KOBRA - Dokumentenserver der Universität Kassel  → Fachbereiche  → FB 10 / Mathematik und Naturwissenschaften  → Institut für Mathematik  → Mathematische Schriften Kassel 

Please use this identifier to cite or link to this item: http://nbn-resolving.de/urn:nbn:de:hebis:34-2008022620483

Title: Computing Generators of Free Modules over Orders in Group Algebras
Authors: Bley, WernerJohnston, Henri
???metadata.dc.subject.ddc???: 510 - Mathematik (Mathematics)
Issue Date: 2007
Series/Report no.: Mathematische Schriften Kassel07, 07
Abstract: Let E be a number field and G be a finite group. Let A be any O_E-order of full rank in the group algebra E[G] and X be a (left) A-lattice. We give a necessary and sufficient condition for X to be free of given rank d over A. In the case that the Wedderburn decomposition E[G] \cong \oplus_xM_x is explicitly computable and each M_x is in fact a matrix ring over a field, this leads to an algorithm that either gives elements \alpha_1,...,\alpha_d \in X such that X = A\alpha_1 \oplus ... \oplusA\alpha_d or determines that no such elements exist. Let L/K be a finite Galois extension of number fields with Galois group G such that E is a subfield of K and put d = [K : E]. The algorithm can be applied to certain Galois modules that arise naturally in this situation. For example, one can take X to be O_L, the ring of algebraic integers of L, and A to be the associated order A(E[G];O_L) \subseteq E[G]. The application of the algorithm to this special situation is implemented in Magma under certain extra hypotheses when K = E = \IQ.
URI: urn:nbn:de:hebis:34-2008022620483
Appears in Collections:Mathematische Schriften Kassel

Files in This Item:

File Description SizeFormat
prep0707.pdf273.68 kBAdobe PDFView/Open

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.