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1 General Introduction 

Grasslands cover a large portion of the earth's surface and they are a very important source of 

livestock feed (Suttie et al., 2005). In these ecosystems, the energy available to the animal for 

metabolism (maintenance, growth and production) is limited by the quantity and quality of forage 

resource (Rattray et al., 2007). Hence, herbage biomass and its quality is a primary concern in 

continuous grazing systems (Silvia Cid et al., 1998). Timely assessment of these elements in 

grasslands is essential in grazing management and can help livestock managers in making critical 

decisions in terms of planning grazing time, grazing period, grazing interval and stocking rate 

(FAO, 2010; Suzuki et al., 2012).  

Within site, herbage mass and quality are highly variable because they are affected by species 

composition, sward maturity, sward height and density as well as soil type, topography, geology 

and climatic factors (Ayantunde et al., 1999; Suzuki et al., 2012). Heterogeneity of pasture 

characteristics occurs within a spatial and temporal scale and is influenced by patch or selective 

grazing. Free-ranging grazing animals differentiate between pasture areas, plant species and plant 

parts in choosing their diets. They prefer vegetation patches and plants that contain relatively high 

nutrients and avoid previously ungrazed patches with tall mature swards (Teague and Dowhower, 

2003). This selective behavior generates a mosaic in which short, heavily grazed patches having 

small herbage mass alternate with taller, ungrazed or lightly grazed patches having large herbage 

mass (Hirata 2000). In subsequent years heavily grazed patches are more likely to be heavily used 

while previously neglected patches will likely receive little subsequent use (Teague et al., 2004). 

Grazing management can affect the creation and maintenance of such patterns, since reports 

suggest low stocking density is better able to create relatively stable grazed and ungrazed patches 

over time (Van den Bos and Bakker, 1990; Dumont et al., 2012) while higher stocking rates result 

in reduced selectivity and patchiness (Barnes et al., 2008). Site-specific determination of biomass 

and nutritive values (such as crude protein and acid detergent fiber) and quantifying the spatial 

heterogeneity over time in the field can help in detecting grazing patch dynamics in the pastures 

and subsequently help in optimizing utilization of grassland resources (e.g. by stocking rate 

adjustments or changing grazing intervals). However, the evaluation and mapping of vegetation 

heterogeneity at temporal and spatial scale over large areas is a challenge, as it requires targeted 

and efficient means to assess such numerous data. Although direct plant sampling techniques such 

as clipping and weighing method for measuring yield or traditional chemical analysis and 
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laboratory based VIS/NIR techniques to assess forage quality (which still requires the collection 

and preparation of vegetation samples), are accurate, these procedures are only practical on 

experimental area of limited size and not applicable to obtain the distribution of vegetation 

characteristics on a large-scale field as they are costly, destructive, labor and time consuming 

(Pullanagari et al., 2012a, 2013).  

Remote-sensing based techniques such as satellite and airborne imagery have been developed 

during the past decades for monitoring vegetation with non-destructive and rapid data acquisition 

over vast areas. However the application of these techniques with low spatial and spectral 

resolution in pastures is difficult due to complexity and continuous changes in these environments 

and there is a need for higher resolution and spatially continuous measurements to obtain more 

detailed information regarding distribution of sward characteristics (Schellberg et al., 2008). 

Moreover the infrequent availability of cloud-free images or the short-term operation of the 

monitoring system constrain their utility by a lack of temporally replicated data (Ouyang et al., 

2012). In contrast proximal (ground-based) technologies provide an opportunity to monitor spatio-

temporal variations of grasslands with high resolution data collections (Flynn et al., 2008; Fricke 

et al., 2011; Lee et al., 2011). These techniques may be combined with a global positioning system 

(GPS) and allow interpolation of spatial data from a moving vehicle and mapping sward 

characteristics on a large-scale field. In this context, several types of ground-based mobile sensing 

strategies by mounting different types of sensors (e.g. laser, ultrasonic and spectral) are employed 

for measuring and fine-scale mapping of height (Ehlert et al., 2008; Fricke et al., 2011) forage 

biomass (Flynn et al., 2008; Fricke and Wachendorf, 2013) and nutritional status (Lee et al., 2011) 

in grasslands. 

Decisions upon site-specific management require maps containing field attributes that have 

precisely been detected (Schellberg et al., 2008). Especially in pastures with high levels of 

heterogeneity it is challenging to develop a real-time ground-based sensing system with sufficient 

measurement accuracy due to considerable variations in sward properties which limits the ability 

to create a robust estimation model. Multi sensor data fusion is the process of combining 

information from different types of sensors to improve accuracies of property estimates (Adamchuk 

et al., 2011). Such sensing strategies may overcome the limitations of canopy measurements by 

enhancing the magnitude in data collection and provide opportunity for creation of robust 

estimation models (Pittman et al., 2015). Hyperspectral sensors have been utilized for measuring 
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different structural and functional characteristics of vegetation such as biomass, plant nitrogen, leaf 

area index, vegetation cover or water status in grassland swards. These sensors with hundreds of 

narrow and continuous spectral wavebands have the potential to estimate variables which are 

difficult to be measured by conventional multi spectral sensors. Vegetation indices (VIs) derived 

from those multi-spectral sensors like the normalized difference vegetation index (NDVI) suffer 

from the saturation effect by increasing greenness (around a leaf area index of 2 to 2.5). Mutanga 

and Skidmore (2004) could overcome the saturation problem in biomass estimation using narrow 

band vegetation indices derived from hyperspectral data. Many studies have documented the 

importance of hyperspecral indices for estimating biophysical and biochemical parameters of 

vegetation in grassland swards (Mutanga et al., 2005; Fricke and Wachendorf, 2013; Darvishzadeh 

et al., 2008; Reddersen et al., 2014; Psomas et al., 2011; Fava et al., 2009; Duan et al., 2014; Starks 

et al., 2006). Narrowband VIs use a limited number of wavelengths from the huge range of 

hyperspectral data. In contrast, other approaches such as partial least square regression (PLSR) 

integrate spectral information of the whole hyperspectral range. Even though using such techniques 

have been addressed to be successful in many studies for measuring grassland properties (Biewer 

et al., 2009b and c; Thulin et al., 2012; Marabel and Alvarez-Taboada, 2013; Pellissier et al., 2015) 

they lack transferability to be used for practical implementation at the field. Moreover, 

hyperspectral sensors are costly and sensing strategies should be cost effective thus the limitation 

of wavelengths by reduction of hyper spectral range or selection of few wavelengths (e.g. using 

narrowband VIs) is desirable (Reddersen et al., 2014). However this may cause the loss of 

prediction quality (Biewer et al., 2009b). Other factors such as variations in solar angel and 

atmospheric conditions can also change the spectral characteristics and reduce the accuracy of 

spectral data (Pinter, 1993). Therefore the combination of low-cost ultrasonic sensors and spectral 

reflectance sensors may be beneficial for the prediction of biomass yield and pasture quality. 

Ultrasonic proximity sensors have been deployed for measuring canopy height by measuring the 

distance between the target and sensor mounted vertically, facing the canopy. The distance is 

calculated by measuring the time differences between the emission and the reception of the signal, 

after it is reflected back from the target (Vitali et al., 2013). Prediction of biomass yield with an 

ultrasonic distance sensor used for height measurements in pure and binary legume-grass mixtures 

resulted in fair to good prediction accuracies (Fricke et al., 2011). Presence of weeds or 

inflorescences caused an unbalanced sward density along the height gradient which limited the 

performance of ultrasonic sensor. The increased structural complexity existing in pastures might 
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reduce the performance of ultrasonic sensor even more compared to sown grasslands. Fricke and 

Wachendorf (2013) showed complementary effect of spectral sensor by a combined use of both 

sensors which prevented overestimation resulting from exclusive use of ultrasonic sward height to 

assess biomass of legume-grass mixtures.  Pittman et al. (2015) used a mobile sensor system 

including laser, ultrasonic and spectral sensors for biomass estimation. Their results illustrated 

quantification of canopy height with ultrasonic and laser sensors could provide for biomass 

estimation models equivalent to and/or more effective than those which include spectral 

components. Sui and Thomasson (2006) combined a multi-spectral optical sensor and an ultrasonic 

sensor to determine of nitrogen status in cotton plants. The results showed that the spectral 

information and plant height measured by the sensing system had significant correlation with leaf 

nitrogen concentration of the cotton plants. Shiratsuchi et al. (2009) found both ultrasonic and 

active canopy sensors had similar abilities to distinguish nitrogen differences in canopy at several 

growth stages for corn. They suggested that the integrated use of both sensors improves the nitrogen 

estimation compared to the exclusive use of either sensor. These investigations show that canopy 

height may provide complementary information to reflectance sensing when estimating the 

nitrogen status of plants. Even though ultrasonic sensors have been used simultaneously with 

canopy reflectance sensors in crops and cutting systems, to our knowledge such combined sensing 

techniques have not yet been examined in heterogeneous pastures. 
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2 Research objectives 

Precision management of grasslands requires accurate information on sward characteristics at a 

spatial and temporal scale. Multi-sensor data fusion provides data for site-specific grassland 

management. 

The overall aim of the study is to explore the potential of data fusion of ultrasonic and hyper-

spectral reflectance sensors to acquire accurate information on pasture swards in terms of quantity 

and quality at field scale. The specific objectives are described in the following chapters: 

 

Chapter 3:  Investigates the potential of ultrasonic and hyper-spectral sensor data fusion to 

predict biomass in heterogeneous pastures under different stocking densities and 

with high structural sward diversity in different periods of the growing season. 

Several spectral approaches such as narrow and broad band vegetation indices, 

principle component analysis (PCA) derived components and multi-spectral 

broadbands of RapidEye and WorldView2 satellites were tested exclusively and in 

combination with ultrasonic sward height (USH) to identify calibration models of 

high predictive capability. This chapter also explores the important wavelength for 

predicting pasture biomass in exclusive or combined approaches.  

 

Chapter 4: Describes the ability of the same sensors to predict grassland quality parameters 

including crude protein (CP) and acid detergent fiber (ADF) of heterogeneous 

pastures. In this chapter, spectral variables derived from hyper-spectral reflections 

(narrow-band vegetation indices and WorldView2 satellite broad-bands) combined 

with ultrasonic sward height (USH) and compared to modified partial least square 

regression (MPLSR) models to improve the accuracy of predictions in different 

seasons of the year (spring, summer, autumn) during two year pasture 

measurements.  

 

Chapter 5: Evaluates the ability of a mobile sensing system equipped with ultrasonic and 

spectral sensors and a high precision GPS to quantify within-field variations which 
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would be the primary application of such system. This was directly tested in the 

same study site used for calibration dataset by comparing predictions of mobile and 

static measurements of sensors. This chapter also explores the possible position 

errors associated with mobile sensor system. 
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3 Fusion of ultrasonic and spectral sensor data for improving the estimation 

of biomass in grassland with diverse sward structure 

Abstract An accurate estimation of biomass is needed to understand the spatio-temporal 

changes of forage resources in pasture ecosystems and to support grazing management decisions. 

However, a timely evaluation of biomass is a challenge, as it requires targeted and efficient means 

like technical sensing methods to assess numerous data for the creation of continuous maps. In 

order to calibrate ultrasonic and spectral sensors, a field experiment with heterogeneous pastures 

continuously stocked by cows at three levels of grazing intensity was used providing a broad range 

of biomass characteristics for a sensor alignment. Exclusive ultrasonic sward height or spectral 

measurement could barely predict yield parameters of heterogeneous pastures, whereas sensor data 

fusion by combining ultrasonic sward height (USH) with narrow band normalized difference 

spectral index (NDSI) or WorldView2 (WV2) satellite broad bands increased the prediction 

accuracy significantly. These combinations can be on a par or even better than the use of the full 

hyperspectral information. Spectral regions related to plant water content were found to be most 

important (996-1225 nm). Narrow-band NDSI constructed with bands in these spectral regions 

may be preferred for research purposes where highest accuracy is essential, whereas WV2 provides 

interesting perspectives for practical implementation, as these bands are already implemented on 

satellite platforms. Fusion of ultrasonic and spectral sensors is a promising approach to assess 

biomass even in pastures with heterogeneous swards. However, the applicability of such concepts 

may be limited in the second half of the growing season due to an influence on biomass prediction 

accuracy of both, sward development along the vegetation period and the presence of senesced 

material. 

3.1  Introduction 

An accurate estimation of biomass is needed to understand the spatio-temporal changes of forage 

resources in pasture ecosystems and to support grazing management decisions (Cho et al., 2007). 

However, a timely evaluation of biomass is a challenge, as it requires targeted and efficient means 

to assess numerous data for the creation of continuous maps. Though the traditional ‘’clip-and-

weigh’’ methods of measuring biomass are highly accurate, they are costly, destructive, labor 

intensive and time consuming to obtain biomass properties at high sampling density. Ground-based 

remote sensing techniques have been used alternatively as rapid and non-destructive methods to 



 

8 
 

obtain and map the temporal and spatial variability of vegetation characteristics with high spatial 

resolution in agricultural and pastoral ecosystems (Pullanagari et al., 2012a; Suzuki et al., 2012). 

Pastures are highly heterogeneous systems due to variations in sward structure, composition and 

phenology as well as continuous changes caused by different drivers such as environmental factors 

and grazing. Therefore, the application of sensors in complex grazing systems is difficult and there 

are some limitations for each specific sensor used for the prediction of sward characteristics 

(Schellberg et al., 2008). To overcome these constraints, the combination of complementary sensor 

technologies has been suggested to utilize both the strengths and compensate the weaknesses of 

individual technologies. Combined sensor systems can support multi-source information 

acquisition and may provide more accurate property estimates and eventually improved 

management (Adamchuk et al., 2011). Even though some studies have investigated such strategies 

in different farming fields ( Jones et al., 2007; Mazzetto et al., 2010; Farooque et al., 2013), to date 

these techniques have not been tested in pastures with complex sward diversity. Thus, an evaluation 

of sward specific calibration is essential, before assessing data on a spatial scale. 

Ultrasonic and reflectance sensors are two possible complementary technologies capable of 

providing comprehensive structural and functional characteristics of vegetation (Scotford and 

Miller, 2004; Farooque et al., 2013). Sward height measured by ultrasonic distance sensing 

(referred to as ultrasonic sward height (USH)) has been examined as a possible estimator of 

biomass in forage vegetation canopies (Hutchings et al., 1990). However, the main limitation of 

this technique is that signals are reflected predominantly from the upper canopy layers regardless 

of sward density (Fricke and Wachendorf, 2013). Moreover, sonic reflections can be affected by 

canopy architecture such as lamina size, orientation, angle and surface roughness of the leaves 

(Hutchings, 1992). 

Hyperspectral sensors have also raised considerable interest as a potential tool for prediction of 

biomass and forage quality in pastures. However, difficulties occur at advanced developmental 

stages of vegetation, as the ability of the reflectance sensor to detect canopy characteristics could 

be limited by the presence of a high fraction of senescent material in biomass (Yang and Guo, 2014) 

or by soil background effects (Boschetti et al., 2007), atmospheric conditions (Jackson and Huete, 

1991), grazing impact (Duan et al., 2014) and heterogeneous canopy structures due to mixed 

species composition and a wide range of phenological stages (Biewer et al., 2009a, b). Remarkably, 

most studies on remotely sensed data for the estimation of grassland and rangeland biomass were 
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conducted in tropical savannas, since these ecosystems account for 30% of the primary production 

of all terrestrial vegetation. Contrary, comparable studies on grasslands in temperate climates are 

rare (Kumar et al., 2015). 

The limitations of ultrasonic and hyper-spectral reflectance sensors in heterogeneous pastures may 

be compensated by a combined use of measurement data from both sensors, as shown by Fricke 

and Wachendorf (2013) for less variable legume/grass-mixtures. Thus, the main objective of the 

present study was to analyze the potential of ultrasonic and hyper-spectral sensor data fusion in 

pastures with high structural sward diversity to predict biomass, which is a prerequisite for future 

mapping of spatially heterogeneous grassland. 

 

3.2  Materials and methods 

3.2.1 Study area and site characteristics 

For data acquisition a long-term pasture experiment was chosen at the experimental farm 

Relliehausen of the University of Goettingen (51◦46ˊ55 ̋ N, 9◦42ˊ13 ̋ E, 180-230 m above mean sea 

level; soil type: pelosol-brown earth; soil PH: 6.3; mean annual precipitation: 879 mm; mean 

annual daily temperature: 8.2°C). The plant association was a moderately species-rich Lolio-

Cynosuretum (Wrage et al., 2012). The pastures exhibited a pronounced heterogeneity in sward 

structure with short and tall patches and various sward height classes (Scimone et al., 2007, 

Jerrentrup et al., 2014). Three levels of grazing intensity were allocated to adjacent pasture 

paddocks of 1 ha size, which were continuously stocked by cows from beginning of May to mid-

September. Grazing intensities were a) moderate stocking, average of 3.4 standard livestock units 

(SLU, i.e. 500 kg live weight) ha-1, b) lenient stocking, average 1.8 SLU ha-1, c) very lenient 

stocking, average 1.3 SLU ha-1(Wrage et al., 2012). To ensure extensive sward variation for data 

assessment, one representative study plot of 30 x 50 m size was selected within each of the three 

paddocks using a grazed/ungrazed-classified aerial image to obtain comparable surface 

proportions. 

  

3.2.2 Field measurements 

Field measurements were conducted at four sampling dates (designated from now on as date 1 to 

date 4) in 2013: (date 1) 25th April to 2nd May (before grazing), (date 2) 3rd to 5th June, (date 3) 21st 
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to 23rd August and (date 4) 30th September to 2nd October (after final grazing) within each study 

plot . In each campaign 18 reference sample plots (each 0.25 m2) were chosen within each of the 3 

study plot adding up to 54 samples per date and representing the occurring range of available 

biomass levels and sward structures. To verify a representative biomass range a stratified random 

sampling was performed. In each study plot three levels of sward height (low, medium, high) were 

sampled randomly to compile all date specific biomass levels in the data set. A Trimble GeoXH 

GPS device (Trimble Navigation Ltd., Sunnyvale, California, USA) with DGPS correction from 

AXIO-net (Hannover, Germany, PED-RTK ±20 mm) was used to avoid repeated sampling at the 

same location during the growing season. 

Sensor measurements took place prior to reference data assessment. Hyperspectral data was 

measured using a hand-held portable spectro-radiometer (Portable HandySpec Field VIS/NIR, 

tec5, Germany) in a spectral range of 305-1690 nm. Spectral readings were recorded in 1 nm 

intervals. Measurements were made from a height of about 1 m above and perpendicular to the soil 

surface between 10:00 a.m. and 14:00 p.m. (local time) in clear sunshine. The sensor had a field of 

view of 25 ̊. Spectral calibrations were performed at least after every six measurements using a 

greystandard (Zenith Polymer® Diffuse Reflectance Standard 25%). Ultrasonic sward height 

(USH) measurements took place subsequent to hyperspectral measurements using an ultrasonic 

distance sensor of type UC 2000-30GM-IUR2-V15 (Pepperl and Fuchs, Mannheim, Germany). 

The sensor specific sensing range was from 80 to 2000 mm within a sound cone formed by an 

opening angle of about 25° (Pepperl and Fuchs, 2010). Ultrasonic sward height (mm) was 

calculated by substracting the ultrasonic distance measurement value in mm from the sensor mount 

height using EQ 1.  

𝑈𝑆𝐻 (𝑚𝑚) = 𝑀𝑜𝑢𝑛𝑡 ℎ𝑒𝑖𝑔ℎ𝑡 (𝑚𝑚) − 𝑈𝑙𝑡𝑟𝑎𝑠𝑜𝑛𝑖𝑐 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 (𝑚𝑚) (Eq1) 

At each sampling plot, five measurements were recorded with the ultrasonic sensors placed at five 

positions on a frame at a height of about 1 m. Further details of the USH device and methodology 

can be found in Fricke et al. (2011). 

In addition to sensor measurements, plant composition of all sampling plots was assessed according 

to the method of Klapp and Stählin (1936) by visually estimating the abundance and dominance of 

all plant species. 
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3.2.3 Sampling of reference data 

The biomass of each sampling plot was cut at ground surface level. Total fresh matter yield was 

measured and representative sub-samples were either directly dried in the oven for 48 h at 105 ºC 

for the calculation of total dry matter yield or sorted into fractions of grasses, legumes, herbs, 

mosses and dead material and subsequently also dried at 105 ºC for 48h to determine the proportion 

of each functional group. This data was used as reference values (dependent variables) in regression 

analysis procedures. 

 

3.2.4 Data analysis 

Prior to analysis, an insignificant number of outliers, which appeared as extreme outliers in the box 

plot analysis (program package R, version 3.0.2), was excluded from the dataset due to incorrectly 

entered or measured data. Moreover, noisy parts of the hyperspectral data (305-360 nm, 1340-1500 

nm and 1650-1700 nm) were eliminated, leaving 1126 spectral bands between 360 and 1650 nm. 

Datasets were combined using a common dataset (n = 214) comprising samples from all study plots 

(grazing intensities) and all dates, as well as subsets for each date representing a typical 

phenological status of plants during the vegetation period (n = 52-54). As a preprocessing step, 

first-order and second-order derivative reflectance (FDR and SDR) (Demetriades-Shah et al. 1990) 

and continuum removed reflectance (CR) (Clark and Roush, 1984) were calculated from the 

original spectrum using WinISI III package (Infrasoft International, LLC. FOSS, State College, 

PA, version 1.63) and ENVI 4.7, respectively. These methods are supposed to reduce background 

reflectance influence and to enhance absorption spectral features. In order to compare the 

prediction potential of the original and transformed spectra (FDR, SDR, CR) modified partial least 

squares regression (MPLSR) was applied as a powerful and full-spectrum based method using 

WINISI III package (Infrasoft International, LLC. FOSS, State College, PA, version 1.63). Several 

methods were used to combine the spectral information with USH by ordinary least square 

regression. To evaluate the potential of hyperspectral data in combination with USH, principle 

component analysis (PCA) was performed as a hyperspectral compression tool in SAS version 9.2 

(SAS Institute, Inc., Cary, NC, USA) to calculate a maximum of 5 principal components explaining 

99 % of variance. Furthermore several published vegetation indices (VIs) recently applied to 

grassland swards (Reddersen et al., 2014) were calculated: normalized difference vegetation index 

(NDV), red edge inflection point (REIP), soil adjusted vegetation index (SAVI) and water index 
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(WI). To evaluate the potential of a 2-band vegetation index across the available hyperspectral 

range, the normalized difference spectral index (NDSI) (Inoue et al. 2008) was applied over the 

range of 1nm and 50nm spectral bandwidths using all possible combinations of two-band 

reflectance ratios based on NDVI formula according to Eq 2: 

NDSI (b1, b2) =  b1 − b2/ b1 + b2 (Eq2) 

where, b1 and b2 = represents spectral bands of reflection signals with Wavelengthb1> 

Wavelengthb2 for either specific narrow bands (1 nm) or broad bands (50 nm). 

To test the performance of the multi-spectral approach used in satellites, hyperspectral data were 

re-combined into 8 broad wavebands according to WorldView-2: coastal (400-450 nm), blue (450-

510 nm), green (510-580 nm), yellow (585-625 nm), red (630-690 nm), red edge (705-745 nm), 

near infrared-1 (770-895 nm) and near infrared-2 (869-900 nm) 

(http://www.landinfo.com/WorldView2.htm) and 5 broad bands according to RapidEye: blue (440-

510 nm), green (520-590 nm), red (630-685 nm), red edge (690-730 nm) and near infrared (760-

850 nm) (http://www.satimagingcorp.com/satellite-sensors/other-satellite-sensors/rapideye.htm). 

Ordinary least squares regression analysis was performed using the statistical program package R 

(version 3.0.2) to examine the relationship between the dependent variables (fresh matter yield, dry 

matter yield and dead material proportion) and USH (Eq3), VIs, satellite bands and PCA-derived 

components exclusively (Eq 4 and 5) and as a combination of USH with variables calculated from 

hyperspectral data (Eq 6 and 7) to compare their potential for sensor fusion. After having examined 

the data and verified, that saturation effects could be excluded, it was assumed, that squared 

variables would sufficiently represent possible non-linear effects. Even though, due to a limited 

sample size of n ≤ 54 squared satellite band variables and squared PCA-derived components were 

omitted in the regressions to reduce the risk of over-fitting.  

Exclusive ultrasonic sward height 

Y =  USH +  USH2 (3) 

 

Exclusive vegetation index 

Y =  VI +  VI² (4) 

 

Exclusive satellite bands or PCA-derived components 

Y =  X1 +  X2 + ⋯ +  Xn (5) 
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Combination of ultrasonic sward height and vegetation index 

Y =  USH +  VI +  USH ∗ VI +  USH2 +  USH2 ∗ VI +  VI2 +  USH ∗ VI2 +  USH2 ∗ VI2

 (6) 

Combination of ultrasonic sward height (USH) and satellite bands or PCA-derived components 

Y =  USH +  USH² +  X1 +  X2 + ⋯ +  Xn +  USH ∗ X1 + ⋯ +  USH ∗ Xn +  USH² ∗ X1 +

⋯ +  USH² ∗ Xn (7) 

where: 

Y = fresh matter yield (FMY) (gm-²), dry matter yield (DMY) (gm-²) or dead material proportion 

(DMP) (% of DMY), respectively. 

USH = ultrasonic sward height (mm) 

VI = vegetation index derived from hyperspectral data 

X = satellite bands or PCA derived components 

To determine the best NDSI wavebands having maximum r², a wavelengths selection was first 

conducted according to Eq 4 and Eq 6 for each target parameter. Thus, all possible 2-band NDSI 

combinations, in all a total of 1,267,876 indices, were individually used in linear regression models 

for each sensor combination. The best fit wavelengths for the full models were then used to develop 

regression models. According to the rules of hierarchy and marginality (Nelder, 1994), non-

significant effects were excluded from the models, but were retained if the same variable appeared 

as part of a significant interaction at α-level of 5%. Models were validated by a four-fold cross 

validation method (Diaconis and Efron, 1983).  

 

3.3  Results and discussion 

3.3.1 Sward characteristics 

Biomass as FMY and DMY varied from 68.8 to 3207 g m-² and from 29.2 to 691.9 g m-² with an 

overall mean value of 823.9 g m-² and 276.4 g m-², respectively, for all sampling dates (Table 3.1). 

The second sampling date (date 2) at the beginning of June exhibited the highest biomass (mean 

value of 1240 g m-2 and 314.5 g m-2 for FMY and DMY, respectively), whereas the date 4 showed 

the lowest biomass (mean value of 567.5 g m-2 and 237.6 g m-2 for FMY and DMY, respectively). 

USH ranged from 7 to 646 mm during the growing season and lowest sward heights were found at 

date 1 (mean value = 136 mm). A wide range of DMP (1.4 to 83.6% of DM; sd = 20.5) was 

observed throughout the growing season. The highest variability of DMP was observed at more 
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advanced developmental stages of swards (date 3 and 4; sd = 18.8 and 17.7% of DMY, 

respectively) which also delivered the highest mean values of DMP (45.7 and 40% of DMY, 

respectively). Grass proportion was always considerably higher than proportions of legumes and 

herbs. Moss proportion was negligible (overall mean value 1.9%). In total, 48 species were 

identified in the sampling plots (Table 3.2). Most important species were Dactylis glomerata 

(Constancy, C = 89.7%), Lolium perenne (C = 70.1%) among the grasses, Trifolium repens (C = 

39.7%) and Trifolium pratense (C = 17.8%) among the legumes, and Taraxacum officinale (C = 

57.5%) and Galium mollugo (C = 40.7%) among the herbs. 

Table 3.1 Descriptive statistics of dry matter yield, fresh matter yield, ultrasonic sward height and proportion of mosses 

grasses, legumes, herbs and dead materials for common and date-specific swards. 

     

 N Min Max Mean sde Min Max Mean sd 

  Dry matter yield (g m-²) Fresh matter yield (g m-²) 

Common 214 29.2 691.9 276.4 145.5 68.8 3207.0 823.9 554.6 

Date 1 a 54 51.9 612.1 248.8 130.0 140.0 1883.0 739.6 416.9 

Date 2 b 54 31.9 691.9 314.5 180.2 107.2 3207.0 1240.0 785.6 

Date 3 c 52 68.2 654.8 305.7 138.1 148.0 1822.0 745.4 337.0 

Date 4 d 54 29.2 468.8 237.6 112.7 68.8 1325.0 567.5 281.7 

  Ultrasonic sward height (mm) Grass proportion (% of DM) 

Common 214 7 646 252 151  8.0 93.7 50.6 23.9 

Date 1 54 7 438 136 99  12.9 81.1 44.9 16.8 

Date 2 54 31 646 364 174  8.2 93.7 72.2 19.0 

Date 3 52 105 615 268 119  8.8 92.9 41.9 24.8 

Date 4 54 48 576 240 107  8.0 85.3 43.1 20.6 

  Legume proportion (% of DM) Moss proportion (% of DM) 

Common 214 0.0 39.6 2.9 6.8 0.0 27.5 1.9 4.4 

Date 1  54 0.0 36.4 4.7 8.2 0.0 21.3 4.9 6.1 

Date 2  54 0.0 39.6 4.1 9.0 0.0 14.7 0.7 2.4 

Date 3  52 0.0 31.2 1.9 5.0 0.0 27.5 1.6 4.4 

Date 4  54 0.0  7.1 0.6 1.6 0.0 5.8 0.3 0.9 

  Herb proportion (% of DM) Dead material proportion (% of DM) 

Common 214 0.0 63.7 13.1 12.9 1.4 83.6 31.6 20.5 

Date 1 54 0.0 44.6 13.6 12.7 2.5 70.3 31.9 14.9 

Date 2 54 0.0 63.7 13.9 15.0 1.4 37.6 9.2 6.4 

Date 3 52 0.0 47.5 14.6 12.8 3.9 76.3 40.0 18.8 

Date 4 54 0.0 42.1 10.3 10.8 10.5 83.6 45.7 17.7 

a Date 1: 25th April-2nd May 2013 ; b Date 2: 3rd-5th June 2013; c Date 3: 21st-23rd August 2013; d Date 4: 30th September-

2nd October 2013. e sd: standard deviation. 
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Table 3.2 List of pasture species identified in 214 sampling plots in 2013 with their minimum, maximum and mean 

values of dry matter contribution estimated according to the Klapp and Stählin method. Constancy (Const.) refers to 

the relative proportion of plots containing the respective species. 

 Species Min Max Mean 
Const. 

(%) 
 Species Min Max Mean 

Const. 

(%) 

Grasses     Herbs     

Agrostis stolonifera 0.0 79.4 9.22 54.2 Achillea millefolium 0.0 85.0 0.92 5.1 

Alopecurus pratensis 0.0 95.0 3.83 13.6 Anthriscus sylvestris 0.0 28.0 0.13 0.5 

Arrhenatherum elatius  0.0 1.0 0.00 0.5 Bellis perennis 0.0 59.0 0.31 2.3 

Bromus mollis 0.0 7.0 0.10 3.7 Centaurea jacea 0.0 1.0 0.00 0.5 

Cynosurus cristatus 0.0 59.6 1.77 10.3 Cerastium holosteoides 0.0 4.0 0.23 19.6 

Dactylis glomerata 0.0 94.0 25.68 89.7 Cirsium arvense 0.0 40.0 1.14 9.3 

Deschampsia caespitosa 0.0 90.0 0.59 0.9 Cirsium vulgare 0.0 15.0 0.30 7.0 

Elymus repens 0.0 80.0 5.82 36.9 Convolvulus arvensis 0.0 28.6 0.39 6.1 

Festuca pratensis 0.0 85.0 0.71 5.6 Crepis capillaris 0.0 20.0 0.38 6.1 

Festuca rubra 0.0 95.4 4.85 21.0 Erophila verna 0.0 4.0 0.04 4.7 

Lolium perenne 0.0 88.6 15.64 70.1 Epilobium spec. 0.0 16.0 0.20 4.7 

Phleum pratense 0.0 4.0 0.06 2.3 Galium mollugo 0.0 88.0 9.67 40.7 

Poa annua 0.0 1.0 0.01 0.9 Geranium dissectum 0.0 13.0 0.20 13.6 

Poa pratensis 0.0 45.0 2.32 27.6 Geum urbanum 0.0 30.0 0.19 3.3 

Poa trivialis 0.0 16.0 1.28 25.2 Hieracium pilosella 0.0 0.2 0.00 0.5 

     Lamium purpureum 0.0 38.0 0.21 2.3 

Legumes     Leontodon hispidus 0.0 2.0 0.02 1.9 

Medicago lupulina 0.0 5.0 0.03 0.9 Plantago lanceolata 0.0 35.0 0.56 10.7 

Trifolium campestre 0.0 20.0 0.17 1.9 Plantago major 0.0 3.0 0.01 0.5 

Trifolium dubium 0.0 25.0 0.18 3.7 Taraxacum officinale 0.0 83.0 5.89 57.5 

Trifolium pratense 0.0 61.0 1.50 17.8 Ranunculus acris 0.0 10.0 0.20 6.5 

Trifolium repens 0.0 49.6 2.49 39.7 Ranunculus repens 0.0 71.8 1.35 23.8 

Vicia cracca 0.0 1.0 0.00 0.5 Rosa spec. 0.0 5.0 0.04 0.9 

     Rumex acetosa 0.0 4.0 0.03 1.4 

     Urtica dioica 0.0 84.0 1.09 2.8 

     Veronica chamaedrys 0.0 4.0 0.03 1.9 

     Veronica serpyllifolia 0.0 35.0 0.19 1.9 
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3.3.2 Exclusive use of ultrasonic sward height 

Prediction accuracies for DMY and FMY varied significantly between sampling dates and were 

predominately low (Tables 3.3 and 3.4). Higher accuracies were achieved at date 1 both for DMY 

and FMY (r² = 0.74 and 0.81 respectively) where sward heights were much lower than at later 

dates. Lowest r² values were found at date 3 and 4 (<0.45). With advancing grazing season, height 

of swards seems to be a poor indicator of biomass, as partly utilized patches were short but biomass 

was denser. In addition, some species like Dactylis glomerata and Festuca rubra frequently grow 

in dense tussocks and produce high biomass at low height, which is results in an underestimation 

of biomass (Figure. 3.1). In some patches rejected by animals, very tall and mature species like 

Cirsium arvense, elongated stems of Galium mollugo or very tall and sparse individuals of Phleum 

pratensis at inflorescence stage, probably boosted USH measures although the amount of biomass 

was not very high. Sward types like this may tend to be over-estimated (Figure 3.1). This influence 

was also observed by Fricke et al. (2011), who further showed that the relationship between forage 

mass and USH could also be influenced by weed proportion, as some weeds grow higher than the 

sown species. Beside the heterogeneity of canopy structure, variation in leaf angles among plant 

species and movements of swards during measurement due to wind may have further affected the 

reflection of ultrasonic signal (Hutchings et al., 1990; Hutchings, 1992). DMP had very weak or 

no correlation with USH and, thus, data were not shown. It can be summarized that exclusive USH 

measurements only produced low prediction accuracies for yield parameters in heterogeneous 

pastures. 
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Table 3.3 Regression and cross validation (CV) results for a range of sensor models used for prediction of dry matter 

yield (DMY) in exclusive application or as combination of ultrasonic sward height (USH) with a selection of relevant 

spectral variables on common and date-specific swards.  

 Exclusive combination with USH 

  SE a r² b RMSEcvc r²cv d SE r² RMSEcv r²cv 

Common (N e = 214) 

USH  109.9 0.43 112.0 0.42     

MPLSR g 94.0 0.56 101.5 0.48     

PCA h 130.0 0.21 131.5 0.19 97.6 0.57 99.7 0.49 

WV2 i 137.0 0.13 137.5 0.09 93.3 0.62 96.5 0.48 

NDSI j  121.0 0.31 121.5 0.30 98.4 0.55 99.3 0.52 

Date 1 k (N = 54) 

USH  67.5 0.74 68.8 0.73     

MPLSR 52.4 0.80 80.3 0.63     

PCA 97.1 0.46 99.4 0.44 55.6 0.84 73.8 0.56 

WV2 96.6 0.48 97.2 0.41 53.5 0.88 84.20 0.61 

NDSI  81.2 0.62 82.7 0.61 48.5 0.88 55.9 0.80 

Date 2 l (N = 54) 

USH  133.0 0.47 134.1 0.45     

MPLSR 79.9 0.80 90.1 0.79     

PCA 106.0 0.67 109.7 0.59 92.4 0.77 103.8 0.63 

WV2 109.0 0.65 114.4 0.60 84.6 0.83 97.8 0.60 

NDSI  95.7 0.72 95.9 0.70 81.5 0.80 83.4 0.77 

Date 3 m (N = 52) 

USH  111.8 0.36 112.0 0.31     

MPLSR 100.3 0.47 130.5 0.15     

PCA n.s.f n.s. n.s. n.s. 108.0 0.44 108.2 0.19 

WV2 116.0 0.36 124.8 0.18 102.0 0.54 120.4 0.25 

NDSI  104.9 0.43 106.4 0.38 86.6 0.66 110.9 0.11 

Date 4 n (N = 54) 

USH  86.8 0.42 91.9 0.37     

MPLSR 52.5 0.76 57.5 0.76     

PCA 86.2 0.46 94.5 0.35 72.3 0.69 95.3 0.45 

WV2 86.5 0.44 88.8 0.34 69.0 0.73 194.5 0.46 

NDSI  77.6 0.55 82.5 0.41 65.0 0.72 90.3 0.46 
a SE: Standard error of regression (g m-2). 
b r²: Regression coefficient of determination. 
c RMSEcv: Root mean square error of cross validation (g m-2). 
d r²cv: Cross validated coefficient of determination. 
e N: Number of sampling plots. 
f n.s.: Non-significant effect. 
g MPLSR: Modified partial least square regression comprising the whole range of hyperspectral data. 
h PCA: Principle component analysis derived components. 
i WV2: WorldView2 satellite broad bands. 
j NDSI: Narrow band normalized spectral vegetation index. 
k Date 1: 25th April-2nd May 2013; l Date 2: 3rd-5th June 2013; m Date 3: 21st-23rd August 2013; n Date 4: 30th 

September-2nd October 2013. 
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Table 3.4 Regression and cross validation (CV) results for a range of sensor models used for prediction of fresh matter 

yield (FMY) in exclusive application or as combination of ultrasonic sward height (USH) with a selection of relevant 

spectral variables on common and date-specific swards. 

 exclusive combination with USH 

 SE a r² b RMSEcvc r²cv d  SE r² RMSEcv r²cv 

Common (N e = 214)  

USH 417.0 0.44 424.9 0.42     

MPLSR g 281.5 0.69 290.2 0.67     

PCA h 444.0 0.37 448.4 0.35 278.0 0.76 285.7 0.66 

WV2 i 482.9 0.25 486.3 0.24 288.0 0.74 296.7 0.62 

NDSI j 349.5 0.61 350.7 0.59 288.4 0.74 299.5 0.63 

Date 1 k (N = 54)  

USH 184.0 0.81 187.7 0.80     

MPLSR 154.8 0.86 216.2 0.78     

PCA 269.0 0.61 288.3 0.57 152.0 0.88 169.0 0.84 

WV2 288.0 0.55 299.2 0.46 140.0 0.91 147.92 0.83 

NDSI 253.8 0.64 274.8 0.60 122.6 0.92 132.2 0.90 

Date 2 l (N = 54)  

USH 586.0 0.46 617.5 0.40     

MPLSR 257.7 0.89 319.0 0.86     

PCA 378.0 0.78 419.8 0.73 336.0 0.83 377.3 0.76 

WV2 426.0 0.72 444.1 0.67 318.0 0.86 338.5 0.74 

NDSI 362.8 0.79 377.1 0.77 344.2 0.82 340.0 0.75 

Date 3 m (N = 52)  

USH 303.0 0.21 306.5 0.12     

MPLSR 221.9 0.57 306.1 0.33     

PCA n.s.f n.s. n.s. n.s. 246.0 0.51 257.6 0.30 

WV2 272.0 0.40 287.9 0.25 239.0 0.57 257.5 0.32 

NDSI 258.1 0.42 262.2 0.37 204.4 0.68 257.6 0.40 

Date 4 n (N = 54)  

USH 214.0 0.45 231.2 0.39     

MPLSR 147.35 0.65 158.3 0.68     

PCA 225.0 0.39 240.8 0.35 209.0 0.47 216.8 0.44 

WV2 220.0 0.43 226.7 0.32 184.0 0.68 243.9 0.43 

NDSI 217.8 0.41 229.4 0.36 184.1 0.63 236.1 0.38 
a SE: Standard error of regression (g m-2). 
b r²: Regression coefficient of determination. 
c RMSEcv: Root mean square error of cross validation (g m-2). 
d r²cv: Cross validated coefficient of determination. 
e N: Number of sampling plots. 
f n.s.: Non-significant effect. 
g MPLSR: Modified partial least square regression comprising the whole range of hyperspectral data. 
h PCA: Principle component analysis derived components. 
i WV2: WorldView2 satellite broad bands. 
j NDSI: Narrow band normalized spectral vegetation index. 
k Date 1: 25th April-2nd May 2013; l Date 2: 3rd-5th June 2013; m Date 3: 21st-23rd August 2013; n Date 4: 30th 

September-2nd October 2013. 
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3.3.3 Exclusive use of spectral data 

MPLSR analysis revealed that the unprocessed reflectance data showed better correlation with the 

target parameters than the transformed reflectance data (FDR, SDR, CR). Therefore, original 

reflectance data were used for further analysis. Models developed with published VIs gave low r²-

values and so the results are not presented here. Poor prediction of published VIs has also been 

found in other studies (Cho et al., 2007; Biewer et al., 2009a; Duan et al., 2014). Obviously, a 

reduction of spectral information to only two or three wavelengths, as with published VIs, does not 

suffice to cover the high variability within pastures. The location of best fit wavelengths using 

NDSI for 1 nm bandwidths were mostly the same as for the 50 nm band widths for DMY and FMY 

in common, date 1 and 2 dataset, as well as for DMP in common and date-specific swards. This 

finding is in line with results of Reddersen et al. (2014) for prediction of biomass using NDSI as 

exclusive parameter or in combination with USH and leaf area index. However, best fit narrow and 

broadband wavelengths were not identical for FMY and DMY at date 3 and 4. Maximum r² of full 

models based on 1 nm bandwidth was up to 19% higher than with 50 nm. This result does not 

correspond with findings of Fricke and Wachendorf (2013) who found no substantial losses in 

prediction accuracy with increasing bandwidths for high yielding legume/grass mixtures. However, 

this corresponds with other findings (Thenkabail et al., 2000; Mutanga and Skidmore, 2004; Peng 

Gong et al., 2003) where narrow bands performed better than broad bands. Therefore, NDSI indices 

based on narrow bands were chosen to develop sensor models. Maximum prediction accuracy 

based on exclusive narrow band NDSI were found mostly with bands between 1035 and 1139 nm, 

i.e. the ascending slope of the first water absorption band and the descending slope of the second 

water absorption band. The ascending slope of the second water absorption band (1188 to 1305 

nm) was found the most important part of the spectrum for prediction of DMP (Table 3.5). Among 

exclusive sensor procedures, MPLSR prediction accuracy was best both for DMY (r² of 0.56 for 

common and 0.47 - 0.80 for date-specific models) and FMY (0.69 and 0.57 - 0.89 respectively) 

(Tables 3.3 and 3.4). This approach integrates spectral information of the whole hyperspectral 

range and has also been addressed to be successful in other studies for measuring grassland 

properties (Biewer et al., 2009a; Marabel and Alvarez-Taboada, 2013; Pellissier et al., 2015; Thulin 

et al., 2012). Although MPLSR is a robust method to adequately predict biomass, it is not feasible 

for a livestock manager to implement the technique, as purchasing a full range hyperspectral 

radiometer is far too expensive (Starks et al., 2006). In order to reduce the number of wavebands, 

PCA was adopted to the spectra and five principal components (PC) were identified accounting for 
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99% of the variation in data. Remarkably, PCs showed weak relationships with DMY (r² = 0.21), 

FMY (r² = 0.37) and DMP (r² = 61) for common dataset. Prediction accuracy did not exceed r² 0.67 

by separation of dataset into sampling dates. No significant correlation was found between FMY 

or DMY and PCA derived components at date 3. For the other dates, accuracy of PCA was always 

below NDSI but well above RapidEye satellite bands (RE; data not shown). Although the 

predictive power of WorldView2 (WV2) bands (r² 0.13 - 0.55) was slightly better than RE bands 

(r² of 0.13 - 0.48) results obtained were not satisfactory.  

Most spectral variables gave better prediction accuracies than exclusive USH measurements. This 

finding does not match with that of Fricke and Wachendorf (2013) and Reddersen et al. (2014) 

who reported that exclusive USH always achieved better results than exclusive narrow and broad 

band VIs for prediction of biomass in more homogeneous grasslands. Contrary to yields, separation 

of the common dataset into date specific subsets did not improve prediction accuracy for DMP 

based on spectral information (Table 3.6). Yang and Guo (2014) found that the relationship 

between dead material cover and VIs is a function of the amount of dead material and they 

concluded that spectral VIs could be used for estimating dead material cover which is greater than 

50% in mixed grasslands. In this respect, the lower model accuracies for yield at later dates may 

be partly attributed to the higher amount of dead material at this time. The higher proportion of 

explained variance in DMP by spectral variables may reflect the impact of dead materials on the 

canopy reflectance at date 3 (r² = 0.50-0.70) and, to a lesser degree, at date 1 (r² = 0.32-0.67) and 

date 4 (r² = 0.41-0.68). In contrast, DMP is much lower at date 2, which corresponds to lower R² 

values for DMP prediction (0.16-0.25) (Table 3.6), but allows higher accuracies for yield 

prediction, as low levels of DMP are inversely related to higher proportions of green plant material. 

This is consistent with findings by Chen et al. (2010), who pointed out that spectral indicators 

usually collect data over green vegetation rather than mature and dry vegetation. To summarize, 

yield of pastures with complex sward structures could barely be predicted using exclusive sensor 

measurements as conducted in this study. 
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Table 3.5 Wavelength positions of best fit band combination (b1, b2) and maximum r² values (r² of full model) for the normalized difference spectral index (NDSI) as 

narrow (1 nm) and broad (50 nm) bands, exclusively and in combination with ultrasonic sward height (USH) to predict target parameters. 

 Common (n=214) Date 1a (n=54) Date 2b (n=54) Date 3c (n=52) Date 4d (n=54) 

  r² b1 b2 r² b1 b2 r² b1 b2 r² b1 b2 r² b1 b2 

Dry matter yield (g m-2) 

 

 NDSI1nm 0.31 1035 1051 0.62 389 609 0.73 1097 1139 0.44 1122 1128 0.55 769 778 

NDSI50nm 0.28 
1018-

1068 

1019-

1069 

 

0.55 

377-

427 

572-

622 
0.71 

1093-

1143 

1094-

1144 
0.25 

377-

427 

455-

505 
0.45 

454-

504 

467-

517 

USH + NDSI1nm 0.55 521 578 0.88 1215 1225 0.81 1024 1031 0.67 1116 1118 0.72 1622 1633 

USH + NDSI50nm 0.55 
498-

548 

552- 

602 

 

0.85 

1174-

1224 

1175-

1225 
0.78 

733-

783 

734-

784 
0.56 

710-

760 

954-

1004 
0.63 

894-

944 

900-

950 

                

Fresh matter yield (g m-2) 

NDSI1nm 0.61 1117 1134 0.64 1040 1073 0.80 1080 1104 0.43 1122 1128 0.42 751 782 

NDSI50nm 0.58 
1101-

1151 

1102-

1152 

 

0.58 

633-

683 

643-

693 
0.78 

1091-

1141 

1092-

1142 
0.33 

499-

549 

669-

719 
0.45 

454-

504 

467-

517 

USH + NDSI1nm 0.74 1077 1086 0.93 996 1005 0.83 536 564 0.70 1122 1135 0.65 1621 1633 

USH + NDSI50nm 0.72 
1044-

1094 

1241-

1291 

 

0.90 

996-

1046 

997-

1047 
0.82 

521-

571 

531-

581 
0.64 

1582-

1632 

1583-

1632 
0.62 

709-

759 

907-

957 

                

Dead material proportion (% of dry matter yield) 

NDSI1nm 0.65 1242 1305 0.54 1231 1285 0.43 1188 1202 0.69 1236 1281 0.70 1187 1206 

NDSI50nm 0.65 
1242-

1292 

1243-

1293 
0.53 

1166-

1216 

1260-

1310 
0.33 

1166-

1216 

1167-

1217 
0.50 

1169-

1219 

1260-

1310 
0.63 

1166-

1216 

1168-

1218 
a Date 1: 25th April-2nd May 2013 ; b Date 2: 3rd-5th June 2013; c Date 3: 21st-23rd August 2013; d Date 4: 30th September-2nd October 2013. 
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Table 3.6 Regression and cross validation (CV) results for prediction of dead material proportion (DMP) using 

modified partial least square regression (MPLSR) and a set of spectral predictor variables as narrow band normalized 

spectral vegetation index (NDSI), WorldView2 (WV2) bands and principle component analysis (PCA) derived 

components on common and date-specific swards.  

  

  SE a r² b RMSEcv c r²cv d 

Common (N e = 214) 

MPLSR 10.1 0.76 10.4 0.74 

PCA 13.0 0.61 13.2 0.58 

WV2 11.7 0.68 12.0 0.66 

NDSI 12.2 0.65 12.3 0.64 

Date 1 f (N = 54) 

MPLSR 8.0 0.67 10.6 0.46 

PCA 12.6 0.32 12.9 0.17 

WV2 11.9 0.42 12.6 0.26 

NDSI 10.3 0.54 10.7 0.49 

Date 2 g (N = 54) 

MPLSR 4.5 0.21 4.6 0.19 

PCA 5.7 0.25 6.0 0.07 

WV2 5.9 0.16 6.1 0.09 

NDSI 4.7 0.43 5.2 0.24 

Date 3 h (N = 52) 

MPLSR 13.37 0.50 14.2 0.43 

PCA 11.1 0.66 11.5 0.63 

WV2 10.8 0.70 11.5 0.64 

NDSI 11.0 0.66 11.5 0.64 

Date 4 i (N = 54) 

MPLSR 13.6 0.41 13.9 0.39 

PCA 12.2 0.54 12.1 0.50 

WV2 11.9 0.58 12.8 0.51 

NDSI 10.2 0.68 10.5 0.66 
a SE: Standard error of regression (% DMY). 
b r²: Regression coefficient of determination. 
c RMSEcv: Root mean square error of cross validation (% DMY). 
d r²cv: Cross validated coefficient of determination. 
e N: Number of sampling plots. 
f Date 1: 25th April-2nd May 2013; g Date 2: 3rd-5thJune 2013; h Date 3: 21st-23rd August 2013; i Date 4: 30th 
September-2nd October 2013. 
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3.3.4 Sensor data fusion using combinations of USH and spectral variables 

Compared to exclusive use of USH, prediction accuracy of combinations of USH and published 

VIs showed only minor or no improvement at all (data not shown), which was confirmed by 

Reddersen et al. (2014) who also found no improvement for such combinations in grasslands 

applied to three sward types with greater homogeneity comprising a pure stand of reed canary grass 

(Phalaris aruninacea), a legume grass mixture and a diversity mixture with thirty-six species in an 

extensive two cut management system. 

Combination of USH with the applied spectral variables increased r²-values for common swards 

from 0.43 (exclusive USH) to a maximum of 0.62 (WV2 combined with USH) for DMY and from 

0.44 (exclusive USH) to a maximum of 0.76 (PCA combined with USH) for FMY in common 

swards (Tables 3.3 and 3.4). Irrespective of spectral sensor configuration, date-specific calibrations 

of yield parameter for date 1 and 2 performed better than for date 3 and 4. Obviously, sward 

structure is so complex at later stages of the grazing season that even sensor combinations did not 

produce adequate results. Considering the consequences of these limitations for the implementation 

of sensor data fusion in precision agriculture, it should be noted that the productivity of cool-season 

pastures is usually highest in the first half of the growing season (Gherbin et al., 2007) when the 

best results with combined sensor data were obtained. Thus, sensor data fusion gain more 

importance in this part of the vegetation period, when efficient and timely estimates of available 

biomass is an important support of grazing management decisions. Further, major management 

measures (e.g. fertilization; evaluation of botanical sward composition) are also scheduled mainly 

before summer, where pasture growth is frequently limited by water scarcity or progressively 

reduced day lengths. Most remarkably, PCA generally performed worse than multi-spectral 

calibrations, although principal components represented most of the variation in total spectral data. 

On the other hand, combination of USH and NDSI consistently produced best results both in 

common and date-specific calibrations. Dominant bands of NDSI were mostly located at water 

absorption bands similar to exclusive use, i.e. the ascending slop of the first absorption band 

(between 996 to 1086 nm) and the ascending slope of the second water absorption band (1215 to 

1225 nm) as well as the green region in the visible spectrum (521 to 578 nm) (Table 3.5). The 

dominance of water absorption bands can be explained by the strong relationship between biomass 

and canopy water content (Anderson et al., 2004; Mutanga and Skidmore, 2004). The importance 

of water absorption bands for estimating biomass is also confirmed by other investigations (Psomas 
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et al., 2011; Fricke and Wachendorf, 2013). Numata et al., (2008) found that water absorption 

features derived from hyperspectral sensors were better measures for estimating pasture biomass 

compared to VIs, such as Normalized Difference Vegetation Index and Normalized Difference 

Water Index. Figure 3.1 shows example plots of fit for DMY prediction based on USH and NDSI 

and provides a comprehensive insight into the effects of sensor combination. It becomes clear that 

with exclusive sensors, calibration models led to an over-estimation at low levels of DMY, whereas 

higher values were under-estimated. An improvement of fit by the combination of sensors is 

obvious for all sampling dates and is presented by a higher r²-value and a convergence of the 

regression line to the bisector. Yield predictions in heterogeneous pastures as presented in this 

study partly show a complex interaction between USH, NDSI and DMP (Figure 3.2). At higher 

levels of NDSI, DMY and FMY basically follow a linear increase with USH gain, regardless of 

DMP. In contrast, at low levels of NDSI, DMY and FMY curves show differing trends. While 

DMY (Figure 3.2A) just shows a parallel shift to lower yield levels, FMY (Figure 3.2B) in swards 

with high DMP shows a saturated curve, suggesting that high DMP might consist of both 

compacted xeric material leading to higher yield levels at low sward height and sparse high growing 

mature shoots reaching higher sward layers without much contribution to yield. In contrast, at low 

DMP, NDSI seems to be more closely linked to pure bulk density of green vegetation. The inter-

relationship between selective grazing and species phenology creates a broad variation of sward 

structures posing an enormous challenge for any sensor applications. 

Comparable to NDSI, WV2 bands also proved to be an effective spectral information in 

combination with USH. This is of particular interest, as this finding points to the potential of the 

WordView-2 ® satellite system to provide large-scale images with an acceptable spatial resolution 

to assess larger pasture areas in farming practice. The relatively high prediction accuracy of WV2 

bands particularly in the major growth period in the first half of the year opens up a perspective for 

the development of future management assistant tools. Continuous biomass monitoring based on 

advanced multi-spectral satellite images with high spatial resolution like WorldView® and 

GeoEye® can be used as a basis for decision support for supporting management decision such as 

planning grazing time and intervals for cattle on pasture paddocks, site specific re-sowing or 

targeted cut of less-preferred sub-areas, respectively. However, further research is necessary to 

evaluate the availability of reliable images at a high repetition rate and their combination with 

sward height data, as for instance derived from radar satellites. 
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Figure 3.1 Plots of fit between measured and predicted dry matter yield (DMY) for exclusive ultrasonic sward height 

(USHexclusive), the best fit normalized difference spectral index (NDSIexclusive) and a combination of USH and 

NDSI (USH + NDSI) applied in date-specific swards: Date 1: 25th April-2nd May 2013, Date 2: 3rd-5th June 2013, 

Date 3: 21st-23rd August 2013 and Date 4: 30th September-2nd October 2013. 
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Figure 3.2 Predictions of dry matter yield (DMY) (A) and fresh matter yield (FMY) (B) in common swards based on 

ultrasonic sward height (USH) and the Normalized Difference Spectral Index (NDSI) as influenced by dead material 

proportion (DMP) in the range of ± standard deviation (SD). NDSI represents narrow-band reflection values selected 

in combination with USH for each parameter. For dry matter yield (DMY) (A): r² = 0.57, SE = 96.98, DMY = 21950 

NDSI - 100000 NDSI² + 41.37 DMP + 6.74 USH - 703.5 NDSI*DMP + 2963 NDSI²*DMP - 1064. For fresh matter 

yield (FMY) (B): r² = 0.72, SE = 310.2, FMY = 370.7 + 341100 NDSI + 51920000 NDSI² - 1.508 DMP + 26.73 USH 

- 0.067 USH² - 7832 NDSI*DMP - 1644000 NDSI²*DP + 3.833 NDSI*DMP*USH² + 694.5 NDSI²*DMP*USH². 
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3.4  Conclusions 

The main purpose of this study was to explore the potential of sensor data fusion for predicting 

biomass in heterogeneous pastures. It can be concluded that: 

(i) Exclusive ultrasonic sward height or spectral measurement can barely predict yield parameters 

of heterogeneous pastures. 

(ii) Sensor data fusion by combining USH with narrow band NDSI or WV2 satellite broad bands 

increased the prediction accuracy significantly. These combinations can be on a par or even 

better than the use of the full hyperspectral information. Spectral regions related to plant water 

content (996-1225 nm) were found to be most important. Narrow-band NDSI constructed with 

bands in these spectral regions may be preferred for research purposes where highest accuracy 

is essential, whereas WV2 provides interesting perspectives for practical implementation, as 

these bands are already implemented on satellite platforms. 

(iii) The presence of a high proportion of senesced material in pastures influences the performance 

of the sensor systems and may limit the applicability of such concepts in the second half of the 

growing season. More advanced sensor systems are required to overcome these limitations. 

(iv) The present study documents the promising potential of ultrasonic and hyper-spectral sensor 

data fusion for the prediction of biomass in pastures with high structural diversity, which 

provides an adequate tool needed for future mapping of spatio-temporal dynamics in 

heterogeneous grassland.  
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4 Determination of fibre and protein content in heterogeneous pastures using 

field spectroscopy and ultrasonic sward height measurements 

Abstract Feeding of livestock on pastures requires constant monitoring of diet composition 

to ensure consistent levels of animal production. The widely used but conventional techniques to 

measure the components of feed are impractical to obtain in-field forage quality status for making 

real-time decisions. Assessment of forage quality parameters using proximal sensing is of 

particular interest. The present study aimed to demonstrate the potential of using a combination of 

ultrasonic and canopy reflectance data to predict forage quality variables of heterogeneous 

pastures. A field experiment with pastures continuously grazed by cows with three stocking density 

treatments (moderate, lenient and very lenient stocking) was used to calibrate ultrasonic and 

hyperspectral reflectance sensors. Hyperspectral analysis by a modified partial least square 

regression (MPLSR) resulted in maximum accuracy for the prediction of acid detergent fibre 

(ADF) and crude protein (CP) (R2calibration = 0.63-0.85). Any reduction of hyperspectral data 

into vegetation indices based on few specific narrow wavebands or satellite broadbands reduced 

prediction accuracy significantly. However, prediction of ADF and CP was improved by a 

combined analysis of ultrasonic sward height and vegetation indices or satellite broadbands, so that 

most calibration models exceeded an RPD (Ratio of standard deviation and standard error of 

prediction) value of 1.4, which is considered as an acceptable predicting capability for variable 

field condition. Our findings showed that combined sensing systems using reflectance and 

ultrasonic sensors may provide acceptable prediction accuracies for practical application even 

under extremely heterogeneous pasture conditions. 

 

4.1 Introduction 

Feeding of livestock on pastures requires constant monitoring of diet composition to ensure 

consistent levels of animal production (Deaville and Flinn, 2000). Pasture quality is highly variable 

within and between paddocks and during the growing season due to differences in species 

composition, sward maturity, soil type and topography as well as climatic factors (Pullanagari et 

al., 2012a). Management decisions such as grazing intensity can also influence pasture quality 

(Pavlů et al., 2006). The widely used but conventional techniques of wet chemistry and laboratory 

based VIS/NIR techniques to measure the components of feed quality are expensive, destructive, 
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and labour and time consuming ( Zhao et al., 2007). Moreover, these methods are impractical to 

determine the in-field forage quality status for making real-time decisions. Ground based 

(proximal) remote sensing technologies have been recognized as practical means to estimate 

various biophysical and biochemical properties of vegetation at the field scale (Starks et al., 2006). 

Assessment of forage quality parameters using proximal sensing of pasture canopy reflectance is 

of particular interest. While broadband multispectral sensors are considered to have limitations in 

providing accurate estimates of vegetation characteristics (Thenkabail, 2012), hyperspectral 

sensors with narrow and near-continuous spectra allow much more detailed spectral information 

and offer significant improvements over broadband sensors. Partial least square regression (PLSR) 

is a technique for analysing spectral datasets that employs the whole range of hyperspectral data in 

the analysis. Several studies have shown that PLSR is a powerful tool to accurately predict forage 

quality constituents under field conditions (Biewer et al., 2009b; Starks et al., 2004; Li et al., 

2014a). However, due to costs and complexity of hyperspectral data, reducing the spectral data 

range and identification of the best spectral features of hyperspectral information would facilitate 

simple sensor applications in the field (Biewer et al., 2009b; Li et al., 2014b; Reddersen et al., 

2014). One option is the selection of optimal wavebands that provide the best information by 

developing two-wavelength reflectance ratios from hyperspectral data. Comparisons between 

traditional vegetation indices (VIs) (which commonly use average spectral information over 

predetermined broad-band wavelengths) and hyperspectral narrowband VIs showed a lower 

accuracy of traditional VIs than for narrowband VIs derived from hyperspectral measurements for 

various vegetation characteristics (Thenkabail et al., 2000; Mutanga and, Skidmore, 2004; Inoue 

et al., 2008a; Fricke and Wachendorf, 2013).VIs based on visible and NIR reflectance indicate 

saturation at high biomass values which limit their sensitivity to further changes in biomass 

accumulation (Cammarano et al., 2014). As selection of specific narrow wavelengths or reducing 

the hyperspectral range may lead to a loss of spectral information, combining spectral data with 

information from other sensors may be effective. Sward height measured by ultrasonic distance 

sensor (referred as ultrasonic sward height (USH)) may provide useful information, as forage 

quality is known to be negatively correlated with the growth height of the plants (Hofmann et al., 

2001; Pavlů et al., 2006; Summers and Putnam, 2008).The combination of ultrasonic and spectral 

sensors has been previously utilized for the prediction of biomass in sown grasslands with 

acceptable accuracies (Fricke and Wachendorf, 2013; Reddersen et al., 2014; Pittman et al., 2015). 
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However, the benefit of such a combined sensing technique for a non-destructive determination of 

forage quality in heterogeneous pastures has yet to be verified. 

In order to reduce hyperspectral information to few variables we tested several approaches, such 

as normalized difference spectral indices (NDSIs) using narrowband reflectance combination 

(according to the normalized difference vegetation index (NDVI) type formula), multi-spectral 

satellite bands (according to 8 broadbands of WorldView2 satellite) and principle component 

analysis (PCA) derived components. Thus, the goal of this study was to test the performance of 

those spectral variables derived from hyperspectral data exclusively and in combination with USH 

and compare it to modified partial least square regression (MPLSR) models for predicting crude 

protein (CP) and acid detergent fibre (ADF) of heterogeneous pastures, which were continuously 

stocked by cows with differing stocking density.  

 

4.2 Materials and methods 

4.2.1 Study area and site characteristics 

The research was conducted on a heterogeneous permanent pasture at the experimental farm 

Relliehausen of the University of Goettingen in the Solling uplands, Lower Saxony (51◦46ˊ55 ̋ N, 

9◦42ˊ13 ̋ E, 180-230 m above mean sea level). The site has been described in detail by Wrage et al. 

(2012). Briefly, the soil was characterized as pelosol-brown with pH of 6.3. Average annual rainfall 

was 879 mm with an average temperature of 8.2°C. The grassland was a moderately species-rich 

Lolio-Cynosuretum. The one hectare paddocks were continuously stocked by Simmental cows with 

three stocking density treatments as follow: a) moderate stocking, average of 3.4 standard livestock 

units (SLU, i.e. 500 kg live weight) per hectare, b) lenient stocking, average of 1.8 SLU per hectare, 

c) very lenient stocking, average of 1.3 SLU per hectare. Treatments were replicated 3 times and 

the grazing season lasted from May to October, usually interrupted by breaks in July or August due 

to insufficient sward productivity.  

 

4.2.2 Field measurements and plant sampling 

Field measurements were carried out within one paddock of each stocking density at three sampling 

dates in 2013 ((i) 3rd to 5th June, (ii) 21st to 23rd August and (iii) 30th September to 2nd October) and 

2014 ((i) 20th to 22nd May, (ii) 15th to 17th July and (iii) 23rd to 30th September). For sensor 
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measurements and plant sampling subplots with the area of 0.25 m2 were selected and marked in 

each paddock representing the range of sward compositions and structures. A Trimble GPS device 

with ASCOS reference data correction (mean horizontal accuracy = 10 cm) was used to avoid 

repeated subplot locations during two year measurements. Canopy hyperspectral reflectance was 

acquired at each sampling location using a hand-held spectroradiometer (Portable HandySpec Field 

VIS/NIR, Tec-5 AG, Germany) in the range from 305 to 1700 nm (Figure 4.1) with 1 nm reading 

intervals and a field of view (FOV) of 25 ̊. The spectrometer head was held approximately 1 m 

above the canopy. A gray Spectralon reference panel was used at fixed intervals to calibrate the 

spectral measurements. 

 

Figure 4.1 Canopy hyperspectral mean, minimum and maximum reflectance derived from each 1nm wavelength 

calculated for all samples (common swards, N=323). 

 

 An ultrasonic distance sensor of type UC 2000-30GM-IUR2-V15 (Pepperl and Fuchs, Mannheim, 

Germany) was used to gather USH measurements. The beam angel of the device was about 25° 

and the sensing distance ranged from 0.8 to 200 cm (Pepperl and Fuchs, 2010). The ultrasonic echo 

was converted into an output voltage linear to the measured distance and subsequently transformed 
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by an A/D converter into numerical values, logged on a personal computer and finally converted 

into sward height values using the linear regression EQ 1. 

y = a – 159.03 + 0.08756 x (EQ 1) 

Where, a = mount height of the ultrasonic sensor above soil surface (cm), x = values from 

AD/converter (proportional to distance related voltage output), and y = ultrasonic sward height 

(cm). 

At each subplot, five measurements were recorded with the ultrasonic sensors placed at five 

positions on a frame at a height of about 1 m. The estimated USH for the subplot was calculated as 

the average value of the five measurements. A detail description of USH device and methodology 

can be found in Fricke et al. (2011). After sensor measurements were made in each sampling 

location, all vegetation in the 0.25 m2 area was clipped at ground surface level. For botanical 

analysis, a subsample of herbage was separated into fractions of grasses, legumes, herbs, mosses 

and dead material and dried at 105ºC for 48 h to determine the dry matter (DM) proportion of each 

functional group. 

 

4.2.3 Assessment of forage quality data 

Approximately 100-500 g of sample fresh matter was dried at 65°C for 72 h and were ground with 

a 1-mm sieve. Subsequently, about 4-10 g of the material was used to determine the spectral 

signature by lab near-infrared spectroscopy (NIRS).  

Nitrogen (N) concentration was determined using an elemental analyser (vario MAX CHN, 

Elementar Analysesysteme GmbH, Hanau, Germany). The crude protein content was 

calculated by multiplying N content with 6.25, as protein was assumed to contain 16 % nitrogen 

on average. ADF content was determined using an ANKOM 200 Fibre Analyzer (ANKOM A200 

filter bag technique, ANKOM Company, Macedon, NY). ADF samples were then combusted in a 

muffle furnace at 550◦C for 12 h to measure ash-free acid detergent fibre content. Due to limited 

lab resources a subdivision of only 176 samples (104 samples in 2013 and 72 samples in 2014) was 

analysed. Samples were selected by spectral Mahalanobis distance to obtain a representative cross 

section for the whole dataset. Reflectance spectra of NIRS measurement were obtained using a 

XDS-spectrometer (Foss NIRSystems, Hillerød, Denmark). With the resulting calibration model 

(R² = 0.97 and 0.96, SECV= 1.41 and 1.50 % of DM for ADF and R² = 0.99 and 0.97, SECV= 0.08 

and 0.10 % of DM for CP in 2013 and 2014, respectively) CP and ADF contents of the remaining 
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147 samples were predicted. The calculation was done with the WinISI software (version 1.63, 

Foss NIRSystems/Tecator Infrasoft International, LLC, Silver Spring, MD, USA), using the range 

between 1100 and 2498 nm. 

 

4.2.4 Data analysis 

Prior to analysis, spectral data in the wavelength 305-360 nm, 1340-1500 nm and 1650-1700 nm 

were eliminated because of visually identified significant signal-noise, leaving 1126 spectral bands 

between 360 and 1650 nm. Data analysis was performed for four different datasets: a common 

dataset (N = 323), which comprises data from all levels of stocking density and sampling dates and 

three subsets for each sampling date from both years, representing the whole range of growth 

characteristics and plants phenology along the progressing vegetation period (each with N = 108). 

As a first step, prediction models were developed by applying MPLSR analysis to the original 

reflectance (raw spectra) and to the first and second derivative transformations of the original 

reflectance over the whole measured range of the spectrum (360-1650nm) using WINISI III 

package (Infrasoft International, LLC. FOSS, State College, PA, version 1.63). The number of 

outlier elimination passes was set to zero in order not to overrate the potential of MPLSR. 

Derivative spectra were used to reduce the influence of background reflectance and to enhance 

absorption spectral features for the purpose of creating more robust calibration models. Several 

approaches were used to reduce the hyperspectral information to few variables which could be 

combined with USH: the normalized difference spectral index (NDSI) (Inoue et al. 2008) was 

applied over the range of 1nm spectral bandwidths using all possible combinations of two-band 

reflectance ratios across the available hyperspectral range based on the NDVI formula: 

NDSI (b1, b2) = b1 – b2 / b1+b2  (EQ2) 

Where b1 and b2 are specific narrow band (1 nm) reflection signals with Wavelengthb1> 

Wavelengthb2. 

Hyperspectral data were also re-combined into 8 broad wavebands according to WorldView-2 

(WV2) satellite broadbands by calculating an arithmetic mean of the measured reflectance values 

within each broadband range: coastal (400-450 nm), blue (450-510 nm), green (510-580 nm), 

yellow (585-625 nm), red (630-690 nm), red edge (705-745 nm), near infrared-1 (770-895 nm) and 

near infrared-2 (869-900 nm) (http://www.landinfo.com/WorldView2.htm). Finally, principle 

http://www.landinfo.com/WorldView2.htm
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component analysis (PCA) was performed to obtain a maximum of 5 principal components 

explaining 99 % of variance. 

Prediction models for acid detergent fibre (ADF) and crude protein (CP) with sensor response 

variables were generated by multiple linear regression using the lm () of the R software package 

(R Development Core Team, 2013). ADF and CP were accounted as dependant variables and USH, 

NDSI, WV2 bands and PCA derived components were accounted for the independent sensor 

variable in an exclusive approach (EQs 3-5) or in combination with USH (EQs 6 and 7). The 

starting models included all possible interactions and quadratic terms. 

Exclusive ultrasonic sward height 

y = USH + USH² (EQ3) 

Exclusive vegetation index 

Y = NDSI + NDSI² (EQ4) 

Exclusive satellite bands or PCA derived components 

Y = X1 + X2 + …+Xn (EQ5) 

Combination of USH and vegetation index 

Y = USH + NDSI + USH*NDSI + USH²+ USH²*NDSI + NDSI²+ USH*NDSI²+ USH²*NDSI²

 (EQ6) 

Combination of USH and WV2 satellite bands or PCA derived components 

Y = USH + USH² + X1 + X2 +⋯+ Xn + USH*X1 +⋯+ USH*Xn + USH²*X1 +⋯+ USH²*X(EQ7) 

Where: 

Y = ADF (% of DM) or CP (% of DM) 

X = WV2 satellite bands or PCA derived components. 

n = number of WV2 satellite bands or PCA derived components 

USH = ultrasonic sward height (cm) 

NDSI = best fit narrowband normalized difference spectral index derived from hyperspectral data. 

Saturated starting models included all possible quadratic terms and two-way interactions and were 

subjected to a stepwise exclusion of non-significant effects at α-level of 5% in agreement with the 

rules of hierarchy and marginality (Nelder, 1994). All the regression models were cross-validated 

(CV) according to the four-fold cross-validation method (Diaconis and Efron, 1983). This approach 

is implemented by dividing the dataset into four groups (folds) of similar size selected randomly, 

leaving out one of four folds for validation and fitting the models on the other three and then 

predicting on the held-out data. The procedure is repeated until every fold has been left out once. 
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The coefficients of determination R²c for calibration and R²cv for cross-validation as well as the 

root mean squared error (SEc and SEcv, respectively, were calculated to assess the prediction 

accuracy. In addition, the residual predictive value (RPD) was determined by dividing the standard 

deviation of the measured values by the SEcv to compare the performance of all calibrations, 

irrespective of the units of the parameters (Park et al., 1998). An RPD greater than 2 is considered 

to be most useful for measurement purposes using infrared spectroscopy in the laboratories. 

However at variable field conditions lower values of RPD may also be acceptable (Biewer et al., 

2009b). Chang et al. (2001) suggested values of RPD larger than 2.0 were excellent, between 1.4 

and 2.0 were good and below 1.4 were unreliable to predict diverse soil properties in the laboratory. 

Aliah Baharom et al. (2015) considered such classification for evaluating the performance of the 

calibration models to provide quantitative prediction and mapping of the soil properties at the field 

scale. 

 

4.3 Results and Discussion  

4.3.1 Sward characteristics 

Across all sampling dates, acid detergent fibre (ADF) and crude protein (CP) in the grassland 

biomass varied from 9 to 46.9 % of DM and from 5 to 22.6 % of DM with a mean value of 32.7 % 

of DM and 11.4 % of DM, respectively (Table 4.1). Average ADF content was highest in summer 

(34.4 % of DM), where a wide range of dead material was found (19.2 % of DM on average) and 

lowest in spring with 30.5 % of DM, where the least amount of dead material was observed (10.8 

% DM on average). CP content showed slightly higher values in autumn (12.6 % of DM) than in 

other seasons, however, a wider range was observed in the summer (5 to 22.6 % of DM), which 

may be attributed to the effects of summer grazing. Grazing during the growing season interrupts 

sward maturation and the associated decline in forage quality. As a result plant developmental 

changes are postponed and autumn regrowth contains higher than normal levels of nutrients 

(Rhodes and Sharrow 1990). Contribution of grasses was highest in spring (mean value of 71 % of 

DM) where they develop fertile tillers and cause increased sward heights, which is also captured 

by maximum ultrasonic height measurements (33.1 cm). Contrary, growth of grasses in summer 

was influenced by drought and photoperiodic conditions did not allow the development of fertile 

tillers, which resulted in lower grass contents (42.6 % of DM on average) and reduced sward height. 
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Table 4.1 Descriptive statistics of acid detergent fibre (ADF), crude protein (CP), ultrasonic sward height (USH) and 

proportion of grasses (G), legumes (L), herbs (H) and dead materials (D) in heterogeneous pastures in the common 

(N=323) and date-specific dataset (N=108). 

  Range Mean (±SD) 

ADF (% of DM) Ca 9.0-46.9 32.7 (±5.9) 

 Spb 20.5-40.5 30.5 (±4.2) 

 Smc 9.9-46.9 34.4 (±6.3) 

 Aud 9.0-46.3 33.2 (±6.4) 

CP (% of DM) C 5.0-22.6 11.4 (±3.1) 

 Sp 7.3-17.5 10.6 (±1.9) 

 Sm 5.0-22.6 10.8 (±3.6) 

 Au 5.5-20.0 12.7 (±3.1) 

USH (cm) C 2.0-64.1 28.1 (±14.0) 

 Sp 3.1-64.6 33.1 (±15.8) 

 Sm 2.0-61.7 28.2 (±12.5) 

 Au 4.0-57.6 23.1 (±11.5) 

G (% of DM) C 7.9-96.3 52.6 (±23.2) 

 Sp 8.2-96.3 71.0 (±17.7) 

 Sm 8.6-93.0 42.6 (±20.9) 

 Au 7.9-85.3 44.1 (±18.9) 

L (% of DM) C 0.0-57.5 3.2 (±7.4) 

 Sp 0.0-39.6 3.6 (±7.6) 

 Sm 0.0-57.5 3.0 (±8.1) 

 Au 0.0-27.4 3.0 (±6.3) 

H (% of DM) C 0.0-84.0 14.4 (±14.2) 

 Sp 0.0-63.7 14.0 (±14.0) 

 Sm 0.0-84.0 16.6 (±15.7) 

 Au 0.0-57.8 12.4 (±12.5) 

D (% of DM) C 1.4-83.6 29.0 (±19.2) 

 Sp 1.4-37.6 10.8 (±6.6) 

 Sm 3.9-86.3 36.7 (±17.3) 

 Au 10.5-83.6 39.5 (±16.3) 

a C: common dataset; b Sp: spring dataset; C Sm: summer dataset; d Au: autumn dataset 
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4.3.2 Exclusive use of ultrasonic sward height 

Prediction of ADF and CP using exclusive USH resulted in very poor prediction accuracies (Table 

4.2). However, higher R²c values were achieved for ADF (0.25 to 0.53) compared to CP (0.03 to 

0.07). Exclusive USH measurements estimated ADF better in spring (R²c = 0.53) probably due to 

a wider range of USH values. Further, it was only at this time that a positive linear relationship was 

revealed between USH and ADF. The main limitation of ultrasonic techniques is that signals are 

reflected predominantly from the upper canopy layers (Fricke and Wachendorf, 2013) and the 

measured USH might not be an appropriate representative of the whole biomass underneath the 

surface. Our results confirm the results of Fricke et al. (2011) and Reddersen et al. (2014), who 

found lower accuracies for biomass prediction when only USH information was available. Overall, 

the results of the present study indicate that for heterogeneous pasture vegetation it may be difficult 

to predict ADF and CP accurately only based on canopy height measurements. 

 

Table 4.2 Calibration (C) and cross validation (CV) results for prediction of acid detergent fibre (ADF) and crude 

protein (CP) in the biomass of heterogeneous pastures from ultrasonic sward height (USH) for common (N=323) and 

date-specific dataset (N=108). 

  R²c SEc R²cv SEcv RPD Mde 

ADF (% of DM) Ca 0.25 5.2 0.23 5.21 1.14 q*** 

 Spb 0.53 2.90 0.50 2.95 1.43 l*** 

 Smc 0.31 5.27 0.29 5.33 1.18 q*** 

 Aud 0.30 5.36 0.28 5.34 1.19 q*** 

CP (% of DM) C 0.03 3.01 0.03 3.02 1.01 l*** 

 Sp 0.07 1.83 0.03 1.89 0.99 q* 

 Sm 0.04 3.50 0.03 3.59 0.99 q* 

 Au - - - - - n.sf 

a C: common dataset; b Sp: spring dataset; C Sm: summer dataset; d Au: autumn dataset. e Md: type of regression 

model: l = linear, q = quadratic; significant at * = 0.05, ** = 0.01, *** = 0.001 probability level. f n.s: not significant 

 

4.3.3 Modified partial least square regression analysis of hyperspectral data 

The MPLSR analysis revealed that the original reflectance data showed better correlation with the 

quality parameters than the first and second order derivatives (data not shown). Therefore, only the 

original reflectance data were used for further analysis. Analysis of the full spectral data using 
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MPLS regression explained 0.75 and 0.76% of the total variance in the common dataset with SEcv 

values of 3.47 and 1.79 for ADF and CP, respectively (Table 4.3). However, with RPD values of 

1.71 both for ADF and CP the level of accuracy was identical. The RPD values for ADF prediction 

did not improve by the separation of data into sampling seasons. For prediction of CP an R²c value 

of 0.85 was achieved during the summer and the RPD value exceeded 2.0. Lowest accuracies were 

achieved for both quality parameter with the autumn dataset. The high amount of accumulated dead 

material at the end of the grazing season may have impacted spectral reflectance characteristics. 

Biewer et al. (2009b) received better calibration results and RPD values for the prediction of CP 

and ADF using MPLSR (R²c: 0.70 to 0.93; RPD 1.6 to 3.2) compared to our study, which may be 

due to the higher level of sward heterogeneity in the present study. A significant number of outliers 

were excluded during the MPLSR procedure in their analysis, which may have further improved 

the performance of regression models. The MPLSR results from the present study suggest the 

potential of a good to approximate estimation of CP and ADF in extremely heterogeneous pastures. 

Thus, this method may be a useful tool when there is no practical need to limit the number of 

measured factors in the prediction models (Tobias, 1995). But quite often there exist resource 

limitations, which restrict the availability of hyperspectral information and suggest the use of a 

limited set of informative spectral wavelengths. 

 

Table 4.3 Calibration (C) and cross validation (CV) results for prediction of acid detergent fibre (ADF) and crude 

protein (CP) in the biomass of heterogeneous pastures with the modified partial least square (MPLS) regression for 

common (N=323) and date-specific dataset (N=108). 

  R²c SEc R²cv SEcv RPD 

ADF (% of DM) Ca 0.75 2.96 0.66 3.47 1.71 

 Spb 0.75 2.09 0.62 2.60 1.62 

 Smc 0.72 3.30 0.65 3.73 1.69 

 Aud 0.63 3.87 0.50 4.57 1.39 

CP (% of DM) C 0.76 1.51 0.66 1.79 1.71 

 Sp 0.70 1.03 0.52 1.30 1.45 

 Sm 0.85 1.37 0.77 1.70 2.09 

 Au 0.64 1.85 0.63 1.88 1.64 

a C: common dataset; b Sp: spring dataset; C Sm: summer dataset; d Au: autumn dataset.  
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4.3.4 Multispectral analysis and combined analysis of multispectral and USH data 

The results of models using best fit NDSI and WV2 wavebands exclusively and in combination 

with USH are presented in Table 4.4 and 4.5. With exclusive use of NDSI and WV2, R²c values 

were mostly below 0.60 showing CP and ADF of heterogeneous pastures could hardly be predicted 

using solely those spectral variables. Poor performance of two-waveband narrow reflectance ratios 

for the prediction of quality parameters were also reported in other studies with forage crops ( Zhao 

et al., 2007; Biewer et al., 2009b). With the inclusion of USH in the regression models accuracy of 

both ADF and CP prediction was mostly improved (RPD values ≥ 1.4), however, the improvement 

was more pronounced for ADF. Prediction models using combined NDSI and USH were not 

significant for CP during summer and autumn, when the contribution of dead material in the 

canopies was high and where exclusive spectral calibrations already reached accuracy levels of the 

combined applications from spring or far above it. Models combining WV2 and USH also showed 

a minor improvement (only 2% increase in R²c) compared to exclusive use of WV2 bands at this 

time. Therefore, less enhancement in prediction accuracy can be expected from these combined 

sensor approaches for prediction of CP in such vegetation. 
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Table 4.4 Calibration (C) and cross validation (CV) results for prediction of acid detergent fibre (ADF) and crude 

protein (CP) in the biomass of heterogeneous pastures from best-fit normalized difference spectral index (NDSI) 

exclusively and as a combination with ultrasonic sward height (USH) for common (N=323) and date-specific dataset 

(N=108). 

   R²c SEc R²cv SEcv RPD Best-fit wavelengths 

wavebands 

NDSI USH 

ADF (% of DM) Ca exe 0.49 4.24 0.48 4.27 1.39 1222, 1281 l*** - 

 cof 0.62 3.70 0.58 3.79 1.56 1236, 1281 q*** q** 

 Spb ex 0.47 3.08 0.45 3.12 1.35 905, 922 l*** - 

 co 0.76 2.12 0.68 2.19 1.92 1011, 1012 q*** l* 

 Smc ex 0.64 3.83 0.63 3.90 1.61 1192, 1258 q*** - 

 co 0.70 3.53 0.66 3.79 1.66 1173, 1258  q* l*** 

 Aud ex 0.49 4.57 0.46 4.55 1.40 1204, 1225 l*** - 

 co 0.65 3.85 0.61 3.82 1.66 1179, 1206 q*** q*** 

CP (% of DM) C ex 0.58 1.99 0.56 2.02 1.51 698, 1339 q*** - 

 co 0.63 1.88 0.60 1.91 1.60 434, 645 q*** l*** 

 Sp ex 0.48 1.37 0.41 1.41 1.33 1219, 1282 q*** - 

 co 0.55 1.32 0.45 1.39 1.35 373, 631  q* q* 

 Sm ex 0.85 1.40 0.84 1.42 2.51 703, 1148 q*** - 

  co   n.s      

 Au ex 0.61 1.93 0.60 1.95 1.58 481, 684 l*** - 

 co   n.s      

a C: common dataset; b Sp: spring dataset; C Sm: summer dataset; d Au: autumn dataset. e ex: exclusive NDSI; f co: 

combination of USH and NDSI. g n.s: not significant. Type of regression model: l = linear, q = quadratic; significant 

at * = 0.05, ** = 0.01, *** = 0.001 probability level. 
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Table 4.5 Calibration (C) and cross validation (CV) results for prediction of acid detergent fibre (ADF) and crude 

protein (CP) in the biomass of heterogeneous pastures from WorldView2 satellite bands exclusively and as a 

combination with ultrasonic sward height (USH) for common (N=323) and date-specific swards (N=108). 

   R²c SEc R²cv SEcv RPD Significant wavebands 

ADF (% of DM) Ca exe 0.36 4.81 0.32 5.05 1.17 B1,B2,B3,B4,B5,B7,B8 

 cof 0.69 3.42 0.55 3.66 1.62 B1,B2,B3,B4,B5,B6, B7,B8 

 Spb ex   n.sg    

 co 0.68 2.49 0.59 2.70 1.56 B1,B2,B5,B7 

 Smc ex 0.52 4.47 0.47 4.77 1.32 B1,B2,B3,B4,B6 

 co 0.75 3.44 0.61 3.84 1.64 B1,B2,B3,B4,B5,B7,B8 

 Aud ex 0.59 4.21 0.53 4.31 1.48 B3,B4,B5,B6,B7,B8 

 co 0.73 3.58 0.59 3.88 1.64 B1,B2,B3,B4,B5,B6,B7,B8 

CP (% of DM) C ex 0.52 2.14 0.49 2.17 1.41 B1,B2,B3,B6 

 co 0.63 1.90 0.57 1.97 1.55 B1,B2,B3,B4,B5,B7 

 Sp ex 0.37 1.51 0.27 1.61 1.17 B1,B4,B6 

 co 0.69 1.16 0.29 1.31 1.43 B1,B2,B3,B4,B5,B6,B7,B8 

 Sm ex 0.86 1.35 0.84 1.39 2.56 B2,B3,B7 

 co 0.88 1.27 0.84 1.32 2.70 B1,B2,B3,B7 

 Au ex 0.58 2.03 0.55 2.08 1.48 B2,B3,B4,B5,B6 

 co 0.60 2.02 0.54 2.08 1.48 B2,B3,B4,B5,B7 

a C: common dataset; b Sp: spring dataset; C Sm: summer dataset; d Au: autumn dataset. e ex: exclusive satellite bands; 
f co: combination of USH and satellite bands. g n.s: not significant.  

WorldView2 satellite broad bands as independent variables; B1-B8: the first to eighth broad-bands of WV2. B1: coastal 

(400-450 nm), B2: blue (450-510 nm), B3: green (510-580 nm), B4: yellow (585-625 nm), B5: red (630-690 nm), B6: 
red edge (705-745 nm), B7: near infrared-1 (770-895 nm) and B8: near infrared-2 (869-900 nm) 

 

Scatter plots were used to further compare ADF and CP values predicted by the exclusive and 

combined sensors with laboratory measurements (Figures 4.2 and 4.3). It becomes clear that with 

calibration models based on exclusive NDSI or WV2 both ADF and CP were overestimated at low 

levels of laboratory-measured values and underestimated when these reference values were high. 

The improvement of fit by the combined use of sensor variables is reflected by higher R²-values, 

lower SE-values and a convergence of the regression line to the bisector. 
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Figure 4.2 Plot of fit between measured and predicted acid detergent fibre (ADF) for exclusive ultrasonic sward height 

(USH exclusive), exclusive best fit normalized difference spectral index (NDSI exclusive) and exclusive Worldview-

2 (WV2 exclusive) as well as for combinations of USH with NDSI and WV2 applied in common swards. 
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Figure 4.3 Plot of fit between measured and crude protein (CP) for exclusive ultrasonic sward height (USH exclusive), 

exclusive best fit normalized difference spectral index (NDSI exclusive) and exclusive Worldview-2 (WV2 exclusive) 

as well as for combinations of USH with NDSI and WV2 applied in common swards. 

 

The interpretation of coefficients in models including USH and NDSI is difficult, as they comprise 

various quadratic terms and interactions (see Appendix Table A.7). Thus, the significant effects of 

the models for ADF and CP of the common dataset were presented graphically (Figure 4.4). 

Generally, ADF increased and CP declined with increasing USH, which could be expected, as with 

increasing maturity of plants rejected by cows, fibrous components are accumulated at the costs of 

protein and mineral concentration in plants tissue (Bakker et al., 1984; Hobbs and Swift, 1988; 

Milchunas et al., 1995). The reverse effect of the spectral index NDSI to ADF and CP, respectively, 
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is caused by the band locations on ascending (ADF) or descending slopes (CP) on the hyperspectral 

curve (see also Figure 4.1 and Table 4.4). These results correspond well with findings of Guo et al. 

(2010), who found higher negative correlation in absorption regions and higher positive 

correlations in reflectance regions for protein content in a mixed grass ecosystem. 

Predictions depict a changing NDSI effect along the sward height gradient for both forage quality 

parameters with less distinct differentiation in higher swards (Figure 4.4). One reason might be a 

reduced representation of reflectance characteristics of subordinate layers in high swards due to 

limited light transmission with increasing leaf density (Jacquemoud and Baret, 1990). Thus, in high 

swards the variation of ADF and CP predictions might be predominantly caused by the fraction of 

mature plants, which protrude over the surrounding canopy. Contrary, variation of predicted forage 

quality in low swards may result either from different contributions of young leafy material 

(indicating intensively grazed areas) or from high fractions of stubbles and compacted senescent 

plant material (representing areas which were less preferred by animals). 

 

Figure 4.4 Predictions of acid detergent fibre (ADF) and crude protein (CP) in common swards based on ultrasonic 

sward height (USH) and the Normalized Difference Spectral Index (NDSI) in the range of mean values ± standard 

deviation. NDSI represents reflection values calculated on basis of 1 nm band selected in combination with USH. 
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In view of exclusive and combined sensor applications it was found that the prediction accuracy of 

2-band NDSI, mostly located beyond 900 nm wavelength, reached the same or even better levels 

than WV2-based models. This is especially pronounced for ADF, while for CP best fits were found 

also in visible regions of blue and red (Table 4.4 and Table 4.5). The importance of visible-near 

infrared region for estimating quality parameters is also confirmed by other investigations (Biewer 

et al., 2009b; Pullanagari et al., 2012a). The spectrometer used in this study could provide canopy 

hyperspectral reflectance information up to 1700 nm. However, previous studies indicated that the 

wavelengths region between 1700 to 2400 nm in the shortwave infrared region was also important 

for measuring forage quality in the field (Guo et al., 2010). Therefore, using a spectroradiometer 

that can obtain reflectance measurements for additional wavelengths may further improve the 

prediction accuracy. 

To include more spectral information from the hyperspectral dataset and to accomplish a 

combination with USH in the calibration analysis, PCA derived components were extracted. Their 

accuracy in both, exclusive or in combination with USH, was always below NDSI and WV2 

wavebands, although principal components represented most of the variation in total spectral data 

(>0.98 %). Obviously, compared to MLPR analysis, which considers both spectral and reference 

values during calculation, extracting only the spectrally most informative components does not 

allow acceptable accuracies. Thus, the results were not presented here. A two-step multivariate 

calibration method using PCA components was also applied by Pullanagari et al. (2012a) for 

predicting pasture quality parameters. They also found weak relationships with R² values of 0.15 

to 0.45. Hence, they considered PCA useful for recognising major sources of variance in the 

vegetation spectral data (e.g. green and dead vegetation) rather than chemical concentrations with 

small variances. 

It also should be noted that ADF and CP values in the present study were measured by laboratory 

near infrared spectroscopy (NIRS) and, thus, included prediction errors by themselves. Hence, the 

prediction models may further improve, if all reference values were determined by exact laboratory 

chemical analysis. 
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4.4 Conclusions  

The present study aimed to demonstrate the potential of using a combination of ultrasonic and 

canopy reflectance data to predict forage quality variables in extremely heterogeneous pastures. 

Hyperspectral analysis by MPLS, which can be considered a reference method, as it exploits the 

utmost spectral information, resulted in maximum accuracy for the prediction of ADF and CP in 

grazed grasslands. Any reduction of hyperspectral data into vegetation indices based on few 

specific narrow wavebands or satellite broadbands reduced prediction accuracy significantly. 

However, prediction of ADF and CP was improved by a combined analysis of ultrasonic sward 

height and vegetation indices or satellite broadbands, so that most calibration models exceeded an 

RPD value of 1.4, which is considered an acceptable predicting capability for variable field 

condition. 

As grazing by cows creates spatially and temporally extremely dynamic environments, forage 

quality prediction using proximal remote sensing is more challenging than in well managed, 

homogeneous experimental forage swards usually used for the testing of sensing methods. To 

summarize, though the performance of models developed in this study is somewhat lower than 

reported elsewhere, our findings show that combined sensing systems using reflectance and 

ultrasonic sensors may provide acceptable prediction accuracies for practical application even 

under extremely heterogeneous pasture conditions. However, further research needs to be carried 

out into new sensor techniques and practical applications in grassland farming. 
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5 Comparing mobile and static assessment of biomass in heterogeneous 

grassland with a multi-sensor system 

Abstract The present study aimed to test a mobile device equipped with ultrasonic and 

spectral sensors for the assessment of biomass from diverse pastures and to compare its prediction 

accuracy to that from static measurements. Prediction of biomass by mobile application of sensors 

explained > 63 % of the variation in manually determined reference plots representing the biomass 

range of each paddock. Accuracy of biomass prediction improved with increasing grazing intensity. 

A slight overestimation of the true values was observed at low levels of biomass, whereas an 

underestimation occurred at high values, irrespective of stocking rate and years. Prediction 

accuracy with a mobile application of sensors was always lower than when sensors were applied 

statically. Differences between mobile and static measurements may be caused by position errors, 

which accounted for 8.5 cm on average. Beside GPS errors (± 1 – 2 cm horizontal accuracy and 

twice that vertically), position inaccuracy predominantly originated from undirected vehicle 

movements due to heaps and hollows on the ground surface. However, the mobile sensor system 

in connection with biomass prediction models may provide acceptable prediction accuracies for 

practical application, such as mapping. The findings also show the limits even sophisticated sensor 

combinations have in the assessment of biomass of extremely heterogeneous grasslands, which is 

typical for very leniently stocked pastures. Thus, further research is needed to develop improved 

sensor systems for supporting practical grassland farming. 

 

5.1 Introduction 

Pasture biomass and its quality is a matter of primary concern in continuous grazing systems (Silvia 

Cid et al., 1998; Kristensen et al., 2005; Oudshoorn et al., 2013). On-site and on-time information 

on biomass and its spatial distribution in pastures are needed for site-specific pasture management 

and can help livestock managers in making critical decisions in terms of planning grazing time, 

grazing period, grazing interval, stocking rate and inputs such as fertilizers (Suzuki et al., 2012). 

However, conventional plant sampling techniques are costly, destructive and time consuming, 

thereby limiting the number of measured samples and being impractical to characterize spatial 

variability in sward characteristics within fields (Fava et al., 2009). In contrast, real-time mobile 

sensors, which allow the collection of geographically referenced data have proven to be useful for 
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in-field monitoring of vegetation characteristics with high spatial resolution (Lan et al., 2009; 

Muñoz-Huerta et al., 2013; Cozzolino et al., 2015). Mobile automated sensor measurements can 

provide high sampling density at a relatively low cost to generate maps representing both spatial 

and temporal variations (Adamchuk et al., 2004). Farooque et al. (2013) developed an integrated 

automated system comprising an ultrasonic sensor, a digital color camera, a slope sensor and a 

global positioning system (GPS) to measure plant height, fruit yield, slope and elevation in wild 

blueberry fields and concluded the developed system was accurate, reliable and efficient to map 

such characteristics in real-time kinematic. Pittman et al. (2015) examined several types of ground-

based mobile sensing strategies (ultrasonic, laser and spectral sensors) to estimate biomass and 

canopy height in bermudagrass, alfalfa and wheat. They suggested that using mobile sensor-based 

biomass estimation methods could be an effective alternative to the traditional clipping method for 

a rapid and accurate in-field biomass estimation. Different types of sensors both in static and mobile 

application have been used in recent grassland studies (Numata et al., 2008; Biewer et al., 2009a 

and b; Himstedt et al., 2009; Kawamura et al., 2009; Fricke et al., 2011; Pullanagari et al., 2012a 

and b; Duan et al., 2014; Rahman et al., 2014; Reddersen et al., 2014). Particularly hyperspectral 

sensors, which measure reflectance signals over a wide range of wavelengths in discrete bands of 

1 to 15 nm width, have raised considerable interest for the prediction of biomass and quality 

parameters. However, pastures are highly heterogeneous ecosystems due to variations in canopy 

architecture, botanical composition and phenological stage of plants. Hence, the application of 

sensors in grazed pastures is more difficult than in cut grassland and there are limitations for each 

specific sensor technique used for the prediction of sward characteristics (Schellberg et al., 2008; 

Pullanagari et al., 2012b). An effective method for in-field estimation of biomass must reach an 

accuracy comparable to the accepted standard of destructive procedure (clipping and weighing) 

(Pittman et al., 2015). Using a data combination of conceptually different sensing methods holds 

promise for providing more accurate property estimates (Adamchuk et al., 2011). A sensor fusion 

approach has been proposed that combines measured sward height with an ultrasonic distance 

sensor and vegetation indices (VIs) derived from spectral-radiometric reflections to estimate 

biomass in grasslands with acceptable prediction accuracies (Fricke and Wachendorf 2013; 

Reddersen et al., 2014; Safari et al., 2015). The guiding idea in this approach is that canopy 

reflectance provides complementary information to canopy height sensing when estimating 

biomass. In all studies best prediction accuracies were achieved by a combination of ultrasonic 

sward height (USH) and sward specific band selection using the normalized spectral vegetation 
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index (NDSI; uses two spectral bands best suited for estimating biomass according to NDVI 

formula, i.e. normalized difference vegetation index) with R² values of 0.63 to 0.90. The selection 

of two narrow or broad bands from hyperspectral data has an advantage for practical 

implementation at field scale, as multispectral measurements are less expensive than hyperspectral 

ones. Likewise, ultrasonic sensors are simple and cost effective equipment but may provide 

accurate and real-time information needed by farmers to make on-farm decisions. However, no 

knowledge exists on how accurate such sensors work when applied on mobile devices and which 

position accuracy can be achieved under real field conditions. 

The overall aim of the present study was to develop and test a mobile sensor system equipped with 

ultrasonic and spectral sensors and a high precision GPS to assess data in experimental pastures 

with a large variation of spatial and phenological structures. The following specific research 

questions were addressed in this study: i) Which overall prediction accuracy for grassland biomass 

can be achieved? ii) Is there a reduction in prediction accuracy between static and mobile 

application of sensors? iii) Does the performance of the sensor system depend on the grazing 

intensity? iv) What are possible position errors associated with mobile sensor measurements? 

 

5.2 Material and Methods 

5.2.1 Experimental site and set up 

The study was conducted on a long-term pasture experiment (established in 2002) at the 

experimental farm Relliehausen (51◦46ˊ55 ̋ N, 9◦42ˊ13 ̋ E, 180-230 m above mean sea level) in 

Solling Uplands on moderately species rich grasslands, vegetation type Lolio-Cynosuretum. Three 

target paddocks of 1 ha each with different continuous stocking treatments were selected from the 

experiment. Treatments were a) moderate stocking, average of 3.4 standard livestock units (SLU, 

i.e. 500 kg live weight) per hectare, b) lenient stocking, average 1.8 SLU per hectare, c) very lenient 

stocking, average 1.3 SLU per hectare (Wrage et al., 2012). In each paddock one study plot of 30 

x 50 m size was established, to represent spatial variability in pastures under different grazing 

intensities during two year measurements. The location of the study plots were determined prior to 

field sampling in a Geographic Information System (GIS) environment (ArcGIS 9.2). In a first step 

aerial photographs of each paddock were obtained in April 2013 using a remotely controlled 

Hexacopter carrying a small lightweight camera. The photos were georeferenced along GPS-

levelled boundaries of each paddock and the area of each paddock was classified into grazed and 
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ungrazed areas using a visually adapted green/yellow threshold (Figure 5.1). The portion of both 

areas was then calculated for each paddock (63%, 47% and 38% classified as grazed areas in 

moderate, lenient and very lenient paddocks respectively). Rectangles of 30 x 50 m, representing 

the study plots, were moved in the paddock area using GIS until they contained identical portions 

of grazed and ungrazed areas as in the surrounding paddock. Each study plot was accurately located 

in the field by differential GPS and marked with corner poles. Field measurements for static and 

mobile calibration of the sensor system were conducted in 2013 on 3rd to 5th June and 2014 on 20th 

to 22nd May. 

 

Figure 5.1 Images with digitally classified grazed and ungrazed areas in grassland paddocks of different stocking rate: 

(A) moderate (B) lenient (C) very lenient. Black boxes indicate the location of 30 x 50 m study plots. Photos were 

taken in April 2013. 

 

5.2.2 Mobile measurements on the study plots 

The multi-sensor system consisted of ultrasonic distance and hyperspectral reflectance sensors. The 

ultrasonic sensor holds a one-headed system (Pepperl and Fuchs, type UC 2000-30GM-IUR2-V15) 

operating with a transducer frequency of 180 Hz (Pepperl and Fuchs, 2010). Distances were 

measured in a range from 80 to 2000 mm within a sound cone formed by an opening angle of about 

25°. Ultrasonic sward height (mm) was calculated by subtracting the ultrasonic distance 

measurement value in mm from the sensor mount height using Eq. (1): 

𝑈𝑆𝐻 (𝑐𝑚)  =  𝑀𝑜𝑢𝑛𝑡 ℎ𝑒𝑖𝑔ℎ𝑡 (𝑐𝑚) −  𝑈𝑙𝑡𝑟𝑎𝑠𝑜𝑛𝑖𝑐 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 (𝑐𝑚),   (1) 

Where USH is Ultrasonic sward height. 
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A HandySpec Field portable spectrometer (Tec5 AG Oberursel, Germany) was used to measure 

canopy spectral reflectance. The measuring head of the device had two channels measuring 

incoming and reflected radiation simultaneously between 305 and 1700 nm in 1 nm steps. Spectral 

calibrations were performed using a grey-standard (Zenith Polymer® Diffuse Reflectance Standard 

25%) at fixed intervals. Both sensor systems provided the same opening angle with a field of view 

(FOV) of 25°. While the spectral sensor measures an integrated value of reflection intensity within 

the measurement cone, the ultrasonic sensor measure the highest object, creating a reliable 

reflection within the sound cone. 

 

Mobile measurements where conducted using an electric driven cycle-based 4-wheel-vehicle with 

a track gauge of 180 cm (Figure 5.2). Both sensors were mounted at front-end center of the vehicle 

on a frame, allowing measurements along the central track during the vehicle movements. Two 

more ultrasonic sensors were mounted with 60 cm distance on either side of the central sensor to 

allow a higher measurement density for future mapping activities. GPS positions of all sensor 

readings were acquired in 0.1 second intervals using a Leica SR530 dual-frequency geodetic RTK 

receiver. A GPS AT 502 dual-frequency antenna was mounted on top of a pole close to the sensors. 

Its geometric position in relation to both the ground and the sensors was recorded and considered 

in subsequent sensor position calculations including a correction of topographically induced 

antenna pole skewness. The DGPS correction signals were received from an on-field reference 

station in a maximum distance of 500 m by a radio modem. Both, reference station and rover were 

equipped with components of identical technical specifications providing a horizontal positional 

accuracy of 1-2 cm and 2-3 cm vertical accuracy. For mobile measurements the vehicle was 

remotely steered along 50 m longitudinal lanes in the study plots at a speed of approximately 0.1-

0.3 m s-1. Ultrasonic measurements were triggered at a 0.3 second interval, resulting in a measured 

point distance of 10 ± 6 cm (mean of all plots). Spectral reflections were continuously assessed, 

but with a variable data integration time of the spectrometer between 1 and 5 s, measurements were 

logged discontinuously, corresponding to a measured distance of 43 ± 20 cm between spectral 

measurement points in each plot (mean of all plots). 
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Figure 5.2 Remotely steered sensor vehicle with hyperspectral reflectance and ultrasonic sensors and mounted GPS 

antenna. 

 

5.2.3 Static measurements on reference plots 

Subsequent to the mobile measurement, 18 reference plots (each 50x50 cm) were established 

within each of the three study plots by positioning them along the central axis between the vehicle 

tracks to represent the occurring range of available biomass levels and sward structures. Static 

sensor measurements were conducted on these reference plots using the same sensors as in the 

mobile measurement and following the methodology as described by Fricke et al. (2011). The total 

aboveground biomass from each reference plot was clipped at ground surface level after sensor 

measurements were taken. In the present study grassland biomass is expressed as the amount of 

fresh matter (FM) in g m-². To avoid repeated sampling at the same position across time the location 

of reference plots was determined using DGPS. 

 

Hyperspectral reflectance 

sensor 

GPS antenna 

Ultrasonic sensor 

DGPS radio antenna 
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5.2.4 Data integration and analysis 

Spectral calibration models were developed for each year separately in order to reach the maximum 

prediction accuracy using biomass data from reference plots. In an attempt to create prediction 

models with maximum accuracy by using the depth of information of hyperspectral data, 

narrowband NDSI according to Inoue et al. (2008) were applied over the range of 1nm spectral 

bandwidths using all possible combinations of two-band reflectance ratios based on NDVI formula 

according to Eq. (2): 

𝑁𝐷𝑆𝐼 (𝑏1, 𝑏2)  =  (𝑏1 −  𝑏2) / (𝑏1 +  𝑏2),       

 (2) 

Where b1 and b2 are specific narrow band (1 nm) reflection signals with wavelength b1 > 

wavelength b2. 

 

All possible two-pair 1nm band combinations in the hyperspectral range from 360 to 1340 nm and 

1500 to 1650 nm were tested. Ordinary least square regression analysis was performed using linear 

model procedure in R (version 3.0.2) (R Development Core Team, 2013) with biomass as the 

dependent variable and NDSI together with USH as independent variables including interactions 

and quadratic terms according to Eq. (3): 

𝐵 =  𝑈𝑆𝐻 +  𝑁𝐷𝑆𝐼 +  𝑈𝑆𝐻 ∗ 𝑁𝐷𝑆𝐼 +  𝑈𝑆𝐻² +  𝑈𝑆𝐻² ∗ 𝑁𝐷𝑆𝐼 +  𝑁𝐷𝑆𝐼² +  𝑈𝑆𝐻 ∗

𝑁𝐷𝑆𝐼² +  𝑈𝑆𝐻² ∗ 𝑁𝐷𝑆𝐼², (3) 

Where B is biomass (g FM m-²), USH is ultrasonic sward height (cm), NDSI is normalized 

difference spectral index. 

NDSI wavebands were considered adequate when R² of the model was maximum. According to 

the rules of hierarchy and marginality (Nelder, 1994) non-significant effects were excluded from 

the models, but were retained if the same variable appeared as part of a significant interaction at α-

level of 5%. Calibration models were validated by a four-fold cross validation method (Diaconis 

and Efron, 1983). 

 

5.2.5 Assessment of position accuracy 

With the aim to establish a plausibility control for position accuracy of mobile measurements, an 

additional experiment was set up. Wooden planks of known position and dimension at each end of 
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the vehicle tracks were measured in spring, before the vegetation started to grow. Thus, higher 

targets could be clearly distinguished from lower swards. Vehicle measurement were conducted in 

the same mode as described above. Here, only USH data was used due to its high point density. 

Measured values were compared to expected values and classified as error if a discrepancy was 

observed. The distance of an erroneous measurement to the closest apparent target edge 

(considering target dimensions and sensor properties) was assigned to the respective measurement 

and used for subsequent spatial analysis. Further information on the methodology is provided in 

the supplemental material.  

 

5.3 Results and discussion 

5.3.1 Relationship between static and mobile sward measurements for use of exclusive sensors 

Statically measured USH ranged from 3.1 to 64.6 cm and from 7.2 to 64.0 cm in 2013 and 2014, 

respectively (Table 5.1). Compared to static measurements higher values of USH were found by 

mobile application ranging from 4.7 to 75.6 cm and from 11.6 to 67.4 cm in 2013 and 2014, 

respectively. This may be the effect of a cross bar, which was attached to the rear of the vehicle in 

a height of about 50 cm for stabilizing purposes and may have compressed higher vegetation during 

vehicle passage and subsequent static measurements were possibly influenced by that. Pasture with 

moderate stocking rate exhibited lower USH values (mean value = 21.9 and 26.8 cm in 2013 and 

2014 respectively) compared to pastures with lenient stocking rate (mean value = 44.3 and 32.5 cm 

respectively) and very lenient stocking rate (mean value = 43.1 and 29.8 cm respectively). Swards 

of the latter two stocking rates showed similar USH levels in both years, although pastures were 

managed and monitored by the use of a compressed sward height meter (CSH; according Castle, 

1976) maintaining levels at 6 cm (moderate), 12 cm (lenient) and 18 cm (very lenient), respectively 

(Wrage et al., 2012). This disparity may indicate the influence of sward structure on the conducted 

measurement methods: While CSH reflects the resistance of biomass according to stem density 

and sward height (Hakl et al., 2012), USH predominantly detects protruding objects regardless of 

other sward conditions in subordinate layers (Fricke et al., 2011). This fact indicates the limitations 

of biomass predictions based on pure USH, as it may not directly reflect the biomass, particularly 

if swards are composed by plants of varying phenology, which is common in leniently grazed 

swards (Rook and Tallowin, 2003; Wrage et al., 2011).  
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Table 5.1 Summary statistics of static and mobile measurements of ultrasonic sward height (USH) (cm) and 

normalized difference spectral index (NDSI) on reference plots of pastures with different stocking rates in 2013 and 

2014. 

 Static measurements  Mobile measurements 

 2013 2014  2013 2014 

  USH NDSI USH NDSI  USH  NDSI USH NDSI 

Moderate (n=18 in each year)         

Min 3.1 0.031 9.0 -0.030  4.7 0.032 12.0 -0.032 

Mean  21.9 0.046 26.8 -0.017  22.1 0.048 30.0 -0.020 

Max 50.6 0.065 64.0 -0.008  60.9 0.063 67.4 -0.015 

SD 14.5 0.011 13.6 0.005  14.8 0.010 14.2 0.004 

Lenient (n=18 in each year)         

Min 24.8 0.027 16.4 -0.021  22.9 0.030 19.2 -0.020 

Mean  44.3 0.038 32.5 -0.015  46.1 0.040 37.3 -0.013 

Max 64.0 0.049 55.4 -0.008  75.6 0.057 61.2 -0.007 

SD 12.3 0.006 10.6 0.004  16.2 0.008 12.7 0.004 

Very Lenient (n=18 in each year)        

Min 10.0 0.032 7.2 -0.020  8.7 0.029 11.6 -0.032 

Mean  43.1 0.047 29.8 -0.011  48.9 0.048 36.9 -0.011 

Max 64.6 0.065 58 -0.007  75.2 0.070 66.5 -0.005 

SD 16.0 0.011 15.8 0.004  19.5 0.009 17.1 0.007 

All pastures (n=54 in each year))         

Min 3.1 0.027 7.2 -0.030  4.7 0.029 11.6 -0.032 

Mean  36.4 0.044 29.7 -0.014  39.0 0.046 34.7 -0.015 

Max 64.6 0.065 64.0 -0.007  75.6 0.070 67.4 -0.005 

SD 17.5 0.010 13.5 0.005  20.2 0.010 14.9 0.006 
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NDSI wavelength locations associated with maximum accuracy of biomass prediction differed 

between years. Positive NDSI values in 2013 corresponded to the green peak of the spectrum (at 

536 and 564 nm, on the ascending slope) while negative values in 2014 corresponded to the 

descending slope of the second water absorption band (at 1121 and 1133 nm). NDSI values by 

static measurement ranged from 0.027 to 0.065 with a mean value of 0.044 across all pastures in 

2013, which were slightly lower than the values by mobile application (mean value = 0.046). In 

2014 a smaller range of NDSI values occurred by both static and mobile application (-0.030 to -

0.007), resulting in a mean value of -0.014 (Table 5.1). 

USH values from mobile measurements were in good agreement with static values, with R² ≥ 0.85 

for all pastures in both years (Figure 5.3). This indicates that reliable and accurate USH information 

could be acquired by the mobile application of low cost ultrasonic sensors. Moreover, it seems that 

the performance of the mobile application is not affected by the stocking rate, as R² values differed 

only randomly during the two-year measurements on different pastures. 

Figure 5.3 Relationship between static and mobile measured ultrasonic sward height (USH) (cm). Both 

measurements were conducted on reference plots in pastures differently stocked by animals in 2013 and 2014. 
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The relationship between NDSI values determined on the reference plots by mobile and static 

application was closer for moderate (R² = 0.66 – 91) than for leniently and very leniently grazed 

pastures (R² = 0.59 – 0.72) (Figure 5.4). This may be partly due to a higher proportion of senesced 

material in pastures at lower grazing intensities. This is supported by results of Safari et al. (2015), 

which showed a lower accuracy of spectral calibrations for grassland biomass in the second half of 

the growing season, when senesced material likewise presented greater shares of the grassland 

canopy. Botanical diversity, which is well known to increase with reduced defoliation intensity 

through grazing or cutting (Blüthgen et al., 2012; Isselstein et al., 2005), may have further 

alleviated the relationship between grassland biomass and spectral characteristics. For the biomass 

of species-poor grasslands, spectral calibrations based on static measurements frequently achieved 

higher accuracies than for less intensively grazed swards (Biewer et al., 2009a, Reddersen et al., 

2014). Compared to ultrasonic measurements, accuracy of spectral calibrations was remarkably 

lower in both years and at all levels of grazing intensity. One reason may be the lower measurement 

point density of spectral (1.3 per plot on average) than ultrasonic recordings (5.0 per plot on 

average), which can be explained by the lower data integration time for the former technique. In 

pastures with high canopy variability (lenient and very lenient), where extremely short (intensively 

grazed) and tall (lightly grazed) patches are frequently located in the immediate vicinity of each 

other, a high measurement point density is of particular benefit. This may explain, why in 

moderately grazed pastures the accuracy of NDSI is only 7 % lower than USH (averaged over both 

years), whereas under very leniently grazing accuracy of NDSI is 24 % lower. 
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Figure 5.4 Relationship between statically and mobile measured normalized difference spectral index (NDSI). Both 

measurements were conducted on reference plots in pastures differently stocked by animals in 2013 and 2014. 

 

5.3.2 Relationship between static and mobile sward measurements for sensor combination 

Calibrations used in the present study were developed in a recent study by Safari et al. (2015) and 

showed cross-validation errors for biomass of pastures of 340 and 287 g FM m-2 in 2013 and 2014 

respectively (Table 5.2). The best-fit two-pair wavelengths for prediction of biomass were located 

in the visible (2013) and near infrared (NIR) (2014) regions of the spectrum. Several studies have 

indicated the importance of the visible near infrared range to create models for estimating biomass 

using narrowband ratios (Numata et al., 2008; Psomas et al., 2011; Fricke and Wachendorf, 2013). 

The 536 and 564 nm bands from the visible region (2013) can be correlated with chlorophyll 

content of vegetation (Psomas et al., 2011), while the 1121, 1133 nm from NIR (2014) are related 

to plant leaf water content (Raymond, 1991). 
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Table 5.2 Regression and cross validation statistics of prediction models for biomass (B) (g FM m-2) from ultrasonic 

sward height (USH) (cm) and narrowband normalized difference spectral index (NDSI) during mobile application. 

Models were derived from static measurements on reference plots according EQs 1 and 2 (see above) (n=54). 

Year b1 b2 R² 
SE 

(g FM m-2) 
R²cv 

RMSECV 

(g FM m-2) 
Equation 

2013 536 564 0.82 344.2 0.75 340.0 

B = 1664.26 - 22748.47 NDSI + 56.82 USH - 

991.32 NDSI x USH 

 

2014 1121 1133 0.87 227 0.68 287 

B = -271 - 146000 NDSI -9330000 NDSI² - 29.5 

USH + 1.89 USH² - 7010 NDSI x USH + 361 

NDSI x USH² + 11100 NDSI² x USH² 

b1, b2 = spectral bands 

SE = standard error 
RMSECV = random mean square error of cross-validation 

 

 

Biomass in the reference plots as measured by manual clipping and weighing ranged from 107.2 

to 3207.2 and from 360.8 to 2832.0 g FM m-2 in 2013 and 2014, respectively (Table 5.3). In 2013 

the leniently stocked pasture showed the highest biomass (mean value = 1727.6 g FM m-2) 

compared to the other pastures, while in 2014 reference plots in moderate pasture had the highest 

biomass (mean value = 1335.8 g FM m-2) followed by leniently grazed pasture (mean value = 

1271.6 g FM m-2). While biomass predicted by static application differed only slightly (<1 %) from 

manual clipping (mean of all pastures), values predicted by mobile application were somewhat 

lower with 3.7 and 7.1 % in 2013 and 2014, respectively. 
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Table 5.3 Summary statistics of measured and predicted biomass (g FM m-2) based on predictions by static and mobile 

application for pastures with different stocking rates in 2013 and 2014. 

 2013 2014 

  Measured Predicted Measured Predicted 

  Static Mobile  Static Mobile 

Moderate (n=18 in each year)      

Min 107.2 170.4 206.4 645.6 523.6 430.4 

Mean  942.8 968.7 831.6 1335.8 1279.5 1252.7 

Max 2152.0 2199.6 2028.8 2797.6 2602.7 2615.4 

Lenient (n=18 in each year)      

Min 611.2 797.4 354.4 610.4 728.7 686.7 

Mean  1727.6 1658.7 1643.2 1271.6 1272.6 1111.1 

Max 3207.2 2892.6 3076.0 2832.0 2433.0 2237.2 

Very lenient (n=18 in each year)      

Min 250.4 220.9 60.8 360.8 441.6 426.9 

Mean  1050.2 1093.1 1112.5 834.1 882.8 779.7 

Max 2624.0 2587.0 3109.9 1567.2 1798.4 1349.7 

All pastures (n=54 in each year)      

Min 107.2 170.4 60.8 360.8 441.6 426.9 

Mean  1240.2 1240.2 1194.7 1147.2 1145.0 1062.5 

Max 3207.2 2892.6 3109.9 2832.0 2602.7 2615.4 

 

 

Biomass prediction by mobile sensors was significantly associated with static sensor predictions 

and reference data (Figure 5.5). With R2 values of 0.77 and 0.84 for biomass of all pastures in 2013 

and 2014, respectively, the relationship between mobile and static predictions was quite close. 

Mobile prediction of biomass explained 63 and 76 % of the variation in manually determined 

reference data of all pastures in 2013 and 2014, respectively. Looking more closely into the data, 

it becomes apparent that the accuracy of biomass prediction improved with increasing grazing 

intensity with R² values of 0.52, 0.68 and 0.73 (average of both years) for very leniently, leniently 

and moderately grazed pastures, respectively. Though sensor combinations proved a higher 

prediction accuracy for grassland yield and quality compared to exclusive ultrasonic or spectral 

sensors (Safari et al., 2015, 2016), the findings of the present study likewise show the limits even 

sensor combinations have in the mobile assessment of biomass of extremely heterogeneous 

grasslands. 
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Regression lines in Figure 5.5, describing the relationship between actual and mobile predicted 

biomass, generally exhibit a slope < 1, which indicates an overestimation of the true values at low 

levels of biomass and an underestimation at high values, irrespective of stocking rate and years. 

The reason for an overestimation at low levels of biomass may be that the sensor system was not 

capable to grasp extremely high bulk densities accurately, which obviously occur when low swards 

exhibit high yields. 

In such situations bulk density of upper canopy layers are frequently much less than in lower 

canopy layers why both sensors may face limitations: On the one side the ultrasonic sensor detects 

signals reflected predominantly from upper canopy layers (Fricke et al., 2013) largely independent 

of the actual density of the sward. On the other side the reduction in the amount of radiation 

penetrating to a greater depth in the canopy can limit reflectance sensors especially in grass 

dominated canopies, which have their maximum leaf area index close to the soil surface (Goel, 

1988). 
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Figure 5.5 Relationship between mobile and static measured biomass (g FM m-2; based on combined sensor data USH 

and NDSI) and values measured by clipping. All measurements were conducted on reference plots in pastures 

differently stocked by animals in 2013 and 2014. 
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5.3.3 Assessment of position accuracy 

Though equal sensor calibrations were used, variation occurred between static and mobile 

measurements (Figure 5.3 and Figure 5.4). Differences may be brought about by vehicle 

configuration and movement, resulting in sensor displacement and confused geographical location. 

To evaluate these effects on the position of measuring points, which in this study is important to 

ensure correct placement of sensor measurements inside the reference plots during vehicle passage, 

a separate experimental setup was used (see also supplemental material). Briefly, position accuracy 

was analysed by comparing measured and expected USH values of vehicle measurements in the 

close surrounding of wooden marks with known dimension and position. Erroneous measurements, 

classified with respect to target and sensor properties, were assigned to its spatial distance from the 

target edges. The position error is here expressed as the relative frequency of erroneous 

measurements within a distance class related to apparent target edges, where a USH change 

between low and high was expected (Figure 5.6). 

 

Figure 5.6 Frequency of erroneous USH measurements (% of all measurements within a distance class) at different 

distance from apparent target edges (considering target dimensions and sensor properties). 

 

 

Error frequency declined with increasing distance from apparent target edges and the trend 

indicates a negligible risk of erroneous measurements, if the distance between two objects was 

more than 25 cm. Altogether the average position error was 8.5 ± 5.8 cm. Beside GPS errors of 1 
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- 2 cm, positioning inaccuracy observed in this study predominantly originated from undirected 

vehicle movements due to heaps and hollows of the ground surface. These errors could be 

compensated by a gyroscope, which can level out unbalanced sensor movements caused by the 

vehicle (Nagasaka et al., 2004). Further, measurement signal processing delays caused position 

offsets, which were in parts addressed in other studies, but are very specific to the respective vehicle 

construction. These position offsets could be compensated by appropriate mathematical models or 

coefficients in sensor position calculations (Zhao et al., 2010, Gottfried et al., 2012). Hence, 

although position errors were rather low, there are prospects for a further reduction. Regarding the 

precision of mobile measurements in the reference sampling plots, about 17 % of the measurements 

(mean position error of 8.5 cm divided by sampling plot width of 50 cm) can be expected to lie 

outside the sampling plot area, which may have contributed to the resulting discrepancy between 

static and mobile measurements (Figure 5.3 and Figure 5.4). However, the spatial accuracy, 

achieved with the current configuration of the mobile sensor system, can be considered adequate 

and may provide a solid basis for the creation of high-resolution maps. 

 

5.4 Conclusions 

The results from the present study suggest, that mobile multi-sensor systems, including ultrasonic 

and optical sensors, together with precise GPS can produce acceptable accuracies for biomass 

assessment in extremely heterogeneous grassland. Such systems may, for example, facilitate 

mapping of larger grassland areas at high spatial position accuracy, allowing the identification of 

nested structures within the vegetation. However, our findings also show the limits even advanced 

sensor systems have in the assessment of biomass of extremely heterogeneous grasslands, which 

is e.g. typical for very leniently stocked pastures. Thus, further research is necessary to be carried 

out to develop improved sensor systems for supporting practical grassland farming. 
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5.5 Supplement: Assessment of position accuracy – detailed information 

To evaluate the position accuracy during mobile measurements within study plots (50 x 30 m), 

wooden planks were placed at the end of each vehicle lane at the outer edge of the plot border 

(Figure A5.1). With 120 x 40 x 11 cm (depth x width x height) targets had defined dimensions and 

allowed an unimpaired passage of the vehicle. 

 

 

Figure A5.1 Display of reference targets (wooden planks) at the front ends of the study plot. Targets of defined 

dimensions and positions allowed the passage of the sensor vehicle moving lane-by-lane. 

 

Position accuracy was assessed by identifying erroneous measurements with respect to apparent 

target edges. For this purpose, the mounted ultrasonic sensors were used as they provide both, high 

measurement densities along the lanes and sensitive reactions of the measurement signal at target 

detection. Depending on the field of view and the mount height of the sensor, targets were expected 

to be hit by the sound cone already at a distance of 12.5 cm on both sides of the target edges during 

passage, resulting in a total target detection range (apparent target area) of 36 cm width including 

the target depth of 11 cm (Figure A5.2). 
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Figure A5.2 Display of a reference target, as used for assessing position accuracy and measured by ultrasonic sensors 

during passage of the vehicle. The two featured sensor positions show the distance range of expected target detection 

(apparent target area) independent of moving direction. These positions are used as reference lines for distinction and 

classification of correct and erroneous measurements. 

 

A data set was generated using USH measurements within a 25 cm-distance around the apparent 

target edges (Figure A5.3). Recordings were performed in the moderately grazed study plot in April 

2014 before vegetation started to grow. The low canopy height at this time of the year ensured a 

sufficient discrimination between grassland canopy and targets. USH measurements at locations 

within the investigated distance (n = 920) were attributed with their specific distance to the apparent 

edge of the targets. Though targets had a defined height of 40 cm, measured height values varied 

due to surface roughness and vehicle movements. This required the determination of the actual 

target height from the total dataset of USH values and to distinguish this from the sward heights. 

For this purpose, the data set was separated by using the inflection point of a height-sorted USH 
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histogram to group and classify readings into low grassland (mean = 8.7, SD = ± 5.6) and target 

(mean = 42.0, SD = ± 4.3) members. Figure A3 presents an example of the classified readings and 

their respective locations, illustrating point density and compliance with target values. 

 

 

 

Figure A5.3 Locations of measurement points with ultrasonic sward height (USH) readings generated by vehicle-

mounted sensors during the passage of targets for determining position accuracy. The diagram exemplarily shows a 

3.4 x 1.7 m² map extract of the moderately stocked grassland paddock (see Fig 5.1). 
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6 General discussion and conclusions 

This chapter reviews and discusses the findings of the conducted studies, which aimed to 

demonstrate the potential of using a combination of ultrasonic and canopy reflectance data to 

predict forage quantity and quality variables in extremely heterogeneous pastures. It also presents 

the final conclusions and recommendations for further research. 

 

6.1 General summary and discussion 

6.1.1 Exclusive sensors 

Non-destructive techniques with high sampling density and spatial resolution are recommended to 

estimate biomass and quality parameters in grassland ecosystems (Pullanagari et al. 2012 and 

2013). One of the most common methods currently used to assess sward canopy characteristics is 

spectral reflectance. Prediction of grassland biomass from height measurements is further method 

popular in grassland studies. Different methodologies were used in the various studies for 

estimation of biomass from height measurements. Estimating forage biomass with both physical 

height measurements using a commercial capacitance meter, rising plate meter and pasture rulers 

(meter sticks) (Sanderson et al. 2001; Fehmi et al. 2009; Dougherty et al. 2013) and sensor height 

measurements using laser (lidar) and ultrasonic sensors (Ehlert et al. 2009; Fricke et al. 2011; 

Pittman et al. 2015) has been developed in pasture management. Lidar (laser or 3D scanning) 

sensors measure distances by time-differential reflectance of a laser light while ultrasonic sensors 

are based on the measurements of reflected sound waves. The limitations associated with physical 

measurements of vegetation height and biomass estimation are labour and time intensiveness 

(Pittman et al. 2015). Additionally, those methods are not applicable to obtain spatial variability in 

large scale fields. Alternatively, sensor based methods may overcome the limitations associated 

with physical measurement methods. The prediction models developed in the present study by 

exclusive use of ultrasonic sward height (USH) or spectral data (Chapter 3 and 4) showed relatively 

lower accuracy compared to other researches. For example Biewer et al. (2009b), Fricke et al. 

(2011), Fricke and Wachendorf (2013) and Reddersen et al. (2014) received better calibration 

results for prediction of biomass yield and quality parameters using those sensors. It may reflect 

the fact that adaption of remote-sensing technologies in grazing systems is more difficult compared 

to cropping systems, due to the presence of complex heterogeneity. Grazing animals are selective 

in their foraging behaviour and influence grassland community, composition, structure and 
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productivity by patch or selective grazing. This behaviour creates spatially and temporally 

extremely dynamic environments (Correll et al., 2003; Schellberg et al., 2008). This can limit 

prediction of sward characteristics using ground-based sensors in complex pastoral environments 

and could lead to poor performance of those methods typically developed for more homogeneous 

grassland communities. In this study MPLSR used the information from all wavelengths to explain 

maximum variations in hyperspectral dataset and therefore accurate results were obtained (Chapter 

3 and 4). A reduction in prediction accuracy was observed for each pasture parameters by limiting 

hyperspectral data into derived spectral variables. Although the results of MPLSR were satisfactory 

for both quantity and quality parameters, the hyperspectral sensors are expensive and significant 

data computation is needed (Starks et al., 2006). Therefore, such techniques are not straightforward 

and developing low cost instruments (such as multispectral sensors) are more desirable in order to 

quantify pasture characteristics. Among the tested spectral predictor variables derived from 

hyperspectral data, NDSI using 1 nm waveband selection was the best predictor of biomass and 

quality parameters. As in the present study, other studies have also shown better results by using 

narrow-waveband vegetation indices (VIs) compared to broad-waveband VIs in vegetation 

canopies (Thenkabail et al., 2000; Mutanga and Skidmore, 2004). Better understanding of the target 

parameters could be obtained by increasing the spatial resolution of the sensor as the sensor 

provides reasonable information with high precision (Schellberg et al., 2008). Moreover,  most of 

the spectral variables could exceed the prediction accuracy of exclusive USH measurements for 

prediction of both biomass and quality parameters. Noticeably the performance of ultrasonic sensor 

for predicting quality parameters was very poor (Chapter 4). The results on exclusive approaches 

in Chapter 4 indicated that unlike ultrasonic sward height, hyperspectral data could be good 

predictor for quality in pastures with heterogeneous swards. This results were not consistent with 

those of Fricke and Wachendorf (2013) and Reddersen et al. (2014), where exclusive USH always 

achieved better prediction results than reflectance data in more homogenous swards. Therefore, 

exclusive ultrasonic sward height might not be a well suited predictor for biomass and quality 

variables in pastures with high levels of heterogeneity. Pasture canopies (as in our study site) are 

generally dominated by grass species which influence canopy structures by changes in their 

maturity levels. These kind of canopy structures with various layers of sward density could be a 

major limitation for ultrasonic sensor and limit its capability to detect true values of sward height 

in heterogeneous pastures. As it is demonstrated in chapter 3, the main limitation in diverse sward 

structure is that ultrasonic sensors provide a distance measurement based on signals reflecting from 
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top of the canopy regardless of sward density. Tall sparse species for instance, can influence the 

reflected echo (overlapping effect) and ultrasonic sward height does not reflect the actual canopy 

height. Another example could be dense canopy of some short paddocks in which canopy height 

does not represent sward density. Our findings showed, that both ultrasonic and spectral sensors 

faced limitations at more advanced developmental stages of swards when dead material 

accumulation and complexity of sward structures were maximum (Chapter 3 and 4). For biomass 

assessment high correlation between ultrasonic sward height and biomass was observed in the first 

sampling date while the analysis did not show a good agreement for the other dates (chapter 3). 

Some other researches also concluded that the use of ultrasonic measurements are more accurate 

at early stages, similarly to the situation found in our study (Fricke et al. 2011; Andújar et al. 2012). 

Fricke et al. 2011 stated the relationship between ultrasonic sward height and biomass can be 

influenced by species composition and phonological development. A saturation effect especially 

in pure grasses occurred by increasing in height detected by the sensor without continuous increase 

in leaf mass. Despite these limitations, some advantages derive from the use of ultrasonic sensors 

in pasture management. One of the main advantages could be the possibility of them for real time 

applications. Another advantage is the relatively low costs of these sensors that allow measuring 

the whole field with high spatial resolution using multiple sensors in parallel. Additionally, 

ultrasonic sensors are user-friendly and not affected by light conditions (Andújar et al. 2012). The 

possibility of ultrasonic sensors to be used in sensor fusion for obtaining more reliable estimations 

is also of a great importance (Adamchuk et al. 2011). Fricke and Wachendorf (2013) demonstrated 

that limitation of biomass assessment based on canopy height could partly be compensated by 

inclusion of spectral data. In overall, our finding emphasizes the fact that prediction of pasture 

characteristics only based on canopy height measurements or spectral variables derived from hyper 

spectral data could not be satisfactory. Therefore, combination of both sensors is very important in 

heterogeneous pastures.  
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6.1.2 Combined sensors 

The combination of ultrasonic and spectral sensor data for the prediction of biomass and quality 

parameters produced in most cases significantly better results than their exclusive use. However 

sensor data fusion using ultrasonic and spectral variables gave more promising result for prediction 

of biomass compared to quality parameters and among quality parameters for acid detergent fiber 

predictions (Chapter 3 and 4). The amount of increase in R² for prediction of biomass by USH-

NDSI combinations versus exclusive USH was higher in the present study in comparison with the 

investigations of Fricke and Wachendorf (2013) in legume-grass mixtures and Reddersen et al. 

(2014) in an extensively managed grassland. They reported maximum 20% increase in R² by USH-

NDSI combinations whereas maximum 40% improvement in R² was observed in our study. This 

implies that the combination of both sensors is more important in heterogeneous pastures as stated 

before. From all the tested spectral variables, sensor data fusion by combining USH with narrow 

band NDSI or WorldView2 satellite broad bands increased the prediction accuracy for estimation 

of both quality and quantity variables while reducing the prediction error during the whole grazing 

season. Even though MPLSR resulted in much higher prediction accuracy compared to those 

spectral variable in exclusive use, such combinations (USH-NDSI or USH-WV2) can produce 

estimates comparable to (or even more accurate than) MPLSR method in terms of R² and standard 

error. The potential of developed models to predict temporal variations was further evaluated by 

including the datasets of different sampling dates. More accurate results were achieved when 

prediction models were developed separately for each sampling date. However, the prediction 

results differed with season and pasture parameters. This could be due to the seasonal variations of 

pasture characteristics, varying proportions of functional groups, species-specific traits and 

increased amounts of dead material. Cabrera-Bosquet et al. (2011) also found different prediction 

accuracies for estimation of aboveground biomass (R²= 0.64-0.79) and nitrogen content in wheat 

(R² = 0.41-0.71) using NDVI measurements at different growth stages. This indicate the 

importance of multi-temporal data acquisition and subsequently date-specific calibrating models 

in order to increase model predictability for biomass and quality estimation using the suggested 

methods in heterogeneous pastures. Date-specific calibration results also suggested that the more 

precise sampling procedures which consider available range of attributes and their spatial and 

temporal variability could improve predictive capability of models. Best results for sensor 

combinations were achieved at the first half of the growing season when good performances of 
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either ultrasonic or reflectance sensor were observed. As both ultrasonic and spectral sensors have 

weaknesses at more advanced developmental stages of swards, the maximum accuracy was less 

comparing early to mid-growing season even though the improvement was achieved by sensor data 

fusion. Apart from complexity of sward structure which is a main limitation for ultrasonic sensor, 

the presence of a high proportion of dead materials in biomass can impact on the performance of 

the reflectance sensor either in exclusive use or combined with ultrasonic sensor (Chapter 3). The 

lower model accuracies for biomass and quality variables using combined sensors at the end of 

grazing season could mostly be due to the accumulation of senescent material. More investigations 

are needed to quantify such effects. Considering the limitations of ultrasonic sensor, the combined 

use of hyperspectral and lidar sensors which accurately measure three dimensional canopy 

structures and vertical heterogeneity might improve prediction accuracy of biomass and quality 

estimations. As a further matter, even though visible-near infrared spectral regions were identified 

as the most informative parts of the spectrum for the prediction models using NDSI band selection 

at different stages of grazing season, using a spectrometer with more spectral ranges (up to 

2400nm) may improve the result. The second highest potential for biomass and quality prediction 

using sensor data fusion was shown for USH-WV2 combination which opens the doors towards 

the goal of being able to determine pasture characteristics from space in the way that can be used 

for decision making such as planning grazing time and intervals, forage removal and stocking rate 

adjustments. The relatively high prediction accuracy of WV2 bands points at the potential of the 

WordView-2 satellite system to provide large-scale images with an acceptable spatial resolution to 

assess larger pasture areas for practical field applications in farming practice. Radar satellites for 

example might be useful for this kind of sensor data fusion, as they can provide measures of vertical 

structure such as canopy height. The addition of this kind of new satellite platforms might provide 

the opportunity to monitor pasture biomass, growth rate and feed quality in more precise manner 

and over vast areas on which to base grazing management, feed budgeting and allocations in terms 

of planning, control and monitoring. 

In Chapter 5 sensor combination was further investigated on a mobile platform integrated with 

global positioning system (GPS) to evaluate biomass prediction accuracies by site-specific 

measurements. Disparities between static and mobile measurements of NDSI compared to USH 

measurements was observed which could be the reason for lower accuracy of mobile biomass 

prediction by sensor vehicle in extensively managed pastures. In fact reflectance sensor relies on 

natural illumination source to capture spectra of vegetation canopies which could be inconsistent 
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and affect the spectral data capturing even in a very short time interval and have a distinct effect 

on vegetation indices (Qi et al., 1994). Moreover, unstable weather conditions (e.g. cloudy 

situation) influenced the resolution of data capturing by the sensor vehicle. The higher resolution 

(higher sampling points) is especially important in lenient and very lenient pastures where spatial 

variations are very high. High spatial resolution or sampling rate are recommended to estimate 

various grassland attributes through non-destructive methods to achieve suitable management 

practices (Dusseux et al., 2011). Sensor-vehicle position error ranges identified in the present 

research was rather low (8.5 ± 5.8 cm). However, attempts to reduce such impacts may improve 

accuracy of research results. In general, the findings in chapter 5 show such combined sensor 

technique can be utilized to produce high resolution maps with acceptable prediction accuracies at 

early to medium growth stages common for moderately and to some extent leniently grazed 

pastures. In the first application calibration models from the combination of USH and NDSI were 

used to generate 10 cm grid cell maps of fresh matter yield (FMY) through geostatistical 

interpolation method ordinary kriging with the spherical semivariogram model (figure 6.1). Such 

maps allow the information to be used in further analysis of spatio-temporal pasture dynamics e.g. 

to examine the effects of grazing intensities on spatial distribution patterns of sward characteristics 

in the target paddocks. Mapping and accurate quantifying grassland characteristics such as 

biomass, are needed over continuous periods to understand the effects of environmental and driving 

factors (grazing, droughts, etc.) on the spatial and temporal vegetation changes. The provided 

information could be very helpful for making effective grassland management decisions, for 

instance, improvement of short-grass patches by minimizing patch overgrazing, in order to sustain 

and restore forage resources and improve productivity and functioning. Fulkerson et al. (2005) 

reported that accurate and real-time measurements of pasture biomass can improve pasture 

productivity and utilization.  
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Figure 6.1 Spatial distribution maps of fresh matter yield in paddocks with different stocking rates: A) moderate B) 

lenient C) very lenient (3rd-5th June 2013). 

 

To summarize, the developed technique of combining ultrasonic and hyperspectral sensors 

improved prediction accuracy of biomass and quality parameters compared with use of each 

individual sensor in pastures characterized by a high structural and phenological diversity. With 

data fusion sensor system performed on the field level, the applicability and performance might 

significantly improve in comparison with conventional measurement techniques which require 

considerable amount of time, cost and effort. The on-the-go measurements of sward characteristics 

using such combined sensors allow for non-destructive data collections over larger areas in much 

quicker and less time consuming manner. Although hyper-spectral radiometers are costly and not 

feasible for grassland managers and farmers, the combination of low-cost ultrasonic sward height 

with vegetation indices has the potential for developing cost-effective sensor methods for pastures 

in the future and may improve assessment of biomass and quality attributes for site-specific 

management. If applicable, data collected from such mobile platform can be implied in decision 

making process such as stocking rate adjustment or forage removal in grazing management.  

However, the complexity associated with pasture ecosystems due to interactions between selective 

grazing and vegetation phenology poses a huge challenge for sensor applications. Hence, extending 

the results of this study towards the practical reliability of these technologies and the development 

of new sensor fusion algorithms to overcome such limitations need further investigations.  
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6.2 Conclusions 

 

(i) Exclusive ultrasonic sward height measurement might not be a well suited predictor for 

biomass and quality attributes in pastures with high levels of heterogeneity. 

 

(ii) The results suggested that hyperspectral techniques such as MPLSR method can be used to 

determine pasture biomass and quality attributes with sufficient prediction accuracy. 

However, attempts to refine the methodology towards the goal of practical implementation 

at field scale by limiting the number of wavebands caused the loss of information and lower 

prediction accuracy for each pasture parameter.  

 

(iii) Estimation of biomass and quality through sensor data fusion using field spectroscopy and 

ultrasonic sward height could be achieved with acceptable accuracy comparable with 

MPLSR method in pastures with diverse sward structure. However some factors such as 

high amount of senescent material, morphological development of pasture canopy and 

complexity of sward structure at more advance developmental stages of swards especially 

in extensively managed pastures might limit this possibility.  

 

(iv) Prediction accuracy seems to be affected by species-specific traits obviously depending on 

phenological development according to the sampling dates. Better results were obtained for 

samples from spring and early summer.  

        

(v) The performance of WV2-USH models based on WorldView2 satellite broad wavebands 

showed strong potential for prediction of biomass and to some extent for quality attributes 

suggesting that attempts to employ future satellite based sensors could be beneficial. 

 

(vi) Even if future research is necessary to identify the limitations and improve sensor 

configurations, the present research of applying combined sensing technique on pasture 

canopies, could be seen as a step towards being able to measure and map pasture properties 

of interest in real time and at the field scale. Such techniques offer grazing managers 

accurate and timely methods for monitoring grasslands prior to and post-grazing in order 

to improve management practices. 
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6.3 Recommendations for future research 

 

(i) Accuracy may be further increased by inclusion of more than two wavebands in 

hyperspectral vegetation indices derived by wavelength selection.  

 

(ii) It has been shown that wavelengths related to visible and near infrared (e.g. water content 

bands) among other curve features were found to be most important. However expanding 

the wavelength up to the shortwave infrared regions (2400 nm) may further improve the 

results.  

 

(iii) Due to spectral noise caused by shading and changeable natural illumination, a more robust 

and reliable selection of wavebands over a bandwidth of 50 nm or more might be preferred 

for NDSI band combinations over narrow band indices. This could minimize the effects of 

such noises in waveband selections and might lead to apply broadband multi-spectral 

sensors which are preferred by farmers due to cost and practicality. 

 

(iv) Further work is important to examine other possible combination of spectral and height data 

to produce high resolution maps. In this respect fusion of hype-spectral and LIDAR (3D 

laser scanning) or RADAR data which obtain canopy structure with high resolution could 

be valuable.  

 

(v) In this study a four-fold cross validation method was used to evaluate the performance of 

calibration models. However, testing the calibration equations on independent dataset 

would ensure their usefulness.  

 

(vi) In order to improve the results, it could also be recommended to be aware of various factors 

affecting the accuracy of calibration models and try to minimize their impact as much as 

possible. It can be suggested to test such mobile sensor technique in homogenous grassland 

communities with one or few species type or different cutting systems. This would allow 

reduction of complexity existing in this research and enabling the full potential of the 

combined sensors to achieve more precise estimations of vegetation attributes of interest. 
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Appendix 

Table A.1 Selected prediction model equations of measured dry matter yield (DMYa) for single sensor approaches 

using sward height (USHb), principle component analysis derived components (PCAc), WorldView2 satellite broad 

bands (WV2d) and the best fit narrowband normalized difference spectral index (NDSIe) based on sensor specific 

wavelength selections of 1nm bandwidth. 

Sensor variable Equation 

Common swards 

USH DMY = 117.3400 + 6.320 USH  

PCA DMY = 276.375 - 0.929 P2 + 13.035 P4 + 17.091 P5 

WV2 DMY = 194.89 + 37.38 B2 - 27.02 B6 + 14.60 B8 

NDSI DMY = -185 + 52137.6 NDSI 

Date 1 f 

USH DMY = 95.65 + 11.30 USH 

PCA DMY = 248.75 - 8.94 P3 + 17.10 P4 

WV2 DMY = 157.7 + 272.3 B3 - 606.6 B4 + 382.5 B5 

NDSI DMY = 81.17 - 11520 NDSI + 8390 NDSI² 

Date 2 g 

USH DMY = 56.812 + 7.076 USH 

PCA DMY = 314.529 - 6.523 P2 + 17.324 P4 

WV2 DMY = 262.29 - 62.04 B6 + 37.61 B7  

NDSI DMY = 70.89 + 93294.98 NDSI² 

Date 3 h 

USH DMY = 119.867 + 6.938 USH 

PCA n.s. 

WV2 DMY = 287.66 - 992.11 B1 + 1106.70 B2 - 159.66 B5 - 35.32 B6 + 12.28 B8 

NDSI DMY = 334.33 + 20620.37 NDSI 

Date 4 i  

USH DMY = 74.596 + 6.803 USH 

PCA DMY = 237.60 + 1.65 P2 - 7.17 P3 + 19.56 P4 + 18.89 P5 

WV2 DMY = 210.06 + 307.21 B2 - 209.12 B3 + 10.28 B8 

NDSI DMY = -672.2 + 200103.7 NDSI - 9604113.2 NDSI² 
a DMY = Dry matter yield (g m-2) as dependent variable. 
b USH = Ultrasonic sward height as independent variable. 
c PCA = Principle component analysis derived components as independent variables, P1-P5: the first to fifth components of PCA 
explaining 99% of variations.  
d WV2 = WorldView2 satellite broad bands as independent variables; B1-B8: the first to eighth broad-bands of WV2. B1: coastal 
(400-450 nm), B2: blue (450-510 nm), B3: green (510-580 nm), B4: yellow (585-625 nm), B5: red (630-690 nm), B6: red edge 
(705-745 nm), B7: near infrared-1 (770-895 nm) and B8: near infrared-2 (869-900 nm). 
e NDSI = Normalized difference spectral index. 
f Date 1: 25th April-02nd May 2013; g Date 2: 3rd-5th June 2013; h Date 3: 21st-23rd August 2013; i Date 4: 30th September-2nd 
October 2013. 
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Table A.2 Selected prediction model equations of measured dry matter yield (DMYa) for combination of ultrasonic 

sward height (USHb) with principle component analysis derived components (PCAc), WorldView2 satellite broad 

bands (WV2d) and the best fit narrowband normalized difference spectral index (NDSIe). Narrowband NDSI is based 

on 1nm wavelengths.  

Sensor variable Equation 

Common swards 

USH + PCA DMY = 100.2 + 8.184 USH - 0.04066 USH² + 1.071 P1 + 0.3924 P2 - 2.2 P3 + 9.419 P4 + 

2.175 P5 - 0.0007838 USH²*P2 + 0.006536 USH²*P5 

USH + WV2 DMY = -56.9 + 11.4 USH - 0.945 USH² - 297 B1 + 122 B2 + 74.6 B5 - 37.3 B6 + 49.3 B7 - 

24.3 B8 + 25.8 USH*B2 - 12.9 USH*B5 + 2.21 USH*B6 - 1.69 USH*B7 - 0.386 USH²*B2 + 
0.19 USH²*B5 - 0.0469 USH²*B6 + 0.0327 USH²*B8  

USH + NDSI DMY = -258.84 + 6878.05 NDSI - 31676.93 NDSI² + 11.26 USH - 278.30 NDSI²*USH 

 
Date 1 f 

USH + PCA DMY = 173.39462 + 0.38331 USH² - 1.58788 P2 - 3.27930 P3 + 8.33715 P4 + 0.00728 

USH²*P2 - 0.02982 USH²*P4 

USH + WV2 DMY = -151.6281 - 35.4523 USH + 3.3842 USH² + 219.9241 B1 - 499.2112 B2 + 148.1979 B3 

+ 115.3572 B5 - 67.3600 B6 + 34.3782 B7 + 12.0774 USH*B2 + 0.8193 USH²*B1 - 0.5474 
USH²*B3 - 0.4212 USH²*B5 + 0.2563 USH²*B6 - 0.1338 USH²*B7 

USH + NDSI DMY = 382.4 - 164800 NDSI + 21240000 NDSI² - 40.53 USH + 1.422 USH² + 27540 

NDSI*USH - 796.9 NDSI*USH² - 3245000 NDSI²*USH + 98410 NDSI²*USH² 

Date 2 g 

USH + PCA DMY = 158.9235 + 3.7694 USH + 1.1908 P1 - 2.3815 P2 + 9.4247 P4 - 14.8022 P5 - 0.0866 

USH*P2 

USH + WV2 DMY = 1015.9200 - 44.8508 USH + 0.6454 USH² + 263.4808 B1 + 414.1362 B3 -1 92.3887 

B4 - 151.0504 B5 - 135.7618 B6 + 27.6334 B8 + 1.7700 USH*B6 - 0.2910 USH²*B3 + 0.3364 
USH²*B4 - 0.1538 USH²*B5 

USH + NDSI DMY = -108 + 8395000 NDSI² + 0.06292 USH² 

 

Date 3 h 

USH + PCA DMY = 23.08092 + 15.58384 USH - 0.15950 USH² + 4.38994 P4 - 0.01327 USH²*P4 

USH + WV2 DMY = 258 + 0.0337 USH² - 695 B1 + 965 B2 - 186 B5 - 19.9 B6 - 0.294 USH²*B2 + 0.085 

USH²*B5 + 0.0246 USH²*B6 

USH + NDSI DMY = 279.3 + 30060 NDSI - 21640000 NDSI² - 6.493 USH + 0.2146 USH² - 24.93 

NDSI*USH² + 1466000 NDSI²*USH -21420 NDSI²*USH² 

Date 4 i  

USH + PCA DMY = -14.57418 + 19.02536 USH - 0.33208 USH² + 4.83465 P1 - 5.09728 P2 - 58.87350 
P3 + 9.87182 P4 + 15.59774 P5 - 0.53616 USH*P1 + 0.74975 USH*P2 + 6.30272 USH*P3 + 

0.01272 USH²*P1 - 0.01779 USH²*P2 - 0.14825 USH²*P3 

USH + WV2 DMY = 358 - 0.316 USH - 0.067 USH² - 1490 B1 + 855 B2 + 167 B3 - 1050 B4 + 865 B5 + 

29.1 B8 + 44.6 USH*B1 + 75.1 USH*B4 - 75.9 USH*B5 - 3.41 USH*B8 - 1.11 USH²*B3 + 
0.632 USH²*B5 + 0.0878 USH²*B8 

USH + NDSI DMY = 1518 - 258000 NDSI + 10130000 NDSI² - 184.3 USH + 4.935 USH² + 32820 

NDSI*USH - 800.2 NDSI*USH² - 1271000 NDSI²*USH + 30040 NDSI²*USH² 
a DMY = Dry matter yield (g m-2) as dependent variable.  
b USH = Ultrasonic sward height as independent variable. 
c PCA = Principle component analysis derived components as independent variables, P1-P5: the first to fifth components of PCA 
explaining 99% of variations.  
d WV2 = WorldView2 satellite broad bands as independent variables; B1-B8: the first to eighth broad-bands of WV2. B1: coastal 
(400-450 nm), B2: blue (450-510 nm), B3: green (510-580 nm), B4: yellow (585-625 nm), B5: red (630-690 nm), B6: red edge 
(705-745 nm), B7: near infrared-1 (770-895 nm) and B8: near infrared-2 (869-900 nm). 
e NDSI = Normalized difference spectral index. 
f Date 1: 25th April-02nd May 2013; g Date 2: 3rd-5th June 2013; h Date 3: 21st-23rd August 2013; i Date 4: 30th September-2nd 
October 2013. 
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Table A.3 Selected prediction model equations of measured fresh matter yield (FMYa) for single sensor approaches 

using sward height (USHb), principle component analysis derived components (PCAc), WorldView2 satellite broad 

bands (WV2d) and the best fit narrowband normalized difference spectral index (NDSIe) based on sensor specific 

wavelength selections of 1nm bandwidth. 

Sensor variable Equation 

Common swards 

USH FMY = 213.851 + 24.243 USH 

PCA FMY = 823.89 - 12.56 P2 + 8.87 P3 + 48.45 P4 + 43.31 P5 

WV2 FMY = 587.415 - 139.496 B3 + 26.719 B7 

NDSI FMY = 520.7 + 1541000 NDSI² 

Date 1 f 

USH FMY = 224.67 + 38.01 USH 

PCA FMY = 739.56 - 6.15 P2 - 17.18 P3 + 66.64 P4 

WV2 FMY = 522 + 929 B3 – 1984 B4 + 1175 B5 

NDSI FMY = -306.2 + 7914188.3 NDSI² 

Date 2 g 

USH FMY = 531.1739 + 0.4369 USH² 

PCA FMY = 1240.18 + 8.14 P1 - 29.39 P2 + 76.94 P4 

WV2 FMY = 247.0 - 233.6 B6 + 159.7 B7 

NDSI FMY = 381.96 - 164981.65 NDSI 

Date 3 h 

USH FMY = 398.37 + 12.96 USH 

PCA n.s. 

WV2 FMY = -242.5 - 887.4 B1 + 813.1 B3 - 269.5 B6 + 98.7 B8 

NDSI FMY = 814.45 - 49756.21 NDSI 

Date 4 i  

USH FMY = -73.053 + 38.104 USH - 0.397 USH² 

PCA FMY = 567.54 - 15.51 P3 + 57.91 P4 

WV2 FMY = 322.72 + 880.95 B1 - 470.35 B3 + 29.19 B8 

NDSI FMY = -116.4 + 415039.2 NDSI² 
a FMY = Fresh matter yield (g m-2) as dependent variable. 
b USH = Ultrasonic sward height as independent variable. 
c PCA = Principle component analysis derived components as independent variables, P1-P5: the first to fifth components of PCA 
explaining 99% of variations.  
d WV2 = WorldView2 satellite broad bands as independent variables; B1-B8: the first to eighth broad-bands of WV2. B1: coastal 
(400-450 nm), B2: blue (450-510 nm), B3: green (510-580 nm), B4: yellow (585-625 nm), B5: red (630-690 nm), B6: red edge 
(705-745 nm), B7: near infrared-1 (770-895 nm) and B8: near infrared-2 (869-900 nm). 
e NDSI = Normalized difference spectral index. 
f Date 1: 25th April-02nd May 2013; g Date 2: 3rd-5th June 2013; h Date 3: 21st-23rd August 2013; i Date 4: 30th September-2nd 
October 2013. 
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Table A.4 Selected prediction model equations of measured fresh matter yield (FMYa) for combination of ultrasonic 

sward height (USHb) with principle component analysis derived components (PCAc), WorldView2 satellite broad 

bands (WV2d) and the best fit narrowband normalized difference spectral index (NDSIe). Narrowband NDSI is based 

on 1nm wavelengths.  

Sensor variable Equation 

Common swards 

USH + PCA FMY = 273 + 21.3 USH + 0.00854 USH² + 2.67 P1 - 5.12 P2 + 10.1 P3 + 13.3 P4 + 24.5 P5 + 

0.00234 USH²*P1 - 0.00491 USH²*P2 - 0.0078 USH²*P3 + 0.0217 USH²*P4 

USH + WV2 FMY = -64.1 + 28 USH - 0.32 USH² + 0.02 B6 + 133 B7 - 123 B8 -0.0537 USH²*B6 + 0.0371 

USH²*B7 

USH + NDSI FMY = 284.3 - 89850 NDSI + 3075000 NDSI² + 33.51 USH - 0.2058 USH² - 148.5 

NDSI*USH² + 24840 NDSI²*USH²  

 
Date 1 f 

USH + PCA FMY = 251.50739 + 34.36009 USH + 0.05971 USH² + 2.67943 P1 - 5.65457 P2 + 26.07072 P5 

- 0.00718 USH²*P1 + 0.00879 USH²*P2 

USH + WV2 FMY = -682.8045 + 23.2794 USH + 2.3413 USH² - 279.9660 B2 + 254.4490 B5 - 74.1385 B6 + 

312.9831 B7 - 249.4671 B8 - 0.0416 USH²*B7 

USH + NDSI FMY = -728 + 151600 NDSI + 17.35 USH + 1.486 USH² - 137.6 NDSI*USH² 

 

Date 2 g 

USH + PCA FMY = 801.393 + 9.983 USH + 8.101 P1 - 15.396 P2 + 51.360 P4 - 0.355 USH*P2 

USH + WV2 FMY = 2773.8962 - 113.3589 USH + 1.5103 USH² + 978.6096 B3 - 558.6443 B5 - 432.9397 

B6 + 117.4014 B7 + 4.7236 USH*B6 - 0.2408 USH²*B3 

USH + NDSI FMY = 1664.26 - 22748.47 NDSI + 56.82 USH - 991.32 NDSI*USH 

 

Date 3 h 

USH + PCA FMY = 232.243 + 20.898 USH - 7.031 P1 + 11.167 P3 + 0.482 USH*P1 

USH + WV2 FMY = -1693.534 + 174.799 USH - 2.587 USH² - 1580.496 B1 + 1702.654 B2 - 27.101 B5 - 

21.480 USH*B5 + 0.328 USH²*B5 

USH + NDSI FMY = 223.4 - 28970 NDSI - 5481000 NDSI² + 11.86 USH + 0.04179 USH² + 389600 

NDSI²*USH - 6274 NDSI²*USH² 

Date 4 i  

USH + PCA FMY = 287.79 + 11.68 USH + 34.93 P4 

USH + WV2 FMY = 21.634 - 20.601 USH + 1.461 USH² + 993.944 B2 - 5257.223 B3 + 3913.686 B4 - 
986.951 B5 + 528.143 B6 + 418.253 USH*B3 - 251.372 USH*B4 - 47.379 USH*B6 - 
9.673USH²*B3 + 5.756 USH²*B4 + 1.079 USH²*B6 

USH + NDSI FMY = -2342 + 224900 NDSI – 4112000 NDSI² + 123.8 USH + 3.999 USH² - 837.2 
NDSI*USH² - 448400 NDSI²*USH + 37060 NDSI²*USH² 

a FMY = Fresh matter yield (g m-2) as dependent variable. 
b USH = Ultrasonic sward height as independent variable . 
c PCA = Principle component analysis derived components as independent variables, P1-P5: the first to fifth components of PCA 
explaining 99% of variations.  
d WV2 = WorldView2 satellite broad bands as independent variables; B1-B8: the first to eighth broad-bands of WV2. B1: coastal 
(400-450 nm), B2: blue (450-510 nm), B3: green (510-580 nm), B4: yellow (585-625 nm), B5: red (630-690 nm), B6: red edge 

(705-745 nm), B7: near infrared-1 (770-895 nm) and B8: near infrared-2 (869-900 nm). 
e NDSI = Normalized difference spectral index. 
f Date 1: 25th April-02nd May 2013; g Date 2: 3rd-5th June 2013; h Date 3: 21st-23rd August 2013; i Date 4: 30th September-2nd 
October 2013. 
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Table A.5 Selected prediction model equations of measured dead material proportion (DMPa) for spectral sensor 

approaches using principle component analysis derived components (PCAb), WorldView2 satellite broad bands 

(WV2c) and the best fit narrowband normalized difference spectral index (NDSId) based on sensor specific wavelength 

selections of 1nm bandwidth. 

Sensor variable Equation 

Common swards 

PCA DMP = 31.6079 - 0.1185 P1 + 0.6640 P2 - 0.9934 P3 + 0.9441 P4 

WV2 DMP = 39.04 + 13.00 B2 + 46.22 B3 - 76.71 B4 + 34.76 B5 - 6.74 B7 + 4.98 B8 

NDSI DMP = 39.3876 + 1353.2198 NDSI 

Date 1 e 

PCA DMP = 31.9167 + 0.2360 P2 - 1.1425 P3 

WV2 DMP = 11.401 + 37.853 B3 - 59.617 B4 + 29.213 B5 - 22.551 B7 +21.438 B8 

NDSI DMP = 1.641 + 1452 NDSI + 144100 NDSI² 

Date 2 f 

PCA DMP = 9.1870 + 0.1351 P2 - 0.3018 P3 

WV2 DMP = 22.482 - 0.302 B7 

NDSI DMP = 6.622 + 2330 NDSI + 1220000 NDSI² 

Date 3 g 

PCA DMP = 39.9904 - 0.5356 P1 + 0.5244 P3 

WV2 DMP = 68.236 + 57.048 B3 - 78.439 B4 + 33.448 B5 - 2.591 B7 

NDSI DMP = -15.49 + 3375.02 NDSI 

Date 4 h  

PCA DMP = 237.60 + 1.65 P2 - 7.17 P3 + 19.56 P4 + 18.89 P5 

WV2 DMP = 39.593 + 39.119 B3 - 52.682 B4 + 26.897 B5 - 1.804 B7 

NDSI DMP = 27.919 + 7341.182 NDSI 
a DMP = Dead material proportion (% of dry matter yield) as dependent variable. 
b PCA = Principle component analysis derived components as independent variables, P1-P5: the first to fifth components of PCA 

explaining 99% of variations.  
c WV2 = WorldView2 satellite broad bands as independent variables; B1-B8: the first to eighth broad-bands of WV2. B1: coastal 
(400-450 nm), B2: blue (450-510 nm), B3: green (510-580 nm), B4: yellow (585-625 nm), B5: red (630-690 nm), B6: red edge 
(705-745 nm), B7: near infrared-1 (770-895 nm) and B8: near infrared-2 (869-900 nm). 
d NDSI = Normalized difference spectral index. 
f Date 1: 25th April-02nd May 2013; g Date 2: 3rd-5th June 2013; h Date 3: 21st-23rd August 2013; i Date 4: 30th September-2nd 
October 2013. 
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Table A.6 Prediction model equations of acid detergent fibre (ADF) and crude protein (CP) in the biomass of 

heterogeneous pastures from ultrasonic sward height (USH) for common (N=323) and date-specific dataset (N=108). 

 

 

 

 

 

 

 

 

 

a C: common dataset; b Sp: spring dataset; C Sm: summer dataset; d Au: autumn dataset; e n.s. not significant 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Variable  Equation 

ADF (% of DM) Ca ADF = 23.129551 + 0.541768 USH - 0.005717 USH² 

 Spb ADF = 24.0954 + 0.1936 USH 

 Smc ADF = 22.00577 + 0.67592 USH - 0.00695 USH² 

 Aud ADF = 21.99615 + 0.75354 USH - 0.00926 USH² 

CP (% of DM) C CP = 12.50761 - 0.04055 USH 

 Sp CP = 12.509158 - 0.132532 USH + 0.001871 USH² 

 Sm CP = 11.728851 - 0.000976 USH² 

 Au n.s.e 
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Table A.7 Prediction model equations of acid detergent fibre (ADF) and crude protein (CP) in the biomass of 

heterogeneous pastures from best-fit normalized difference spectral index (NDSI) exclusively and as a combination 

with ultrasonic sward height (USH) for common (N=323) and date-specific dataset (N=108). 

 
a C: common dataset; b Sp: spring dataset; C Sm: summer dataset; d Au: autumn dataset. e ex: exclusive NDSI; f co: combination 
of USH and NDSI. g n.s: not significant. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Variable   Equation 

ADF (% of DM) Ca exe ADF = 14.46 + 877.02 NDSI        

 cof ADF = 17.8 + 46500 NDSI² + 0.411 USH - 0.00244 USH² - 538 NDSI²*USH 

 Spb ex ADF = 33.201 - 1010.311 NDSI 

 co ADF = 33.17 - 10580 NDSI + 2272000 NDSI² - 0.009842 USH + 280.7 
NDSI*USH - 73280 NDSI²*USH 

 Smc ex ADF = -56.51 + 4610.84 NDSI - 53901.40 NDSI²  

 co ADF = -10.8 + 2010 NDSI – 18000 NDSI² + 0.462 USH - 11.1 NDSI*USH 

 Aud ex ADF = 13.027 + 1983.273 NDSI 

 co ADF = 22.66 + 1083 NDSI + 80530 NDSI² + 0.8106 USH - 0.01276 USH² 

CP (% of DM) C ex CP = 70.48 - 236.17 NDSI + 227.12 NDSI² 

 co CP = 42.2070 - 121.7472 NDSI + 109.3326 NDSI² - 0.2239 USH + 0.4501 
NDSI*USH 

 Sp ex CP = 32.5 - 1885.5 NDSI + 38254.5 NDSI² 

 co CP = 280.3372 - 788.7756 NDSI - 11.0845 USH + 0.1263 USH² + 33.6308 

NDSI*USH - 0.3923 NDSI*USH² - 25.7730 NDSI²*USH + 0.3069 NDSI²*USH² 
 Sm ex CP = 29.0 - 112.3 NDSI + 139.2 NDSI² 

  co n.s.g 

 Au ex CP = 23.157 - 44.127 NDSI 

 co n.s. 
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Table A.8 Prediction model equations of acid detergent fibre (ADF) and crude protein (CP) in the biomass of 

heterogeneous pastures from WorldView2 satellite bands exclusively and as a combination with ultrasonic sward 

height (USH) for common (N=323) and date-specific swards (N=108). 

a C: common dataset; b Sp: spring dataset; C Sm: summer dataset; d Au: autumn dataset. e ex: exclusive satellite bands; f co: 
combination of USH and satellite bands. g n.s: not significant.  

WorldView2 satellite broad bands as independent variables; B1-B8: the first to eighth broad-bands of WV2. B1: coastal (400-450 
nm), B2: blue (450-510 nm), B3: green (510-580 nm), B4: yellow (585-625 nm), B5: red (630-690 nm), B6: red edge (705-745 
nm), B7: near infrared-1 (770-895 nm) and B8: near infrared-2 (869-900 nm) 

 

 

Variable   Equation 

ADF (% of DM) Ca exe ADF = 36.4312 - 16.5894 B1 + 21.4739 B2 + 10.2287 B3 - 18.7016 B4 + 5.5000 
B5 - 2.7202 B7 + 2.2975 B8 

 cof 28.07 + 0.1661 USH + 0.001961 USH² - 60.16 B1 + 61.44 B2 + 14.23 B3 -22.1 B4 
+ 2.189 B5 - 2.016 B6 - 7.420 B7 + 7.735 B8 + 3.287 USH*B1-2.777 USH*B2 + 
0.1981 USH*B5 + 0.1652 USH*B6 + 0.1524 USH*B7 -0.2373 USH*B8 - 0.04473 

USH²*B1+ 0.03182 USH²*B2 - 0.00256 USH²*B6 + 0.001454 USH²*B8 
 Spb ex n.s. 

 co ADF = 29.752933 - 0.222049 USH + 0.008552 USH² - 73.934980 B1 + 57.622116 
B2 - 2.698515 B5 - 0.153467 B7 + 3.170420 USH*B1 -2.092045 USH*B2 -
0.037068 USH²*B1 + 0.023058 USH²*B2 

 Smc ex ADF = 50.145 - 31.234 B1 + 35.328 B2 + 15.115 B3 - 16.357 B4 - 2.268 B6 

 co ADF = 40.6 + 0.0982 USH + 0.000731 USH² - 117 B1 + 124 B2 + 25.5 B3 -37.6 
B4 - 4.31 B5 - 15.4 B7 + 13.6 B8 + 5.54 USH*B1 - 5.61 USH*B2 + 0.814 USH*B5 
+ 0.41 USH*B7 - 0.379 USH*B8 - 0.0612 USH²*B1 + 0.0616 USH²*B2 -0.0129 
USH²*B3 + 0.02 USH²*B4 - 0.0169 USH²*B5 

 Aud ex ADF = 31.301 + 28.621 B3 - 38.608 B4 + 18.146 B5 - 2.754 B6 - 4.757 B7 + 4.974 
B8 

 co ADF = 29 + 0.183 USH - 0.000141 USH²- 53.8 B1+ 72.3 B2 + 21.8 B3 - 30 B4 - 
0.228 B5 - 7.14 B6 - 0.168 B7 + 2.89 B8 + 1.94 USH*B1 - 2.76 USH*B2 + 0.594 
USH*B5 + 0.367 USH*B6 - 0.194 USH*B7 - 0.00524 USH²*B6 + 0.00298 
USH²*B7 

CP (% of DM) C ex CP = 8.6371 + 10.9692 B1- 6.3544 B2 - 2.2856 B3 + 0.5074 B6 

 co CP = 10.028589 - 0.026711 USH - 0.000901 USH² + 7.488305 B1 - 3.164376 B2 - 
3.891008 B3 + 5.303302 B4 - 4.018177 B5 + 0.227481 B7 + 0.232754 USH*B2 - 
0.114974 USH*B4 - 0.005556 USH²*B2 + 0.001040 USH²*B3 + 0.002017 
USH²*B5  

 Sp ex CP = 4.7205 + 4.1397 B1 - 1.2364 B4 + 0.2199 B6 

 co CP = -15.3 + 0.97 USH - 0.00946 USH² - 18.8 B1 + 22 B2 - 10.7 B3 + 3.70 B4 - 
1.21 B5 + 2.63 B6 + 1.45 B7 - 1.55 B8 + 1.55 USH*B1 - 1.40 USH*B2 + 0.299 

USH*B3 - 0.0883 USH*B6 - 0.0186 USH²*B1 + 0.0153 USH²*B2 - 0.00561 
USH²*B4 + 0.00337 USH²*B5 + 0.000854 USH²*B6 

 Sm ex CP = 13.419 + 2.212 B2 - 3.711 B3 + 0.383 B7 

  co CP = 12.347291 + 0.103984 USH - 0.002744 USH² + 6.905206 B1 -3.696828 B2 - 
3.002849 B3 + 0.334154 B7 - 0.003516 USH²*B1 + 0.002763 USH²*B2  

 Au ex CP = 10.943 + 9.002 B2 - 7.320 B3 + 5.639 B4 - 6.061 B5 + 0.810 B6 

 co CP = 14.123517 - 0.003319 USH² + 8.417694 B2 - 4.790308 B3 + 4.445703 B4 - 

6.194896 B5 + 0.228072 B7 + 0.000518 USH²*B4 


