DSpace
KOBRA
KOBRA

KOBRA - Dokumentenserver der Universität Kassel  → Fachbereiche  → FB 10 / Mathematik und Naturwissenschaften  → Institut für Mathematik  → Mathematische Schriften Kassel 

Bitte benutzen Sie diese Kennung, um auf die Ressource zu verweisen:
http://nbn-resolving.de/urn:nbn:de:hebis:34-2006060612903

Titel: Solution properties of the de Branges differential recurrence equation
Autor(en): Koepf, WolframSchmersau, Dieter
Schlagworte (SWD): Bieberbach-Vermutung
Klassifikation (DDC): 510 - Mathematik (Mathematics)
Erscheinungsdatum: 2005
Serie/Report Nr.: Mathematische Schriften Kassel05, 18
Zusammenfassung: In this 1984 proof of the Bieberbach and Milin conjectures de Branges used a positivity result of special functions which follows from an identity about Jacobi polynomial sums thas was published by Askey and Gasper in 1976. The de Branges functions Tn/k(t) are defined as the solutions of a system of differential recurrence equations with suitably given initial values. The essential fact used in the proof of the Bieberbach and Milin conjectures is the statement Tn/k(t)<=0. In 1991 Weinstein presented another proof of the Bieberbach and Milin conjectures, also using a special function system Λn/k(t) which (by Todorov and Wilf) was realized to be directly connected with de Branges', Tn/k(t)=-kΛn/k(t), and the positivity results in both proofs Tn/k(t)<=0 are essentially the same. In this paper we study differential recurrence equations equivalent to de Branges' original ones and show that many solutions of these differential recurrence equations don't change sign so that the above inequality is not as surprising as expected. Furthermore, we present a multiparameterized hypergeometric family of solutions of the de Branges differential recurrence equations showing that solutions are not rare at all.
URI: urn:nbn:de:hebis:34-2006060612903
Sammlung(en):Mathematische Schriften Kassel

Dateien zu dieser Ressource:

Datei Beschreibung GrößeFormat
prep0518.pdf112,41 kBAdobe PDFÖffnen/Anzeigen

Alle Ressourcen in diesem Repository sind urheberrechtlich geschützt.