DSpace
KOBRA
KOBRA

KOBRA - Dokumentenserver der Universität Kassel  → Artikel gefördert durch den Open Access Publikationsfonds  → Publikationen 

Bitte benutzen Sie diese Kennung, um auf die Ressource zu verweisen:
http://nbn-resolving.de/urn:nbn:de:hebis:34-2016110951337

Titel: Introducing the Logarithmic finite element method: a geometrically exact planar Bernoulli beam element
Autor(en): Schröppel, ChristianWackerfuß, Jens
Klassifikation (DDC): 620 - Ingenieurwissenschaften (Engineering and allied operations)
Erscheinungsdatum: 15-Sep-2016
Zitierform: In: Advanced Modeling and Simulation in Engineering Sciences. - Berlin u.a. : Springer. - (2016)3:27
Zusammenfassung: We propose a novel finite element formulation that significantly reduces the number of degrees of freedom necessary to obtain reasonably accurate approximations of the low-frequency component of the deformation in boundary-value problems. In contrast to the standard Ritz–Galerkin approach, the shape functions are defined on a Lie algebra—the logarithmic space—of the deformation function. We construct a deformation function based on an interpolation of transformations at the nodes of the finite element. In the case of the geometrically exact planar Bernoulli beam element presented in this work, these transformation functions at the nodes are given as rotations. However, due to an intrinsic coupling between rotational and translational components of the deformation function, the formulation provides for a good approximation of the deflection of the beam, as well as of the resultant forces and moments. As both the translational and the rotational components of the deformation function are defined on the logarithmic space, we propose to refer to the novel approach as the “Logarithmic finite element method”, or “LogFE” method.
URI: urn:nbn:de:hebis:34-2016110951337
zus. URI: DOI: 10.1186/s40323-016-0074-8OA-GEF
ISSN: 2213-7467
Sammlung(en):Publikationen
Publikationen

Dateien zu dieser Ressource:

Datei Beschreibung GrößeFormat
art_3A10_1186_2Fs40323_016_0074_8.pdf3,83 MBAdobe PDFÖffnen/Anzeigen

Alle Ressourcen in diesem Repository sind urheberrechtlich geschützt.