DSpace
KOBRA
KOBRA

KOBRA - Dokumentenserver der Universität Kassel  → Fachbereiche  → FB 10 / Mathematik und Naturwissenschaften  → Institut für Physik  → Theoretische Physik III - Quantendynamik und -kontrolle  → Publikationen 

Bitte benutzen Sie diese Kennung, um auf die Ressource zu verweisen:
http://nbn-resolving.de/urn:nbn:de:hebis:34-2015070148692

Titel: Asymptotic model for shape resonance control of diatomics by intense non-resonant light: universality in the single-channel approximation
Autor(en): Crubellier, AnneGonzáles-Férez, RosarioKoch, Christiane P.Luc-Koenig, Eliane
Klassifikation (DDC): 530 - Physik (Physics)
Erscheinungsdatum: 2015
Zitierform: In: New journal of physics. - London : IOP, 2015, 17, 045022, 1-15
Zusammenfassung: Non-resonant light interacting with diatomics via the polarizability anisotropy couples different rotational states and may lead to strong hybridization of the motion. The modification of shape resonances and low-energy scattering states due to this interaction can be fully captured by an asymptotic model, based on the long-range properties of the scattering (Crubellier et al 2015 New J. Phys. 17 045020). Remarkably, the properties of the field-dressed shape resonances in this asymptotic multi-channel description are found to be approximately linear in the field intensity up to fairly large intensity. This suggests a perturbative single-channel approach to be sufficient to study the control of such resonances by the non-resonant field. The multi-channel results furthermore indicate the dependence on field intensity to present, at least approximately, universal characteristics. Here we combine the nodal line technique to solve the asymptotic Schrödinger equation with perturbation theory. Comparing our single channel results to those obtained with the full interaction potential, we find nodal lines depending only on the field-free scattering length of the diatom to yield an approximate but universal description of the field-dressed molecule, confirming universal behavior.
URI: urn:nbn:de:hebis:34-2015070148692
zus. URI: doi:10.1088/1367-2630/17/4/045022OA-GEF
ISSN: 1367-2630
Sammlung(en):Publikationen
Publikationen

Dateien zu dieser Ressource:

Datei Beschreibung GrößeFormat
1367_2630_17_4_045022.pdf1,12 MBAdobe PDFÖffnen/Anzeigen

Alle Ressourcen in diesem Repository sind urheberrechtlich geschützt.