DSpace
KOBRA
KOBRA

KOBRA - Dokumentenserver der Universität Kassel  → Fachbereiche  → FB 10 / Mathematik und Naturwissenschaften  → Institut für Mathematik  → Algorithmische Algebra und Diskrete Mathematik  → Bachelorarbeiten 

Bitte benutzen Sie diese Kennung, um auf die Ressource zu verweisen:
http://nbn-resolving.de/urn:nbn:de:hebis:34-2007112319721

Titel: Algorithmen für regelmäßige Kettenbrüche
Autor(en): Scheel, Stefan
Schlagworte (SWD): AlgorithmusKettenbruch
Klassifikation (DDC): 510 - Mathematik (Mathematics)
Erscheinungsdatum: 23-Nov-2007
Zusammenfassung: Die Arbeit soll einen Einblick in die Theorie der Kettenbrüche geben. Wir haben gesehen, dass schwer greifbare Zahlen als Kettenbrüche ausgedrückt werden können. Es ist besonders hervorzuheben, dass irrationale Zahlen mit Hilfe einer Abschätzung vereinfacht durch Kettenbrüche dargestellt werden können. Weiter sind wir auch darauf eingegangen, wie wir Kettenbrüche wieder in eine rationale Darstellung umwandeln können. Es wurde gezeigt, wie wir rationale Zahlen als endlichen Kettenbrüche schreiben können. Die endlichen Kettenbrüche lieferten uns dann die Grundlage, um unendliche zu betrachten, wobei das größte Augenmerk darauf gerichtet war, dass wir eine irrationale Zahl durch einen unendlichen Kettenbruch abschätzen können. Den Kern der Arbeit bildet der Kettenbruch-Algorithmus, mit dessen Hilfe wir irrationale Zahlen in einen Kettenbruch umwandeln können. Ein wichtiger Aspekt sind auch die Abschätzungen, die wir vorgenommen haben. Mit ihrer Hilfe können wir sehen, wie dicht die letzte Konvergente der Kettenbruchentwicklung an der gesuchten irrationalen Zahl liegt. Da die Konvergenten immer aus teilerfremden Zählern und Nennern bestehen, können wir sogar sagen, dass eine Konvergente die beste Approximation an eine irrationale Zahl bietet. Es ist die beste Approximation in dem Sinne, dass keine rationale Zahl mit kleinerem oder gleichem Nenner existiert, die die irrationale Zahl besser annähert. Ein weiterer wichtiger Aspekt der Kettenbruchtheorie ist, dass quadratische Irrationalitäten endlich durch einen periodischen Kettenbruch dargestellt werden können. Es ist bemerkenswert, dass Kettenbrüche von quadratischen Irrationalitäten eine Regelmäßigkeit aufweisen, so dass sie endlich als periodicher Kettenbruch geschrieben werden können.
URI: urn:nbn:de:hebis:34-2007112319721
Sammlung(en):Bachelorarbeiten

Dateien zu dieser Ressource:

Datei Beschreibung GrößeFormat
BachelorarbeitScheel.pdf258,65 kBAdobe PDFÖffnen/Anzeigen

Alle Ressourcen in diesem Repository sind urheberrechtlich geschützt.