DSpace
KOBRA
KOBRA

KOBRA - Dokumentenserver der Universität Kassel  → Fachbereiche  → FB 14 / Bauingenieur- und Umweltingenieurwesen  → Institut für konstruktiven Ingenieurbau (IKI)  → Fachgebiet Massivbau  → Dissertationen 

Please use this identifier to cite or link to this item: http://nbn-resolving.de/urn:nbn:de:hebis:34-2009031226631

Title: Rissbildung und Zugtragverhalten von mit Stabstahl und Fasern bewehrtem Ultrahochfesten Beton (UHPC)
Authors: Leutbecher, Torsten
???metadata.dc.subject.swd???: Ultrahochfester BetonZugbeanspruchungFaserverstärkungBewehrungsstabRissbildungTragfähigkeit
???metadata.dc.subject.ddc???: 620 - Ingenieurwissenschaften (Engineering and allied operations)
Issue Date: 2008
Publisher: Kassel Univ. Press
Series/Report no.: Schriftenreihe Baustoffe und Massivbau9
Abstract: Ultrahochfester Beton (UHPC) ist ein sehr gefügedichter zementgebundener Werkstoff, der sich nicht nur durch eine hohe Druckfestigkeit, sondern auch durch einen hohen Widerstand gegen jede Form physikalischen oder chemischen Angriffs auszeichnet. Duktiles Nachbruchverhalten bei Druckversagen wird meist durch die Zugabe dünner kurzer Fasern erreicht. In Kombination mit konventioneller Betonstahl- oder Spannbewehrung ermöglicht UHPC die Ausführung sehr schlanker, weitgespannter Konstruktionen und eröffnet zugleich neue Anwendungsgebiete, wie zum Beispiel die flächenhafte Beschichtung von Brückendecks. Durch das Zusammenwirken kontinuierlicher Bewehrungselemente und diskontinuierlich verteilter kurzer Fasern ergeben sich unter Zugbeanspruchung Unterschiede gegenüber dem bekannten Stahl- und Spannbeton. In der vorliegenden Arbeit wird hierzu ein Modell entwickelt und durch eine umfangreiche Versuchsreihe abgesichert. Ausgangspunkt sind experimentelle und theoretische Untersuchungen zum Verbundverhalten von Stabstählen in einer UHPC-Matrix und zum Einfluss einer Faserzugabe auf das Reiß- und Zugtragverhalten von UHPC. Die Modellbildung für UHPC-Zugelemente mit gemischter Bewehrung aus Stabstahl und Fasern erfolgt auf der Grundlage der Vorgänge am diskreten Riss, die daher sehr ausführlich behandelt werden. Für den elastischen Verformungsbereich der Stabbewehrung (Gebrauchslastbereich) kann damit das Last-Verformungs-Verhalten für kombiniert bewehrte Bauteile mechanisch konsistent unter Berücksichtigung des bei UHPC bedeutsamen hohen Schwindmaßes abgebildet werden. Für die praktische Anwendung wird durch Vereinfachungen ein Näherungsverfahren abgeleitet. Sowohl die theoretischen als auch die experimentellen Untersuchungen bestätigen, dass der faserbewehrte UHPC bei Kombination mit kontinuierlichen Bewehrungselementen selbst kein verfestigendes Verhalten aufweisen muss, um insgesamt verfestigendes Verhalten und damit eine verteilte Rissbildung mit sehr keinen Rissbreiten und Rissabständen zu erzielen. Diese Beobachtungen können mit Hilfe der bisher zur Verfügung stehenden Modelle, die im Wesentlichen eine Superposition isoliert ermittelter Spannungs-Dehnungs-Beziehungen des Faserbetons und des reinen Stahls vorsehen, nicht nachvollzogen werden. Wie die eigenen Untersuchungen zeigen, kann durch ausreichend dimensionierte Stabstahlbewehrung zielgerichtet und ohne unwirtschaftlich hohe Fasergehalte ein gutmütiges Verhalten von UHPC auf Zug erreicht werden. Die sichere Begrenzung der Rissbreiten auf deutlich unter 0,1 mm gewährleistet zugleich die Dauerhaftigkeit auch bei ungünstigen Umgebungsbedingungen. Durch die Minimierung des Material- und Energieeinsatzes und die zu erwartende lange Nutzungsdauer lassen sich so im Sinne der Nachhaltigkeit optimierte Bauteile realisieren.Ultra high performance concrete (UHPC) is a very densely structured cementitious material, which is not only characterised by a high compressive strength but also by a high resistance against every kind of physical and chemical attack. A ductile post-failure behaviour under compression is mostly achieved by adding thin short fibres. In combination with conventional bar reinforcement or prestressing steel, UHPC enables to build slender, long-span structures and offers the opportunity for new application fields, i. e. coating of bridge decks by reinforced UHPC layers. Due to the interaction of continuous reinforcement elements and discontinuously distributed short fibres under tensile loading differences compared to common reinforced concrete and prestressed concrete can by observed. Concerning this, within the scope of this thesis a model is developed and confirmed by an extensive test series. The work is based on experimental and theoretical investigations on the bond behaviour of reinforcing bars embedded in an UHPC-matrix and on the influence of fibre addition on the cracking and tensile behaviour of UHPC. The modelling of UHPC tensile members with a combination of reinforcing bars and fibres is based on the consideration of discrete cracks. Therefore, the essential mechanical relationships are treated in detail. For the elastic range of the reinforcing steel (serviceability range) the load-deformation-behaviour of structural elements with combined reinforcement can be described consistently considering the shrinkage strain that is significant for UHPC. For practical use, an approximation procedure is derived by introducing some simplifications. Both the theoretical and the experimental investigations confirm, that in combination with bar reinforcement the fibre reinforced UHPC itself does not need to show a hardening behaviour to achieve an overall hardening behaviour and to enable a distributed crack formation with small crack widths and crack spacings. Model ideas available so far, which primarily suggest a superposition of the stress-strain-relationship of fibre concrete and of plain steel, both determined separately, are not able to reproduce this observation. According to the own investigations, with sufficient bar reinforcement, a reliable tensile behaviour of UHPC can be achieved purposefully without uneconomically high fibre contents. At the same time, the secure limitation of crack width significantly below 0.1 mm guarantees durability even under unfavourable environmental conditions. Because of the minimised demand of material and energy and on account of the expected high service life within the meaning of sustainability optimised structures can be realised.
URI: urn:nbn:de:hebis:34-2009031226631
ISBN: 978-3-89958-374-8
???metadata.dc.description.everything???: Gedruckte Ausg. im Verlag Kassel Univ. Press (www.upress.uni-kassel.de) erschienen.
Appears in Collections:Dissertationen

Files in This Item:

File Description SizeFormat
DissertationTorstenLeutbecher.pdf7.42 MBAdobe PDFView/Open

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.