KOBRA - Dokumentenserver der Universität Kassel  → Fachbereiche  → FB 16 Elektrotechnik / Informatik  → Informatik   → Wissensverarbeitung  → Publikationen 

Please use this identifier to cite or link to this item: http://nbn-resolving.de/urn:nbn:de:hebis:34-2009022726467

Title: Efficient data mining based on formal concept analysis
Authors: Stumme, Gerd
???metadata.dc.subject.swd???: Formale BegriffsanalyseData Mining
???metadata.dc.subject.ddc???: 004 - Informatik (Data processing Computer science)
Issue Date: 2002
Abstract: Formal Concept Analysis is an unsupervised learning technique for conceptual clustering. We introduce the notion of iceberg concept lattices and show their use in Knowledge Discovery in Databases (KDD). Iceberg lattices are designed for analyzing very large databases. In particular they serve as a condensed representation of frequent patterns as known from association rule mining. In order to show the interplay between Formal Concept Analysis and association rule mining, we discuss the algorithm TITANIC. We show that iceberg concept lattices are a starting point for computing condensed sets of association rules without loss of information, and are a visualization method for the resulting rules.
URI: urn:nbn:de:hebis:34-2009022726467
???metadata.dc.description.everything???: Auch erschienen in: Hameurlain, Abdelkader u.a. (Hrsg.): Database and expert systems applications. (Lecture notes in computer science ; 2453). Berlin u.a. : Springer, 2002. S. 534-546. ISBN 3-540-44126-3 (The original publication is available at www.springerlink.com)
Appears in Collections:Publikationen

Files in This Item:

File Description SizeFormat
StummeEfficientDataMining2002.pdf216.3 kBAdobe PDFView/Open

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.