KOBRA - Dokumentenserver der Universität Kassel  → Fachbereiche  → FB 10 / Mathematik und Naturwissenschaften  → Institut für Mathematik  → Mathematische Schriften Kassel 

Please use this identifier to cite or link to this item: http://nbn-resolving.de/urn:nbn:de:hebis:34-2008052621729

Title: The Parity of the Number of Irreducible Factors for Some Pentanomials
Authors: Koepf, WolframKim, Ryul
???metadata.dc.subject.ddc???: 510 - Mathematik (Mathematics)
Issue Date: 2008
Series/Report no.: Mathematische Schriften Kassel08, 05
Abstract: It is well known that Stickelberger-Swan theorem is very important for determining reducibility of polynomials over a binary field. Using this theorem it was determined the parity of the number of irreducible factors for some kinds of polynomials over a binary field, for instance, trinomials, tetranomials, self-reciprocal polynomials and so on. We discuss this problem for type II pentanomials namely x^m +x^{n+2} +x^{n+1} +x^n +1 \in\ IF_2 [x]. Such pentanomials can be used for efficient implementing multiplication in finite fields of characteristic two. Based on the computation of discriminant of these pentanomials with integer coefficients, it will be characterized the parity of the number of irreducible factors over IF_2 and be established the necessary conditions for the existence of this kind of irreducible pentanomials.
URI: urn:nbn:de:hebis:34-2008052621729
Appears in Collections:Mathematische Schriften Kassel

Files in This Item:

File Description SizeFormat
Prep0805.pdf209.96 kBAdobe PDFView/Open

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.