x

4
3x4, x

5
3x4, x

2
1x

2
2x

2
4, x1x

3
2x

2
4, x

2
1x

2
3x

2
4, x1x2x

2
3x

2
4,

x2
2x

2
3x

2
4, x1x

3
3x

2
4, x2x

3
3x

2
4, x

4
3x

2
4, x

3
1x

3
4, x

2
1x2x

3
4, x1x

2
2x

3
4, x

3
2x

3
4, x

2
1x3x

3
4,

x1x2x3x
3
4, x

2
2x3x

3
4, x1x

2
3x

3
4, x2x

2
3x

3
4, x

3
3x

3
4, x

2
1x

4
4, x1x2x

4
4, x

2
2x

4
4, x1x3x

4
4,

x2x3x
4
4, x

2
3x

4
4, x1x

5
4, x2x

5
4, x3x

5
4, x

6
4

The elements that are not minimal generators are marked bold.

Therefore #H5 = 8 > 7 = #H̃5, which shows together with (6.11) that Proposi-
tion 6.2.1 does not hold for n = 4.

Corollary 6.2.3.
Let I C k[x1, . . . , xn] an ideal and n ≤ 3. Then I is in β-maximal position, if and
only if its Pommaret basis is of minimal length, i.e. if H is a Pommaret basis of
I then:

#H = min{#H̃ | H̃ Pommaret basis of A · I for some A ∈ Gl(n,k)}

(Recall that by Proposition 3.1.6 any Pommaret basis of I has the same number
of elements.)

Proof. Let us assume that I is not in β-maximal position. If I is not even in
quasi-stable position, it does not possess a finite Pommaret basis by Theorem 3.1.3
and therefore its Pommaret basis is obviously not of minimal length. Otherwise,
it follows from Proposition 6.1.10 and Proposition 6.1.13 that there is an integer
q̂ < reg(I) such that βq̂(I) ≺lex βq̂(gin I) and βq(I) �lex βq(gin I) for all q 6= q̂.

Hence by Proposition 6.2.1 this is equivalent to #Hq̂+1 > #H̃q̂+1 and

#Hq+1 ≥ #H̃q+1 for all q 6= q̂, where H is a Pommaret basis of I and H̃ one
of gin I. But this already shows that the Pommaret basis H is not of minimal
length since obviously

#H =
∑

q≤reg(I)

#Hq >
∑

q≤reg(I)

#H̃q = #H̃

(remember that degH = deg H̃ = reg(I) by Theorem 3.1.10).
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Conversely, suppose that the Pommaret basis H of I is not of minimal length.
If H is of infinite length, then it follows again from Theorem 3.1.3 that I is not
in quasi-stable position. But then I is not in β-maximal position by Corollary
6.1.11. Otherwise, the Pommaret basis H of I is finite – but still not of minimal
length by assumption – so that I is in quasi-stable position. Let A ∈ Gl(n,k) be
a matrix such that the Pommaret basis H̃ of the ideal Ĩ = A · I is of min-
imal length5. Hence #H̃ < #H and in particular there must be an integer
q̂ ≤ degH = deg H̃ = reg(I) with #H̃q̂ < #Hq̂. But this already entails by

Proposition 6.2.1 that βq̂−1(I) ≺lex βq̂−1(Ĩ) showing that also in this case I is not
in β-maximal position. �

Example 6.2.4.
Resuming Example 6.2.2 we first want to note that:

gin I = 〈x4
1, x

3
1x2, x

2
1x

2
2, x1x

3
2, x

4
2, x

3
1x3, x

2
1x2x

2
3, x1x

2
2x

2
3, x

3
2x

2
3, x

2
1x

3
3〉+〈x1, x2, x3, x4〉6

The minimal basis B of gin I – which is simultaneously its Pommaret basis by
Lemma 3.2.3 – is presented in the following:

i Bi

4 x4
1, x

3
1x2, x

2
1x

2
2, x1x

3
2, x

4
2, x

3
1x3

5 x2
1x2x

2
3, x1x

2
2x

2
3, x

3
2x

2
3, x

2
1x

3
3

6 x1x2x
4
3, x

2
2x

4
3, x1x

5
3, x2x

5
3, x

6
3, x1x2x

3
3x4, x

2
2x

3
3x4, x1x

4
3x4, x2x

4
3x4, x

5
3x4,

x2
1x2x3x

2
4, x1x

2
2x3x

2
4, x

3
2x3x

2
4, x

2
1x

2
3x

2
4, x1x2x

2
3x

2
4, x

2
2x

2
3x

2
4, x1x

3
3x

2
4, x2x

3
3x

2
4,

x4
3x

2
4, x

3
1x

3
4, x

2
1x2x

3
4, x1x

2
2x

3
4, x

3
2x

3
4, x

2
1x3x

3
4, x1x2x3x

3
4, x

2
2x3x

3
4, x1x

2
3x

3
4, x2x

2
3x

3
4,

x3
3x

3
4, x

2
1x

4
4, x1x2x

4
4, x

2
2x

4
4, x1x3x

4
4, x2x3x

4
4, x

2
3x

4
4, x1x

5
4, x2x

5
4, x3x

5
4, x

6
4

Therefore we can conclude that even in this example the length of the Pommaret
basis of gin I is minimal compared to those of I and Ĩ since:

#H > #H̃ > #B
q q q

#H4 + #H5 + #H6 #H̃4 + #H̃5 + #H̃6 #B4 + #B5 + #B6

q q q
6 + 8 + 45 = 59 6 + 7 + 42 = 55 6 + 4 + 39 = 49

We even assume that this holds in general (see Conjecture 4 of the Outlook).

5 In particular, H̃ is finite and so Ĩ in quasi-stable position.
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6.3. Connection to Reduction Number

Finally, we now present the already mentioned relationship between β-maximality
and weak D-minimality. As a consequence we are able to connect the reduction
number with the notion of β-maximal ideals.

Proposition 6.3.1.
Let chark = 0. If the ideal ICP is in β-maximal and in weakly D-stable position,
then I is weakly D-minimal stable. In particular, we have

r(P/I) = r(P/ lt I) = degxn−D lt I − 1

in this case.

Proof. Since lt I is weakly D-stable Theorem 5.2.11 implies that there is an
integer s such that xsn−D is a minimal generator of lt I.

Assume now that I is not weakly D-minimal stable. As chark = 0 we know
that there is a transformation matrix A such that A ·I is weakly D-minimal stable
(see Proposition 5.2.14). Therefore we have:

t = degxn−D lt(A · I) < degxn−D lt I = s

In particular, lt(A · I) is weakly D-stable so that xtn−D is a minimal generator of
lt(A · I) by Theorem 5.2.11. Moreover, it follows from Remark 5.2.10 that

xν11 · · · x
νn−D
n−D ∈ lt(A · I),

for all integers νi with ν1 + · · · + νn−D = t . Therefore β
(k)
t (A · I) ≥ β

(k)
t (I) for

all k < n−D and β
(n−D)
t (A · I) > β

(n−D)
t (I) since xtn−D /∈ lt I. This entails that

βt(A · I) �lex βt(I), which is a contradiction to the β-maximality of I.
The second assertion follows immediately from Theorem 5.2.17. �

The assumption in the previous proposition that I is in weakly D-stable posi-
tion, is necessary since this is not implied by β-maximality6.

Further, the following example shows that the converse of Proposition 6.3.1 is
not true, while Example 6.3.3 symbolizes the meaning of chark in this context.

Example 6.3.2.
Let J = 〈x2

1, x1x3〉Ck[x1, x2, x3]. Then J is weaklyD-stable andD = dim(P/J ) =
2. Further, degx1 J = 2 = degx1 ginJ since ginJ = 〈x2

1, x1x2〉 and so J is even
weakly D-minimal stable. But J is not in β-maximal position since:

β2(J ) = (1, 0, 1) ≺lex (1, 1, 0) = β2(ginJ )

6See Example 6.1.15 and Example 5.2.15.
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Example 6.3.3.
Let I = 〈x2

1, x
2
2 + x1x3, x

2
3〉 C k[x1, x2, x3] and chark = 2. At first we want to

verify that lt I = 〈x2
1, x

2
2, x

2
3〉 is Borel-fixed using Proposition 2.4.6. Thereby,

since
(

2
u

)
6≡ 0 mod 2 holds for u = 0 or u = 2, we only consider the case u = 0 as

the other case is “uninteresting”. Hence lt I is Borel-fixed because of:

x2
1

x2
2

x2
2

= x2
1 ∈ lt I, x2

1

x2
3

x2
3

= x2
1 ∈ lt I, x2

2

x2
3

x2
3

= x2
2 ∈ lt I

As D = dim(P/I) = 0 and x1
x23
x3

= x1x3 /∈ lt I, we see that lt I is not (weakly)
D-stable. Now we want to check whether I is in β-maximal position. Therefore
we transform the ideal I by Ψ : (x3 7→ x3 + x2). This leads to the ideal

Ψ(I) = 〈x2
1, x

2
2 + x1(x3 + x2), (x3 + x2)2〉 = 〈x2

1, x1x2 + x2
2 + x1x3, x

2
2 + x2

3〉.
As the Gröbner basis of Ψ(I) is {x2

1, x1x2, x
2
2 + x2

3, x1x
2
3 + x3

3, x2x
2
3, x

4
3}, its

leading ideal is given by lt Ψ(I) = 〈x2
1, x1x2, x

2
2, x1x

2
3, x2x

2
3, x

4
3〉 so that:

β2(I) = (1, 1, 1) ≺lex (1, 2, 0) = β2(Ψ(I))

Hence I is not in β-maximal position, although its leading ideal is Borel-fixed.

Remark 6.3.4.
Similar to the weakly D-minimal stable position (see Remark 5.2.18), we can
also not provide a deterministic algorithm that puts a given ideal in β-maximal
position. With arguments analogous to Remark 4.3.7 we can conclude that a
simple algorithm, i.e. one that is restricted to the analysis of the corresponding
leading ideal does not exist. Therefore we again use Example 4.2.3 and denote
I = 〈x2

1, x1x2 + x2
2, x1x3〉 and I ′ = lt I = 〈x2

1, x1x2, x1x3, x
3
2, x

2
2x3〉. As the

ideal I ′ is monomial and strongly stable, it is in gin-position by Theorem 2.4.4
and so in particular in β-maximal position by Proposition 6.1.13. But I is not in
β-maximal position since gin I = 〈x2

1, x1x2, x
2
2, x1x

2
3〉 and therefore:

β2(I) = (1, 1, 1) ≺lex (1, 2, 0) = β2(gin I)

Hence we have two distinct ideals I, I ′ with identical leading ideals but I ′ is in
β-maximal position while I is not.





CHAPTER 7

The Map of Positions

Our final chapter will present 24 examples from which a clear delimitation of the
several positions that we discussed throughout this thesis can be derived. At the
end of this chapter we sum up all the obtained relationships between the considered
positions resulting from the examples by drawing the the map of positions. Thereby
we restrict us to the case of chark = 0 in the following.

Example 1.
Let I = 〈x2

1, x2
2, x1x4〉 C k[x1, x2, x3, x4]. Then I is not quasi-stable since

x2
3
x1x4
x4

= x1x
2
3 /∈ I. Further, D = dim(P/I) = 2 and I is not weakly D-stable

since x2
x1x4
x4

= x1x2 /∈ I. Because gin I = 〈x2
1, x1x2, x

2
2, x1x

2
3〉 we see that I is

not in β-maximal position since:

β2(I) = (1, 1, 0, 1) ≺lex (1, 2, 0, 0) = β2(gin I)

Example 2.
Let I = 〈x1x2, x

3
1〉 C k[x1, x2]. Then I is quasi-stable but not componentwise

quasi-stable since I〈2〉 = 〈x1x2〉 is not quasi-stable. Further, D = dim(P/I) = 1
and I is not weakly D-stable since x1

x1x2
x2

= x2
1 /∈ I. Because gin I = 〈x2

1, x1x
2
2〉

we see that I is not in β-maximal position since:

β2(I) = (0, 1) ≺lex (1, 0) = β2(gin I)

Example 3.
Let I = 〈x2

1, x1x3〉Ck[x1, x2, x3]. Then I is not quasi-stable since x2
2
x1x3
x3

= x1x
2
2 /∈

I. Further, D = dim(P/I) = 2 and I is not D-stable since x2
x1x3
x3

= x1x2 /∈ I.

Because gin I = 〈x2
1, x1x2〉 we see that I is not in β-maximal position since:

β2(I) = (1, 0, 1) ≺lex (1, 1, 0) = β2(gin I)

Example 4.
Let I = 〈x2

1, x
2
2, x

2
3〉Ck[x1, x2, x3]. Then D = dim(P/I) = 0 and I is not weakly

D-stable since x1
x23
x3

= x1x3 /∈ I. Because gin I = 〈x2
1, x1x2, x

2
2, x1x

2
3, x2x

2
3, x

4
3〉

we see that I is not in β-maximal position since:

β2(I) = (1, 1, 1) ≺lex (1, 2, 0) = β2(gin I)
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Example 5.
Let I = 〈x3

1, x1x
2
2 +x2

2x3, x
4
2〉Ck[x1, x2, x3]. Then lt I = 〈x3

1, x1x
2
2, x

4
2, x

2
2x

3
3〉 and

D = dim(P/I) = 1. lt I is not weakly D-stable since x1
x1x22
x2

= x2
1x2 /∈ lt I. Fur-

ther, lt I〈3〉 = 〈x3
1, x1x

2
2, x

2
2x

3
3〉 which is not quasi-stable, hence I is not in compo-

nentwise quasi-stable position. Because gin I = 〈x3
1, x

2
1x2, x1x

3
2, x

4
2, x1x

2
2x

2
3, x

2
1x

4
3〉

we see that I is in β-maximal position since1

β3(I) = (1, 1, 0) = β3(gin I)
β4(I) = (1, 4, 2) = β4(gin I)
β5(I) = (1, 5, 8) = β5(gin I)

Example 6.
Let I = 〈x2

1, x
2
2〉 C k[x1, x2]. Then D = dim(P/I) = 0 and I is not weakly

D-stable since x1
x22
x2

= x1x2 /∈ I. Because gin I = 〈x2
1, x1x2, x

3
2〉 we see that I is

in β-maximal position since:

β2(I) = (1, 1) = β2(gin I)

Example 7.
Let I = 〈x2

1, x1x2, x2
2 + x2

3, x1x4〉 C k[x1, x2, x3, x4]. Then
lt I = 〈x2

1, x1x2, x
2
2, x1x4, x1x

2
3〉 and D = dim(P/I) = 2. Further, lt I is

not D-stable since x3
x1x4
x4

= x1x3 /∈ I. Because gin I = 〈x2
1, x1x2, x

2
2, x1x3, x1x

2
4〉

we see that I is not in β-maximal position since:

β2(I) = (1, 2, 0, 1) ≺lex (1, 2, 1, 0) = β2(gin I)

Example 8.
Let I = 〈x3

1 + x1x
2
3, x

2
1x2 + x2x

2
4, x1x

2
2, x

3
2, x

2
2x

2
3, x2x

3
3〉C k[x1, x2, x3, x4]. Then

lt I = 〈 x3
1, x

2
1x2, x1x

2
2, x

3
2, x1x2x

2
3, x

2
2x

2
3, x2x

3
3, x

2
2x

2
4,

x1x2x3x
2
4, x2x

2
3x

2
4, x1x2x

4
4, x2x3x

4
4, x2x

6
4 〉

and D = dim(P/I) = 2. lt I is not D-stable since x3
x22x

2
4

x4
= x2

2x3x4 /∈ lt I. Further,

lt I〈3〉 = 〈x3
1, x

2
1x2, x1x

2
2, x

3
2, x1x2x

2
3, x

2
2x

2
4, x2x

2
3x

2
4〉 which is not quasi-stable,

hence I is not in componentwise quasi-stable position. Because

gin I = 〈 x3
1, x

2
1x2, x1x

2
2, x

3
2, x

2
1x

2
3, x1x2x

2
3, x1x

3
3, x

2
1x3x4,

x1x2x3x
2
4, x1x

2
3x

2
4, x

2
1x

3
4, x1x2x

4
4, x1x3x

4
4, x1x

6
4 〉

we see that I is in β-maximal position since:

β3(I) = (1, 3, 0, 0) = β3(gin I)
β4(I) = (1, 4, 7, 5) = β4(gin I)
β5(I) = (1, 5, 12, 20) = β5(gin I)
β6(I) = (1, 6, 18, 40) = β6(gin I)

1 Recall that by Remark 6.1.14 we only have to compare the β-vectors of degrees lower than
reg(I).
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Example 9.
Let I = 〈x2

1, x1x2, x
2
2, x1x4, x1x

2
3〉Ck[x1, x2, x3, x4]. Then I〈2〉 = 〈x2

1, x1x2, x
2
2, x1x4〉

is not quasi-stable, hence I is not in componentwise quasi-stable position. Further,
D = dim(P/I) = 2 and lt I is not D-stable since x3

x1x4
x4

= x1x3 /∈ I. Because

gin I = 〈x2
1, x1x2, x

2
2, x1x3, x1x

2
4〉 we see that I is not in β-maximal position

since:

β2(I) = (1, 2, 0, 1) ≺lex (1, 2, 1, 0) = β2(gin I)

Example 10.
Let I = 〈x3

1, x
2
1x2, x1x

2
2, x

3
2, x

2
2x

2
3, x

2
2x

2
4〉Ck[x1, x2, x3, x4]. ThenD = dim(P/I) =

2 and I is not D-stable since x3
x22x

2
4

x4
= x2

2x3x4 /∈ I. Because

gin I = 〈x3
1, x

2
1x2, x1x

2
2, x

3
2, x

2
1x

2
3, x

2
1x3x4, x

2
1x

3
4〉

we see that I is in β-maximal position since:

β3(I) = (1, 3, 0, 0) = β3(gin I)
β4(I) = (1, 4, 5, 5) = β4(gin I)

Example 11.
Let I = 〈x2

2, x1x3, x2x3, x
2
3, x

3
1〉Ck[x1, x2, x3]. Then I〈2〉 = 〈x2

2, x1x3, x2x3, x
2
3〉 is

not quasi-stable, hence I is not in componentwise quasi-stable position. Further, I
is not stable since x1

x22
x2

= x1x2 /∈ I. Because gin I = 〈x2
1, x1x2, x

2
2, x1x3, x2x

2
3, x

4
3〉

we see that I is not in β-maximal position since:

β2(I) = (0, 1, 3) ≺lex (1, 2, 1) = β2(gin I)

Example 12.
Let I = 〈x2

1, x1x
2
2 + x2x

2
3, x

5
2, x

4
2x3, x

3
2x

2
3, x

2
2x

3
3〉C k[x1, x2, x3]. Then

lt I〈3〉 = 〈x3
1, x

2
1x2, x1x

2
2, x

2
1x3, x1x2x

2
3, x2x

4
3〉

is not quasi-stable, hence I is not in componentwise quasi-stable position. Further,

lt I = 〈x2
1, x1x

2
2, x1x2x

2
3, x

5
2, x

4
2x3, x

3
2x

2
3, x

2
2x

3
3, x2x

4
3〉

is not strongly stable since x1
x1x2x23
x2

= x2
1x

2
3 /∈ I. Because

gin I = 〈x2
1, x1x

2
2, x

4
2, x

3
2x

2
3, x1x2x

3
3, x

2
2x

3
3, x1x

4
3〉

we see that I is not in β-maximal position since:

β4(I) = (1, 3, 5) ≺lex (1, 4, 4) = β4(gin I)
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Example 13.
Let I = 〈x2

1, x1x2 + x2x3, x1x3, x3
2, x2

2x3〉 C k[x1, x2, x3]. Then
lt I〈2〉 = 〈x2

1, x1x2, x1x3, x2x
2
3〉 is not quasi-stable, hence I is not in compo-

nentwise quasi-stable position. Further,

lt I = 〈x2
1, x1x2, x1x3, x

3
2, x

2
2x3, x2x

2
3〉 6= 〈x2

1, x1x2, x
2
2, x1x

2
3, x2x

2
3〉 = gin I

and so we see that I is not in β-maximal position since:

β2(I) = (1, 1, 1) ≺lex (1, 2, 0) = β2(gin I)

Example 14.
Let I = 〈x3

1, x
3
2, x1x

2
3, x2x

2
3, x

3
3〉 C k[x1, x2, x3]. Then I is not stable since

x1
x32
x2

= x1x
2
2 /∈ I. Because

gin I = 〈x3
1, x

2
1x2, x1x

2
2, x

3
2, x

2
1x3, x1x2x

2
3, x

2
2x

2
3, x1x

4
3, x2x

4
3, x

6
3〉

we see that I is not in β-maximal position since:

β3(I) = (1, 1, 3) ≺lex (1, 3, 1) = β3(gin I)

Example 15.
Let I = 〈x3

1, x1x
2
2 + x2

2x3, x4
2, x1x

3
3, x2x

3
3, x4

3〉 C k[x1, x2, x3]. Then
lt I〈3〉 = 〈x1x

2
2, x

3
1, x

2
2x

3
3〉 is not quasi-stable, hence I is not in componentwise

quasi-stable position. Further, lt I = 〈x3
1, x1x

2
2, x

4
2, x1x

3
3, x2x

3
3, x

4
3〉 is not stable

since x1
x1x22
x2

= x2
1x2 /∈ lt I. Because

gin I = 〈x3
1, x

2
1x2, x1x

3
2, x

4
2, x1x

2
2x3, x

3
2x3, x

2
1x

2
3, x1x2x

3
3, x

2
2x

3
3, x1x

4
3, x2x

5
3, x

6
3〉

we see that I is in β-maximal position since:

β3(I) = (1, 1, 0) = β3(gin I)
β4(I) = (1, 4, 5) = β4(gin I)
β5(I) = (1, 5, 13) = β5(gin I)

Example 16.
Let I = 〈x3

1, x1x
2
2, x

3
2, x

2
1x2x3, x

2
1x

2
3, x1x2x

2
3, x

2
2x

2
3, x1x

3
3, x2x

3
3, x

4
3〉Ck[x1, x2, x3].

Then I is not stable since x1
x1x22
x2

= x2
1x2 /∈ I. Because

gin I = 〈x3
1, x

2
1x2, x1x

2
2, x

4
2, x

3
2x3, x

2
1x

2
3, x1x2x

2
3, x

2
2x

2
3, x1x

3
3, x2x

3
3, x

4
3〉

we see that I is in β-maximal position since:

β3(I) = (1, 2, 0) = β3(gin I)
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Example 17.
Let I = 〈x3

1, x
2
1x2 + x3

2, x
2
1x3, x

4
2〉C k[x1, x2, x3]. Then

lt I = 〈x3
1, x

2
1x2, x

2
1x3, x1x

3
2, x

4
2, x

3
2x3〉

is not strongly stable since x1
x32x3
x2

= x1x
2
2x3 /∈ lt I. Because

gin I = 〈x3
1, x

2
1x2, x1x

2
2, x

4
2, x

2
1x

2
3〉

we see that I is not in β-maximal position since:

β3(I) = (1, 1, 1) ≺lex (1, 2, 0) = β3(gin I)

Example 18.
Let I = 〈x2

1, x1x2 +x2x3, x
3
2, x

2
2x3〉Ck[x1, x2, x3]. Then lt I〈2〉 = 〈x2

1, x1x2, x2x
2
3〉

is not quasi-stable, hence I is not in componentwise quasi-stable position. Further,

lt I = 〈x2
1, x1x2, x

3
2, x

2
2x3, x2x

2
3〉 is not strongly stable since x1

x2x23
x2

= x1x
2
3 /∈ lt I.

Because gin I = 〈x2
1, x1x2, x

3
2, x

2
2x3, x1x

2
3〉 we see that I is in β-maximal position

since:
β2(I) = (1, 3, 4) = β2(gin I)

Example 19.
Let I = 〈x2

1, x1x
2
2, x

3
2, x

2
2x

2
3〉 C k[x1, x2, x3]. Then I is not strongly stable since

x1
x22x

2
3

x2
= x1x2x

2
3 /∈ I. Because gin I = 〈x2

1, x1x
2
2, x

3
2, x1x2x

2
3〉 we see that I is in

β-maximal position since:

β2(I) = (1, 0, 0) = β2(gin I)
β3(I) = (1, 3, 1) = β3(gin I)

Example 20.
Let I = 〈x2

1, x1x2 + x2x3, x
3
2, x

2
2x3〉C k[x1, x2, x3]. Then

lt I = 〈x2
1, x1x2, x1x3, x

3
2, x

2
2x3〉 6= 〈x2

1, x1x2, x
2
2, x1x

2
3〉 = gin I

and so we see that I is not in β-maximal position since:

β2(I) = (1, 1, 1) ≺lex (1, 2, 0) = β2(gin I)

Example 21.
Let I = 〈x3

1, x
2
1x2 + x2x

2
3, x1x

3
2, x

4
2, x1x

2
2x3, x

2
1x

2
3, x1x

4
3〉 C k[x1, x2x3]. Then

lt I〈3〉 = 〈x3
1, x

2
1x2, x1x2x

2
3, x2x

4
3〉 is not quasi-stable, hence I is not in componen-

twise quasi-stable position. Further, the leading ideal

lt I = 〈x3
1, x

2
1x2, x1x

3
2, x

4
2, x1x

2
2x3, x

2
1x

2
3, x1x2x

2
3, x

3
2x

2
3, x

2
2x

3
3, x1x

4
3, x2x

4
3〉

is not equal to

gin I = 〈x3
1, x

2
1x2, x1x

3
2, x

4
2, x1x

2
2x3, x

3
2x3, x

2
1x

2
3, x1x2x

3
3, x

2
2x

3
3, x1x

4
3, x2x

4
3〉

and we see that I is in β-maximal position since:

β3(I) = (1, 1, 0) = β3(gin I)
β4(I) = (1, 4, 5) = β4(gin I)
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Example 22.
Let K = 〈x2x3 − x1x4, x

3
1 − x2

2x4, x
3
2 − x1x

2
3〉C k[x1, x2, x3, x4] and I = Ψ2Ψ1(K)

with Ψ1 : (x3 7→ x3 + x1) and Ψ2 : (x2 7→ x2 + x1). Then the leading ideal

lt I = 〈x2
1, x1x

2
2, x

3
2, x1x2x

2
3, x1x

3
3, x

2
2x

3
3, x2x

4
3〉

is not equal to

gin I = 〈x2
1, x1x

2
2, x

3
2, x1x2x

2
3, x

2
2x

2
3, x1x

4
3, x2x

4
3〉

and we see that I is in β-maximal position since:

β2(I) = (1, 0, 0, 0) = β2(gin I)
β3(I) = (1, 3, 1, 1) = β3(gin I)
β4(I) = (1, 4, 7, 6) = β4(gin I)

Example 23.
Let I = 〈x3

1, x2
1x2 + x1x2x3, x1x

3
2, x1x

2
2x3, x2

1x
2
3〉 C k[x1, x2, x3]. Then

lt I〈3〉 = 〈x3
1, x

2
1x2, x1x2x

2
3〉 is not quasi-stable, hence I is not in componentwise

quasi-stable position. Further,

lt I = 〈x3
1, x

2
1x2, x1x

3
2, x1x

2
2x3, x

2
1x

2
3, x1x2x

2
3〉 = gin I

and so we see that I is in β-maximal position.

Example 24.
The final example that is in any position is simply 〈x1〉C k[x1].
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With the help of these examples we can now illustrate the relations between
the considered positions in the “map” below:

GINSSSDS

CQS

βM

WDSQS

NP1

2 3

4

5

6

7

8

9

10 1112
13

14

15

16

17

18

19

20

21

22 2324

NP=Noether Position, QS=Quasi-Stable, CQS=Componentwise Quasi-Stable, βM=β-Maximal,
WDS=Weakly D-Stable, DS=D-Stable, S=Stable, SS=Strongly Stable, GIN=gin-Position
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In order to provide a better overview of which properties each of the presented
examples satisfies we summarized them in the following tabular:

Example NP QS WDS CQS βM DS S SS GIN

1 " $ $ $ $ $ $ $ $

2 " " $ $ $ $ $ $ $

3 " $ " $ $ $ $ $ $

4 " " $ " $ $ $ $ $

5 " " $ $ " $ $ $ $

6 " " $ " " $ $ $ $

7 " " " " $ $ $ $ $

8 " " " $ " $ $ $ $

9 " " " $ $ $ $ $ $

10 " " " " " $ $ $ $

11 " " " $ $ " $ $ $

12 " " " $ $ " " $ $

13 " " " $ $ " " " $

14 " " " " $ " $ $ $

15 " " " $ " " $ $ $

16 " " " " " " $ $ $

17 " " " " $ " " $ $

18 " " " $ " " " $ $

19 " " " " " " " $ $

20 " " " " $ " " " $

21 " " " $ " " " " $

22 " " " " " " " " $

23 " " " $ " " " " "

24 " " " " " " " " "



Outlook

In this outlook we want to identify areas of the considered research field that
provide a canonical starting point for a further investigation. Thereby we first
start with general arising questions and tasks, before we formulate some concrete
conjectures afterwards.

Implementation of Algorithm 1. In Section 2.3, we gave a short overview of pos-
sible strategies for an implementation of the while loop in line 2 of
Algorithm 1. Providing a concrete implementation of this algorithm as well as
discussing efficiency aspects in more detail are one of the ideas for an additional
study of this topic.

Grothendieck’s vanishing and nonvanishing Theorem. We presented in Propo-
sition 3.2.41 an alternative proof for one part of Grothendieck’s vanishing and
nonvanishing theorem. So it is natural to ask whether it is possible to find an
alternative proof using the theory of Pommaret basis for the other assertions.

Combination of weakly D-stable and β-maximal. Ideals that are in weakly
D-stable as well as β-maximal position represent a very promising class of ideals.
For example – as we have seen in Proposition 6.3.1 – we can directly read off
the reduction number of those ideals. Further, such ideals are also in quasi-stable
position by Corollary 6.1.11 and so possess a finite Pommaret basis. Hence these
ideals can be interpreted as a generalization of the generic initial ideal gin I.

So on the one hand it would be interesting to discover further properties that
the mentioned ideal class share with the gin-position. On the other hand develop-
ing an algorithm that directly2 transforms a given ideal into weakly D-stable and
β-maximal position is also a suggestion we recommend to figure out.

2 Obviously, transforming a given ideal into gin-position is one possibility to receive an ideal,
which is in weakly D-stable and β-maximal position. But – as we have seen in Example 8 –
weakly D-stability and β-maximality are not sufficient for gin-position. So “directly” means here
an algorithm that transforms into weakly D-stable and β-maximal position but not necessarily
into gin-position.
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Conjecture 1.
Let L = {Li}`i=1 be a set where the Li C P are the monomial ideals resulting from
the Gröbner system of a given ideal I as described in Remark 2.1.2. Without
loss of generality we assume that L1 ≺L · · · ≺L L`. Further, let α be an index
such that Lα is quasi-stable3. Then we assume that the following monomial ideals
Lα+1, . . . ,L` are also quasi-stable4.

Conjecture 2.
Again we take a look at the set L = {Li}`i=1 we already mentioned in the previous
conjecture and recall that Lm = max≺L

{L1, . . . ,L`} is Borel-fixed by Corollary
2.4.9. We intuitively expect that in this case we even do have Lm = gin I.

Conjecture 3.
The characteristic of our field k is decisive for the question whether gin I is weakly
D-stable or not (see Example 5.2.15). Therefore we need the assumption chark = 0
in Proposition 6.3.1 but we suppose that this is not necessary. We conjecture that
gin I is already weakly D-stable if I is weakly D-stable.

Conjecture 4.
As already indicated in Example 6.2.4, we assume that it is possible to extend the
assertion from Corollary 6.2.3 by the following statement:

The length of the Pommaret basis of gin I is minimal for any n.

3 As gin I is Borel-fixed and therefore quasi-stable (see Theorem 2.4.4), such an index must
exist since gin I ∈ L.

4 Although we have seen in Example 2.2.20 that this does not hold for strong stability, we
were not able to construct a corresponding example for the case of quasi-stability.
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[HK84] J. Herzog and M. Kühl. On the Bettinumbers of finite pure and linear resolutions.
Comm. Alg., 12:1627–1646, 1984.

[HPV03] J. Herzog, D. Popescu, and M. Vladoiu. On the Ext-modules of ideals of Borel type.
In Commutative Algebra, Contemp. Math. 331, pages 171–186. Amer. Math. Soc.,
Providence, 2003.

[HSS12] A. Hashemi, M. Schweinfurter, and W.M. Seiler. Quasi-stability versus genericity. In
V.P. Gerdt, W. Koepf, E.W. Mayr, and E.V. Vorozhtsov, editors, Computer Algebra

115



116 BIBLIOGRAPHY

in Scientific Computing, volume 7442 of Lecture Notes in Computer Science, pages
172–184. Springer Berlin Heidelberg, 2012.

[HSS14] A. Hashemi, M. Schweinfurter, and W.M. Seiler. Deterministically computing reduc-
tion numbers of polynomial ideals. In V.P. Gerdt, W. Koepf, W.M. Seiler, and E.V.
Vorozhtsov, editors, Computer Algebra in Scientific Computing, volume 8660 of Lec-
ture Notes in Computer Science, pages 186–201. Springer International Publishing,
2014.

[HT02] J. Herzog and Y. Takayama. Resolutions by mapping cones. Homol. Homot. Appl.,
4:277–294, 2002.

[KR00] M. Kreuzer and L. Robbiano. Computational Commutative Algebra 1. Computa-
tional Commutative Algebra. Springer, 2000.

[KSW10] D. Kapur, Y. Sun, and D. Wang. A new algorithm for computing comprehensive
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