Rearrangements in a hydrophobic core region mediate cAMP action in the regulatory subunit of PKA

Claudia Hahnefeld, Daniela Moll, Maik Goette and Friedrich W. Herberg*

Department of Biochemistry, University of Kassel, D-34132 Kassel, Germany
* Corresponding author

e-mail: herberg@uni-kassel.de

Abstract
cAMP-dependent protein kinase (PKA) forms an inactive heterotetramer of two regulatory (R; with two cAMP-binding domains A and B each) and two catalytic (C) subunits. Upon the binding of four cAMP molecules to the R dimer, the monomeric C subunits dissociate. Based on sequence analysis of cyclic nucleotide-binding domains in prokaryotes and eukaryotes and on crystal structures of cAMP-bound R subunit and cyclic nucleotide-free Epac (exchange protein directly activated by cAMP), four amino acids were identified (Leu203, Tyr229, Arg239 and Arg241) and probed for cAMP binding to the R subunits and for R/C interaction. Arg239 and Arg241 (mutated to Ala and Glu) displayed no differences in the parameters investigated. In contrast, Leu203 (mutated to Ala and Trp) and Tyr229 (mutated to Ala and Thr) exhibited up to 30-fold reduced binding affinity for the C subunit and up to 120-fold reduced binding affinity for cAMP. Tyr229Asp showed the most severe effects, with 350-fold reduced affinity for cAMP and no detectable binding to the C subunit. Based on these results and structural data in the cAMP-binding domain, a switch mechanism via a hydrophobic core region is postulated that is comparable to an activation model proposed for Epac.

Keywords: cAMP-dependent protein kinase; exchange protein directly activated by cAMP; surface plasmon resonance.

Introduction
cAMP-dependent protein kinase (PKA) is a key enzyme in intracellular signal transduction and serves as a model system for protein kinases. The importance of PKA is being increasingly identified with regard to its involvement in several diseases. Recent examples are potential associations with the Carney complex disease (Stergiopoulos and Stratakis, 2003) and HIV; for a review see Tasken and Aandahl (2004).

PKA is inactive in its heterotetrameric form, which consists of two catalytic (C) subunits and a regulatory (R) subunit dimer. The biochemical properties of PKA are defined primarily by its R subunits. Two general types of R subunits have been described, RI and RII, with two subtypes each, α and β. Activation of the enzyme is achieved by the cooperative binding of the second messenger cAMP to the R subunits, leading to dissociation of the holoenzyme complex (Krebs and Beavo, 1979; Taylor et al., 1990; Herberg et al., 1994). The crystal structures of deletion mutants of RIα (Su et al., 1995; Wu et al., 2004a,b), of RIIβ (Diller et al., 2001) and of the full-length C subunit (Knighton et al., 1991; Bossemeyer et al., 1993) are available. Recently, a high-resolution crystal structure of a truncated R subunit/C subunit complex was published (Kim et al., 2005). However, the crystallization of an entire holoenzyme structure is still awaited. Thus, on the molecular level the mode of action of cAMP, starting with docking of the cyclic nucleotide to the R subunits and finally resulting in release of the C subunits, remains unclear.

Besides the N-terminal dimerization domain, the R subunits contain an inhibitory site for C subunit binding and two tandem cAMP-binding domains, A and B. The general fold of the cAMP-binding domain is highly conserved in prokaryotes (for example in the catabolite gene activator protein, CAP; Weber et al., 1987), as well as in eukaryotes. Other cAMP-binding proteins in eukaryotes are cyclic nucleotide-gated (CNS) channels (for a review see Kaupp and Seifert, 2002) and the exchange protein directly activated by cAMP (Epac). Epac1 and Epac2 are guanine nucleotide exchange factors (GEFs) and activate the small GTPases Rap1 and Rap2 (de Rooij et al., 1998, 2000; Kawasaki et al., 1998), with one cyclic nucleotide monophosphate-binding domain in Epac1 and two in Epac2 (Rehmann et al., 2003). In contrast to PKA, in Epac the regulatory domain (including the cyclic nucleotide-binding domains) and the catalytic domain responsible for the guanine nucleotide exchange activity are located on a single polypeptide chain.

For PKA type I, a sequential dissociation mechanism has been proposed in which cAMP binds first to cAMP-binding site B, which is exposed to the solvent in the holoenzyme (Ogreid and Doskeland, 1981; Herberg et al., 1996). After conformational rearrangement, the cAMP-binding site A becomes more accessible to cyclic nucleotides and binding of additional cAMP to site A triggers release of the catalytic subunit.

Based on the crystal structures of RIα (Su et al., 1995) and RIIβ (Diller et al., 2001), a network of ionic interactions (salt bridges) is potentially responsible for transmitting the cAMP signal to conformational changes, finally resulting in dissociation of the C subunit. However, sequence alignments of cAMP-binding proteins throughout the animal kingdom and bacteria demonstrate that several key residues, displaying mostly hydrophobic character, seem to be highly conserved. Based on the cyclic nucleotide-free crystal structure of Epac2, it was concluded that the interaction of hydrophobic amino acids may trigger the physiological response to cAMP binding (Rehmann et al., 2003).
Taylor, 2002). Based on H/D exchange studies, Tyr229 in the A domain (Shabb and Corbin, 1992; Canaves and but cannot clearly be assigned to Arg239 or Arg241 in the B domains, one conserved Arg residue can be found, subunits based on sequence comparisons (Figure 1). In Arg residues are highly conserved in the A domains of RI subunit interaction (Huang and Taylor, 1998). Both crucial domain and may also provide a direct interface for C transmits the effects of cAMP on the B domain to the A Sorol et al., 2000). This positioned on a connecting helix (Symcox et al., 1994; two prominent Arg residues, Arg239 and Arg241, are conserved in the A domains of RI sorus (Buechler and Taylor, 1990; Su et al., 1995; Gibson et al., 1997). The crystal structure clearly revealed that two prominent Arg residues, Arg239 and Arg241, are positioned on a connecting helix (Symcox et al., 1994; Sorol et al., 2000). This α-helix (residues 234–260) transmits the effects of cAMP on the B domain to the A domain and may also provide a direct interface for C subunit interaction (Huang and Taylor, 1998). Both crucial Arg residues are highly conserved in the A domains of RI subunits based on sequence comparisons (Figure 1). In the B domains, one conserved Arg residue can be found, but cannot clearly be assigned to Arg239 or Arg241 in the A domain (Shabb and Corbin, 1992; Canaves and Taylor, 2002). Based on H/D/H exchange studies, Tyr229 was protected upon C subunit binding, suggesting that this residue is important for the interaction between R and C subunits (Anand et al., 2002).

Using type Iα PKA, the mode of action of cAMP was investigated based on two different sets of mutant proteins. In a first set of mutant proteins, a model was probed in which ionic interactions were disrupted by exchange of the two conserved Arg residues. An alternative model based on a proposed lid mechanism (Rehmann et al., 2003) was tested with a second set of mutant proteins by exchanging the conserved residues Leu203 and Tyr229.

Results

A strategy combining rational protein design and biophysical/biochemical analysis served to unravel the effects of cAMP, starting from cAMP binding up to dissociation of the PKA holoenzyme. Several key amino acids, potentially involved in transmitting the cAMP signal, were exchanged in the R1α subunit using site-directed mutagenesis. Since it is difficult to kinetically distinguish the binding patterns of a highly cooperatively working regulatory protein (Herberg et al., 1994, 1996), a monomeric, truncated R subunit was generated. This construct (bovine R1α Δ1–92 Δ260–379; Ringheim and Taylor, 1990) referred to here as the R A-domain, retains both the capability to reversibly inhibit the C subunit and to respond to cAMP. However, it allows investigation of R/C subunit interaction, as well as R subunit/cAMP interaction, in a simplified 1:1 binding model. The R A-domain was then used as the basis for site-directed mutagenesis of several key residues. Arg239 and Arg241, highly conserved in the R subunits only (Figure 1), were mutated to Ala and Glu, to investigate a mechanism based on the formation of salt bridges. This was deduced from the crystal structures of nucleotide-bound R1α (Su et al., 1995) and R1β (Diller et al., 2001) and from primary sequence comparisons (Symcox et al., 1994; Sorol et al., 2000). Alternatively, to probe a mechanism based on an interaction network of hydrophobic amino acids as exemplified in the nucleotide-free crystal structure of Epac (Rehmann et al., 2003), Leu203 was mutated to Ala and Trp, and Tyr229 was replaced by Ala, Asp, Thr and Phe.

R A-domain mutant proteins were overexpressed in E. coli yielding high levels of expression. Lysis by sonification or by French press treatment resulted in almost insoluble protein. Nevertheless, it was possible to purify the proteins via affinity chromatography using 6-AH-cAMP agarose. It has been demonstrated that cAMP analogs with a substitution in the N6 position of the purine ring display high affinity for the cAMP-binding site A in the full-length R1α subunit (Ogreid et al., 1989). The protein could be eluted with an excess of cGMP, which was subsequently removed. Independently of the amino acid substitution introduced, all cGMP-eluted proteins displayed similar Stokes’ radii as demonstrated by high-resolution gel filtration, indicating that the overall shape of the mutant protein did not deviate from the R A-domain wild type (WT) (data not shown). Furthermore, CD measurements confirmed that the relative α-helical content was not altered when comparing R A-domain WT and protein mutated to alanine (Figure 2; Leon et al., 2000). At 22°C the mutants showed practically identical CD spectra, with minima at 209 and 222 nm. Hence, the global secondary structure of the mutant proteins was not affected severely by one of the point mutations introduced, as corroborated by CD spectra and analytical gel filtration.

![Diagram](Image)

Figure 1 Amino acid sequence alignment of the cAMP-binding domains in regulatory subunits of PKA and in Epac. The amino acid sequences used were b/hRIα (bovine R1α, NCBI Entrez protein data base accession number: OKB01R; human R1α, AAB50922), hR1β (human R1β, AAC37564), hR1α (human R1α, NP_004148), hR1β (human R1β, AAA60099), hEpac1 (human Epac1, O95398), and m/h Epac2 (murine Epac2, 1O7FA; human Epac2, NP_009954). The numbering refers to the amino acid sequence of bovine R1α. The alignment was performed with the web-based software DIALIGN 2.2.1 (Morgenstern, 1999). Important invariant (highlighted in black) and highly conserved (lightly shaded) residues are highlighted.
To investigate the ability of a mutant R subunit and a wild-type C subunit to form holoenzyme, both subunits were mixed and assayed for the remaining phosphotransferase activity according to Cook et al. (1982). Holoenzyme in a 1:1 stoichiometry was expected to form instantaneously, since the R subunits prepared were nucleotide-free (see materials and methods). Indeed, C subunit activity was immediately inhibited by the addition of R A-domain WT, reflecting holoenzyme formation (Figure 3). The functionality of the holoenzyme complex was proven by the fact that cAMP restored activity.

Hence, the affinity of the R subunit for the C subunit was investigated using a spectrophotometric assay. C subunit at a fixed concentration (30 nM) was preincubated with varying concentrations of R subunit. After plotting the residual activity against the R subunit concentration, an EC50 value of 33 nM for the R A-domain WT was extracted (Figure 4A,B). All proteins with mutations of the Arg residues (Arg239Ala/Glu, Arg241Ala/Glu) showed similar results.

In contrast, significantly higher amounts of the R A-domain Leu203 and Tyr229 mutant protein were needed to inhibit the catalytic subunit. Leu203Ala and Leu203Trp showed approximately 10-fold higher EC50 values (330 and 380 nM, respectively); R A-domain Tyr229Ala (620 nM) displayed an even higher EC50 value (Figure 4A,B). Interestingly, mutation of Tyr229 to Phe yielded a protein with C subunit inhibition similar to the R A-domain WT. The amino acid change to Phe is conserved: most cyclic nucleotide-binding domains display a Phe residue instead of Tyr (Shabb and Corbin, 1992; Rehmann et al., 2003).

Based on these results, two groups of mutant proteins could be identified: (1) the Arg239 and Arg241 mutant proteins displaying wild-type-like behavior; and (2) the Tyr229 and Leu203 mutant proteins with decreased affinity for the C subunit. The R A-domain Tyr229Thr protein (83 nM) ranged between the Arg and Tyr/Leu proteins, with a three-fold enhanced EC50 value compared to the
R A-domain WT. R A-domain Tyr229Asp did not inhibit 30 nM C subunit, even up to a concentration of 3 μM.

Using Biacore instruments, surface plasmon resonance was applied to measure the detailed interaction kinetics between covalently immobilized C subunit (see Materials and methods) and nucleotide-free R A-domain WT and mutant proteins, respectively. Association (k_{ass}) and dissociation (k_{diss}) rate constants were determined separately from an individual set of binding curves using different R subunit concentrations (Figure 5A). Rate constants and the corresponding equilibrium binding constants (K_D) were calculated by applying a 1:1 Langmuir fit (Table 1). Figure 5B shows an overview, plotting one single concentration of each R subunit mutant protein interacting with immobilized C subunit. R A-domain WT and the proteins with Arg mutations displayed indistinguishable interaction kinetics (data not shown), as did R A-domain Tyr229Phe (Figure 5B). R A-domain Leu203Trp showed fast association and fast dissociation, also reflected in a much lower equilibrium binding response. In contrast, R A-domain Tyr229Ala and Tyr229Thr had distinctly different binding patterns, displaying slower association and slower dissociation kinetics (see Table 1).

Again, the group of Arg proteins, probing the charged-charged interactions, behaved like wild-type protein and could clearly be distinguished from the group of Tyr/Leu proteins, in which hydrophobic side chains were mutated, with the exception of R A-domain Tyr229Phe, which displayed wild-type-like interaction kinetics.

Since the K_D values for holoenzyme formation showed huge differences, we also tested the dissociation behavior of preformed holoenzyme in response to cAMP using a spectrophotometric assay.

The activation constant $k_{act}(cAMP)$ for R A-domain WT holoenzyme of 1 μM was in very good agreement with the previously published value (1.1 μM; Ringheim and Taylor, 1990). Both proteins with mutations in Arg239 and Arg241, as well as Tyr229Phe, displayed wild-type-like behavior (data not shown). For all other R proteins with mutations of amino acids with hydrophobic side chains, activation constants could not be determined, since an extremely high excess of R subunit was necessary to form an inhibitory R subunit/C subunit complex.

cAMP binding to the isolated R subunit was also investigated. A solution competition assay performed on a Biacore instrument was used to quantify cAMP binding (Zimmermann et al., 2002; D. Moll et al., in preparation; Table 2, Figure 6). R A-domain Arg239Ala/Glu, Arg241Ala/Glu and Tyr229Phe displayed EC50 values in the same range as R A-domain WT (20–24 nM). R A-domain Tyr229Phe displayed a four-fold enhanced EC50 value. For Leu203Ala and Leu203Trp, the EC50 value was shifted by a factor of 35 and 120, respectively, into the micromolar range. The most striking difference was measured for R A-domain Tyr229Asp. Here the cAMP concentration needed for half-maximal binding competition was 8.3 μM, i.e., 350-fold higher than for R A-domain WT.

Table 1

<table>
<thead>
<tr>
<th>R A-domain</th>
<th>$k_{ass} \times 10^3$ (μM s⁻¹)</th>
<th>$k_{diss} \times 10^3$ (s⁻¹)</th>
<th>K_D (nM)</th>
<th>n</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT</td>
<td>0.69±0.63</td>
<td>8.6±2.6</td>
<td>12</td>
<td>4</td>
</tr>
<tr>
<td>R239A</td>
<td>1.1±0.2</td>
<td>11±1.7</td>
<td>10</td>
<td>3</td>
</tr>
<tr>
<td>R239E</td>
<td>1.4±0.55</td>
<td>16±1.8</td>
<td>11</td>
<td>3</td>
</tr>
<tr>
<td>R241A</td>
<td>0.47±0.088</td>
<td>6.8±1.0</td>
<td>14</td>
<td>3</td>
</tr>
<tr>
<td>R241E</td>
<td>1.3±0.36</td>
<td>5.4±0.6</td>
<td>4</td>
<td>3</td>
</tr>
<tr>
<td>L203A</td>
<td>0.029</td>
<td>8.2</td>
<td>283</td>
<td>1</td>
</tr>
<tr>
<td>L203W</td>
<td>0.094±0.06</td>
<td>20±6.7</td>
<td>212</td>
<td>3</td>
</tr>
<tr>
<td>Y229A</td>
<td>0.012±0.0041</td>
<td>4.3±2.2</td>
<td>358</td>
<td>3</td>
</tr>
<tr>
<td>Y229F</td>
<td>1.3±0.31</td>
<td>25±2.7</td>
<td>19</td>
<td>3</td>
</tr>
<tr>
<td>Y229T</td>
<td>0.06±0.022</td>
<td>4.3±2.8</td>
<td>72</td>
<td>6</td>
</tr>
</tbody>
</table>

The association (k_{ass}) and dissociation (k_{diss}) rate constants are derived from curve fits with a 1:1 Langmuir binding model. The standard deviation is indicated.
Again, two groups of proteins could clearly be distinguished. R A-domain WT and mutant proteins (Arg239Ala/Glu, Arg241Ala/Glu) with disrupted charged amino acids displayed similar cAMP-binding behavior. The protein containing the conservative mutation Tyr229Phe also belongs to this group. The other group of proteins involving changes in hydrophobic amino acids strongly lowered the affinity for cAMP binding. R A-domain Tyr229Thr exhibited a 2.6-fold higher EC₅₀ value, again ranging between the two groups.

Discussion

Sequence alignments of cAMP-binding proteins throughout the animal kingdom reveal a highly conserved region responsible for cAMP binding (Shabb and Corbin, 1992). Each cAMP-binding domain of the PKA R subunits is composed of three α-helices and an eight-stranded β-barrel (Su et al., 1995), forming a highly conserved phosphate binding cassette (PBC; Gly-Glu-Leu-Ala-Leu-X₃₋₅-Pro-Arg-Ala-Thr-Ala-Thr/Ser; Diller et al., 2001; Canaves and Taylor, 2002) responsible for phosphate binding and orientating the ribose moiety, and a non-conserved base binding region (BBR; Rehmann et al., 2003). The BBR contacts the base of the cyclic nucleotide and mediates site selectivity of cAMP analogs (Ogreid et al., 1989). Amino acids located in primary interaction sites with cAMP are conserved in all cAMP-binding domains and have been studied intensively (Houge et al., 1990; Neitzel et al., 1991; Herberg et al., 1996; Diller et al., 2001). Here we investigated the mode of action of cAMP on a second level of interaction, describing the molecular rearrangements ending in dissociation of the catalytic entity.

The mode of action of cAMP on the PKA holoenzyme is remarkably different from other cAMP-binding proteins. In contrast to Epac, in which a simple conformational change results in catalytic GEF activity, in PKA the dissociation of two separate subunits is initiated by cAMP, involving several levels of molecular rearrangements.

By comparing the sequences of R subunits, including non-vertebrate proteins, and other cyclic nucleotide-binding proteins (CAP, Epac, K⁺ channels), several conserved amino acids outside the PBC can be identified. A mode of action of cAMP based on interaction of hydrophobic amino acids has already been proposed for Epac (Rehmann et al., 2003). These authors attributed binding of cAMP to a reorientation of invariant Leu and Tyr residues, which induces a small conformational change in the PBC region. This change is transmitted via a hinge into a large structural movement of a lid region (Diller et al., 2001) formed by the αC-helix (B/C helix; Kim et al., 2005), one of the flanking α-helices that stabilizes the base. A lid mechanism has been discussed for the hyperpolarization-activated, cyclic nucleotide-modulated (HCN) pacemaker channels, in which the cyclic nucleotide-binding domain inhibits activation of the core transmembrane domain, and cAMP binding relieves this inhibition (Wainger et al., 2001). Using cysteine mutations and subsequent interaction analysis with sulfhydryl reagents, Mazzolini et al. (2002) could show movement of an αC-helix during CNG channel gating, also supporting a lid mechanism. A similar topology is found in the CAP protein (Weber and Steitz, 1987).

Leu273 (corresponding to Leu408 in Epac2) and Phe300 (Phe435 in Epac2) are conserved in Epac1. A Leu residue is also highly conserved in PKA R subunits (Leu203 in bovine RIIα). In PKA R subunits from all species analyzed so far, the Phe residue is also conserved, except for the A-domain of RIIα and RIβ, in which the Phe is replaced by a Tyr residue (Tyr229 in bovine RIIα; Shabb and Corbin, 1992; Canaves and Taylor, 2002; see Figure 1). The cyclic nucleotide-binding domains of CAP

<table>
<thead>
<tr>
<th>R A-domain</th>
<th>cAMP EC₅₀ (nM)</th>
<th>n</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT</td>
<td>24±5.4</td>
<td>3</td>
</tr>
<tr>
<td>R239A</td>
<td>20±4.6</td>
<td>3</td>
</tr>
<tr>
<td>R239E</td>
<td>21±3.3</td>
<td>3</td>
</tr>
<tr>
<td>R241A</td>
<td>22±3.0</td>
<td>2</td>
</tr>
<tr>
<td>R241E</td>
<td>21±0.4</td>
<td>3</td>
</tr>
<tr>
<td>L203A</td>
<td>820±570</td>
<td>7</td>
</tr>
<tr>
<td>L203W</td>
<td>2900±510</td>
<td>4</td>
</tr>
<tr>
<td>Y229A</td>
<td>94±33</td>
<td>7</td>
</tr>
<tr>
<td>Y229D</td>
<td>8300±4500</td>
<td>3</td>
</tr>
<tr>
<td>Y229F</td>
<td>17±2.8</td>
<td>3</td>
</tr>
<tr>
<td>Y229T</td>
<td>62±3.5</td>
<td>3</td>
</tr>
</tbody>
</table>

The EC₅₀ values for cAMP were derived from surface plasmon resonance measurements on a 3 mM 8-AHA-cAMP surface based on dose-response curves. The standard deviation is indicated.

![Figure 6](image-url)
in E. coli, the small GTPases Epac1 and Epac2 and the hyperpolarized K⁺ channel also contain a Phe residue. Accordingly, probing this rather conserved amino acid change by mutating the critical Tyr229 to Phe in Rλ A-domain revealed no effect on any parameter tested.

cAMP binding and R subunit/C subunit interaction need to be co-ordinated to allow dissociation of the PKA holoenzyme. In the PKA R A-domain, replacing Leu203 with Trp caused a 120-fold reduced Kd for cAMP and a 10-fold excess of mutant R subunit was required to form holoenzyme. Since the substitution of Leu203 with Ala showed a similar effect on holoenzyme formation and a 35-fold reduced Kd for cAMP binding (Table 2), the effect cannot be exclusively attributed to the bulky nature of Trp. Epac1 Leu273Trp (corresponding to Leu203Trp in R A-domain) can still bind cAMP with a five-fold reduced Kd (4 μM for WT, 20 μM for Leu273Trp). However, in this case cAMP binding does not result in the activation of Epac1. Therefore, Rehmann et al. (2003) concluded that in Epac1 the binding and the conformational switch are uncoupled from each other.

In contrast, substitutions of Phe300 (corresponding to Tyr229 in R A-domain) with either Ala or Thr destabilize the ligand-free conformation of Epac1. Activation of Epac1 Phe300Ala and Phe300Thr was achieved at lower cAMP concentrations compared to the wild-type protein (Rehmann et al., 2003). Analysis of the corresponding mutant proteins R A-domain Tyr229Ala and Tyr229Thr resulted in Kd values for cAMP with four- and 2.6-fold lower affinity, respectively, compared to R A-domain WT (Table 2). When Tyr229 is replaced by an Asp (R A-domain Tyr229Asp), severe effects on cAMP binding were observed, with a 350-fold reduced affinity. This clearly demonstrates that in PKA, Leu203 and Tyr229 are crucial for transmitting cAMP binding to the R subunit, as well as for maintaining R/C subunit interaction.

The experiments presented here support a mechanism for cAMP action in PKA comparable to the activation mechanism of Epac (Rehmann et al., 2003). For the effects of binding of cAMP to the R subunit and R/C interaction, the following model can be envisioned. If the concentration of cAMP is low, cAMP diffusing from the cyclic nucleotide-binding pocket, initiating hydrogen bonding to Glu200. Other water molecules are orientated accordingly and form a cap around the hydrophobic Leu201. The packing-induced optimal hydrogen-bonding distance of these capping water molecules induces a movement of Leu201, causing a shift of the backbone, which is further transmitted via Ala202 to Leu203 (Figure 7). Leu203 is part of a hydrophobic core region formed by Leu203, Ile204, Phe172, and Tyr229 (Figure 8). The movement of the backbone around Leu203 induces a van-der-Waals-exerted mechanical force to Tyr229, causing a rearrangement of the whole αC-helix, which in turn permits the C subunit to access the R subunit.

During the preparation of this manuscript, a high-resolution crystal structure of a complex between the C subunit and a deletion mutant of the R subunit (bovine Rλ A-domain, protein data bank accession number 1NE4; Wu et al., 2004b) is represented in black. For details see the text.
Materials and methods

Reagents

The peptide substrate Kemptide (LRRASLG) was purchased from either Bachem AG (Bubendorf, Germany) or BioSYntan GmbH (Bremen, Germany). ATP and NADH were obtained from Biomol GmbH (Hamburg, Germany). cAMP (adenosine-3',5'-cyclic monophosphate), 8-AHA-cAMP [8-(6-aminohexyl)-aminoadenosine-3',5'-cyclic monophosphate] and 6-AH-cAMP [N'-6-(6-aminohexyl)adenosine-3',5'-cyclic monophosphate] agarose were purchased from Biolog Life Science Institute (Bremen, Germany). Materials used in cloning were of molecular biology grade. Media supplies (Difco™) were purchased from Becton Dickinson GmbH (Heidelberg, Germany). DNAs for the recombinant proteins were a kind gift from Prof. S.S. Taylor, University of California, San Diego, USA.

Site-directed mutagenesis

We used a construct of the isolated cAMP-binding domain A encoding the amino acids 93–259 of bovine R1 (bovine R1 α1–92 δ260–379; Ringheim and Taylor, 1990; this is referred to as R A-domain). According to the QuikChange™ Site-Directed Mutagenesis Kit protocol (Stratagene, La Jolla, USA), a pair of primers (MWG Biotech, Ebersberg, Germany) was used to introduce single amino acid exchanges in a single PCR. The following amino acid changes were made: Leu203Ala, Leu203Trp, Tyr229Ala, Tyr229Asp, Tyr229Thr, Tyr229Phe, Arg239Ala, Arg239Glu, Arg241Ala, and Arg241Glu. All mutations were confirmed by customer DNA sequence analysis performed by GATC Biotech AG, Konstanz, Germany.

Expression of recombinant proteins

Recombinant murine Cα was expressed and purified as described previously (Slice and Taylor, 1989; Herberg et al., 1994). After expression of recombinant R subunits in E. coli BL21DE3 cells (48 h, 37°C), the cells were harvested (5000 g, 15 min, 4°C). The pellets were stored at -20°C.

Purification of R subunits using cAMP resin

Cells from 0.5 l of culture were thawed on ice and resuspended in 15 ml of lysis buffer (20 mM potassium phosphate, pH 6.8, 100 mM NaCl, 2 mM EDTA, 2 mM EGTA, 1 mM β-mercaptoethanol). The following steps were performed at 4°C, unless stated otherwise. SDS-PAGE (Laemmli, 1970) checks were run subsequently. After homogenization, the homogenate was either passed through a French® Pressure Cell Press (Thermo Electron Corp., Needham Heights, USA) at 10 000–15 000 psi or sonicated four times on ice with 30 pulses each (0.7 s repeating duty cycle, circa 170–190 output, Labsonic U, B. Braun, Melsungen, Germany). The lysate was then centrifuged at 47 800 g for 45 min. The supernatant was rotated overnight (17–22 h) with 250 µl of equilibrated 6-AH-cAMP agarose slurry. The agarose was pelleted (450 g, 2 min), transferred into a 1.5-ml reaction tube and washed six times (200 g, 2 min) with 1 ml of buffer A (20 mM MOPS, pH 7, 150 mM NaCl, 1 mM β-mercaptoethanol). Proteins were eluted with 1 ml of 10 mM cGMP at room temperature (22°C) for 1 h. The supernatant was passed over a NAP10 gel filtration column (Amersham Pharmacia Biotech, Freiburg, Germany) equilibrated in buffer A. The protein was eluted with 1.5 ml of buffer A and dialyzed overnight against buffer A (three buffer exchanges). The proteins (R A-domain) were then either stored on ice or at -20°C for further use.

Circular dichroism (CD) measurements

Each protein was exchanged to 5 mM potassium phosphate, pH 7 on a Superose 12 column pre-equilibrated in the same buffer using an FPLC system (Amersham Biosciences). CD measurements were performed on a Jasco J-720 spectropolarimeter using 15 µM protein in a 0.1-cm-pathlength cuvette (300 µl capacity) at 22°C. CD spectra were scanned from 195 to 255 nm at a scanning speed of 50 nm/min with 0.5-nm data pitch and an integration time of 2 s. From two independent preparations, 20 spectra were accumulated for each protein. The baseline was recorded for buffer only and subtracted. Conversion of observed ellipticity values (mdeg) to mean residue ellipticity (deg cm²/dmol) was carried out according to the equation:

\[\theta_{\text{mean}} = \frac{\theta_{-100N_c}}{I - N_c} \]

where \(\theta \) is the measured ellipticity (deg), \(c \) the protein concentration (mg/ml), \(I \) is the pathlength (cm), \(M \) is the protein molecular weight and \(N_c \) is the number of amino acids in the respective protein.

Holoenzyme formation

A fixed C subunit concentration (20–30 nm) was incubated for 1 min with varying concentrations of R subunit in 100 µl of assay mix at room temperature (22°C) according to Cook et al. (1982). The reaction was started by addition of the heptapeptide Kemptide (200 µM final concentration) and followed for 1 min at 340 nm using a spectrophotometer (Lambda Bio UV/Vis Spectrometer, Perkin Elmer, Rodgau-Jügesheim, Germany, or Spectro 205, Analytik Jena, Jena, Germany). EC₅₀ values were extracted from sigmoidal dose-response curves using GraphPad Prism 4.02. The ability to dissociate holoenzyme was checked by the addition of 75 µM cAMP.

Surface plasmon resonance

Biacore 2000 or Biacore 3000 instruments (Biacore AB, Uppsala, Sweden) were used to study the interaction of free R A-domain WT and mutants with either immobilized Cα subunit or immobilized cAMP analogs.

Three different C subunit preparations were immobilized on a CM 5 sensor chip (Biacore AB) using amine coupling (Herberg et al., 1994; Hahnefeld et al., 2004). The C subunits were diluted to 10–30 µg/ml in 10 mM sodium acetate, 500 µM ATP, 1 mM MgCl₂, with a pH between 5.5 and 6.0. Then 470 response units (RU; 1000 RU=1 ng/mm²; Stenberg et al., 1991) were immobilized as described previously (Herberg et al., 1994). A reference surface was activated/deactivated without protein, and the response was subtracted. All interaction experiments with R subunit were performed at 25°C in running buffer (20 mM MOPS, pH 7, 150 mM NaCl, 500 µM ATP, 1 mM MgCl₂, 0.005% surfactant P20) at a flow rate of 20 µl/min. After simultaneous R subunit injection over the four surfaces (3 min), the dissociation phase was monitored for 1 min. The binding of R subunit to C subunit was not limited by mass transport, as demonstrated previously (Herberg and Zimmermann, 1999). Sensor surfaces were regenerated by two subsequent injections (1 min each) with 1 mM cAMP, 2 mM EDTA in running buffer. Data evaluation was performed using Biaevaluation 4.1 (Biacore AB) and a 1:1 Langmuir binding model was applied for the C subunit/R subunit interaction (Hahnefeld et al., 2004).

Protein/nucleotide interaction was monitored using a solution competition assay (Zimmermann et al., 2002; D. Moll et al., in preparation). In brief, R subunits (10 or 50 nm) were preincubated (30 min) with varying amounts of free cAMP and subsequently...
injected over a 3 mM 8-AHA-cAMP surface. The response at the end of the dissociation phase (t = 120 s) was plotted against the free cAMP concentration and EC₅₀ values were calculated with GraphPad Prism.

Structure-based alignments

Structure-based alignments were performed using the X-ray crystal structures of bovine R₁α-A-domain (protein data bank accession number 1NE4; Wu et al., 2004b) and murine Epac2-B-domain (107F; Rehmann et al., 2003). The alignment was adjusted on the PBC (Canaves and Taylor, 2002) region (bovine R₁α, amino acids 196–215; murine Epac2, amino acids 401–420) using XtalView 4.0/XFit 4.1 (McRee, 1999) and illustrated with Visual Molecular Dynamics 1.8.2 (VMD; Humphrey et al., 1996).

Acknowledgments

We thank Dr. Silke Hutschtenreiter (University of Kassel, Germany), Prof. Susan Taylor (University of San Diego, USA), Prof. Alfred Wittinghofer and Dr. Holger Rehmann (MPI, Dortmund, Germany), and Prof. Hartmut Follmann and Prof. Wolfgang Nellen (University of Kassel, Germany) for helpful discussions. We are grateful to Sonja Schweinsberg, Nicole Burghardt and Elke Böhm (University of Kassel, Germany) for superb technical help and would like to thank Dr. Wolfgang Hoyer (MPI for Biophysical Chemistry, Göttingen, Germany) and Dennis Fiegen (MPI, Dortmund, Germany) for help with the CD experiments. This work was supported by grants from the Deutsche Forschungsgemeinschaft (DFG, He1818/4), the European Commission (EU) and the European Community (Cordis Programme). We thank Dr. Silke Hutschenreiter (University of Kassel, Germany) for helpful discussions. We are grateful to Sonja Schweinsberg, Nicole Burghardt and Elke Böhm (University of Kassel, Germany) for helpful discussions. We are grateful to Sonja Schweinsberg, Nicole Burghardt and Elke Böhm (University of Kassel, Germany). We thank Dr. Silke Hutschenreiter (University of Kassel, Germany), Prof. Susan Taylor (University of San Diego, USA), Prof. Alfred Wittinghofer and Dr. Holger Rehmann (MPI, Dortmund, Germany), and Prof. Hartmut Follmann and Prof. Wolfgang Nellen (University of Kassel, Germany) for helpful discussions. We are grateful to Sonja Schweinsberg, Nicole Burghardt and Elke Böhm (University of Kassel, Germany) for superb technical help and would like to thank Dr. Wolfgang Hoyer (MPI for Biophysical Chemistry, Göttingen, Germany) and Dennis Fiegen (MPI, Dortmund, Germany) for help with the CD experiments. This work was supported by grants from the Deutsche Forschungsgemeinschaft (DFG, He1818/4), the European Commission (EU) and the European Community (Cordis Programme). We thank Dr. Silke Hutschenreiter (University of Kassel, Germany) for helpful discussions. We are grateful to Sonja Schweinsberg, Nicole Burghardt and Elke Böhm (University of Kassel, Germany) for superb technical help and would like to thank Dr. Wolfgang Hoyer (MPI for Biophysical Chemistry, Göttingen, Germany) and Dennis Fiegen (MPI, Dortmund, Germany) for help with the CD experiments. This work was supported by grants from the Deutsche Forschungsgemeinschaft (DFG, He1818/4), the European Commission (EU) and the European Community (Cordis Programme).

References

Houge, G., Steinberg, R.A., Ogred, D., and Doskeland, S.O. (1990). The rate of recombination of the subunits (RI and C) of cAMP-dependent protein kinase depends on whether one or two cAMP molecules are bound per RI monomer. J. Biol. Chem. 265, 19507–19516.

Received February 9, 2005; accepted May 10, 2005.