Show simple item record

dc.date.accessioned2024-02-14T16:37:56Z
dc.date.available2024-02-14T16:37:56Z
dc.date.issued2020-09-22
dc.identifierdoi:10.17170/kobra-202402139579
dc.identifier.urihttp://hdl.handle.net/123456789/15471
dc.language.isoeng
dc.publisherASTM International
dc.rightsUrheberrechtlich geschützt
dc.rights.urihttps://rightsstatements.org/page/InC/1.0/
dc.subjectadditive manufacturingeng
dc.subjectshape memory alloyeng
dc.subjectaustenitic steeleng
dc.subjectfunctionalized structureseng
dc.subjectsecondary recrystallizationeng
dc.subject.ddc600
dc.subject.ddc660
dc.titleOn the Challenges toward Realization of Functionally Graded Structures by Electron Beam Melting—Fe-Base Shape Memory Alloy and Stainless Steeleng
dc.typeKonferenzveröffentlichung
dcterms.abstractIn the present study, an iron-manganese-aluminum-nickel (Fe-Mn-Al-Ni) shape memory alloy was processed on an austenitic steel (AISI 304) build platform by electron beam melting in order to study the feasibility of realizing functionally graded structures consisting of two different materials (i.e., a functional and a structural material). Compression specimens consisting of the processed shape memory alloy and the austenitic build platform in equal parts were investigated. The microstructure was analyzed in the as-built state and after different heat treatments, focusing on the interface between both materials. Scanning electron microscopy and electron backscatter diffraction measurements were conducted to reveal the relation between processing steps and the microstructural evolution. It is shown that the microstructure after the electron beam melting process is characterized by a preferred 〈001〉 orientation with respect to the build direction and that a suitable microstructure for good pseudoelastic performance can be realized by post-processing heat treatments. Finally, incremental strain tests up to 12% compressive strain were conducted to analyze the overall mechanical performance of the specimens.eng
dcterms.accessRightsopen access
dcterms.creatorTorrent, Christof Johannes Jaime
dcterms.creatorBauer, André
dcterms.creatorVollmer, Malte
dcterms.creatorNiendorf, Thomas
dc.publisher.placeWest Conshohocken, PA
dc.relation.doidoi:10.1520/STP163120190128
dc.subject.swdRapid Prototyping <Fertigung>ger
dc.subject.swdMemory-Legierungger
dc.subject.swdAustenitischer Stahlger
dc.subject.swdRekristallisationger
dc.subject.swdElektronenstrahlschmelzenger
dc.subject.swdFunktioneller Gradientenwerkstoffger
dc.subject.swdMikrostrukturger
dc.type.versionpublishedVersion
dcterms.event.date2020
dcterms.event.placeNational Harbor, Md.
dcterms.source.collectionStructural Integrity of Additive Manufactured Materials and Partseng
dcterms.source.editorShamsaei, Nima
dcterms.source.editorSeifi, Mohsen
dcterms.source.identifierdoi:10.1520/STP1631-EB
dcterms.source.identifiereisbn:978-0-8031-7709-3
dcterms.source.identifierisbn:978-0-8031-7708-6
dcterms.source.pageinfo20-33
dcterms.source.seriesSelected technical papers / ASTM Internationaleng
dcterms.source.volumeSTP 1631
kup.iskupfalse
dcterms.eventASTM International Symposium on the Structural Integrity of Additive Manufactured Materials and Parts, 4; ASTM Symposium on Structural Integrity of Additive Manufactured Materials and Parts, 4eng


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record