Zur Kurzanzeige

dc.date.accessioned2023-05-19T10:38:17Z
dc.date.available2023-05-19T10:38:17Z
dc.date.issued2023-01-27
dc.identifierdoi:10.17170/kobra-202305198061
dc.identifier.urihttp://hdl.handle.net/123456789/14727
dc.description.sponsorshipGefördert im Rahmen des Projekts DEAL
dc.language.isoeng
dc.rightsNamensnennung 4.0 International*
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/*
dc.subjectinterference microscopyeng
dc.subjectcoherence scanning interferometryeng
dc.subjectthree-dimensional transfer functioneng
dc.subjectlateral resolutioneng
dc.subjectFourier opticseng
dc.subjectKirchhoff approximationeng
dc.subject.ddc530
dc.titleLateral resolution enhanced interference microscopy using virtual annular apertureseng
dc.typeAufsatz
dcterms.abstractThe lateral resolution in microscopic imaging generally depends on both, the wavelength of light and the numerical aperture of the microscope objective lens. To quantify the lateral resolution Ernst Abbe considered an optical grating illuminated by plane waves. In contrast, the Rayleigh criterion holds for two point sources or point scatterers separated by a lateral distance, which are supposed to emit spherical waves. A portion of each spherical wave is collected by the objective lens and results in an Airy disc corresponding to a diffraction limited intensity point spread function (PSF). If incoherent illumination is employed the intensity PSFs related to different scatterers on an object are added resulting in the well-known Rayleigh resolution criterion. In interference microscopy instead of the intensity the electric field scattered or diffracted by an object will be affected by the transfer function of the optical imaging system. For a reflective object the lateral resolution of an interference microscope can be again characterized by the Abbe limit if the object under investigation is a grating. However, if two irregularities on a flat surface are being imaged the resolution no longer obeys the Rayleigh criterion. Instead, it corresponds to an optical system with an annular aperture and thus surpasses the prediction given by the Rayleigh criterion. This holds true for both, amplitude as well as phase objects, as it will be elucidated in this study by theoretical considerations, simulation results and an experimental proof of principle.eng
dcterms.accessRightsopen access
dcterms.creatorLehmann, Peter
dcterms.creatorHüser, Lucie
dcterms.creatorStelter, Andre
dcterms.creatorKusserow, Thomas
dcterms.extent14 Seiten
dc.relation.doidoi:10.1088/2515-7647/acb249
dc.subject.swdInterferenzmikroskopieger
dc.subject.swdÜbertragungsfunktionger
dc.subject.swdFourier-Optikger
dc.type.versionpublishedVersion
dcterms.source.identifiereissn:2515-7647
dcterms.source.issueNumber 1
dcterms.source.journalJPhys Photonicseng
dcterms.source.volumeVolume 5
kup.iskupfalse
dcterms.source.articlenumber015001


Dateien zu dieser Ressource

Thumbnail
Thumbnail

Das Dokument erscheint in:

Zur Kurzanzeige

Namensnennung 4.0 International
Solange nicht anders angezeigt, wird die Lizenz wie folgt beschrieben: Namensnennung 4.0 International