DSpace
KOBRA
KOBRA

KOBRA - Dokumentenserver der Universität Kassel  → Fachbereiche  → FB 10 / Mathematik und Naturwissenschaften  → Institut für Mathematik  → Mathematische Schriften Kassel 

Bitte benutzen Sie diese Kennung, um auf die Ressource zu verweisen:
http://nbn-resolving.de/urn:nbn:de:hebis:34-2008022620483

Titel: Computing Generators of Free Modules over Orders in Group Algebras
Autor(en): Bley, WernerJohnston, Henri
Klassifikation (DDC): 510 - Mathematik (Mathematics)
Erscheinungsdatum: 2007
Serie/Report Nr.: Mathematische Schriften Kassel07, 07
Zusammenfassung: Let E be a number field and G be a finite group. Let A be any O_E-order of full rank in the group algebra E[G] and X be a (left) A-lattice. We give a necessary and sufficient condition for X to be free of given rank d over A. In the case that the Wedderburn decomposition E[G] \cong \oplus_xM_x is explicitly computable and each M_x is in fact a matrix ring over a field, this leads to an algorithm that either gives elements \alpha_1,...,\alpha_d \in X such that X = A\alpha_1 \oplus ... \oplusA\alpha_d or determines that no such elements exist. Let L/K be a finite Galois extension of number fields with Galois group G such that E is a subfield of K and put d = [K : E]. The algorithm can be applied to certain Galois modules that arise naturally in this situation. For example, one can take X to be O_L, the ring of algebraic integers of L, and A to be the associated order A(E[G];O_L) \subseteq E[G]. The application of the algorithm to this special situation is implemented in Magma under certain extra hypotheses when K = E = \IQ.
URI: urn:nbn:de:hebis:34-2008022620483
Sammlung(en):Mathematische Schriften Kassel

Dateien zu dieser Ressource:

Datei Beschreibung GrößeFormat
prep0707.pdf273,68 kBAdobe PDFÖffnen/Anzeigen

Alle Ressourcen in diesem Repository sind urheberrechtlich geschützt.